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1. Introduction

An important task in reliability studies is the lifetime testing of systems composed of
dependent or interacting components (cf. Li and Lynch 2011, p. 2811). In such a system,
the failure of a component affects the performance of the surviving components (Yaonan
and Zhisheng 2015, p. 1). For example, Figure 1 shows a civil engineering experiment
in which a cyclic load is applied to a system consisting of 35 tension wires. Whenever
one of these wires breaks, the total exerted load is redistributed across the remaining
tension wires. This in turn increases the individual load applied to each of the surviving
wires and therefore their risk of failure. We call any system with this kind of behavior a
load sharing system. Load sharing systems are by no means limited to the engineering

Figure 1: Tension wires broken due to cyclic loadings; Müller, Szugat and Maurer 2016.

sciences: we encounter them in a variety of fields such as software development (Kim and
Kvam 2004, p. 84), organ subsystems (Yaonan and Zhisheng 2015, p. 1) or the strength
testing of composite materials. Early considerations of load sharing systems date back to
Daniels 1945, who developed a statistical framework to relate the strength of a textile to
its constituent threads, and Rosen 1964, who employed Daniel’s model in his experimental
treatment of fibrous composites. These pioneering works assume an equal load sharing rule
under which the load is equally redistributed among the surviving components whenever
one component fails. Subsequent research has led to more general, but also increasingly
complex classes of load sharing rules, see Lee, Durham and Lynch 1995, with Harlow and
Phoenix 1982 and the preceding works of Phoenix being important references on local
load sharing rules. Within this thesis, we always operate under an equal load sharing rule.

In an equal load sharing system, the failure risk of a surviving component increases
with the number of failed components. However, the failure risk is likely to also depend
on how long the surviving components were exposed to the redistributed load. Even
between two consecutive component failures, the accumulation of damage within the
system can therefore cause a continuous increase in the risk of component failure. The
primary objective of this thesis is to provide statistical inference in the context of load
sharing systems that are subject to damage accumulation. The key to this is to recognize
the component failure rate as a stochastic process, for which we can establish a parametric
model. In a system with I components, let 0 < T1 < T2 < . . . < TI denote the random
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failure times of the components. Then,

Nt :=
I∑

i=1

1(0,t] (Ti)

counts the number of failures up to time t and we can regard N = (Nt)t≥0 as a counting
process. The Doob-Meyer decomposition allows us to decompose this process into a
predictable process Λ = (Λt)t≥0, known as the compensator of N , and a martingale
M = (Mt)t≥0 so that

Nt = Λt + Mt .

The predictable process Λ contributes the qualitative behavior of N and compensates
for its monotonicity, while the trend-free martingale M provides the “unpredictable”
randomness (cf. Kopperschmidt and Stute 2013, p. 1273). In particular,

E (Nt) = E (Λt) ,

so that Λ serves as a basic predictor for the counting process N . If Λ admits a Lebesgue
density Λ(dt) = λt dt, then λ = (λt)t≥0 is called the stochastic intensity of N and satisfies

λt dt = E [N(dt) |σ({Ns : s < t})] = P [N(dt) = 1 |σ({Ns : s < t})] ,

where σ(Ns : s < t) denotes the history of N up to but not including time t. Since
N(dt) = 1 means that a component failure occurs in dt, λt can be interpreted as the
instantaneous failure rate of the load sharing system represented by N at time t. Moreover,
the stochastic intensity λ determines the probability structure of N uniquely. This means
that a load sharing system is fully characterized by a stochastic intensity, or in other words,
its component failure rate. Consequently, a model for load sharing systems with damage
accumulation can be described by a parametric family of stochastic intensities, and we
refer to such models as intensity-based load sharing models with damage accumulation.

While intensity-based models for load sharing systems have been studied by Kvam
and Peña 2005, Spizzichino 2019 and Zhang, Zhao and Ma 2020, among others, the
incorporation of damage accumulation into these models is relatively unexplored. Wang,
Jiang and Park 2019, for instance, investigated load sharing systems with memory, that
“consider how long a surviving component has worked for prior to the redistribution
[of workload]” (Wang, Jiang and Park 2019, p. 341). Further examples were recently
proposed by Müller and Meyer 2022. We adopt one of them - the Basquin load sharing
model with multiplicative damage accumulation - as the core model of this dissertation.
The model owes its name to the Basquin link function, which is derived from Basquin’s
exponential law of endurance (Basquin 1910) and relates the expected lifetime of a com-
ponent to the current stress exerted on the system. This specific choice of a link function
allows the model to be formulated as a relative risk regression model, a generalization of
the well-known Cox proportional hazards model, and to provide statistical inference via
the (partial) likelihood. The frequentist approach in Müller and Meyer 2022, who also
consider Bayesian inference, relies on these likelihood-based methods.

The dissertation ties in with this point. We consider two further approaches to
statistical inference for intensity-based models. The first is the minimum distance estimator
introduced by Kopperschmidt and Stute 2013, the second is based on the K-sign depth
of Leckey et al. 2023.
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(i) Minimum Distance Estimator. This estimator presented by Kopperschmidt and
Stute 2013 builds on the idea of minimizing the distance between a model compen-
sator Λθ and the counting process N with respect to a parameter θ. Kopperschmidt
and Stute 2013 claim the strong consistency and asymptotic normality of their esti-
mator, but we demonstrate that their proof of the asymptotic distribution is flawed.
We present a corrected proof under slightly adjusted requirements. Furthermore,
we show that these requirements are met by the Basquin load sharing model with
multiplicative damage accumulation.

(ii) K-Sign Depth. The K-sign depth of Leckey et al. 2023 emerged from a combination
of the regression depth of Rousseeuw and Hubert 1999 and the simplicial depth of Liu
1990. The corresponding K-sign depth test is a more powerful but similarly robust
generalization of the classical sign test. Leckey et al. 2023 applies the K-sign depth
test to the residuals of a linear model. We explain how “residuals” can be obtained
in an intensity-based point process model via the hazard transformation. We then
derive conditions on the model under which the 3-sign depth test is consistent and
prove that these conditions are satisfied by the Basquin load sharing model with
multiplicative damage accumulation.

As our final contribution, we compare these methods in a simulation study with the
likelihood approach previously studied by Müller and Meyer 2022. We place particular
emphasis on a robustness study that evaluates the performance of the methods when
applied to contaminated data. The study confirms that, in contrast to the competing
methods, the 3-sign depth test offers both a powerful and robust tool for statistical
inference in intensity-based point process models.

The dissertation is structured as follows: In Chapter 2, we introduce the framework
for intensity-based models. We familiarize ourselves with the important notations and
learn about relative risk regression models. We then motivate load sharing models both
with and without damage accumulation and highlight the Basquin load sharing model
with multiplicative damage accumulation. We briefly touch upon related models with
damage accumulation, before we move on to develop uniform bounds for the intensity
and its partial derivatives that are required for the asymptotic normality of the minimum
distance estimator. Finally, we address the hazard transformation for intensity-based point
process models and both discuss the distributional properties and give explicit formulae
for the hazard transforms in the Basquin load sharing model with multiplicative damage
accumulation. Chapter 3 deals with the minimum distance estimator of Kopperschmidt
and Stute 2013. We give its definition and restate their result on strong consistency.
The rest of the chapter is mainly devoted to the proof of the asymptotic normality and
concludes with the application to our specific model. Chapter 4 revolves around the
K-sign depth. After a short treatise on the origin of the K-sign depth, we get to know
its definition and the asymptotic distribution, from which the K-sign depth test can be
derived. We present the general consistency conditions for the 3-sign depth test given by
Leckey, Jakubzik and Müller 2023, and identify criteria under which these are fulfilled
by an intensity-based point process model. This involves the aforementioned hazard
transforms, and necessitates an ordering of the transforms that is specific to load sharing
models with damage accumulation. We also verify that the 3-sign depth test for the
significance of damage accumulation is consistent in the Basquin load sharing model with
multiplicative damage accumulation. In Chapter 5, we recapitulate the likelihood-based
approach followed by Müller and Meyer 2022. We provide further insights on partial
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likelihoods, but beyond that only summarize and expand on their results. The comparison
of the methods from Chapters 3, 4 and 5 via a simulation study is carried out in Chapter
6. We first describe how point process realizations from a given parametric intensity-
based model can be simulated. Throughout this study, this will always be the Basquin
load sharing model with multiplicative damage accumulation. From these point process
realizations, for each of our methods we compute confidence regions for the true parameter
of the parametric model and compare them in terms of size and coverage rate. We then
evaluate the power of the respective tests for the significance of damage accumulation.
We conclude the chapter with a robustness study in which we contaminate part of the
data and study the effects on the competing methods. In the final Chapter 7, we close
this thesis with a brief outlook for future research.
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2. Intensity-Based Modelling

Chapter 2 is dedicated to the foundation of this thesis: the intensity-based models. We
first introduce a framework for them in Section 2.1. Next, we learn about multiplicative
intensity models and relative risk regression models in Section 2.2, before introducing
specific models known as load sharing models in Section 2.3. In the process, we also
become acquainted with the core model of our consideration, namely the Basquin load
sharing model with damage accumulation. Some properties of this particular model
are highlighted in the remaining two sections of the chapter. In Section 2.4 we provide
uniform bounds for the intensity and its partial derivatives. They later become useful in
the context of minimum distance estimation in Chapter 3. The final Section 2.5 deals
with the hazard transformation of an intensity-based load sharing model, which forms
the basis of our depth-related approaches in Chapter 4.

Throughout this thesis we will presume knowledge of common terminology such as
simple point processes, compensators, or stochastic intensities. For the reader not familiar
with these terms, we have compiled a “comprehensive introduction” in Appendix A, which
motivates, defines and explains the concepts underlying this dissertation. Whilst we
refer to this overview whenever we introduce a new object, we would like to encourage
the experienced reader not to let it interfere with the flow of reading and ignore these
references. For convenience, we also maintain a list of recurring symbols in the order of
their first appearance, which can be viewed in Table 7 in Appendix C.

2.1. Framework for Intensity-Based Models

An intensity-based model aims to capture the qualitative behavior of counting processes.
For our basic framework, let N (1), . . . , N (J) with J ∈ N be stochastically independent
copies of a counting process N = (Nt)t∈I over some interval I ⊂ R (see Definition A.5).
In most cases, we consider either the compact interval I = [0, τ ], where τ ∈ (0,∞) marks
- for instance - the end of an experiment, or the positive real line I = [0,∞) = R+.
We assume that the processes are defined on a common filtered probability space(
Ω,F , {Ft}t∈I ,P

)
satisfying the usual conditions (see Definition A.14 for details). We

always demand that N is adapted with respect to the filtration {Ft}t∈I , and often opt
for the natural or an intrinsic filtration of the counting process, that is, Ft = FN

t ∨ G0

(cf. Definitions A.10, A.11 and A.13). The counting processes are allowed to depend
on random external covariates, which are then taken to be G0-measurable and i.i.d. for
all repetitions of N . In the general case, we denote such a vector of real-valued random
variables of arbitrary dimension by X or Xj . When we encounter random covariates in
the specific models, a separate notation will be introduced.
The simple point processes associated with N, N (1), . . . , N (J) (see Definition A.3) are

denoted by T, T (1), . . . , T (J), so that T
(j)
i is the time of the ith event in the jth iteration

of N , where i ∈ N and j ∈ {1, . . . , J}. We indicate a realization with a lowercase letter,

for example T
(j)
i (ω) = t

(j)
i . Furthermore, we use Λ, Λ(1), . . . , Λ(J) for the compensators

given by the Doob-Meyer decomposition (see Theorem A.23), which means that

M (j) := N (j) − Λ(j) , j ∈ {1, . . . , J} ,

and M := N − Λ are
(
P, {Ft}t∈I

)
-martingales. We usually assume that the counting

processes admit
(
P, {Ft}t∈I

)
-intensities λ, λ(1), . . . , λ(J), so that their compensators are
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absolutely continuous with respect to the Lebesgue measure and satisfy (cf. Appendix
A.2.4)

Λ(j)(t) =

∫ t

0
λ(j)(u) du , j ∈ {1, . . . , J} .

We thus refer to the compensators in the following as “cumulative intensity processes” or,
for brevity, as “cumulative intensities”. We call any model for these cumulative intensities
an “intensity-based model”.
The intensity-based models in this thesis are parametric. Let θ ∈ Θ ⊂ Rd be the parameter
of interest, where d ∈ N and the parameter space Θ is assumed to be compact or at least
bounded throughout most applications. An intensity-based model M is a parametric
class of cumulative intensities,

M := {Λθ : θ ∈ Θ} , (2.1)

such that the true cumulative intensity process Λ of N satisfies

Λ = Λθ∗ , for some parameter θ∗ ∈ Θ . (2.2)

Accordingly, we refer to θ∗ as the “true parameter”. By the fundamental theorem of
calculus, the model in Equation (2.1) can equivalently be stated in terms of stochastic
intensities λθ, as then it holds:

Λθ(t) =

∫ t

0
λθ(u) du . (2.3)

In fact, we construct all models within this thesis by virtue of the easier-to-interpret
intensity process. The actual model in the sense of Equation (2.1) can then be obtained
by applying Equation (2.3).
Because the intensities are subject to randomness, this also applies to the model M. In
order to specify a model completely, we have to be able to state it for each individual j,

Mj :=
{
Λ

(j)
θ : θ ∈ Θ

}
, (2.1∗)

and demand that Equation (2.2) is fulfilled for every j, that is,

Λ(j) = Λ
(j)
θ∗ , for some parameter θ∗ ∈ Θ and all j ∈ {1, . . . , J}. (2.2∗)

Hereafter, we will usually not state models as parametric classes of cumulative intensities,

but rather specify the cumulative intensities Λ
(j)
θ or the intensity processes λ

(j)
θ directly.

The most accessible route to an intensity-based model is to conceive the intensity process
as a piecewise amalgamation of conditional hazard functions. We will demonstrate this
approach below. Since we frequently work with conditional probabilities, we introduce an
abbreviated notation first.

Remark 2.1 (Abbreviated Notation for Conditional Probabilities).
To shorten the formulas involving conditional probabilities, we use the notation

T1:(i−1) := (T1, . . . , Ti−1)⊤ ,
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that can be similarly defined for (t1, . . . , ti−1)⊤ and other vectors. We then write

P
( · |T1:(i−1) = t1:(i−1)

)
instead of P (· |T1 = t1, . . . , Ti−1 = ti−1) ,

and analogously for conditional densities, cumulative distribution or hazard functions.

According to Jacod’s formula, the conditional distribution of the ith point Ti given
the past of the corresponding counting process N follows a continuous distribution (see
Corollary A.34). This past comprises knowledge of T1, . . . , Ti−1 as well as the random
covariate X. Let therefore fi

(
t | t1:(i−1), x

)
be the conditional density function of Ti after

the observation of T1:(i−1) = t1:(i−1) and X = x. Let Si

(
t | t1:(i−1), x

)
be the associated

survival function (details are available in Summary 1 of Appendix A.2.4).
The conditional hazard function is the continuous function given by

hi

(
t | t1:(i−1), x

)
:=

fi

(
t | t1:(i−1), x

)

Si

(
t | t1:(i−1), x

) , t ≥ ti−1 . (2.4)

The conditional intensity function λ∗ is defined piecewise as follows:

λ∗(t) :=

{
h1(t |x) , 0 ≤ t < t1 ,

hi

(
t |t1:(i−1) , x

)
, ti−1 ≤ t < ti , i ≥ 2 .

(2.5)

The function λ∗ is right-continuous and fulfills the identity

Λ(t) =

∫ t

0
λ∗(u) du , for all t ∈ I. (2.6)

Recall that the intensity process λ emerges as the Radon-Nikodym derivative of the
compensator Λ with respect to the Lebesgue measure, so that

Λ(t) =

∫ t

0
λ(u) du , for all t ∈ I.

The conditional intensity function λ∗ therefore coincides with the intensity process λ
almost everywhere. Since both Equations (2.5) and (2.6) are specific to the particular
realization, λ∗ is itself a stochastic process. By taking a left-continuous (and thus
predictable) modification of λ∗, it can hence be identified with λ.
As a result, Equation (2.5) enables us to construct models for stochastic intensities that
incorporate both external influences in the form of X and internal changes following an
event Ti. These internal changes can also access the further past T1, . . . , Ti−1.
Note, however, that we may not allow for extrinsic shocks over the course of time as long
as an intrinsic filtration is considered. Thus, all information that is not generated by the
counting process itself must already be available at the beginning. In other words, any
random variable representing external information must be G0-measurable.

2.2. Multiplicative Intensity and Relative Risk Regression Models

In Section 2.1, we laid the foundation for specific intensity-based models. The idea to
model the dynamics of a counting process by virtue of its stochastic intensity dates back
to the 1970s, when Aalen introduced the multiplicative intensity model in his article
Aalen 1978, p. 707 and the less accessible dissertation Aalen 1975, respectively. In the
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multiplicative intensity model, λ(j) is assumed to take the form

λ(j)(t) := α(t)Yj(t) , j = 1, . . . , J , (2.7)

where α is an unknown non-negative deterministic function, the baseline intensity, while
Yj is a predictable stochastic process for each j ∈ {1, . . . , J} (see Definition A.20). Aalen
studied the non-parametric setting “that arises by letting α vary freely” (Aalen 1978,
p. 707) in a set A that is subject to further constraints. We obtain a first parametric
model if we instead take A to be a parametric family of suitable functions, that is,

A = {α(·, θ) : θ ∈ Θ} .

Thus, the intensity process also depends on the parameter θ,

λ
(j)
θ (t) = α(t, θ)Yj(t) , j = 1, . . . , J , (2.8)

and we obtain an intensity-based model Mj by integrating these intensities.
The multiplicative intensity model is known to be the “broadest setting in which there
exists a good asymptotic theory given i.i.d. copies of an underlying process” (Karr 1991,
p. 172). However, here the parameter θ only affects the deterministic baseline intensity
and not the random component Yj specific for the jth “individual” (i.e., the jth iteration
of the underlying counting process N).
A popular model that complements the approach of parametric multiplicative intensities
is the basic regression model of Cox 1972. This model incorporates covariates influencing
the intensity “in such a way that hazard functions for different individuals are mutually
proportional” (Karr 1991, p. 200). Because of this characteristic, it is also known as the
proportional hazards model. Cox proposed the following intensity for the jth individual
(see Cox 1972, p. 189):

λ
(j)
θ (t) := α(t) exp

(
θ⊤zj

)
, j = 1, . . . , J , (2.9)

where α is again the baseline intensity and zj ∈ Rd is a vector of deterministic covariates.
Cox studied the asymptotic properties of a maximum partial likelihood estimator for θ
(Cox 1972 and Cox 1975). Andersen and Gill later studied an extension of Cox’s model
with time-dependent covariate processes and proved that the consistency and asymptotic
normality of Cox’s estimator carry over to their model (Andersen and Gill 1982). They

assume that the intensity process λ
(j)
θ has the shape (cf. Andersen and Gill 1982, p. 1102)

λ
(j)
θ (t) := α(t) exp

(
θ⊤Zj(t)

)
Yj(t) , j = 1, . . . , J . (2.10)

Here, Yj is again a predictable stochastic process, but is assumed to be taking values
in {0, 1}. Yj(t) usually indicates whether the jth individual is under observation at
time t and thus implements a censoring scheme. The covariate process Zj is supposed
to be predictable and locally bounded, which is always the case if it is adapted and
left-continuous with right limits (cf. Andersen et al. 1993, pp. 62–63). If Zj ≡ 0 with
probability one, the model reduces to the multiplicative intensity model (2.7). If on the
other hand Zj ≡ zj and Yj ≡ 1 with probability one, the Cox regression model (2.9) is
obtained. The extension of Andersen and Gill thus emerges as the canonical confluence
of these two approaches.
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Two final modifications to the model (2.10) can still be made: First, in analogy to the
parametric multiplicative intensity model (2.8), the baseline intensity may also depend
on a parameter, and second, an arbitrary non-negative twice differentiable function can
be used in place of the exponential function (the latter is due to Prentice and Self 1983).
The resulting class of models is known as relative risk regression models, whose intensity
process is given by (compare Andersen et al. 1993, pp. 477–478)

λ
(j)
θ (t) := α(t, γ) r

(
β⊤Zj(t)

)
Yj(t) , j = 1, . . . , J , (2.11)

where θ =
(
γ⊤, β⊤)⊤ and r is a non-negative twice differentiable function. The model’s

name originates from the observation that for any two individuals j1, j2 ∈ {1, . . . , J}, the
ratio of their intensities on {Yj1(t) = 1} ∩ {Yj2(t) = 1}, that is,

λ
(j1)
θ (t)

λ
(j2)
θ (t)

=
r
(
β⊤Zj1(t)

)

r
(
β⊤Zj2(t)

) ,

is determined only by the regression part of the model (i.e., the covariate processes Zj1 ,
Zj2 and the regression coefficients β) and specified via the relative risk function r (see
Andersen et al. 1993, p. 477).
All models studied in this dissertation can be assigned to one of the classes presented in
this section. In particular, this implies that we will be able to compare our methods of
statistical inference with the established maximum likelihood estimation.

2.3. Load Sharing Models

This section is divided into two parts: In the first part, we learn about some models for
implementing equal load sharing rules. A very basic model is introduced to motivate the
concept of load sharing systems. It provides the foundation for the model of Leckey et al.
2020, in which lifetimes of components are related to the current stress of a system through
a parametric link function. We motivative the choice of the Basquin link, which is derived
from S-N curve models of fatigue testing. We also address the flexible semiparametric
model of Kvam and Peña 2005, although it is of less importance to us because of the
larger sample sizes it typically requires. However, it essentially encompasses all equal load
sharing models within the scope of this thesis as special cases. The formulation of the
Basquin load sharing system without damage accumulation concludes the first part.
In the second part, we illustrate the need for a concept of accumulating stress. Based on
the article of Müller and Meyer 2022, we introduce a damage accumulation term that
extends the Basquin load sharing system to a model with damage accumulation. Finally,
we address related models with damage accumulation and hint at a class of generalized
models as a starting point of future research.

2.3.1. Load Sharing Models Without Damage Accumulation

We consider J independent systems, each consisting of Ij ∈ N, j = 1, . . . , J parallel
components to which a load is applied (e.g., J concrete beams with I tension wires
each; see Maurer, Heeke and Marzahn 2012 and Szugat et al. 2016 for reference on this
example). In these system, components successively fail due to the resulting stress. Under
an equal load sharing rule, the exerted load is equally redistributed among the surviving
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components whenever one component fails. In contrast, under a local load sharing rule,
the load is instead transferred to the nearest surviving neighbours in order to account
for local stress concentrations (cf. Lee, Durham and Lynch 1995 on general load sharing
rules). While in some fields of application local load sharing rules may be advantageous,
we focus solely on equal load sharing rules in this thesis.
We suppose that the failure times of the jth system form a simple point process T (j).
Consequently, we assume that never two or more components fail at the same time.

The associated counting process N (j) then counts the component failures, so that N
(j)
t

indicates the number of failed components until time t ∈ I.
The central idea for modelling a load sharing system is that any change in the current
stress level translates directly into a change in the underlying intensity process. A very
basic equal load sharing system can then be realized as a multiplicative intensity model,
where

λ
(j)
θ (t) = α(t, θ)


sj

Ij

Ij −N
(j)
t−


1{

N
(j)

t− <Ij

}

︸ ︷︷ ︸
=Yj(t)

. (2.12)

Here, sj > 0 is the individual initial load or stress in the jth system and

Nt− := lim
s↑t

Ns

is the left-hand limit of N at t, which ensures the left-continuity of λ
(j)
θ . At each point

of time t, the initial stress sj is thus distributed equally over the remaining Ij − N
(j)
t−

components.
To comply with the i.i.d. assumptions, we take the sj to be random and i.i.d. as well,
while usually assuming Ij ≡ I with probability one (i.e., the total number of components
remains constant over all repetitions). Either way, the (sj , Ij) take the role of the external
covariates X from Section 2.1. According to Equation (2.5), the intensity function can be
specified in terms of the conditional hazard functions. Here we obtain:

hθ
i

(
t
∣∣ t(j)

1:(i−1), sj , Ij

)
=





α(t, θ)
(
sj

Ij

Ij−(i−1)

)
, if i ≤ Ij ,

0 , otherwise,
(2.13)

because N
(j)
t− = i− 1 for t ∈ (T (j)

i−1(ω), T
(j)
i (ω)

]
. We observe that these conditional hazard

functions do not depend on j in the i.i.d. situation, but their arguments obviously do.
Equation (2.13) shows us that the risk of a component failure in the jth system is given

by a baseline hazard sjα(t, θ) times a factor
Ij

Ij−(i−1) that increases in inverse proportion

to the fraction of components remaining. For example, when half of the components
have failed, the conditional hazard rate has increased to 2sjα(t, θ). This is consistent
with the intuition that the total load of the system is then distributed among half of its
components, so that the individual stress of each component has doubled.
A major drawback of this simple model is that the parameter only affects the baseline
hazard. As a result, the magnitude of change that follows each component failure is known.
More sophisticated approaches, on the other hand, allow for unknown load sharing rules
(cf. Kim and Kvam 2004 and Kvam and Peña 2005 for introductory motivation). Kvam
and Peña 2005, p. 264 propose the following model, which we adjusted only with respect
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to the notation:

hθ
i

(
t
∣∣ t(j)

1:(i−1), τj

)
=

{
α(t)θi−1 (I − (i− 1)) · 1{t≤τj} , if i ≤ I,

0 , otherwise.
(2.14)

Here, α(t) is again a baseline hazard and Ij ≡ I. The random covariate τj marks the end of
the jth experiment, so that the predictable process 1{t≤τj} implements a type I censoring
scheme, as was already foreshadowed in the previous section (see explanations following
Equation (2.10)). The unknown load sharing rule is represented by the parameter vector
θ = (θ0, θ1, . . . , θI−1)⊤ that governs how the failure rate changes after each component
failure. The conditional hazard function of the load sharing system is then composed of
the individual risk α(t)θi−1 of a single component after i− 1 failures multiplied by the
number I − (i− 1) of remaining components.
Model (2.14) provides a load sharing rule with utmost flexibility, but in return relies on a
usually unknown baseline hazard as well as the I unknown parameters θ0, θ1, . . . , θI−1.
Statistical inference in this model therefore mostly requires large data samples. However,
in many fields such as civil engineering, experiments are costly and only few observations
are available. In such situations, the number of parameters can be reduced through link
functions (cf. Balakrishnan, Beutner and Kamps 2011, p. 605).
In Leckey et al. 2020, p. 1897 a model is considered that extends the basic load sharing
model (2.12) by a parametric link function, that is,

λ
(j)
θ (t) = gθ


sj

I

I −N
(j)
t−


1{

N
(j)

t− <I

} , (2.15)

where gθ is a deterministic non-decreasing function for each θ ∈ Θ. Note that once again
Ij ≡ I. Furthermore, a homogeneous (i.e., time-independent) baseline hazard is used, so
that α(t, θ) ≡ α(θ) can be incorporated into the link function gθ. All models considered
here have in common that their intensities depend on the past of the counting process only
by the number of failed components. This means that the associated counting process is
a pure birth process (see for example Snyder and Miller 1991, pp. 95–97). In particular,
model (2.15) leads to a homogeneous birth process, where the conditional hazard functions
are constant,

hθ
i

(
t
∣∣ t(j)

1:(i−1), sj

)
=





gθ

(
sj

I
I−(i−1)

)
, if i ≤ I,

0 , otherwise.

In such a case, the intensity function is piecewise constant, and the interarrival times (i.e.,
the waiting times between two component failures),

W
(j)
i := T

(j)
i − T

(j)
i−1 , i = 1, . . . , I , j = 1, . . . , J ,

follow an exponential distribution according to Corollary A.47,

W
(j)
i ∼ E

(
gθ

(
sj

I

I − (i− 1)

))
.

The logarithmic expected waiting times can then be calculated to be

ln
(
E

(
W

(j)
i

))
= − ln

(
gθ

(
sj

I

I − (i− 1)

))
, (2.16)

11



so that the link function gθ relates expected lifetimes to the current stress exerted on
the system. In the search for an appropriate link function, we are faced with the task
of “establishing an equation which represents the relation between applied stress and
some average value of the fatigue life” (Weibull 1961, p. 174). In fatigue testing, such an
equation is called an S-N curve model, where S and N in the acronym stand for the stress
and the number of loading cycles at the time of failure (i.e., the “lifetime”), respectively
(cf. Burhan and Kim 2018, p. 1). The name is derived from the S-N diagrams, dating back
to August Wöhler, in which the results of fatigue tests are plotted in lin-log or log-log
scale (cf. Weibull 1961, p. 147). Starting from Basquin’s “exponential law of endurance”,
see Basquin 1910, numerous S-N equations have been proposed. For example, a selection
can be found in Weibull 1961, pp. 175–178 or Kohout and Věchet 2001, p. 176, while an
evaluation is available in Burhan and Kim 2018. In this thesis, we will largely focus on
the aforementioned Basquin link.

Definition 2.2 (Basquin Link Function; cf. Basquin 1910).
The Basquin link is defined as the parametric function gθ : [0,∞)→ [0,∞) with

gθ(x) := θ1xθ2 , θ = (θ1, θ2)⊤ ∈ [0,∞)2 . (2.17)

Plugging Equation (2.17) into Equation (2.16) yields

ln
(
E

(
W

(j)
i

))
= − ln(θ1)− θ2 ln(x) .

If we identify E
(
W

(j)
i

)
with the “lifetime” N (usually the number of load cycles until

failure in engineering sciences; not to be confused with the counting process!) and x with
the “stress” S, this can be equivalently stated as

ln N = − ln(θ1)− θ2 ln S ⇐⇒ S = θ
− 1

θ2
1 N

− 1
θ2 ,

which closely resembles the original power law of Basquin (cf. Weibull 1961, p. 174).
An alternative parametrization for the Basquin link is given by

gθ̃(x) = exp
(− θ̃1 + θ̃2 ln(x)

)
, θ̃ =

(
θ̃1, θ̃2

)⊤ ⊂ R× [0,∞) . (2.18)

For θ1 > 0, it coincides on (0,∞) with Equation (2.17) by setting θ̃ = (− ln(θ1), θ2). The
usage of the exponential function has the advantage that the positivity of gθ̃(x) is always
guaranteed. Equation (2.18) is also the preferred representation of Leckey et al. 2020,
who consider the Basquin link too. For this particular choice of gθ, model (2.15) can be
written as

λ
(j)

θ̃
(t) = exp

(
θ̃⊤Zj(t)

)
Yj(t) ,

where

Zj(t) =

(
− 1, ln

(
sj

I

I −N
(j)
t−

))⊤

and Yj(t) = 1{
N

(j)

t− <I

} .

Conveniently, the intensity process λ
(j)

θ̃
therefore has the form of a relative risk regression

model, compare Equation (2.10). In our effort to conceptualize load sharing systems as
specific relative risk regression models, we will adopt the model of Leckey et al. 2020 as
our central load sharing model without damage accumulation.
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The Basquin Load Sharing Model Without Damage Accumulation

Before we can specify the model itself, we introduce some model-specific random covariates.
We assume throughout this paragraph that each system consists of I components (i.e.,
Ij ≡ I). Every such system corresponds to an experimental run in which component
failures are monitored up to a random time τj . Thus, τj marks the end of the jth
experiment, although not all components must have failed at this point: the observable
data is therefore subject to random type I censoring, as we have previously seen with
model (2.14) of Kvam and Peña 2005 (cf. Klein and Moeschberger 2003, pp. 64–70 for
more details on right censoring). In order to comply with our assumptions, we require
that

τ1, . . . , τJ
i.i.d.∼ P

τ0

for some probability measure P
τ0 on B (I), the Borel σ-algebra over I. In the case

I = [0, τ ] it is ensured that τj ≤ τ holds for j = 1, . . . , J . Moreover, by choosing, for
example, Pτ0 = δτ , the non-random case can be covered as well, where δτ denotes the
Dirac measure centred on τ .
Likewise, we allow for a second layer of censoring where the number Cj ≤ I of observable
component failures for the jth system is randomly chosen in advance. We assume that

C1, . . . , CJ
i.i.d.∼ P

C0 ,

where P
C0 is a probability measure on 2{1,...,I}. In the absence of censoring, we can choose

P
C0 = δI . Therefore, it holds Cj = I almost surely so that the failure of all components

is observable for each system. Note that this is not necessarily given in practice, where
often the experiment has to be stopped once a critical amount of components has failed.
For this reason, one often opts for P

C0 = δIc instead, where Ic ∈ {1, . . . , I} denotes the
critical number of component failures. Similarly, other probability measures with support
{1, . . . , I} can be considered if the critical number of component failures is itself random.
While the first instance of censoring implemented random type I censoring at the system
level, this second instance resembles random type II censoring at the component level
within individual systems. In our setting, however, these components are usually not
independent, so we will refrain from using this terminology and simply refer to random
(right-)censoring instead. Moreover, we could weaken our assumptions to a non-informative
independent censoring scheme, see Kalbfleisch and Prentice 2002, pp. 195–196, but for
our purposes this distinction is inessential.
Finally, we suppose that the systems are exposed to different initial stress levels s1, . . . , sJ ,
on which we impose similar restrictions as before, that is,

s1, . . . , sJ
i.i.d.∼ P

s0

for some probability measure P
s0 on B ([0,∞)). We already encountered these covariates

in the basic model (2.12) as well as the model (2.15) of Leckey et al. 2020. In most
applications, we can consider P

s0 to be a discrete distribution whose support consists of
a preset assortment of positive stress levels.
Hereafter, we will mostly assume that the τj , Cj and sj are stochastically independent.
This may not always be consistent with practice, where higher stress levels favour shorter
experiment durations, indicating a negative correlation between sj and τj . Nevertheless,
the independence assumption primarily serves to verify certain preconditions and simplifies
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several model-specific proofs later on. It may in general be dropped as long as the
applicability of the discussed methods can still be ensured.
We now summarize the essential assumptions in condensed form for future reference.

Assumption 2.3 (Random Covariates in the Basquin Load Sharing Model).
We consider an intrinsic filtration {Ft}t∈I , so that Ft = FN

t ∨ G0 for some σ-algebra
G0 ⊂ F . Let

τ0 : (Ω,F)→ (I,B(I)) , (end of the experiment)

C0 : (Ω,F)→ ({1, . . . , I}, 2{1,...,I}) , (number of observable failures)

s0 : (Ω,F)→ (R+,B (R+)) , (initial stress level)

be stochastically independent and G0-measurable random variables. Set X = (τ0, C0, s0)
and let X1, . . . , XJ denote i.i.d. copies of X, such that (N, X), (N (1), X1), . . . , (N (J), XJ )
are stochastically independent. The random covariate associated with the jth experiment
is then given by Xj , j = 1, . . . , J .

With these final assumptions in mind, we can now state the Basquin load sharing model
without damage accumulation. As pointed out earlier, its formulation without random
covariates is due to Leckey et al. 2020.

Definition 2.4 (Basquin Load Sharing Model Without Damage Accumulation).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model without damage accumulation is given via the intensity process

Bλ
(j)
θ (t) := θ1


sj

I

I −N
(j)
t−




θ2

· 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

} , θ = (θ1, θ2)⊤ ∈ R2
+ , (2.19)

where the superscript B (for Basquin) serves as a model indicator to help distinguish the
intensities of multiple models later on.

We have previously seen that the notion of load redistribution is implemented through
the fraction sj

I

I−N
(j)

t−

. We hereafter refer to it as the “load sharing term”.

Definition 2.5 (Load Sharing Term).
In the setting of the Basquin load sharing model without damage accumulation, the load
sharing term of the jth system is defined as

Bj(t) := sj
I

I −N
(j)
t−

, j = 1, . . . , J , t ∈ I . (2.20)

Under Assumptions 2.3, {Ft}t∈I is an intrinsic filtration of N , so that

(a) the counting process N (j) is {Ft}t∈I-adapted as an i.i.d. copy of N , and

(b) the random variable sj is Ft-measurable for each t ∈ I.

Then, Bj(t) is Ft-measurable as a (left-hand) limit of Ft-measurable mappings. Moreover,
Bj(t) is left-continuous by construction. As a stochastic process, the load sharing term
(Bj(t))t∈I is therefore {Ft}t∈I-predictable.
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2.3.2. Load Sharing Models With Damage Accumulation

In the recent article Müller and Meyer 2022, it is suggested that the risk of a component
failure should not be determined only by the number of remaining components. Instead,
the risk is likely to depend on how long the surviving components were exposed to the
redistributed load. They assume that degradation processes lead to an accumulation of
damage (cf. Müller and Meyer 2022, p. 2). The idea behind this is visualized in Figure 2:
Let us consider two independent experiments conducted under identical conditions. In

t
(1)
6 = t

(2)
6

2

4

6

I

interarrival time w
(1)
6

interarrival

time w
(2)
6

t

Nt

N (1)(ω)

N (2)(ω)

Figure 2: Schematic plot of two paths t 7→ N
(1)
t (ω) (red) and t 7→ N

(2)
t (ω) (blue) to

demonstrate the idea of damage accumulation. We added vertical lines at the
discontinuities (i.e., the “jumps” of the paths). The path of N (1) is shifted
slightly in vertical direction to improve readability.

these experiments, a load is applied to a system consisting of I = 8 components. The

number of component failures until time t in the jth experiment is denoted by N
(j)
t . In

our example, we assume that the sixth component failed at the same time t
(1)
6 = t

(2)
6

for both experiments. The paths of the counting processes N (1) and N (2) up to time

t
(1)
6 = t

(2)
6 are plotted in Figure 2. For any model from Subsection 2.3.1, λ

(1)
θ (t) = λ

(2)
θ (t)

then holds for all θ ∈ Θ as long as t
(1)
6 < t ≤ min

{
T

(1)
7 , T

(2)
7

}
. This means that the risk

of the seventh component failure is the same for both experiments. Nevertheless, the
plot shows that a large number of components failed early on in the first experiment.
The surviving components were thus exposed to the entire load of the system for almost

the entire duration of the experiment, as can be seen from the interarrival time w
(1)
6 . In

contrast, in the second experiment, the load was distributed over a larger number of

components most of the time (in particular, w
(2)
6 ≪ w

(1)
6 ). We would therefore expect
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that λ
(1)
θ (t) > λ

(2)
θ (t) should apply. However, this behavior cannot be achieved by the

previous models, and motivates the introduction of a “damage accumulation term”.

Definition 2.6 (Damage Accumulation Term).
In the setting of the Basquin load sharing model without damage accumulation of Definition
2.4, the damage accumulation term of the jth system is defined as

Aj(t) :=
1

τ

∫ t

0
sj

I

I −N
(j)
u−

du , j = 1, . . . , J . (2.21)

As before, τ marks the deterministic termination time of the experiment if I = [0, τ ]. In
the case I = [0,∞), τ can be chosen arbitrarily.

As a deterministic integral of a predictable process, the damage accumulation term is
also predictable as a stochastic process (Aj(t))t∈I (see remarks following Definition 2.5).
The damage accumulation term Aj(t) accumulates the stress until time t in the sense of
load sharing. Thereby, Aj(t) takes into account how long the stress was distributed over
the remaining components. In the example from Figure 2, we obtain A1(t) > A2(t) for all

t ≤ t
(1)
6 , since the paths do not intersect.

We note that, at t = τ , the damage accumulation term corresponds to the mean value
of the load sharing term Bj on the interval [0, τ ]. We can therefore think of τ as a
scaling factor to make the load sharing term Bj and the damage accumulation term Aj

comparable.
The damage accumulation term can be conceived as a weighted sum of interarrival times.
Before demonstrating this, we introduce two abbreviations for a more concise notation.

Remark 2.7 (Abbreviated Notation for Load Sharing and Damage Accumulation Terms).
For j = 1, . . . , J and i = 1, . . . , I, let

Bj,i := sj
I

I − (i− 1)
(2.22)

be the current stress that is due to equal load sharing before the ith component failure in
the jth system. We define:

Aj,i :=
i−1∑

k=1

Bj,kW
(j)
k =

i−1∑

k=1

Bj,k

(
T

(j)
k − T

(j)
k−1

)
, where T

(j)
0 := 0. (2.23)

We note that Aj,i is a random variable by definition, while Bj,i is not. Occasionally, we
will implicitly use the same notation for a realization of this random variable. For any

t ∈ I, we let i = N
(j)
t + 1 and observe:

τAj(t) =

∫ t

0
sj

I

I −N
(j)
u−

du

=

∫ t

T
(j)
i−1

sj
I

I −N
(j)
u−︸ ︷︷ ︸

=Bj(t)

du +
i−1∑

k=1

∫ T
(j)
k

T
(j)
k−1

sj
I

I −N
(j)
u−︸ ︷︷ ︸

=Bj,k

du

= Bj(t)
(
t− T

(j)
i−1

)
+

i−1∑

k=1

Bj,k

(
T

(j)
k − T

(j)
k−1

)
. (2.24)
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In particular, Equation (2.24) is also valid for t = T
(j)
i−1 on

{
i − 1 ≤ Cj

} ∩ {T
(j)
i−1 ≤ τj

}

(any ω ∈ {i− 1 > Cj

} ∪ {T
(j)
i−1 > τj

}
yields T

(j)
i−1(ω) =∞). Hence,

τAj

(
T

(j)
i−1

)
=

i−1∑

k=1

Bj,k

(
T

(j)
k − T

(j)
k−1

)
= Aj,i , (2.25)

so that Aj,i is the rescaled accumulated stress until i− 1 components have failed. This
justifies setting Aj,1 = 0, because no stress was exerted before conducting the experiment.
Much like we obtained the Basquin load sharing model without damage accumulation
by applying the Basquin link gθ to the load sharing term Bj(t), plugging the damage
accumulation term Aj(t) into gθ yields a simple model with damage accumulation. The
resulting model, however, would not be an extension of the basic Basquin load sharing

model from Definition 2.4. If we want to keep Bλ
(j)
θ (t) as a special case of the augmented

model, we can instead append the damage accumulation term multiplicatively. This
provides the Basquin load sharing model with multiplicative damage accumulation.

Definition 2.8 (Basquin Load Sharing Model With Multiplicative Damage Accumulation;
cf. Müller and Meyer 2022, p. 3).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with multiplicative damage accumulation is given via the intensity process

×Dλ
(j)
θ (t) := θ1


sj

I

I −N
(j)
t−




θ2

1

τ

∫ t

0
sj

I

I −N
(j)
u−

du




θ3

· 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

}

= θ1Bj(t)θ2Aj(t)θ3 · 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R3
+ . (2.26)

For any ε > 0, the parameter space Θ can be extended1 to subsets of R2
+ × [−1 + ε,∞).

The schematic in Figure 3 explains the individual components of this model and serves
as a diagrammatic summary of this subsection. From Equation (2.26), one obtains the
intensity of the Basquin load sharing model without damage accumulation by setting
θ3 = 0. Specifically,

Bλ
(j)

(θ1,θ2)⊤(t) =
×Dλ

(j)

(θ1,θ2,0)⊤(t) , for all θ1, θ2 ∈ R+. (2.27)

Accordingly, the model with damage accumulation emerges as an actual extension of the
model without damage accumulation. This proves to be useful especially when testing
whether the damage accumulation effect is significant (i.e., whether θ3 6= 0), an essential
section of the upcoming statistical inference. Note that the respective model for the
cumulative intensity process

×DΛθ can easily be derived in the fashion of Equation (2.3).
If we consider the alternative parametrization of the Basquin link from Equation (2.18)
(i.e., we use the parameter θ̃ = (− ln(θ1), θ2, θ3)), this model can also be regarded as a
relative risk regression model:

×Dλ
(j)
θ (t) = θ1Bj(t)θ2Aj(t)θ3 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

}

1A justification is provided retrospectively in Remark 2.18 in Section 2.4.
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×D

model
indicator

λ
(j)

jth experiment

θ

model parameter

θ = (θ1, θ2, θ3)⊤

(t) := θ1


 sj

initial stress level

I

I − N
(j)
t−

︸ ︷︷ ︸

load sharing term:




θ2

Aj(t)

damage accumulation
term, see Eq. (2.21)

θ3

· 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

}

end of experiment
after Cj failures
or time τj .

.

I = total number of components.

N
(j)
t− = number of failed components before time t.

Figure 3: Schematic of the Basquin load sharing model with damage accumulation.

= exp
(
−θ̃1 + θ̃2 ln Bj(t) + θ̃3 ln Aj(t)

)
· 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} (2.28)

= exp
(
θ̃⊤Zj(t)

)
Yj(t) ,

where

Zj(t) = (−1, ln Bj(t), ln Aj(t))⊤ and Yj(t) = 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

} .

Of course, other models incorporating damage accumulation are also conceivable. We
conclude this subsection with a paragraph on further approaches pursued by Müller and
Meyer 2022 and the author of this thesis.

Related Models With Damage Accumulation

The objective of extending the ordinary Basquin load sharing model with a damage
accumulation term is to capture the effects of accumulating stress not only in the

cumulative intensity, but the intensity itself: Where the intensity Bλ
(j)
θ (t) of the Basquin

load sharing model without damage accumulation at a given time t depends only on the
total number of component failures prior to t and remains the same regardless of when
these failures occured, the multiplicative damage accumulation term Aj(t) accounts for
earlier failures leading to a higher intensity over the course of the experiment. As a result,
for θ3 > 1 we would generally expect an even greater impact of the damage accumulation
on the instantaneous failure rate embodied in the intensity. But since Aj(0) = 0, we have
×Dλ

(j)
θ (0) = 0, whereas Bλ

(j)
θ (t) = θ1sθ2

j , so that the intensity drops relative to the base
model before catching up due to the accumulation of damage. In order to circumvent the
issue of Aj(t) vanishing at t = 0 and ensure Aj(t) ≥ 1 for all t ∈ I, modifications of the
damage accumulation term need to be considered. A selection of these is discussed here.
If we want to force Aj(t) ≥ 1 without fundamentally changing the inherent dynamics
of the model, we can accomplish this by simply adding 1 to the non-negative damage
accumulation term. This leads to a model with shifted damage accumulation.
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Definition 2.9 (Basquin Load Sharing Model With Shifted Damage Accumulation).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with shifted damage accumulation is given via the intensity process

×Sλ
(j)
θ (t) := θ1Bj(t)θ2 (1 + Aj(t))θ3 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R3
+ .

In this definition, the modified damage accumulation term is Ãj(t) := 1+Aj(t). Because
of Aj(t) ≥ 0, other isotone transformations φ : [0,∞)→ [1,∞) serve a similar purpose.
This leads to an entire class of intensity processes with Ãj(t) := φ (Aj(t)), that is,

×φλ
(j)
θ (t) := θ1Bj(t)θ2φ (Aj(t))θ3 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} , for φ : [0,∞)→ [1,∞) isotone.

However, a study of this class in its generality is beyond the scope of this thesis. Instead,
we investigate the special case φ = exp, which leads to a model with exponential damage
accumulation.

Definition 2.10 (Basquin Load Sharing Model With Exponential Damage Accumulation).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with exponential damage accumulation is given via the intensity process

×Eλ
(j)
θ (t) := θ1Bj(t)θ2 exp (θ3Aj(t)) · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R3
+ .

All these models
×φλ

(j)
θ (t) - which include the shifted and exponential damage accumu-

lation - can again be represented as relative risk regression models. However, this does
not apply to the subsequent model with additive damage accumulation studied in Müller
and Meyer 2022. Therefore, it does not belong to the model class central to this thesis,
which is why we introduce it here only for the sake of comparison.

Definition 2.11 (Basquin Load Sharing Model With Additive Damage Accumulation;
cf. Müller and Meyer 2022, p. 3).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with additive damage accumulation is given via the intensity process

+Dλ
(j)
θ (t) := θ1 (Bj(t) + θ3Aj(t))θ2 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R3
+ .

All models under consideration can be distinguished by their model indicator. These
indicators are listed below:

B: Basquin load sharing model without damage accumulation,

×D: Model with basic multiplicative (×) damage accumulation,

+D: Model with additive (+) damage accumulation,

×S: Model with shifted multiplicative (×) damage accumulation,

×E: Model with exponential multiplicative (×) damage accumulation,
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×φ: Model with multiplicative (×) damage accumulation transformed by φ.

The main computations in this dissertation are performed on the models ×D and B.
Selected calculations are recapitulated in Appendix B.5 for the models ×S and ×E. The
models +D and ×φ may be the subject of future research, with the model ×φ in particular
lending itself to further generalizations of the results presented in this thesis.

2.4. Uniform Bounds for the Intensity and its Partial Derivatives

One of the methods of statistical inference for intensity-based point process models
considered in this thesis is the minimum distance estimator of Kopperschmidt and Stute.
This estimator is based on minimizing a Cramér-von Mises distance between aggregate
counting processes and their associated cumulative intensities. A major contribution of
this work is the proof of asymptotic normality of the minimum distance estimator in
Chapter 3, which corrects the original defective proof first given by Kopperschmidt 2005
and later published in Kopperschmidt and Stute 2013. In a nutshell, our proof relies on
Taylor approximations of the Cramér-von Mises distance with respect to the parameter θ
and therefore involves derivatives of cumulative intensities. The main preliminary work
is thus to develop uniform bounds for the intensity function and its partial derivatives,
especially in case of the Basquin load sharing model with damage accumulation.
We start with a basic proposition captured in the following lemma. It states that, for

any fixed θ, the conditional intensity function
×Dλ

(j)
θ (t) can be uniformly bounded by

constraining both the load sharing term and the damage accumulation term.

Lemma 2.12 (Uniform Bounds for the Intensity in the Basquin Load Sharing Model
with Damage Accumulation).

For each fixed θ ∈ Θ∩Rd
+, the conditional intensity function

×Dλ
(j)
θ (t) of the Basquin load

sharing model with multiplicative damage accumulation given in Definition 2.8 satisfies
for all t ∈ I: ∣∣∣

×Dλ
(j)
θ (t)

∣∣∣ ≤ θ1 (sjI)θ2+θ3 , 1 ≤ j ≤ J . (2.29)

Proof. Note that
×Dλ

(j)
θ (t) = 0 for N

(j)
t− ≥ Cj . By construction Cj ≤ I holds, so only the

case N
(j)
t− < Cj ≤ I needs to be considered. Since N

(j)
t− ∈ N, we have N

(j)
t− ≤ I − 1. Hence,

I

I −N
(j)
t−

≤ I

I − (I − 1)
= I , (2.30)

and substituting Equation (2.30) into Equation (2.26), we obtain for t ∈ I = [0, τ ]:

×Dλ
(j)
θ (t) = θ1


 sj

I

I −N
(j)
t−︸ ︷︷ ︸

≤I




θ2

 1

τ

∫ t

0
sj

I

I −N
(j)
u−︸ ︷︷ ︸

≤I

du




θ3

· 1{
N

(j)

t− <Cj

}
∩
{

t≤τj

}

︸ ︷︷ ︸
≤1

≤ θ1 (sjI)θ2

(
1

τ

∫ t

0
sjI du

)θ3

= θ1 (sjI)θ2

(
t

τ
sjI

)θ3

≤ θ1 (sjI)θ2+θ3 .
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Since
×Dλ

(j)
θ (t) ≥ 0, Equation (2.29) follows.

We can then formulate a corollary of Theorem A.23 (the Doob-Meyer decomposition
given in Appendix A) & Lemma 2.12 that introduces simple martingale bounds for
the future minimum distance estimator. While parts (i) and (ii) contain more general
statements, part (iii) is again tailored to the Basquin load sharing model with damage
accumulation.

Corollary 2.13 (Simple Martingale Bounds in the Doob-Meyer Decomposition).
Let N = (Nt)t∈I be a counting process defined on a filtered probability space(
Ω,F , {Ft}t∈I ,P

)
and let Λ = (Λt)t∈I denote its compensator according to the Doob-

Meyer decomposition of Theorem A.23, where I = [0, τ ]. Let M = (Mt)t∈I given by
Mt = Nt − Λt be the associated {Ft}t∈I-martingale. Then, the following statements hold:

(i) If E (Nτ ) < ∞ (i.e., Nτ < ∞ holds P-almost surely), then E (Λτ ) < ∞. Further-
more, E |Mt| <∞ for all t ∈ I.

(ii) If there exists a constant C > 0 such that Nτ ≤ C
2 and Λτ ≤ C

2 hold P-almost surely,
then, for all t ∈ I, |Mt| ≤ C is satisfied P-almost surely.

(iii) In the situation of Lemma 2.12, if Λ =
×DΛ

(j)
θ is the cumulative intensity of the

Basquin load sharing model with damage accumulation and Θ is bounded, the
constant

C = 2 max

{
Cj , τ sup

θ∈Θ
θ1 (sjI)θ2+θ3

}
(2.31)

can be chosen in (ii) and this constant does not depend on the value of θ.

Proof. The proof is rather basic and is presented here only for the sake of completeness.

(i) Using the martingale property, we have E (Nt) = E (Λt) for all t ∈ I, see Equation
(A.15). Moreover, by applying the triangle inequality and exploiting the monotonicity
of both N and Λ, we get for all t ∈ I:

|Mt| = |Nt − Λt| ≤ Nt + Λt ≤ Nτ + Λτ , (2.32)

so that E |Mt| ≤ E (Nτ ) + E (Λτ ) <∞.

(ii) This statement follows immediately from Equation (2.32).

(iii) Utilizing the bounds for
×Dλ

(j)
θ (t) provided in Lemma 2.12, we obtain

×DΛ
(j)
θ (τ) =

∫ τ

0

×Dλ
(j)
θ (u) du ≤

∫ τ

0
θ1 (smI)θ2+θ3 du = τθ1 (sjI)θ2+θ3 ,

so that by applying the supremum2 we get rid of the dependence on θ. By definition

of the conditional intensity function
×Dλ

(j)
θ (t), any jump beyond the Cjth jump of

N (j) is prohibited and hence N
(j)
τ ≤ Cj holds P-almost surely. Accordingly, C given

by Equation (2.31) satisfies the conditions of statement (ii).

2Note that while it is not necessary to take the supremum in order to achieve a constant satisfying (ii),
doing so is convenient in that it allows us to derive uniform bounds with respect to both t and the
generally unknown parameter θ.
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From now on we will deal with the partial derivatives of the cumulative intensity

function
×DΛ

(j)
θ . To obtain uniform bounds for this function, we will instead compute

bounds for the corresponding conditional intensity function
×Dλ

(j)
θ (t) and integrate them

with respect to t (cf. Equation (2.3)). In doing so, we will repeatedly encounter integrals
of the natural powers of the logarithm ln. These integrals can be calculated by a general
formula, which is the subject of the following lemma.

Lemma 2.14 (Integrals of the Natural Powers of ln).
Let t > 0, q > −1 and p ∈ N0. Then,

∫ t

0
xq · (ln x)p dx =

t1+q

1 + q

p∑

k=0

( −1

1 + q

)p−k p!

k!
(ln t)k . (2.33)

Proof. The simple proof by induction can be found in Appendix B.1.

After these preliminary considerations, we can proceed to the central lemma of this
section. Unlike before, the following proofs tend to be technical and lengthy. We thus
relocate them to Appendix B.1, along with more advanced findings that lack significant
value for the main body of this dissertation, but may be useful for research building on
this work.

Lemma 2.15 (Integrable Bounds for the Intensity Partial Derivatives in the Basquin
Load Sharing Model with Multiplicative Damage Accumulation).

Let
×Dλ

(j)
θ (t) be the conditional intensity function of the Basquin load sharing model with

multiplicative damage accumulation given in Definition 2.8. Suppose that the sequence
(sj)j∈N

is bounded both downward by some 0 < slow ≤ 1 and upward by an arbitrary con-
stant supp (e.g., if a preset assortment of initial stress levels s1, . . . , sL ≥ 1 is consecutively
repeated). If we assume that Θ ⊂ R3

+, then the following holds for all t ∈ I, θ ∈ Θ and
ω ∈ Ω:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θp

2∂θq
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ

t

)]p+q

· (sjI)θ2+θ3 ,

p, q, r ∈ N0 , j ∈ N . (2.34)

If furthermore the parameter space Θ is bounded, there exists a constant C independent
of θ ∈ Θ and j ∈ N such that

∣∣∣∣∣
∂p+q+r

∂θr
1∂θp

2∂θq
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ C ·
[
ln

(
sjI

s2
low

· τ

t

)]p+q

, p, q, r ∈ N0 , j ∈ N . (2.35)

Under these assumptions, differentiation of arbitrary order with respect to θ ∈ Θ and
integration with respect to t ∈ I are interchangeable, that is,

dp

dθp

×DΛ
(j)
θ (t) =

∫ t

0

dp

dθp

×Dλ
(j)
θ (u) du , p ∈ N ,
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and we have

∣∣∣∣∣
∂p+q+r

∂θr
1∂θp

2∂θq
3

×DΛ
(j)
θ (t)

∣∣∣∣∣ ≤ Cτ
p+q∑

k=0

(p + q)!

k!

(
ln

(
sjI

s2
low

))k

, (2.36)

where sj can be replaced by supp whenever a uniform bound is desired.

Proof. The proof is purely technical and can be found in Appendix B.1. It makes use of
the auxiliary Corollary B.1.1, an application of Lemma 2.14 also given in Appendix B.1,
which is not needed in the main part of this thesis.

Before turning to another Corollary of Lemma 2.15, we subject its premises to critical
scrutiny and enlighten the particular choice of bounds for the sequence (sj)j∈N

.

Remark 2.16 (On the Prerequisites of Lemma 2.15).
Let us first note that the requirement of slow ≤ 1 is an artificial one: If any lower bound
can be found for (sj)j∈N

, then obviously any smaller value will also provide a lower bound
for the very same sequence. Without loss of generality, we could even assume that (sj)j∈N

is bounded below by exactly 1 whenever a lower bound slow exists. In order to see this,
consider the following identity:

θ1


sj

I

I −N
(j)
t−




θ2

1

τ

∫ t

0
sj

I

I −N
(j)
u−

du




θ3

= θ1


 slow

sj

slow︸︷︷︸
=:s̃j

I

I −N
(j)
t−




θ2

1

τ

∫ t

0
slow

sj

slow

I

I −N
(j)
u−

du




θ3

= θ1sθ2+θ3
low︸ ︷︷ ︸

=:θ̃1


s̃j

I

I −N
(j)
t−




θ2

1

τ

∫ t

0
s̃j

I

I −N
(j)
u−

du




θ3

(2.37)

= θ̃1


s̃j

I

I −N
(j)
t−




θ2

1

τ

∫ t

0
s̃j

I

I −N
(j)
u−

du




θ3

,

where s̃j is bounded below by 1. Accordingly, upon rescaling the initial loads sj , only the
first parameter of θ needs to be adjusted to obtain the exact same conditional intensity
function. For this purpose it might be necessary to modify the parameter space Θ.
However, if we suppose Θ to be bounded, so is the pth coordinate projection πp(Θ) of Θ
for p = 1, 2, 3. The same then holds true for the set

{
θ̃1 = θ1sθ2+θ3

low : θ = (θ1, θ2, θ3)⊤ ∈ Θ
}

,

since the image of a bounded set under a continuous mapping is itself bounded. Therefore,
the rescaled parameter space

Θ̃ :=

{(
θ̃1, θ2, θ3

)⊤
∈ R3 : θ̃1 = θ1sθ2+θ3

low , θ = (θ1, θ2, θ3)⊤ ∈ Θ

}

remains bounded and hence the assumptions of Lemma 2.15 stay intact. Nonetheless,
rescaling the initial stress levels is mostly not required, as the above identity can be
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exploited in the proof of Lemma 2.15. For details we recommend the reader to consult
this exact proof in Appendix B.1.

For some applications, the differentiability (with respect to the parameter θ) of the
intensity function is needed on the intersection of the plane

π−1
3 ({0}) =

{
x = (x1, x2, x3)⊤∈ R3 : x3 = 0

}

with the parameter space Θ. In particular, this requires that

π−1
3 ({0}) ∩Θ =

{
θ = (θ1, θ2, θ3)⊤∈ Θ : θ3 = 0

}

lies in the interior of Θ. In this situation, Θ ⊂ R3
+ is no longer satisfied, so that the

integral bounds from Lemma 2.15 lose their validity. Nevertheless, we can easily formulate
a corollary that accounts for parameter spaces extended beyond the plane π−1

3 ({0}).

Corollary 2.17 (Extension of Lemma 2.15).

Let again
×Dλ

(j)
θ (t) be the conditional intensity function of the Basquin load sharing

model with multiplicative damage accumulation given in Definition 2.8 and suppose
that the sequence (sj)j∈N

is bounded as in Lemma 2.15. Moreover, we assume that

Θ ⊂ R2
+ × (−1,∞). Then, for each θ ∈ Θ with −1 < θ3 < 0, the following holds for all

t ∈ I and ω ∈ Ω:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θp

2∂θq
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ

t

)]p+q

· (sjI)θ2

(
slow

t

τ

)θ3

,

p, q, r ∈ N0 , j ∈ N . (2.38)

If further 0 < ε ≤ 1 exists so that Θ ⊂ π−1
3 ([−1 + ε,∞)) (i.e., the third parameter θ3 is

bounded away from −1) and Θ is bounded, then a constant C indepedent of θ ∈ Θ and
j ∈ N can be found such that, for all θ ∈ Θ,

∣∣∣∣∣
∂p+q+r

∂θr
1∂θp

2∂θq
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ C ·
[
ln

(
sjI

s2
low

· τ

t

)]p+q

·
(

slow
t

τ

)ε−1

, p, q, r ∈ N0 , j ∈ N .

(2.39)
Under these assumptions, differentiation of arbitrary order with respect to θ ∈ Θ and
integration with respect to t ∈ I are also interchangeable. In addition, the following bound
applies: ∣∣∣∣∣

∂p+q+r

∂θr
1∂θp

2∂θq
3

×DΛ
(j)
θ (t)

∣∣∣∣∣ ≤
Cτsε−1

low

ε1+p+q

p+q∑

k=0

(p + q)!

k!

(
ε ln

(
sjI

s2
low

))k

, (2.40)

where replacing sj by supp yields a bound that is uniform with respect to j ∈ N.

Proof. The proof is reasonably concise, but relies heavily on the proof of the earlier
Lemma 2.15. We therefore defer the proof again to Appendix B.1.

Corollary 2.17 constitutes a starting point for further studies on the cumulative intensity
of the Basquin load sharing model with multiplicative damage accumulation. Of particular
emphasis are the Glivenko-Cantelli type convergence theorems that round out Appendix
B.1. While Glivenko-Cantelli arguments play an important role in Kopperschmidt and
Stute 2013 to proof the asymptotic normality of their minimum distance estimator, our
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adapted proof no longer relies on them. As a consequence, we refrain here from discussing
the further implications of Corollary 2.17 and instead point the interested reader to
Appendix B.1.
Nonetheless, Corollary 2.17 still has an important application in that it allows us to
extend the parameter space for the Basquin load sharing model with multiplicative damage
accumulation to R2

+ × [−1 + ε,∞). We summarize this in a final remark that concludes
this section.

Remark 2.18 (On Extensions of the Parameter Space for the Basquin Load Sharing
Model With Multiplicative Damage Accumulation).
We already noted in Definition 2.8 that for any ε > 0, the parameter space Θ of the
Basquin load sharing model with multiplicative damage accumulation can be extended to

arbitrary subsets of R2
+ × [−1 + ε,∞). In order for the cumulative intensity

×DΛ
(j)
θ to be

well-defined, the intensity process
(×Dλ

(j)
θ (t)

)
t∈I must be integrable with respect to t on

finite intervals, so that

×DΛ
(j)
θ (t) :=

∫ t

0

×Dλ
(j)
θ (u) du <∞ , t ∈ I .

By setting p = q = r = 0, Equation (2.40) provides an upper bound for this integral,

∫ t

0

×Dλ
(j)
θ (u) du ≤ Cτsε−1

low

ε
<∞. (2.41)

The constant C can be determined explicitly if necessary, as shown in the proofs of Lemma
2.15 and Corollary 2.17. Note that Equation (2.41) requires ε > 0, so the parameter space
Θ is delimited by the hyperplane π−1

3 ({−1}) (i.e., θ3 ≤ −1 cannot be considered).
We also remark that for the well-definedness of the cumulative intensities, θ2 < 0 can
be admitted. This would lead to the questionable effect that the individual component
load decreases with each component failure, which directly contradicts our load sharing
assumptions. Nevertheless, this extension still has its merits, because then the parameter
space R2 × [−1 + ε,∞) becomes permissible in the alternative parametrization of the
Basquin link, see Equation (2.18).

2.5. Hazard Transformation for Intensity-Based Load Sharing Models

Much like Section 2.4 lays the foundation for the distance-based parameter estimation in
the Basquin load sharing model with multiplicative damage accumulation (see Chapter 3),
the current Section 2.5 can be viewed as the basis for the depth-based hypotheses tests of
Chapter 4. These robust tests generalize the classical sign test by taking into account only
the signs of the observed data. Therefore, to perform depth-based statistical inference, we
need a transformation of the point process data for which the probabilities of a positive
sign can be quantified. The hazard transformation, which is the point process equivalent
of the probability integral transformation, turns out to be a suitable choice. We obtain
the required cumulative conditional hazard function by integrating the conditional hazard
function of Equation (2.4),

Hi

(
t | t1:(i−1), x

)
:=

∫ t

ti−1

hi

(
u | t1:(i−1), x

)
du , t ≥ ti−1 , (2.42)
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quite analogous to how the cumulative intensities arise from the conditional intensity
function by integration. Since the conditional intensity function is obtained by “con-
catenating” conditional hazard functions, compare Equation (2.5), a similar relationship
translates to their cumulative counterparts. On the set {Ti−1 ≤ t ≤ Ti}, it holds (details
are provided in Summary 1 from Appendix A.2, see in particular Equation (A.34)):

Hi

(
t |T1:(i−1), X

)
= Λ(t)− Λ(Ti−1) . (2.43)

This equation is crucial for our intensity-based modelling approach. While in most cases
the true cumulative intensity process can not be determined, in the framework of an
intensity-based model the general form of the cumulative intensity process is already
specified by the model M, see Equation (2.1). The implication of Equation (2.43) is
that the shape of the cumulative conditional hazard function is inherent in the model
specification, too. This allows us to calculate the hazard transform of a point process
from only the cumulative intensities given by the model M.

Definition 2.19 (Hazard Transform of a Point Process).
In the framework of Section 2.1, the hazard transform Rθ =

(
Rθ

i

)
i∈N

at θ ∈ Θ of the point
process T = (Ti)i∈N under the model M = {Λθ : θ ∈ Θ} is defined as

Rθ
i := Λθ(Ti)− Λθ(Ti−1) , i ∈ N ,

where T0 := 0. If T (1), . . . , T (J) denote i.i.d. copies of T , then the hazard transform of
T (j) at θ is analogously given by the process Rθ

j =
(
Rθ

j,i

)
i∈N

obtained via

Rθ
j,i := Λ

(j)
θ

(
T

(j)
i

)− Λ
(j)
θ

(
T

(j)
i−1

)
, i ∈ N , j ∈ {1, . . . , J} .

In Section 2.3, we occasionally stated the load sharing models in terms of parametric
conditional hazard functions by virtue of Equation (2.5). The cumulative conditional
hazard functions obtained by integrating these functions then satisfy

Rθ
j,i = Hθ

i

(
T

(j)
i |T (j)

1:(i−1), Xj

)
, i ∈ N , j ∈ {1, . . . , J} . (2.44)

Equation (2.44) establishes the term “hazard transform”. It also provides a simpler
representation of the transformed process Rθ

j , which we prefer for many upcoming

calculations. At the true parameter θ∗, Hθ∗

i

(· | t1:(i−1), x
)

is the true cumulative conditional
hazard function of the ith point Ti after the observation of T1:(i−1) = t1:(i−1) and X = x.

This function is the same for the i.i.d. copies T
(1)
i , . . . , T

(J)
i of Ti. If the true cumulative

conditional hazard functions are strictly increasing for all i ∈ N, the distribution of the
hazard transforms at θ∗ can be determined. In the formulation of the following theorem,
this requirement is expressed in terms of the intensity process λθ∗ .

Theorem 2.20 (Exponential Distribution of the Hazard Transform at θ∗).
In the framework of Section 2.1, let Rθ

j,i for θ ∈ Θ, i ∈ N and j ∈ {1, . . . , J} denote
the hazard transforms from Definition 2.19. Suppose that the following conditions are
satisfied:

(i) λθ∗ > 0 almost everywhere Pθ∗-almost surely,

(ii)

∫ ∞

0
λθ∗(u) du =∞ Pθ∗-almost surely,
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where Pθ∗ indicates the probability measure under the true parameter θ∗. Then,

Rθ∗

j,i
i.i.d.∼ E(1) ,

that is, the hazard transforms are independent and exponentially distributed with rate 1.

Proof. We give an elementary proof under slightly adjusted conditions in Theorem A.46
from Appendix A.3, where we highlight the parallels to the probability integral transform.
However, the hazard transformation is usually treated in the literature as a random time
change of a counting process N . Let N be the counting process associated with the
point process T and let Λ denote the compensator of N (in the framework of Section 2.1,
Λ = Λθ∗). We define the generalized inverse of Λ by

Λ−1(t) := inf{x : Λ(x) ≥ t} .

As shown in Brémaud 1981, pp. 41–42 and Daley and Vere-Jones 2008, pp. 420–421,
condition (ii) then suffices to ensure that the transformed process Ñ defined by

Ñt = NΛ−1(t) (2.45)

is a homogeneous Poisson process with intensity 1, compare Theorem A.44 in Appendix
A.3. Where the point Ti marks the time of the ith jump of N , Equation (2.45) implies
that the ith jump of the transformed process Ñ is given at

T̃i = inf{x : Λ−1(x) ≥ Ti} .

Since the interarrival times of a homogeneous Poisson process with intensity λ are
independent and follow an exponential distribution with parameter λ (cf. Equation
(A.6)),

T̃i − T̃i−1
i.i.d.∼ E(1) .

To complete the proof, we thus only need to show that T̃i = Λ(Ti). This is where condition
(i) comes into effect: If the intensity process λ is strictly positive almost everywhere, then
the cumulative intensity Λ is strictly increasing and therefore invertible. The inverse Λ−1

is also strictly increasing. From Λ−1(Λ(Ti)) = Ti it follows that

{x : Λ−1(x) ≥ Ti} = [Λ(Ti),∞) ,

which implies T̃i = Λ(Ti) and completes the proof.

Remark 2.21 (On the Conditions of Theorem 2.20).
It is shown in Lemma L17 of Brémaud 1981, p. 41 (the proof is found on p. 54 there)
that condition (ii) from Theorem 2.20 is equivalent to the condition that

lim
t→∞

Nt =∞ Pθ∗-almost surely.

If we aim to compute the hazard transform only for finitely many i ∈ {1, . . . , I} with
I ∈ N, we can instead require that

lim
t→∞

Nt ≥ I Pθ∗-almost surely. (2.46)

27



If equality holds in Equation (2.46), then Ti =∞ for all i > I and the hazard transforms
for those i cannot be calculated. However,

Rθ∗

i
i.i.d.∼ E(1) , i ∈ {1, . . . , I} ,

still applies, as Daley and Vere-Jones 2003, p. 260 point out. This finding also has
implications for condition (i) of Theorem 2.20: For (i) to hold, there has to exist a set
Ω0 ⊂ Ω with Pθ∗(Ω0) = 1 such that for all ω ∈ Ω0 the intensity function

t 7→ λ(t, ω)

attains the value 0 only on a Lebesgue null set. In other words, it has to be strictly
positive almost everywhere on the sets

{T0(ω) = 0 ≤ t < T1(ω)}
︸ ︷︷ ︸

required for Rθ∗

1

, {T1(ω) ≤ t < T2(ω)}
︸ ︷︷ ︸

required for Rθ∗

2

, {T2(ω) ≤ t < T3(ω)}
︸ ︷︷ ︸

required for Rθ∗

3

, . . . (2.47)

Since for a simple point process, limi→∞ Ti = ∞ with probability one, the sets from
Equation (2.47) cover the entire positive real line R+, which is reflected in condition
(i). To compute the first I hazard transforms of T , we only have to demand the strict
positivity of λθ∗ on the union of the first I of these sets, that is, almost everyone on the
interval

{0 ≤ t < TI(ω)} = [0, TI(ω)) . (2.48)

The importance of Remark 2.21 will be unveiled shortly when the hazard transformation
is applied to processes that are subject to a censoring scheme - such as the Basquin load
sharing models of this thesis. For now, we turn again to the distributional properties of
the hazard transform:
According to Proposition A.35, the distribution of the points T

(j)
i is completely determined

by the compensator Λ
(j)
θ∗ . It is, however, not easy to calculate in general. Moreover,

load sharing models with damage accumulation are specifically designed to generate
dependencies between these points.
In contrast, considering the hazard transforms of the observed point processes brings - at
least at the true parameter - the major advantages of independent observations following
a known, simple distribution. Of course, neither the simplicity of the distribution nor the
independence of the hazard transforms can be ensured for θ 6= θ∗. In this case, the hazard
transformation still proves useful when the conditional cumulative hazard functions are
invertible: On the one hand, this means that the transformation is reversible and thus
entails no loss of information. On the other hand, we can then express the conditional
(since independence may be lost) distribution of the hazard transforms in terms of the
cumulative conditional hazard functions and their inverses.
In particular, by Equation (2.44) we have for u ∈ R, covariates xj and 0 < t

(j)
1 < . . . < t

(j)
i−1:

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1) = t
(j)
1:(i−1), Xj = xj

)

= Pθ∗

(
H θ

i

(
T

(j)
i

∣∣T (j)
1:(i−1), Xj

)
> u

∣∣∣T (j)
1:(i−1) = t

(j)
1:(i−1), Xj = xj

)
.
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By application of the inverse hazard transformation at θ we obtain:

Pθ∗

(
H θ

i

(
T

(j)
i

∣∣T (j)
1:(i−1), Xj

)
> u

∣∣∣T (j)
1:(i−1) = t

(j)
1:(i−1), Xj = xj

)

= Pθ∗

(
T

(j)
i >

(
H θ

i

)−1 (
u
∣∣T (j)

1:(i−1), Xj

) ∣∣∣T (j)
1:(i−1) = t

(j)
1:(i−1), Xj = xj

)
,

and the subsequent application of the hazard transformation at θ∗ yields:

Pθ∗

(
T

(j)
i >

(
H θ

i

)−1 (
u
∣∣T (j)

1:(i−1), Xj

) ∣∣∣T (j)
1:(i−1) = t

(j)
1:(i−1), Xj = xj

)

= Pθ∗

(
H θ∗

i

(
T

(j)
i

∣∣T (j)
1:(i−1), Xj

)

︸ ︷︷ ︸
=Rθ∗

j,i

> H θ∗

i

((
H θ

i

)−1 (
u
∣∣T (j)

1:(i−1), Xj

) ∣∣∣T (j)
1:(i−1), Xj

) ∣∣∣∣ · · ·
)

= 1− Pθ∗

(
Rθ∗

j,i ≤ H θ∗

i

((
H θ

i

)−1 (
u
∣∣T (j)

1:(i−1), Xj

) ∣∣∣T (j)
1:(i−1), Xj

) ∣∣∣∣ · · ·
)

.

Since the distribution of Rθ∗

j,i under Pθ∗ is known to be E(1), we further obtain:

1− Pθ∗

(
Rθ∗

j,i ≤ H θ∗

i

((
H θ

i

)−1 (
u
∣∣T (j)

1:(i−1), Xj

) ∣∣∣T (j)
1:(i−1), Xj

) ∣∣∣∣ · · ·
)

= 1− FE(1)

(
H θ∗

i

((
H θ

i

)−1 (
u
∣∣ t(j)

1:(i−1), xj

) ∣∣∣ t(j)
1:(i−1), xj

))

= exp

(
−H θ∗

i

((
H θ

i

)−1 (
u
∣∣ t(j)

1:(i−1), xj

) ∣∣∣ t(j)
1:(i−1), xj

))
.

Combining these equations then provides that

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1) = t
(j)
1:(i−1), Xj = xj

)

= exp

(
−H θ∗

i

((
H θ

i

)−1 (
u
∣∣ t(j)

1:(i−1), xj

) ∣∣∣ t(j)
1:(i−1), xj

))
. (2.49)

At θ = θ∗, the cumulative conditional hazard function and its inverse cancel each other
out so that the right-hand side of Equation (2.49) becomes exp(−u), the survival function
of the E(1) distribution. While Rθ∗

j,i is independent of the σ-algebra

F
T

(j)
i−1

= σ
({

N
(j)

t∧T
(j)
i−1

: t ≥ 0
})
∨ G0 ,

which contains information about the past of the process up to T
(j)
i−1 as well as the random

covariates Xj , Equation (2.49) shows that this does not necessarily apply to Rθ
j,i if θ 6= θ∗.

For the validity of the identity (2.49), it suffices that for each j ∈ {1, . . . , J} the conditional

intensity functions λ
(j)
θ (t) and λ

(j)
θ∗ (t) from the modelMj are non-zero almost everywhere

on
{
t < T

(j)
i

}
, compare Remark 2.21. However, in the context of load sharing models, this

conflicts with our censoring scheme that is implemented through the random covariates
of Assumptions 2.3 if either

Pθ∗(Cj < i) > 0 (2.50)
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or
Pθ∗

(
τj < T

(j)
i

)
> 0 (2.51)

applies. In both cases, the intensities (for both θ and θ∗) have a positive probability to
vanish on a set with positive Lebesgue measure: In the first case, this set is given by{
T

(j)
Cj
≤ t < T

(j)
i

}
, while in the second case it is

{
τj ≤ t < T

(j)
i

}
. We discuss how to

eliminate these complications in the following Remark 2.22.

Remark 2.22 (Compatibility of Hazard Transformation and Censoring Schemes).
If either of Equations (2.50) and (2.51) holds, problems may occur in computing the
hazard transform at θ∗. We discuss possible workarounds for the Basquin load sharing
model with multiplicative damage accumulation, dealing with these equations one by one.

(i) Censoring the number of observable failures leads to trivial transforms.

The covariate Cj determines how many component failures can be observed in the

jth experiment. Since the intensity functions
×Dλ

(j)
θ vanish on

{
t ≥ T

(j)
Cj

}
for all θ,

the cumulative intensity functions
×DΛ

(j)
θ are constant on

[
T

(j)
Cj

,∞). According to
Definition 2.19, it follows that

Rθ
j,i = 0 for all i > Cj ,

and hence Rθ∗

j,i ∼ E(1) no longer applies. However, with regard to Remark 2.21 and in
particular Equation (2.46), the ith hazard transform can still be calculated if always
at least i component failures can be observed, that is, supp

(
P

C0
)∩{0, 1, . . . , i−1} = ∅

and thus (recall that Cj is an i.i.d. copy of C0)

Pθ∗ (Cj < i) = 0 .

In practice, this can be easily ensured by choosing

C1, . . . , CJ
i.i.d.∼ δIc , i ≤ Ic ≤ I ,

which means that in each experiment exactly Ic component failures can be observed
and the censoring is deterministic.

(ii) Censoring the end of the experiment causes truncated hazard functions.

The covariate τj marks the end of the jth experiment. Similar to case (i), the

intensity functions
×Dλ

(j)
θ vanish on

{
t ≥ τj

}
for all θ. Put simply, this has the

consequence that the support of the distribution of the hazard transform Rθ∗

j,i is
bounded at random. At this bound - which depends on the covariate τj - the
conditional distribution function of Rθ∗

j,i jumps to 1 and therefore has a discontinuity.
This contradicts Theorem 2.20, see Remark A.52 in the appendix for a more elaborate
analysis of censoring in the context of the related Theorem A.46.
Unlike case (i), this problem cannot be overcome by imposing restrictions on the
support of τ0. Instead, we have to require τ0 ≡ ∞. Therefore, it appears necessary
to abolish type I censoring altogether. We might even be tempted to disguise type I
censoring as type II censoring by replacing

1{
N

(j)

t− <Cj

}
∩
{

t≤τj

}
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with

1{
N

(j)

t− <C̃j

} , where C̃j := min

{
Cj , N

(j)

τ−
j

}
, (2.52)

but this entails a dependence of C̃j on the course of the experimental run. This
conflicts the premise of G0-measurable covariates (i.e., the covariates must not
depend on the process history), although the C̃j defined in this way remain at
least pairwise independent. An actual workaround lies in understanding that the
conditional intensity functions with or without type I censoring are indistinguishable
as long as t ≤ τj holds and the observations are thus uncensored. In practice, this
allows us to consider the hazard transforms of only those points not censored by τj .
Although not mathematically sound, this approach is nevertheless plausible, since
an observation horizon up to τ =∞ is not feasible in real-life applications.

By virtue of Remark 2.22, we need to make a few adjustments in order to provide
statistical inference based on the hazard transform. To this end, we further specify the
framework from Section 2.1 as well as the covariates from Assumptions 2.3.

Definition 2.23 (Framework for Hazard Transforms in Load Sharing Models).
In the framework of Section 2.1, let I = R+. Let 1 ≤ Ic ≤ I be the critical number of
component failures, which is the same for all experiments. The covariates Cj and τj are
presumed to be deterministic with Cj ≡ Ic and τj ≡ ∞. To conform with Assumptions
2.3, we set:

P
C0 = δIc and P

τ0 = δ∞ .

The deterministic constant τ can be chosen arbitrarily.

In the framework of Definition 2.23, only one random covariate remains to appear in
the (cumulative) conditional hazard function: the random initial stress level sj . Now
that the censoring scheme is no longer subject to randomness, these conditional hazard
functions can be conveniently read from the intensity function. As a first lemma, we give
the conditional hazard functions and their cumulative versions in the model ×D, that is,
the Basquin load sharing model with multiplicative damage accumulation.

Lemma 2.24 (Conditional Hazard Functions of the Model ×D; cf. Theorem II.4 of Müller
and Meyer 2022, p. 4).
In the framework of Definition 2.23, let j ∈ {1, . . . , J} and θ ∈ Θ. The conditional hazard

functions defining the intensity function
×Dλ

(j)
θ are given by

×Dhθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
= θ1Bθ2

j,i

[
1

τ

(
Bj,i

(
t− T

(j)
i−1

)
+ Aj,i

)]θ3

, i ∈ {1, . . . , Ic} . (2.53)

The corresponding cumulative conditional hazard functions for i ∈ {1, . . . , Ic} are

×DHθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
=

θ1Bθ2−1
j,i

τ θ3(θ3 + 1)

[(
Bj,i

(
t− T

(j)
i−1

)
+ Aj,i

)θ3+1
−Aθ3+1

j,i

]
. (2.54)

In each case, we used the abbreviated notation from Remark 2.7.

Proof. Let i ∈ {1, . . . , Ic}. By Equation (2.5), we have to prove that the conditional

hazard function from Equation (2.53) coincides Pθ∗-almost surely with
×Dλ

(j)
θ almost
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everywhere on the interval
[
T

(j)
i−1, T

(j)
i

)
.

On this set, N
(j)
t− = i− 1 holds everywhere except for t = T

(j)
i−1. Therefore,

Bj(t) = sj
I

I −N
(j)
t−

= sj
I

I − (i− 1)
= Bj,i almost everywhere. (2.55)

Moreover, Equation (2.24) shows that

τAj(t) = Bj,i

(
t− T

(j)
i−1

)
+ Aj,i almost everywhere. (2.56)

Substituting Equations (2.55) and (2.56) into the intensity process
×Dλ

(j)
θ then yields:

×Dλ
(j)
θ (t) = θ1Bj(t)θ2Aj(t)θ3 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

}

= θ1Bθ2
j,i

[
1

τ

(
Bj,i

(
t− T

(j)
i−1

)
+ Aj,i

)]θ3

Pθ∗-a.s. almost everywhere,

since on
{
T

(j)
i−1 ≤ t < T

(j)
i

}
, the framework of Definition 2.23 guarantees that

1{
N

(j)

t− <Cj

}
∩
{

t≤τj

} = 1{
N

(j)

t− <Ic

} · 1{
t≤∞

} = 1 Pθ∗-almost surely.

This proves Equation (2.53). To obtain the cumulative conditional hazard function from
Equation (2.54), we proceed to integrate the conditional hazard function:

×DHθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
=

∫ t

T
(j)
i−1

×Dhθ
i

(
u
∣∣T (j)

1:(i−1), sj

)
du

=

∫ t

T
(j)
i−1

θ1Bθ2
j,i

[
1

τ

(
Bj,i

(
u− T

(j)
i−1

)
+ Aj,i

)]θ3

du

= θ1Bθ2
j,i

(
1

τ

)θ3
∫ t

T
(j)
i−1

[
Bj,i

(
u− T

(j)
i−1

)
+ Aj,i

]θ3
du

= θ1Bθ2
j,i

(
1

τ

)θ3
[

1

Bj,i(θ3 + 1)

(
Bj,i

(
u− T

(j)
i−1

)
+ Aj,i

)θ3+1
]t

u=T
(j)
i−1

=
θ1Bθ2−1

j,i

τ θ3(θ3 + 1)

[(
Bj,i

(
t− T

(j)
i−1

)
+ Aj,i

)θ3+1
−Aθ3+1

j,i

]
,

which verifies Equation (2.54) and completes the proof.

As a corollary, we immediately obtain the (cumulative) conditional hazard functions of
the model B, that is, the Basquin load sharing model without damage accumulation.

Corollary 2.25 (Conditional Hazard Functions of the Model B).
In the situation of Lemma 2.24, the conditional hazard functions of the Basquin load
sharing model without damage accumulation are given by

Bhθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
= θ1Bθ2

j,i , i ∈ {1, . . . , Ic} .
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The corresponding cumulative conditional hazard functions are

BHθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
= θ1Bθ2

j,i

(
t− T

(j)
i−1

)
, i ∈ {1, . . . , Ic} .

Proof. The proof follows immediately from Lemma 2.24 by setting θ3 = 0, compare
Equation (2.27).

Furthermore, Lemma 2.24 enables us to explicitly state the hazard transforms Rθ
j,i of

the point process T (j) at any θ ∈ Θ.

Corollary 2.26 (Hazard Transforms in the Model ×D).

In the framework of Definition 2.23, the hazard transform Rθ
j,i of T

(j)
i at θ ∈ Θ in the

Basquin load sharing model with multiplicative damage accumulation is given by

Rθ
j,i =

θ1Bθ2−1
j,i

τ θ3(θ3 + 1)

[
Aθ3+1

j,i+1 −Aθ3+1
j,i

]
, i ∈ {1, . . . , Ic}, j ∈ {1, . . . , J} .

Proof. According to Equation (2.44), the hazard transform Rθ
j,i is obtained by substituting

t = T
(j)
i into the cumulative conditional hazard function of Equation (2.54).

We have already seen above that an invertible cumulative conditional hazard function is
particularly beneficial. Conveniently, we can give the inverses of the cumulative conditional
hazard functions from Lemma 2.24 and Corollary 2.25 in closed form.

Lemma 2.27 (Inverse Cumulative Conditional Hazard Functions of the Models ×D and
B; cf. Theorem II.4 of Müller and Meyer 2022, p. 4).

For i ∈ {1, . . . , Ic} and j ∈ {1, . . . , J}, the cumulative conditional hazard function of T
(j)
i

in the Basquin load sharing models ×D and B are invertible on
[
T

(j)
i−1,∞). Their inverses

are given by

(
×DHθ

i

)−1 (
u
∣∣T (j)

1:(i−1), sj

)
=

1

Bj,i



(

τ θ3 (θ3 + 1)

θ1Bθ2−1
j,i

u + Aθ3+1
j,i

) 1
θ3+1

−Aj,i + Bj,iT
(j)
i−1


 ,

(
BHθ

j

)−1 (
u
∣∣T (j)

1:(i−1), sj

)
=

u

θ1Bθ2
j,i

+ T
(j)
i−1 .

Proof. For the model ×D, the inverse can be easily validated by verifying that

(
×DHθ

i

)−1 (×DHθ
i

(
t
∣∣T (j)

1:(i−1), sj

) ∣∣∣T (j)
1:(i−1), sj

)
= t , t ∈ [T (j)

i−1,∞) ,

and

×DHθ
i

( (
×DHθ

i

)−1 (
u
∣∣T (j)

1:(i−1), sj

) ∣∣∣T (j)
1:(i−1), sj

)
= u , u ∈ [0,∞) .

The inverse for the model B is then again obtained by setting θ3 = 0 in the model ×D.

By combining Lemmas 2.24 and 2.27, we can compute the probability from Equation
(2.49) for both the models ×D and B. Although a simple corollary of the above results, we
nevertheless formulate this identity as a theorem, because it is of paramount importance
to us.
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Theorem 2.28 (Cond. Distribution of the Hazard Transforms in the Models ×D and B).

In the framework of Definition 2.23, let Rθ
j,i be the hazard transform of T

(j)
i at θ ∈ Θ in

the Basquin load sharing model with multiplicative damage accumulation. Then,

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1), sj

)

= exp


−

θ∗
1B

θ∗
2−1

j,i

τ θ∗
3 (θ∗

3 + 1)



(

τ θ3 (θ3 + 1)

θ1Bθ2−1
j,i

u + Aθ3+1
j,i

) θ∗
3 +1

θ3+1

−A
θ∗

3+1
j,i





 . (2.57)

The conditional probability in the Basquin load sharing model without damage accumulation
is obtained by setting θ3 = θ∗

3 = 0 in Equation (2.57), so that

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1), sj

)
= exp


−

θ∗
1B

θ∗
2

j,i

θ1Bθ2
j,i

u


 . (2.58)

Proof. By Equation (2.49), plugging the inverse cumulative conditional hazard function
from Lemma 2.27 at θ into the cumulative conditional hazard function from Lemma 2.24
at θ∗ yields the desired result. Notice that upon substituting the inverse cumulative

conditional hazard into Equation (2.54), the terms T
(j)
i−1, Bj,i and Aj,i in the innermost

bracket immediately cancel out regardless of the parameters. Since then the remainder

τ θ3 (θ3 + 1)

θ1Bθ2−1
j,i

u + Aθ3+1
j,i

is first raised to the power of 1
θ3+1 and then to the power of θ∗

3 + 1, a further simplification
is only possible in the case θ3 = θ∗

3. In that situation, the damage accumulation term Aj,i

then disappears entirely, and the conditional probability from Equation (2.57) simplifies
to Equation (2.58). Obviously, this includes the case θ3 = θ∗

3 = 0.

We recall that the median of the E(λ) distribution is known to be ln(2)
λ

. Therefore,
we have medθ∗

(
Rθ∗

j,i

)
= ln(2) according to Theorem 2.20. A standardized version of the

hazard transform can then be introduced by subtracting ln(2). This accomplishes that
the hazard transforms at the true parameter θ∗ are median-centred.

Definition 2.29 (Standardized Hazard Transform).
The standardized hazard transform is the process R̃θ

j defined by

R̃θ
j,i := Rθ

j,i − ln(2) , i ∈ {1, . . . ,N} , j ∈ {1, . . . , J} , (2.59)

where Rθ
j is the hazard transform of the point process T (j).

At the beginning of this section, we established that we need a transformation of the
point process for which the probabilities of a positive sign can be quantified. For the
standardized hazard transform at θ∗, we have

Pθ∗

(
R̃θ∗

j,i > 0
)

=
1

2
= Pθ∗

(
R̃θ∗

j,i < 0
)

, (2.60)

so that the probability for both a positive and a negative sign is 1
2 . For θ 6= θ∗ the
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conditional probability of a positive sign can be specified via Equation (2.57) by setting
u = ln(2):

Pθ∗

(
R̃θ

j,i > 0
∣∣∣T (j)

1:(i−1), sj

)
= Pθ∗

(
Rθ

j,i > ln(2)
∣∣∣T (j)

1:(i−1), sj

)

= exp


−

θ∗
1B

θ∗
2−1

j,i

τ θ∗
3 (θ∗

3 + 1)



(

τ θ3 (θ3 + 1)

θ1Bθ2−1
j,i

ln(2) + Aθ3+1
j,i

) θ∗
3 +1

θ3+1

−A
θ∗

3+1
j,i





 . (2.61)

Throughout this thesis, we assume that the initial stress level sj is “known” in advance:
this is incorporated in the assumption that sj be G0-measurable. In later considerations,
we will suppose that sj is indeed deterministic. Under these circumstances, there are no
longer any random covariates. We can hence consider the natural filtration FN of the

counting process N in place of an intrinsic filtration. Only the previous points T
(j)
1:(i−1)

then appear in the conditions of this section. This also concerns Equation (2.61), from
which make a key observation:

Unlike the time T
(j)
i of the ith event itself, the probability of a positive standardized

hazard transform depends only on the damage accumulation term Aj,i and not directly

on the past T
(j)
1:(i−1). We record this conclusion in a remark, where we will conceive of the

probability from Equation (2.61) as a σ(Aj,i)-measurable random variable.

Remark 2.30 (Relating Damage Accumulation to Standardized Hazard Transforms).
As soon as sj is considered deterministic, the load sharing term Bj,i is also no longer
subject to randomness. We can thus restate Equation (2.61) as

Pθ∗

(
R̃θ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= gj,i (θ∗, θ, Aj,i) ,

where gj,i : Θ×Θ× R→ R is the deterministic function defined by

gj,i(θ, θ∗, x) := exp


−

θ∗
1B

θ∗
2−1

j,i

τ θ∗
3 (θ∗

3 + 1)



(

τ θ3 (θ3 + 1)

θ1Bθ2−1
j,i

ln(2) + xθ3+1

) θ∗
3 +1

θ3+1

− xθ∗
3+1





 .

For each fixed θ, θ∗ ∈ Θ, the function x 7→ gj,i(θ, θ∗, x) is continuous. Therefore, the
composition gj,i(θ, θ∗, Aj,i) is σ (Aj,i)-B (R)-measurable.

Because Aj,i is a weighted sum of the points T
(j)
1:(i−1) according to Equation (2.23),

σ (Aj,i) ⊂ σ
(
T

(j)
1:(i−1)

)
applies. We can then compute by virtue of the tower property:

Pθ∗

(
R̃θ

j,i > 0
∣∣∣Aj,i

)
= Eθ∗

(
1{R̃θ

j,i
>0}

∣∣∣Aj,i

)
= Eθ∗

(
Eθ∗

(
1{R̃θ

j,i
>0}

∣∣∣T (j)
1:(i−1)

) ∣∣∣Aj,i

)

= Eθ∗

(
Pθ∗

(
R̃θ

j,i > 0
∣∣∣T (j)

1:(i−1)

) ∣∣∣Aj,i

)

= Eθ∗

(
gj,i (θ∗, θ, Aj,i)

∣∣∣Aj,i

)

= gj,i (θ∗, θ, Aj,i) = Pθ∗

(
R̃θ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
.

Hence, conditioning on Aj,i instead of the entire past T
(j)
1:(i−1) leads to the same results in

terms of the probability to obtain a positive standardized hazard transform.
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With Theorem 2.28, we have laid the foundation for statistical methods based on the
hazard transformation. Many possible paths branch off from here. For example, the
hypothesis H0 : θ∗ = θ can be tested by assessing whether the hazard transforms at θ
follow an exponential distribution with parameter 1 (e.g., by the Kolmogorov-Smirnov
test). Our goal is not to find the best solution to this testing problem. In Chapter 4,
we propose a new, robust approach that demonstrates the applicability of a recent test
based on the K-sign depth. Meanwhile, benchmarking with a wider range of methods is
considered a task for future research.
Of course, the idea to provide statistical inference by using the hazard transform of a
point process is by no means new. For instance, Section 7.4. of Daley and Vere-Jones
2003, pp. 257–267 is devoted to a goodness-of-fit test for point process models with known
conditional intensity function. Since a comparison with established methods is postponed,
they are only treated superficially within this thesis.

36



3. Minimum Distance Estimation for Parametric
Intensity-Based Models

3.1. Introduction to Self-Exciting Processes and the General Framework

Our first method of inference is set in the context of “self-exciting” point processes:
the minimum distance estimator of Kopperschmidt and Stute 20133. The notion “self-
exciting” was historically coined by Hawkes (see Hawkes 1971a and Hawkes 1971b) and
intended as an extension to the doubly stochastic process (i.e., a counting process N that
is conditionally a Poisson process given the random intensity function λ, see Bartlett
1963, p. 269; Chapter 7 of Snyder and Miller 1991 is dedicated to this topic). While
for such doubly stochastic processes, the intensity λ(t) is determined for all t before the
associated counting process Nt is considered (Hawkes 1971a, p. 84), Hawkes allowed that
the intensity depends on the past of the process itself and thus “self-excites”. Originally,
the term was used only for intensity processes of a specific shape - the corresponding
processes are nowadays referred to as Hawkes processes (e.g., in Daley and Vere-Jones 2003,
pp. 183–185) - but the modern interpretation comprises all adapted counting processes (see
Brémaud 1972, p. 46 or Andersen et al. 1993, p. 73). Conveniently, self-exciting counting
processes are thus precisely the class of counting processes to which the Doob-Meyer
decomposition can be applied and the general self-exciting process can be conceived
of as a modified Poisson process in which the intensity is not only a function of time
but also the entire past of the counting process (cf. Snyder and Miller 1991, p. 287).
Adaptedness (or in other words, “self-excitation”) constitutes the essential prerequisite
in the study of the minimum distance estimator and is always assumed throughout this
thesis. Nevertheless, our framework shows several distinctions from the setting in which
the results of Kopperschmidt and Stute 2013 are situated. Although these differences
appear to restrict the applicability of this approach, they are in fact imperative to
allow comparison with the methods of the following chapters. We point out the main
dissimilarities in a first remark.

Remark 3.1 (Differences to the Framework of Kopperschmidt and Stute 2013).

(i) For a stochastic process N to be adapted with respect to a filtration {Ft}t≥0, it
must contain the natural filtration of N , that is:

Ft ⊃ FN
t , for all t ≥ 0 ,

see Remark A.12(iv). This inclusion need not be strict, and we primarily settle for
equality (i.e., the internal history of N) or at most an intrinsic filtration so that all
external information is available in advance. In contrast, Kopperschmidt and Stute
2013 demand that most cases of interest include external random components:

“One needs to accept intensity processes that combine the internal history of
the process with external shocks or impulses to the effect that the model is no
longer dominated and straightforward likelihood methods don’t exist; allow for
jumps [...]; have relevant filtration strictly larger than the internal history of the
process.” (Kopperschmidt and Stute 2013, p. 1277)

3The cited article is based on the dissertation by Kopperschmidt. We refer to Kopperschmidt 2005
whenever we comment on technical details omitted from the concise article.
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The disparity in perspective can be attributed to the envisaged field of application:
Kopperschmidt and Stute 2013 apply their findings to market research. Specifically, a
customer’s purchase behavior is represented by a point process, with each observation
corresponding to the time of a purchase. Promotional activities such as TV-
advertising then influence the customer’s behavior by “hopefully creating an impulse
leading to an upward jump in the intensity process” (Kopperschmidt and Stute
2013, p. 1276), but are not part of the customer’s internal (purchase) history, hence
Ft ) FN

t . Our primary interest, on the other hand, lies in experiments (mostly,
but not exclusively, from the field of civil engineering) conducted under laboratory
conditions. Therefore, we do not want the model to encompass effects that are not
part of the intrinsic behavior. Note, though, that even if we are mostly content with
the internal history, we still allow for the case of strict inclusion and will not impose
any formal restrictions. In this way, unforeseen events can be incorporated into the
modelling of an experiment, which in turn enables numerous practical applications.
Finally, we technically do not require the model to be dominated either, but we can
resort to this assumption in order to compare the minimum distance estimator with
straightforward likelihood methods.

(ii) To prove the asymptotic normality of the minimum distance estimator, moment
conditions are imposed on the model, see Kopperschmidt 2005, pp. 27–28. While
we retain most other requirements, we strengthen this assumption by asking that
the model is almost surely uniformly bounded. The reason for this is that the proof
presented in Kopperschmidt 2005 contains a fundamental flaw, which we correct
by following an alternative (but related) approach. The original proof exploits the
posed moment conditions to derive the tightness of the involved processes using a
Kolmogorov tightness criterion, whereas we show convergence directly by dominating
negligible parts. Consequently, it is understandable that this specific requirement
has to be adjusted. In practice, this adjustment is usually unproblematic: According
to Remark A.6(iii), in any application modelled by a counting process, the number
of observable events in a compact interval is finite. Both Kopperschmidt and Stute
2013 and we assume I ⊂ R to be a fixed compact interval, so increasing information
can only stem from sampling i.i.d. copies of a counting process4. In simple terms,
our condition is then satisfied if that counting process is almost surely bounded
by some constant. This assumption is easily justified even in the example given
by Kopperschmidt and Stute 2013 themselves, in which a household’s purchases of
packaged ice cream were considered: Surely the number of purchases is bounded by
the total quantity of units produced.

In Remark 3.1(ii) we stated that the proof provided by Kopperschmidt 2005 is defective,
and the same then is true for the one published in Kopperschmidt and Stute 2013. The
problem lies in a faulty generalization of Kolmogorov’s tightness criterion to higher
dimensional spaces. We address the errors we detected in Remark 3.27 following our proof.
In doing so, we demonstrate that the proof given by Kopperschmidt 2005 is false, but we
cannot disprove the correctness of the statement itself. Thus, the original proof remains
intact if a proof of the generalized tightness criterion can be found. We elaborate on the
common reception of Kolmogorov’s and related tightness criteria in the literature. Finally,

4Of course, it is also possible to increase the length of I to infinity in order to gain information about
a process observed over I. However, this is in contradiction with our situation where conducted
experiments cannot be extended arbitrarily.
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we give a heuristic rationale for why the generalization might be incorrect altogether.
Having made these preliminary remarks, we turn to the specification of the framework. We
recollect Equations (2.1) through (2.3) of Section 2.1 to remind us of the main notations.

Definition 3.2 (Framework for Minimum Distance Estimation; adapted from Kopper-
schmidt 2005, pp. 21–26 and Kopperschmidt and Stute 2013, pp. 1278–1279).
Let

(
Ω,F , {Ft}t∈I ,P

)
be a filtered probability space, where I = [0, τ ] is a compact interval

with τ ∈ (0,∞). Let N (1), . . . , N (n), n ∈ N, denote i.i.d. copies of an adapted counting
process N = (Nt)t∈I with absolutely continuous

(
P, {Ft}t∈I

)
-compensator Λ. Let θ ∈ Θ

denote the parameter of interest, where Θ ⊂ Rd, d ∈ N, is a bounded open set, so the
closure Θ of Θ is compact in Rd. A parametric model is given by a class M of cumulative
intensities, that is,

M = {Λθ : θ ∈ Θ} .

Let µ be a finite measure on the Borel σ-algebra B(I). For f, g ∈ L2 (I,B(I), µ), we set

〈f, g〉µ :=

∫

I
fg dµ

with corresponding semi-norm

‖f‖µ :=
√
〈f, f〉µ =

[∫

I
f2 dµ

] 1
2

. (3.1)

If X = (Xt)t∈I is a non-decreasing process with X0 = 0, then for each ω ∈ Ω a Borel
measure on I is determined by

µX ([0, t]) := Xt(ω) , t ∈ I , (3.2)

where the dependence on ω is usually suppressed (i.e., we write µX instead of µX(ω)).
For X we primarily consider the processes N and Λθ as well as their aggregate versions
obtained from

N
(n)

:=
1

n

n∑

j=1

N (j) , Λ
(n)
θ :=

1

n

n∑

j=1

Λ
(j)
θ , for θ ∈ Θ .

Let again δt be the Dirac measure centred on t ∈ I and

JN :=

{
t : Nt − lim

s↑t
Ns ≥ 1

}

denote the set of time points belonging to the jumps of the counting process N . Then, the
induced measure µN can be expressed explicitly as

µN =
∑

t∈JN

(
Nt − lim

s↑t
Ns

)
δt .

Similarly, we obtain

µ
N

(n) =
1

n

n∑

j=1

µN(j) =
∑

t∈J
N

(n)

(
N

(n)
t − lim

s↑t
N

(n)
s

)
δt , where J

N
(n) :=

n⋃

j=1

JN(j) .
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In order to simplify the notation, we write ‖·‖N instead of ‖·‖µN
(and likewise for other

induced measures).

The most noticeable difference from the notation in Section 2.1 is that here we use n
instead of J for the number of copies of N . This is intentional to stay as close as possible
to the notation of Kopperschmidt and Stute 2013.
Before we turn to further assumptions regarding the parametric model M, we would
like to point out that due to the randomness of the measures considered (e.g., µN ), the
semi-norms defined in Equation (3.1) may also be probabilistic, even if the integrand f is
deterministic. At times, we will use the measure induced by the expected compensator
instead, leading to deterministic semi-norms.

Assumption 3.3 (General Requirements for the Parametric Model).
We make several assumptions on the model M and number them consecutively. For the
initial requirements stated here, the letter M is used. Further assumptions are made, but
these are tied to the specific results and are therefore deferred for the time being. We will
later refer to them by the letters C (for consistency) and A (for asymptotic normality).

(M1) The model includes the compensator Λ. Hence, there is a true parameter θ∗ ∈ Θ,
such that

Λ = Λθ∗ .

(M2) Any cumulative intensity contained inM is Pθ∗-almost surely absolutely continuous:
For each θ ∈ Θ, there exists a Lebesgue densities λθ satisfying

Λθ(t) =

∫ t

0
λθ(u) du , t ∈ I .

Without loss of generality, we can assume λθ to be left-continuous. In the case
θ = θ∗, λθ is the

(
P, {Ft}t∈I

)
-intensity of N .

It follows from (M1) that, for each j ∈ {1, . . . , n}, the innovation martingale M (j) from
the Doob-Meyer decomposition of N (j) is given by

M (j) = N (j) − Λ
(j)
θ∗ .

Analogously, the innovation martingale of the aggregate process N
(n)

is obtained:

M
(n)

= N
(n) − Λ

(n)
θ∗ . (3.3)

We have now assembled the framework that enables us to define the minimum distance
estimator. For this purpose, we consider the Cramér-von Mises distance (cf. Stute 1986,

p. 234) between the aggregated counting process N
(n)

and the aggregated cumulative

intensity Λ
(n)
θ , that is:

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) =



∑

t∈J
N

(n)

(
N

(n)
t − Λ

(n)
θ (t)

)2
(

N
(n)
t − lim

s↑t
N

(n)
s

)



1
2

. (3.4)

This quantity accumulates the squared distances between the aggregated processes at the

jump points of N
(n)

(weighted by the jump size), and hence represents an overall measure
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of fit of Λ
(n)
θ to N

(n)
(Kopperschmidt and Stute 2013, p. 1279). As the minimum distance

estimator, we then choose the parameter θ ∈ Θ that minimizes the above sum.

Definition 3.4 (Minimum Distance Estimator; Kopperschmidt and Stute 2013, p. 1279).
The minimum distance estimator (MDE) θ̂n for θ∗ is defined as the element of the
parameter space Θ that minimizes the Cramér-von Mises distance between the aggregated

counting process N
(n)

and the aggregated cumulative intensity Λ
(n)
θ , that is:

θ̂n := arg inf
θ∈Θ

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) . (3.5)

The remainder of this chapter is devoted to two central properties of this estimator:
In Section 3.2 we discuss the (strong) consistency of the estimator, while Section 3.3
revolves around its asymptotic normality. In concluding this introduction, we remark
that throughout Chapter 3 we will work with probabilities and expectations that formally
depend on the true parameter θ∗. Nevertheless, we will retain the shorter notations P (·)
and E (·) as opposed to Pθ∗ (·) and Eθ∗ (·).

3.2. Strong Consistency of the Minimum Distance Estimator

We start the section with additional assumptions about the parametric model M which
complement the general requirements (M1) and (M2) that continue to apply.

Assumption 3.5 (Requirements Related to the Strong Consistency of the MDE).
Throughout this section, we assume that the following assertions are valid.

(C1) The true parameter θ∗ is identifiable: For each ε > 0,

inf
θ : ‖θ−θ∗‖≥ε

‖EΛθ∗ − EΛθ‖EΛθ∗
> 0 .

(C2) With probability one, the mapping

Λ·(·) : I ×Θ −→ R

(t, θ) 7−→ Λθ(t)

is continuous on I ×Θ and has a continuous extension to the closure I ×Θ of I ×Θ.
Hence,

Λ·(·) ∈ C0(I ×Θ
)

P-almost surely.

(C3) There exists a constant C > 0, such that P-almost surely holds:

Nt ≤ C , Λθ(t) ≤ C , for all t ∈ I , θ ∈ Θ .

In particular, the model is P-almost surely uniformly bounded. Because of mono-
tonicity, we can equivalently demand boundedness on the right boundary of
I = [0, τ ],

Nτ ≤ C , Λθ(τ) ≤ C , for all θ ∈ Θ .

In contrast to the uniform boundedness condition (C3), Kopperschmidt 2005 only demands
locally uniform integrability of the model. We quote this deviant condition for the sake of
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completeness; it can be found in Kopperschmidt 2005, pp. 23–24, Equations (3.2.1) and
(3.2.6).

(C̃3) For r > 0 and θ ∈ Θ, let

Br (θ) :=
{

θ′ ∈ Θ :
∥∥θ′ − θ

∥∥ < r
}

(3.6)

be the intersection of the ball with radius r around θ with the closure Θ of the
parameter space. He assumes that for each θ ∈ Θ, there exists a positive radius
rθ > 0 such that

E

(
sup

θ′∈Brθ
(θ)

Λθ′(τ)3
)

<∞ . (3.7)

Additionally, he requires that the third moments of N exist, that is

E

(
N3

τ

)
<∞ . (3.8)

Trivially, (C3) ⇒ (C̃3), since both expectations are bounded by C < ∞. Considering
that the balls Brθ

(θ) provide an open cover of the compact set Θ, Equation (3.7) remains
valid even if we take the supremum over the entire set Θ.

Remark 3.6 (Continuity of the Expected Cumulative Intensity).
Combining Conditions (C2) (for the continuity of the cumulative intensity) and (C3) (to
obtain an integrable majorant) yields the continuity of the expected cumulative intensity

(t, θ) 7→ EΛθ(t)

as an immediate consequence of the dominated convergence theorem:

lim
(t,θ)→(t′,θ′)

EΛθ(t) = E

[
lim

(t,θ)→(t′,θ′)
Λθ(t)

]
= EΛθ′

(
t′) for all

(
t′, θ′) ∈ I ×Θ .

In proving the consistency of the MDE, we will find that the Cramér-von Mises distance∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) converges almost surely to ‖EΛθ∗ − EΛθ‖EΛθ∗
as n → ∞. Thus, in

order for the MDE θ̂n to estimate the true parameter θ∗, different parameter values must
be reflected in the quantity ‖EΛθ∗ − EΛθ‖EΛθ∗

. This justifies the identifiability condition
from (C1) (cf. Kopperschmidt 2005, p. 26). Due to the continuity of the expected
cumulative intensity demonstrated above, (C1) simplifies considerably: The compactness
of Θ \ Bε (θ∗) implies that the infimum is attained, so that the identifiability condition
becomes equivalent to

∀ θ 6= θ∗ ∃ Iθ ⊂ I with µEΛθ∗ (Iθ) > 0 ∀ t ∈ Iθ : EΛθ∗(t) 6= EΛθ(t) . (3.9)

In other words, this basically means that the expected cumulative intensities differ on
some subset of I where EΛθ∗ is not constant.

The main theorem of this section states the strong consistency of the MDE.
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Theorem 3.7 (Strong Consistency of the Minimum Distance Estimator; Kopperschmidt
and Stute 2013, p. 1279).
With the notations introduced in Definition 3.2 and under the assumptions (M1), (M2),
(C1), (C2) and (C3) holds:

θ̂n −→ θ∗ (n→∞) P-almost surely.

Here the condition (C3) can be replaced by (C̃3).

Proof. The proof is - besides the asymptotic normality of the MDE - the main statistical
subject of Kopperschmidt’s dissertation. The entire Chapter 7, Kopperschmidt 2005,
pp. 67–80, is dedicated to this topic. An abridged version can be found in the article
Kopperschmidt and Stute 2013, pp. 1284–1288. In addition, the author has spend
considerable effort in his master’s thesis to flesh out the proof and make it understandable
even from an undergraduate’s point of view, see Jakubzik 2017, pp. 83–99. A revision
adapted to this work is given in the Appendix B.3 of this dissertation.

3.3. Asymptotic Normality of the Minimum Distance Estimator

Analogous to the previous section, we specify further assumptions on the parametric
model M that complement the ongoing requirements (M1), (M2), (C1), (C2) and (C3).
The essential condition here is the threefold continuous differentiability of the cumulative
intensity with respect to θ. The first and second order derivatives explicitly appear
in the distributional approximation of the MDE (cf. Kopperschmidt and Stute 2013,
p. 1280), whereas the third order derivatives are required to dominate its negligible parts.
Throughout this section, the notations d

dθ
and Dθ are used interchangeably to indicate the

total derivative with respect to θ: The former is preferred to pick up the notation found in
Kopperschmidt and Stute 2013 while maintaining distinctness from the partial derivatives

∂
∂θj

, whereas the latter permits tighter formulas, especially in conjunction with further

derivatives or whenever we seek to highlight the matrix structure of the total derivative.
Likewise, we also denote the pth total differential as either dp

dθp or Dp
θ depending on the

context. Finally, we will abbreviate the notation for derivatives wherever appropriate by
writing, for instance,

d

dθ
Λθ0(t) instead of

d

dθ
Λθ(t)

∣∣∣∣
θ=θ0

.

Assumption 3.8 (Requirements Related to the Asymptotic Normality of the MDE).
In order to obtain the asymptotic normality of the minimum distance estimator, the
following conditions are henceforth assumed to be valid.

(A1) There exists an open neighbourhood Bε (θ∗) ⊂ Θ of θ∗, such that for each fixed
t ∈ I, the mapping

Λ·(t) : Θ −→ R

θ 7−→ Λθ(t)

is P-almost surely three times continuously differentiable with respect to θ, that is,

Λ·(t) ∈ C3 (Bε (θ∗)) P-almost surely.
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(A2) The partial derivatives up to the third order are P-almost surely continuous on
I × Bε (θ∗) (as functions of both t and θ). Hence, with probability 1,

∂

∂θj
Λθ(·)

∣∣∣∣
θ=·
∈ C0 (I × Bε (θ∗)) , for all j ∈ {1, . . . , d},

∂2

∂θj∂θk
Λθ(·)

∣∣∣∣
θ=·
∈ C0 (I × Bε (θ∗)) , for all j, k ∈ {1, . . . , d},

∂3

∂θj∂θk∂θl
Λθ(·)

∣∣∣∣
θ=·
∈ C0 (I × Bε (θ∗)) , for all j, k, l ∈ {1, . . . , d}.

(A3) There exists a constant C > 0, such that the third-order partial derivatives with
respect to θ are P-almost surely uniformly bounded by C, that is,

∣∣∣∣∣
∂3

∂θj∂θk∂θl
Λθ(t)

∣∣∣∣∣ ≤ C , for all t ∈ I, θ ∈ Bε (θ∗) and j, k, l ∈ {1, . . . , d}.

(A4) For each v ∈ Rd \ {0} there exists a Borel set Bv ⊂ R with µEΛθ∗ (Bv) > 0 such that

v⊤
E

d

dθ
Λθ∗(t)⊤ 6= 0 , for all t ∈ Bv.

Since by Theorem 3.7 the minimum distance estimator is strongly consistent for θ∗, it
holds with probability 1 that θ̂n ∈ Bε (θ∗) for almost all n ∈ N. As we seek to differentiate
at θ̂n, we will hereafter always assume n to be chosen sufficiently large. Moreover, it then
holds for these n that θ̂n is an interior point of Θ.

Remark 3.9 (Boundedness of First and Second Order Derivatives of the Cumulative
Intensity).
Condition (A3) also extends to the partial derivatives of the first and second order,
so that these can also be assumed to be P-almost surely uniformly bounded by some
(properly adjusted) constant C. We demonstrate this exemplarily only for the second
order derivatives, since the proof for the first order proceeds completely analogous. Fix
an arbitrary θ0 ∈ Θ. For any θ ∈ Θ, the mean value theorem for functions of several
variables then yields:

∂2

∂θj∂θk
Λθ(t)− ∂2

∂θj∂θk
Λθ0(t) = Dθ

∂2

∂θj∂θk
Λθ(t)

∣∣∣∣
θ=θ̃

(
θ − θ0

)
, (3.10)

for some θ̃ ∈ {θ0 + s
(
θ − θ0

)
: s ∈ [0, 1]

}
, i.e., on the line segment adjoining θ0 and θ in

Rd. If ‖ · ‖ denotes the Euclidean norm on Rd, we obtain from condition (A3):

∥∥∥∥∥Dθ
∂2

∂θj∂θk
Λθ(t)

∣∣∣∣
θ=θ̃

∥∥∥∥∥

2

=

∥∥∥∥∥∥

(
∂3

∂θj∂θk∂θl
Λθ(t)

∣∣∣∣
θ=θ̃

)

l=1,...,d

∥∥∥∥∥∥

2

=
d∑

l=1

∣∣∣∣∣
∂3

∂θj∂θk∂θl
Λθ(t)

∣∣∣∣
θ=θ̃

∣∣∣∣∣
︸ ︷︷ ︸

≤C

2

≤ dC2
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so that we can use the Cauchy-Schwarz inequality to infer the Lipschitz continuity of the
second order partial derivatives from Equation (3.10),

∣∣∣∣∣
∂2

∂θj∂θk
Λθ(t)− ∂2

∂θj∂θk
Λθ0(t)

∣∣∣∣∣ ≤
∥∥∥∥∥Dθ

∂2

∂θj∂θk
Λθ(t)

∣∣∣∣
θ=θ̃

∥∥∥∥∥
∥∥∥θ − θ0

∥∥∥

≤
√

dC
∥∥∥θ − θ0

∥∥∥ . (3.11)

From here, the triangle inequality enables us to separate the variables t and θ as follows:

∣∣∣∣∣
∂2

∂θj∂θk
Λθ(t)

∣∣∣∣∣ ≤
∣∣∣∣∣

∂2

∂θj∂θk
Λθ(t)− ∂2

∂θj∂θk
Λθ0(t)

∣∣∣∣∣+
∣∣∣∣∣

∂2

∂θj∂θk
Λθ0(t)

∣∣∣∣∣

≤
√

dC sup
θ∈Θ

∥∥∥θ − θ0
∥∥∥+ sup

t∈I

∣∣∣∣∣
∂2

∂θj∂θk
Λθ0(t)

∣∣∣∣∣ . (3.12)

The right-hand side of Equation (3.12) then provides the adjusted constant, since both
summands are finite and no longer depend on θ or t: For the first one we utilize the
boundedness of Θ, while for the second one condition (A2) is needed in conjunction with
the compactness of I.
We can thus formulate an extended condition (Ã3), which is redundant in the context
of Assumption 3.8 since it can be inferred from conditions (A1) to (A3). However, this
allows us to later refer to (Ã3) instead of “(A2) and (A3) in conjunction with Remark
3.9”.

(Ã3) There exists a constant C > 0, such that the partial derivatives with respect to θ
are P-almost surely uniformly bounded by C up to the third order, that is,

∣∣∣∣∣
∂

∂θj
Λθ(t)

∣∣∣∣∣ ≤ C ,

∣∣∣∣∣
∂2

∂θj∂θk
Λθ(t)

∣∣∣∣∣ ≤ C ,

∣∣∣∣∣
∂3

∂θj∂θk∂θl
Λθ(t)

∣∣∣∣∣ ≤ C , for all t ∈ I, θ ∈ Bε (θ∗) and j, k, l ∈ {1, . . . , d}.

Before comparing our premises with those of Kopperschmidt and Stute as in Section
3.2, we would like to state an elementary but crucial lemma: It forms the starting point
for the upcoming proof and allows us to both sketch the idea of proof and outline the
differences with Kopperschmidt’s approach.

Lemma 3.10 (Derivative of the Cramér-von Mises Distance; cf. Lemma 7 of Kopper-
schmidt and Stute 2013, p. 1288).
Under Assumption 3.8, we have5:

√
n

∫

I

[
Λ

(n)

θ̂n
− Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dM
(n)

+
√

n

∫

I

[
Λ

(n)

θ̂n
− Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dΛ
(n)
θ∗

=
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dM
(n)

+
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dΛ
(n)
θ∗ . (3.13)

5Reminder: Even in the presence of non-predictable integrands, the existence of the stochastic integrals
involved can always be seen by rewriting the individual martingale M (m) as the difference of the
counting process N (m) and its compensator Λ

(m)
θ∗ , which are both non-decreasing.
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Proof. By definition, the minimum distance estimator θ̂n minimizes the Cramér-von Mises

distance between N
(n)

and Λ
(n)
θ . Moreover, θ̂n lies in Bε (θ∗) and thus in the interior of

Θ according to Assumption 3.8. Since by (A1) the cumulative intensity is continuously
differentiable as a function of θ for each fixed t with probability 1, this is also true for the
Cramér-von Mises distance, as can be seen from Equation (3.4). Hence, there is a critical
point at θ̂n, meaning that

0 =
1

2

d

dθ

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n)

∣∣∣∣
θ=θ̂n

=
1

2

d

dθ

∫

I

[
N

(n) − Λ
(n)
θ

]2
dN

(n)
∣∣∣∣
θ=θ̂n

=
1

2

∫

I

d

dθ

[
N

(n) − Λ
(n)
θ

]2 ∣∣∣∣
θ=θ̂n

dN
(n)

=

∫

I

[
N

(n) − Λ
(n)

θ̂n

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dN
(n)

=

∫

I

[
N

(n) − Λ
(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dN
(n)

+

∫

I

[
Λ

(n)
θ∗ − Λ

(n)

θ̂n

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dN
(n)

=

∫

I
M

(n) d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dN
(n)

+

∫

I

[
Λ

(n)
θ∗ − Λ

(n)

θ̂n

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dN
(n)

, (3.14)

where we used the identity Mn = N
(n) − Λ

(n)
θ∗ from Equation (3.3). Integration and

differentiation can be interchanged here due to the Leibniz integral rule, as the derivatives
of the integrand with respect to θ are P-almost surely uniformly bounded according
to conditions (C3) and (Ã3) and thus trivially integrable6. By subtracting the second
summand of Equation (3.14) on both sides, exploiting the above identity once again and
multiplying by

√
n one then obtains Equation (3.13).

We introduce auxiliary parametric processes which enable a condensed representation
of Lemma 3.10. The notation is adapted from Kopperschmidt and Stute 2013 to facilitate
comparison.

Definition 3.11 (Auxiliary Parametric Processes).
We define the following parametric processes, each with index set Bε (θ∗) ⊂ Θ, where as
usual the dependence on the realization ω is suppressed:

αn(θ) :=
√

n

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ dM

(n)
,

βn(θ) :=
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dM

(n)
,

γn(θ) :=
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ ,

Φn(θ) :=
d

dθ

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ ,

Φ0(θ) :=
d

dθ

∫

I
[EΛθ − EΛθ∗ ]E

d

dθ
Λθ dEΛθ∗ ,

Ψn(θ) :=

∫ 1

0
Φn (θ∗ + s (θ − θ∗)) ds .

By definition, Ψn(θ) can be understood as the average of the matrix-valued process
Φn along

{
θ∗ + s

(
θ − θ∗) : s ∈ [0, 1]

}
, i.e., the line connecting θ∗ and θ in Bε (θ∗) ⊂ Rd.

6This reasoning will be illustrated in more detail later using the parametric process Φn, see page 52.
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Moreover, we will later encounter Φ0 as the uniform limit of Φn. Each of the other three
processes can directly be associated with a summand from Lemma 3.10. With Definition
3.11 in mind, Equation (3.13) becomes:

αn

(
θ̂n

)
+
√

n

∫

I

[
Λ

(n)

θ̂n
− Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dΛ
(n)
θ∗ = βn

(
θ̂n

)
+ γn

(
θ̂n

)
. (3.15)

For the remaining integral, an application of the mean value theorem for vector-valued
functions7 (see Forster 2017, pp. 84–85) yields:

∫

I

[
Λ

(n)

θ̂n
− Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dΛ
(n)
θ∗

=

∫

I

[
Λ

(n)

θ̂n
− Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ̂n

dΛ
(n)
θ∗ −

∫

I

[
Λ

(n)
θ∗ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

∣∣∣∣
θ=θ∗

dΛ
(n)
θ∗

︸ ︷︷ ︸
=0

=



∫ 1

0

d

dθ

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ dΛ

(n)
θ∗

∣∣∣∣
θ=θ∗+s(θ̂n−θ∗)

ds



(
θ̂n − θ∗

)

=

(∫ 1

0
Φn

(
θ∗ + s

(
θ̂n − θ∗

))
ds

)(
θ̂n − θ∗

)
= Ψn

(
θ̂n

) (
θ̂n − θ∗

)
, (3.16)

so that by substituting Equation (3.16) into Equation (3.15) we can restate Lemma 3.10
in terms of Definition 3.11.

Lemma 3.10 (Abbreviated Form).
Under Assumption 3.8 and with the notation from Definition 3.11, it holds:

αn

(
θ̂n

)
+
√

nΨn

(
θ̂n

) (
θ̂n − θ∗

)
= βn

(
θ̂n

)
+ γn

(
θ̂n

)
. (3.17)

Starting from Lemma 3.10, the proof of Kopperschmidt and Stute and the approach
taken here begin to diverge. Therefore, this point lends itself to a discussion of the
differences. We outline and summarize the proof steps followed by Kopperschmidt and
Stute and then highlight our deviations. We refer to Kopperschmidt only in the following,
since the complete proof given in his dissertation (see Kopperschmidt 2005) is better
suited for distinguishing its individual parts. As a final remark, we note that instead
of considering the averaged process Ψn, Kopperschmidt and Stute evaluate the process
Φn at some “appropriate intermediate point” (Kopperschmidt and Stute 2013, p. 1294).
However, such an intermediate point does not necessarily exist as soon as the dimension
d of the parameter space Θ - and thus the dimension of both the domain (which is d) and
codomain (which is d2) of Φn - exceeds 1. To avoid confusion, below we present the proof
as if Kopperschmidt had considered Ψn instead of Φn.

(i) Kopperschmidt uses the differentiability of the cumulative intensities (see condition
(A1)) to obtain local Lipschitz-constants. These Lipschitz constants are random
variables by themselves, so he imposes additional moment conditions on them.
Furthermore, the existing condition (C̃3) is strengthened (cf. Kopperschmidt 2005,
pp. 27–28).

7Its applicability is once again due to conditions (A1) through (A3). The technical details are deferred
here and will be discussed in subsequent proofs.
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(ii) Kopperschmidt continues by further decomposing the auxiliary parametric process
of Definition 3.11. He employs Kolmogorov’s tightness criterion (see Theorem
B.2.6) to show the tightness of the decomposed processes, for which the local
Lipschitz constants are needed. As sums of tight processes are in turn tight (a direct
consequence of Corollary B.2.5), the tightness of (αn(·))n∈N, (βn(·))n∈N, (γn(·))n∈N

and (Ψn(·))n∈N ensues.

(iii) An essential problem is that the stochastic processes in Lemma 3.10 are evaluated
at the MDE, which adds a secondary source of randomness. Due to the strong
consistency of the minimum distance estimator, Kopperschmidt can utilize the
tightness of the involved processes to conclude that Equation (3.17) is asymptotically
equivalent to

αn(θ∗) +
√

nΨn(θ∗)
(
θ̂n − θ∗

)
= βn(θ∗) + γn(θ∗)

by virtue of Lemma B.2.7. Since αn(θ∗) = 0 and because Kopperschmidt demon-
strates that βn(θ∗) = oP(1) using L2 techniques (cf. Kopperschmidt 2005, pp. 139–
143), this further simplifies to

√
nΨn(θ∗)

(
θ̂n − θ∗

)
= γn(θ∗) . (3.18)

While the processes in Equation (3.18) are still stochastic, their arguments are now
deterministic (albeit unknown).

(iv) For any fixed θ, Kopperschmidt shows that the process γn admits the representation

γn(θ) =
√

n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗ + oP(1) .

Using Fubini’s theorem, he rearranges the integral to obtain8:

√
n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗ =

√
n

n∑

i=1

∫

I
ϕθ dM (i) (3.19)

for some deterministic function ϕθ. By Lemma A.40, on the right-hand side of
Equation (3.19) there is a sum of centred i.i.d. random variables. Specifically, for
θ = θ∗, the central limit theorem yields:

γn(θ∗)
d−→ Nd (0, Σ) (n→∞) .

(v) In the penultimate step, Kopperschmidt shows that Ψn(θ) converges in probability to
a deterministic standardizing matrix Φ0(θ) for any fixed θ. Given the condition (A4),
he then verifies that this matrix is positive definite and therefore invertible. This
allows the application of Corollary B.4.2, and by Slutzky’s theorem the asymptotic
distribution does not change when Ψn(θ∗) is replaced by Φ0(θ∗) in Equation (3.18).

8The exact procedure is described later in the proof of Lemma 3.24. It is mainly needed to derive a
convenient expression for the asymptotic covariance matrix.
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(vi) Combining the findings of (iv) and (v), Kopperschmidt concludes that

√
nΦ0(θ∗)

(
θ̂n − θ∗

)
d−→ Nd(0, Σ) ,

or, equivalently, since Φ0(θ∗) and its inverse are symmetric,

√
n
(
θ̂n − θ∗

)
d−→ Nd

(
0, Φ0(θ∗)−1 Σ Φ0(θ∗)−1

)
.

We pointed out earlier in Remark 3.1 that we strengthened the assumptions made in
Kopperschmidt and Stute 2013 to dispense with the Kolmogorov tightness criterion because
it was found not to be applicable as intended by Kopperschmidt and Stute. Clearly,
proving tightness in another way would be just as purposeful to simplify the identity (3.17)
to that from Equation (3.18), so that finding an appropriate tightness criterion would be
sufficient to correct the proof. However, we bypass this intermediate step altogether and
infer the desired convergence directly from Equation (3.17) by rearranging superfluous
terms. Essentially, we use assumption (Ã3) to reason based on the mean value theorem
in lieu of tightness criteria. Instead of steps (i) through (iii) above, we derive convenient
representations of the auxiliary processes αn, βn and γn to identify their negligible parts
and use the preliminary work done in steps (iv) through (vi) to our advantage. The proof
is carried out in the following steps, the order of which can be partially permuted. To
simplify the comparison to the proof of Kopperschmidt and Stute, a similar order as
above is chosen here.

(i) We apply the mean value theorem to the auxiliary parametric processes αn, βn and
γn to get

αn

(
θ̂n

)
= αn

(
θ∗)+

√
nAn

(
θ̂n − θ∗) ,

βn

(
θ̂n

)
= βn

(
θ∗)+

√
nBn

(
θ̂n − θ∗) ,

γn

(
θ̂n

)
= γn

(
θ∗)+

√
nCn

(
θ̂n − θ∗) .

Here - let us ignore the scaling factor
√

n for the moment - the random matrix
An (and, similarly, Bn and Cn) cannot simply be chosen as Dθαn evaluated at a
suitable intermediate point θ̃n on the line connecting θ∗ and θ̂n, since such a point
does not exist in general. Instead, the matrix is composed of the vectors obtained by
applying the mean value theorem for functions of several variables to the individual
components αn,j of αn. Specifically, the j-th row of An consists of Dθαn,j

(
θ̃n,j

)
,

where the respective parameter θ̃n,j depends on the component under consideration.

(ii) We use the uniform boundedness assumption on our model to derive that the matrices
in the above representation are asymptotically insignificant, that is, An = oP(1),
Bn = oP(1) and Cn = oP(1) (and thereby avoid the application of tightness criteria).
This is equivalent to showing that the rows of the above matrices each converge to 0
in probability. To this end, we again use the mean value theorem for vector-valued
functions, or equivalently, and to be consistent with the following interpretation, a
first-order Taylor approximation at θ∗. We then proceed to prove that the constant
part is negligible, while the slope of the linear part is bounded according to our
assumptions. The asymptotic behavior is therefore determined by the differences
θ̃n,j − θ∗, where θ̃n,j is located between the true parameter θ∗ and the MDE θ̂n.
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Convergence to 0 then follows from the strong consistency of the MDE.

(iii) We recall that αn

(
θ∗) = 0 and βn

(
θ∗) = oP(1) (this was already shown by Kopper-

schmidt). The identity (3.17) then becomes asymptotically equivalent to

√
nAn

(
θ̂n − θ∗)+

√
nΨn

(
θ̂n

)(
θ̂n − θ∗)

=
√

nBn

(
θ̂n − θ∗)+ γn

(
θ∗)+

√
nCn

(
θ̂n − θ∗)

⇐⇒ √
n
(
Ψn

(
θ̂n

)
+ An −Bn − Cn

) (
θ̂n − θ∗) = γn

(
θ∗) , (3.20)

which resembles Equation (3.18). Note that here, in contrast to Kopperschmidt’s
proof, the MDE still appears in the argument of the standardizing matrix Ψn.

(iv) With arguments analogous to Kopperschmidt’s proof, we obtain that

γn(θ∗)
d−→ Nd (0, Σ) (n→∞)

by the central limit theorem.

(v) Other than in Kopperschmidt’s proof, we cannot assume the tightness of the sequence
(Ψn(·))n∈N in this step. We therefore first show the uniform convergence of Φn to Φ0

in probability. We then recall that Ψn

(
θ̂n

)
is the average of the parametric process

Φn along the line connecting θ∗ and θ̂n. Since the strong consistency of the MDE
implies that this line contracts to θ∗, the convergence of Ψn

(
θ̂n

)
to Φ0

(
θ∗) follows.

Slutzky’s theorem hence provides that

Ψn

(
θ̂n

)
+ An −Bn − Cn

P−→ Φ0
(
θ∗) .

(vi) Replacing the standardizing matrix on the left-hand side of Equation (3.20) by
Φ0
(
θ∗), we can conclude, as before, that

√
nΦ0(θ∗)

(
θ̂n − θ∗

)
d−→ Nd(0, Σ) .

The above order of steps closely follows the structure of Kopperschmidt and Stute’s
approach. As we prefer an order adapted to our proof, we proceed as follows:
First, we examine the standardizing matrix from step (v) in Paragraph 3.3.1 “Asymptotics
of the Standardizing Matrix Ψn”. Along the way, we study the limits of average cumulative
intensities and their derivatives, which later give an intuition for the asymptotics of the
other auxiliary processes, but are not directly relevant to their representation theorems.
Next, we prove the representations from steps (i) and (ii) separately for the remaining
three auxiliary parametric processes αn, βn and γn. Of particular interest are the leading
terms βn

(
θ∗) and γn

(
θ∗), the former vanishing for n→∞ as per step (iii) and the latter

contributing the essential part of the asymptotic behavior according to step (iv). Together,
these steps form the Paragraph 3.3.2 “Asymptotics of the Auxiliary Parametric Processes
αn, βn and γn”. Finally, we combine our findings to prove the main theorem of this
section, which we will state here in advance, in Paragraph 3.3.3 “Proof of the Asymptotic
Normality”.
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Theorem 3.12 (Asymptotic Normality of the Minimum Distance Estimator; cf. Kopper-
schmidt and Stute 2013, p. 1281).
Under assumptions (A1), (A2), (A3) and (A4) together with the assumptions from Section
3.2 holds: √

nΦ0(θ∗)
(
θ̂n − θ∗

)
d−→ Nd

(
0, Σ

(
θ∗)) (n→∞) ,

where Σ
(
θ∗) is a d× d matrix with entries

Σij

(
θ∗) :=

∫

I
ϕi(t)ϕj(t) dEΛθ∗(t) , 1 ≤ i, j ≤ d , (3.21)

ϕ(t) = (ϕ1(t), . . . , ϕd(t)) :=

∫

[t,τ ]
E

d

dθ
Λθ∗ dEΛθ∗ , t ∈ I .

3.3.1. Asymptotics of the Standardizing Matrix Ψn

We first turn to the matrix-valued auxiliary processes from Definition 3.11. Our preliminary
considerations here concern the process Φn and, as we shall prove, its uniform limit Φ0.

Proposition 3.13 (Uniform Convergence of Φn on Compact Subsets of Bε (θ∗); cf.
Kopperschmidt and Stute 2013, p. 1293).
Let ‖·‖ denote any matrix norm on Rd×d and let K be an arbitrary compact subset of the
open set Bε (θ∗) given by Assumption 3.8. Then,

sup
θ∈K

‖Φn(θ)− Φ0(θ)‖ P−→ 0 as n→∞.

Before proceeding to the proof of this proposition, we briefly explain the matrix
norm used hereafter and refer to the appendix on why considering “more benign” (i.e.,
sub-multiplicative) norms is not of interest to us.

Remark 3.14 (On the Choice of Matrix Norm).
Without loss of generality, the equivalence of norms on finite dimensional spaces (in our
case, on the d2-dimensional R-vector field Rd×d) allows us to use the max norm ‖ ·‖max for
matrices. The norm ‖A‖max of any matrix A ∈ Rk×l amounts to the maximum absolute
element of A, that is,

‖A‖max := max
i=1,...,k
j=1,...,l

|aij | , A ∈ Rk×l .

The matrix norm defined in this way is not sub-multiplicative, although this can be
remedied by rescaling with the factor

√
kl. We address this issue in Remark B.4.8 in the

appendix. We also demonstrate there why the lack of sub-multiplicity does not entail any
functional disadvantages and why the simplicity of the max norm prevails as the decisive
advantage.

Let us now consider the parametric processes Φn and Φ0 from Definition 3.11,

Φn(θ) :=
d

dθ

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ ,

Φ0(θ) :=
d

dθ

∫

I
[EΛθ − EΛθ∗ ]E

d

dθ
Λθ dEΛθ∗ .

We are faced here with differentiating a parameter integral. Differentiation and integration
can be interchanged here, as we demonstrate with the example of Φn: The integrand
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is at least three times continuously differentiable on Bε (θ∗) w.r.t. θ for almost every
(t, ω) ∈ I × Ω by condition (A1), and we obtain by the product rule that

d

dθ

([
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

)
=

d

dθ
Λ

(n)
θ

⊤ d

dθ
Λ

(n)
θ +

[
Λ

(n)
θ − Λ

(n)
θ∗

] d2

dθ2
Λ

(n)
θ . (3.22)

We can differentiate under the integral sign according to the measure theoretic version of
the well known Leibniz integral rule (cf. Lemma 16.2 of Bauer 2001, p. 89) if integrable
majorants for the partial derivatives occurring in Equation (3.22) can be found. In fact,
due to conditions (C3) and (Ã3), these partial derivatives are P-almost surely uniformly

bounded, which implies integrability, since the measure induced by Λ
(n)
θ∗ is finite on I

with probability 1. Hence,

Φn(θ) =

∫

I

d

dθ
Λ

(n)
θ

⊤ d

dθ
Λ

(n)
θ +

[
Λ

(n)
θ − Λ

(n)
θ∗

] d2

dθ2
Λ

(n)
θ dΛ

(n)
θ∗ , (3.23)

and, as the same arguments apply to Φ0 instead of Φn,

Φ0(θ) =

∫

I
E

d

dθ
Λ⊤

θ E
d

dθ
Λθ + [EΛθ − EΛθ∗ ]E

d2

dθ2
Λθ dEΛθ∗ , (3.24)

where also the expectation and the derivative w.r.t. θ were interchanged with analogous
justification. The proof of Proposition 3.13 can now be carried out in two steps:
The first step of the proof involves showing the uniform convergence on I ×K of both
the integrand (in probability) and the integrator (P-almost surely). In the second step,
this convergence is then transferred to the integral.
To make the proof easier to follow, we split its first part into two lemmas.

Lemma 3.15 (Uniform Convergence of Average Cumulative Intensities).
Let K be an arbitrary compact subset of Bε (θ∗), where again the conditions from Assump-
tion 3.8 are assumed to hold. Then, with probability 1,

Λ
(n)
θ −→ EΛθ uniformly on I ×K as n→∞.

Proof. We recall that the Glivenko-Cantelli theorem can also be formulated for cumulative
intensities (see Lemma B.1.2 from Appendix B.1). This already implies that - for fixed

θ ∈ Θ - the average cumulative intensity Λ
(n)
θ∗ (i.e., the integrator of Φn) P-almost surely

converges uniformly on I to EΛθ∗ (i.e., the integrator of Φ0). This easily extends to hold
uniformly on I ×K by virtue of (Ã3). To this end, we note that the cumulative intensities

Λ
(i)
θ are i.i.d. copies of Λθ, and use the mean value theorem to infer for any θ, θ′ ∈ Bε (θ∗)

and t ∈ I:

∣∣∣Λ(n)
θ (t)− Λ

(n)
θ′ (t)

∣∣∣ ≤ 1

n

n∑

i=1

∣∣∣Λ(i)
θ (t)− Λ

(i)
θ′ (t)

∣∣∣

≤ 1

n

n∑

i=1

(
sup

θ∈Bε(θ∗)

∥∥∥∥
d

dθ
Λ

(i)
θ (t)

∥∥∥∥
︸ ︷︷ ︸

≤
√

dC

)∥∥θ − θ′∥∥

≤
√

dC
∥∥θ − θ′∥∥ P-almost surely. (3.25)
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For any fixed θ′ ∈ Bε (θ∗), we can thus compute:

sup
(t,θ)∈I×Bδ(θ′)

∣∣∣Λ(n)
θ (t)− Λ

(n)
θ′ (t)

∣∣∣ ≤ 2
√

dCδ . (3.26)

As per Remark 3.6, the continuity of the cumulative intensity carries over to its expectation.
On the compact set I ×K, this implies uniform continuity of the expected cumulative
intensity. For an arbitrary ν > 0, we can then find 0 < δ < ν

2
√

dC
, such that

sup
(t,θ)∈I×Bδ(θ′)

|EΛθ(t)− EΛθ′(t)| < ν , (3.27)

where the upper bound on δ secures that the right-hand side of Equation (3.26) is smaller
than ν. We proceed to prove the P-almost sure uniform convergence on I × Bδ (θ′), and
for this decompose the associated event (without lim sup) using the triangle inequality:

{
sup

(t,θ)∈I×Bδ(θ′)

∣∣∣Λ(n)
θ (t)− EΛθ(t)

∣∣∣ > 3ν

}

⊂
{

sup
(t,θ)∈I×Bδ(θ′)

∣∣∣Λ(n)
θ (t)− Λ

(n)
θ′ (t)

∣∣∣ > ν

}
∪
{

sup
(t,θ)∈I×Bδ(θ′)

∣∣∣Λ(n)
θ′ (t)− EΛθ′(t)

∣∣∣
︸ ︷︷ ︸
does not depend on θ

> ν

}

∪
{

sup
(t,θ)∈I×Bδ(θ′)

|EΛθ(t)− EΛθ′(t)| > ν

}
. (3.28)

By the choice of δ, the first and last set of Equation (3.28) are empty. We obtain:

{
sup

(t,θ)∈I×Bδ(θ′)

∣∣∣Λ(n)
θ (t)− EΛθ(t)

∣∣∣ > 3ν

}
⊂
{

sup
t∈I

∣∣∣Λ(n)
θ′ (t)− EΛθ′(t)

∣∣∣ > ν

}
.

As
⋃

θ′∈K Bδ (θ′) is an open cover of the compact set K, there exists a finite subcover
K ⊂ Bδ

(
θ(1)

) ∪ . . . ∪ Bδ

(
θ(L)

)
. We then observe:

{
sup

(t,θ)∈I×K

∣∣∣Λ(n)
θ (t)− EΛθ(t)

∣∣∣ > 3ν

}
=

L⋃

l=1

{
sup

(t,θ)∈I×Bδ(θ(l))

∣∣∣Λ(n)
θ (t)− EΛθ(t)

∣∣∣ > 3ν

}

⊂
L⋃

l=1

{
sup
t∈I

∣∣∣Λ(n)

θ(l)(t)− EΛθ(l)(t)
∣∣∣ > ν

}
.

In this way, the P-almost sure convergence on the sets I × Bδ (θ′) directly expands to
I × K, as combining Lemma 4.18 with the Glivenko-Cantelli theorem for cumulative
intensities gives the desired result:

P

(
lim sup

n→∞

{
sup

(t,θ)∈I×K

∣∣∣Λ(n)
θ (t)− EΛθ(t)

∣∣∣ > 3ν

})

≤ P

(
lim sup

n→∞

L⋃

l=1

{
sup
t∈I

∣∣∣Λ(n)

θ(l)(t)− EΛθ(l)(t)
∣∣∣ > ν

})
= 0 .
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The result of Lemma 3.15 still applies as soon as derivatives with respect to θ are
involved, but at the cost of receiving only the weaker stochastic convergence. We first
point out that although the Equations (3.26) and (3.27) remain valid even if partial
derivatives with respect to θ are considered (in the first case we need condition (Ã3), in
the second case condition (A2)), unlike in the above reasoning we cannot resort to the
Glivenko-Cantelli theorem because the required monotonicity is missing. We therefore
have to localize with respect to t. This is exactly the point where the almost sure
convergence gets lost, because here increments in t have to be considered and cannot be
dismissed for monotonicity reasons.

Lemma 3.16 (Uniform Convergence of Averages of Derivative Cumulative Intensities).
Let K be an arbitrary compact subset of Bε (θ∗), where again the conditions from Assump-
tion 3.8 are assumed to hold. Then, for p ∈ {1, 2},

dp

dθp
Λ

(n)
θ

P−→ E
dp

dθp
Λθ uniformly on I ×K as n→∞.

Proof. Instead of the Lipschitz continuity shown in Equation (3.26), we will obtain the
stochastic uniform equicontinuity of the aggregate cumulative intensity. For this, we

choose arbitrary ν > 0 and δ > 0. Since the cumulative intensities Λ
(i)
θ are i.i.d., so are

their derivatives with respect to θ, and the Markov inequality implies for all n ∈ N:

P

(
sup

‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)
θ′ (t′)

∥∥∥∥ > ν

)

≤ 1

ν
E

(
sup

‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)
θ′ (t′)

∥∥∥∥

)

≤ 1

ν
E

(
1

n

n∑

i=1

sup
‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λ

(i)
θ (t)− d

dθ
Λ

(i)
θ′ (t′)

∥∥∥∥

)

=
1

ν
E

(
sup

‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λθ(t)− d

dθ
Λθ′(t′)

∥∥∥∥

)
, (3.29)

where the supremum includes only those (t, θ), (t′, θ′) ∈ I ×K. By condition (A2), the
partial derivatives of the cumulative intensity are continuous on I×Θ and hence uniformly
continuous on the compact set I ×K. This transfers to the total differential. Thus, with
probability 1,

sup
‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λθ(t)− d

dθ
Λθ′(t′)

∥∥∥∥→ 0 (δ → 0) ,

and by the dominated convergence theorem (one uses the bounds offered by condition
(Ã3)) the convergence of the expectation in Equation (3.29) ensues. Consequently, for
every η > 0 there exists a δ > 0 such that

P

(
sup

‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)
θ′ (t′)

∥∥∥∥ > ν

)
< η , for all n ∈ N. (3.30)

We briefly note that technically we just established the tightness of the differentiated
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process (see Corollary B.2.5 in Appendix B.2). This comes as no surprise, since tightness
is essentially characterized by stochastic uniform equicontinuity, and it therefore serves as
the stochastic stand-in for the almost sure uniform convergence in the first part of the
proof. More details on the indicated relationships are available in the dedicated article
Newey 1991, from which the following proof step draws its inspiration (see Theorem 2.1,
Newey 1991, p. 1162). We can again cover the compact set I ×K with open balls of
radius δ and find a finite subcover,

I ×K ⊂
L⋃

l=1

Bδ

(
(t(l), θ(l))

)
︸ ︷︷ ︸

=:B
(l)
δ

.

By the triangle inequality, we have:

sup
(t,θ)∈B

(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− E

d

dθ
Λθ(t)

∥∥∥∥

= sup
(t,θ)∈B

(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− E

d

dθ
Λθ(t)−

(
d

dθ
Λ

(n)

θ(l)

(
t(l))− E

d

dθ
Λθ(l)

(
t(l))

)

+

(
d

dθ
Λ

(n)

θ(l)

(
t(l))− E

d

dθ
Λθ(l)

(
t(l))

)∥∥∥∥

≤ sup
(t,θ)∈B

(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)

θ(l)

(
t(l))

∥∥∥∥+ sup
(t,θ)∈B

(l)
δ

∥∥∥∥E
d

dθ
Λθ(t)− E

d

dθ
Λθ(l)

(
t(l))

∥∥∥∥

+

∥∥∥∥
d

dθ
Λ

(n)

θ(l)

(
t(l))− E

d

dθ
Λθ(l)

(
t(l))

∥∥∥∥ .

We can thus compute:

P

(
sup

(t,θ)∈I×K

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− E

d

dθ
Λθ(t)

∥∥∥∥ > 3ν

)

= P


 max

l=1,...,L
sup

(t,θ)∈B
(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− E

d

dθ
Λθ(t)

∥∥∥∥ > 3ν




≤ P


 max

l=1,...,L
sup

(t,θ)∈B
(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)

θ(l)

(
t(l))

∥∥∥∥ > ν




+ P


 max

l=1,...,L
sup

(t,θ)∈B
(l)
δ

∥∥∥∥E
d

dθ
Λθ(t)− E

d

dθ
Λθ(l)

(
t(l))

∥∥∥∥ > ν




+ P

(
max

l=1,...,L

∥∥∥∥
d

dθ
Λ

(n)

θ(l)

(
t(l))− E

d

dθ
Λθ(l)

(
t(l))

∥∥∥∥ > ν

)
. (3.31)

We deal with the summands of Equation (3.31) individually. For the first one, note that

max
l=1,...,L

sup
(t,θ)∈B

(l)
δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)

θ(l)

(
t(l))

∥∥∥∥ ≤ sup
‖(t,θ)−(t′,θ′)‖<δ

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− d

dθ
Λ

(n)
θ′ (t′)

∥∥∥∥ ,

and therefore the probability of the associated event is bounded by η according to Equation
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(3.30). The event belonging to the second summand is deterministic, so its probability is
either 0 or 1 depending on δ. Since the uniform continuity of the differentiated cumulative
intensity transfers to its expectation, the corresponding probability once again vanishes
as δ → 0. Consequently, and analogous to the first part of the proof, we only need to
choose δ sufficiently small in advance. The remaining summand is subject to the law
of large numbers (and, technically, another application of Lemma 4.18). However, the
weak version of this law already suffices to infer convergence of the last summand to 0 for
n→∞ (remarkably, this is the only term that depends on n in a significant way). Hence,
there exists n0 ∈ N such that

P

(
sup

(t,θ)∈I×K

∥∥∥∥
d

dθ
Λ

(n)
θ (t)− E

d

dθ
Λθ(t)

∥∥∥∥ > 3ν

)
< η , for all n ≥ n0, (3.32)

and this is stochastic uniform convergence on I ×K. This proof can be transferred one
to one to derivatives of higher order, as long as conditions (A2) and (Ã3) are still in force.
This is especially true for the second total derivative with respect to θ, where matrix
norms must be considered, but nothing else changes.

We now return to the proof of Proposition 3.13.

Proof of Proposition 3.13. From Lemma 3.15 we obtain that the integrator of Φn(θ)
converges uniformly9 on I ×K to the integrator of Φ0(θ) with probability 1. We can
conclude by combining Lemma 3.15 and Lemma 3.16 that the integrand of Φn(θ) also
converges uniformly on I ×K (albeit only in probability) by a Slutzky-type argument.
Therefore, in the following we deal with integrals of the shape

∫

I
X

(n)
θ dY (n) ,

where

(a)
(
X

(n)
·
)

n∈N
is a sequence of matrices whose entries are continuous stochastic processes

with index set I × K. Furthermore, there exists a deterministic matrix-valued

mapping X· which is continuous on I ×K such that X
(n)
·

P→ X· uniformly on I ×K.

(b)
(
Y (n)

)
n∈N

is a sequence of continuous stochastic processes with index set I and

Y (n)(0) = 0 (n ∈ N) that are P-almost surely non-decreasing and uniformly bounded
by some constant10 C > 0. Additionally, there exists a deterministic continuous
function Y , such that Y (n) → Y uniformly on I with probability 1. In particular,
Y satisfies Y (0) = 0, is non-decreasing and uniformly bounded by C as well.

In this setting, we want to prove the following convergence:

sup
θ∈K

∥∥∥∥
∫

I
X

(n)
θ dY (n) −

∫

I
Xθ dY

∥∥∥∥
P−→ 0 (n→∞) . (3.33)

9For the integrator, θ∗ ∈ K is fixed, so Lemma B.1.2 from Appendix B.1 could also be applied. But
since the averaged cumulative intensity also appears in the integrand, we still need the statement of
Lemma 3.15, even though convergence in probability would suffice here.

10As such, they can be understood as generalized distribution functions.
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We can split the occurring difference in Equation (3.33) to receive:

∫

I
X

(n)
θ dY (n) −

∫

I
Xθ dY =

∫

I

(
X

(n)
θ −Xθ

)
dY (n) +

(∫

I
Xθ dY (n) −

∫

I
Xθ dY

)
,

and because of the triangle inequality we can treat the two resulting differences separately.
Since we want to proof convergence in probability, we choose an arbitrary ν > 0. For the
first difference, note that µY (n)(I) = Y (n)(τ)−Y (n)(0) and Y (n)(0) = 0, so we can exploit
the boundedness of Y (n) to get:

P

(
sup
θ∈K

∥∥∥∥
∫

I

(
X

(n)
θ −Xθ

)
dY (n)

∥∥∥∥ > ν

)
≤ P

(
sup

(t,θ)∈I×K

∥∥∥X(n)
θ (t)−Xθ(t)

∥∥∥ · Y (n)(τ)
︸ ︷︷ ︸

≤C

> ν

)

≤ P

(
sup

(t,θ)∈I×K

∥∥∥X(n)
θ (t)−Xθ(t)

∥∥∥ >
ν

C

)

−→ 0 (n→∞) ,

since X
(n)
·

P→ X· uniformly on I ×K. Hence, the first difference convergences uniformly
on K in probability. For the second difference, the P-almost sure uniform convergence of
the integrator implies the weak convergence of the induced probability measures on B (I).
By Helly-Bray’s theorem11, this implies that with probability 1 holds for all continuous
bounded functions h: ∫

I
h dY (n) →

∫

I
h dY . (3.34)

Specifically, this convergence holds for h = Xθ, θ ∈ K, since X· is continuous and thus
bounded on the compact set I×K. However, this equates only to P-almost sure pointwise
convergence on K of the integrals

Z(n)(θ) :=

∫

I
Xθ dY (n) .

In order to infer uniform convergence from pointwise convergence, we need to prove
that the sequence

(
Z(n)

)
n∈N

is equicontinuous. For this, recall that X· is by assumption
continuous on the compact set I ×K and hence uniformly continuous. Moreover, X· is
deterministic. For any given η > 0, there then exists δ > 0 such that

sup
‖(t,θ)−(t′,θ′)‖<δ

∥∥Xθ(t)−Xθ′(t′)
∥∥ <

η

C
,

where the constant C from the above calculations has been included for aesthetic reasons.
We can utilize that Z(n)(θ) depends on n only by virtue of the uniformly bounded
integrator Y (n), and conclude for any θ, θ′ ∈ K with ‖(0, θ − θ′)‖ < δ (remember that
‖(0, ·)‖ defines a norm on K that is equivalent to any other predefined norm):

∥∥∥Z(n)(θ)− Z(n)(θ′)
∥∥∥ =

∥∥∥∥
∫

I
(Xθ −Xθ′) dY (n)

∥∥∥∥

≤ sup
t∈I
‖Xθ(t)−Xθ′(t)‖ · Y (n)(τ)

11Occasionally, Equation (3.34) is used to define weak convergence in the first place. See Definition 13.12
and Theorem 13.23 of Klenke 2020, p. 286 for reference.
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≤ sup
‖(t,θ)−(t′,θ′)‖<δ

∥∥Xθ(t)−Xθ′(t′)
∥∥ · C < η ,

and this is the desired equicontinuity. Therefore, the second difference converges P-almost
surely uniformly on K, which implies convergence in probability. Combining our findings,
the convergence in Equation (3.33) then follows.

Having dealt with the asymptotic behavior of the parametric process Φn, we now
transfer our results to the related process Ψn. As explained earlier, Ψn

(
θ̂n

)
can be

considered the average of the parametric process Φn along the line segment adjoining θ∗

and θ̂n in Rd. This observation forms the basis for the following corollary.

Corollary 3.17 (Convergence of Ψn

(
θ̂n

)
).

In the situation of Proposition 3.13, it holds:

Ψn

(
θ̂n

) P−→ Φ0 (θ∗) as n→∞.

Proof. We first note that the function Φ0 defined on Bε (θ∗) is deterministic. By conditions
(C2) and (A2) as well as Remark 3.6 (which extends to derivatives with respect to θ), Φ0

is continuous: sequential continuity can be directly proved by interchanging integration
and limit (again by the dominated convergence theorem applicable due to conditions (C3)
and (Ã3)). For any ν > 0, there thus exists 0 < δ < ε (so that Bδ (θ∗) ⊂ Bε (θ∗)), for
which

‖θ − θ∗‖ < δ =⇒ ‖Φ0(θ)− Φ0(θ∗)‖ < ν ,

and hence
sup

θ∈Bδ(θ∗)
‖Φ0(θ)− Φ0(θ∗)‖ ≤ ν . (3.35)

Now let η > 0 be given. The P-almost sure convergence of
(
θ̂n

)
n∈N

to θ∗ implies that
there exists n1 ∈ N with

P
(∥∥θ̂n − θ∗∥∥ < δ for all n ≥ n1

) ≥ 1− η

2
.

Therefore, in the above event, the condition θ̂n ∈ Bδ (θ∗) holds simultaneously for all
n ≥ n1. In particular, for each individual n ≥ n1 we obtain as well:

P

(
θ̂n ∈ Bδ (θ∗)

)
≥ 1− η

2
. (3.36)

By Proposition 3.13 (setting K := Bδ (θ∗)), there further exists n2 ∈ N such that

P

(
sup
θ∈K

‖Φn(θ)− Φ0(θ)‖ > ν

)
<

η

2
for all n ≥ n2. (3.37)

Combining the above equations, we then obtain for each n ≥ max{n1, n2}:

P

(∥∥Ψn

(
θ̂n

)− Φ0(θ∗)
∥∥ > 2ν

)

= P

(∥∥∥∥
∫ 1

0
Φn

(
θ∗ + s

(
θ̂n − θ∗)) ds− Φ0(θ∗)

∥∥∥∥ > 2ν

)

= P

(∥∥∥∥
∫ 1

0

(
Φn

(
θ∗ + s

(
θ̂n − θ∗))− Φ0(θ∗)

)
ds

∥∥∥∥ > 2ν

)
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≤ P

(∫ 1

0

∥∥∥Φn

(
θ∗ + s

(
θ̂n − θ∗))− Φ0(θ∗)

∥∥∥ ds > 2ν

)

≤ P

({∫ 1

0

∥∥∥ Φn

(
θ∗ + s

(
θ̂n − θ∗)

︸ ︷︷ ︸
∈Bδ(θ∗)

) − Φ0(θ∗)
∥∥∥ ds > 2ν

}
∩
{

θ̂n ∈ Bδ (θ∗)
})

+ P

(
θ̂n 6∈ Bδ (θ∗)

)

︸ ︷︷ ︸
≤ η

2
by Eq. (3.36)

≤ P

(
sup

θ∈Bδ(θ∗)
‖Φn(θ)− Φ0(θ∗)‖ > 2ν

)
+

η

2

≤ P

(
sup

θ∈Bδ(θ∗)
(‖Φn(θ)− Φ0(θ)‖+ ‖Φ0(θ)− Φ0(θ∗)‖) > 2ν

)
+

η

2

≤ P

(
sup
θ∈K

‖Φn(θ)− Φ0(θ)‖ > ν

)

︸ ︷︷ ︸
≤ η

2
by Eq. (3.37)

+P

(
sup

θ∈Bδ(θ∗)
‖Φ0(θ)− Φ0(θ∗)‖ > ν

)

︸ ︷︷ ︸
=0 by Eq. (3.35)

+
η

2

≤ η .

Since ν > 0 and η > 0 were chosen arbitrarily, the assertion then follows.

To conclude the discussion of the standardizing matrix and its asymptotics, we show
how the positive definiteness of Φ0

(
θ∗) can be derived from condition (A4) of Assumption

3.8.

Lemma 3.18 (Positive Definiteness of the Standardizing Matrix Φ0(θ∗); cf. Kopper-
schmidt 2005, p. 84).
Under Assumptions 3.8, the asymptotic standardizing matrix Φ0(θ∗) is positive definite.

Proof. At the true parameter θ∗, the standardizing matrix from Equation (3.24) simplifies
to

Φ0(θ∗) =

∫

I
E

d

dθ
Λ⊤

θ∗E
d

dθ
Λθ∗ dEΛθ∗ . (3.38)

The integrand is positive semidefinite as a dyadic product of the d-dimensional vector
E

d
dθ

Λ⊤
θ∗ with itself, and due to the monotonicity of the integral, the semidefiniteness

carries over to Φ0(θ∗). Now let v ∈ Rd \ {0} be arbitrary and Bv ⊂ R as in condition
(A4). As a finite Borel measure, µEΛθ∗ is inner regular (see Lemma 26.2, Bauer 2001,
p. 158). Consequently, there exists a compact set Kv ⊂ Bv with µEΛθ∗ (Kv) > 0. Since
the function

t 7→ v⊤
[
E

d

dθ
Λθ∗(t)⊤

E
d

dθ
Λθ∗(t)

]
v

is continuous on I, it attains a minimum on Kv ⊂ I. The linearity of the integral yields:

v⊤Φ0(θ∗)v =

∫

I
v⊤
[
E

d

dθ
Λ⊤

θ∗E
d

dθ
Λθ∗

]
v

︸ ︷︷ ︸
=(v⊤E

d
dθ

Λ⊤
θ∗)

2≥0

dEΛθ∗

≥
∫

Kv

v⊤
[
E

d

dθ
Λ⊤

θ∗E
d

dθ
Λθ∗

]
v dEΛθ∗
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≥ min
t∈Kv

{
v⊤
[
E

d

dθ
Λθ∗(t)⊤

E
d

dθ
Λθ∗(t)

]
v

}
· µEΛθ∗ (Kv) > 0 ,

and hence positive definiteness of Φ0(θ∗) follows, because v was chosen arbitrarily.

3.3.2. Asymptotics of the Auxiliary Parametric Processes αn, βn and γn

Having dealt with the asymptotics of the standardizing matrix, we now proceed to steps
(i) through (iii) of our previous proof sketch. The first step is identical for all the auxiliary
processes; for the second step, we also use essentially the same technique adapted to each
process. It is only in the third step that the methods differ more significantly, and we
consider the processes in ascending complexity of their leading terms: first αn (where
the leading term is 0), then βn (where the leading term is asymptotically negligible),
and finally γn (where the leading term determines the overall asymptotic distribution).
Beforehand, we give a fairly simple lemma that extends the earlier Corollary 2.13 and
makes the following proofs more convenient.

Lemma 3.19 (Exploiting Martingale Bounds for Integration).
In the situation of Corollary 2.13, let f = (ft)t∈I be an {Ft}t∈I-adapted stochastic process
which is integrable with respect to the martingale M . Then,

∥∥∥∥
∫

I
ft dMt

∥∥∥∥ ≤ (Nτ + Λτ ) · sup
t∈I
‖ft‖ .

Proof. We use the decomposition Mt = Nt − Λt, so the triangle inequality directly yields:

∥∥∥∥
∫

I
ft dMt

∥∥∥∥ =

∥∥∥∥
∫

I
ft dNt −

∫

I
ft dΛt

∥∥∥∥ ≤
∥∥∥∥
∫

I
ft dNt

∥∥∥∥+

∥∥∥∥
∫

I
ft dΛt

∥∥∥∥

≤
∫

I
‖ft‖ dNt +

∫

I
‖ft‖ dΛt ≤ (Nτ + Λτ ) · sup

t∈I
‖ft‖ ,

which is the assertion.

In our case, the martingale M in Lemma 3.19 is of bounded variation as the difference
of a counting process N and its compensator Λ (the class of functions of bounded variation
is characterized as the difference of two increasing functions, see Szőkefalvi-Nagy 1965,
pp. 93–95). The requirement of integrability with respect to M can therefore be reduced
to the existence of the Lebesgue-Stieltjes integrals with respect to N and Λ. Moreover,
the stochastic process f here is always the product of (derivative) cumulative intensities
and the martingale M , which again can be decomposed into a cumulative intensity (the
compensator) and a step function (the counting process). As a result, we never have to
be concerned about the existence of the integrals involved.

Representation Theorem for the Process αn

We study the process αn to familiarize ourselves with the methods also used for βn

and γn. By Definition 3.11, αn is the parametric process with index set Bε (θ∗) given via

αn(θ) =
√

n

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ dM

(n)
.
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Theorem 3.20 (Representation Theorem for the Auxiliary Process αn).
Under Assumption 3.8, the process αn evaluated at the MDE θ̂n admits the representation

αn

(
θ̂n

)
=
√

nAn

(
θ̂n − θ∗) , where An

P−→ 0 (n→∞). (3.39)

Proof. We start by noting that the process disappears at the true parameter θ∗, that is,
αn

(
θ∗) = 0. An application of the mean value theorem for vector-valued functions then

directly yields:

αn

(
θ̂n

)
= αn (θ∗) +

[∫ 1

0
Dθ αn

(
θ∗ + s

(
θ̂n − θ∗)) ds

] (
θ̂n − θ∗)

=
√

n



∫ 1

0
Dθ

∫

I

([
Λ

(n)
θ − Λ

(n)
θ∗

] d

dθ
Λ

(n)
θ

)
dM

(n)
∣∣∣∣
θ=θ∗+s

(
θ̂n−θ∗

) ds


 (θ̂n − θ∗) ,

(3.40)

which already resembles Equation (3.39). Unfortunately, this matrix representation is
barely suitable for further calculation. However, only the convergence of the matrix
towards 0 needs to be shown, so that we can study the individual components of αn

(
θ̂n

)

to infer said convergence. Herein, the jth component of αn(θ) is given by:

αn,j(θ) :=
√

n

∫

I

[
Λ

(n)
θ − Λ

(n)
θ∗

] ∂

∂θj
Λ

(n)
θ dM

(n)
, j ∈ {1, . . . , d} . (3.41)

By applying the mean value theorem for functions of several variables and the Leibniz
integral rule we obtain:

αn,j

(
θ̂n

)
=
√

n

[ ∫

I
Dθ

([
Λ

(n)
θ − Λ

(n)
θ∗

] ∂

∂θj
Λ

(n)
θ

) ∣∣∣∣
θ=θ̃n,j

dM
(n)

︸ ︷︷ ︸
=:Dθα̃n,j(θ̃n,j)

](
θ̂n − θ∗) ,

for some θ̃n,j ∈
{
θ∗ + s

(
θ̂n − θ∗) : s ∈ [0, 1]

}
, i.e., on the line segment adjoining θ∗ and

θ̂n in Rd. Note that θ̃n,j is therefore itself a d-dimensional vector, with the subscripted j
indicating that the particular intermediate point may differ depending on the component
under consideration - which is why the matrix representation of Equation (3.40) became
necessary in the first place. The 1× d matrix Dθα̃n,j

(
θ̃n,j

)
now contributes the jth row

of the d× d matrix An, that is,

An :=




Dθα̃n,1
(
θ̃n,1

)

...

Dθα̃n,d

(
θ̃n,d

)


 .

For An
P−→ 0 to hold, it then suffices to show that all rows of An converge to 0 in

probability. In the following, we thus study these rows in more detail. Note that by the
differentiability of the parameter integral, the identity

√
nDθα̃n,j

(
θ̃n,j

)
= Dθαn,j

(
θ̃n,j

)

holds, which justifies the suggestive choice of notion. We observe by performing similar
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steps as before:

Dθα̃n,j

(
θ̃n,j

)
= Dθα̃n,j (θ∗) +

[∫ 1

0
D2

θ α̃n,j

(
θ∗ + s

(
θ̃n,j − θ∗)) ds

] (
θ̃n,j − θ∗) . (3.42)

The proof concludes by proving convergence to 0 in Equation (3.42). To do this, we
examine both summands individually, starting with the second one. Since θ̃n,j lies

between θ∗ and θ̂n and the MDE is strongly consistent, θ̃n,j converges almost surely
(and hence stochastically) to θ∗ for n → ∞. The second summand of Equation (3.42)
therefore converges to 0 if the occurring integrand (and hence the entire integral) is
almost surely bounded. Again, the integral expression could be avoided by looking at
individual components, but here the matrix proves benign for our purposes. Once more
interchanging integration and differentiation by means of the Leibniz integral rule, we
obtain for each θ ∈ Bε (θ∗):

D2
θ α̃n,j(θ) = Dθ

∫

I
Dθ

([
Λ

(n)
θ − Λ

(n)
θ∗

] ∂

∂θj
Λ

(n)
θ

)
dM

(n)

=

∫

I
D2

θ

([
Λ

(n)
θ − Λ

(n)
θ∗

] ∂

∂θj
Λ

(n)
θ

)
dM

(n)

=

∫

I
D2

θ Λ
(n)
θ

∂

∂θj
Λ

(n)
θ +

(
Dθ Λ

(n)
θ

)⊤
Dθ

∂

∂θj
Λ

(n)
θ

+

(
Dθ

∂

∂θj
Λ

(n)
θ

)⊤
Dθ Λ

(n)
θ +

[
Λ

(n)
θ − Λ

(n)
θ∗

]
D2

θ

∂

∂θj
Λ

(n)
θ dM

(n)
. (3.43)

Due to the boundedness condition (C3), it suffices according to Lemma 3.19 to find
uniform bounds for the integrand of Equation (3.43). As the choice of matrix norm is
irrelevant (cf. Remark 3.14), we can again opt for the max norm and study the components
individually. The (k, l)th component of the matrix-valued integrand from Equation (3.43)
is given by

∂2

∂θk∂θl
Λ

(n)
θ · ∂

∂θj
Λ

(n)
θ +

∂

∂θk
Λ

(n)
θ · ∂2

∂θl∂θj
Λ

(n)
θ

+
∂2

∂θk∂θj
Λ

(n)
θ · ∂

∂θl
Λ

(n)
θ +

[
Λ

(n)
θ − Λ

(n)
θ∗

]
· ∂3

∂θk∂θl∂θj
Λ

(n)
θ ,

which is P-almost surely uniformly bounded on I × Bε (θ∗) by virtue of conditions (C3)
and (Ã3). Hence, as θ̃n,j − θ∗ → 0 holds P-almost surely, the same applies to the second
summand of Equation (3.42), namely

[∫ 1

0
D2

θ α̃n,j

(
θ∗ + s

(
θ̃n,j − θ∗)) ds

] (
θ̃n,j − θ∗) −→ 0 ,

so Equation (3.42) can be restated as

Dθα̃n,j

(
θ̃n,j

)
= Dθα̃n,j (θ∗) + oP(1) .

We turn to the remaining summand, which is now easily dealt with because the argument
as the true parameter θ∗ is no longer random or dependent on j or n. As before,
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differentiating under the integral sign yields by the product rule:

Dθα̃n,j (θ∗) =

∫

I
Dθ

([
Λ

(n)
θ − Λ

(n)
θ∗

] ∂

∂θj
Λ

(n)
θ

) ∣∣∣∣
θ=θ∗

dM
(n)

=

∫

I

d

dθ

[
Λ

(n)
θ − Λ

(n)
θ∗

] ∣∣∣∣
θ=θ∗

∂

∂θj
Λ

(n)
θ∗ dM

(n)

+

∫

I

[
Λ

(n)
θ∗ − Λ

(n)
θ∗

]

︸ ︷︷ ︸
=0

d

dθ

∂

∂θj
Λ

(n)
θ

∣∣∣∣
θ=θ∗

dM
(n)

=

∫

I

d

dθ
Λ

(n)
θ∗

∂

∂θj
Λ

(n)
θ∗ dM

(n)
. (3.44)

We finish the proof by showing that this integral also converges to 0 as n→∞. This is

intuitively plausible, since the integrator is the mean M
(n)

of the independent centered
martingales M (1), . . . , M (n), which converges P-almost surely to 0 everywhere on I by
the strong law of large numbers. However, this effect could be nullified as a result of
stochastic dependencies. For this reason, we first ensured that the true parameter θ∗

appears instead of the estimator θ̂n or some intermediate point. We now define

Ui1,i2,i3 :=

∫

I

d

dθ
Λ

(i1)
θ∗

∂

∂θj
Λ

(i2)
θ∗ dM (i3) , (3.45)

so that Equation (3.44) can be written as

∫

I

d

dθ
Λ

(n)
θ∗

∂

∂θj
Λ

(n)
θ∗ dM

(n)
=

1

n3

n∑

i1,i2,i3=1

Ui1,i2,i3 .

The random vectors Ui1,i2,i3 are almost surely bounded and thus uniformly square-
integrable. This is shown in a similar fashion as above, where starting from Equation
(3.43) we used Lemma 3.19 and the boundedness conditions (C3) and (Ã3). Next, we
note that the conditions (i) to (iv) of Lemma B.3.1 from Appendix B.3 are satisfied if we

set X = d
dθ

Λ
(i1)
θ∗ , Y = ∂

∂θj
Λ

(i2)
θ∗ and Z = M (i3) for pairwise distinct indices i1, i2, i3:

The martingale M (i3) can be decomposed into the counting process Z+ = N (i3) and its

compensator Z− = Λ
(i3)
θ∗ , both of which are almost surely non-negative, right-continuous

and non-decreasing (hence, condition (i) is fulfilled). Moreover, X and Y are both
continuous by condition (A2), meaning that JX = ∅ = JY (which in turn implies
that both conditions (ii) and (iii) as well as Equation (B.35) hold). The existence of
the occurring expectations (and thus the validity of condition (iv) and the remaining
presumptions) follows as usual from conditions (C3) and (Ã3). Since the indices were
chosen to be distinct, Zt is independent of σ ({Xs, Ys : s ∈ I , s ≤ t}) for each t ∈ I, so
the application of Lemma B.3.1(ii) - which is due to Kopperschmidt 2005 - yields12:

E (Ui1,i2,i3) = E

[∫

I
XY dZ

]
= E

[∫

I
XY dEZ

]

12Lemma A.40 here provides the same result, because the occurring derivatives of the cumulative intensity
Λθ are predictable as limits of predictable functions and the martingale X from Equation (A.39) is
centred. However, we will frequently use Lemma B.3.1 in treating the other auxiliary processes, so we
prefer the approach taken here for the sake of consistency.
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= E

[∫

I

d

dθ
Λ

(i1)
θ∗

∂

∂θj
Λ

(i2)
θ∗ dEM (i3)

]
= 0

because of EM (i3) ≡ 0, as martingales have constant expectation and M
(i3)
0 = N

(i3)
0 −

Λ
(i3)
θ∗ (0) = 0 with probability one (by construction, both a counting process and its com-

pensator start in the origin at time 0). Additionally, Ui1,i2,i3 and Uj1,j2,j3 are stochastically
indepedent if all the indices differ, resulting in

E

(
U⊤

i1,i2,i3
Uj1,j2,j3

)
= E (Ui1,i2,i3)⊤

E (Uj1,j2,j3) = 0 .

The L2-convergence of the above integral to 0 therefore follows from Lemma B.4.7, which
in turn implies stochastic convergence. Overall, we have:

Dθα̃n,j

(
θ̃n,j

)
= oP(1) , j ∈ {1, . . . , d} ,

and hence the rows of An all converge to 0 in probability, thereby finishing the proof.

Representation Theorem for the Process βn

Next, we turn to the process βn. While we can treat βn largely analogously to αn,
here the leading term βn

(
θ∗) does not vanish and must therefore be discussed separately.

Recall that, by Definition 3.11, βn is the parametric process with index set Bε (θ∗) given
via

βn(θ) =
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dM

(n)
.

Lemma 3.21 (Asymptotics of the Leading Term βn

(
θ∗); cf. Lemma 12 of Kopperschmidt

and Stute 2013, p. 1291).
Under Assumption 3.8, for each θ ∈ Bε (θ∗) holds:

βn(θ)
L

2

−→ 0 as n→∞.

In particular, βn

(
θ∗) = oP(1), that is, βn

(
θ∗) P−→ 0 as n→∞.

Proof. The proof is functionally identical to that given in Kopperschmidt and Stute 2013,
p. 1292. We start by defining the d-variate random vectors

Upki :=

∫

I
M (k) d

dθ
Λ

(p)
θ dM (i) , (3.46)

so that

βn(θ) =
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dM

(n)

=

√
n

n3

n∑

p,k,i=1

∫

I
M (k) d

dθ
Λ

(p)
θ dM (i)

= n− 5
2

n∑

p,k,i=1

Upki ,
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and seek to apply Lemma B.4.6 later. Because the random vectors Upki are almost surely
bounded,

‖Upki‖ =

∥∥∥∥
∫

I
M (k) d

dθ
Λ

(p)
θ dM (i)

∥∥∥∥
∣∣∣apply Lemma 3.19

≤
(
N (i)

τ + Λ
(i)
θ (τ)

)

︸ ︷︷ ︸
≤2C by (C3)

· sup
t∈I

∥∥∥∥M
(k)
t

d

dθ
Λ

(p)
θ (t)

∥∥∥∥

≤ 2C · sup
t∈I

∥∥∥M (k)
t

∥∥∥
︸ ︷︷ ︸

≤2C by Cor. 2.13

· sup
t∈I

∥∥∥∥
d

dθ
Λ

(p)
θ (t)

∥∥∥∥
︸ ︷︷ ︸

≤C by (Ã3)

≤ 4C3 <∞ , (3.47)

they are square-integrable. We can split the sum over the Upki into a sub-sum where all
indices are distinct and a sub-sum over partially matching indices. Since there are O(n2)
summands with partially matching indices, for the corresponding sub-sum we have:

∥∥∥n− 5
2

∑
Upki

∥∥∥ ≤ n− 5
2

∑
‖Upki‖︸ ︷︷ ︸

≤4C3

≤ 4C3n− 5
2 · O(n2) −→ 0 as n→∞. (3.48)

As the convergence in Equation (3.48) carries over to the expectation of the square, the
L2-convergence of this sub-sum follows. So, in the following, it suffices to consider the
sub-sum over differing indices. The above approach does not work here (the O(n3) terms

are no longer dominated by the factor n− 5
2 ), which is why we need to apply Lemma B.4.6

in order to obtain the desired convergence. We have to verify condition (B.83), that is,

E

[
UpkiU

⊤
qlj

]
= 0 whenever k, i, l or j differs from the rest.

Note that we have swapped the transpose to comply with the dimensions, since we take
Upki to be a row vector and not a column vector. For symmetry reasons, we need only
consider the cases where k or i is different from all other indices. Let us first assume that
k differs from the rest. Then,

E

[
UpkiU

⊤
qlj

]
= E

[(∫

I
M (k)

s

d

dθ
Λ

(p)
θ (s) dM (i)

s

)(∫

I
M

(l)
t

d

dθ
Λ

(q)
θ (t) dM

(j)
t

)⊤]

= E

[ ∫

I
M (k)

s︸ ︷︷ ︸
=:Xs

∫

I
M

(l)
t

d

dθ
Λ

(p)
θ (s)

d

dθ
Λ

(q)
θ (t)⊤ dM

(j)
t

︸ ︷︷ ︸
=:Ys

d M (i)
s︸ ︷︷ ︸

=:Zs

]

= E

[∫

I
XY dZ

]
, (3.49)

where Xt is independent of σ ({Ys, Zs : s ∈ I , s ≤ t}) for each t ∈ I according to the
assumption on k. We can thus apply Lemma B.3.1(i) from Appendix B.3 to achieve that

E

[∫

I
XY dZ

]
= E

[∫

I
E(X)
︸ ︷︷ ︸

=0

Y dZ

]
= 0 ,
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because X = M (k) is a centred martingale (see again the proof of Theorem 3.20)13. If, on
the other hand, i is different from all other indices, then we can apply part (ii) of Lemma
B.3.1 instead to conclude:

E

[∫

I
XY dZ

]
= E

[∫

I
XY d EZ︸︷︷︸

=0

]
= 0 ,

again because Z = M (i) is a centred martingale. Consequently, condition (B.83) applies,
so Lemma B.4.6 provides:

E

∥∥∥∥∥

n∑

p,k,i=1
p6=k 6=i6=p

Upki

∥∥∥∥∥

2

≤ 32
∑

E

[
UpkiU

⊤
qki

]
,

where the summation takes place over O(n4) summands. The specific index combinations
are given in Lemma B.4.6, but are of no interest to us. Overall, Hölder’s inequality yields:

E

∥∥∥∥∥ n− 5
2

n∑

p,k,i=1
p6=k 6=i6=p

Upki

∥∥∥∥∥

2

≤ 32n−5
∑

E

[
UpkiU

⊤
qki

]

≤ 32

n5

∑√
E ‖Upki‖2 E ‖Uqki‖2

︸ ︷︷ ︸
≤16C6 by Eq. (3.47)

≤ 512C6

n5
O(n4) −→ 0 as n→∞.

Finally, since both sub-sums that make up βn(θ) converge to 0 in the quadratic mean,

βn(θ)
L2

−→ 0 follows.

Having shown that the leading term is asymptotically negligible, the proof of the
representation theorem for βn is now analogous to that for αn.

Theorem 3.22 (Representation Theorem for the Auxiliary Process βn).
Under Assumption 3.8, the process βn evaluated at the MDE θ̂n admits the representation

βn

(
θ̂n

)
= βn

(
θ∗)+

√
nBn

(
θ̂n − θ∗) , where βn

(
θ∗) P−→ 0

and Bn
P−→ 0 (n→∞). (3.50)

Proof. As in the proof of Theorem 3.20, we apply the mean value theorem for functions
of several variables to the individual components of βn, and obtain

βn,j

(
θ̂n

)
= βn,j (θ∗) +

√
n

[ ∫

I
M

(n)
Dθ

∂

∂θj
Λ

(n)
θ

∣∣∣∣
θ=θ̃n,j

dM
(n)

︸ ︷︷ ︸
=:Dθβ̃n,j(θ̃n,j)

](
θ̂n − θ∗) ,

13In order to apply Lemma B.3.1(i), we must formally ensure that the integrator and integrands do not

share common discontinuities: Due to M (k) = N (k) − Λ
(k)
θ∗ , the discontinuities of M (k) correspond

to the jumps of N (k), whereas the discontinuities of M (i) are determined by N (i). Therefore, by
Lemma A.37, M (k) and M (i) (and hence X and Z) have no common discontinuities with probability

1. Moreover, Y inherits the continuity from Λ
(p)
θ by virtue of condition (A2).
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where again θ̃n,j ∈
{
θ∗ + s

(
θ̂n− θ∗) : s ∈ [0, 1]

}
is a d-dimensional vector. The stochastic

convergence of the leading term follows immediately from Lemma 3.21. Moreover, the
matrix Bn can then be constructed similarly to the matrix An before, that is,

Bn :=




Dθβ̃n,1
(
θ̃n,1

)

...

Dθβ̃n,d

(
θ̃n,d

)


 .

We proceed as in the proof of the previous representation theorem to derive that Bn
P−→ 0

as n→∞. For this, we observe by virtue of the mean value theorem for vector-valued
functions:

Dθβ̃n,j

(
θ̃n,j

)
= Dθβ̃n,j (θ∗) +

[∫ 1

0
D2

θ β̃n,j

(
θ∗ + s

(
θ̃n,j − θ∗)) ds

] (
θ̃n,j − θ∗) . (3.51)

To show that the second summand converges to 0 in probability, it once more suffices
to prove that the integrand is P-almost surely uniformly bounded on Bε (θ∗). Here, the
integrand is given by

D2
θ β̃n,j(θ) =

∫

I
M

(n)
D2

θ

∂

∂θj
Λ

(n)
θ dM

(n)
,

which is P-almost surely bounded according to Lemma 3.19 in conjunction with conditions
(C3) and (Ã3), compare the proof of Theorem 3.20 for more details. Consequently, the
second summand is also dominated here by the P-almost sure convergence of the difference
θ̃n,j − θ∗ toward 0. For the remaining summand, we have

Dθβ̃n,j (θ∗) =

∫

I
M

(n)
Dθ

∂

∂θj
Λ

(n)
θ

∣∣∣∣
θ=θ∗

dM
(n)

=

∫

I
M

(n) d

dθ

∂

∂θj
Λ

(n)
θ∗ dM

(n)

=
1

n3

n∑

i1,i2,i3=1

Ui1,i2,i3 ,

where we defined analogously to the proof of Theorem 3.20:

Ui1,i2,i3 :=

∫

I
M (i1) d

dθ

∂

∂θj
Λ

(i2)
θ∗ dM (i3) .

We can proceed with the random vectors Ui1,i2,i3 in a similar way as with their counterparts
from Equation (3.45). Again, we only need to verify that E (Ui1,i2,i3) = 0 holds as soon as
the indices i1, i2, i3 are distinct. For this, we can easily adopt the technique from Theorem
3.20 by applying Lemma B.3.1 and exploiting that the involved martingales are centred.
Lemma B.4.7 readily yields

1

n3

n∑

i1,i2,i3=1

Ui1,i2,i3

L2

−→ 0 as n→∞,

and from here Dθβ̃n,j

(
θ̃n,j

)
= oP(1) follows as before.
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Representation Theorem for the Process γn

In the final step of dealing with the asymptotics of the auxiliary parametric processes, we
treat the process γn. Again, the major effort lies in the study of the leading term γn(θ∗),
even more so than for the process βn, where it was found to be asymptotically negligible:
As it turns out, γn(θ∗) contributes the essential part to the asymptotic distribution. We
once more recollect Definition 3.11, where γn was defined to be the parametric process
with index set Bε (θ∗) given via

γn(θ) =
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ .

Lemma 3.23 (Asymptotics of the Leading Term γn

(
θ∗); cf. Lemma 13 of Kopperschmidt

and Stute 2013, p. 1292).
Under Assumption 3.8, for each θ ∈ Bε (θ∗) holds:

γn(θ) =
√

n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗ + oP(1) . (3.52)

Proof. Even though the statement itself differs slightly14 from Lemma 13 of Kopperschmidt
and Stute 2013, the essential idea of the proof can once more be adopted. The proof is
similar to that of Lemma 3.21 in this respect, and again relies on the second moment
bounds from Appendix B.4.2. In particular, we will find that the convergence of the
remainder holds not only stochastically, but also in the quadratic mean. For each
θ ∈ Bε (θ∗), we have to show that

√
n

∫

I
M

(n) d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ −

√
n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗

︸ ︷︷ ︸
=:γ̃n(θ)

= γn(θ)− γ̃n(θ) = oP(1) . (3.53)

This is intuitively plausible, since according to the Lemmas 3.15 and 3.16 it holds uniformly
on I ×K, for any compact K ⊂ Bε (θ∗), that

Λ
(n)
θ

P−→ EΛθ ,
d

dθ
Λ

(n)
θ

P−→ E
d

dθ
Λθ .

In this intuition, however, the counteracting factor
√

n is neglected, and the subsidiary
lemmas from the appendix are needed to control the inflation it causes. For this, we rear-
range the terms of Equation (3.53) to obtain (this decomposition is due to Kopperschmidt
and Stute 2013, pp. 1292–1293):

γn(θ)− γ̃n(θ) =
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dΛ

(n)
θ∗ −

√
n

∫

I
M

(n) d

dθ
Λ

(n)
θ dEΛθ∗

+
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ dEΛθ∗ −√n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗

14The corresponding Lemma in Kopperschmidt and Stute 2013, p. 1292 contains a stronger property. It
states that Equation (3.52) holds not only pointwise for each θ but uniformly on compacta K ⊂ Bε (θ∗),
and that the leading term is tight. Accordingly, only parts of the proof are relevant to us. This is
due to the fact that here we only deal with step (iv) of the proof sketch, while the original proof also
covers parts of step (ii).
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=
√

n

∫

I
M

(n) d

dθ
Λ

(n)
θ d

(
Λ

(n)
θ∗ − EΛθ∗

)

︸ ︷︷ ︸
=:γ̃

(1)
n (θ)

+
√

n

∫

I
M

(n)
[

d

dθ
Λ

(n)
θ − E

d

dθ
Λθ

]
dEΛθ∗

︸ ︷︷ ︸
=:γ̃

(2)
n (θ)

.

Equation (3.53) consequently holds if both γ̃
(1)
n (θ) and γ̃

(2)
n (θ) converge to 0 in probability.

We proceed to study these processes individually, again using the auxiliary lemmas from
Appendix B.4.2 given by Kopperschmidt and Stute 2013, pp. 1295–1297. The process

γ̃
(1)
n is handled analogously to βn in the proof of Lemma 3.21. We need to apply Lemma

B.4.6, so we define the d-variate random vectors

Upki :=

∫

I
M (k) d

dθ
Λ

(p)
θ d

(
Λ

(i)
θ∗ − EΛθ∗

)
,

which are square-integrable (compare Equation (3.47)). Repeating the arguments we
applied to βn(θ), it is sufficient to prove condition (B.83), that is,

E

[
UpkiU

⊤
qlj

]
= 0 whenever k, i, l or j differs from the rest,

in order to show that γ̃
(1)
n (θ)

L2

−→ 0. Here, the reasoning can be adopted almost verbatim,

since βn and γ̃
(1)
n differ only in terms of the integrator: Z = Λ

(i)
θ∗ − EΛθ∗ thereby replaces

the martingale M (i) in Equation (3.49) (the fact that the integrator of Y also changes
does not interfere with the proof). Since we have only exploited throughout the proof that
the process M (i) is centred (and not the martingale property), the statements continue to
hold because

EZ = EΛ
(i)
θ∗ − EΛθ∗ ≡ 0 ,

as Λ
(i)
θ∗ is an i.i.d. copy of Λθ∗ by definition. Hence, γ̃

(1)
n (θ)

L2

−→ 0 and thus also

γ̃
(1)
n (θ) = oP(1) follows from Lemma B.4.6.

For the process γ̃
(2)
n , we similarly define square-integrable d-variate random vectors via

Upk :=

∫

I
M (k)

[
d

dθ
Λ

(p)
θ − E

d

dθ
Λθ

]
dEΛθ∗ ,

so that

γ̃(2)
n (θ) =

√
n

∫

I
M

(n)
[

d

dθ
Λ

(n)
θ − E

d

dθ
Λθ

]
dEΛθ∗

=

√
n

n2

n∑

p,k=1

∫

I
M (k)

[
d

dθ
Λ

(p)
θ − E

d

dθ
Λθ

]
dEΛθ∗

= n− 3
2

n∑

p,k=1

Upk . (3.54)

While we will apply Lemma B.4.5 instead of Lemma B.4.6, the principal argument remains
the same: In Equation (3.54), the sub-sum over p = k is of negligible order (compare
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Equation (3.48)), so it suffices to consider the summands where p 6= k. From here, we
only need to check condition (B.80) and use Lemma B.4.5 to conclude that

E

∥∥∥n− 3
2

∑

p6=k

Upk

∥∥∥
2
≤ 2n−3

∑

p6=k

E ‖Upk‖2

=
2

n3
O(n2) −→ 0 as n→∞,

which in turn implies that γ̃
(2)
n (θ) = oP(1). In order to verify condition (B.80), we have

to show that

E

[
UpkU⊤

ql

]
= 0 whenever one index differs from the rest.

As usual, we need to examine only the cases where p or k is different from the other
indices. If we assume that k differs from the rest, we obtain:

E

[
UpkU⊤

ql

]
= E

[(∫

I
M (k)

s

[
d

dθ
Λ

(p)
θ (s)− E

d

dθ
Λθ(s)

]
dEΛθ∗(s)

)

(∫

I
M

(l)
t

[
d

dθ
Λ

(q)
θ (t)− E

d

dθ
Λθ(t)

]
dEΛθ∗(t)

)⊤]

= E

[ ∫

I
M (k)

s︸ ︷︷ ︸
=:Xs

∫

I
M

(l)
t

[
d

dθ
Λ

(p)
θ (s)− E

d

dθ
Λθ(s)

]

[
d

dθ
Λ

(q)
θ (t)− E

d

dθ
Λθ(t)

]⊤
dEΛθ∗(t)

︸ ︷︷ ︸
=:Ys

d EΛθ∗(s)
︸ ︷︷ ︸

=:Zs

]

= E

[∫

I
XY dZ

]
.

Since k is distinct from the other indices, Xt is independent of σ ({Ys, Zs : s ∈ I , s ≤ t})
for each t ∈ I, so Lemma B.3.1(i) yields

E

[
UpkU⊤

ql

]
= E

[∫

I
E(X)Y dZ

]
= 0 ,

where once more we exploited that X = M (k) is a centred martingale by construction.
If instead p is different from the remaining indices, then we simply need to swap the roles

of M
(k)
s and

[
d

dθ
Λ

(p)
θ (s)− E

d
dθ

Λθ(s)
]

in the above chain of equations to achieve the exact

same result. The only difference here is that
[

d
dθ

Λ
(p)
θ (s)− E

d
dθ

Λθ(s)
]

- while also centred -

is not a martingale, but that is irrelevant in this context. Hence, condition (B.80) applies,
which concludes the proof.

Lemma 3.23 shows that γn(θ) and γ̃n(θ) are asymptotically equivalent (see Equation
(3.53)), where

γ̃n(θ) :=
√

n

∫

I
M

(n)
E

d

dθ
Λθ dEΛθ∗ .

We are therefore interested in the limiting behavior of γ̃n(θ), which is the subject of
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the following lemma. The advantage in considering γ̃n(θ) is that instead of the random

aggregated cumulative intensity Λ
(n)
θ , its deterministic expectation EΛθ occurs, which is

furthermore independent of n.

Lemma 3.24 (Application of the Central Limit Theorem to γ̃n(θ); cf. Kopperschmidt
and Stute 2013, p. 1294).
Under Assumption 3.8 holds for each θ ∈ Bε (θ∗):

γ̃n(θ)
d−→ Nd

(
0, Σ(θ)

)
(n→∞) ,

where Σ(θ) is a d× d matrix with entries

Σij(θ) :=

∫

I
ϕi(t, θ)ϕj(t, θ) dEΛθ∗(t) , 1 ≤ i, j ≤ d ,

ϕ(t, θ) = (ϕ1(t, θ), . . . , ϕd(t, θ)) :=

∫

[t,τ ]
E

d

dθ
Λθ dEΛθ∗ , t ∈ I .

The connection to the main Theorem 3.12 is evident, since at θ = θ∗ the matrix Σ(θ)
coincides with the matrix Σ(θ∗) from Equation (3.21). This lemma is therefore central
to the asymptotic distribution of the MDE. Even though the proof of this statement is
straightforward, we would like to emphasize that the major effort lies in the definition
and discussion of the auxiliary processes, which is based on the work of Kopperschmidt
and Stute.

Proof of Lemma 3.24. We only need to verify the specific shape of the asymptotic co-
variance matrix, since normality immediately follows from the central limit theorem by
writing

γ̃n(θ) =

√
n

n

n∑

i=1

∫

I
M (i)

E
d

dθ
Λθ dEΛθ∗

︸ ︷︷ ︸
=:Xi

=
1√
n

n∑

i=1

Xi ,

where the X1, X2, . . . form a sequence of centred i.i.d. random vectors by construction.
The proof for this (i.e., the application of Fubini’s theorem and the Itô-Isometry) essentially
parallels the calculations in Kopperschmidt 2005, pp. 110–111, although we can avoid to
reapply Lemma B.3.1 and simplify the proof to some extent.

Note that because of M
(i)
0 = 0, we always have

M
(i)
t = M

(i)
t −M

(i)
0 =

∫

[0,t]
dM (i) .

Therefore, using Fubini’s theorem, we can rearrange Xi to achieve:

Xi =

∫

I
M

(i)
t E

d

dθ
Λθ(t) dEΛθ∗(t)

=

∫

I

(∫

[0,t]
dM (i)

s

)
E

d

dθ
Λθ(t) dEΛθ∗(t)

=

∫

I

∫

[0,t]
E

d

dθ
Λθ(t) dM (i)

s dEΛθ∗(t)
∣∣∣apply Fubini’s theorem
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=

∫

I

∫

[s,τ ]
E

d

dθ
Λθ(t) dEΛθ∗(t)

︸ ︷︷ ︸
=ϕ(s,θ)

dM (i)
s

=

∫

I
ϕ(s, θ) dM (i)

s .

The M (i) are independent copies of M , so the covariance matrix Σ(θ) can be computed
by

Σ(θ) = E

[(∫

I
ϕ(·, θ) dM

)(∫

I
ϕ(·, θ) dM

)⊤]

= E

[(∫

I
ϕi(·, θ) dM

)(∫

I
ϕj(·, θ) dM

)]

1≤i,j≤d

.

The martingale M is square-integrable by condition (C3), while ϕ(·, θ) is deterministic
and hence predictable. For the (i, j)-th entry of this matrix, we thus obtain by virtue of
the Itô-Isometry for square-integrable martingales from Theorem A.41 and the identity
4ab = (a + b)2 − (a− b)2:

Σij(θ) = E

[(∫

I
ϕi(·, θ) dM

)(∫

I
ϕj(·, θ) dM

)]

=
1

4
E

[(∫

I
ϕi(·, θ) + ϕj(·, θ) dM

)2

−
(∫

I
ϕi(·, θ)− ϕj(·, θ) dM

)2
]

=
1

4
E

[∫

I
(ϕi(·, θ) + ϕj(·, θ))2 dΛθ∗ −

∫

I
(ϕi(·, θ)− ϕj(·, θ))2 dΛθ∗

]

= E

[∫

I
ϕi(·, θ)ϕj(·, θ) dΛθ∗

]

=

∫

I
ϕi(·, θ)ϕj(·, θ) dEΛθ∗ ,

where the last equation holds since ϕ(·, θ) is deterministic (this can be seen as another
application of Lemma B.3.1, because both the integrand and the integrator are continuous,
but the statement applies more generally too). This proves the asserted shape of the
covariance matrix.

Similar to the representation theorems formulated for αn and βn, we close this paragraph
with the corresponding counterpart for γn.

Theorem 3.25 (Representation Theorem for the Auxiliary Process γn).
Under Assumption 3.8, the process γn evaluated at the MDE θ̂n admits the representation

γn

(
θ̂n

)
= γn

(
θ∗)+

√
nCn

(
θ̂n − θ∗) , where γn

(
θ∗) d−→ Nd

(
0, Σ

(
θ∗))

and Cn
P−→ 0 (n→∞). (3.55)

Proof. The stochastic of the leading term is due to Lemmas 3.23 and 3.24, since by virtue
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of Slutzky’s theorem we have

γn

(
θ∗) = γ̃n

(
θ∗)+

(
γn

(
θ∗)− γ̃n

(
θ∗))

︸ ︷︷ ︸
=oP(1)

d−→ Nd

(
0, Σ

(
θ∗)) . (3.56)

The rest of the proof is then in complete agreement with that of Theorem 3.22, the
representation theorem for βn. Here,

γn,j

(
θ̂n

)
= γn,j (θ∗) +

√
n

[∫

I
M

(n)
Dθ

∂

∂θj
Λ

(n)
θ

∣∣∣∣
θ=θ̃n,j

dΛ
(n)
θ∗

] (
θ̂n − θ∗

)
,

which allows us to construct the matrix Cn as we did with An and Bn (we omit further

specification to avoid duplicate use of the notation γ̃n). The convergence Cn
P−→ 0

can then be shown exactly as for Bn, because βn and γn differ only in terms of the

integrator (M
(n)

instead of Λ
(n)
θ∗ ). At first glance, this may seem problematic, as we

exploited EM
(n) ≡ 0 in the application of Lemma B.3.1(ii). However, we can simply use

statement (i) of that lemma here, since the process M
(n)

occurs a second time as part of
the integrand. The assertion then follows as before from applying Lemma B.4.7.

3.3.3. Proof of the Asymptotic Normality

We have now completed the preliminary work to merge the proved asymptotics of Ψn

and the auxiliary processes αn, βn and γn into a proof of Theorem 3.12. Our main
contribution consisted of the asymptotic analysis of the process Ψn (which was neglected
by Kopperschmidt and Stute) and the new representation Theorems 3.20, 3.22 and 3.25
for the auxiliary processes, while the asymptotics of their leading terms were already
discussed by Kopperschmidt 2005 and Kopperschmidt and Stute 2013 and we only had to
properly adjust the existing proofs. In particular, by modifying the assumptions, we were
able to circumvent proving the tightness property that has been essential in the original
proof. For ease of reading, we restate the main theorem one more time.

Theorem 3.12 (Asymptotic Normality of the Minimum Distance Estimator; cf. Kopper-
schmidt and Stute 2013, p. 1281).
Under assumptions (A1), (A2), (A3) and (A4) together with the assumptions from Section
3.2 holds: √

nΦ0(θ∗)
(
θ̂n − θ∗

)
d−→ Nd

(
0, Σ

(
θ∗)) (n→∞) ,

where Σ
(
θ∗) is a d× d matrix with entries

Σij

(
θ∗) :=

∫

I
ϕi(t)ϕj(t) dEΛθ∗(t) , 1 ≤ i, j ≤ d , (3.21)

ϕ(t) = (ϕ1(t), . . . , ϕd(t)) :=

∫

[t,τ ]
E

d

dθ
Λθ∗ dEΛθ∗ , t ∈ I .

Proof. We start from Lemma 3.10, which in abbreviated form reads as follows:

αn

(
θ̂n

)
+
√

nΨn

(
θ̂n

)(
θ̂n − θ∗) = βn

(
θ̂n

)
+ γn

(
θ̂n

)
.
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Applying the representation Theorems 3.20 (for αn), 3.22 (for βn) and 3.25 (for γn) yields:

√
nAn

(
θ̂n − θ∗)+

√
nΨn

(
θ̂n

)(
θ̂n − θ∗)

= βn

(
θ∗)

︸ ︷︷ ︸
=oP(1)

+
√

nBn

(
θ̂n − θ∗)+ γn

(
θ∗)+

√
nCn

(
θ̂n − θ∗)

⇐⇒ γn

(
θ∗)+ oP(1) =

√
n
(
Ψn

(
θ̂n

)
+ An −Bn − Cn

)(
θ̂n − θ∗) . (3.57)

Since the left-hand side of Equation (3.57) converges in distribution to the required normal
distribution according to Slutzky’s theorem and Equation (3.56), the same is true for the
right-hand side, so we obtain:

√
n
(
Ψn

(
θ̂n

)
+ An −Bn − Cn

)

︸ ︷︷ ︸
=:Σn

(
θ̂n − θ∗) d−→ Nd

(
0, Σ

(
θ∗)) (n→∞) . (3.58)

To complete the proof, it remains only to show that this asymptotic distribution is

preserved when Σn is replaced by Φ0(θ∗). By Corollary 3.17 and because An
P−→ 0,

Bn
P−→ 0, Cn

P−→ 0, the continuous mapping theorem provides:

Σn
P−→ Φ0(θ∗) (n→∞) .

According to Lemma 3.18, Φ0(θ∗) is positive definite and thus invertible. In particular,
det Φ0(θ∗) > 0. We can then infer from Corollary B.4.2 on the limit of an inverse matrix
sequence that

Σ−1
n · 1{Σn is invertible.}

P−→ Φ0(θ∗)−1 (n→∞) . (3.59)

Moreover, the continuous mapping theorem (in the proof of Corollary B.4.2 we observed
that the determinant mapping is continuous) once again implies that

det Σn
P−→ det Φ0(θ∗) (n→∞) ,

which allows us to conclude for all 0 < ε < det Φ0(θ∗):

P

(
{Σn is invertible.}∁

)
= P (det Σn = 0)

≤ P (|det Σn − det Φ0(θ∗)| > ε) −→ 0 (n→∞) . (3.60)

Therefore,

√
nΦ0(θ∗)

(
θ̂n − θ∗)−√nΦ0(θ∗)

(
θ̂n − θ∗) · 1{Σn is invertible.}

P−→ 0 (n→∞) , (3.61)

since by Equation (3.60) we have

P

(∥∥∥
√

nΦ0(θ∗)
(
θ̂n − θ∗)−√nΦ0(θ∗)

(
θ̂n − θ∗) · 1{Σn is invertible.}︸ ︷︷ ︸

= 0 as long as Σn is invertible.

∥∥∥ > ε
)

≤ P

(
{Σn is invertible.}∁

)
−→ 0 (n→∞) .
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Additionally,

√
nΦ0(θ∗)

(
θ̂n − θ∗) · 1{Σn is invertible.}

=
√

nΦ0(θ∗)Σ−1
n Σn

(
θ̂n − θ∗) · 1{Σn is invertible.}

=
√

nVnΣn

(
θ̂n − θ∗) ,

where, again by the continuous mapping theorem and Equation (3.59),

Vn := Φ0(θ∗)Σ−1
n · 1{Σn is invertible.}

P−→ Φ0(θ∗)Φ0(θ∗)−1 = Id×d ,

and hence

√
nΦ0(θ∗)

(
θ̂n − θ∗) · 1{Σn is invertible.} −

√
nΣn

(
θ̂n − θ∗)

=
√

nVnΣn

(
θ̂n − θ∗)−√nId×dΣn

(
θ̂n − θ∗)

= (Vn − Id×d)
︸ ︷︷ ︸

=oP(1)

√
nΣn

(
θ̂n − θ∗) P−→ 0 (n→∞) (3.62)

due to Slutzky’s theorem and Equation (3.58). With the same arguments then follows:

√
nΦ0(θ∗)

(
θ̂n − θ∗)

=
√

nΦ0(θ∗)
(
θ̂n − θ∗)−√nΦ0(θ∗)

(
θ̂n − θ∗) · 1{Σn is invertible.}︸ ︷︷ ︸

= oP(1) by Eq. (3.61)

+
√

nΦ0(θ∗)
(
θ̂n − θ∗) · 1{Σn is invertible.} −

√
nΣn

(
θ̂n − θ∗)

︸ ︷︷ ︸
= oP(1) by Eq. (3.62)

+
√

nΣn

(
θ̂n − θ∗) d−→ Nd

(
0, Σ

(
θ∗)) (n→∞) ,

which completes the proof.

Lemma 3.18 on the positive definiteness of Φ0(θ∗) furthermore allows us to give the
following corollary:

Corollary 3.26 (Asymptotic Normality of the Minimum Distance Estimator; cf. Kop-
perschmidt and Stute 2013, p. 1281).
In the situation of Theorem 3.12, we have:

√
n
(
θ̂n − θ∗

)
d−→ Nd

(
0, Φ0

(
θ∗)−1

Σ
(
θ∗)Φ0

(
θ∗)−1

)
(n→∞) .

Proof. This is an immediate consequence of Theorem 3.12, since according to Lemma
3.18 the matrix Φ0(θ∗) is positive definite and thus invertible.

We would like to round out this paragraph by pointing out the errors we found in the
original proof given by Kopperschmidt 2005 and Kopperschmidt and Stute 2013 that led
to the strengthened requirements of Assumption 3.8.

Remark 3.27 (Errors in the Original Proof of the Asymptotic Normality).
The original proof of the MDE’s asymptotic normal distribution - both the detailed version
in Kopperschmidt 2005 and its abbreviated version in Kopperschmidt and Stute 2013 - is
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largely stringent and comprehensible, with the exception of minor inaccuracies. These
flaws mostly turn out to be insignificant: we considered the averaged process Ψn when
Φn could not be evaluated at a suitable intermediate point, and while Glivenko-Cantelli
arguments do not yield the almost sure uniform convergence of averages of derivative
cumulative intensities as claimed in Kopperschmidt and Stute 2013, p. 1293, we were
able to devise an alternative proof for Lemma 3.16. Nevertheless, there remained an
error that we were not able to fix: the generalization of Kolmogorov’s tightness criterion,
Theorem 12.3 of Billingsley 1968, p. 95, to multiparameter processes. A proper version
of this criterion adjusted to our situation is given in Theorem B.2.6 in the appendix,
but Kopperschmidt and Stute assume that the dependence on the dimension d of the
parameter space in condition (ii) can be omitted and instead consider the following
condition (cf. Kopperschmidt 2005, p. 1290 and Kopperschmidt and Stute 2013, pp. 86,
152):

(ĩi) There exist constants ν > 0 and α > 1 such that

E ‖Xn(x)−Xn(y)‖2 ≤ ν ‖x− y‖α , for all x, y ∈ [0, 1]d and n ∈ N .

Both authors cite Billingsley 1968 on this, while the article Kopperschmidt and Stute
2013 moreover refers to Bickel and Wichura 1971 as a reference for multi-dimensional
generalizations. In fact, in the uni-dimensional case conditions (ii) and (ĩi) coincide, and
agree with the formulation from said Theorem 12.3 of Billingsley 1968, p. 95. However,
we can demonstrate that under condition (ĩi), the proof given in Kopperschmidt 2005,
pp. 155-157 fails as soon as d > 1. The problem arises when Kopperschmidt tries to show
that this condition allows the application of Billingsley’s Theorem 12.2 (see Billingsley
1968, p. 94). To understand the difficulties, we briefly summarize his procedure up to this
step:

1. Without loss of generality, Kopperschmidt assumes that the closure of the parameter
space is given by the d-dimensional unit cube (cf. Kopperschmidt 2005, p. 152),
that is,

Θ = [0, 1]d .

This is justified in his Theorem A.5.2 (for a more detailed explanation, see also
Corollary 2.3.8 from Jakubzik 2017, p. 74). It is also the reason why an additional
assumption is made that Θ is simply connected, see Kopperschmidt 2005, p. 28 (this
requirement is omitted in Kopperschmidt and Stute 2013 for unknown reasons).

2. For each k ∈ N, he decomposes the parameter space Θ into (2k + 1)d d-dimensional
cubes Kδk

i with edge length (2k + 1)−1. For each h ∈ N, a lattice is then defined in

Kδk
i by (2h + 1)d equidistant points. These points are numbered based on a specific

scheme and denoted by vi(j), j = 1, . . . , (2h + 1)d (the construction of this scheme
is outlined in Kopperschmidt 2005, p. 156 and described in Section A.2 of Jakubzik
2017, pp. 148–151). Note that vi(j) ∈ [0, 1]d by definition.

3. Kopperschmidt uses condition (ĩi) to obtain (cf. Kopperschmidt 2005, p. 156):

E

∥∥∥Xn

(
vi(l)

)−Xn

(
vi(j)

)∥∥∥
2
≤ ν

∥∥vi(l)− vi(j)
∥∥α

︸ ︷︷ ︸
∈R
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?
=

( l∑

p=j+1

ν
1
α
(
vi(p)− vi(p− 1)

))α

︸ ︷︷ ︸
∈Rd

.

While the use of a telescoping sum leads to the desired result in the one-dimensional
case, the above equality is no longer valid in higher dimensions (as indicated by the
question mark). The error continuous in the subsequent estimates, which as a result
cannot be interpreted in any meaningful way.

4. The proof in the case d = 1 indicates that the tightness criterion can essentially be
regarded as an application of Billingsley’s Theorem 12.2 (cf. Billingsley 1968, p. 96).
With the requirements for this theorem no longer satisfied for d > 1, the further
proof cannot be transferred and fails.

In an attempt to find a way to apply Billingsley’s Theorem 12.2, we worked on a multi-
dimensional generalization in Jakubzik 2017, pp. 70–73 that, while fixing Kopperschmidt’s
mistake, also turned out to be erroneous. We would like to emphasize that even though we
have identified the proof as incorrect, we have not refuted the statement itself, nor is that
the focus of this dissertation. However, we conjecture that condition (ĩi) is generally not
sufficient to guarantee tightness. We elaborate on this belief by reviewing some literature
on Kolmogorov’s tightness criterion:

(i) Bickel and Wichura 1971 & Lachout 1988: The article Bickel and Wichura 1971
serves as “an important reference for multiparameter processes” (Kopperschmidt and
Stute 2013, p. 1289). The authors “prove multidimensional analogues of Theorems
12.5 and 15.6 of Billingsley 1968” (Bickel and Wichura 1971, p. 1656). Theorem
12.5 is a strengthening of Theorem 12.1 (cf. Billingsley 1968, p. 98), which in turn
is needed to prove the important Theorem 12.2 that Kopperschmidt intended to
use. Together, these theorems provide “several fluctuation inequalities for sums of
random variables” (Bickel and Wichura 1971, p. 1656). In this way, Theorem 1 of
Bickel and Wichura 1971, p. 1658 can be considered as a potential starting point
for a generalization of Kolmogorov’s tightness criterion, Theorem 12.3 in Billingsley
1968. The requirement (X, µ) ∈ C(β, γ) of this theorem means that (X, µ) satisfies
the condition (β, γ) (see Bickel and Wichura 1971, p. 1658), which in its moment
version means that

E (m(B, C))γ ≤ µ(B ∪ C)β , (3.63)

where m(B, C) = min {|X(B)| , |X(C)|}, X(B) is the increment of X around a
“block” B, µ is a positive measure and β > 1, γ > 0 (for details, see Bickel and
Wichura 1971, p. 1658). Of particular interest is that the parameter β on the
right-hand side of this inequality does not depend on the dimension d of the blocks
B and C, which seems to indicate the existence of a condition similar to (ĩi) that is
independent of d as well. Moreover, Kopperschmidt and Stute suggest that “simple
increments suffice to guarantee tightness” due to the continuity of the considered
processes (cf. Kopperschmidt and Stute 2013, p. 1289). Thus, if we were to transfer
the condition from Equation (3.63) to our situation, the following formulation would
be conceivable (we use the Lebesgue measure λ instead of an arbitrary positive
measure µ, which is consistent with the proof of Theorem 1, see Bickel and Wichura
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1971, p. 1659):

E ‖Xn(x)−Xn(y)‖2 ≤ νλ (Bx,y)α , for all x, y ∈ [0, 1]d with xi < yi, i = 1, . . . , d.

Here, Bx,y is the uniquely determined d-dimensional cuboid (or “block”) defined by
the vertices x and y. At first glance, this inequality appears to be consistent with
condition (ĩi) and to be the multi-dimensional counterpart of Billingsley’s moment
condition (12.51) envisioned by Kopperschmidt and Stute. However, this is not the
case because the dependence on the dimension d is incorporated in the measure.
For a simple explanation of this, let us assume that Bx,y is a cube with edge length
δ (e.g., when x = (0, . . . , 0)⊤ and y = (δ, . . . , δ)⊤). Then, ‖x− y‖ =

√
dδ, so that

the upper bound from condition (ĩi) would be

ν
(√

dδ
)α
∝ δα ,

but on the other hand, λ(Bx,y) = δd, and hence

νλ (Bx,y)α = ν
(
δd
)α
∝ δdα .

Nevertheless, this is consistent with our condition (ii) from Theorem B.2.6, where
for β = d(α− 1) > 0 (note that α > 1) we obtain

ν ‖x− y‖d+β ∝ δd+β = δdα .

Because of the equivalence of norms as well as the additivity of measures, this
proportionality does not depend on the specific choices. Overall, the compatibility
of Theorem B.2.6 with Bickel and Wichura 1971 reinforces our conviction that the
dependence on the dimension cannot be neglected.
The second article, Lachout 1988, further generalizes the results of Bickel and
Wichura 1971 to derive tightness criteria for multiparameter processes (as we have
already indicated). Here, again, the dependence on the dimension of the parameter
space is hidden in the measures used.

(ii) Totoki 1962, Kunita 1986 & Kunita 1990: The tightness criterion considered within
this thesis, Theorem B.2.6, can be seen as a special case of the Theorem 1.4.7
from Kunita 1990, p. 38. A complete proof of this generalization of Kolmogorov’s
tightness criterion can also be found there (see Kunita 1990, pp. 31–35, 38–39). A
related result arising from a combination with Kolmogorov-Chentsov’s criterion -
which can be looked up in Kunita 1990, pp. 41–42 as Exercise 1.4.19 - is found in
Kunita 1986, p. 311, see Theorem 1.1 for the special case of a stochastic flow (note
the remarkable similarity between Equation (1.4) there and Equation (B.25) from
the appendix of this dissertation). The article Kunita 1986 in turn refers to Totoki
1962, which to our knowledge contains the earliest account of a tightness criterion
similar to the one given in Theorem B.2.6 (see Theorem 1, Totoki 1962, p. 183). As
with the previous criteria, this theorem shows a dependence on the dimension of
the parameter set.

All the tightness criteria studied in our brief literature overview share the same dimen-
sional dependence. Conversely, we could not find any evidence for a tightness criterion
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independent of the dimension of the parameter space. Altogether, this consolidates our
belief that such a criterion might not exist or has yet to be proven.

3.4. Application to the Basquin Load Sharing Model With Multiplicative
Damage Accumulation

In Section 3.3, we presented a corrected proof for the asymptotic normality of the
minimum distance estimator, but for which the initial assumptions of Kopperschmidt
2005 had to be tightened. The main motivation for finding this proof is to establish the
asymptotic distribution of that estimator in the context of the models considered within
this dissertation, which so far could only be implied by simulation studies. Therefore, the
objective of the current section is to verify that the Basquin load sharing model with
multiplicative damage accumulation meets the assumptions of Theorem 3.12 - otherwise,
the newly found proof would be useless for our applications. In particular, we need to
verify that the preconditions stated in Assumptions 3.5 and 3.8 are fulfilled.
In Assumptions 3.5, conditions (C1) and (C2) were retained from Kopperschmidt and
Stute 2013, while the uniform boundedness condition (C3) is a strengthening of the locally
uniform integrability demanded in (C̃3). However, the Basquin load sharing model with
multiplicative damage accumulation satisfies (C3) if Θ ⊂ R2

+ × [−1 + ε,∞), 0 < ε ≤ 1,
because in our setting the experimental runs were observed only up to a random time
τj ≤ τ or up to a random number of failed components Cj ≤ I, whichever occurred
first (cf. Equation (2.40) from Corollary 2.17 and choose p = q = r = 0). Recall that
Assumption 2.3 on the random covariates implied that

τ1, τ2, . . .
i.i.d.∼ P

τ0 and C1, C2, . . .
i.i.d.∼ P

C0

for appropriate probability measures on B (I) and 2{0,1,...,I}, respectively. In addition, we
allowed the systems to be exposed to different initial stress levels sj , where

s1, s2 . . .
i.i.d.∼ P

s0

for some probability measure P
s0 on B ([0,∞)). In this section, we demand that

∀j ∈ N : τj , Cj , sj are stochastically independent.

As seen here, the Basquin load sharing model with multiplicative damage accumulation
satisfies Assumptions 3.5 if and only if it also satisfies the corresponding assumptions
of Kopperschmidt and Stute 2013. Consequently, we first focus on Assumptions 3.8, for
which we will require a technical preliminary theorem, and return to Assumptions 3.5
later. By placing minor assumptions on the supports of the above probability measures,
we infer that the expected cumulative intensities in the Basquin load sharing model with
multiplicative damage accumulation are strictly increasing: We suppose, on the hand,
that the experiments are not systematically stopped at the beginning of the observation
period and, on the other hand, that the probability for a critical number of component
failures of at least one is positive. Finally, we require that strictly positive initial stress
levels can be realized.
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Theorem 3.28 (Strict Monotonicity of the Expected Cumulative Intensities in the
Basquin Load Sharing Model with Multiplicative Damage Accumulation).
If 0 < t ∈ supp (Pτ0) and supp

(
P

s0
) 6= {0} 6= supp

(
P

C0
)
, the expected cumulative intensity

E
×DΛθ of the Basquin load sharing model with multiplicative damage accumulation is

strictly increasing on [0, t] for each θ ∈ Θ with θ1 6= 0. In particular, if τ ∈ supp (Pτ0),
then it is strictly increasing on the entire interval I.

Proof. We begin with a technical note: By Assumption 2.3, we require that an intrinsic
filtration be considered that satisfies σ(τ0) ∨ σ(C0) ∨ σ(s0) ⊂ G0, which implies that all
information about τ0, C0 and s0 is available at the beginning of the experiment. This
permits us later to condition on events given in terms of τ0, C0 or s0 in order to relate
the cumulative conditional hazard function to the compensator, compare Lemma A.32.
We return to this remark towards the end of the proof.
Let us recall the conditional intensity function of the model ×D, the Basquin load sharing
model with multiplicative damage accumulation given in Definition 2.8. Adapted to the
notation of this theorem, it reads as follows:

×Dλθ(t) := θ1

(
s0

I

I −Nt−

)θ2

A(t)θ3 · 1{Nt− <C0}∩{t≤τ0} .

If we disregard the indicator function for the moment, this intensity is strictly positive
for all t > 0 as long as θ1 6= 0 and s0 6= 0, while at t = 0 the intensity is equal to 0 due to
the vanishing damage accumulation term, A(0) = 0 (leaving aside the pathological cases
θ3 ≤ 0, where the following reasoning applies analogously). Since the cumulative intensity
×DΛθ is defined as the integral over the above intensity function, its monotonicity would
follow immediately from this positivity. However, the indicator function is crucial, so we
opt for the law of total expectation (see Lemma B.4.9) to access events where we can
control its value. To formally prove the monotonicity of the expected cumulative intensity
on [0, t], let t1, t2 ∈ [0, t] with t1 < t2. Per definition, any intensity is non-negative, so
the (expected) cumulative intensity E

×DΛθ is non-decreasing by default. It is therefore
sufficient to find t1 < t̃1 < t̃2 < t2 for which

E
×DΛθ

(
t̃1
)

< E
×DΛθ

(
t̃2
)

is satisfied. For this reason, we can assume without loss of generality that t1, t2 ∈ (0, t)
holds (i.e., the boundary points need not be examined separately). From here on, we will
omit the model indicator ×D for ease of reading, and proceed to compute:

EΛθ (t2)− EΛθ (t1) = E [Λθ(t2)− Λθ(t1)] = E

[∫ t2

t1

λθ(t) dt

] ∣∣∣ law of total expectation

= E

[∫ t2

t1

λθ(t) dt
∣∣∣
{
Nt−

2
< C0

} ∩ {τ0 ≥ t2} ∩ {s0 > 0}
]

· P
( {

Nt−
2

< C0
} ∩ {τ0 ≥ t2} ∩ {s0 > 0}

︸ ︷︷ ︸
⊃
{

Nt2 <C0

}
∩{τ0>t2}∩{s0>0}

)

+ E

[∫ t2

t1

λθ(t) dt
∣∣∣
{
Nt−

2
< C0

}∁ ∪ {τ0 ≥ t2}∁ ∪ {s0 > 0}∁
]

︸ ︷︷ ︸
≥0
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· P
({

Nt−
2

< C0
}∁ ∪ {τ0 ≥ t2}∁ ∪ {s0 > 0}∁

)

≥ E

[∫ t2

t1

λθ(t) dt
∣∣∣
{
Nt−

2
< C0

} ∩ {τ0 ≥ t2} ∩ {s0 > 0}
]

· P
({

Nt2 < C0
} ∩ {τ0 > t2} ∩ {s0 > 0}

)
. (3.64)

For ω ∈ {Nt−
2

< C0
} ∩ {τ0 ≥ t2} ∩ {s0 > 0}, the indicator function in λθ is identically 1

on [t1, t2]. Consequently, as s0 6= 0 is satisfied as well, the intensity is strictly positive
here and so is the corresponding integral. The monotonicity of the expectation then
yields that the first factor in Equation (3.64) is greater than 0, provided that the event{
Nt−

2
< C0

}∩{τ0 ≥ t2}∩{s0 > 0} is not a P-null set. Verifying this conveniently coincides

with the study of the second factor, so we have:

E

[∫ t2

t1

λθ(t) dt
∣∣∣
{
Nt−

2
< C0

} ∩ {τ0 ≥ t2} ∩ {s0 > 0}
]

·P
({

Nt2 < C0
} ∩ {τ0 > t2} ∩ {s0 > 0}

)
> 0

⇐⇒ P

({
Nt2 < C0

} ∩ {τ0 > t2} ∩ {s0 > 0}
)

> 0 ,

which would in turn imply EΛθ (t2)− EΛθ (t1) > 0 by virtue of Equation (3.64). Due to
the independence of τ0, C0 and s0 we obtain:

P

({
Nt2 < C0

} ∩ {τ0 > t2} ∩ {s0 > 0}
)

≥ P

({
Nt2 < C0

} ∩ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}
)

≥ P

({
Nt2 = 0

} ∩ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}
)

= P
(
Nt2 = 0

∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1})

· P
(
{τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}

)

= P
(
Nt2 = 0

∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1})

· P (τ0 > t2) · P (s0 > 0) · P (C0 ≥ 1) .

Since t ∈ supp (Pτ0), P (τ0 ∈ U) > 0 for any open neighbourhood U of t. In particular,
P (τ0 > t2) > 0, as (t2, τ ] is an open set (with respect to the subspace topology on I ⊂ R)
containing t by assumption. Additionally, P (C0 ≥ 1) > 0, as otherwise P (C0 = 0) = 1
would imply supp

(
P

C0
)

= {0}. Lastly, P (s0 > 0) > 0 with the same argument, so
it suffices to show that P

(
Nt2 = 0

∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}) > 0 to complete
the proof. Recalling the technical remark at the beginning of the proof, we note that
{τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1} ∈ G0. We further conclude by revisiting Summary 1 and
incorporating the ideas of the hazard transformation given in Theorem A.46:

P
(
Nt2 = 0

∣∣G0
)

= P
(
T1 ≥ t2

∣∣G0
)

= S1
(
t2

∣∣G0
)

= exp
(−H1

(
t2

∣∣G0
)) ∣∣∣apply Lemma A.32

= exp

(
−
∫ t2

0
θ1sθ2

0

(
1

τ

∫ t

0
s0 du

)θ3

· 1{t<τ0} · 1{0<C0} dt

)
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=





1 , C0 = 0 ,

exp

(
− θ1s

θ2+θ3
0

τθ3 (1+θ3)
min{t2, τ0}1+θ3

)
, C0 > 0 ,

(3.65)

where we applied Lemma A.32 to the one-point process

(t, ω) −→ 1(−∞,t] (T1(ω))

to transition from the cumulative conditional hazard function to the associated compen-
sator. As this compensator coincides with

×DΛθ on [0, T1), we directly expressed it as an
integrated intensity in order to avoid notational confusion. Notably, Equation (3.65) can
also be recognized as the survival function of a Weibull distribution given τ0 =∞, C0 > 0
and any s0 > 0. On {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}, we have

P
(
Nt2 = 0

∣∣G0
)

= exp

(
− θ1sθ2+θ3

0

τ θ3 (1 + θ3)
t1+θ3
2

)
> 0 .

The tower property then yields:

P
(
Nt2 = 0

∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1})

= E

(
P
(
Nt2 = 0

∣∣G0
) ∣∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}

)

= E

(
exp

(
− θ1sθ2+θ3

0

τ θ3 (1 + θ3)
t1+θ3
2

) ∣∣∣∣ {τ0 > t2} ∩ {s0 > 0} ∩ {C0 ≥ 1}
)

> 0 ,

which completes the proof.

The above theorem lays the foundation for two of the following results, which ultimately
establish the identifiability condition (C1) as well as the positive definiteness of the
standardizing matrix Φ0 (θ∗) by virtue of condition (A4) and Lemma 3.18.

3.4.1. Verifying the Assumptions 3.8 for Asymptotic Normality

We have already indicated earlier that we will leave Assumptions 3.5 for the time being
and skip ahead to Assumptions 3.8 instead. On the one hand, this is due to the fact that
the main differences compared to the conditions formulated by Kopperschmidt and Stute
are present in these assumptions. On the other hand, for the proof of the identifiability
condition (C1) we can later revert to the methods used to verify condition (A4), whereas
the converse would require more effort. Under the conditions of Corollary 2.17 from
Section 2.4, we immediately observe that conditions (A1), (A2) and (A3) are satisfied:

(A1) From the proof of Lemma 2.15 we know that the conditional intensity function
×Dλ·(t) as a function of θ ∈ Θ for fixed t ∈ I is infinitely often continuously
differentiable. The cumulative intensity function inherits the smoothness of the
conditional intensity function whenever we are allowed to interchange the derivative
with respect to θ and the integral with respect to t. Since this applies for derivatives
of arbitrary orders according to Corollary 2.17, it holds:

×DΛ·(t) ∈ C∞(Θ) ,

as long as the restrictions placed on Θ are in force. Condition (A1) follows trivially.
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(A2) Since
×DΛ was modelled as a cumulative intensity, continuity ensues immediately from

the integral representation. Note that for this property we once again take advantage
of the fact that we are allowed to interchange integration and differentiation up to
arbitrary orders by virtue of Corollary 2.17.

(A3) This condition is directly implied by Equation (2.40) from Corollary 2.17.

It only remains to verify condition (A4), which is crucial to derive the positive definiteness
of the standardizing matrix Φ0(θ∗) according to Lemma 3.18. We require again the
existence of suitable integrable majorants for the partial derivatives of the conditional
intensity function, as we have previously done in Corollary 2.17. We will here consider
only the case of deterministic initial stress levels. Moreover, we demand that supp

(
P

τ0
)

is bounded below by some positive constant.

Theorem 3.29 (Positive Definiteness of the Standardizing Matrix in the Basquin Load
Sharing Model With Multiplicative Damage Accumulation).
Assume that the initial stress level is deterministic, so that P

s0 = δs, the Dirac mea-
sure centred on some s > 0. Furthermore, suppose that min supp

(
P

τ0
)

> 0 and that
supp

(
P

C0
) ∩ {2, . . . , I} 6= ∅. Then, under the preconditions of Corollary 2.17, the stan-

dardizing matrix Φ0(θ) is positive definite for all θ ∈ Θ.

Proof. By Corollary 2.17, differentiation with respect to θ ∈ Θ and integration with
respect to t ∈ I are interchangeable for the cumulative intensity

×DΛθ. Therefore,

v⊤ d

dθ

×DΛθ(t)⊤ =

∫ t

0
v⊤ d

dθ

×Dλθ(u)⊤ du

=

∫ t

0

(
v1

θ1
+ v2 ln B(u) + v3 ln A(u)

)
· ×Dλθ(u) du ,

compare Equations (B.2) and (B.4) in Appendix B.1 for the partial derivatives of
×Dλθ(t).

We distinguish two cases. First, let v3 6= 0. We exploit that |ln A(u)| → ∞ as u → 0,

while
∣∣∣v1

θ1
+ v2 ln B(u)

∣∣∣ is bounded for all u ∈ I. More precisely we have:

∣∣∣∣
v1

θ1
+ v2 ln B(u)

∣∣∣∣ ≤
|v1|
θ1

+ |v2|max{− ln(s), ln(sI)} =: Cv,θ ,

where the constant Cv,θ does not depend on the particular realization ω. Moreover, for
u ≤ τ

sI
(so that A(u) ≤ 1 with probability 1),

|ln A(u)| =
∣∣∣∣ln
(

1

τ

∫ u

0
s

I

I −Nx−

dx

︸ ︷︷ ︸
≤ usI

τ
≤1

)∣∣∣∣ ≥ − ln

(
usI

τ

)
,

which again does not depend on ω at all. The reverse triangle inequality yields:

∣∣∣∣
v1

θ1
+ v2 ln B(u) + v3 ln A(u)

∣∣∣∣ ≥ |v3| |ln A(u)| −
∣∣∣∣
v1

θ1
+ v2 ln B(u)

∣∣∣∣

≥ − |v3| ln
(

usI

τ

)
− Cv,θ →∞ (u→ 0) ,
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where for sufficiently small u the sign depends entirely on v3. Consequently, for any C > 0,
there exists tv,θ ∈ I such that

either
v1

θ1
+ v2 ln B(u) + v3 ln A(u) ≤ −C for all 0 < u ≤ tv,θ,

or
v1

θ1
+ v2 ln B(u) + v3 ln A(u) ≥ C for all 0 < u ≤ tv,θ.

Since the conditional intensity is non-negative for all u ∈ I, in the first case (the second
case can be treated analogously) we then obtain by the monotonicity of the integral:

v⊤ d

dθ

×DΛθ (tv,θ)⊤ =

∫ tv,θ

0

(
v1

θ1
+ v2 ln B(u) + v3 ln A(u)

)
· ×Dλθ(u) du

≤ −C

∫ tv,θ

0

×Dλθ(u) du = −C
×DΛθ (tv,θ) .

This inequality holds for all ω and hence carries over to the expectation, that is,

v⊤
E

d

dθ

×DΛθ (tv,θ)⊤ ≤ −C E
×DΛθ (tv,θ) < 0 ,

where for the last inequality we applied Theorem 3.28. By the continuity of E d
dθ

×DΛθ as
a function of t ∈ I, there then exists ε > 0 such that

v⊤
E

d

dθ

×DΛθ (t)⊤ < 0 for all t ∈ (tv,θ − ε, tv,θ + ε) =: Bv.

This Borel set Bv then satisfies condition (A4), as Theorem 3.28 yields that Bv has
positive E

×DΛθ-measure. Therefore, the positive definiteness of Φ0(θ) ensues by virtue of
Lemma 3.18.
There remains the case that v3 = 0. As before, we get:

v⊤ d

dθ

×DΛθ(t)⊤ =

∫ t

0

(
v1

θ1
+ v2 ln B(u)

)
· ×Dλθ(u) du .

We need to prove that there exists t ∈ I such that

0 6= v⊤
E

d

dθ

×DΛθ(t)⊤ = E

(∫ t

0

(
v1

θ1
+ v2 ln B(u)

)
· ×Dλθ(u) du

)
.

For v2 = 0 (and thus v1 6= 0), this is a direct consequence of Theorem 3.28. For v2 6= 0,
division by v2 yields:

0 6= E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

)
. (3.66)

When the factor v1
v2θ1

+ ln B(u) is almost surely positive, we can immediately infer the
positivity of the above expectation from Theorem 3.28. Similarly, the negativity of the
expectation ensues when v1

v2θ1
+ ln B(u) is almost surely negative. For certain s, however,

this factor can take both negative and positive values, in which case we show that the
behavior near t = 0 is predominantly determined by the event {T1 > t}. In total, we
distinguish three cases, noting that the randomness of s could interfere with subsequent
estimates. From here on, we thus need the condition that P

s0 = δs holds, whereas the
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previous part would be provable analogously for any measure with bounded support.

(i) s > exp
(
− v1

v2θ1

)
:

In this case, we consider the first factor of the integral from Equation (3.66) and
show that it is strictly positive for all u ∈ I. With probability one, we have:

v1

v2θ1
+ ln B(u) =

v1

v2θ1
+ ln

(
s

I

I −Nu−

)

≥ v1

v2θ1
+ ln(s)

>
v1

v2θ1
+ ln

(
exp

(
− v1

v2θ1

)
I

)
= 0 , (3.67)

where we substituted the lower bound for s and exploited the monotonicity of the
logarithm. Hence, by virtue of Theorem 3.28, we obtain for each t > 0:

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

)
≥
(

v1

v2θ1
+ ln(s)

)

︸ ︷︷ ︸
>0 by Eq. (3.67)

E

(
×DΛθ(t)

)

︸ ︷︷ ︸
>0

> 0 .

(ii) s = exp
(
− v1

v2θ1

)
:

We note that for u ≤ T1 (i.e., when no component has yet failed),

v1

v2θ1
+ ln B(u) =

v1

v2θ1
+ ln s = 0 ,

while for u > T1, the monotonicity of B(u) implies that

v1

v2θ1
+ ln B(u) > 0 .

Accordingly, the integrand in Equation (3.66) is non-negative. Moreover, for any
given t ∈ I, it is strictly positive on {t > T1} ∩ {t < τ0} ∩ {1 < C0}. Therefore, we
can conclude that the expectation is positive if the set {t > T1}∩{t < τ0}∩{1 < C0}
has positive P-measure. We have:

P ({t > T1} ∩ {t < τ0} ∩ {1 < C0})
= P

(
t > T1

∣∣ {t < τ0} ∩ {1 < C0}︸ ︷︷ ︸
∈G0

) · P ({t < τ0} ∩ {1 < C0}) .

The conditional probability is positive for each t > 0, as can be seen by considering
Equation (3.65) once again. Additionally, the independence assumption yields

P ({t < τ0} ∩ {1 < C0}) = P (t < τ0) · P (1 < C0) , (3.68)

where the latter probability is not equal to 0 because supp
(
P

C0
) 6= {0, 1} and the

former probability also becomes positive for sufficiently small t as otherwise P
τ0 = δ0

would follow. Hence,

P ({t > T1} ∩ {t < τ0} ∩ {1 < C0}) > 0 .
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(iii) s < exp
(
− v1

v2θ1

)
:

This case is the most difficult, because here the sign of the factor v1
v2θ1

+ ln B(u) may
change as the number of failures (and hence the load sharing term B(u)) increases.
Instead of the expectation, we first consider the conditional expectation under G0 in
Equation (3.66), similar to the proof of the previous theorem. Here, σ(s0) is the
trivial σ-algebra, so only σ(τ0) ∨ σ(C0) ⊂ G0 needs to be fulfilled. We compute:

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

)

= E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du · 1{T1>t}

∣∣∣G0

)

+ E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)

︸ ︷︷ ︸
≤ v1

v2θ1
+ln(sI)

·×Dλθ(u) du · 1{T1≤t}
∣∣∣G0

)

≤
(

v1

v2θ1
+ ln(s)

)
· E
(∫ t

0

×Dλθ(u) du · 1{T1>t}
∣∣∣G0

)

+

(
v1

v2θ1
+ ln(sI)

)
· E
(∫ t

0

×Dλθ(u) du · 1{T1≤t}
∣∣∣G0

)

≤
(

v1

v2θ1
+ ln(s)

)
· θ1sθ2+θ3

(θ3 + 1) τ θ3
min {t, τ0}θ3+1 · 1{0<C0} · P

(
T1 > t

∣∣G0
)

+

(
v1

v2θ1
+ ln(sI)

)
· E
(∫ t

0

×Dλθ(u) du · 1{T1≤t}
∣∣∣G0

)

≤
(

v1

v2θ1
+ ln(s)

)
· θ1sθ2+θ3

(θ3 + 1) τ θ3
min {t, τ0}θ3+1 · 1{0<C0} · P

(
T1 > t

∣∣G0
)

+

(
v1

v2θ1
+ ln(sI)

)
· θ1(sI)θ2+θ3

(θ3 + 1) τ θ3
min {t, τ0}θ3+1 · P (T1 ≤ t

∣∣G0
)

, (3.69)

where in the last step we estimated the indicator function 1{Nu− <C0} upward by 1.

On {C0 = 0}, we have
×Dλθ ≡ 0, which implies that this event does not contribute

to the expectation. For this reason, we operate only on {C0 > 0} and obtain for
0 < t ≤ min supp (Pτ0) by applying Equation (3.65) to Equation (3.69):

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

)

≤
(

v1

v2θ1
+ ln(s)

)
· θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1 · exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

)

+

(
v1

v2θ1
+ ln(sI)

)
· θ1(sI)θ2+θ3

(θ3 + 1) τ θ3
tθ3+1 ·

(
1− exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

))
.

This upper bound is deterministic. Moreover, we observe:

(
v1

v2θ1
+ ln(s)

)
· θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1 · exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

)

+

(
v1

v2θ1
+ ln(sI)

)
· θ1(sI)θ2+θ3

(θ3 + 1) τ θ3
tθ3+1 ·

(
1− exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

))
< 0
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⇐⇒
(

v1

v2θ1
+ ln(sI)

)
· Iθ2+θ3 ·

(
1− exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

))

< −
(

v1

v2θ1
+ ln(s)

)
· exp

(
− θ1sθ2+θ3

(θ3 + 1) τ θ3
tθ3+1

)
. (3.70)

Now, for t → 0, the left-hand side of Equation (3.70) converges to 0, while the

right-hand side converges to −
(

v1
v2θ1

+ ln(s)
)
. Since s < exp

(
− v1

v2θ1

)
,

−
(

v1

v2θ1
+ ln(s)

)
> −

(
v1

v2θ1
+ ln

(
exp

(
− v1

v2θ1

)))
= 0 ,

so there exists t ∈ I for which holds:

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

){
= 0 , on {C0 = 0},
< 0 , on {C0 > 0}.

Finally, the law of total expectation yields:

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

)

= E

[
E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

)]

= E

[
E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

) ∣∣∣∣C0 = 0

]

︸ ︷︷ ︸
=0

·P (C0 = 0)

+ E

[
E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣G0

) ∣∣∣∣C0 > 0

]

︸ ︷︷ ︸
<0

·P (C0 > 0) < 0 ,

as P (C0 > 0) > 0 by assumption.

Combining the cases (i) through (iii), the statement of Equation (3.67) is verified, com-
pleting the proof of the positive definiteness of the standardizing matrix Φ0(θ).

Remark 3.30 (Positive Definiteness for Random Initial Stress Levels).
As outlined in the proof of Theorem 3.29, the randomness of the initial stress level s
significantly complicates the verification of Equation (3.66). This can already be seen
in the example of a discrete uniform distribution with support supp (Ps0) = {s(1), s(2)},
where

s(1) <
1

I
exp

(
− v1

v2θ1

)
< exp

(
− v1

v2θ1

)
< s(2) .

The above proof (consider the cases (i) and (iv)) then demonstrates that

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣ s0 = s(1)
)

< 0

< E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣ s0 = s(2)
)

, (3.71)
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from where no conclusions can be drawn about the sign of

E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

)

= E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣ s0 = s(1)
)
· P
(
s0 = s(1)

)

︸ ︷︷ ︸
= 1

2

+ E

(∫ t

0

(
v1

v2θ1
+ ln B(u)

)
· ×Dλθ(u) du

∣∣∣ s0 = s(2)
)
· P
(
s0 = s(2)

)

︸ ︷︷ ︸
= 1

2

.

If, for instance, both conditional expectations in Equation (3.71) have the same absolute
value regardless of t ∈ I, this expectation is always equal to 0. Thus, unlike in the
deterministic case, it is no longer sufficient to state that the expectation is strictly positive
or negative for any given s; instead, here we need to quantify these conditional expectations
in order to relate them to the probabilities specified by P

s0 . In this, we have not even
taken into account that s(1) and s(2) could also occur with different frequencies. Since
this would go beyond the scope of this thesis, we therefore restrict ourselves to the case of
deterministic initial stress levels. We do, however, conjecture that the positive definiteness
persists even for random initial stress levels, although the proof presented here fails to
substantiate this belief. A proof of this assertion would presumably exploit the different
stress levels that can occur during an experiment (i.e., take advantage of the increasing
step function B(u)), whereas we have focused primarily on the stress that is prevalent at
the beginning of an experiment (i.e., B(0) = s).

3.4.2. Verifying the Assumptions 3.5 for Strong Consistency

To conclude Section 3.4, we finally turn to the Assumptions 3.5 only touched upon so far.
We have already mentioned that condition (C3) follows immediately from the ever-present
Corollary 2.17 (set p = q = r = 0 in Equation (2.40)). Of the remaining two conditions,
we begin with the (simpler) condition (C2).

Lemma 3.31 (Continuous Extensions of the Cumulative Intensities in the Basquin Load
Sharing Model With Multiplicative Damage Accumulation).
In the situation of Corollary 2.17, let 0 < ε ≤ 1 and consider an open and bounded
parameter space Θ ⊂ R2

+ × [−1 + ε,∞). Then with probability 1, the cumulative intensity
of the Basquin load sharing model with multiplicative damage accumulation,

×DΛ·(·) : I ×Θ −→ R

(t, θ) 7−→ ×DΛθ(t) ,

is continuous on I ×Θ and has a continuous extension to I ×Θ.

Proof. It suffices to show that the mapping
×DΛ·(·) is uniformly continuous on (0, τ)×Θ

(the interior of I ×Θ), because any uniformly continuous function admits a continuous
extension to the closure of its domain of definition. Furthermore, the equivalence of norms
on the finite-dimensional vector space R1+d ⊃ I ×Θ allows us to consider below the norm

‖(t, θ)‖ := max
{‖t‖I , ‖θ‖Θ

}
,
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where ‖·‖I and ‖·‖Θ are arbitrary norms on I and Θ, respectively. For simplicity, we
omit the indices and settle for the Euclidean norm in both cases. The uniform continuity
can be derived from the following two observations:

(i) According to Equation (2.40) from Corollary 2.17, the partial derivatives of
×DΛθ(t)

with respect to θ are bounded by a constant independent of (t, θ) ∈ I ×Θ. Conse-
quently, such a constant C1 > 0 can also be found for the gradient of

×DΛθ(t), so we
obtain:

sup
(t,θ)∈I×Θ

∥∥∥Dθ
×DΛθ(t)

∥∥∥ ≤ C1 . (3.72)

(ii) Choosing p = q = r = 0 in Equation (2.39) of Corollary 2.17 yields

∣∣∣
×Dλθ(t)

∣∣∣ ≤ C

(
s0

t

τ

)ε−1

.

Hence, for t1, t2 ∈ I with t1 ≤ t2 we have:

∣∣∣∣
∫ t2

t1

×Dλθ(t) dt

∣∣∣∣ ≤
∫ t2

t1

C

(
s0

t

τ

)ε−1

dt

= C

(
s0

τ

)ε−1 [ tε

ε

]t2

t=t1

= C

(
s0

τ

)ε−1 tε
2 − tε

1

ε
. (3.73)

Moreover, for 0 < ε ≤ 1 holds:

1− tε
1

tε
2

= 1−
(

t1

t2︸︷︷︸
≤1

)ε

≤ 1− t1

t2︸ ︷︷ ︸
≤1

≤
(

1− t1

t2

)ε

⇐⇒ tε
2 − tε

1 ≤ tε
2

(
1− t1

t2

)ε

= (t2 − t1)ε . (3.74)

Combining Equations (3.73) and (3.74), we find that

∣∣∣∣
∫ t2

t1

×Dλθ(t) dt

∣∣∣∣ ≤ C2 (t2 − t1)ε (3.75)

for an appropriate constant C2 > 0 that is independent of t1, t2 and θ.

Now let η > 0. In order to prove uniform continuity of
×DΛ·(·), we need to find δ > 0

such that for all (t1, θ1) , (t2, θ2) ∈ (0, τ) × Θ with ‖(t2, θ2)− (t1, θ1)‖ < δ holds that∥∥∥×DΛθ1(t1)− ×DΛθ2(t2)
∥∥∥ < η. By the triangle inequality, the mean value theorem and

Equations (3.72) and (3.75) we have:

∥∥∥
×DΛθ1(t1)− ×DΛθ2(t2)

∥∥∥ =
∥∥∥

×DΛθ1(t1)− ×DΛθ2(t1) +
×DΛθ2(t1)− ×DΛθ2(t2)

∥∥∥

≤ sup
θ∈Θ

∥∥∥Dθ
×DΛθ(t1)

∥∥∥ ‖θ2 − θ1‖+

∥∥∥∥
∫ t2

t1

×Dλθ2(u) du

∥∥∥∥

≤ C1 ‖θ2 − θ1‖+ C2 ‖t2 − t1‖ε . (3.76)
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Choose any δ ≤ max

{(
η

C1+C2

) 1
ε , 1

}
. By choice of norm, ‖(t2, θ2)− (t1, θ1)‖ < δ trivially

implies that both ‖t2 − t1‖ < δ and ‖θ2 − θ1‖ < δ. Continuing from Equation (3.76), we
then obtain:

C1 ‖θ2 − θ1‖+ C2 ‖t2 − t1‖ε < C1δ + C2δε ≤ (C1 + C2) δε ≤ (C1 + C2)
η

C1 + C2
= η ,

and hence
∥∥∥×DΛθ1(t1)− ×DΛθ2(t2)

∥∥∥ < η, which concludes the proof.

This leaves only Condition (C1), which can be shown using the methods introduced in
Theorem 3.29. Consequently, we will rely on the same assumptions, with the only actual
limitation again being the necessity of a deterministic initial stress level.

Theorem 3.32 (Identifiability in the Basquin Load Sharing Model With Multiplicative
Damage Accumulation).
Let the initial stress level be deterministic, so that Ps0 = δs for some s > 0. Suppose that
min supp

(
P

τ0
)

> 0 and that supp
(
P

C0
) ∩ {2, . . . , I} 6= ∅. Then, under the preconditions

of Corollary 2.17, the true parameter θ∗ is identifiable in the Basquin load sharing model
with multiplicative damage accumulation.

Proof. Let θ 6= θ∗. By Equation (3.9), it suffices to find t ∈ I such that

E

(
×DΛθ∗(t)− ×DΛθ(t)

)
6= 0 . (3.77)

Because the expected cumulative intensity is continuous by Remark 3.6, there then exists
an interval Iθ ⊂ I so that Equation (3.77) is fulfilled for all t ∈ Iθ. Moreover, Theorem
3.28 implies that µ(Iθ) > 0, where µ is the Borel measure on I induced by

×DΛθ∗ , see
Equation (3.2).
Similar to the proof of Theorem 3.29, we distinguish whether θ∗

3 = θ3 or θ∗
3 6= θ3. We

start with the case θ∗
3 6= θ3 and assume without loss of generality that θ∗

3 > θ3 (otherwise
we swap θ∗ and θ). By Fubini’s theorem,

E

(
×DΛθ∗(t)− ×DΛθ(t)

)
=

∫ t

0
E

(
×Dλθ∗(u)− ×Dλθ(u)

)
du . (3.78)

We proceed by showing that the integrand is strictly negative in a (deterministic) neigh-
bourhood of 0, which carries over to the expectation and the outer integral. Considering
that θ3 < 0 is allowed, on {Nu− < C0} ∩ {u ≤ τ0} we estimate:

L (θ) uθ3 ≤ ×Dλθ(u) = θ1

(
s

I

I −Nu−

)θ2
(

1

τ

∫ u

0
s

I

I −Nx−

dx

)θ3

≤ U (θ) uθ3 ,

where L (θ) :=





θ1sθ2
(

s
τ

)θ3 , if θ3 ≥ 0 ,

θ1sθ2

(
sI
τ

)θ3
, if θ3 < 0 ,

and U(θ) :=





θ1 (sI)θ2
(

sI
τ

)θ3
, if θ3 ≥ 0 ,

θ1 (sI)θ2
(

s
τ

)θ3 , if θ3 < 0 .

Accordingly, on {Nu− < C0} ∩ {u ≤ τ0} we obtain that

×Dλθ∗(u)− ×Dλθ(u) ≤ U (θ∗) uθ∗
3 − L (θ) uθ3 .
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However, U (θ∗) and L (θ) are deterministic positive constants. As θ∗
3 − θ3 > 0, we have

for u > 0:

U (θ∗) uθ∗
3 − L (θ) uθ3 < 0 ⇐⇒ uθ∗

3−θ3 <
L (θ)

U (θ∗)
⇐⇒ u <

(
L (θ)

U (θ∗)

) 1
θ∗

3
−θ3

︸ ︷︷ ︸
>0

,

and therefore

×Dλθ∗(u)− ×Dλθ(u) < 0 for all 0 < u <

(
L (θ)

U (θ∗)

) 1
θ∗

3
−θ3

. (3.79)

Since the conditional intensity vanishes on ({Nu− < C0} ∩ {u ≤ τ0})∁ regardless of its
parameter, Equation (3.79) also transfers to the expectation,

E

(
×Dλθ∗(u)− ×Dλθ(u)

)
= E

[(
×Dλθ∗(u)− ×Dλθ(u)

)
· 1{Nu− <C0}∩{u≤τ0}

]
< 0 , (3.80)

at least if P ({Nu− < C0} ∩ {u ≤ τ0}) > 0. This is trivially the case for any u ≤
min supp

(
P

τ0
)

(as the proof of Theorem 3.28 shows, it suffices for this property if u < t
for some t ∈ supp

(
P

τ0
)
). Now let t ∈ I with

0 < t < min

{
min supp

(
P

τ0
)
,

(
L (θ)

U (θ∗)

) 1
θ∗

3
−θ3

}
.

Then, substituting Equation (3.80) into Equation (3.78) yields

E

(
×DΛθ∗(t)− ×DΛθ(t)

)
< 0 ,

so that Equation (3.77) is satisfied in the case θ∗
3 6= θ3.

We turn to the case θ∗
3 = θ3. If we assume that we operate on {Nu− < C0} ∩ {u ≤ τ0} as

before, then

×Dλθ∗(u)− ×Dλθ(u) =

(
θ∗

1

(
s

I

I −Nu−

)θ∗
2

− θ1

(
s

I

I −Nu−

)θ2
)
·A(u)θ3 . (3.81)

We will use this identity to compute the conditional expectation given G0 in Equation
(3.78), for which the procedure used to derive Equation (3.69) can be adopted. Let us
first suppose that θ∗

1sθ∗
2 − θ1sθ2 < 0. Then,

E

(
×DΛθ∗(t)− ×DΛθ(t)

∣∣G0

)

= E

(∫ t

0

(
θ∗

1

(
s

I

I −Nu−

)θ∗
2

− θ1

(
s

I

I −Nu−

)θ2
)
·A(u)θ3 · 1{T1>t} du

∣∣∣G0

)

+ E

(∫ t

0

(
θ∗

1

(
s

I

I −Nu−

)θ∗
2

− θ1

(
s

I

I −Nu−

)θ2
)
·A(u)θ3 · 1{T1≤t} du

∣∣∣G0

)

≤
(
θ∗

1sθ∗
2 − θ1sθ2

) sθ3

(θ3 + 1)τ θ3
min {t, τ0}θ3+1 · 1{0<C0} · P

(
T1 > t

∣∣G0
)
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+
(
θ∗

1 (sI)θ∗
2 − θ1sθ2

) (sI)θ3

(θ3 + 1)τ θ3
min {t, τ0}θ3+1 · P (T1 ≤ t

∣∣G0
)

. (3.82)

On {C0 > 0} and for 0 < t ≤ min supp (Pτ0), substituting Equation (3.65) into Equation
(3.82) yields:

E

(
×DΛθ∗(t)− ×DΛθ(t)

∣∣G0

)

≤
(
θ∗

1sθ∗
2 − θ1sθ2

) sθ3

(θ3 + 1)τ θ3
tθ3+1 · exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

)

+
(
θ∗

1 (sI)θ∗
2 − θ1sθ2

) (sI)θ3

(θ3 + 1)τ θ3
tθ3+1 ·

(
1− exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

))
.

With the same arguments as in the proof of Theorem 3.29 (see case (ii)), we observe:

(
θ∗

1sθ∗
2 − θ1sθ2

) sθ3

(θ3 + 1)τ θ3
tθ3+1 · exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

)

+
(
θ∗

1 (sI)θ∗
2 − θ1sθ2

) (sI)θ3

(θ3 + 1)τ θ3
tθ3+1 ·

(
1− exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

))
< 0

⇐⇒
(
θ∗

1 (sI)θ∗
2 − θ1sθ2

)
· Iθ3 ·

(
1− exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

))

︸ ︷︷ ︸
−→0 (t−→0)

< −
(
θ∗

1sθ∗
2 − θ1sθ2

)

︸ ︷︷ ︸
>0

exp

(
− θ∗

1sθ∗
2+θ∗

3

(θ∗
3 + 1) τ θ∗

3
tθ∗

3+1

)

︸ ︷︷ ︸
−→1 (t−→0)

,

which is always satisfied for sufficiently small t. For such t, we consequently have

E

(
×DΛθ∗(t)− ×DΛθ(t)

∣∣G0

){= 0 , on {C0 = 0} ,

< 0 , on {C0 > 0} .

From here, the law of total expectation can be used to infer the negativity of the
expectation from Equation (3.77) (see again case (ii) from the proof of Theorem 3.29 for
details).
If instead we suppose that θ∗

1sθ∗
2 − θ1sθ2 > 0, we can repeat the above computations for

−E
(

×DΛθ∗(t)− ×DΛθ(t)
∣∣G0

)
= E

(
×DΛθ(t)− ×DΛθ∗(t)

∣∣G0

)
,

which then implies

E

(
×DΛθ∗(t)− ×DΛθ(t)

∣∣G0

){= 0 , on {C0 = 0} ,

> 0 , on {C0 > 0} ,

and hence the positivity of the expectation from Equation (3.77).
There remains the situation where θ∗

1sθ∗
2 = θ1sθ2 and thus θ∗

1sθ∗
2 − θ1sθ2 = 0. Note that

this automatically excludes the case θ2 = θ∗
2, since otherwise θ1 = θ∗

1 would follow, which
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contradicts the premise θ 6= θ∗. The ideas below are similar to case (iii) in the proof of
Theorem 3.29: We define the auxiliary function

gθ,θ∗(x) := θ∗
1xθ∗

2 − θ1xθ2 .

The only root of gθ,θ∗ can be determined analytically as x0 =
(

θ∗
1

θ1

) 1
θ2−θ∗

2 . In our situation,

this means that B(0) = s = x0 must hold, where as usual B(t) = s I
I−N

t−
denotes the

load sharing term. Since gθ,θ∗ is continuous, we have either gθ,θ∗(x) > 0 or gθ,θ∗(x) < 0
for all x > x0. By construction, B(t) is non-decreasing and B(t) > B(0) for t > T1 (as
here Nt− ≥ 1), which implies that either gθ,θ∗ (B(t)) > 0 or gθ,θ∗ (B(t)) < 0 applies for all
t > T1. Now, Equation (3.81) can be rewritten as

×Dλθ∗(u)− ×Dλθ(u) = gθ,θ∗ (B(u)) ·A(u)θ3 ,

and hence
×DΛθ∗(t)− ×DΛθ(t) =

∫ t

0

×Dλθ∗(u)− ×Dλθ(u) du

is either strictly positive or strictly negative on the set {t > T1} ∩ {t < τ0} ∩ {1 < C0},
while on the complement it either vanishes or takes the same sign because the sign of
gθ,θ∗ (B(u)) never changes from minus to plus or vice versa. To conclude the proof, we
then only have to prove that {t > T1} ∩ {t < τ0} ∩ {1 < C0} has positive P-measure. But
this was shown as part of case (ii) in the proof of Theorem 3.29.
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4. Statistical Inference Based on the K-Sign Depth

After the detailed treatment of the minimum distance estimator in the context of “self-
exciting” point processes, we now turn to a fundamentally different method of statistical
inference in the K-sign depth test. Although its foundations were laid early in the
regression depth of Rousseeuw and Hubert 1999 and have since been further developed in
Müller 2005, Kustosz, Leucht and Müller 2016 and Kustosz, Wendler and Müller 2016,
the K-sign depth is a quite novel notion of depth. Recently, results on

(i) the asymptotic distribution of the K-sign depth and its efficient implementation
(Malcherczyk, Leckey and Müller 2021),

(ii) the power and robustness of the K-sign depth test (Leckey et al. 2023),

(iii) applications of the K-sign depth test in multiple regression (Horn and Müller 2023)

have been published. These studies culminated in consistency conditions for the K-sign
depth test (Leckey, Jakubzik and Müller 2023). In this chapter, we demonstrate how
the K-sign depth test can be used in an intensity-based framework. We prove that the
consistency conditions can be satisfied in the case K = 3 and derive further applications
for our models, in particular the Basquin load sharing model with multiplicative damage
accumulation.

4.1. The K-Sign Depth

In this first section, we introduce the K-sign depth in Subsection 4.1.1. We then learn
about its asymptotic distribution and use it to derive the asymptotic K-sign depth test
in Subsection 4.1.2.

4.1.1. Definition of the K-Sign Depth

The conceptual origin of the K-sign depth lies in the regression depth. Rousseeuw and
Hubert coined the notion of regression depth when they applied the halfspace (location)
depth of Tukey 1975 to a regression setting (see Rousseeuw and Hubert 1999). In essence,
the regression depth is intended to gauge how well a - potentially multidimensional -
parameter of a regression model fits the observed data.
The simplicial (location) depth of Liu 1990 extended the halfspace depth of Tukey
1975. Translating the relationship between halfspace depth and simplicial depth into the
regression context yielded the simplicial regression depth (this was already considered in
Rousseeuw and Hubert 1999, see also Kustosz, Wendler and Müller 2016, p. 126).
In an approach to provide a unified notion of depth, Mizera 2002 proposed the tangent
depth which includes both the halfspace depth and the regression depth as a special
case (cf. Müller 2005, p. 154). Replacing the regression depth with the tangent depth in
the extension of Liu 1990 then further generalized the simplicial regression depth to the
simplicial tangent depth.
In a classical regression model with d-dimensional model parameter θ, the depth is
calculated from the residuals at θ. Under certain conditions given in Kustosz, Wendler
and Müller 2016, the simplicial tangent depth amounts to the relative proportion of
(d + 1)-tuples of residuals with alternating signs. This insight motivates the notion of
a K-sign depth, where the depth of a parameter θ is defined directly “via alternating
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signs of residuals in K-tuples” (Leckey et al. 2023, p. 859). Therefore, the K-sign depth
and the simplicial tangent depth coincide for K = d + 1, but other choices of K may be
considered. This paves the way for a formal definition of the K-sign depth. We provide
an overview of how the various concepts of depth are connected in Figure 4.

location setting

halfspace depth

of Tukey

regression setting

regression depth

of Rousseeuw

and Hubert

unified setting

tangent depth

of Mizera

simplicial
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simplicial
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K-sign depth
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Figure 4: Schematic of the relationships between the different notions of depth.

In order to work in an intensity-based framework, we need to define the K-sign depth in
a more general context than usual. For this, let Θ ⊂ Rd with d ∈ N, N ∈ N and consider
a parametric family of real-valued random variables,

{
Rθ

n : n ∈ {1, . . . , N} , θ ∈ Θ
}

. (4.1)

As usual, θ∗ ∈ Θ denotes an unknown “true” parameter. For instance, in a regression
setting, we have

Yn = f (Xn, θ∗) + En , n ∈ {1, . . . , N} , (4.2)

with a dependent variable Yn taking values in R, (potentially random) explanatory
variables X1, . . . , XN ∈ Rp, p ∈ N, a regression function f : Rp×Θ→ R and unobservable
random error terms E1, . . . , EN .
In this context, we can define the random variable Rθ

n as the residual of the model at
θ ∈ Θ, that is:

Rθ
n := Yn − f (Xn, θ) , n ∈ {1, . . . , N} , θ ∈ Θ .

In intensity-based modelling, however, we do not obtain such residuals, so we opt instead
for the general approach of Equation (4.1). As such a family of random variables may
comprise transformations of point processes, this later enables us to invoke the standardized
hazard transforms of Section 2.5 in place of the usual residuals.
After these minor preliminaries, we can now define the K-sign depth.
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Definition 4.1 (K-Sign Depth; cf. Leckey et al. 2023, p. 861).
Let K ∈ N \ {1}. The K-sign depth of Rθ :=

(
Rθ

1, . . . , Rθ
N

)
is defined as15

dK

(
Rθ
)

:=
1
(N

K

)
∑

1≤n1<...<nK≤N

(
K∏

k=1

1

{
(−1)kRθ

nk
> 0

}
+

K∏

k=1

1

{
(−1)kRθ

nk
< 0

})
.

By definition, the K-sign depth is the relative proportion of ordered K-tuples with
alternating signs. Notably, the event

{
ω : Rθ

n(ω) = 0 for some n ∈ {1, . . . , N}} interacts
unfavourably with the above definition, since tuples (n1, . . . , nK) with Rθ

nk
= 0 for some

k ∈ {1, . . . , K} never contribute to the total depth. Accordingly, we will often demand
that this event be a Pθ∗-null set for each θ ∈ Θ (e.g., when the Rθ

n follow a continuous
distribution under Pθ∗).
Since the parametric family from Equation (4.1) does not assign any meaning to the
parameter θ, a true parameter value θ∗ has no inherent relevance. Similarly, the calculated
depth at θ also has no meaningful interpretation. It is only true in the modelling context
(e.g., in the regression setting) that a larger depth tends to indicate a “good fit” of the
parameter θ.
A crucial aspect in depth-related statistical inference is the chosen order (cf. Leckey et al.
2023, p. 861).

Remark 4.2 (On Ordering in the Context of K-Sign Depth).
It is pointed out in Malcherczyk, Leckey and Müller 2021 that the power of the K-sign
depth test heavily depends on the chosen order. For example, in a regression setting,
ordering with respect to a single univariate explanatory variable Xn (instead of the
canonical ordering by the number n of the observation) is often advisable (Malcherczyk,
Leckey and Müller 2021, p. 346). In case of a multivariate explanatory variable (i.e.,
p > 1), Horn and Müller 2023 propose a multitude of data-driven orderings. We note
that Equation (4.2) is also suitable for autoregressive models, where an AR(1) model can
be implemented by choosing Xn = Yn−1 (see Kustosz, Leucht and Müller 2016). In this
situation, the ordering is based on previous observations, which in the population case
leads to a random ordering. Notably, under basic assumptions for the random variables
Rθ

n, the asymptotic distribution of the K-sign depth is independent from the chosen
ordering (cf. Malcherczyk 2022, p. 8). These assumptions are given in the next subsection.

4.1.2. The K-Sign Depth Test

The K-sign depth test is an asymptotic test proposed by Leckey et al. 2023. Its construction
relies on the quantiles of the asymptotic distribution of the K-sign depth. The asymptotic
distribution of the K-sign depth in the cases K = 2 and K = 3 have already been derived
by Müller 2005 and Kustosz, Leucht and Müller 2016, respectively. In Malcherczyk,
Leckey and Müller 2021, a proof for general K is given. Since the K-sign depth test
for K = 2 is equivalent to the classical sign test (see Leckey et al. 2023, p. 874), we
concentrate on the cases where K ≥ 3. We restate the main results of Malcherczyk,
Leckey and Müller 2021 here, adapting them to our situation where necessary. For this,
we start with the assumptions hinted at in Remark 4.2. To maintain consistent notation,

15Normally, we use the notation 1{...}(ω) for indicator functions, often omitting the argument ω. Since
this makes the events appear subscript and thus smaller, we occasionally prefer the modified notation
1 {. . .} throughout this chapter to ensure better readability.
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we will continue to denote the true probability measure with Pθ∗ in this subsection. This
simplifies the application to an intensity-based framework later on.

Assumption 4.3 (Requirements for the Asymptotic Distribution of the K-Sign Depth).
For θ ∈ Θ, we say that Rθ =

(
Rθ

1, . . . , Rθ
N

)
satisfies the assumptions (K1) and (K2) if

Rθ
1, . . . , Rθ

N are independent (w.r.t. Pθ∗), (K1)

Pθ∗

(
Rθ

n > 0
)

= Pθ∗

(
Rθ

n < 0
)

=
1

2
for n = 1, . . . , N . (K2)

Whether assumptions (K1) and (K2) are satisfied therefore also depends on the true
parameter θ∗. The letter K is used to associate the assumptions with the K-sign depth.
The letter D (for depth) is reserved for future assumptions.

In the regression setting, the assumptions (K1) and (K2) can be translated into
requirements for the error terms E1, . . . , EN . At the true parameter θ∗,

Rθ∗

n = En , n = 1, . . . , N .

If the error terms are assumed to follow a continuous distribution, then Assumption 4.3
demands that they are independent and (median-)centred. These comparatively minor
assumptions are sufficient to derive the asymptotic distribution of the K-sign depth.

Theorem 4.4 (Asymptotic Distribution of the K-Sign Depth; Theorem 2.2. of Malcher-
czyk, Leckey and Müller 2021, p. 346).
Let K ≥ 3. If Rθ

1, . . . , Rθ
N satisfy the assumptions (K1) and (K2), then, as N →∞,

N

(
dK

(
Rθ

1, . . . , Rθ
N

)−
(

1

2

)K−1
)

d−→ ΨK(W ) ,

where W = (Wt)t∈[0,1] denotes a standard Brownian motion and

Ψ3(W ) :=
3

4

(
1−

∫ 1

0
(W1 − 2Wt)

2 dt

)
,

ΨK(W )

:=− K!

4(K − 4)!

∫ 1

−0.5

∫ t+0.5

t∨0

(
1

2
+ t− s

)K−4 (
(Ws∧1 −Wt∨0)2 − ((s ∧ 1)− (t ∨ 0))

)
ds dt

− K!

2(K − 4)!

∫ 1

0.5

∫ t−0.5

0

(
1

2
+ s− t

)K−4

Ws(W1 −Wt) ds dt , K ≥ 4 .

Proof. The complete proof is given in Malcherczyk, Leckey and Müller 2021, supplementary
explanations can be found in Chapter 3 of Malcherczyk 2022.
We sketch the proof idea for K = 3 to motivate the introduction of a “normalized” K-sign
depth. Moreover, both the K-sign depth test and its associated consistency conditions
from Subsection 4.2.1 build on the ideas embodied in this proof. The central component
is the stochastic process WN (θ) =

(WN
t (θ)

)
t∈[0,1]

defined via

WN
t (θ) :=

1√
N

⌊tN⌋∑

n=1

sgn Rθ
n , t ∈ [0, 1] , (4.3)
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with the convention that WN
t (θ) := 0 for t < 1

N
. Here, sgn is the sign function given by

sgn x :=





−1 , x < 0 ,

0 , x = 0 ,

1 , x > 0 .

We mostly omit the argument θ and write WN
t or WN instead of WN

t (θ) or WN (θ),
respectively. Under the assumptions (K1) and (K2), WN is a random walk rescaled
by 1√

N
. Since the paths of WN are càdlàg, WN takes values in the Skorokhod space

D ([0, 1]) of càdlàg functions on [0, 1] (see Definition B.3.3). Donsker’s invariance principle
(Theorem 16.1 of Billingsley 1968) then yields16

WN d−→W (N →∞) .

As Ψ3 : D ([0, 1])→ R is continuous in f for all f ∈ C ([0, 1]) ⊂ D ([0, 1]) and W is almost
surely continuous, the continuous mapping theorem grants

Ψ3
(WN

) d−→ Ψ3(W ) (N →∞) .

The most tedious part of the proof is to show that Ψ3(WN ) can be identified with a
normalized 3-sign depth. More precisely, it can be shown that

Ψ3
(WN

)
=

(N − 1)(N − 2)

N

(
d3
(
Rθ

1, . . . , Rθ
N

)− 1

4

)
Pθ∗-almost surely. (4.4)

From here, the limit law of the 3-sign depth follows by Slutzky’s theorem.

Equation (4.4) prompts us to think of Ψ3
(WN

)
as a normalized 3-sign depth. The

following theorem generalizes this relation to arbitrary K ≥ 3. In Malcherczyk, Leckey
and Müller 2021, it is incorporated into the proof of Theorem 4.4.

Theorem 4.5 (Normalized K-Sign Depth; Theorem 2.3. of Malcherczyk, Leckey and
Müller 2021, p. 346).
Let ΨK , K ≥ 3, be the functional from Theorem 4.4 and let WN be as in Equation (4.3).

(i) Suppose that
Pθ∗

(
Rθ

n = 0
)

= 0 for n = 1, . . . , N.

Then, Pθ∗-almost surely,

N

(
d3
(
Rθ

1, . . . , Rθ
N

)− 1

4

)
=

N2

(N − 1)(N − 2)
Ψ3
(WN

)
.

(ii) If Rθ
1, . . . , Rθ

N satisfy assumptions (K1) and (K2), then

N

(
dK

(
Rθ

1, . . . , Rθ
N

)−
(

1

2

)K−1
)

=
NK(N −K)!

N !
ΨK

(WN
)

+ oP(1) ,

16Note that Eθ∗

(
sgn Rθ

n

)
= 0 and Varθ∗

(
sgn Rθ

n

)
= 1 according to (K2).
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where oP(1) converges to 0 in probability17 as N →∞.

We denote hereafter the random variable

ΨK

(WN (θ)
)

=
N !

NK−1(N −K)!

(
dK

(
Rθ

1, . . . , Rθ
N

)−
(

1

2

)K−1
)

as the normalized K-sign depth at θ.

For K ≥ 4, Theorem 4.5 demonstrates that the integral representation of the K-sign
depth holds only asymptotically. This further substantiates our focus on the case K = 3.
We can take the normalized K-sign depth as the test statistic of an asymptotic hypothesis
test based on the quantiles of ΨK(W ). For this, we consider hypotheses of the form

H0 : θ∗ ∈ Θ0 vs. H1 : θ∗ ∈ Θ \Θ0 , (4.5)

where Θ0 ⊂ Θ is an arbitrary subset. Note that we still have not given any meaning to
the “true” parameter. We will now rectify this by introducing a third assumption (K3).

Assumption 4.6 (Requirement for the K-Sign Depth Test).
The parametric family from Equation (4.1) satisfies the assumption (K3) if for each true
parameter value θ∗ ∈ Θ,

Rθ∗
satisfies the assumptions (K1) and (K2). (K3)

We emphasize that (K3) does not require that (K1) and (K2) must apply for all θ ∈ Θ.
We only demand that the assumptions (K1) and (K2) are satisfied at the true parameter
θ∗, regardless of its value. Assumption (K3) ensures that the normalized K-sign depth
converges to ΨK(W ) at the true parameter. This finally assigns a meaning to θ∗ also in
the context of Equation (4.1). Under assumption (K3), we can define an asymptotic level
α test for the hypotheses from Equation (4.5): the K-sign depth test.

Definition 4.7 (K-Sign Depth Test).
Let α ∈ (0, 1) be the desired significance level and suppose that the parametric family

{
Rθ

n : n ∈ {1, . . . , N} , θ ∈ Θ
}

(4.1)

satisfies assumption (K3). For K ≥ 3, the K-sign depth test for the hypotheses

H0 : θ∗ ∈ Θ0 vs. H1 : θ∗ ∈ Θ \Θ0

is the asymptotic level α test given by

ϕN = 1

{
sup
θ∈Θ0

ΨK

(WN (θ)
)

< qα(ΨK)

}
,

where qα(ΨK) denotes the α-quantile of ΨK(W ) for a standard Brownian motion W .

Less formally, the K-sign depth test is given by the rule:

reject H0 if sup
θ∈Θ0

ΨK

(WN (θ)
)

< qα(ΨK) ,

17The convergence holds with respect to Pθ∗ . For aesthetic reasons we omit parameters in the Bachmann-
Landau notation whenever they are clear from the context.
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which means that the null hypothesis is rejected if the normalized K-sign depth for all
parameters θ ∈ Θ0 lies below the α-quantile of the asymptotic distribution at the true
parameter. The conception of this test is borrowed from Müller 2005, p. 160, although
the use of the supremum tends to result in conservative tests. We can easily verify that
the asymptotic significance level of the test is at least α. For θ∗ ∈ Θ0, it follows from the
monotonicity of the probability measure that

lim
N→∞

Pθ∗ (ϕN = 1) = lim
N→∞

Pθ∗

(
sup
θ∈Θ0

ΨK

(WN (θ)
)

< qα(ΨK)

)

≤ lim
N→∞

Pθ∗

(
ΨK

(WN (θ∗)
) ≤ qα(ΨK)

)
.

The condition (K3) ensures that ΨK

(WN (θ∗)→ ΨK(W ) in distribution, and hence

lim
N→∞

Pθ∗

(
ΨK

(WN (θ∗)
) ≤ qα(ΨK)

)
= Pθ∗

(
ΨK(W ) ≤ qα(ΨK)

)
= α .

Combining these equations yields the desired significance level, since then

lim
N→∞

Pθ∗ (ϕN = 1) ≤ α .

Having introduced the K-sign test for arbitrary natural K ≥ 3, in the following we will
restrict ourselves entirely to the case K = 3.

4.2. Consistency of the 3-Sign Depth Test

In order that a level α test ϕN is consistent for the hypotheses (4.5), it must hold that

lim
N→∞

Pθ∗

(
ϕN = 1

)
= 1 for all θ∗ /∈ Θ0 , (4.6)

which means that the power of the test converges to 1 for each fixed parameter under the
alternative hypothesis. If we want to show that the 3-sign depth test from Definition 4.7
is consistent for any significance level α ∈ (0, 1), we therefore have to prove that

lim
N→∞

Pθ∗

(
sup
θ∈Θ0

Ψ3
(WN (θ)

)
< qα(Ψ3)

)
= 1 for all α ∈ (0, 1) and θ∗ /∈ Θ0. (4.7)

In Subsection 4.2.1, we will first examine conditions under which Equation (4.7) is
satisfied, so that the 3-sign depth test is consistent. We then transfer these conditions to
an intensity-based framework in Subsection 4.2.2.

4.2.1. General Consistency Conditions for the 3-Sign Depth Test

With the introduction of the rescaled random walk WN (θ) and the normalized K-sign
depth ΨK

(WN (θ)
)
, a compact definition of the K-sign depth test became possible. While

neither would be needed for an abstract definition of this test, they prove useful for
formulating consistency conditions: As shown in Leckey, Jakubzik and Müller 2023, the
consistency of the 3-sign depth test can be derived from the asymptotic behavior of

∥∥WN (θ)
∥∥

∞ := sup
t∈[0,1]

∣∣WN
t (θ)

∣∣ ,
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that is, the maximum of WN (θ) on the interval [0, 1]. This is particularly advantageous
because the functional Ψ3 constitutes the major complexity of the normalized 3-sign
depth and even more so of its asymptotic distribution. We restate here the main theorem
of Leckey, Jakubzik and Müller 2023.

Theorem 4.8 (Consistency of the 3-Sign Depth Test via Asymptotic Behavior ofWN (θ);
Theorem 3.1 of Leckey, Jakubzik and Müller 2023).
Let Ψ3 be the functional from Theorem 4.4 and let WN (θ) be as in Equation (4.3).
If, for θ∗ /∈ Θ0,

Pθ∗

(
lim inf
N→∞

infθ∈Θ0

∥∥WN (θ)
∥∥

∞√
N

> 0

)
= 1 , (4.8)

then

Pθ∗

(
lim

N→∞
sup
θ∈Θ0

Ψ3
(WN (θ)

)
= −∞

)
= 1 . (4.9)

Proof. Section 6.1 of Leckey, Jakubzik and Müller 2023 is dedicated to the proof of
Theorem 4.8. For the basic proof idea, we recall that an integral appears in the definition
of Ψ3

(WN (θ)
)
. This integral contains a transformation ofWN (θ) as the integrand, namely

(WN
1 (θ)− 2WN

t (θ)
)2

.

If the condition from Equation (4.8) applies, this transformation tends to infinity on an
interval of positive length. Consequently, the integral itself converges to infinity. Since
the integral in Ψ3

(WN (θ)
)

carries a negative sign, Equation (4.9) ensues. The main work
lies in embedding this argument into a probabilistic context.

If Equation (4.9) holds for all θ∗ /∈ Θ0, then Equation (4.7) is satisfied and the 3-sign
depth test is consistent. To see this, note that it follows immediately from Equation (4.9)
that

Pθ∗

(
lim

N→∞
sup
θ∈Θ0

Ψ3
(WN (θ)

)
< qα(Ψ3)

)
= 1 for all α ∈ (0, 1) .

From here, the σ-continuity of the probability measure Pθ∗ then yields for all α ∈ (0, 1):

1 = Pθ∗

(
lim inf
N→∞

{
sup
θ∈Θ0

Ψ3
(WN (θ)

)
< qα(Ψ3)

})

= Pθ∗

(
lim

N→∞

∞⋂

n=N

{
sup
θ∈Θ0

Ψ3
(Wn(θ)

)
< qα(Ψ3)

})

= lim
N→∞

Pθ∗

( ∞⋂

n=N

{
sup
θ∈Θ0

Ψ3
(Wn(θ)

)
< qα(Ψ3)

})

≤ lim
N→∞

Pθ∗

(
sup
θ∈Θ0

Ψ3
(WN (θ)

)
< qα(Ψ3)

)
.

Thus, we recognize that Equation (4.8) does indeed provide a sufficient condition for
the consistency of the 3-sign depth test. Leckey, Jakubzik and Müller 2023 record this
conclusion in their Corollary 3.2.
In order for Equation (4.8) to be fulfilled, it often suffices to find an interval [t1, t2] ⊂ [0, 1],
t1 < t2 such that the increment

∣∣WN
t2

(θ)−WN
t1

(θ)
∣∣ is atypically large. As this increment is
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a rescaled sum of the signs of consecutive random variables Rθ
m, Rθ

m+1, . . . , Rθ
n for suitable

integers m < n, we need to identify index regions at which these random variables tend
to have either unusually many negative or positive signs (cf. Subsection 3.1 of Leckey,
Jakubzik and Müller 2023). To formalize this, we define

N+
m,n(θ) :=

n∑

j=m

1
{
Rθ

j > 0
}

and N−
m,n(θ) :=

n∑

j=m

1
{
Rθ

j < 0
}

.

The following lemma relates these random variables to
∥∥WN (θ)

∥∥
∞.

Lemma 4.9 (Sufficient Condition for Large
∥∥WN (θ)

∥∥
∞; Lemma 3.3 of Leckey, Jakubzik

and Müller 2023).
Let ε > 0 and N ∈ N. Then, for all θ ∈ Θ holds:

sup
n−m+1≥εN

max
{
N+

m,n(θ),N−
m,n(θ)

}

n−m + 1
− 1

2
> ε =⇒

∥∥WN (θ)
∥∥

∞ ≥ ε2
√

N , (4.10)

where the supremum is taken over all m, n ∈ {1, . . . , N} with n−m + 1 ≥ εN .

Proof. The proof is due to Leckey, Jakubzik and Müller 2023 and is given there in
Subsection 6.2. Since it is rather short and motivates the following steps, we reproduce it
here for convenience. Without loss of generality, we may start by assuming that

N+
m,n(θ)

n−m + 1
− 1

2
> ε (4.11)

for some integers m < n with n−m + 1 ≥ εN , since replacing Rθ
j by −Rθ

j has no effect

on
∥∥WN (θ)

∥∥
∞. Moreover, we observe that

N+
m,n(θ) +N−

m,n(θ) ≤ n−m + 1 , (4.12)

where equality holds if the Rθ
j are non-zero for all j ∈ {m, . . . , n}. By combining Equations

(4.11) and (4.12), we obtain:

WN
n
N

(θ)−WN
m−1

N

(θ) =
1√
N

n∑

j=m

sgn Rθ
j =

1√
N

(
N+

m,n(θ)−N−
m,n(θ)

) ∣∣apply Eq. (4.12)

≥ 1√
N

(
N+

m,n(θ)−
(
(n−m + 1)−N+

m,n(θ)
))

=
1√
N

(
2N+

m,n(θ)− (n−m + 1)
) ∣∣apply Eq. (4.11)

≥ 1√
N

2ε(n−m + 1) ≥ 2ε2
√

N ,

as n−m + 1 ≥ εN by assumption. The triangle inequality then yields

ε2
√

N ≤ 1

2

∣∣∣WN
n
N

(θ)−WN
m−1

N

(θ)
∣∣∣ ≤

∥∥WN (θ)
∥∥

∞

and therefore the assertion.
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If for ε > 0 and N ∈ N we define the event

AN,ε(θ) :=



 sup

n−m+1≥εN

max
{
N+

m,n(θ),N−
m,n(θ)

}

n−m + 1
− 1

2
> ε



 , (4.13)

then the implication from Equation (4.10) translates to

AN,ε(θ) ⊂
{∥∥WN (θ)

∥∥
∞ ≥ ε2

√
N
}

.

Hence,

⋂

θ∈Θ0

AN,ε(θ) ⊂
⋂

θ∈Θ0

{∥∥WN (θ)
∥∥

∞ ≥ ε2
√

N
}

=

{
inf

θ∈Θ0

∥∥WN (θ)
∥∥

∞ ≥ ε2
√

N

}
.

This property carries over to the set-theoretic limit inferior, and we further obtain:

lim inf
N→∞

⋂

θ∈Θ0

AN,ε(θ) ⊂ lim inf
N→∞

{
inf

θ∈Θ0

∥∥WN (θ)
∥∥

∞ ≥ ε2
√

N

}

⊂
{

lim inf
N→∞

infθ∈Θ0

∥∥WN (θ)
∥∥

∞√
N

≥ ε2

}
(4.14)

⊂
{

lim inf
N→∞

infθ∈Θ0

∥∥WN (θ)
∥∥

∞√
N

> 0

}
.

For the step from Equation (4.14), note that we have

ω ∈ lim inf
N→∞

{
inf

θ∈Θ0

∥∥WN (θ)
∥∥

∞ ≥ ε2
√

N

}

⇐⇒ ∃N0 = N0(ω) ∈ N ∀N ≥ N0 :
infθ∈Θ0

∥∥WN (θ)
∥∥

∞√
N︸ ︷︷ ︸

depends on ω

≥ ε2

=⇒ lim inf
N→∞

infθ∈Θ0

∥∥WN (θ)
∥∥

∞√
N

≥ ε2 .

This train of thought leads us to (and proves) another consistency criterion for the 3-sign
depth test based on index regions with either atypically many negative or positive signs
among their associated random variables. It is our criterion of choice in an intensity-based
framework and we will encounter it several times in the remainder of this chapter.

Corollary 4.10 (Consistency of the 3-Sign Depth Test via Atypical Index Regions;
Corollary 3.4 of Leckey, Jakubzik and Müller 2023).
Let AN,ε be defined as in Equation (4.13). If for θ∗ /∈ Θ0 there exists ε > 0 such that

Pθ∗


lim inf

N→∞

⋂

θ∈Θ0

AN,ε(θ)


 = 1 , (4.15)

then Equation (4.8) of Theorem 4.8 holds. In particular, if Equation (4.15) holds for
every θ∗ /∈ Θ0, then the 3-sign depth test is consistent.
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4.2.2. Consistency Conditions for the 3-Sign Depth Test in Intensity-Based Models

If we wish to apply statistical methods based on the K-sign depth in an intensity-based
framework, we quickly encounter a central issue: how can we obtain proper random
variables Rθ

n from the observable point processes, and according to which order should
they be arranged? Our aim is to find a suitable counterpart to the residuals of a classical
regression approach (cf. Subsection 4.2.1) to which the 3-sign depth test can be applied.
The flexible (and in a sense distribution free18) modelling based on cumulative intensities
prevents the definition of residuals directly based on the distribution of point processes,
although this is occasionally feasible depending on the specific model. Our solution
is to consider transformations of the corresponding point processes that meet certain
requirements to have them act as substitutes for the residuals.
In order to formulate such transformations and their requirements, we first specify the
framework in analogy to Definition 3.2 of the previous chapter. Unlike the framework
of Section 2.1, we allow that the counting processes follow one of up to L ∈ N distinct
distributions. This later permits us to incorporate L different experimental conditions
without the need for random covariates. The main reason to avoid random covariates here
is that they interact unfavourably with our chosen transformation - namely, the hazard
transformation.

Definition 4.11 (Intensity-Based Framework for a Consistent 3-Sign Depth Test).
Let N̊ (1), . . . , N̊ (L), L ∈ N, be independent, adapted counting processes on a filtered
probability space

(
Ω,F , {Ft}t∈I ,P

)
, where I = [0,∞). For each j ∈ N, let N (j) be an

i.i.d. copy of one of these processes and let lj ∈ {1, . . . , L} indicate which distribution
this counting process follows (i.e., the jth counting process is an i.i.d. copy of N̊ (lj)).
The

(
P, {Ft}t≥0

)
-compensator of N (j) is denoted by Λ(j). Let θ ∈ Θ be the parameter

of interest, where Θ ⊂ Rd, d ∈ N, is the parameter space. For each l ∈ {1, . . . , L}, let a
parametric model be given by a class Ml of cumulative intensities,

Ml = {Λl,θ : θ ∈ Θ} .

It is noteworthy that Definition 4.11 still incorporates the previous i.i.d. case by
choosing L = 1, since then all processes are i.i.d. copies of the single counting process
N̊ (1). In comparison to the framework for the minimum distance estimation, we were
able to apply three mitigations here: First, we did not demand absolute continuity of
the compensators; second, we did not impose any restrictions on the parameter range
up to this point; and third, we weakened the i.i.d. requirement and allowed for up to
L different distributions. The last point, though, entails its own set of assumptions,
specifically that the counting processes are terminating and that all L distributions
occur with an asymptotically non-vanishing proportion. This ensures that when the
number of replications tends to infinity, infinitely many i.i.d. observations are made for
all of these distributions or, as we will regularly call them, “classes”. We record these
first assumptions, along with other general requirements on the parametric model, in
Assumption 4.12 below.

18In the applications we consider, the probability structure of the counting processes is already fully
determined by the model according to Proposition A.35. Nevertheless, in general we will not deal with
the distribution of the associated point process.
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Assumption 4.12 (General Requirements for the Parametric Model).
As we did for the minimum distance estimator, we accumulate a number of assumptions
throughout this section. We refer to them only by the letter D (for depth), since here the
total number is much more moderate.

(D1) For each l ∈ {1, . . . , L}, the modelMl contains the compensator Λl of N̊ (l), so there
exists a true parameter θ∗ ∈ Θ such that

Λl = Λl,θ∗ .

The true parameter θ∗ is the same for all models and thus does not depend on l.

(D2) There exist constants cl ∈ N, l ∈ {1, . . . , L}, such that N̊
(l)
t → cl as t → ∞ with

probability one.

(D3) Each of the L distributions occurs with an asymptotic proportion of pl > 0, that is,

lim
J→∞

1

J

J∑

j=1

1{l}(lj) =: pl > 0 , for each l ∈ {1, . . . , L}.

The total number of observations is denoted by η :=
∑J

j=1 clj .

The condition (D1) is a limiting factor regarding the freedom of modelling, since
cumulative intensities may vary between the different classes, but must still share a true
parameter. Therefore, the most common application will be that the processes are allowed
to differ in terms of deterministic covariates (e.g., different initial stress levels) where they
were previously subject to random external effects. However, the respective cumulative
intensities may also contain different non-parametric components.
Note that, as a consequence of (D2), the counting processes N̊ (1), . . . , N̊ (L) are almost
surely terminating (the boundedness condition here is obviously even stronger).
The third condition (D3) prevents asymptotically negligible classes, that is, classes
that occur only finitely often or infinitely often with a vanishing proportion. Possible
attenuations of this condition are the subject of the following remark.

Remark 4.13 (On Asymptotically Negligible Classes).
If condition (D3) is violated because for some l ∈ {1, . . . , L} we have

1

J

J∑

j=1

1{l}(lj)→ 0 (J →∞) ,

we say that the class l is asymptotically negligible. The results of this section require in
principle only that L ≥ 1 asymptotically non-negligible classes exist. Inconveniences then
arise in the precise mathematical formulation, since the asymptotically negligible classes
must always be treated separately. This unnecessarily dilutes the following proofs, which
is why we will restrict ourselves here to the case of asymptotically non-negligible classes.

We have now reached the point where we can introduce proper transformations of the
observable point processes. These transformations may also take into account the past
of the processes. In a sense, this mirrors the autoregressive models mentioned earlier in
Remark 4.2. The further conditions are necessary to later derive the consistency of the
3-sign depth test by virtue of Corollary 4.10.
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Assumption 4.14 (Requirements Regarding the Transformation).
For each l ∈ {1, . . . , L} and i ∈ {1, . . . , cl}, let fl,i be a real-valued function on Θ× [0,∞)i

and define the transformation

Rθ
j,i := flj ,i

(
θ, T

(j)
i , . . . , T

(j)
1

)
.

The transforms Rθ
j,i are subject to the following conditions:

(D4) At θ = θ∗, the transforms have the distributional properties given as follows:

(i) The family
(
Rθ∗

j,i

)
j∈N,
i∈{1,...,clj

}
is independent (with respect to Pθ∗).

(ii) For all j ∈ N and i ∈ {1, . . . , clj} holds:

Pθ∗

(
Rθ∗

j,i > 0
)

=
1

2
= Pθ∗

(
Rθ∗

j,i < 0
)

.

(D5) For each l ∈ {1, . . . , L} with cl > 1 and i ∈ {2, . . . , cl}, let

Pθ∗

(
Rθ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= glj ,i (θ∗, θ, Aj,i) ,

where gl,i : Θ2 × R→ R is a continuous function and

Aj,i := alj ,i ◦
(
T

(j)
1 , . . . , T

(j)
i−1

)
for some function al,i : [0,∞)i−1 → R .

(D6) For each l ∈ {1, . . . , L} with cl > 1 and i ∈ {2, . . . , cl}, there exists an open
interval Ul,i such that on

{
Aj,i ∈ Ulj ,i

}
the random variable Rθ

j,i is monotone in each

component of θ. Formally, we demand that some ρ = (ρ1, . . . , ρd) ∈ {0, 1}d exists
such that for all θ = (θ1, . . . , θd) ∈ Θ, k ∈ {1, . . . , d} and ω ∈ {Aj,i ∈ Ulj ,i

}
we have

θk ≤ θ̃k =⇒ (−1)ρkR
(θ1,...,θk,...,θd)
j,i (ω) ≤ (−1)ρkR

(θ1,...,θ̃k,...,θd)
j,i (ω) .

In particular, ρ must not depend on θ or ω.

The property (D4) emulates the conditions usually imposed on residuals in a classical
regression model. Except for the indexing of the random variables, the conditions (K3)
and (D4) agree. In particular, condition (D4) ensures that Assumption 4.6 is satisfied. It
is needed for the 3-sign depth test to meet the requirements of a statistical hypothesis
test, because otherwise the type I error could not be controlled. On the other hand,
the conditions (D5) and (D6) later provide the consistency of the test. In (D5), the
function al,i comprises all the information that the past of the process contributes to the
probability of a positive transform, while the function gl,i links this information with
the influence of the parameters. Often Aj,i will be a weighted sum of the time points

T
(j)
1 , . . . , T

(j)
i−1. Technically (and analogously to Remark 4.13), the relationship given in

(D5) need not exist for all i and l. It is sufficient if it holds for selected indices, so that the
prerequisites stated later are fulfilled. The same applies to the conditional monotonicity
condition (D6). The corresponding Theorem 4.17 can very easily be adapted to reflect
this situation, but this would again needlessly inflate its formulation.
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We postpone the formulation of this theorem for a while to address one remaining
problem: Given that the 3-sign depth is highly dependent on the ordering of the obser-
vations, how should the double-indexed transforms Rθ

j,i be ordered? While in a finite
sample the transforms apparently posses a canonical order with respect to i for each fixed
j ∈ {1, . . . , J}, we need to specify the ordering with respect to j as J → ∞. Clearly,
it is not useful to simply append new observations to the end and completely neglect
the concept of depth. Instead, assumption (D5) allows us to apply a random ordering
based on the past of the counting processes, the total order ≤acc. Moreover, this ordering
preserves the canonical order with respect to i for each j ∈ N.

Definition 4.15 (Total Order ≤acc).
Let Aj,i be defined as in Assumption 4.14 and set Aj,1 ≡ 0 for all j ∈ N. The total order
≤acc on the set

Robserved :=
{

(j, i) ∈ N× N : 1 ≤ i ≤ clj

}

is then defined by

(j, i) ≤acc (n, m) :⇐⇒ i < m ∨ (i = m ∧ lj < ln)

∨ (i = m ∧ lj = ln ∧ Aj,i ≤ An,m) .

This total order hence sorts the observed transforms first by the number i of realized
time points, then by the underlying distribution lj , and finally by the essential past Aj,i

of the process. We illustrate this three-step ordering in Example 4.16.

Example 4.16 (Visualization of the Total Order ≤acc).
To demonstrate the ordering from Definition 4.15, we consider L = 2 two classes. Suppose
that we run J = 3 experiments with l1 = l3 = 1 and l2 = 2, which means that the first
and third experiments were conducted under the same experimental conditions, while
the second experiment had a different setup. In both cases, we assume that c1 = c2 = 2
component failures can be observed. If we perform the experiments sequentially, we then
obtain the observations in the order (1, 1) (first experiment, first failure), (1, 2) (first
experiment, second failure), (2, 1) (second experiment, first failure) and so on:

(1, 1)

l1 = 1
A1,1 = 0

(1, 2)

l1 = 1
A1,2 = 3

(2, 1)

l2 = 2
A2,1 = 0

(2, 2)

l2 = 2
A2,2 = 1

(3, 1)

l3 = 1
A3,1 = 0

(3, 2)

l3 = 1
A3,2 = 2

Here we have included the realizations Aj,i(ω) of each of the random variables Aj,i (we
omit the argument ω for brevity), which will be used in the last step of the ordering.
In the first step, the observations are ordered by the number of component failures, which
simply corresponds to the second component of the (j, i):

(1, 1)

l1 = 1
A1,1 = 0

(2, 1)

l2 = 2
A2,1 = 0

(3, 1)

l3 = 1
A3,1 = 0

(1, 2)

l1 = 1
A1,2 = 3

(2, 2)

l2 = 2
A2,2 = 1

(3, 2)

l3 = 1
A3,2 = 2

first component failures second component failures
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In the second step, we then further order the observations by their corresponding class lj :

(1, 1)

l1 = 1
A1,1 = 0

(3, 1)

l3 = 1
A3,1 = 0

(2, 1)

l2 = 2
A2,1 = 0

(1, 2)

l1 = 1
A1,2 = 3

(3, 2)

l3 = 1
A3,2 = 2

(2, 2)

l2 = 2
A2,2 = 1

1st class 2nd class 1st class 2nd class

first component failures second component failures

In the third and final step, we arrange the observations with the same number of compo-
nent failures and from the same class by their essential past Aj,i: Because of A1,1(ω) = 0 =
A3,1(ω), the order of (1, 1) and (3, 1) is interchangeable, but A1,2(ω) = 3 > 2 = A3,2(ω)
implies (1, 2) 6≤acc (3, 2) so that (3, 2) and (1, 2) must be switched. Overall, this gives us
the following ordering with respect to ≤acc:

(1, 1)

l1 = 1
A1,1 = 0

(3, 1)

l3 = 1
A3,1 = 0

(2, 1)

l2 = 2
A2,1 = 0

(3, 2)

l3 = 1
A3,2 = 2

(1, 2)

l1 = 1
A1,2 = 3

(2, 2)

l2 = 2
A2,2 = 1

We have now assembled all the components to state the central theorem of this section.
It represents an application of Corollary 4.10 to an intensity-based framework, and itself
provides a consistency criterion for the 3-sign depth test. The essential condition of
Theorem 4.17 - given in Equation (4.16) - will turn out to be particularly easy to verify
for the load-sharing models under consideration.

Theorem 4.17 (Consistency of the 3-Sign Depth Test for Compact Θ0).
In the framework of Definition 4.11, suppose that the conditions (D1) through (D6) of
Assumptions 4.12 and 4.14 are fulfilled. Let Θ = Θ0 ∪Θ1 with Θ0 ∩Θ1 = ∅, where Θ0 is
compact. If for each θ∗ ∈ Θ1 and θ ∈ Θ0 there exist l ∈ {1, . . . , L}, i ∈ {2, . . . , cl} and
x ∈ supp

(
Aj,i

) ∩ Ul,i for j with lj = l satisfying

glj ,i (θ∗, θ, x) 6= 1

2
, (4.16)

then the 3-sign depth test with transforms Rθ
j,i ordered according to ≤acc is consistent for

the hypotheses
H0 : θ∗ ∈ Θ0 vs. H1 : θ∗ ∈ Θ1 .

The proof of Theorem 4.17 requires a basic lemma, which we state here in advance.

Lemma 4.18 (Limit Superior of Finite Unions of Asymptotic Null Sets).

Let (Ω,F ,P) be a probability space and A(i) :=
(
A

(i)
n

)
n∈N
⊂ A for i ∈ I ⊂ N with |I| <∞.

Suppose that P
(

lim supn→∞ A
(i)
n

)
= 0 holds for each i ∈ I. Then,

P

(
lim sup

n→∞

⋃

i∈I

A(i)
n

)
= 0 . (4.17)
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Proof. At first, note that for each i ∈ I we have by assumption and the continuity of the
probability measure P that

lim
n→∞

P



⋃

m≥n

A(i)
m


 = P


 lim

n→∞

⋃

m≥n

A(i)
m


 = P

(
lim sup

n→∞
A(i)

n

)
= 0 . (4.18)

For an arbitrary ε > 0, there exists n0 ∈ N so that according to Equation (4.18) the
following holds simultaneously for all i ∈ I:

P



⋃

m≥n0

A(i)
m


 <

ε

|I| , for all i ∈ I . (4.19)

From Equation (4.19), we easily obtain by the subadditivity of the probability measure P:

P

(
lim sup

n→∞

⋃

i∈I

A(i)
n

)
≤ P



⋃

m≥n0

⋃

i∈I

A(i)
m


 ≤

∑

i∈I

P



⋃

m≥n0

A(i)
m


 < ε , (4.20)

therefore completing the proof.

We now return to the proof of Theorem 4.17.

Proof of Theorem 4.17. By the equivalence of norms on finite dimensional spaces, we can
use the maximum norm ‖·‖∞ throughout this proof. This becomes useful later when we
exploit the conditional monotonicity of the transforms in each component of θ.
Fix any θ∗ ∈ Θ1. Then, for each θ ∈ Θ0, there exist l = l(θ), i = i(θ) and x = x(θ) ∈
supp

(
Aj,i

) ∩ Ul,i (where lj = l) such that

glj ,i (θ∗, θ, x) 6= 1

2
.

The random variables Aj,i for j with lj = l and fixed i are i.i.d. by construction. We
choose j0 := min{j : lj = l} to avoid ambiguity later on.

Due to the continuity of glj ,i, for any given ε = ε(θ) <
∣∣∣glj ,i (θ∗, θ, x)− 1

2

∣∣∣ we now find

δ = δ(θ) > 0 and an open interval Int = Int(θ) ∋ x with Int ⊂ Ul,i (since x ∈ Ul,i and Ul,i

is open) and Pθ∗ (Aj,i ∈ Int) > 0 (since x ∈ supp(Aj,i)) so that either

glj ,i

(
θ∗, θ̃, x̃

)
>

1

2
+ ε for all θ̃ ∈ B2δ (θ) , x̃ ∈ Int , (4.21)

or

glj ,i

(
θ∗, θ̃, x̃

)
<

1

2
− ε for all θ̃ ∈ B2δ (θ) , x̃ ∈ Int . (4.22)

For convenience, we can assume below that Int is a compact interval with the same
properties. Note the factor 2 used here, which allows us some leeway later when we
take a closer look at the boundaries of the smaller sets Bδ (θ). Moreover, these open
neighbourhoods Bδ (θ) form an open cover of the compact set Θ0, for which a finite
subcover can be found (we write δν instead of δ(θν)):

Θ0 ⊂
νmax⋃

ν=1

Bδν (θν) .
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Let ε0 := minν ε(θν). For each ν = 1, . . . , νmax, we proceed to show that, for some ε > 0,

Pθ∗


lim inf

η→∞

⋂

θ∈Bδν(θν)

Aη,ε(θ)


 = 1 ,

where Aη,ε(θ) is given as in Equation (4.13), that is,

Aη,ε(θ) :=



 sup

n−m+1≥εη

max
{
N+

m,n(θ),N−
m,n(θ)

}

n−m + 1
− 1

2
> ε



 .

We will treat only the case from Equation (4.21) and examine the events

{
sup

n−m+1≥εη

N+
m,n(θ)

n−m + 1
− 1

2
> ε

}
⊂ Aη,ε(θ) .

The case from Equation (4.22) can be handled analogously by replacing N+
m,n(θ) with

N−
m,n(θ). Choose any ν ∈ {1, . . . , νmax} and define

N+
Int(θ) :=

∑

j∈Jl

1

{
Rθ

j,i > 0, Aj,i ∈ Int
}

, θ ∈ B2δν (θν) , (4.23)

where Jl := {j ∈ {1, . . . , J} : lj = l} and i = i(θν), l = l(θν), Int = Int(θν) are fixed (we
suppress the dependence on the indices i and l in the notation N+

Int(θ)). By construction,
the summation takes place over independent (the index of summation is j) and identically
distributed (lj = l for each j ∈ Jl) random variables. Since |Jl| → ∞ as J → ∞, the
strong law of large numbers provides :

1

|Jl|
N+

Int(θ) =
1

|Jl|
∑

j∈Jl

1

{
Rθ

j,i > 0, Aj,i ∈ Int
}

J→∞−→ Pθ∗

(
Rθ

j0,i > 0, Aj0,i ∈ Int
)

Pθ∗-almost surely.

Likewise, we obtain

1

|Jl|
∑

j∈Jl

1 {Aj,i ∈ Int} J→∞−→ Pθ∗ (Aj0,i ∈ Int) Pθ∗-almost surely.

Therefore, combining the above findings yields:

N+
Int(θ)

∑
j∈Jl

1 {Aj,i ∈ Int} −
1

2
J→∞−→

Pθ∗

(
Rθ

j0,i > 0, Aj0,i ∈ Int
)

Pθ∗ (Aj0,i ∈ Int)
− 1

2

(∗)
=

∫
{Aj0,i∈Int} glj0

,i (θ∗, θ, Aj0,i) dPθ∗

Pθ∗ (Aj0,i ∈ Int)
− 1

2

>

(
1
2 + ε0

)
Pθ∗ (Aj0,i ∈ Int)

Pθ∗ (Aj0,i ∈ Int)
− 1

2
= ε0 Pθ∗-almost surely.

The identity (∗) follows from condition (D5): For this, note that for arbitrary random
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variables Y = h(Z), X, Z and sets B, C the property P(X ∈ B |Z) = g(h(Z)) implies
with the tower property that

P (X ∈ B, Y ∈ C) = E (1B(X) · 1C(h(Z))) = E [E (1B(X) · 1C(h(Z)) |Z)]

= E [1C(h(Z)) · E (1B(X) |Z)] = E [1C(h(Z)) · P (X ∈ B |Z)]

= E [1C(h(Z)) · g(h(Z))] =

∫

{Y ∈C}
g(h(Z)) dP .

Here, X = Rθ
j0,i, Y = Aj0,i, Z =

(
T

(j0)
1 , . . . , T

(j0)
i−1

)⊤
, g = glj0

,i, h = alj0
,i and B = (0,∞),

C = Int. To proceed with the proof, note that |Jl| =
∑J

j=1 1{l}(lj) by definition and thus
|Jl|
J

J→∞−→ pl according to condition (D3). Due to condition (D2) we can write

η =
J∑

j=1

clj =
L∑

l=1

∑

j∈Jl

clj =
L∑

l=1

|Jl| · cl ,

and hence obtain by again condition (D3):

1

η
=

1

|Jl|
|Jl|
η

=
1

|Jl|
|Jl|
J∑L

l=1
|Jl|
J
· cl

,

where
|Jl|
J∑L

l=1
|Jl|
J
· cl

J→∞−→ pl∑L
l=1 pl · cl

.

Obviously, J → ∞ if and only if η → ∞ since cl < ∞ for all l ∈ {1, . . . , L}. We can
conclude:

1

η

∑

j∈Jl

1 {Aj,i ∈ Int} η→∞−→ pl∑L
l=1 pl · cl

Pθ∗

(
Aj0,i(θν) ∈ Int(θν)

)

︸ ︷︷ ︸
=:ε̃(θν)

≥ ε1 > 0 Pθ∗-almost surely,

where ε1 := minν ε̃(θν). Until now we have considered an arbitrary θ ∈ B2δν (θν). We now
want to move to a “reference parameter” θ0

ν that lies on the edge of Bδν (θν) (recall that
we use here the maximum norm). The local monotonicity condition (D6) and choice of
norm yield the existence of some θ0

ν ∈ Bδν (θν) such that

Rθ
j,i ≥ R

θ0
ν

j,i on {Aj,i ∈ Ulj ,i} for all θ ∈ Bδν (θν).

For this, we can simply choose θ0
ν as a vertex of the cube Bδν (θν). Because of Int ⊂ Ul,i,

we then infer that
N+

Int(θ) ≥ N+
Int(θ

0
ν) .

Now let ε < min{ε0, ε1}. There then exists Ω0 = Ω0(θν) with Pθ∗(Ω0) = 1 so that for any
ω ∈ Ω0 there exists ηω such that for all η ≥ ηω simultaneously holds:

∑

j∈Jl

1

{
Aj,i(θν)(ω) ∈ Int

}
> εη , (4.24)
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N+
Int(θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ Int} −
1

2
≥ N+

Int(θ
0
ν)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ Int} −
1

2
> ε , for all θ ∈ Bδν (θν).

As we order the transforms with respect to ≤acc, the Rθ
j,i with Aj,i ∈ Int appear in

succession. Accordingly, from Equation (4.24) we can infer that at least ⌈εη⌉ consecutive
observations satisfy Aj,i(ω) ∈ Int, and all these Rθ

j,i(ω) are counted in N+
Int(θ)(ω) (since

the indicator function returns 1 for all of them). This implies that, for all θ ∈ Bδν (θν)
and η ≥ ηω,

sup
n−m+1≥εη

N+
m,n(θ)(ω)

n−m + 1
− 1

2
≥ N+

Int(θ)(ω)
∑

j∈Jl
1 {Aj,i(ω) ∈ Int} −

1

2
> ε ,

which means that ω ∈ Aη,ε(θ). Hence,

ω ∈
⋂

θ∈Bδν(θν)

Aη,ε(θ) ∀η ≥ ηω =⇒ ω ∈ lim inf
η→∞

⋂

θ∈Bδν(θν)

Aη,ε(θ) ,

and thus we obtain:

1 = Pθ∗(Ω0) ≤ Pθ∗


lim inf

η→∞

⋂

θ∈Bδν(θν)

Aη,ε(θ)


 .

Lemma 4.18 (by taking complements in Equation (4.17)) then provides that

1 = Pθ∗


lim inf

η→∞

νmax⋂

ν=1

⋂

θ∈Bδν(θν)

Aη,ε(θ)


 = Pθ∗


lim inf

η→∞

⋂

θ∈Θ0

Aη,ε(θ)


 ,

which implies the consistency of the 3-sign depth test by Corollary 4.10.

Obviously, for Theorem 4.17 to hold, there must be at least one cl > 1. Otherwise,
no i > 1 can be found, so no observable past exists for any of the transforms. This is
represented by the trivial random variables Aj,1 ≡ 0. Moreover, it is also reflected in
conditions (D5) and (D6), where only those l with cl > 1 are considered. While our
primary goal is to cover cases where processes are distinguishable only when their past is
taken into account, this would exclude all one-point processes as an undesirable side effect.
However, Equation (4.16) basically only ensures that for some l and i > 1 the conditional

probability of any transform Rθ
j,i > 0 with j ∈ Jl given a feasible past T

(j)
1:(i−1) = t

(j)
1:(i−1)

differs from 1
2 . This condition can be easily extended to the case i = 1 by acknowledging

the associated unconditional probability as well, that is, Pθ∗

(
Rθ

j,1 > 0
)
. If we allow

Pθ∗

(
Rθ

j,1 > 0
) 6= 1

2

to be satisfied as an alternative to Equation (4.16), then with slight adjustments to the
conditions (D5) and (D6) the consistency of the 3-sign depth test can still be achieved.
Generally speaking, this case is actually the easier one, since we do not have to deal with
the intricacies of a random ordering, conditional monotonicity or dependence on the past.
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Assumption 4.19 (Further Requirements Regarding the Transformation).
The conditions (D5) and (D6) are supplemented as follows to include the case i = 1:

(D̃5) For each j ∈ N, the probability Pθ∗

(
Rθ

j,1 > 0
)

depends continuously on θ∗ and θ.

(D̃6) For each j ∈ N, the random variable Rθ
j,1 is monotone in each component of θ.

Corollary 4.20 (Extension of Theorem 4.17).
In the framework of Definition 4.11, suppose that the conditions (D1) through (D6)
of Assumptions 4.12 and 4.14 are fulfilled and that the conditions (D̃5) and (D̃6) of
Assumptions 4.19 apply. Let Θ = Θ0 ∪ Θ1 with Θ0 ∩ Θ1 = ∅, where Θ0 is compact.
Assume that for each θ∗ ∈ Θ1 and θ ∈ Θ0, there exists l = l(θ, θ∗) ∈ {1, . . . , L} such that
one of the following conditions holds:

(i) There are i ∈ {2, . . . , cl} and x ∈ supp
(
Aj,i

) ∩ Ul,i for j with lj = l satisfying

glj ,i (θ∗, θ, x) 6= 1

2
.

(ii) For all j with lj = l, it holds:

Pθ∗

(
Rθ

j,1 > 0
) 6= 1

2
.

Then, the 3-sign depth test with transforms Rθ
j,i ordered according to ≤acc is consistent

for the hypotheses
H0 : θ∗ ∈ Θ0 vs. H1 : θ∗ ∈ Θ1 .

Corollary 4.20 extends Theorem 4.17 to the extent that Equation (4.16) - here case (i)
- does not necessarily have to be fulfilled, but case (ii) may occur alternatively.

Proof. We start as in the proof of Theorem 4.17 and will use the maximum norm here too.
We fix any θ∗ ∈ Θ1. Then, by premise, for each θ ∈ Θ0 there exists l ∈ {1, . . . , L} such
that either case (i) or case (ii) holds. In case (i), we then construct an open neighbourhood
Bδ (θ) as in the previous proof. In case (ii), we mirror this procedure: condition (D̃5)
ensures that for any given ε = ε(θ) <

∣∣Pθ∗

(
Rθ

j,1 > 0
) − 1

2

∣∣ we find δ = δ(θ) > 0 so that
either

Pθ∗

(
R θ̃

j,1 > 0
)

>
1

2
+ ε for all θ̃ ∈ B2δ (θ) , (4.25)

or

Pθ∗

(
R θ̃

j,1 > 0
)

<
1

2
− ε for all θ̃ ∈ B2δ (θ) . (4.26)

Consequently, we also obtain an open neighbourhood Bδ (θ) in this case. Altogether, these
neighbourhoods (whether they come from case (i) or case (ii)) form an open cover of Θ0,
for which again a finite subcover can be found,

Θ0 ⊂
ν

(i)
max⋃

ν=1

Bδν (θν)

︸ ︷︷ ︸
case (i)

∪
ν

(i)
max+ν

(ii)
max⋃

ν=ν
(i)
max+1

Bδν (θν)

︸ ︷︷ ︸
case (ii)

,
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where the first union is over ν
(i)
max parameters belonging to case (i) and the second union

is over ν
(ii)
max parameters belonging to case (ii). Clearly, this partition is neither uniquely

determined nor can ν
(i)
max = 0 or ν

(ii)
max = 0 be ruled out. If ν

(i)
max > 0, the proof of Theorem

4.17 immediately provides that, for some suitable ε > 0,

Pθ∗


lim inf

η→∞

ν
(i)
max⋂

ν=1

⋂

θ∈Bδν(θν)

Aη,ε(θ)


 = 1 .

To complete the proof, we only need to show that an analogous identity also holds for the

intersection over the parameters belonging to case (ii), insofar as ν
(ii)
max > 0.

For this, let ε0 := minν ε(θν). We will again treat only the case from Equation (4.25) and
proceed as before. Instead of N+

Int, we define

N+(θ) :=
∑

j∈Jl

1

{
Rθ

j,1 > 0
}

, for θ ∈ B2δν (θν) and ν ∈ {ν(i)
max + 1, . . . , ν(ii)

max} ,

which is already considerably easier than its counterpart from Equation (4.23). This
simplifies the rest of the proof: For all θ ∈ B2δν (θν), the law of large numbers yields

1

|Jl|
N+(θ)− 1

2
J→∞−→ Pθ∗

(
Rθ

j,1 > 0
)
− 1

2
> ε Pθ∗-almost surely.

Furthermore, we obtain deterministically that

|Jl|
η

J→∞−→ pl∑L
l=1 pl · cl

=: ε1 .

The monotonicity condition (D̃6) allows us to determine a reference parameter θ0
ν ∈

Bδν (θν) such that
N+(θ) ≥ N+(θ0

ν) for all θ ∈ Bδν (θν).

For any ε < min{ε0, ε1}, there then exists Ω0 = Ω0(θν) with Pθ∗(Ω0) = 1 and the property
that for any ω ∈ Ω0 there exists ηω such that for all η ≥ ηω we have

|Jl| > εη and
1

|Jl|
N+(θ)− 1

2
> ε , for all θ ∈ Bδν (θν).

With respect to ≤acc, the transforms with i = 1 are ordered by their class l. Hence, the
Rθ

j,1 with j ∈ Jl appear in succession and therefore

sup
n−m+1≥εη

N+
m,n(θ)(ω)

n−m + 1
− 1

2
≥ N

+(θ)(ω)

|Jl|
− 1

2
> ε , for all θ ∈ Bδν (θν), ω ∈ Ω0 and η ≥ ηω.

From here, the rest of the proof then is completely analogous to that of Theorem 4.17.

Even though the conditions on the transformations fl,i have been formulated more
generally, the framework of Assumptions 4.14 is tailor-made for the application of the
hazard transformation. We can use Corollary 4.20 to derive the consistency of the 3-sign
depth test based on hazard transforms for many load sharing models. As an example, we
demonstrate this for the equal load sharing model of Kvam and Peña 2005, see Equation

114



(2.14). We only need to abandon type I censoring in order to conform to the framework
for hazard transforms in load sharing models of Definition 2.23.

Example 4.21 (Consistency of the 3-Sign Depth Test in the Equal Load Sharing Model of
Kvam and Peña 2005).
We consider the load sharing model given by the parametric conditional hazard functions

hθ
l,i

(
t
∣∣ t(j)

1:(i−1)

)
=

{
α(t)θi−1 (I − (i− 1)) , if i ≤ cl,

0 , otherwise,

where cl ∈ {1, . . . , I} determines the number of critical component failures, l ∈ {1, . . . , L}
and i ∈ {1, . . . , I}. In comparison to the model from Equation (2.14), we have dispensed
with type I censoring, but in exchange the number of critical component failures is allowed
to depend on the particular experiment. We may also admit an experiment-specific
baseline hazard αj , but we refrain from doing so only for the sake of readability.
The basic Assumptions 4.12 are easily satisfied: (D1) is the basic modelling assumption
that is always accepted to be true. (D2) is satisfied if α > 0 almost everywhere (for the
Basquin load sharing models, this is proved in Lemma 4.22; the proof is easily transferred).
(D3) can be accomplished by an appropriate experimental design: If a finite assortment of
experimental conditions d = (d1, . . . , dν) ∈ {1, . . . , L}ν , ν ∈ N, is repeated consecutively
as the total number of systems tends to infinity, then

pl =
1

ν

ν∑

j=1

1{l}(dj) , l ∈ {1, . . . , L} ,

which means that the asymptotic proportion of class l is equal to the relative proportion
of class l in the design d. Consequently, no class occurring in d is asymptotically negligible.
Let us assume that α > 0 almost everywhere. In practical terms, this prohibits time
periods during which no component failures can occur (e.g., a pause in the experiment).
If we consider the standardized19 hazard transform process of Definition 2.29, that is,

Rθ
j,i := H θ

lj ,i

(
T

(j)
i

∣∣T (j)
1:(i−1)

)
− ln(2) ,

then (D4) is satisfied according to Theorem 2.20 (cf. Equation (2.60)). For the remaining
conditions (D5) and (D6), let

G(t) :=

∫ t

0
α(u) du , t ∈ [0,∞) .

Then, for j ∈ N and i ≤ clj , the cumulative conditional hazard function on
[
T

(j)
i−1,∞) is

H θ
lj ,i

(
t
∣∣T (j)

1:(i−1)

)
=

∫ t

T
(j)
i−1

α(u)θi−1(I − (i− 1)) du

= θi−1(I − (i− 1))
[
G
(
t
)−G

(
T

(j)
i−1

)]
,

19In Definition 2.29, the notation R̃θ
j,i is used to distinguish the standardized transforms from the ordinary

transforms. Since we only use the standardized hazard transforms here, we drop the tilde.
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with an inverse on [0,∞) given via

(
H θ

lj ,i

)−1 (
u
∣∣T (j)

1:(i−1)

)
= G−1

(
u

θi−1(I − (i− 1))
+ G

(
T

(j)
i−1

))
.

Therefore,

H θ∗

lj ,i

((
H θ

lj ,i

)−1 (
u
∣∣T (j)

1:(i−1)

) ∣∣∣T (j)
1:(i−1)

)

= θ∗
i−1(I − (i− 1))

[
G

(
G−1

(
u

θi−1(I − (i− 1))
+ G

(
T

(j)
i−1

)))
−G

(
T

(j)
i−1

)]

= θ∗
i−1(I − (i− 1))

[
u

θi−1(I − (i− 1))

]

=
θ∗

i−1

θi−1
u ,

so from Equation (2.49) we get:

Pθ∗

(
Rθ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= exp

(
−θ∗

i−1

θi−1
ln(2)

)
=

(
1

2

) θ∗
i−1

θi−1
= glj ,i (θ∗, θ, Aj,i) ,

where for l ∈ {1, . . . , L} and i ∈ {1, . . . , cl} the function gl,i : Θ2 × R→ R is defined as

gl,i (θ∗, θ, x) =

(
1

2

) θ∗
i−1

θi−1
. (4.27)

Obviously, gl,i is continuous. Since this function does not depend on x, we can choose
al,i ≡ 0 for all l ∈ {1, . . . , L} and i ∈ {1, . . . , cl} to satisfy condition (D5). As a
consequence, Aj,i ∼ δ0 for all j ∈ N and i ∈ {1, . . . , clj}. Finally,

Rθ
j,i = θi−1(I − (i− 1))

[
G
(
T

(j)
i

)
−G

(
T

(j)
i−1

)]
− ln(2) ,

which is strictly increasing in θi−1 and constant in all other parameters with probability
one. Accordingly, (D6) is fulfilled for arbitrary intervals Ul,i ∋ 0.
For the consistency of the 3-sign depth test, let θ∗ ∈ Θ1 and θ ∈ Θ0. Since θ∗ 6= θ, there
is some i0 ∈ {1, . . . , I} with θ∗

i0−1 6= θi0−1. By Corollary 4.20, we only have to show that

gl,i (θ∗, θ, 0) 6= 1

2
for some l ∈ {1, . . . , L} and i ∈ {1, . . . , cl}.

By Equation (4.27), this is equivalent to the condition that

θ∗
i−1 6= θi−1 for some l ∈ {1, . . . , L} and i ∈ {1, . . . , cl},

which is satisfied if there exists l ∈ {1, . . . , L} with cl ≥ i0. From this we can infer that
the 3-sign depth test is consistent if and only if for each θ∗ ∈ Θ1 and θ ∈ Θ0 there exists
i0 ≤ maxl∈{1,...,L} cl such that θ∗

i0−1 6= θi0−1. This can be understood as a minimum
requirement, since otherwise the hazard functions at θ∗ and θ would agree for all j ∈ N

and i ∈ {1, . . . , clj}. Heuristically, this means that the parameters cannot be distinguished
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by the model itself, which precludes any test from being consistent.

In the above example, we saw that the condition from Corollary 4.20 as well as the
technical requirements (D5) and (D6) were easily verified. This is partly because the
model does not take into account the past of the process, which is reflected in the trivial
essential past Aj,i ≡ 0. The complexity of Corollary 4.20 (but also its potency) becomes
apparent only when we consider models with damage accumulation. We do so in the
following section, where we apply our results to the model ×D.

4.3. Application to the Basquin Load Sharing Model With Multiplicative
Damage Accumulation

In analogy to the previous chapter on minimum distance estimation, we round out the
theoretical framework on the K-sign depth by examining its application to the model ×D.
For this specific model, the consistency results of Section 4.2 can be further extended.
This upcoming corollary allows us to test for the presence of damage accumulation (i.e.,
to consider the null hypothesis H0 : θ∗

3 = 0, which here corresponds to the non-compact
set Θ0 = (0,∞)×R×{0}). However, the flexibility of these hypotheses comes at the price
of additional constraints on the model: We assume that the initial stress level sj of the
jth experiment is chosen deterministically and that the observation horizon is unbounded.
For the model, this means that the interval I = [0,∞) is no longer compact and we
formally require τ0 ∼ δ∞. What seems to be a limitation at first sight, in practice allows
a simplified implementation, since experiments are no longer subject to a rigorous i.i.d.
assumption and can instead be carried out under different initial conditions that have
been determined in advance. Moreover, these experiments may also differ substantially
in terms of their non-parametric parts. We can also mitigate some requirements on the
parameter range Θ, which is only assumed to satisfy π1(Θ) ⊂ (0,∞) and π3(Θ) ⊂ (−1, θ)
(i.e., θ1 > 0 and θ3 > −1 for all θ ∈ Θ). In particular, we do not impose any restrictions
on the parameter θ2. The remainder of this section is divided into two parts: In the first
subsection, we will review the conditions (D1) through (D6) for the Basquin load sharing
model with multiplicative damage accumulation and apply Theorem 4.17. In the second
subsection, we prove the consistency of the test for damage accumulation. We postpone
further discussion of possible extensions to the outlook.

4.3.1. Application of Theorem 4.17 to the Basquin Load Sharing Model With
Multiplicative Damage Accumulation

Example 4.21 provides an outline of how the conditions (D1) through (D6) can be checked
for the model ×D. As we may not consider random covariates in the sense of Assumptions
2.3, we replace them with up to L ∈ N deterministic experimental conditions. The models
Ml, l ∈ {1, . . . , L}, are then allowed to differ in terms of the following three experimental
conditions:

(i) cl ∈ {1, . . . , I}, the number of observable failures,

(ii) sl > 0, the initial stress level,

(iii) τl > 0, which serves as a normalizing constant here.
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In other words, for the jth experiment, we assume that the intensity is of the shape

×Dλ
(j)
θ (t) = θ1


slj

I

I −N
(j)
t−




θ2

 1

τlj

∫ t

0
slj

I

I −N
(j)
u−

du




θ3

· 1{
N

(j)

t− <clj

} , (4.28)

where lj ∈ {1, . . . , L}. Compared to the formula from Definition 2.8, we removed the
restriction {t ≤ τlj}. The reason for this is that type I censoring undesirably distorts the
distribution of the transformed point processes, which is addressed in Remark 2.22 for
the special case of the hazard transformation. It is precisely this transformation that we
will invoke later. We must therefore adhere to the framework from Definition 2.23, which
necessitates the requirement of deterministic covariates.

Verifying Conditions (D1) Through (D3)

We start by verifying the conditions (D1), (D2) and (D3) from Assumption 4.12. The
first condition (D1) can be understood as a plausibility assumption. If it is not satisfied,
all efforts of statistical inference are futile. It can never be verified in practice, whereas it
always holds for simulation studies, since the realized processes are always drawn from
the model in question. On the other hand, the fulfillment of conditions (D2) and even
more so (D3) is part of the experimental design. Specifically, the variable cl plays the
same role in the experimental condition (i) as in condition (D2). We record this coherence
in a first lemma.

Lemma 4.22 (Component Failures in the Basquin Load Sharing Model).

If the counting process N (j) admits the intensity
×Dλ

(j)
θ from Equation (4.28), then N

(j)
t →

clj as t→∞ with probability one.

Proof. Choose any sequence (tn)n∈N with tn →∞ as n→∞. Since the intensity
×Dλ

(j)
θ

vanishes on
{
N

(j)
t− ≥ clj

}
, it immediately follows that N

(j)
t ≤ clj for all t ≥ 0 with

probability one. Hence, as N
(j)
t is Pθ-almost surely non-decreasing in t, it holds that

Pθ

(
lim

n→∞ N
(j)
tn

= clj

)
= Pθ

(
lim

n→∞ N
(j)
tn
≥ clj

)
= lim

n→∞Pθ

(
N

(j)
tn
≥ clj

)
, (4.29)

by the σ-continuity of the probability measure. Equation (A.4) yields that

Pθ

(
lim

n→∞ N
(j)
tn

= clj

)
= lim

n→∞Pθ

(
T (j)

clj
≤ tn

)
,

or, equivalently, by taking complements:

Pθ

(
lim

n→∞
N

(j)
tn

< clj

)
= Pθ

(
lim

n→∞
N

(j)
tn
6= clj

)
= lim

n→∞
Pθ

(
T (j)

clj
> tn

)
. (4.30)

The absolute continuity of the compensator of N (j), trivially given by the fact that it can

be expressed as a cumulative intensity, implies that T
(j)
clj

follows a continuous distribution.
This is illustrated in the proof of Lemma A.37 in Appendix A.4, where the Lebesgue
densities are successively reconstructed from the compensator by virtue of Proposition
A.35. The tower property of the conditional expectation then provides:

Pθ

(
T (j)

clj
> tn

)
= Eθ

(
1{

T
(j)
clj

>tn

}
)

= Eθ

[
Eθ

(
1{

T
(j)
clj

>tn

}
∣∣∣T (j)

1:(clj
−1)

)]
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= Eθ

[
Pθ

(
T (j)

clj
> tn

∣∣∣T (j)
1:(clj

−1)

)]

= Eθ

[
Sθ

lj ,clj

(
tn

∣∣∣T (j)
1:(clj

−1)

)]

= Eθ

[
exp

(
−Hθ

lj ,clj

(
tn

∣∣∣T (j)
1:(clj

−1)

))]

= Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)]
. (4.31)

Substituting the conditional hazard function of the model ×D from Lemma 2.24, we get:

Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)]

= Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

θ1Bθ2
j,clj

[
1

τlj

(
Bj,clj

(
u− T

(j)
clj

−1

)
+ Aj,clj

)]θ3

du

)]
.

On
{

0 < T
(j)
clj

−1 <∞
}

(note that T
(j)
clj

−1 > 0 with probability one by Definition A.3),

θ1Bθ2
j,clj

[
1

τlj

(
Bj,clj

(
u− T

(j)
clj

−1

)
+ Aj,clj

)]θ3

≥ θ1Bθ2
j,clj

(
Aj,clj

τlj

)θ3

> 0 , for u > T
(j)
clj

−1.

Hence, for each ω ∈
{

0 < T
(j)
clj

−1 <∞
}

, we have:

exp

(
−
∫ tn

T
(j)
clj

−1(ω)
θ1Bθ2

j,clj

[
1

τlj

(
Bj,clj

(
u− T

(j)
clj

−1(ω)
)

+ Aj,clj
(ω)

)]θ3

du

)

︸ ︷︷ ︸
≤1

−→ 0 (n→∞) ,

and the dominated convergence theorem yields that

Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)
· 1{

0<T
(j)
clj

−1<∞
}
]
−→ 0 (n→∞) . (4.32)

However, we have not yet accounted for the case
{

T
(j)
clj

−1 =∞
}

, and by splitting Equation

(4.31) we obtain:

Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)]

= Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)
· 1{

0<T
(j)
clj

−1<∞
}
]

︸ ︷︷ ︸
= o(1) by Equation (4.32)
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+ Eθ

[
exp

(
−
∫ tn

T
(j)
clj

−1

hθ
lj ,clj

(
u
∣∣∣T (j)

1:(clj
−1)

)
du

)

︸ ︷︷ ︸
≤1

·1{
T

(j)
clj

−1=∞
}
]

≤ o(1) + Eθ

[
1{

T
(j)
clj

−1=∞
}
]

≤ Pθ

(
T

(j)
clj

−1 > tn

)
+ o(1) .

Altogether, we can infer that

Pθ

(
T (j)

clj
> tn

)
≤ Pθ

(
T

(j)
clj

−1 > tn

)
+ o(1) .

If we successively iterate this exact procedure, we therefore arrive at

Pθ

(
T (j)

clj
> tn

)
≤ Pθ

(
T

(j)
clj

−1 > tn

)
+ o(1) ≤ . . . ≤ Pθ

(
T

(j)
1 > tn

)
+ o(1) . (4.33)

This estimate has the advantage that T
(j)
1 as the first component failure does not depend

on the past of the process. More precisely, by Lemma 2.24, we have

Pθ

(
T

(j)
1 > tn

)
= Eθ

[
exp

(
−Hθ

lj ,1(tn)
)]

= Eθ


exp


−

θ1sθ2+θ3
lj

τ θ3
lj

(θ3 + 1)
tθ3+1
n




 ,

since Bj,1 = sj and Aj,1 = 0. Unlike before, this is the expected value of a constant,
because slj and τlj are assumed to be deterministic. Hence,

Pθ

(
T

(j)
1 > tn

)
= exp


−

θ1sθ2+θ3
lj

τ θ3
lj

(θ3 + 1)
tθ3+1
n


 −→ 0 (n→∞) .

Overall, from Equation (4.33) we can conclude that

Pθ

(
T (j)

clj
> tn

)
≤ Pθ

(
T

(j)
1 > tn

)
+ o(1) −→ 0 (n→∞) ,

and thus the assertion follows from Equation (4.30).

From Lemma 4.22, the condition (D2) is evident. Note that Equation (4.33) is particu-
larly intriguing, since the monotonicity of a point process guarantees that

Pθ

(
T (j)

clj
> tn

)
≥ Pθ

(
T

(j)
clj

−1 > tn

)
≥ . . . ≥ Pθ

(
T

(j)
1 > tn

)
.

In the given situation, we thus have for each i ∈ {1, . . . , clj − 1}:

Pθ

(
T

(j)
i > tn

)
≤ Pθ

(
T

(j)
i+1 > tn

)
≤ Pθ

(
T

(j)
i > tn

)
+ o(1) ,

so that these probabilities coincide asymptotically. We now turn to condition (D3):
Whether condition (D3) is satisfied is a matter of experimental design. Let us assume
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that in order to increase the number of trials, a finite design d with

d = (d1, . . . , dν) ∈ {1, . . . , L}ν , ν ∈ N ,

is repeated successively. For the jth experiment, this means that

lj := dj mod ν , j ∈ N ,

with the convention that d0 := dν , see Table 1 for an illustration. Similar to Example
4.21, we then have

pl = lim
J→∞

1

J

J∑

j=1

1{l}(lj) =
1

ν

ν∑

j=1

1{l}(dj) .

Therefore, for each l ∈ {1, . . . , L},

pl > 0 ⇐⇒
ν∑

j=1

1{l}(dj) > 0 ,

which is the case if the class l appears at least once in d. In other terms, any class present
in the design is asymptotically non-negligible. Consequently, if every class is present in
the design, then condition (D3) is met. However, without loss of generality, this can
always be achieved by discarding the classes that do not occur in d.

j 1 2 · · · ν − 1 ν ν + 1 · · · 2ν − 1 2ν 2ν + 1 · · ·
lj d1 d2 · · · dν−1 d0 = dν d1 · · · dν−1 d0 = dν d1 · · ·

Table 1: How to determine the class lj of the jth experiment when repeating the design d.

Verifying Conditions (D4) Through (D6)

To prove conditions (D4) to (D6) from Assumption 4.14, the transformations fl,i must
be suitably chosen. Analogous to Example 4.21, we consider the standardized hazard
transform of Definition 2.29, that is,

Rθ
j,i :=

×DH θ
lj ,i

(
T

(j)
i

∣∣T (j)
1:(i−1)

)
− ln(2) , θ ∈ Θ, j ∈ {1, . . . , J}, i ∈ {1, . . . , clj} .

Again, the condition (D4) is then due to Theorem 2.20 (see also Equation (2.60)). Similarly,
condition (D5) has already been shown in Remark 2.30. For each l ∈ {1, . . . , L} with
cl > 1, i ∈ {2, . . . , cl} and θ, θ∗ ∈ Θ, we have seen there that

Pθ∗

(
Rθ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= glj ,i (θ∗, θ, Aj,i) ,

where gl,i : Θ×Θ× R→ R is the deterministic function defined by

gl,i(θ, θ∗, x)

:= exp


−

θ∗
1B

θ∗
2−1

l,i

τ
θ∗

3
l (θ∗

3 + 1)





τ θ3

l (θ3 + 1)

θ1Bθ2−1
l,i

ln(2) + xθ3+1




θ∗
3 +1

θ3+1

− xθ∗
3+1





 . (4.34)
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We remark that here we have

Bl,i = sl
I

I − (i− 1)
,

since the load sharing term Bj,i depends on the jth experiment only by its class lj . If
Θ ⊂ (0,∞)× R× (−1,∞), then gl,i is continuous on Θ2 × R. Moreover, from Equation
(2.23) we know that

Aj,i =
i−1∑

k=1

Blj ,k

(
T

(j)
k − T

(j)
k−1

)
=: alj ,i

(
T

(j)
1 , . . . , T

(j)
i−1

)
.

Recall that T
(j)
0 ≡ 0, which is why T

(j)
0 does not appear in the argument of alj ,i.

There remains only condition (D6). Corollary 2.26 provides that

Rθ
j,i =

θ1Bθ2−1
lj ,i

τ θ3
lj

(θ3 + 1)

[
Aθ3+1

j,i+1 −Aθ3+1
j,i

]

︸ ︷︷ ︸
≥0

− ln(2) . (4.35)

For each ω ∈ Ω, Rθ
j,i(ω) is obviously monotonically increasing in θ1 and θ2, so we can

choose ρ1 = ρ2 = 0 for condition (D6). The monotonicity in θ3 is more difficult to
derive from Equation (4.35) because it may depend on the respective value of the two
damage accumulation terms Aj,i and Aj,i+1 and thus on ω ∈ Ω. This is the reason why we
allow a restriction to

{
Aj,i ∈ Ulj ,i

} ⊂ Ω for some open interval Ulj ,i in condition (D6) to

admit only selected ω. The key insight here is that the monotonicity of Rθ
j,i is essentially

inherited from the conditional hazard function
×Dhθ

lj ,i. For this, we observe:

Rθ
j,i =

×DH θ
lj ,i

(
T

(j)
i

∣∣T (j)
1:(i−1)

)
− ln(2)

=

∫ T
(j)
i

T
(j)
i−1

×Dhθ
lj ,i

(
u
∣∣T (j)

1:(i−1)

)
du− ln(2)

=

∫ T
(j)
i

T
(j)
i−1

θ1Bθ2
lj ,iAj(u)θ3 du− ln(2) .

This representation of the integrand is only valid because the integration domain ensures

that u ∈ [T (j)
i−1, T

(j)
i

]
. If for any given ω ∈ Ω we have

θ3 ≤ θ̃3 =⇒ Aj(u)θ3 ≤ Aj(u)θ̃3

︸ ︷︷ ︸
depends on ω

for all u ∈
[
T

(j)
i−1(ω), T

(j)
i (ω)

]
, (4.36)

then the monotonicity of the integral yields (we omit the arguments ω in the integral
bounds for brevity)

θ3 ≤ θ̃3 =⇒
∫ T

(j)
i

T
(j)
i−1

θ1Bθ2
lj ,iAj(u)θ3 du− ln(2) ≤

∫ T
(j)
i

T
(j)
i−1

θ1Bθ2
lj ,iAj(u)θ̃3 du− ln(2) .
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This means that Rθ
j,i is increasing in θ3 for each ω such that Equation (4.36) applies.

For x > 1, the function
R −→ R : θ3 7−→ xθ3 ,

is monotonically increasing, which is easily seen by differentiating with respect to θ3.

Equation (4.36) therefore holds if Aj(u) > 1 can be ensured for all u ∈ [T (j)
i−1(ω), T

(j)
i (ω)

]
.

But for such u,

Aj(u) = Blj

(
u− T

(j)
i−1(ω)

)
+ Aj,i(ω) ≥ Aj,i(ω) .

Accordingly, Aj(u) > 1 follows if Aj,i(ω) > 1. We can therefore let Ulj ,i ⊂ (1,∞), since

for any ω ∈ {Aj,i ∈ Ulj ,i

}
we then obtain for all u ∈ [T (j)

i−1(ω), T
(j)
i (ω)

]
:

Aj,i(ω) ∈ Ulj ,i ⊂ (1,∞) =⇒ Aj,i(ω) > 1 =⇒ Aj(u) > 1 .

Altogether, condition (D6) is thus satisfied for ρ3 = 0 (hence, ρ = (0, 0, 0)) and arbitrary
Ul,i ⊂ (1,∞) as long as there exists l ∈ {1, . . . , L} with cl > 1. Recall that if cl ≤ 1 for
all l ∈ {1, . . . , L}, model ×D may not be the appropriate choice anyway since neither the
effects of load sharing nor damage accumulation can be captured from a single component
failure. Note that in this situation, consistency can still be accomplished using Corollary
4.20 instead of Theorem 4.17, but we leave this pathological case aside for the rest of the
thesis.

Verifying the Preconditions of Theorem 4.17

Having established that conditions (D1) through (D6) are easily met, we still need to
prove that Equation (4.16) of Theorem 4.17 can be satisfied. Consequently, we have
to show that for all θ ∈ Θ0 and θ∗ ∈ Θ1 there exist l ∈ {1, . . . , L}, i ∈ {2, . . . , cl} and
x ∈ supp

(
Aj,i

) ∩ Ul,i for j with lj = l such that

glj ,i

(
θ∗, θ, x

) 6= 1

2
,

where gl,i is the function from Equation (4.34). We have already ruled out the case where
cl ≤ 1 for all l ∈ {1, . . . , L}, because otherwise conditions (D5) and (D6) would not be
satisfied. Moreover, for each l with cl > 1, we found that Ul,i = (1,∞) is sufficient to
fulfill condition (D6). We can now proceed to verify the precondition of Theorem 4.17 in
three steps:

(i) Show that the support of Aj,i is unbounded if clj > 1 and i ∈ {2, . . . , clj}.

(ii) If θ3 6= θ∗
3, then the function x 7→ gl,i

(
θ∗, θ, x

)
is either strictly decreasing or strictly

increasing. Additionally, either gl,i

(
θ∗, θ, x

)→ 0 or gl,i

(
θ∗, θ, x

)→ 1 as x→∞.

(iii) If θ3 = θ∗
3, then gl,i

(
θ∗, θ, x

)
is constant with respect to x. Moreover, if cl > 1,

then20

gl,i

(
θ∗, θ, x

)
=

1

2
for all i ∈ {1, . . . , cl} ⇐⇒ θ∗ = θ .

Each of these steps corresponds to one of the following three Lemmas.

20This technically requires cl > 2 for some l ∈ {1, . . . , L}, since we defined gl,i for i ≥ 2 only. However,
we can easily extend the definition to i = 1. Formally, this means that Corollary 4.20 must be used
instead of Theorem 4.17.
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Lemma 4.23 (Unboundedness of the Accumulated Damage Aj,i).
Let l ∈ {1, . . . , L} with cl > 1. Then, for each j ∈ N with lj = l and i ∈ {2, . . . , clj}, the
support of Aj,i is unbounded.

Proof. In the proof of Theorem 3.28, we noted that the conditional distribution of T1

given τ0 = ∞, C0 > 0 and s0 > 0 follows a Weibull distribution (cf. Equation (3.65)).
Since we are dealing with deterministic covariates here, the proof can be transferred to

the unconditional distribution of T
(j)
1 . By recalling that T0 ≡ 0, Aj,1 ≡ 0 and Bj,1 = slj ,

we obtain:

Pθ∗

(
T

(j)
1 > t

)
= exp

(
−×DHθ∗

lj ,1(t)
)

= exp


−

θ∗
1B

θ∗
2−1

j,1

τ
θ∗

3
lj

(θ∗
3 + 1)

[(
Bj,1

(
t− T

(j)
0

)
+ Aj,1

)θ∗
3+1
−A

θ∗
3+1

j,1

]


= exp


−

θ∗
1s

θ∗
2−1

lj

τ
θ∗

3
lj

(θ∗
3 + 1)

(
slj t

)θ∗
3+1


 = exp

(
−
(

t

σ

)a)
,

which is the survival function of a Weibull distribution, where the scale parameter
σ = σ(θ∗) and the shape parameter a = a(θ∗) are given by

σ(θ∗) =




τ
θ∗

3
lj

(θ∗
3 + 1)

θ∗
1s

θ∗
2+θ∗

3
lj




1
θ∗

3
+1

and a(θ∗) = θ∗
3 + 1 .

Notice that this is consistent with Corollary A.47, because for the model without damage
accumulation (i.e., θ∗

3 = 0), the shape parameter of the Weibull distribution is 1 (and a
Weibull distribution with shape parameter 1 is an exponential distribution).
For j ∈ N with clj > 1 and i ∈ {2, . . . , clj}, we have

Aj,i =
i−1∑

k=1

Blj ,k

(
T

(j)
k − T

(j)
k−1

)
≥ Blj ,1

(
T

(j)
1 − T

(j)
0

)
= slj T

(j)
1 ,

and therefore

Pθ∗ (Aj,i > t) ≥ Pθ∗

(
T

(j)
1 >

t

slj

)
= exp

(
−
(

t

slj σ

)a)
> 0 for all t ≥ 0. (4.37)

If the support of Aj,i were bounded by some t0 > 0, it would hold that

Pθ∗ (Aj,i ≤ t0) = 1 ⇐⇒ Pθ∗ (Aj,i > t0) = 0 ,

but this contradicts Equation (4.37). Hence, the assertion follows.

Lemma 4.24 (Monotonicity & Asymptotics of the Link Function gl,i (θ, θ∗, ·) for θ∗
3 6= θ3).

Let l ∈ {1, . . . , L} with cl > 1. If θ, θ∗ ∈ Θ such that θ3 6= θ∗
3, then for each i ∈ {2, . . . , cl}

the function x 7→ gl,i (θ∗, θ, x) is either strictly decreasing or strictly increasing. Moreover,
it holds that either

gl,i (θ∗, θ, x) −→ 0 or gl,i (θ∗, θ, x) −→ 1 as x −→∞.
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Proof. Let l ∈ {1, . . . , L} with cl > 1 and let θ, θ∗ ∈ Θ such that θ3 6= θ∗
3. If we define

κ(l, i, θ) :=
τ θ3

l (θ3 + 1)

θ1Bθ2−1
l,i

, (4.38)

then κ(l, i, θ) > 0 for each θ ∈ Θ because of π1(Θ) ⊂ (0,∞) and π3(Θ) ⊂ (−1,∞). With
this notation, the function gl,i from Equation (4.34) can be written as

gl,i (θ, θ∗, x) = exp


− 1

κ (l, i, θ∗)



(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 +1

θ3+1 − xθ∗
3+1




 . (4.39)

The rest of the proof is divided into two parts. We start by covering the asymptotic
behavior of the link function, and then proceed to prove its monotonicity.

Suppose first that θ∗
3 > θ3, so that

θ∗
3+1

θ3+1 > 1. The Bernoulli inequality (cf. Brannan 2006,
p. 237) provides:

(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 +1

θ3+1 − xθ∗
3+1 =

(
xθ3+1

(
1 +

κ(l, i, θ) ln(2)

xθ3+1

)) θ∗
3 +1

θ3+1

− xθ∗
3+1

= xθ∗
3+1

(
1 +

κ(l, i, θ) ln(2)

xθ3+1

) θ∗
3 +1

θ3+1

− xθ∗
3+1

≥ xθ∗
3+1

(
1 +

θ∗
3 + 1

θ3 + 1

κ(l, i, θ) ln(2)

xθ3+1

)
− xθ∗

3+1

=
θ∗

3 + 1

θ3 + 1
κ(l, i, θ) ln(2)

︸ ︷︷ ︸
>0

xθ∗
3−θ3 .

Due to θ∗
3 − θ3 > 0 and the positivity of the leading constant, this implies that

(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 +1

θ3+1 − xθ∗
3+1

≥ θ∗
3 + 1

θ3 + 1
κ(l, i, θ) ln(2)xθ∗

3−θ3 −→∞ (x −→∞) . (4.40)

Substituting Equation (4.40) into Equation (4.39) then yields

gl,i (θ, θ∗, x) ≤ exp

(
− 1

κ (l, i, θ∗)

[
θ∗

3 + 1

θ3 + 1
κ(l, i, θ) ln(2)xθ∗

3−θ3

])
−→ 0 (x −→∞) .

On the other hand, if θ∗
3 < θ3, then 0 <

θ∗
3+1

θ3+1 < 1, and instead of Equation (4.40) we
obtain with exactly the same arguments:

(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 +1

θ3+1 − xθ∗
3+1

≤ θ∗
3 + 1

θ3 + 1
κ(l, i, θ) ln(2)xθ∗

3−θ3 −→ 0 (x −→∞) , (4.41)

since in this case the Bernoulli inequality gives ≤ instead of ≥ and θ∗
3 − θ3 < 0. By
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substituting Equation (4.41) into Equation (4.39) as well, we get

gl,i (θ, θ∗, x) ≥ exp

(
− 1

κ (l, i, θ∗)

[
θ∗

3 + 1

θ3 + 1
κ(l, i, θ) ln(2)xθ∗

3−θ3

])
−→ 1 (x −→∞) ,

which proves the asserted asymptotic behavior (note that gl,i is bounded below by 0 and
above by 1 by its definition as a conditional probability).
For the monotonicity, we define the auxiliary function

γ(x) :=
(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 +1

θ3+1 − xθ∗
3+1 ,

where in the notation we suppress the dependence on θ, θ∗, l and i. As a function of x, γ
is continuously differentiable. Differentiation with respect to x yields:

d

dx
γ(x) = (θ∗

3 + 1) xθ3

(
κ(l, i, θ) ln(2) + xθ3+1

) θ∗
3 −θ3
θ3+1 − (θ∗

3 + 1) xθ∗
3 .

If we again assume that θ∗
3 > θ3, then due to κ(l, i, θ) ln(2) > 0 we further obtain:

d

dx
γ(x) > (θ∗

3 + 1)


xθ3

(
xθ3+1

) θ∗
3 −θ3
θ3+1 − xθ∗

3


 = 0 ,

which means that γ is strictly increasing. If we assume θ∗
3 < θ3 instead, we analogously

conclude that

d

dx
γ(x) < (θ∗

3 + 1)


xθ3

(
xθ3+1

) θ∗
3 −θ3
θ3+1 − xθ∗

3


 = 0 .

Therefore, γ is strictly decreasing in this case. Finally, note that

gl,i (θ, θ∗, x) = exp

(
− γ(x)

κ (l, i, θ∗)

)
.

Consequently, gl,i (θ, θ∗, x) is strictly decreasing in x if γ is strictly increasing, and vice
versa. The assertion then follows.

Lemma 4.25 (Constantness of the Link Function gl,i (θ, θ∗, ·) for θ∗
3 = θ3).

Let l ∈ {1, . . . , L} and j ∈ N such that lj = l. The function gl,1 : Θ2 × R→ R is defined
via

gl,1(θ∗, θ, x) := Pθ∗

(
Rθ

j,1 > 0
)

. (4.42)

Let θ, θ∗ ∈ Θ with θ 6= θ∗ but θ3 = θ∗
3. Then, for each i ∈ {1, . . . , cl}, the function

x 7−→ gl,i(θ, θ∗, x)

is constant. If cl > 1, then

gl,i(θ, θ∗, x) =
1

2
for all i ∈ {1, . . . , cl} ⇐⇒ θ = θ∗ .

The function gl,1 defined in Equation (4.42) is by default constant with respect to its
third argument x. The idea of how to extend the definition of the functions gl,i to the case
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i = 1 is motivated by Corollary 4.20. With the above notation, case (ii) of this corollary
then demands that, for some x ∈ R (the particular choice obviously does not matter),

gl,i(θ, θ∗, x) 6= 1

2
,

which closely resembles case (i). In this way, a unified notation becomes available in
Corollary 4.20. However, we deliberately avoided this in order to better distinguish the
fundamentally different cases (i) and (ii).

Proof. Lemma 4.25 can be regarded as a simple corollary of Theorem 2.28. Since Equation
(2.57) applies also for i = 1, we immediately have

gl,1(θ∗, θ, x) = Pθ∗

(
Rθ

j,1 > 0
)

= exp


−

θ∗
1s

θ∗
2−1

lj

τ
θ∗

3
lj

(θ∗
3 + 1)







τ θ3
lj

(θ3 + 1)

θ1sθ2−1
lj

ln(2)




θ∗
3 +1

θ3+1





 ,

as Aj,1 ≡ 0 and Bj,1 = slj . Note that u = ln(2), because unlike Theorem 2.28, we are
looking at the standardized hazard transforms here. If θ3 = θ∗

3, the functions gl,i simplify
considerably, as pointed out in the proof of Theorem 2.28, and as a result Equation (2.57)
breaks down to Equation (2.58). Hence,

gl,i(θ
∗, θ, x) = exp


−

θ∗
1B

θ∗
2

l,i

θ1Bθ2
l,i

ln(2)


 , i ∈ {1, . . . , cl} ,

which is constant with respect to x. Since exp(− ln(2)) = 1
2 and the exponential function

is injective, we observe:

gl,i(θ
∗, θ, x) =

1

2
⇐⇒

θ∗
1B

θ∗
2

l,i

θ1Bθ2
l,i

= 1 ⇐⇒ θ∗
1B

θ∗
2

l,i = θ1Bθ2
l,i . (4.43)

For θ2 = θ∗
2, dividing both sides of Equation (4.43) by Bθ2

l,i yields

θ∗
1B

θ∗
2

l,i

!
= θ1Bθ2

l,i ⇐⇒ θ∗
1 = θ1 .

For θ1 = θ∗
1, Equation (4.43) can likewise only be satisfied if θ2 = θ∗

2 holds as well.
Suppose there exists l ∈ {1, . . . , L} with cl > 1 such that Equation (4.43) is fulfilled for
all i ∈ {1, . . . , cl}, but θ 6= θ∗ (the assumption that θ3 = θ∗

3 is maintained). This means
that θ1 6= θ∗

1 and θ2 6= θ∗
2 must apply. However, the function

b 7−→ θ∗
1

θ1
bθ∗

2−θ2

is then either strictly increasing if θ∗
2 > θ2 or strictly decreasing if θ∗

2 < θ2. In either
case, the function is injective and there exists at most one b ∈ (0,∞) that is mapped
to 1. But due to cl > 1, this would imply that Bl,1 = Bl,2, which is a contradiction.
Therefore, Equation (4.43) can be satisfied for all i ∈ {1, . . . , cl} only if θ = θ∗, proving
the assertion.
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From these Lemmas, we can easily deduce that the preconditions of Theorem 4.17 or
- more accurately due to step (iii) - of Corollary 4.20 are met. For this, let θ ∈ Θ0 and
θ∗ ∈ Θ1, so that θ 6= θ∗. We need to distinguish whether θ3 6= θ∗

3 or θ3 = θ∗
3:

(a) θ3 6= θ∗
3:

Choose any l ∈ {1, . . . , L} with cl > 1 and i ∈ {2, . . . , cl}. By Lemma 4.24, we have
either

gl,i (θ∗, θ, x) −→ 0 or gl,i (θ∗, θ, x) −→ 1 monotonically as x −→∞.

This implies that for sufficiently large x, the value 1
2 can no longer be attained.

Formally, for any 0 < ε < 1
2 , there exists x0 > 0 such that

∣∣∣∣gl,i (θ∗, θ, x)− 1

2

∣∣∣∣ > ε for all x > x0.

Without loss of generality, we can assume that x0 > 1. If j ∈ N with lj = l, then

Pθ∗ (Aj,i > x0) > 0

according to Lemma 4.23. Therefore, supp (Aj,i) ∩ Ul,i = supp (Aj,i) ∩ (1,∞) 6= ∅.
For any x ∈ supp (Aj,i) ∩ (1,∞), we conclude:

gl,i (θ∗, θ, x) 6= 1

2
.

(b) θ3 = θ∗
3:

Choose any l ∈ {1, . . . , L} with cl > 1. Because θ 6= θ∗, Lemma 4.25 states that
there exists i ∈ {1, . . . , cl} such that

gl,i (θ∗, θ, x) 6= 1

2
.

If such an i with i > 1 exists, the condition from Equation (4.16) is satisfied.
Otherwise, condition (ii) from Corollary 4.20 is satisfied.

As case (b) shows, we can avoid using Corollary 4.20 by having at least one class
l ∈ {1, . . . , L} with cl > 2. However, the consistency is still ensured in cases where this
requirement is too restrictive. We end the paragraph with a remark that will prove useful
in the following subsection.

Remark 4.26 (On the Support of the Accumulated Damage Aj,i).
In Lemma 4.23 we proved that the support of the accumulated damage Aj,i is unbounded
if j ∈ N with clj > 1 and i ∈ {2, . . . , clj}. In fact, then supp (Aj,i) = [0,∞) necessarily
holds. We can infer this property directly from the conditional hazard functions of the

model ×D. To this end, we note that for all i ∈ {1, . . . , clj} and t > T
(j)
i−1, it holds that

flj ,i

(
t
∣∣T (j)

1:(i−1)

)

Slj ,i

(
t
∣∣T (j)

1:(i−1)

) =
×Dhθ∗

lj ,i

(
t
∣∣T (j)

1:(i−1)

)
> 0 ⇐⇒ flj ,i

(
t
∣∣T (j)

1:(i−1)

)
> 0 ,
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which means that the conditional distribution of T
(j)
i given T

(j)
i−1 has support

[
T

(j)
i−1,∞).

Therefore, the conditional distribution of the ith interarrival time W
(j)
i = T

(j)
i − T

(j)
i−1

has support [0,∞), and the same is true for Blj ,iW
(j)
i , as Blj ,i is a positive deterministic

constant. Since

Aj,i =
i−1∑

k=1

Blj ,kW
(j)
k ,

we then see that the support of Aj,i is also given by [0,∞), because

σ
(
W

(j)
1 , . . . , W

(j)
k

)
= σ

(
T

(j)
1 , . . . , T

(j)
k

)
, k ∈ {1, . . . , i− 1} . (4.44)

Obviously, this reasoning is less formal than the proof of Lemma 4.25, which is why we
record this statement only as a remark. For the mathematically rigorous approach, use
Equation (4.44) to proceed with the successive reconstruction of the joint densities of

W
(j)
1:k =

(
W

(j)
1 , . . . , W

(j)
k

)
similar to the proof of Lemma A.37 and obtain that

f
W

(j)
1:k

(w1, . . . , wk) > 0 for all (w1, . . . , wk) ∈ (0,∞)k. (4.45)

The probability that Aj,i falls in a given interval Int ⊂ [0,∞) can then be written as an
integral of this joint density. Since f

W
(j)

1:(i−1)

> 0 almost everywhere according to Equation

(4.45), it follows that Pθ∗ (Aj,i ∈ Int) > 0. Finally, due to Aj,i ≥ 0, this implies that
supp(Aj,i) = [0,∞).

4.3.2. Consistency of the 3-Sign Depth Test for Damage Accumulation

In Subsection 2.3.2, we introduced the Basquin load sharing model with multiplicative
damage accumulation as a relative risk regression model. In all kinds of regression models,
we are often less interested in the actual model parameter than in identifying which
covariates influence the outcome at all. For the model ×D, our primary concern is to
determine whether the effect of damage accumulation is significant (i.e., θ3 > 0). If not,
we can accept θ3 = 0 and use the simpler model B without damage accumulation instead.
The purpose of this subsection is therefore to show the consistency of the 3-sign depth
test for the hypotheses

H0 : θ∗
3 = 0 vs. H1 : θ∗

3 6= 0 .

The subset Θ0 of the parameter space Θ belonging to the null hypothesis is thus given by

Θ0 := π−1
3 ({0}) = {θ ∈ Θ : π3(θ) = θ3 = 0} .

If we choose the parameter space Θ as large as possible, that is, Θ = (0,∞)×R× (−1,∞),
then

Θ0 =
{

(θ1, θ2, 0)⊤ ∈ R3 : θ1 > 0
}

.

In particular, Θ0 is non-compact and therefore neither Theorem 4.17 nor Corollary 4.20
can be applied. We can still show the consistency of the 3-sign depth test by exploiting
that θ3 = 0 holds for all θ ∈ Θ0, leading to particularly simple hazard transforms. As in
Subsection 4.3.1, we assume the models Ml, l ∈ {1, . . . , L}, induced by the intensities
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from Equation (4.28). We again consider the standardized transform, so that

Rθ
j,i :=

×DH θ
lj ,i

(
T

(j)
i

∣∣T (j)
1:(i−1)

)
− ln(2) , θ ∈ Θ, j ∈ {1, . . . , J}, i ∈ {1, . . . , clj} .

Throughout this subsection, we further suppose that condition (D3) is satisfied and thus
there are no asymptotically negligible classes.

Theorem 4.27 (Consistency of the 3-Sign Depth Test for Damage Accumulation).
Let {0} ( Θ3 ⊂ (−1,∞) and let the parameter space be given by Θ = (0,∞)×R×Θ3. If
there exists l ∈ {1, . . . , L} such that cl > 1, then the 3-sign depth test for the hypotheses

H0 : θ∗
3 = 0 vs. H1 : θ∗

3 6= 0

is consistent in the model ×D.

Proof. The proof is similar to that of Theorem 4.17. We start by fixing any θ∗ ∈ Θ \Θ0

and choose l ∈ {1, . . . , L} with cl > 1. For each θ ∈ Θ0 (and hence θ3 = 0), j ∈ N with
lj = l, and i ∈ {2, . . . , cl}, we then obtain:

Pθ∗

(
Rθ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= exp


−

θ∗
1B

θ∗
2−1

lj ,i

τ
θ∗

3
lj

(θ∗
3 + 1)





 ln(2)

θ1Bθ2−1
lj ,i

+ Aj,i




θ∗
3+1

−A
θ∗

3+1
j,i







= exp

(
− 1

κ (lj , i, θ∗)

[
(κ (lj , i, θ) ln(2) + Aj,i)

θ∗
3+1 −A

θ∗
3+1

j,i

])
,

where as before (cf. Equation (4.38))

κ(l, i, θ) =
τ θ3

l (θ3 + 1)

θ1Bθ2−1
l,i

.

We observe that the parameter θ only affects the constant κ. With this in mind, we define

g̃l,i(x, y) := exp

(
− 1

κ (l, i, θ∗)

[
(ln(2)x + y)θ∗

3+1 − yθ∗
3+1

])
,

so that
Pθ∗

(
Rθ

j,i > 0
∣∣∣T (j)

1:(i−1)

)
= g̃lj ,i (κ (lj , i, θ) , Aj,i) for all θ ∈ Θ0.

Recalling how the conditional distribution of the hazard transforms is derived from an
exponential distribution (compare the elaboration of Equation (2.49)), we see that it is
itself continuous and it holds:

Pθ∗

(
Rθ

j,i < 0
∣∣∣T (j)

1:(i−1)

)
= 1− g̃lj ,i (κ (lj , i, θ) , Aj,i) for all θ ∈ Θ0.

As a function of θ only, κ(l, i, θ) maps Θ0 onto the interval (0,∞). To see this, remember
that κ > 0 and let z ∈ (0,∞). Then,

κ
(
l, i,

(
z−1, 1, 0

)
︸ ︷︷ ︸

∈Θ0

)
=

τ0
l (0 + 1)
1
z
B1−1

l,i

=
1
1
z

= z . (4.46)
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Furthermore, for any y ∈ [0,∞), it holds:

lim
x→0

g̃l,i(x, y) = 1 and lim
x→∞

g̃l,i(x, y) = 0 .

From now on, fix an arbitrary i ∈ {2, . . . , cl}. Choose any y0 > 0. Since g̃l,i is continuous,
the intermediate value theorem provides the existence of x0 ∈ (0,∞) satisfying

g̃l,i(x0, y0) =
1

2
.

Let θ0 ∈ Θ0 such that κ(l, i, θ0) = x0 (e.g., θ0 =
(
x−1

0 , 1, 0
)

according to Equation (4.46)).
The proof of Lemma 4.24 shows that g̃l,i(x, y) is either strictly decreasing or strictly
increasing in y, depending on whether θ∗

3 > 0 or θ∗
3 < 0. Without loss of generality, we

consider only the case θ∗
3 > 0, so that g̃l,i(x, y) is strictly decreasing in y (the other case

is completely analogous). We can thus find ε1 > 0 and 0 < y1 < y0 < y2 <∞ with

g̃l,i(x0, y) >
1

2
+ ε1 for all y ∈ [0, y1]

and g̃l,i(x0, y) <
1

2
− ε1 for all y ∈ [y2,∞).

Moreover, Remark 4.26 shows that supp (Aj,i) = [0,∞), so that there exists ε2 > 0 with

Pθ∗ (Aj,i ∈ [0, y1]) > ε2 and Pθ∗ (Aj,i ∈ [y2,∞)) > ε2 .

From here, we continue by using the techniques from the proof of Theorem 4.17, so we
omit some details occasionally. In analogy to Equation (4.23), we define

N+
Int(θ) :=

∑

j∈Jl

1

{
Rθ

j,i > 0, Aj,i ∈ Int
}

and N−
Int(θ) :=

∑

j∈Jl

1

{
Rθ

j,i < 0, Aj,i ∈ Int
}

,

where Jl := {j ∈ {1, . . . , J} : lj = l}. We again set j0 = min Jl as a reference index (any
other choice of j0 ∈ Jl would be equally valid). The strong law of large numbers provides
that Pθ∗-almost surely we have:

N+
[0,y1](θ

0)
∑

j∈Jl
1 {Aj,i ∈ [0, y1]} −

1

2
J→∞−→

Pθ∗

(
Rθ0

j0,i > 0, Aj0,i ∈ [0, y1]
)

Pθ∗ (Aj0,i ∈ [0, y1])
− 1

2

=

∫
{Aj0,i∈[0,y1]} g̃lj0

,i

(
κ
(
lj0 , i, θ0

)
, Aj0,i

)
dPθ∗

Pθ∗ (Aj0,i ∈ [0, y1])
− 1

2

=

∫
{Aj0,i∈[0,y1]} g̃l,i (x0, Aj0,i) dPθ∗

Pθ∗ (Aj0,i ∈ [0, y1])
− 1

2

>

(
1
2 + ε1

)
Pθ∗ (Aj0,i ∈ [0, y1])

Pθ∗ (Aj0,i ∈ [0, y1])
− 1

2
= ε1 . (4.47)

Likewise, we obtain Pθ∗-almost surely that

N−
[y2,∞)(θ

0)
∑

j∈Jl
1 {Aj,i ∈ [y2,∞)} −

1

2
J→∞−→

Pθ∗

(
Rθ0

j0,i < 0, Aj0,i ∈ [y2,∞)
)

Pθ∗ (Aj0,i ∈ [y2,∞))
− 1

2
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=

∫
{Aj0,i∈[y2,∞)} 1− g̃lj0

,i

(
κ
(
lj0 , i, θ0

)
, Aj0,i

)
dPθ∗

Pθ∗ (Aj0,i ∈ [y2,∞))
− 1

2

=

∫
{Aj0,i∈[y2,∞)} 1− g̃l,i (x0, Aj0,i) dPθ∗

Pθ∗ (Aj0,i ∈ [y2,∞))
− 1

2

>

(
1−

(
1
2 − ε1

))
Pθ∗ (Aj0,i ∈ [y2,∞))

Pθ∗ (Aj0,i ∈ [y2,∞))
− 1

2
= ε1 . (4.48)

Furthermore, by setting

ε̃2 :=
pl∑L

l=1 pl · cl

ε2 > 0 ,

we obtain Pθ∗-almost surely that

1

η

∑

j∈Jl

1 {Aj0,i ∈ [0, y1]} η→∞−→ pl∑L
l=1 pl · cl

Pθ∗ (Aj0,i ∈ [0, y1]) > ε̃2 (4.49)

and

1

η

∑

j∈Jl

1 {Aj,i ∈ [y2,∞)} η→∞−→ pl∑L
l=1 pl · cl

Pθ∗ (Aj,i ∈ [y2,∞)) > ε̃2 . (4.50)

For ε < min{ε1, ε̃2}, combining Equations (4.47), (4.48), (4.49) and (4.50) yields the
existence of Ω0 ⊂ Ω with Pθ∗ (Ω0) = 1 and the property that for any ω ∈ Ω0 there exists
ηω such that for all η ≥ ηω simultaneously holds:

∑

j∈Jl

1 {Aj,i(ω) ∈ [0, y1]} > εη ,

∑

j∈Jl

1 {Aj,i(ω) ∈ [y2,∞)} > εη ,

N+
[0,y1](θ

0)(ω)
∑

j∈Jl
1 {Aj,i(ω) ∈ [0, y1]} −

1

2
> ε ,

N−
[y2,∞)(θ

0)(ω)
∑

j∈Jl
1 {Aj,i(ω) ∈ [y2,∞)} −

1

2
> ε .

Corollary 2.26 implies that the standardized hazard transforms for θ ∈ Θ0 are given by:

Rθ
j,i = θ1Bθ2−1

lj ,i

[
Aj,i+1 −Aj,i

]− ln(2)

= θ1Bθ2−1
lj ,i

[
Blj ,i

(
T

(j)
i − T

(j)
i−1

)]
− ln(2)

= θ1Bθ2
lj ,i

(
T

(j)
i − T

(j)
i−1

)
− ln(2) .

For any θ ∈ Θ0, either θ1Bθ2
l,i ≤ θ0

1B
θ0

2
l,i or θ1Bθ2

l,i ≥ θ0
1B

θ0
2

l,i applies. If θ1Bθ2
l,i ≤ θ0

1B
θ0

2
l,i , then

Rθ
j,i ≤ Rθ0

j,i for all j ∈ Jl.
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Thus, for any interval Int,

N−
Int(θ) =

∑

j∈Jl

1

{
Rθ

j,i < 0, Aj,i ∈ Int
}
≥
∑

j∈Jl

1

{
Rθ0

j,i < 0, Aj,i ∈ Int
}

= N−
Int(θ

0) .

For any ω ∈ Ω0 and η ≥ ηω we can conclude that

N−
[y2,∞)(θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [y2,∞)} −
1

2
≥

N−
[y2,∞)(θ

0)(ω)
∑

j∈Jl
1 {Aj,i(ω) ∈ [y2,∞)} −

1

2
> ε . (4.51)

Conversely, if θ1Bθ2
l,i ≥ θ0

1B
θ0

2
l,i , then

Rθ
j,i ≥ Rθ0

j,i for all j ∈ Jl,

and similar to above for any ω ∈ Ω0 and η ≥ ηω it holds that

N+
[0,y1](θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [0, y1]} −
1

2
≥

N+
[0,y1](θ

0)(ω)
∑

j∈Jl
1 {Aj,i(ω) ∈ [0, y1]} −

1

2
> ε . (4.52)

The proof now finishes completely analogous to the proof of Theorem 4.17. Since the
transforms are ordered with respect to ≤acc, for η ≥ ηω we get

sup
n−m+1≥εη

N+
m,n(θ)(ω)

n−m + 1
− 1

2
≥

N+
[0,y1](θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [0, y1]} −
1

2

and

sup
n−m+1≥εη

N−
m,n(θ)(ω)

n−m + 1
− 1

2
≥

N−
[y2,∞)(θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [y2,∞)} −
1

2
.

Because of Equations (4.51) and (4.52), for all θ ∈ Θ0 and η ≥ ηω we have either

N+
[0,y1](θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [0, y1]} −
1

2
> ε or

N−
[y2,∞)(θ)(ω)

∑
j∈Jl

1 {Aj,i(ω) ∈ [y2,∞)} −
1

2
> ε .

Accordingly, for all θ ∈ Θ0 and η ≥ ηω it follows that

sup
n−m+1≥εη

max
{
N+

m,n(θ)(ω),N−
m,n(θ)(ω)

}

n−m + 1
− 1

2
> ε ,

and therefore (cf. Equation (4.13))

ω ∈
⋂

θ∈Θ0

Aη,ε(θ) ∀η ≥ ηω =⇒ ω ∈ lim inf
η→∞

⋂

θ∈Θ0

Aη,ε(θ) .

This implies that
Ω0 ⊂ lim inf

η→∞

⋂

θ∈Θ0

Aη,ε(θ) ,

so we can again deduce the consistency of the 3-sign depth test from Corollary 4.10.

133



We conclude the chapter by highlighting a major difference between Theorem 4.17 and
Theorem 4.27. Unlike the parameters θν , ν = 1, . . . , νmax, in the proof of Theorem 4.17,
the “reference parameter” θ0 here is more of a hindrance in terms of consistency, since by
construction for all δ > 0 it admits

∣∣∣∣Pθ∗

(
Rθ0

j,i > 0
∣∣T (j)

1:(i−1)

)
− 1

2

∣∣∣∣ < δ

with positive probability. This means that there is a non-zero chance that the standardized
hazard transforms at θ0 will take on positive and negative signs with approximately equal
probability. Nevertheless, the above proof shows that even for such a seemingly ill-suited
parameter, there still exist regions Int1, Int2 ⊂ [0,∞) so that

Pθ∗

(
Rθ0

j,i > 0
∣∣Aj,i ∈ Int1

)
>

1

2
+ ε and Pθ∗

(
Rθ0

j,i > 0
∣∣Aj,i ∈ Int2

)
<

1

2
− ε .

Moreover, there are no “worse” parameters than θ0, because for any θ ∈ Θ0 either

Pθ∗

(
Rθ

j,i > 0
∣∣Aj,i ∈ Int1

)
≥ Pθ∗

(
Rθ0

j,i > 0
∣∣Aj,i ∈ Int1

)
>

1

2
+ ε (4.53)

or

Pθ∗

(
Rθ

j,i > 0
∣∣Aj,i ∈ Int2

)
≤ Pθ∗

(
Rθ0

j,i > 0
∣∣Aj,i ∈ Int2

)
<

1

2
− ε . (4.54)

The two Equations (4.53) and (4.54) are essentially the counterparts of Equations (4.21)
and (4.22), which explains why the proofs from there on are mostly congruent.
As a final corollary of Theorem 4.27, the consistency of the 3-sign depth test for damage
accumulation can also be inferred for all smaller parameter spaces Θ ⊂ (0,∞)×R×(−1,∞)
so long as Θ0 = π−1

3 ({0}) 6= ∅ and Θ1 = Θ \Θ0 6= ∅. The statement itself is trivial, since
consistency is always inherited to subsets of parameter spaces, but it underlines that
Theorem 4.27 has been formulated in the most general way.
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5. Maximum Likelihood Estimation for Parametric
Intensity-Based Models

As a third and final way to draw statistical inference for parametric intensity-based
counting process models, we consider the established method of maximum likelihood
estimation. The maximum likelihood estimator has been studied extensively, and as
a result its properties - including the asymptotic distribution - are well known. Also,
the approach is accompanied by a variety of useful applications such as the likelihood
ratio test. They all require that we can specify the likelihood function of a counting
process. Proposition A.35 from the appendix states that the probability structure of a
counting process is uniquely determined by its stochastic intensity. This property enables
us to express the likelihood function of a counting process in terms of its conditional
intensity function. The caveat here is that this intensity function depends crucially on
the underlying filtration: Generally speaking, the larger the filtration compared to the
internal filtration of the counting process (i.e., the more external information is included
in the stochastic intensity), the more complicated the likelihood function becomes. This is
easily seen even in the framework of Section 2.1, where in the case of an intrinsic filtration,
the likelihood function of the counting process N must also account for the randomness
of the covariate X. As a solution, Cox proposed to discard factors of the likelihood from
which “no useful information about the parameter of interest can be extracted” (Cox
1975, p. 272). Commonly, these factors arise from decomposing the full likelihood into
a product of a marginal likelihood (e.g., the likelihood based only on the covariate X)
and a conditional likelihood (e.g., the likelihood based on N given X = x), cf. Cox
1975, pp. 269–270. While in this example deleting a factor leads back to a likelihood
function (either the marginal one or the conditional one), this is not true in general. Thus,
to distinguish it from marginal and conditional likelihoods, Cox calls such a function,
obtained by deleting certain factors of the full likelihood, a partial likelihood, see Cox
1975, p. 270.
What we later call the “likelihood function” of a counting process will be either an ordinary
likelihood function or a partial likelihood function, depending on the chosen filtration.
However, a major insight (and important contribution of Cox) is that the large sample
properties are preserved when a partial likelihood function is considered instead of a
likelihood function (e.g., the asymptotic distribution of the likelihood ratio test statistic),
see Cox 1975, pp. 273–274. In most applications, it is therefore not necessary to draw a
distinction between an ordinary likelihood and a partial likelihood. We thus follow the
example of Andersen et al. 1993, pp. 403–404 and drop the word “partial” below. In the
same vein, we omit further technical details on partial likelihoods, since they largely agree
with the theory of ordinary likelihoods. We instead refer the interested reader to Borgan
1984, who gives sufficient conditions for the asymptotic properties of the maximum partial
likelihood estimator in the multiplicative intensity model of Aalen 1978, and Andersen
et al. 1993 (see in particular Sections II.7 and VI.1), where these conditions are transferred
to general parametric intensity-based counting process models in Condition VI.1.1.

As we did previously for the minimum distance estimation and the K-sign depth test, we
begin by specifying a suitable framework for a likelihood-based approach. As it turns out,
this framework is effectively identical to that of Definition 3.2, but we restate it here for
convenience.
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Definition 5.1 (Framework for Maximum Likelihood Estimation).
Let

(
Ω,F , {Ft}t∈I ,P

)
be a filtered probability space, where I = [0, τ ] is a compact interval

with τ ∈ (0,∞). Let N (1), . . . , N (J), J ∈ N, denote i.i.d. copies of an adapted counting
process N = (Nt)t∈I with absolutely continuous

(
P, {Ft}t∈I

)
-compensator Λ. Let θ ∈ Θ

denote the parameter of interest, where Θ ⊂ Rd, d ∈ N, is a bounded open set. A
parametric model is given by a class M of cumulative intensities, that is,

M = {Λθ : θ ∈ Θ} .

Let again JN denote the (random) set of time points belonging to the jumps of the counting
process N , that is,

JN :=

{
t : Nt − lim

s↑t
Ns ≥ 1

}
.

As before, N induces a Borel measure on I, and for any bounded Borel function f holds:

∫

I
f dµN =

∫

I
f(t) dNt =

∑

t∈JN

f(t) ,

that is, integration with respect to N is equal to summation over the function evaluations
at the jump points of N .

In this framework, the likelihood function of a counting process can already be specified
(compare Equation (2.7.13) of Andersen et al. 1993, p. 103). The corresponding formula
features increments of the cumulative intensity Λθ in infinitesimal form, denoted by dΛθ(t)
(we touched on this in the introduction and in Remark A.48, where we used Λθ(dt) instead
of dΛθ(t), but avoid this notation elsewhere). If Λθ is absolutely continuous with respect
to the Lebesgue measure and admits the density λθ, that is,

Λθ(t) =

∫ t

0
λθ(u) du , t ∈ I ,

then for any bounded Borel function f we observe:

∫

I
f(t) dΛθ(t) =

∫

I
f(t)λθ(t) dt . (5.1)

Because of Equation (5.1), we suggestively write dΛθ(t) = λθ(t) dt. Substituting this
identity into a likelihood function given in terms of dΛθ(t) will yield the expression we
are aiming for. Since likelihood functions need only be specified up to proportionality,
the remainder dt is irrelevant here and can be dropped.
The overall merit of this detour is that the likelihood function becomes substantially
simpler, as it can be explicitly stated via the intensity process λθ that we used to define
our models in the first place. The drawback, on the other hand, is that we have to assume
that any cumulative intensity contained in M is Pθ∗-almost surely absolutely continuous,
where as before θ∗ is the true parameter. Obviously, we also have to require that the true
compensator Λθ∗ is contained in the modelM at all, so we can usefully adopt Assumption
3.3 from Chapter 3 one-to-one. The corresponding assumptions (M1) and (M2) are as
follows:
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(M1) The model includes the compensator Λ. Hence, there is a true parameter θ∗ ∈ Θ,
such that

Λ = Λθ∗ .

(M2) Any cumulative intensity contained inM is Pθ∗-almost surely absolutely continuous:
For each θ ∈ Θ, there exists a Lebesgue density λθ satisfying

Λθ(t) =

∫ t

0
λθ(u) du , t ∈ I .

Without loss of generality, we can assume λθ to be left-continuous. In the case
θ = θ∗, λθ is the

(
P, {Ft}t∈I

)
-intensity of N .

With these assumptions, we can now give the likelihood function of a counting process N .

Definition 5.2 (Likelihood Function of a Counting Process; Andersen et al. 1993, p. 402).
In the framework of Definition 5.1 and under assumption (M2), the likelihood function of
a counting process N takes the form

L(θ) = L(θ, N) =
∏

t∈JN

λθ(t) exp

(
−
∫ τ

0
λθ(u) du

)
.

While the formal framework for the (partial) likelihood function of a counting process
is more suitable in Andersen et al. 1993, the notation used here is more in line with
Proposition 7.2.III. of Daley and Vere-Jones 2003, p. 232. Because of

∏

t∈JN

λθ(t) = exp

(
∑

t∈JN

ln λθ(t)

)
= exp

(∫

I
ln λθ(u) dNu

)
,

the likelihood function is often stated in the following way (e.g., in Karr 1991 or Snyder
and Miller 1991):

L(θ) = exp

(∫

I
ln λθ(u) dNu −

∫

I
λθ(u) du

)
.

If T = (Ti)i∈N as usual denotes the point process associated with N , then JN consists of
the respective realizations t1, . . . , tNτ of T in I = [0, τ ] and the likelihood function can be
expressed as follows:

L(θ) =
Nτ∏

i=1

λθ(ti) exp

(
−
∫ τ

0
λθ(u) du

)
. (5.2)

The likelihood function of the jth counting process N (j) is analogously given by

L(j)(θ) =
N

(j)
τ∏

i=1

λ
(j)
θ

(
t
(j)
i

)
exp

(
−
∫ τ

0
λ

(j)
θ (u) du

)
,

and hence the joint likelihood function of J independent counting processes N (1), . . . , N (J)
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is

LJ(θ) =
J∏

j=1

L(j)(θ) =
J∏

j=1

N
(j)
τ∏

i=1

λ
(j)
θ

(
t
(j)
i

)
exp

(
−
∫ τ

0
λ

(j)
θ (u) du

)
. (5.3)

In the case of an internal filtration, the likelihood function from Equation (5.2) actually
provides the full likelihood (and not a partial likelihood) of N . A detailed derivation for
this case is provided in Snyder and Miller 1991, pp. 296–302. We will settle here for the
shorter but similarly instructive interpretation of Karr 1991, p. 72, which is the subject
of the following remark. We point out to the reader that this remark is not intended to
formally prove the form of the likelihood, but rather as an aid to its understanding.

Remark 5.3 (Interpretation of the Likelihood Function of a Counting Process).
In this remark, we explain the shape of the likelihood function of a counting process N
on the example of a one-point process. The interpretation can then be applied to any
counting process. Let therefore N be the one-point process given via

N(t, ω) = 1(−∞,t] (X(ω)) ,

and assume that X is a continuous random variable with density function f and cumulative
distribution function F . According to Lemma A.30, the intensity process with respect to
the internal filtration of N is then given by

λ(t) = h(t) · 1{t<X} =
f(t)

1− F (t)
· 1{t<X} .

Any left-continuous modification of λ, as required in (M2), satisfies λ(X) = h(X). Due to

f(x) = h(x) exp (−H(x)) ,

the distribution of X is completely characterized by its hazard function h (cf. proof
of Theorem A.46, particularly Equation (A.51)), and a model M can be defined by a
parametric family of hazard functions hθ, θ ∈ Θ. For the likelihood function we get:

L(θ, x) = fθ(x) = hθ(x) exp (−Hθ(x)) = λθ(x) exp

(
−
∫ x

0
λθ(u) du

)
.

The second factor here is equal to 1− Fθ(x) and indicates the probability that X does
not fall into [0, x), while the first factor corresponds to X attaining the value x.
We can extend this interpretation to any counting process. Karr 1991, p. 72 states:

“We can interpret a point process as a dynamic, uncountable set of independent
Bernoulli trials, one for each time t. Taking λ(t) as the success probability for the
trial at t we conclude that for observation over the time interval [0, τ ] the probability

of successes at times t1, . . . , tNτ
is
∏

Nτ

i=1
λ (ti).”

This heuristic explains the factor
Nτ∏

i=1

λθ(ti) (5.4)

that appears in the likelihood L(θ, N). We shall see that the remainder can again be
understood as the probability that the “successes” do not occur at any other time:

138



The probability that T1 does not fall into [0, t1) is (compare Lemma 4.23)

Pθ (T1 > t1) = exp
(
−Hθ

1 (t1)
)

= exp

(
−
∫ t1

0
λθ(u) du

)
, (5.5)

while for i ≥ 2 the conditional probability that Ti does not fall into [ti−1, ti) given
T1:(i−1) = t1:(i−1) equals

Pθ

(
Ti > ti

∣∣T1:(i−1) = t1:(i−1)

)
= exp

(
−Hθ

i

(
ti

∣∣ t1:(i−1)

))

= exp

(
−
∫ ti

ti−1

λθ(u) du

)
. (5.6)

Finally, the probability that there is no further point in [0, τ ] after TNτ = tNτ can be
written as

Pθ

(
TNτ +1 > τ

∣∣T1:Nτ = t1:(Nτ )

)
= exp

(
−
∫ τ

tNτ

λθ(u) du

)
. (5.7)

Multiplying the terms from Equations (5.5), (5.6) and (5.7), we obtain:

exp

(
−
∫ t1

0
λθ(u) du

)
·

Nτ∏

i=2

exp

(
−
∫ ti

ti−1

λθ(u) du

)
· exp

(
−
∫ τ

tNτ

λθ(u) du

)

= exp

(
−
∫ τ

0
λθ(u) du

)
, (5.8)

and combining Equations (5.4) and (5.8) then yields the full likelihood

L(θ, N) =
Nτ∏

i=1

λθ(ti) exp

(
−
∫ τ

0
λθ(u) du

)
.

Using Equation (5.3), we can determine the likelihood functions in the Basquin load
sharing models with damage accumulation (Model ×D) and without damage accumulation
(Model B). From these, the associated log-likelihood functions can be easily derived.

Theorem 5.4 ((Log-)Likelihood Functions in the Models ×D and B; cf. Theorem II.1 of
Müller and Meyer 2022, p. 3).
In the framework of Definition 5.1 and under assumption (M2), for j ∈ {1, . . . , J} we set:

C̃j := min
{
N (j)

τ + 1, Cj

}
, T̃

(j)
i := min

{
T

(j)
i , τj

}
, i ∈ N ,

Ãj,1 := 0 , Ãj,i :=
i−1∑

k=1

Bj,k

(
T̃

(j)
k − T̃

(j)
k−1

)
, i ∈ N \ {1} .

The likelihood functions L×D and LB in the models ×D and B are then given by

L×D(θ) =
J∏

j=1




N
(j)
τ∏

i=1

θ1Bθ2
j,i

(
Aj,i+1

τ

)θ3

exp


−

C̃j∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)




 ,
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and LB(θ) =
J∏

j=1




N
(j)
τ∏

i=1

θ1Bθ2
j,i exp


−

C̃j∑

k=1

θ1Bθ2
j,k

(
T̃

(j)
k − T̃

(j)
k−1

)




 ,

respectively. The corresponding log-likelihood functions have the following form:

l×D(θ) := ln L×D(θ) =
J∑

j=1

[
N

(j)
τ∑

i=1

(
ln(θ1) + θ2 ln (Bj,i) + θ3 ln

(
Aj,i+1

τ

))

− θ1

τ θ3 (θ3 + 1)

C̃j∑

k=1

Bθ2−1
j,k

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

) ]
,

and lB(θ) := ln LB(θ) =
J∑

j=1

[
N

(j)
τ∑

i=1

(ln(θ1) + θ2 ln(Bj,i))− θ1

C̃j∑

k=1

Bθ2
j,k

(
T̃

(j)
k − T̃

(j)
k−1

) ]
.

Proof. We only prove the assertions for the model ×D. For model B, they follow immedi-
ately by setting θ3 = 0. By definition,

×Dλ
(j)
θ (t) = θ1Bj(t)θ2Aj(t)θ3 · 1{

N
(j)

t− <Cj

}
∩
{

t≤τj

} . (5.9)

If i ∈ {1, . . . , N
(j)
τ

}
, then i ≤ Cj , because N

(j)
τ ≤ Cj by construction. Moreover, due to

×Dλ
(j)
θ (t) = 0 for t > τj , none of the T

(j)
i can fall into (τj , τ ]. This implies that T

(j)
i ≤ τj ,

since otherwise N
(j)
τ < i. Hence, the indicator function in Equation (5.9) is 1 at t = T

(j)
i .

Because of Bj

(
T

(j)
i

)
= Bj,i and τAj

(
T

(j)
i

)
= Aj,i+1 (see Equation (2.25)), it thus holds:

×Dλ
(j)
θ

(
T

(j)
i

)
= θ1Bθ2

j,i

(
Aj,i+1

τ

)θ3

.

Accordingly, we obtain:

J∏

j=1

N
(j)
τ∏

i=1

×Dλ
(j)
θ

(
T

(j)
i

)
=

J∏

j=1

N
(j)
τ∏

i=1

θ1Bθ2
j,i

(
Aj,i+1

τ

)θ3

. (5.10)

For the remaining part of the likelihood we have to calculate an intensity integral. This
can be done piecewise by decomposing the interval [0, τ ] appropriately, that is,

[0, τ ] =
[
0, T

(j)
1

)
∪
[
T

(j)
1 , T

(j)
2

)
∪ . . . ∪

[
T

(j)

N
(j)
τ

, τ
]

.

For any i ∈ {1, . . . , N
(j)
τ

}
, the intensity function

×Dλ
(j)
θ coincides21 with the conditional

hazard function
×Dhθ

i

( · |T (j)
1:(i−1), sj

)
of Lemma 2.24 on

[
T

(j)
i−1, T

(j)
i

)
. Hence, we have

∫ T
(j)
i

T
(j)
i−1

×Dλ
(j)
θ (u) du =

∫ T
(j)
i

T
(j)
i−1

×Dhθ
i

(
u
∣∣T (j)

1:(i−1), sj

)
du =

×DHθ
i

(
T

(j)
i

∣∣T (j)
1:(i−1), sj

)
= Rθ

j,i ,

21In Section 2.5, we derived the conditional hazard function of the model ×D for a deterministic censoring
scheme. On

{
T

(j)
i ≤ τj

}
∩ {i ≤ Cj}, however, neither Equation (2.50) nor Equation (2.51) applies, so

the formulas of Lemma 2.24 remain valid even for a random censoring scheme.
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where Rθ
j,i is the hazard transform of T

(j)
i in the model ×D. For the rest of the proof, we

regularly write
n := N (j)

τ

in order to avoid nested indices in the subsequent calculations. We then observe:

∫ T
(j)
n

0

×Dλ
(j)
θ (u) du =

n∑

i=1

∫ T
(j)
i

T
(j)
i−1

×Dλ
(j)
θ (u) du =

n∑

i=1

Rθ
j,i

=
n∑

i=1

θ1Bθ2−1
j,i

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,i+1 − Ãθ3+1
j,i

)
, (5.11)

because Ãj,i+1 = Aj,i+1 as long as T
(j)
i ≤ τ . To finish the proof, we need to distinguish

whether N
(j)
τ = Cj or N

(j)
τ < Cj .

If n = N
(j)
τ = Cj , then C̃j = Cj and Equation (5.11) has the claimed form, that is,

N
(j)
τ∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)
=

C̃j∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)
. (5.12)

On the other hand, if n = N
(j)
τ < Cj holds, then N

(j)
t− < Cj for all t ∈ I and we get:

∫ τ

T
(j)
n

×Dλ
(j)
θ (u) du

=

∫ τ

T
(j)
n

θ1Bθ2
j,n+1

[
1

τ

(
Bj,n+1

(
u− T (j)

n

)
+ Aj,n+1

)]θ3

· 1{
u≤τj

} du
∣∣∣τj ≤ τ

=

∫ τj

T
(j)
n

θ1Bθ2
j,n+1

[
1

τ

(
Bj,n+1

(
u− T (j)

n

)
+ Aj,n+1

)]θ3

du
∣∣∣cf. Lemma 2.24

=
θ1Bθ2−1

j,n+1

τ θ3(θ3 + 1)

[(
Bj,n+1

(
τj − T (j)

n

)
+ Aj,n+1

)θ3+1
−Aθ3+1

j,n+1

] ∣∣∣T (j)
n+1 > τj

=
θ1Bθ2−1

j,n+1

τ θ3(θ3 + 1)

[(
Bj,n+1

(
T̃

(j)
n+1 − T (j)

n

)
+ Aj,n+1

)θ3+1
−Aθ3+1

j,n+1

]

=
θ1Bθ2−1

j,n+1

τ θ3(θ3 + 1)

(
Ãθ3+1

j,n+2 − Ãθ3+1
j,n+1

)
, (5.13)

because T
(j)
n = T̃

(j)
n and Aj,n+1 = Ãj,n+1. As n + 1 ≤ Cj , we have C̃j = n + 1 and

conclude by combining Equations (5.11) and (5.13):

∫ τ

0

×Dλ
(j)
θ (u) du =

∫ τ

T
(j)
n

×Dλ
(j)
θ (u) du +

∫ T
(j)
n

0

×Dλ
(j)
θ (u) du

=
θ1Bθ2−1

j,n+1

τ θ3(θ3 + 1)

(
Ãθ3+1

j,n+2 − Ãθ3+1
j,n+1

)
+

n∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)

=

C̃j∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)
. (5.14)
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Hence, Equations (5.12) and (5.14) yield that

J∏

j=1

exp

(
−
∫ τ

0

×Dλ
(j)
θ (u) du

)
=

J∏

j=1

exp


−

C̃j∑

k=1

θ1Bθ2−1
j,k

τ θ3 (θ3 + 1)

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)

 , (5.15)

and we obtain the claimed form of the likelihood L×D by multiplying Equations (5.10) and
(5.15). For the corresponding log-likelihood, taking the natural logarithm immediately
leads to the desired result.

The remainder of this chapter is devoted to some comments on the practical implemen-
tation of maximum likelihood estimation in the model ×D. They address

(i) how the dimensions of the optimization problem can be reduced, and

(ii) how the normalizing constant τ and type I censoring affect the likelihood.

We obtain a maximum likelihood estimator in the model ×D by maximizing the likelihood
L×D or, equivalently, the log-likelihood l×D. For this, we require that there exists

j ∈ {1, . . . , J} with N
(j)
τ > 0. Otherwise, the likelihood is strictly decreasing in θ1, so

that there is no permissible maximum likelihood estimate due to θ1 > 0. This is perfectly

plausible, since N
(j)
τ = 0 for all j ∈ {1, . . . , J} means that no points were realized within

[0, τ ], which reflects the behavior under the trivial intensity λ ≡ 0.
If a maximum likelihood estimate can be given on the open domain Θ, then it is located at
a critical point of the (log-)likelihood function. At such a critical point, θ1 can be written
as a function of θ2 and θ3. We can take advantage of this to reduce the optimization
problem from three to two dimensions. To do so, we define two auxiliary functions:

G1 (θ2, θ3) :=
J∑

j=1

N
(j)
τ∑

i=1

(
θ2 ln (Bj,i) + θ3 ln

(
Aj,i+1

τ

))
,

G2 (θ2, θ3) :=
1

τ θ3 (θ3 + 1)

J∑

j=1

C̃j∑

k=1

Bθ2−1
j,k

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

)
.

Then, the log-likelihood l×D from Theorem 5.4 can be written as

l×D(θ) = ln(θ1)
J∑

j=1

N (j)
τ + G1 (θ2, θ3)− θ1G2 (θ2, θ3) . (5.16)

For the parameter θ = (θ1, θ2, θ3)⊤ to be a critical point of l×D, it has to satisfy

d

dθ
l×D(θ)

!
= 0 ,

which means that the gradient of l×D at θ is equal to 0. In particular, for the partial
derivative with respect to θ1 we get

0
!

=
∂

∂θ1
l×D(θ) =

1

θ1

J∑

j=1

N (j)
τ −G2 (θ2, θ3) , (5.17)
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and solving Equation (5.17) for θ1 yields:

θ1
!

=

∑J
j=1 N

(j)
τ

G2 (θ2, θ3)
=: θ̂1 (θ2, θ3) . (5.18)

Because θ̂1 (θ2, θ3) > 0 as long as N
(j)
τ > 0 for some j ∈ {1, . . . , J}, Equation (5.18)

provides a valid estimate for θ1. Substituting this identity into Equation (5.16) leads to
the following function of two variables, namely θ2 and θ3:

l×D

((
θ̂1 (θ2, θ3) , θ2, θ3

)⊤)
=


ln



∑J

j=1 N
(j)
τ

G2 (θ2, θ3)


− 1




J∑

j=1

N (j)
τ + G1 (θ2, θ3) . (5.19)

By setting θ3 = 0, the log-likelihood in the model B can then be similarly expressed as a
function of only θ2 via

lB
((

θ̂1 (θ2, 0) , θ2
)⊤)

= l×D

((
θ̂1 (θ2, 0) , θ2, 0

)⊤)
. (5.20)

Upon further observation of Equations (5.19) and (5.20), we can also conclude that the
maximum likelihood estimator for θ does not directly depend on the normalizing constant
τ , neither in model ×D nor B. While the choice of τ affects the random covariates τj due
to τj ≤ τ , choosing any larger τ̃ > τ has no further influence on the log-likelihood. To see
this, note that

N (j)
τ = N

(j)
τ̃ for all τj ≤ τ < τ̃ . (5.21)

Moreover, we can show that τ cancels out in Equation (5.19). We write:

G1(θ2, θ3) =
J∑

j=1

N
(j)
τ∑

i=1

(
θ2 ln (Bj,i) + θ3 ln

(
Aj,i+1

τ

))

=
J∑

j=1

N
(j)
τ∑

i=1

(θ2 ln (Bj,i) + θ3 ln (Aj,i+1)− θ3 ln(τ))

=
J∑

j=1

N
(j)
τ∑

i=1

(θ2 ln (Bj,i) + θ3 ln (Aj,i+1))

︸ ︷︷ ︸
does not depend on τ due to Equation (5.21)

−θ3 ln(τ)
J∑

j=1

N (j)
τ , (5.22)

and

− ln (G2(θ2, θ3)) = − ln

(
1

τ θ3 (θ3 + 1)

J∑

j=1

C̃j∑

k=1

Bθ2−1
j,k

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

))

= −
[

ln

(
1

θ3 + 1

J∑

j=1

C̃j∑

k=1

Bθ2−1
j,k

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

))
− ln

(
τ θ3
)
]

= θ3 ln(τ)− ln

(
1

θ3 + 1

J∑

j=1

C̃j∑

k=1

Bθ2−1
j,k

(
Ãθ3+1

j,k+1 − Ãθ3+1
j,k

))

︸ ︷︷ ︸
does not depend on τ

. (5.23)
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Since − ln (G2(θ2, θ3)) is multiplied by
∑J

j=1 N
(j)
τ in Equation (5.19), both Equation (5.22)

and Equation (5.23) provide the term

θ3 ln(τ)
J∑

j=1

N (j)
τ ,

which is then canceled out due to the opposite signs. Because the remaining terms no
longer depend on τ due to Equation (5.21), this shows that the maximum likelihood
estimator is not affected by the specific choice of τ as long as τ is sufficiently large.
Consequently, we may allow τ →∞ and find ourselves in the situation of an unbounded
observation horizon. If we further let P

τj = δτ (i.e., τj = τ with probability one), we

can also remove the random type I censoring altogether. In that case, N
(j)
τ → Cj with

probability one as τ →∞, and the likelihood function L×D can be reduced to

L×D(θ) =
J∏

j=1




Cj∏

i=1

×Dλ
(j)
θ

(
t
(j)
i

)
exp


−

∫ T
(j)
Cj

0

×Dλ
(j)
θ (u) du






=
J∏

j=1




Cj∏

i=1

θ1Bθ2
j,iA

θ3
j,i+1 exp


−

Cj∑

k=1

θ1Bθ2−1
j,k

θ3 + 1

(
Aθ3+1

j,k+1 −Aθ3+1
j,k

)



 , (5.24)

where the second layer of random censoring via Cj ≤ I < ∞ ensures that we still
only deal with finitely many observations. Note that in the absence of type I censor-

ing, Pθ∗

(
T

(j)
i > τ

)
> 0 holds regardless of the value of τ <∞ if Pθ∗(Cj ≥ i) > 0 for i ∈ N.

The practical implications of this are twofold: On the one hand, an unbounded ob-
servation period cannot be implemented, but on the other hand, τ can also never be
identified as “sufficiently large” in advance. Technically, this means that calculating the
formula of Equation (5.24) is often not feasible in applications. However, if τ has not
been specified before conducting the experiment, one can deliberately choose τ to be

arbitrarily large as soon as every observable event has occurred, that is, N
(j)
τ = Cj for all

j ∈ {1, . . . , J}.
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6. Simulation Studies and Robustness of the Proposed Methods

In the last major chapter of this thesis, we compare the statistical methods of the previous
chapters in a simulation study. To this end, in Section 6.1 we first describe an algorithm
for the simulation of point processes whose cumulative intensity can be specified in terms
of invertible cumulative conditional hazard functions, as is the case for our main models
B and ×D. By simulating processes with the given intensity

×Dλθ∗ of the Basquin load
sharing model with damage accumulation, we can evaluate the competing methods in
terms of coverage rate and size of their confidence regions for the true parameter θ∗. Both
the construction and comparison of these confidence regions can be found in Section 6.2.
We then conduct hypothesis tests in Section 6.3 to decide whether the damage accumulation
term that extends model B to model ×D is statistically significant. In the final Section
6.4, we assess the robustness of our methods by applying them to contaminated data.

All simulations and computations were implemented by the author of this thesis and
executed in R (R Core Team 2023). The package xtable (Dahl et al. 2019) was helpful
in exporting tables to LATEX. In addition, the packages ggplot2 (Wickham 2016) and
tikzDevice (Sharpsteen and Bracken 2023) were used for most of the visualizations.

6.1. Simulation of a Point Process With Given Cumulative Intensity

In order to run a simulation study, it must be possible to generate random variables or pro-
cesses with certain properties, like a predefined distribution. In our case, the distribution
of the counting processes is determined by the underlying conditional intensity function,
given with respect to an intrinsic filtration. We have seen as early as Equation (2.5) that
such a conditional intensity function can be expressed through a family of conditional
hazard functions. These conditional hazard functions in turn define the conditional
cumulative hazard functions by integration, which laid the foundation for Section 2.5
on the hazard transformation of a point process. It is precisely this transformation that
allows us to easily simulate counting processes with a specific cumulative intensity.

Algorithm 6.1 Simulation of a point process with given cumulative conditional hazard
functions (cchf ) Hi

( · | t1:(i−1), x
)

by the inversion method, cf. Daley and Vere-Jones 2003,
p. 260. Requires that the inverse cchf can be stated explicitly.

Input:

n ∈ N number of points to simulate,
P

X distribution of the random covariates,
t0 ∈ R+ value of T0, defaults to t0 = 0,

H−1
i

( · | ti−1, . . . , t0, x
)

inverse cchf, i = 1, . . . , n.
Output:

t1:n ∈ Rn
+ vector with realizations of the points T1, . . . , Tn.

1: draw sample x of the covariate distribution P
X

2: draw i.i.d. samples y1, . . . , yn of the unit exponential distribution E(1)
3: for i = 1, . . . , n do

4: ti ← H−1
i

(
yi | ti−1, . . . , t0, x

)

5: end for
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The idea is to combine Theorem 2.20 with Equation (2.44): If the hazard transformation
takes any process to a standard Poisson process, then the inverse hazard transformation
can generate arbitrary processes from a standard Poisson process. In the case that the
inverse cumulative conditional hazard functions H−1

i

( · | ti−1, . . . , t0, x
)

can be stated
explicitly, this simple procedure is explained in Algorithm 6.1. In this algorithm, we
have not taken into account that due to random censoring schemes, the inverses of the
cumulative conditional hazard functions often cannot be given at all. This complication
is closely related to the compatibility of hazard transformation and censoring schemes,
which we addressed in Remark 2.22. Unlike previously, however, in a simulation study
this proves to be unproblematic, because the simulated process does not differentiate
between whether the censoring covariates Cj and τj are known in advance or whether the
censoring takes place retrospectively. In practice, this allows that we first simulate a full
realization

T
(j)
1:I (ω) =

(
t
(j)
1 , . . . , t

(j)
I

)

of the jth point process T (j) using Algorithm 6.1. We then draw samples Cj(ω) and τj(ω)

of the random censoring covariates. The number of observations with t
(j)
i ≤ τj(ω) is given

by

N
(j)
τj(ω)(ω) = max

{
i : t

(j)
i ≤ τj(ω)

}
.

This means that any point with an index less than or equal to

C̃j := min
{
Cj(ω), N

(j)
τj(ω)(ω)

}

is not affected by censoring, so as an actual realization of the jth point process T (j) we
obtain (

t
(j)
1 , . . . , t

(j)

C̃j

)
.

Note that we have implicitly used here that in our models each point process consists of
at most I points. If this cannot be assumed, the Cj should be sampled in advance so that
I = maxj=1,...,J Cj(ω) can be chosen.

6.2. Comparison of Confidence Sets for the True Parameter

Each of the methods presented in this thesis lends itself to the construction of confidence
regions for the true parameter θ∗ of a parametric intensity-based point process model.
Within the next three paragraphs, we discuss the following approaches one after another:

(i) Wald-type confidence sets based on the minimum distance estimator of Chapter 3,

(ii) Confidence sets obtained from the consistent 3-sign depth test of Chapter 4,

(iii) Confidence sets constructed from the likelihood-ratio given in Chapter 5.

In order to compare these confidence regions, we need to ensure that their frameworks
are compatible. The chosen parameters in the model ×D as well as the values of the
covariates used for the simulation study are given in Table 2 on the next page.
Since we have τj = 1 and Cj = 10 for all j ∈ {1, . . . , J}, we can assume P

τ0 = δ{1} and

P
C0 = δ{10}, which fits the frameworks of the minimum distance estimator (Definition 3.2)

and the maximum likelihood estimator (Definition 5.1). Moreover, Cj can be regarded
as deterministic, while τj is chosen large enough that no type I censoring occurs during
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model ×D model parameters random covariates repetitions

param./covariate θ∗ I τ τj Cj sj J

chosen value(s)
(
10−4, 3, 1

)⊤
25 1 1 10 80, 120, 200 9, 18, 30, 90, 180

Table 2: The selected model parameters and values of covariates for the simulation study.

the study, both of which are requirements for the hazard transformation framework of
Definition 2.23. Finally, the three initial stress levels 80, 120, 200 are repeated collectively,
which is why the number J of simulated processes is always a multiple of three. Within
the framework of Definition 4.11, this corresponds to L = 3 classes that are successively
repeated, see also the design in Table 1. In the other frameworks, we can take the sj as
i.i.d. realizations of the discrete uniform distribution with support {80, 120, 200}, that is,

P
s0 =

1

3

(
δ{80} + δ{120} + δ{200}

)
.

Note that the true parameter value θ∗ =
(
10−4, 3, 1

)⊤
is vaguely based on the estimates

obtained by Müller and Meyer 2022 for a real data experiment. We adjusted the scaling
parameter θ∗

1 so that the range of observations better matches our choice of τ . The
parameter θ∗

3 was also increased to achieve a more pronounced damage accumulation
effect in the simulation studies.

(i) Confidence Sets Based on the Minimum Distance Estimator

As our first confidence set for the true parameter θ∗, we consider Wald-type confidence
regions constructed from the asymptotic distribution of the minimum distance estimator.
Recall that by virtue of Corollary 3.26 we have (as usual, d is the dimension of the
parameter space Θ)

√
J
(
θ̂J − θ∗

)
d−→ Nd

(
0, Φ0

(
θ∗)−1

Σ
(
θ∗)Φ0

(
θ∗)−1

)
(J →∞) .

To shorten the notation, for θ ∈ Bε (θ∗) with sufficiently small22 ε > 0 we may write

ΣΦ(θ) := Φ0(θ)−1Σ(θ)Φ0(θ)−1 .

For 0 < α < 1, an asymptotic Wald-type (1− α)-confidence region for θ∗ is then given by

C(wald)
J,1−α :=

{
θ ∈ Θ : J

(
θ̂J − θ

)⊤
ΣΦ

(
θ∗)−1(

θ̂J − θ
) ≤ χ2

d,1−α

}
,

where χ2
d,1−α is the (1−α)-quantile of the χ2-distribution with d degrees of freedom. Since

the covariance matrix ΣΦ

(
θ∗) is unknown, it must be estimated. Kopperschmidt and Stute

2013 suggest to replace the unknown standardizing matrix Φ0
(
θ∗) with ΦJ

(
θ̂J

)
(compare

Equations (3.23) and (3.24)) and Σ
(
θ∗) with an appropriate sample analogue. While the

results from Section 3.3 on the asymptotics of the minimum distance estimator (see in
particular Proposition 3.13) show that this approach is valid in theory, a closer look at the

22We must ensure that Φ0(θ) is invertible, which is not guaranteed for all of Θ, but in a sufficiently small
neighborhood of θ∗. Compare Lemma 3.18 from Chapter 3 for details.
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formulas involved reveals the practical difficulties. As emphasized by Kopperschmidt 2005,
p. 159, the analytical calculation of ΦJ

(
θ̂J

)
is possible in principle, but highly demanding

already for simpler models such as the model B. The same applies to a sample analogue of
the asymptotic covariance matrix Σ

(
θ∗), to such an extent that Kopperschmidt developed

further approximations of the occurring integrands (cf. Kopperschmidt 2005, pp. 160–161).
He then resorts to numerical integration and (partial) differentiation in order to estimate
ΣΦ

(
θ∗). Each step in the calculation therefore adds another layer of approximation. In our

adaptation of Kopperschmidt’s procedure, these accumulating approximations ultimately
led to unusable results.
We consequently need an alternative method for estimating the covariance matrix ΣΦ

(
θ∗).

Our approach relies on Proposition 3.13 and Theorem 3.25, which justify the approximation

ΣΦ

(
θ̂J

) ≈ ΣΦ

(
θ∗) . (6.1)

Note that we replace the true parameter θ∗ with its minimum distance estimation θ̂J ,
but otherwise do not switch to the sample analogues from before. We can then simulate
Jsim ∈ N new observations based on the “true” parameter θ̂J and calculate the minimum
distance estimator for θ̂J , which we denote here by θ̃Jsim . Then, approximately,

√
Jsim

(
θ̃Jsim − θ̂J

)
∼ Nd

(
0, ΣΦ

(
θ̂J

))
. (6.2)

We do not have to choose Jsim = J , but we will usually do so in order to reuse the realized
covariates for the new simulations, as their distribution is generally unknown in practice.
For small J , however, it is advisable to choose a multiple Jsim = Jη (η ∈ N) of J and
repeat the realized covariates accordingly, because otherwise the distribution assumption
from Equation (6.2) may not apply. In order to estimate the covariance matrix ΣΦ

(
θ̂J

)
,

we simulate nrep ∈ N realizations of the minimum distance estimator θ̃Jsim for θ̂J , denoted
by

θ̃
(n)
Jsim

, n = 1, . . . , nrep .

We can employ a standard estimator such as the sample covariance to estimate ΣΦ

(
θ̂J

)
.

This estimation then also serves as an approximation of ΣΦ

(
θ∗) due to Equation (6.1).

Since under the distribution assumption from Equation (6.2) the expected value is known,
we can alternatively use the following estimator:

Σ̂Φ

(
θ̂J

)
:=

Jsim

nrep

nrep∑

n=1

(
θ̃Jsim − θ̂J

)⊤(
θ̃Jsim − θ̂J

)
. (6.3)

The Algorithm 6.2 summarizes this procedure, enabling us to estimate the covariance
matrix ΣΦ

(
θ̂J

)
with any desired accuracy. An approximative (1− α)-confidence region

for θ∗ is then given by

C(dist)
J,1−α :=

{
θ ∈ Θ : J

(
θ̂J − θ

)⊤
Σ̂Φ

(
θ̂J

)−1(
θ̂J − θ

) ≤ χ2
d,1−α

}
. (6.4)

Similar to Kopperschmidt’s approach, however, our method also reaches its computational
limits when we increase both Jsim and nrep. This becomes evident in a simulation study
where we aim to generate a large number of confidence regions. If the covariance matrix
ΣΦ

(
θ̂J

)
for each repetition should be estimated with high accuracy, such a study is
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Algorithm 6.2 Estimation of the unknown covariance matrix ΣΦ

(
θ∗).

Input:

θ̂J previous minimum distant estimation for the true parameter θ∗,

Jsim number of simulated processes to compute the MDE θ̃Jsim for θ̂J ,

nrep number of realizations of the MDE θ̃Jsim from which ΣΦ

(
θ̂J

)
is estimated,

. . . further inputs required by Algorithm 6.1.
Output:

Σ̂Φ

(
θ̂J

)
estimation of the covariance matrix ΣΦ

(
θ̂J

) ≈ ΣΦ

(
θ∗)

1: for n = 1, . . . , nrep do

2: for j = 1, . . . , Jsim do

3: simulate realization t(j) of the point process T (j) via Algorithm 6.1
// (random) censoring may take place here if required

4: end for

5: calculate MDE θ̃
(n)
Jsim

from t(1), . . . , t(Jsim)

6: end for

7: compute Σ̂Φ

(
θ̂J

)
from θ̃

(1)
Jsim

, . . . , θ̃
(nrep)
Jsim

via Equation (6.3)

computationally not feasible. If, on the other hand, we choose an insufficient Jsim or nrep,

then the inaccurate estimation of ΣΦ

(
θ̂J

)
and thus ΣΦ

(
θ∗) results in poor confidence

regions. In the scope of our simulation study, we decide on the following compromise:

• For the visualizations in this paragraph, we calculate the confidence region C(dist)
J,1−α

from Equation (6.4) with Jsim = J and nrep = 3000.

• For the comparison of the confidence regions from paragraphs (i), (ii) and (iii),
we estimate ΣΦ

(
θ∗) in advance. To do this, we exploit that in a simulation study

the true parameter is known and obtain Σ̂Φ

(
θ∗) from Algorithm 6.2 by passing θ∗

instead of θ̂J as the input. We then replace each instance of Σ̂Φ

(
θ̂J

)
with Σ̂Φ

(
θ∗).

Even if not applicable in practice, this compromise is reasonable because of Equation (6.1).
The runtime for determining the confidence region is mainly driven by the duration needed
to calculate the minimum distance estimations. A single confidence interval requires

1
for the actual

MDE θ̂J

+ nrep
for the covariance

matrix estimation Σ̂Φ

(
θ̂J

)

calculations of the MDE. So if nconf denotes the number of realized confidence regions,
the above compromise reduces the number of MDE calculations from

nconf · (1 + nrep) = nconf + nconf · nrep

to just

nrep
for preliminary covariance

matrix estimation Σ̂Φ

(
θ∗) + nconf

for the MDE corresponding
to each confidence region

and therefore saves (nconf − 1) · nrep MDE calculations, which represents the majority
of the computational effort. The running time of each evaluation of the MDE should
nevertheless be reduced as much as possible. Similar to the maximum likelihood estimator,
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the minimum distance estimator is obtained by solving an optimization problem whose
dimension can be reduced from three to two. We revisit Lemma 3.10, where we have seen
that the gradient of the Cramér-von Mises distance disappears at the MDE θ̂J , that is,

1

2

d

dθ

∥∥∥N (J) − Λ
(J)
θ

∥∥∥
2

N
(J)

∣∣∣∣
θ=θ̂J

= 0 .

The counting processes N (1), . . . , N (J) almost surely have no common discontinuities
according to Lemma A.37. By Equation (3.4), we can therefore write the Cramér-von
Mises distance as

∥∥∥N (J) − Λ
(J)
θ

∥∥∥
2

N
(J) =

1

J

∑

t∈J
N

(J)

(
N

(J)
t − Λ

(J)
θ (t)

)2
.

The partial derivative with respect to θ1 is given by

∂

∂θ1

∥∥∥N (J) − Λ
(J)
θ

∥∥∥
2

N
(J) = − 2

J

∑

t∈J
N

(J)

[(
N

(J)
t − Λ

(J)
θ (t)

) ∂

∂θ1
Λ

(J)
θ (t)

]
.

For the gradient of the Cramér-von Mises distance to vanish, all partial derivatives must
be equal to 0. Hence,

0
!

=
1

2

∂

∂θ1

∥∥∥N (J) − Λ
(J)
θ

∥∥∥
2

N
(J) ⇐⇒ 0

!
=

∑

t∈J
N

(J)

[(
N

(J)
t − Λ

(J)
θ (t)

) ∂

∂θ1
Λ

(J)
θ (t)

]
. (6.5)

For the model ×D, we can immediately see that the following relationship applies:

×DΛ(θ1,θ2,θ3)⊤ ≡ θ1
×DΛ(1,θ2,θ3)⊤ . (6.6)

Substituting Equation (6.6) into Equation (6.5) and solving for θ1 yields (we omit the
model indicator ×D for readability):

0
!

=
∑

t∈J
N

(J)

[(
N

(J)
t − Λ

(J)
θ (t)

) ∂

∂θ1
Λ

(J)
θ (t)

]

=
∑

t∈J
N

(J)

[(
N

(J)
t − θ1Λ

(J)

(1,θ2,θ3)⊤(t)
)
· Λ(J)

(1,θ2,θ3)⊤(t)
]

⇐⇒ θ1

∑

t∈J
N

(J)

(
Λ

(J)

(1,θ2,θ3)⊤(t)
)2 !

=
∑

t∈J
N

(J)

(
N

(J)
t · Λ(J)

(1,θ2,θ3)⊤(t)
)

⇐⇒ θ1
!

=

∑
t∈J

N
(J)

(
N

(J)
t · Λ(J)

(1,θ2,θ3)⊤(t)
)

∑
t∈J

N
(J)

(
Λ

(J)

(1,θ2,θ3)⊤(t)
)2 =: θ̂1(θ2, θ3) .

Analogous to the (log-)likelihood from Equation (5.19), the Cramér-von Mises distance
can then be expressed as a function of the two parameters θ2 and θ3 if we replace θ1 with
θ̂1(θ2, θ3). This simplification significantly accelerates numerical optimization. Moreover,
numerical methods occasionally fail to find the minimum of the Cramér-von Mises distance
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in three dimensions, even if the initial value is set to the true parameter. As this never
occurred for the two-dimensional optimization in any of the simulation runs, the reduction
of the dimension also enhances the overall reliability of the method. However, we do
not want to conceal the fact that the minimum distance estimator still occasionally
deviates drastically from the true value, especially for smaller J ≤ 9. This is the sole
reason why the case J = 3 is not considered in some aspects of the simulation study,
because the exceptionally high variance of the minimum distance estimate for θ1 leads
to numerically singular covariance matrices, rendering the computation of Wald-type
confidence regions impossible. Note that this is not a matter of scale, as the results are
similar at θ∗ = (1, 3, 1), for example. We will see shortly that this complication is not
unique to the minimum distance estimator, but is an inherent property of the model ×D.

We are now able to plot a confidence region C(dist)
J,1−α for the true parameter θ∗ based on

the counting process realizations obtained from Algorithm 6.1. All confidence regions
visualized in this dissertation are generated from the same seed to ensure comparability.
For each of the initial stress levels 80, 120, 200, we simulate 60 counting processes with
the parameters and covariates given in Table 2 for a total of J = 180 counting process
realizations. We then obtain the realizations in the cases J < 180 by looking at subsets
of this data. This means, for example, that all the realizations used to calculate the

confidence regions C(dist)
30,1−α (i.e., J = 30) are also included in the confidence regions C(dist)

90,1−α

and C(dist)
180,1−α, which in practice equates to adding further data from follow-up experiments.

As pointed out earlier, we choose Jsim = J and nrep = 3000 for the estimation of ΣΦ

(
θ̂J

)
.

Since the parameter space for the model ×D is 3-dimensional, the confidence regions
shown here are difficult to visualize as subsets of R3. So instead of plotting a confidence
region itself, we show the intersections of the confidence region with suitable hyperplanes:

In θ1-θ2-direction: CJ,1−α ∩ {θ ∈ Θ : θ3 = θ∗
3} ,

In θ1-θ3-direction: CJ,1−α ∩ {θ ∈ Θ : θ2 = θ∗
2} ,

In θ2-θ3-direction: CJ,1−α ∩ {θ ∈ Θ : θ1 = θ∗
1} .

We have omitted the indicator (dist) here, as this procedure is universal for the other
confidence regions, too. The hyperplanes are sometimes abbreviated as π−1

i ({θ∗
i }) or just

{θi = θ∗
i }. Two points of criticism should be mentioned in advance:

First, a single seed does not provide a representative image of the confidence region, but
it gives us an idea of its overall shape. Second, this approach generally does not provide
two-dimensional (1− α)-confidence regions, which is why the following figures should be
treated with caution.
All plots are displayed in Appendix C in Figures 22 (for the θ1-θ2-direction), 23 (for the

θ1-θ3-direction) and 24 (for the θ2-θ3-direction). Since the confidence regions C(dist)
J,1−α are

ellipsoids by construction, the intersection with a hyperplane is always an ellipse. We
can see this directly from the plots or at least assume it due to the size of the ellipse.
Figure 5 shows the panel corresponding to J = 180 from Figure 22. The large variance of
the estimate for θ1 elongates the ellipse and gives the impression of a confidence “band”.
The same pattern can be observed for the intersection with the hyperplane {θ2 = θ∗

2} (see
Figure 23), while for the intersection with the hyperplane {θ1 = θ∗

1} the ellipses are clearly
recognizable (see Figure 24). We might be tempted to assume that the large deviations
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Figure 5: Visualization of C
(dist)
J,1−α ∩ {θ3 = θ∗

3} at J = 180. This plot is taken from one of
the panels of Figure 22 in Appendix C.

regarding θ1 are due to numerical optimization. In an experimental approach, we have

therefore removed all those observations θ̃
(n)
Jsim

, n ∈ {1, . . . , nrep}, for the estimation of

ΣΦ

(

θ̂J

)

whose first component would be classified as an outlier in a classical boxplot.
Thus, writing

θ̃
(n)
Jsim

=
(

θ̃
(n)
Jsim,1, θ̃

(n)
Jsim,2, θ̃

(n)
Jsim,3

)⊤

, n ∈ {1, . . . , nrep} ,

we calculated the first and third quartile of the observations’ first component, denoted by

q̃0.25

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

and q̃0.75

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

,

respectively. The interquartile range is given by the difference between these quartiles,

IQR
(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

= q̃0.75

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

− q̃0.25

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

.

For the calculation of Σ̂Φ

(

θ̂J

)

, we then removed all observations n ∈ {1, . . . , nrep} with

θ̃
(n)
Jsim,1 > q̃0.75

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

+ 1.5 · IQR
(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

or θ̃
(n)
Jsim,1 < q̃0.25

(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

− 1.5 · IQR
(

θ̃
(1)
Jsim,1, . . . , θ̃

(nrep)
Jsim,1

)

,

and adjusted nrep accordingly. Figure 6 shows how this procedure affects the plot in
Figure 5 (the same seed was used for these confidence regions). While the elliptical shape
of the intersection becomes more apparent, the overall impact is moderate, especially
when we look at the confidence regions of the following paragraphs. This suggests that
the shape of the confidence regions may not be caused by inaccuracies in the numerical
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Figure 6: Visualization of C
(dist)
J,1−α ∩ {θ3 = θ∗

3} at J = 180, where the outliers relating to θ1

were removed for the estimation of ΣΦ

(

θ̂J

)

.

optimization, but by the inherent characteristics of the model ×D. We will come to a
better understanding of this by the end of the following paragraph, once we have examined
the confidence regions constructed from the 3-sign depth test.

(ii) Confidence Sets Based on the 3-Sign Depth Test

For the remaining statistical methods, the construction of confidence regions is more
straightforward than for the minimum distance estimator. In both cases, we utilize the
fact that confidence regions can easily be obtained from hypothesis tests: If ϕα,θ0

denotes
a level α ∈ (0, 1) test for the one-point hypothesis H0 : θ∗ = θ0, then a (1 − α)-confidence
region for the true parameter θ∗ is given by the set

{θ0 ∈ Θ : ϕα,θ0
= 0} . (6.7)

In the case of the K-sign depth test from Definition 4.7, this region becomes

{

θ0 ∈ Θ : ΨK

(

Wη(θ0)
)

≥ qα(ΨK)
}

because of Θ0 = {θ0}, so we do not have to take the supremum here. In the model ×D,
ΨK

(

Wη(θ0)
)

is the normalized K-sign depth based on η standardized hazard transforms
at θ0 ordered with respect to ≤acc (cf. Definitions 2.29 and 4.15 as well as Theorem 4.5).
The total number η = η(J) (cf. Assumption 4.12) of observed points depends on the
random covariates τj and Cj . In the context of this simulation study, we always have
η = 10J due to Cj = 10 and sufficiently large τj for each j ∈ {1, . . . , J}. In the following,
the confidence region for the true parameter θ∗ based on the 3-sign depth test is denoted
by

C
(depth)
J,1−α :=

{

θ0 ∈ Θ : Ψ3
(

Wη(J)(θ0)
)

≥ qα(Ψ3)
}

.
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α 0.01 0.025 0.05 0.1

qα(Ψ3) −2.1947 −1.6398 −1.2182 −0.7976

Table 3: Computed values for the quantiles qα(Ψ3) of the asymptotic distribution Ψ3(W ).

In order to compute C
(depth)
J,1−α , we require the quantiles qα(Ψ3) of the asymptotic distribution

Ψ3(W ) of the 3-sign depth. This distribution is explicitly given in Theorem 4.4, enabling
us to approximate its quantiles through a simulation. We describe this procedure in
Algorithm 6.3. The calculated quantiles using rep = 106 and step = 105 are listed in
Table 3.

Algorithm 6.3 Approximation of the quantile qα(Ψ3) via the empirical α-quantile of
i.i.d. samples from the asymptotic distribution Ψ3(W ). The Brownian motion W on [0, 1]
is realized by forming cumulative sums of i.i.d. normally distributed random variables.

Input:

α ∈ (0, 1) which quantile is to be approximated,
rep ∈ N number of i.i.d. samples from Ψ3(W ) to be simulated,
step ∈ N number of i.i.d. random variables used to simulate W .

Output:

q̃α ∈ R empirical α-quantile of the rep i.i.d. samples from Ψ3(W ).

1: for r = 1, . . . , rep do

2: draw i.i.d. samples x1, . . . , xstep of the standard normal distribution N (0, 1)
3: W ← 1√

step
cumsum

(

x1, . . . , xstep

)

// simulate Brownian motion on [0, 1]
4: to_Int← 0
5: for i = 1, . . . , step do

6: to_Int← to_Int +W 2
i −Wstep ·Wi // compute simplified integral for Ψ3(W )

7: end for

8: ψr ←
3
4

(

1−W 2
step

)

− 3to_Int
step

// get rth realization of Ψ3(W )
9: end for

10: compute empirical α-quantile q̃α = q̃α

(

ψ1, . . . , ψrep

)

From here we can proceed exactly as in paragraph (i). We again visualize intersections
of the 3-dimensional confidence regions with selected hyperplanes. To obtain (1 − α)-
confidence regions for different levels α ∈ {0.01, 0.05, 0.1} at once, we show in each case
a contour plot of the normalized 3-sign depth as a function of the parameter θ. We
provide the full plots in Appendix C, see Figures 25 (for the θ1-θ2-direction), 26 (for
the θ1-θ3-direction) and 27 (for the θ2-θ3-direction). Figure 7 shows the intersection of

C
(depth)
30,1−α with the hyperplane {θ2 = θ∗

2}. We immediately notice that the confidence regions

are less smooth compared to the ellipses we obtained from C
(dist)
J,1−α. Nevertheless, the

intersections with the hyperplanes {θ2 = θ∗
2} as well as {θ1 = θ∗

1} are still nearly elliptical,
especially when we increase J . The plot in θ1-θ2-direction is of particular interest to
us, since we still owe an explanation for the large deviation with regard to θ1 that we
observed in paragraph (i) above. We give this plot in Figure 8 at J = 180, which can
therefore be compared directly to Figure 5 as it was calculated from the exact same data.
Similar to the Wald-type confidence regions based on the minimum distance estimator,
the confidence regions here again appear to be stretched in the θ1-direction.
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Figure 7: Visualization of C
(depth)
J,1−α ∩ {θ2 = θ∗

2} at J = 30. This plot is taken from one of
the panels of Figure 26 in Appendix C.
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Figure 8: Visualization of C
(depth)
J,1−α ∩ {θ3 = θ∗

3} at J = 180. This plot is taken from one of
the panels of Figure 25 in Appendix C.
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Figure 9: Extended visualization of C
(depth)
J,1−α ∩{θ3 = θ∗

3} at J = 180. The plot is functionally
identical to Figure 8, but the displayed area has been extended in θ1-direction.

From the consistency of the 3-sign depth test, we know that this “band” cannot extend
indefinitely as we increase J , and instead contracts to the true parameter θ∗. We can
already see this for J = 180, but we have to look at an area five times as large and extend
the contour plot up to θ1 = 0.001, see Figure 9. What we could not yet see from the

confidence region C
(dist)
J,1−α now becomes evident: The visible “band” is characteristic of an

exponential decay, so that a logarithmic scale is more suitable for the parameter θ1.
In the panel “linear” of Figure 10, we find that the minimum distance estimates of the true
parameter are essentially located along this band. If these estimates (and thus virtually
the entire band) are to be contained in an ellipse, it must be disproportionately large.
This is exactly the behavior we noticed in Figure 5.
By instead plotting ln(θ1) against θ2, these estimates form the anticipated ellipses, as
shown in the panel “logarithmic” of Figure 10. The alternative parametrization of
Equation (2.28) is hence the better choice for minimum distance estimation.
For the remainder of this thesis, however, we will stick to the original parametrization

of model ×D. The important finding here is that the confidence regions C
(depth)
J,1−α perform

reasonably even under suboptimal modelling decisions. As we will discover shortly, this
also applies to the confidence regions based on the likelihood ratio.

(iii) Confidence Sets Based on the Likelihood Ratio

Our final confidence region is constructed directly from the likelihood ratio test statistic.
For the hypotheses

H0 : θ∗ ∈ Θ0 vs. H1 : θ∗ ∈ Θ \ Θ0

and a likelihood function L, this test statistic is given by (cf. Serfling 1980, p. 157):

LR(Θ0, Θ) := −2 ln

(

supθ∈Θ0
L(θ)

supθ∈Θ L(θ)

)

. (6.8)
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Figure 10: Scatterplots of θ1 vs. θ2 (panel “linear”) and ln(θ1) vs. θ2 (panel “logarithmic”)
for 500 simulated values of the minimum distance estimator at each J ∈
{18, 30, 90, 180}. As usual, the parameters & covariates from Table 2 were
used.

The likelihood ratio converges in distribution to a χ2-distribution, whereby the degrees of
freedom depend on Θ and Θ0. In the case of a one-point hypothesis (i.e., Θ0 = {θ0} for
some θ0 ∈ Θ), the degrees of freedom correspond to the dimension d of the parameter
space Θ (cf. Andersen et al. 1993, p. 403). In general, if Θ0 is determined by a collection
of r ≤ d restrictions

Ri(θ) = 0 , i = 1, . . . , r ,

so that
Θ0 = {θ ∈ Θ : Ri(θ) = 0 for all i = 1, . . . , r} , (6.9)

then - under certain regularity conditions - the degrees of freedom are given by the number
r of restrictions (cf. Serfling 1980, pp. 152, 156–158). If r < d, H0 : θ∗ ∈ Θ0 is called a
composite hypothesis, see also Andersen et al. 1993, p. 426. As an asymptotic test, the
likelihood ratio test utilizes the asymptotic distribution of LR(Θ0, Θ). The likelihood
ratio test at level α ∈ (0, 1) for the one-point hypothesis H0 : θ∗ = θ0 is defined as

ϕ
(lr)
α,θ0

= 1

{

LR
(

{θ0} , Θ
)

> χ2
d,1−α

}

.

From Equation (6.7), we then immediately obtain the corresponding confidence region
for the true parameter θ∗, where J ∈ N implicitly affects LR

(

{θ0} , Θ
)

via the likelihood
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Figure 11: Visualization of C
(lr)
J,1−α ∩ {θ2 = θ∗

2} at J = 30. This plot is taken from one of
the panels of Figure 29 in Appendix C.

function L:
C

(lr)
J,1−α :=

{

θ0 ∈ Θ : LR
(

{θ0} , Θ
)

≤ χ2
d,1−α

}

.

In the model ×D, we have d = 3. Since the quantiles are already known here, we
can immediately move on to the visualization, which is analogous to the preceding
paragraphs. The plots show the contour lines of LR ({θ}, Θ) as a function of θ on the
hyperplanes {θ3 = θ∗

3} (Figure 28), {θ2 = θ∗

2} (Figure 29) and {θ1 = θ∗

1} (Figure 30) for
J ∈ {18, 30, 90, 180} and the parameters & covariates given in Table 2. As before, they
can be found in Appendix C.
The likelihood ratio confidence regions appear similar in shape to the confidence regions
based on the 3-sign depth, but with smoother boundaries, especially for smaller sample
sizes. As an example, in Figure 11 we look at the intersection of the confidence region

C
(lr)
30,1−α with the hyperplane {θ2 = θ∗

2}. We can compare this plot directly with the earlier
Figure 7, where the depth-based confidence region was computed from the same data.
The smoother boundaries are clearly noticeable here.
Finally, we remark that the likelihood ratio test essentially builds on the asymptotic
normality of the maximum likelihood estimator, so that a Wald-type confidence region

similar to C
(dist)
J,1−α could also be considered. However, we want to emphasize that the

confidence region C
(lr)
J,1−α does not suffer from the same problems as the Wald-type

confidence region constructed from the minimum distance estimator and thus seems less

reliant on an appropriate parametrization. Consequently, the confidence region C
(lr)
J,1−α

shares the advantages of C
(dist)
J,1−α and C

(depth)
J,1−α without adopting their drawbacks, which

makes it stand out in direct comparison. We also observe this in the following study
of the size and coverage rate between the three different confidence regions for the true
parameter.
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Figure 12: Comparison of the coverage rates of the true parameter θ∗ between the confi-
dence regions based on the minimum distance estimator (method “dist”), the
3-sign depth test (method “depth”) and the likelihood ratio (method “lr”) in a
simulation study with 2000 simulated (1− α)-confidence regions at α = 0.05
for each method and each J ∈ {9, 18, 30, 90, 180}.

Simulation Study on Size and Coverage Rate of the Confidence Regions

So far, we have visualized only a single realization of the proposed confidence regions. To
compare them in a statistically sound manner, we compute 2000 confidence regions at each
J ∈ {9, 18, 30, 90, 180} for all of the methods and evaluate both their size and coverage
rate of the true parameter. We compare the size by placing a 41× 41× 41 grid centred
around θ∗ in the parameter space Θ. For each method and J ∈ {9, 18, 30, 90, 180}, we
then determine how many grid points lie on average in the generated confidence regions.
The grid is chosen in such a way that the parameter ranges shown in Figures 22 through
30 are covered, but we use a logarithmic scale in θ1-direction to account for the larger
confidence regions based on the minimum distance estimator. In total, we checked all the
41× 41× 41 = 68921 parameter combinations (θ1, θ2, θ3)⊤ ∈ Θ where

log(θ1) ∈ { −6 ,−5.90,−5.80, . . . , −2 } ,
θ2 ∈ { 2 , 2.05, 2.10, . . . , 4 } ,
θ3 ∈ { 0 , 0.05, 0.10, . . . , 2 } .

To estimate the coverage rate, we examined how often on average the true parameter θ∗

was located within the generated confidence region. A summary of all results is given
in Table 8 in Appendix C. Figure 12 shows the coverage rates for the true parameter
θ∗ obtained from 2000 simulated (1− α)-confidence regions at α = 0.05 for each of the
three methods and each J ∈ {9, 18, 30, 90, 180}. While the confidence regions based on
the 3-sign depth and the likelihood ratio meet the (1− α)-level, the Wald-type confidence
region obtained from the minimum distance estimator fails to do so for larger J . This is
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unexpected, as it seems to contradict the consistency of that estimator. For comparison
of size, in Figure 13 we provide box plots for the numbers of grid points contained
in the simulated confidence regions. The results are consistent across all sample sizes
J ∈ {9, 18, 30, 90, 180} and show that the method “lr” (likelihood ratio) produces the
smallest confidence regions, followed by the method “depth” (3-sign depth test). The
confidence regions given by the method “dist” (minimum distance estimator), on the other
hand, are so large that a logarithmic axis had to be used to allow visual comparison. For
this, a total of 20 observations, where the number of grid points was 0, had to be removed
from the simulated data set. In these cases, the entire calculated confidence region was
located somewhere outside the grid. Despite the size of its confidence regions, this only
happened for the method “dist” at J = 9 (nine times), J = 18 (three times) and J = 30
(eight times). Figure 13 also shows that atypically small confidence regions obtained from
this method - classified as outliers in the box plots - generally do not contain the true
parameter θ∗. It can therefore be assumed that these extend beyond the observed grid
and are consequently evaluated as being smaller than they actually are.
This further demonstrates that a comparison based on the contained grid points only
allows for rough estimates of the confidence regions’ sizes. The fact that for fixed J
the Wald-type confidence regions based on the minimum distance estimator should have
the same size, since they share the same estimate for the asymptotic covariance matrix,
reinforces this criticism. It is the reason why the box collapses at J = 30, while fluctuations
in size can occur for larger J due to shifts within the grid. This happens because the
confidence regions become comparatively small in relation to the resolution of the grid.
Moreover, non-convex confidence regions may be located unfavourably between the grid
points, making them appear considerably smaller. Because of that, a size comparison
based on grid points only works well if the confidence regions are convex and the resolution
of the grid is high enough, both of which can be questioned in our scenario (cf. Figures
25 and 28). Nevertheless, the boxes in Figure 13 are rather short and never overlap
regardless of the sample size J . This lends a certain credibility to our conclusions, as we
would expect larger fluctuations for either an insufficient resolution or confidence regions
whose shape does not fit well with the given grid.

6.3. Comparison of Hypothesis Tests for Damage Accumulation

In the last section, we studied confidence sets for the true parameter θ∗. As we have
seen in the construction of the confidence regions based on either the 3-sign depth or the
likelihood ratio, these correspond directly to statistical tests for one-point hypotheses.
We next turn to the composite hypothesis H0 : θ∗3 = 0, which is of particular interest as
it can be used to test the significance of the damage accumulation term. The aim of this
section is to conduct tests for this hypothesis based on the minimum distance estimator,
the 3-sign depth and the likelihood ratio, and to evaluate their power.
Since the 3-sign depth test can by definition also be performed for composite hypotheses,
for this we can again apply the hypothesis test from Definition 4.7 by setting

Θ0 =
{
θ = (θ1, θ2, θ3)⊤ ∈ Θ : θ3 = 0

}
.

We obtain the same set from Equation (6.9) if we define R1(θ) := θ3. We can therefore
continue to use the likelihood ratio test statistic from Equation (6.8), where the degrees of
freedom of its asymptotic χ2-distribution now amount to r = 1. This leaves the minimum
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Figure 14: Rejection rates of the level α = 0.05 tests for damage accumulation, i.e.,
for the hypothesis H0 : θ∗3 = 0, based on the minimum distance estimator
(method “dist”) and the likelihood ratio (method “lr”) at different values of
θ∗3 and J ∈ {9, 18, 30, 90, 180}. The remaining parameter values were fixed at
θ∗1 = 10−4 and θ∗2 = 3. Missing values indicate that the estimated covariance
matrix was computationally singular, so no test could be performed for method
“dist”. Dotted lines represent a linear interpolation between available data.

distance approach, for which a suitable test must first be constructed. A basic test for
composite hypotheses can be derived from a confidence region for the true parameter: If
C1−α is a (1− α)-confidence region for θ∗ and Θ0 ⊂ Θ is an arbitrary subset, then a level
α test for H0 : θ∗ ∈ Θ0 is given by

ϕ =

{
1 , if C1−α ∩Θ0 = ∅ ,
0 , otherwise.

(6.10)

This directly follows from the definition of a confidence set, as for any θ∗ ∈ Θ0 we have:

Pθ∗ (ϕ = 1) = Pθ∗ (C1−α ∩Θ0 = ∅) ≤ Pθ∗ (C1−α ∩ {θ∗} = ∅) = Pθ∗ (θ∗ /∈ C1−α) ≤ α .

The test ϕ is rooted in a simple reasoning: The confidence region C1−α contains the
plausible values for the true parameter based on the observed data. If this set does not
include a single parameter from Θ0, then no parameter from Θ0 is a suitable candidate for
θ∗. We therefore reject H0 : θ∗ ∈ Θ0. The test also has an easy visual interpretation. In
the case Θ0 = {θ3 = 0}, we only need to check whether the computed confidence region
cuts through the θ1-θ2-plane. The test for damage accumulation based on the Wald-type

confidence region C(dist)
J,1−α is now given by

1

{
sup
θ∈Θ0

J
(
θ̂J − θ

)⊤
Σ̂Φ

(
θ̂J

)−1(
θ̂J − θ

)
> χ2

d,1−α

}
.
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Figure 15: Combined power plot from Figure 14. For better readability, only J ∈
{18, 90, 180} were considered.

Remarkably, the 3-sign depth test from Definition 4.7 was derived according to the
same principle. Both tests therefore share the shortcoming that they are usually rather
conservative and fall well below the targeted level α.
We can now compare the available tests for damage accumulation in a simulation study.
To this end, we simulate J = 180 point process realizations at θ∗ = (θ∗1, θ

∗
2, θ
∗
3)⊤, where

θ∗1 = 10−4 and θ∗2 = 3 are fixed, while θ∗3 ranges from 0 to 0.5. We then apply the three
tests to this data (for J ∈ {9, 18, 30, 90}, a subset of the data is used), and repeat this
5000 times for each possible value of θ∗3. Depending on θ∗3, the relative rejection rates
of these tests can then be determined. For the tests based on the minimum distance
estimator (method “dist”) and the likelihood ratio (method “lr”), they are plotted in
Figure 14. As expected, for both methods we see an increase in power as the sample size J
grows. We find that the test based on the minimum distance estimator is too conservative,
which is common for a test constructed via Equation (6.10). This does benefit the method
to some extent, as we saw in the previous section that the corresponding confidence
regions struggled to keep their level. Moreover, we again observe that for J = 9 (and here
even once for J = 18) the estimated covariance matrix is often computationally singular.
Since its inverse cannot be determined in these cases, the test for damage accumulation
cannot be carried out, leading to missing values in the power plot. These missing values
can be imputed by (e.g., linear) interpolation, which is indicated by a dotted line. In
Figure 15, we combined both panels of Figure 14 to directly compare the competing
methods. Apparently, the method “dist” requires around ten times as many observations
in order to match the method “lr”, compare “lr” for J = 18 and “dist” for J = 180.
Nevertheless, we find that even the basic test based on the minimum distance estimator
achieves acceptable power. However, this does not apply to the 3-sign depth test for
damage accumulation: Across all repetitions and values for θ∗3 ∈ [0, 0.5], this test could
never reject the null hypothesis. We have therefore omitted it from Figures 14 and 15,
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J 360 450 540 630

rejection rate 0.004 0.051 0.322 0.752

Table 4: Rejection rates of the 3-sign depth test for damage accumulation, i.e., for the

hypothesis H0 : θ∗3 = 0, at θ∗ =
(
10−4, 3, 0.5

)⊤
and J ∈ {360, 450, 540, 630}.

because the relative rejection rate is a constant 0. As it turns out, the 3-sign depth
test requires even larger sample sizes for consistency to take effect: For J = 180, the
confidence region still extended beyond the θ1-θ2-plane for each of the 5000 realizations.
For significantly larger J , the confidence set narrows to the true parameter θ∗ and at

some point no longer intersects the θ1-θ2-plane. At θ∗ =
(
10−4, 3, 0.5

)⊤
, we started to

observe this for J ≥ 360. The rejection rates for J ∈ {360, 450, 540, 630} are given in
Table 4. Although the power further increases as J becomes larger, it is still unacceptably
low in relation to the sample size, so we discontinued our investigations at this point.

6.4. Study on the Robustness of the Methods for Contaminated Data

Kopperschmidt and Stute 2013, p. 1278 claim that the minimum distance procedure
yields robust consistent estimates of the true parameter θ∗. Furthermore, the 3-sign depth
test as a generalization of the classical sign test is naturally outlier robust, because its
test statistic only accounts for the signs of the (transformed) observations. We want to
assess the robustness of these methods in the presence of contaminated data and evaluate
whether the hitherto superior likelihood methods fall short in this setting.
To generate contaminated data, we modify the “raw data”, that is, the i.i.d. samples
y1, . . . , yn of the unit exponential distribution needed to simulate a point process realization
(see Algorithm 6.1). We consider two types of modification:

(1) Depth-specific contamination. Contaminate the raw data by increasing the
deviation from the median ln(2) of the E(1)-distribution. For a contamination at
index i, replace the ith sample yi with

ỹi = max {2 (yi − ln(2)) + ln(2), q0.0001 (E(1))} ,

where q0.0001 (E(1)) is the 0.0001-quantile of the unit exponential distribution. The
maximum is required to prevent negative observations. With this modification, the
signs of the standardized hazard transforms at θ∗ are retained. The 3-sign depth
test is therefore virtually unaffected by this contamination, since only the order of
the hazard transforms with respect to ≤acc changes slightly. As it is tailored to
depth-based methods, we refer to this type of contamination as depth-specific.

(2) Quantile-based contamination. Contaminate the raw data by replacing it with
atypically small or large values in terms of the E(1)-distribution. For a contamination
at index i, randomly replace the ith sample yi with either

ỹi = q0.0001 (E(1))︸ ︷︷ ︸
atypically small

or ỹi = q0.9999 (E(1))︸ ︷︷ ︸
atypically large

.

Since this type of contamination involves the quantiles of the unit exponential
distribution, we call it quantile-based.
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type of contaminated fraction

contamination 20% 40%

depth-specific d20 d40

quantile-based q20 q40

Table 5: Labels for the considered combinations of fraction and type of contamination.

Algorithm 6.4 shows how the contamination of a specified proportion of the raw data is
carried out. In our robustness study, we compare the methods by the respective tests for
the one-point hypothesis

H0 : θ∗ =
(
10−4, 3, 1

)⊤
.

For this purpose, we simulate 5000 times J = 180 point process realizations at each of 9

parameter vectors along a line segment through θ0 =
(
10−4, 3, 1

)⊤
. All these parameter

vectors are listed in Table 6. The raw data used for these 9× 5000× 180 point process
realizations are then contaminated. We apply Algorithm 6.4 with contam_type = 1, 2
(both types of contamination) and contam_frac = 0.2, 0.4 (20% or 40% contamination).

Algorithm 6.4 Generating the contaminated raw data ỹ1:n from the raw data y1:n used
in Algorithm 6.1. The contaminated point process realization t̃1:n is then obtained by
substituting ỹi instead of yi into the inverse cchf.

Input:
y1, . . . , yn ∈ R+ i.id. samples of E(1) used to simulate t1:n,
contam_type ∈ {1, 2} depth-specific (1) or quantile-based (2) contamination,
contam_frac ∈ [0, 1] fraction of the data to be contaminated.

Output:
ỹ1, . . . , ỹn ∈ R+ contaminated sample.

contam_numb← ⌊contam_frac · n⌋ // number of samples to contaminate
contam_ind← (contam_numb randomly selected distinct indices from {1, . . . , n})
for i = 1, . . . , n do

if i in contam_ind then
if contam_type = 1 then // depth-specific contamination
ỹi ← max {2 (yi − ln(2)) + ln(2), q0.0001 (E(1))}

else // quantile-based contamination
draw sample x from Bin (1, 0.5) // direction of the contamination
if x = 0 then
ỹi ← q0.0001 (E(1))

else
ỹi ← q0.9999 (E(1))

end if
end if

else
ỹi ← yi

end if
end for
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number of
θ∗1 θ∗2 θ∗2parameter vector

1 9.2 · 10−5 2.92 0.92
2 9.4 · 10−5 2.96 0.96
3 9.8 · 10−5 2.98 0.98
4 9.9 · 10−5 2.99 0.99
5 10.0 · 10−5 3.00 1.00
6 10.1 · 10−5 3.01 1.01
7 10.2 · 10−5 3.02 1.02
8 10.4 · 10−5 3.04 1.04
9 10.8 · 10−5 3.08 1.08

Table 6: Parameter vectors used in the robustness study. The parameter θ0 =
(
10−4, 3, 1

)⊤

is highlighted.

This leads to four contaminated data sets, which we label d20, d40, q20, q40, see Table
5. For each of the total of five data set (no contamination, d20, d40, q20, q40) and
each J ∈ {9, 18, 30, 90, 180}, we can then perform the three tests for the null hypothesis
H0 : θ∗ = θ0 and compute the relative rejection rates at each of the 9 parameters based
on the 5000 repetitions. The detailed results are given in Tables 9 (for the test based on
the minimum distance estimator), 10 (for the 3-sign depth test) and 11 (for the likelihood
ratio test) in Appendix C. We first compare the results for the uncontaminated data set
as a starting point for the robustness study. In Figure 16 we show for all three methods
and J ∈ {9, 30, 180} the relative rejection rates at the 9 parameter vectors from Table 6.
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Figure 16: Rejection rates of the level α = 0.05 tests for H0 : θ∗ = θ0 based on the
minimum distance estimator (method “dist”), the likelihood ratio (method
“lr”) and the 3-sign depth (method “depth”) at the 9 different parameter vectors
of Table 6 and J ∈ {9, 30, 180}. The scaling of the x-axis was adjusted to
reflect the actual distances of the parameter vectors to θ0.
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All tests nearly meet the level α at θ0 (the exact values can be found in Tables 9 to 11 in
Appendix C). With regard to Section 6.2, this is particularly surprising for the method
“dist” and could be attributable to the higher number of repetitions (5000 vs. 2000).
Once again, the likelihood ratio test consistently achieves the highest power among the
three tests. However, while the 3-sign depth test performed poorly in detecting damage
accumulation effects, where the test based on the minimum distance estimator provided
acceptable results, the roles are now reversed. This is because the confidence regions

C(dist)
J,1−α do not extend far in the θ3-direction (which makes them suitable for damage

accumulation testing), but are comparatively large (which is why the test cannot identify
minor deviations from θ0). The corresponding test only reaches a decent power if the true
parameter deviates even further from θ0 (especially in θ2- or θ3-direction) or the sample
size J is increased, which - as with the 3-sign depth test for damage accumulation - is
beyond the scope of this thesis.
After gaining an impression of the performance of the tests, we move on to the contaminated
data. To qualify as robust for contaminated data, a test should meet two criteria:

(i) The test maintains the α level, i.e., the type I error does not increase substantially.

(ii) The test still achieves a reasonable power against the alternative.

We understand these criteria as a qualitative measure of robustness; we do not quantify
the concept of robustness in the context of this thesis. To check the first criterion, we
look at the type I errors of the tests when applied to the contaminated data, see Figure
17. At any sample size J ∈ {9, 18, 30, 90, 180}, the 3-sign depth test preserves its level
α = 0.05 not only for the depth-specific contamination, but also for the quantile-based
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Figure 18: Rejection rates of the level α = 0.05 3-sign depth test with J = 30 for
H0 : θ∗ = θ0 at the 9 different parameter vectors of Table 6 and for the
different types and proportions of contamination given in Table 5. The scaling
of the x-axis was adjusted to reflect the actual distances of the parameter
vectors to θ0.
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contamination. Meanwhile, the methods “dist” and “lr” cannot keep the level regardless of
the type and proportion of contamination. The exceptions are the cases J ∈ {9, 18} at 20%
depth-specific contamination in the method “dist”, but the full results in Table 9 suggest
that this is likely due to the overall low power of the test. Consequently, the 3-sign depth
test is the only method to fulfill the first robustness criterion. For the second criterion, we
need to assess the extent to which the contamination of the data affects the power of this
test. In Figure 18, we plot the power of the 3-sign depth test with J = 30 for both the
uncontaminated data set and the contaminated data sets d20, d40, q20 and q40 (cf. Table
5). As expected, the sharpest drop in power occurs at 40% quantile-based contamination,
whereas the loss in power is the lowest at 20% depth-specific contamination. In general,
quantile-based contamination plausibly leads to lower rejection rates than depth-specific
contamination, with the test showing similar behavior at d40 and q20. This observation
also applies to the other sample sizes J ∈ {9, 18, 90, 180}, as demonstrated in Figure 31
in Appendix C.
Despite the lower power, the performance of the test can still be considered satisfactory:
With 40% contaminated data, the power of the 3-sign depth test with J ≥ 90 still shows
the desired V-shape, whereas 20% contamination already renders the other methods
useless (e.g., the likelihood ratio test with J = 180 always rejects the null hypothesis in
the data set q20). Overall, we conclude that the 3-sign depth test also satisfies the second
robustness criterion and can therefore be deemed robust in the presence of contaminated
data.

This finding marks the end of our simulation studies, and also closes the last major
chapter of the dissertation. We have seen that the minimum distance estimator is sensitive
to the chosen parametrization and does not display the claimed robustness, but is capable
of detecting damage accumulation. The 3-sign depth test, on the other hand, proves to
be ineffective when testing for damage accumulation, while being robust against contami-
nated data and providing comparatively small confidence regions for the true parameter.
Finally, the likelihood-based approaches consistently achieved the best results as long as
we did not deviate from the model assumptions. They therefore perform well in simulation
studies, but their practical applicability is hampered by their lack of robustness.
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7. Outlook for Future Research

This dissertation significantly contributes to the statistical analysis of intensity-based
point process models, especially in the context of load sharing systems with accumulating
damage, in two ways: First, we prove that the minimum distance estimator is indeed
asymptotically normal distributed as claimed by Kopperschmidt and Stute 2013. Second,
we introduce a new procedure to implement the robust 3-sign depth test into a point
process framework. In both directions, however, the research is far from complete with
the conclusion of this thesis. In this outlook, we would like to point out a few potential
paths that future studies on these methods may pursue.

While we consider the theoretical foundations of the minimum distance estimator to
be finalized, the derived tests provide much room for improvement. In line with the
likelihood ratio test, a test statistic of the form

inf
θ∈Θ0

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n)

inf
θ∈Θ

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n)

would be conceivable, where the minimum Cramér-von Mises distance under the null
hypothesisH0 : θ ∈ Θ0 is related to the minimum distance on the entire parameter space Θ.
A simulation study could be the first step towards determining the asymptotic distribution
of this test statistic. It is accompanied by the search for an accurate computation of the
asymptotic covariance matrix of the minimum distance estimator, which turned out to be
infeasible for load sharing models with damage accumulation. To this end, the intensity
integrals involved need to be calculated explicitly. This remains an open problem, but the
suboptimal performance so far raises doubts as to whether the benefits justify this effort.

The novelty of our depth-related approach to point process inference opens up a
multitude of possible research questions. On the example of the unknown load sharing
model of Kvam and Peña 2005, we established the consistency of the 3-sign depth test
for a broad class of intensity-based models. An interesting topic is the extent to which
the requirements for consistency can be further weakened. For instance, exploratory
simulation studies suggest that ordering the hazard transforms with respect to the essential
past of the process - although crucial for the proof of consistency - barely affects the
performance of the test. We further conjecture that the consistency of the 3-sign depth test
for the significance of damage accumulation (i.e., H0 : θ∗3 = 0) extends to any hypothesis
of the form

H0 : θ∗3 ∈ Int ,

where Int is a compact interval. Nevertheless, our simulation studies do indicate that the
power of this test is likely to be unsatisfactory.

Beyond the methodological groundwork, intensity-based load sharing models are them-
selves a subject of future research. We introduced a generalization of the Basquin load
sharing model with multiplicative damage accumulation proposed by Müller and Meyer
2022, that can be represented as a relative risk regression model. Since we translate any
isotonic transformation of the damage accumulation term into a parametric model, we
enable the construction of an entire class of intensity-based models including both load
sharing and damage accumulation. One objective is to impose conditions on these isotonic
transformations under which the properties of the Basquin load sharing model with mul-
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tiplicative damage accumulation transfer to this class. Another intriguing prospect is to
incorporate the isotonic transformation into the intensity-based model as a non-parametric
part. Although this adds immense flexibility, it calls for a paradigm shift, as the methods
presented in this thesis can no longer be applied in such a semi-parametric framework.

Due to the more theoretical nature of this thesis, we have only scratched the surface
as far as simulation studies are concerned. Among others, the following extensions are
envisaged:

• Investigate into the influence of the true parameter. How does it affect the size
and coverage rate of the studied confidence regions? How do they behave in special
cases such as θ∗3 = 0 (i.e., in the absence of damage accumulation) or θ∗3 < 0?

• Consider different values and distributions for the (random) covariates. Do the
methods still produce acceptable results if the model assumptions for these covariates
are violated?

• Visualize the confidence regions in three dimensions. How are the depth-based
regions shaped? Can this knowledge improve the performance of the 3-sign depth
test for the significance of damage accumulation?

• Extend the robustness study by looking at further types and fractions of contami-
nated data. What level of contamination does the 3-sign depth test withstand? Are
there other types of contamination where it is less robust?

• Benchmark with a wider range of methods. For example, the Kolmogorov-Smirnov
test can be applied to the hazard transforms. How do minimum distance estimator
and 3-sign depth test compare to the established methods for point process inference?

Once the methods have been thoroughly evaluated in simulation studies, the next step
is to apply them to real data. The broken tension wires in Figure 1 originate from a
large-scale test series carried out by the Faculty of Architecture and Civil Engineering at
TU Dortmund University, see Szugat et al. 2016 for details. One of the most exciting
questions in the wake of this dissertation is whether the effect of damage accumulation is
significant in this real data. As the study of Szugat et al. 2016 shows, we are also usually
less interested in the unknown model parameter θ∗ than in predicting the failure of a load
sharing system or its components. Such prediction intervals can be determined from the
confidence regions presented in this thesis. However, this is a task for future research,
and we look forward to contributing to it by laying the theoretical foundations.
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Appendices

A. Comprehensive Introduction to Intensity Theory

This part of the thesis provides the mathematical background for the statistical analysis of
intensity-based models. We acquaint ourselves with the concept of compensators, which
we will identify as conditional (cumulative) hazard rates or “intensities”. Furthermore, the
foundation for the depth-related methods of statistical inference is laid by incorporating
the hazard transformation of a point process.

The textbook style of this broad introduction is intended to appeal to those who
have not yet encountered statistical inference via intensity-based models. Conversely, we
encourage readers familiar with stochastic intensities to use this overview as a convenient
reference in their study of this thesis. It is divided into five sections: In Section A.1,
we learn about simple point processes and their associated counting processes before
moving on to filtrations, martingales, and compensators in Section A.2. This in particular
covers the intensity theory, which is the topic of Subsection A.2.4. We discuss the hazard
transformation in Section A.3, and close this introduction with complementary proofs
and explanatory remarks in the Sections A.4 and A.5, respectively.

A.1. Simple Point Processes and Their Associated Counting Processes

In the following we focus on a special type of stochastic processes and its characteristics:
the counting process. Therefore, this section is dedicated to the introduction of general
stochastic processes and the definition of counting processes and their relatives, the point
processes, as well as giving some basic properties. We furthermore discover the duality
between simple point processes and their associated counting processes, which justifies
the interchangeability of these terms. First we want to state the definition of a general
stochastic process.

Definition A.1 (Stochastic Process; Ethier and Kurtz 1986, p. 49).
Let (Ω,F ,P) be a probability space and (E, E) a measurable space. A stochastic process
X with index set I and state space (E, E) defined on (Ω,F ,P) is a function defined on
I × Ω with values in E such that for each t ∈ I,

X(t, ·) : Ω −→ E

is an E-valued random variable, that is:

{ω ∈ Ω : X(t, ω) ∈ A} ∈ F , for all A ∈ E .

In the context of this work and throughout many applications the abbreviated notation
X = (Xt)t∈I is commonly used. Hereinafter, we will mostly consider as index sets the
natural numbers N, compact intervals or - more generally - subsets of the d-dimensional
space R

d for some positive integer d ∈ N. For I ⊂ R
d, the indexing parameter t ∈ I

often represents time, space, or a combination of these in most of our considerations. The
stochastic process X is then called a discrete-parameter process, if I is a countable set,
and it is called a continuous-parameter process otherwise (Snyder and Miller 1991, p. 24).
In the case d = 1, we are primarily interested in viewing the stochastic process X as a
“random” function of time. Consequently, it is natural to put further restrictions on X
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(Ethier and Kurtz 1986, p. 50). If in particular (E, T ) is a topological space endowed
with its Borel σ-algebra E := B(E) := σ(T ), we can discuss the continuity properties of
the process’s sample paths (Brémaud 2020, p. 208).
Since we will assume throughout that E is a metric space, which is naturally equipped
with the topology induced by the associated metric, from here on E = B(E) always
denotes the corresponding Borel σ-algebra.

Definition A.2 (Measurability and Continuity of Continuous-Parameter Processes; Ethier
and Kurtz 1986, p. 50).
Let I ⊂ R be an interval and X = (Xt)t∈I a continuous-parameter process. The process X
is called measurable if X : I ×Ω→ E is (B (I)⊗F)-E-measurable, where B (I) denotes
the Borel σ-algebra on I. We say that X is (almost surely) continuous ( right-continuous,
left-continuous), if for (almost) every ω ∈ Ω, the sample path

X(·, ω) : I −→ E

t 7−→ X(t, ω) = Xt(ω)

is continuous (right-continuous, left-continuous)23. Analogously, we say that X is (almost
surely) increasing, if for (almost) every ω ∈ Ω the sample path X(·, ω) is increasing.

We will see later that each counting process has the above properties, in that it is
measurable, right-continuous and increasing. For the definition of a counting process
we want to follow the approach of Jacobsen 2006 that is also consistent with Daley
and Vere-Jones 2003. The sample paths of such a counting process can be described
by sequences of points (cf. Daley and Vere-Jones 2003, p. 41), thereby motivating the
following definition of so-called simple point processes.

Definition A.3 (Simple Point Process; cf. Jacobsen 2006, p. 9).
Let t0 ∈ R. A simple point process is a stochastic process T = (Ti)i∈N with index set N

and state space ([t0,∞] ,B ([t0,∞])) defined on (Ω,F ,P) such that

(i) P (t0 < T1 ≤ T2 ≤ . . .) = 1 ,

(ii) P (Ti < Ti+1 , Ti <∞) = P (Ti <∞) , for all i ∈ N ,

(iii) P

(
lim

i→∞
Ti =∞

)
= 1 .

The definition given in Jacobsen 2006 only considers the case t0 = 0, but for many
applications this restriction is not required. Accordingly, a less rigorous definition can be
found in Daley and Vere-Jones 2003 that encompasses the above notion. Remark that
for each i with P (Ti <∞) 6= 0 the second property of Definition A.3 can equivalently be
stated as

P (Ti < Ti+1 |Ti <∞) = 1 , for all i ∈ N .

Thus, a simple point process is an almost surely increasing sequence of possibly infinite
random variables (property (i)), strictly increasing as long as they are finite (property
(ii)) and with almost sure limit ∞ (property (iii)), see Jacobsen 2006, p. 10.

23For the definition of the continuity property it is required that E is a topological space, whereas this
requirement can be omitted for the definition of measurability.
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Remark A.4. Every simple point process can be represented by a step function. To see
this we note that for each realization (ti)i∈N of the point process (Ti)i∈N we naturally
obtain a measure µ(ti)i∈N

by counting the number of points falling into subsets of [t0,∞):

µ(ti)i∈N
(A) = # {i ∈ N : ti ∈ A} , A ⊂ [t0,∞) .

One usually imposes the restriction that A ∈ B ([t0,∞)) in order that we may operate
conveniently on the measure induced by the underlying point process (cf. Daley and
Vere-Jones 2003, p. 42). Accordingly, µ(ti)i∈N

is a counting measure on the σ-algebra

B ([t0,∞)) and therefore completely characterized24 by its values on the compact intervals
[t0, t] for t0 ≤ t <∞. If we define the function N : [t0,∞)→ N0 by setting

N(t) := µ(ti)i∈N
([t0, t]) = # {i ∈ N : t0 ≤ ti ≤ t} , (A.1)

the resulting step function determines µ(ti)i∈N
(A) for all Borel sets A ∈ B ([t0,∞)) and

hence describes the realization (ti)i∈N of the point process T .

The observation of Remark A.4 is incorporated in the upcoming definition, utilizing
the former Definition A.3 of a simple point process.

Definition A.5 (Counting Process Associated With a Simple Point Process; cf. Jacobsen
2006, pp. 11–12).
Let t0 ∈ R and T = (Ti)i∈N be a simple point process with state space ([t0,∞] ,B ([t0,∞]))
defined on (Ω,F ,P). The counting process associated with T is the N0-valued continuous-
parameter process N = (Nt)t∈[t0,∞) with state space25 (R,B (R)), where

Nt :=
∞∑

i=1

1(−∞,t] (Ti) = #{i ∈ N : Ti ≤ t} . (A.2)

For any set A ∈ F the indicator function 1A is defined as

1A : Ω −→ {0, 1} ω 7−→ 1A(ω) =

{
1 , ω ∈ A ,
0 , ω /∈ A .

Thus Nt counts the number of events until time t and is therefore by definition an
increasing, right-continuous stochastic process, as the right-continuity of the process’s
sample paths is inherited from the indicator function. Occasionally the notation N(t) is
used instead of Nt, reflecting Remark A.4, where the duality between a point process and
a step function was first indicated. In fact, the sequence (Ti)i∈N is easily recovered from
(Nt)t∈[t0,∞) since P-almost surely it holds:

Ti = inf{t ≥ t0 : Nt ≥ i} , (A.3)

where here as elsewhere we define inf ∅ =∞ (Jacobsen 2006, p. 12).

24This works in the same manner as a cumulative distribution function determines a probability measure
on Borel sets (Daley and Vere-Jones 2003, p. 51).

25 To discuss the continuity properties of counting processes we refrain from using
(
N0, 2N0

)
as state

space, where 2N0 denotes the power set of N0. Moreover, we choose E = R instead of E = [0, ∞] for
simplicity.
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In particular, the aforementioned duality is expressed through the equivalence

Ti ≤ t ⇐⇒ Nt ≥ i . (A.4)

By virtue of Equations (A.3) and (A.4), the notions of point process and counting process
are often used interchangeably. Accordingly, the counting process is commonly referred to
as point process (e.g., in Daley and Vere-Jones 2003 and Kopperschmidt and Stute 2013).

Remark A.6. We can easily recognize how the properties that define a simple point
process are transferred to the associated counting process. Let again T = (Ti)i∈N denote
a simple point process and N = (Nt)t∈[t0,∞) its associated counting process.

(i) The first condition provides Nt0 = 0 almost surely. However, the order condition is
negligible for the definition of the associated counting process.
This is especially relevant in case of multidimensional generalizations of simple point
processes, where there might be no natural order on the point process’s state space,
e.g. for E ⊂ R

d with d > 1. Here the associated counting process can once again
be defined in a similar fashion as the cumulative distribution function, compare
Equation (A.1) from Remark A.4.

(ii) The second condition ensures that almost surely the sample paths of the process
increase only in jumps of size 1.
Accordingly, for P-almost all ω ∈ Ω it holds that ∆Nt(ω) ∈ {0, 1} for all t, where
for any càdlàg26 function f the function ∆f is defined via (cf. Jacobsen 2006, p. 12)

t 7−→ ∆f(t) := f(t)− f(t−) := f(t)− lim
s↑t

f (s) .

A formal proof of this statement can be found in Appendix A.4.

(iii) The third condition is needed to prevent a so-called explosion of the process, as
retaining only conditions (i) and (ii) from Definition A.3 allows Nt =∞ to occur
with probability > 0 (Jacobsen 2006, pp. 10–12). The inclusion of condition (iii)
thus ensures that, for P-almost all sample paths, only finitely many jumps can occur
in finite time.
Note that in order to drop condition (iii), we would have to consider the completion
R = R∪{∞} of R as state space, whereby the definition of a counting process could
easily be extended to the index set [t0,∞]. This extension is widely discussed in
Jacobsen 2006, but does not bring any additional benefit for our purposes.

To summarize the above remarks, one could equivalently define a counting process as a
N0-valued continuous-parameter process on [t0,∞) whose sample paths t 7→ Nt(ω) are
required to be P-almost surely (i.e., for P-almost all ω ∈ Ω) right-continuous and satisfy
Nt0(ω) = 0 as well as ∆Nt(ω) ∈ {0, 1} for all t.
Nevertheless, this approach appears less understandable than the supposed detour via
the definition of simple point processes. Moreover, the above duality would remain
unmentioned, so that the interchangeability of the terms counting process and (simple)
point process could not be motivated. Another term that should not remain unmentioned
in conjunction with point processes is that of “interarrival times”. We illuminate this

26Abbreviation of the French term continue à droite, limite à gauche, i.e. right-continuous with left limits.
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notion in the following example, which at the same time introduces perhaps the best
known representative of point processes: the (homogeneous) Poisson process.

Example A.7 (Homogeneous Poisson Process; cf. Snyder and Miller 1991, pp. 41, 57).
Let N = (Nt)t≥0 be a counting process with the following properties27:

(i) For each 0 ≤ s < t, the increment N(s, t) := Nt −Ns is Poisson distributed with
parameter λ(t− s), where λ ∈ (0,∞) is a positive constant:

P (N(s, t) = n) =
1

n!
(λ(t− s))n e−λ(t−s) .

(ii) N has indepent increments, that is, for any finite collection of times 0 = t0 ≤ t1 <
t2 < . . . < tj , j ∈ N, the increments

N (ti−1, ti) = Nti
−Nti−1 , 1 ≤ i ≤ j ,

are stochastically independent.

Then N is called a homogeneous Poisson process with intensity λ. Since E (N(s, t)) =
λ(t− s), λ equals the average density of points.

t0 t1

w1

t2

w2

t3

w3

ti−1 ti

wi

time

Figure 19: Illustration of realized interarrival times wi = Wi(ω).

If T = (Ti)i∈N denotes the simple point process associated with N , by setting T0 ≡ t0 we
can define the interarrival times through

Wi := Ti − Ti−1 , i ∈ N , (A.5)

see Figure 19 for a visualization. The interarrival times are independent and identically
distributed with the common distribution being exponential with parameter λ (see Snyder
and Miller 1991, pp. 53–58 for a proof of this statement and further properties),

W1,W2, . . .
i.i.d∼ E(λ) . (A.6)

Although the Poisson process serves merely as an introductory example at this point,
we will recognize that it plays a crucial in our methods of statistical inference28. Note
that the Poisson process is covered only superficially here, as it is more of a tool for us

27Snyder and Miller 1991 also require that P (N0 = 0) = 1 holds, whereas this property is part of our
definition of a counting process, see Remark A.6 (i) on this issue.

28As discussed in Protter 2005, pp. 14–16, this is mainly due to the Poisson process being the only

counting process with “stationary increments indepent of the past” within our framework.
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than an actual subject of consideration. For a comprehensive account of Poisson processes
and their generalizations, we encourage the reader to study Chapters 2 and 3 of Daley
and Vere-Jones 2003.
In the following, we will occasionally deal with counting processes observed only on a
compact subinterval

[
t0, t

0
] ⊂ [t0,∞) of the index set. This can be achieved by restricting

a counting process; conversely, any N0-valued continuous-parameter process on
[
t0, t

0
]

whose sample paths are almost surely right-continuous, start in 0 and increase only by
jumps of size 1 can be extended to a counting process on [t0,∞). We record this basic
property in a remark.

Remark A.8 (Restriction and Extension of a Counting Process).
A stochastic processN = (Nt)t∈I is considered a counting process on an interval I ⊂ [t0,∞)
if there exists a counting process Ñ =

(
Ñt

)
t∈[t0,∞)

such that

N = Ñ
∣∣
I
. (A.7)

Conversely, if N is a counting process on the compact interval
[
t0, t

0
]
, then one can always

obtain a counting process Ñ with index set [t0,∞) satisfying Equation (A.7) by setting

Ñt := Nmin{t,t0} , t ≥ t0 ,

that is, through a constant extension of the process.

We close the current section with a proposition stating the measurability of right-
continuous processes, including counting processes associated with a simple point process.

Proposition A.9 (Measurability of Right-Continuous Stochastic Processes).
Let X = (Xt)t∈I be a right-continuous stochastic process, where I ⊂ R is an interval and

the state space is
(
R

d,B
(
R

d
))

for some integer d. Then, X is measurable.

Proof. The proof is based on Brémaud 2020, where a more general result on progressive
measurability - a negligible property related to the filtrations introduced in Section A.2 -
is shown (cf. Theorem 5.3.8, Brémaud 2020, p. 214). The adapted proof can be found in
Appendix A.4.

In the following section, we dive into the theory of filtrations, martingales, and com-
pensators, but return regularly to counting processes by showing their connections to the
subsequently introduced concepts.

A.2. Filtrations, Martingales and Compensators

Besides stating the basic definitions, we present a concise overview of important results
from martingale and intensity theory. The intimate link between these fields of stochastics
is embodied in the Doob-Meyer decomposition for non-negative submartingales: This
central theorem allows for the decomposition of a counting process N into a predictable
part - the compensator of N - and a martingale, which serves as an innovation process
conveying all information about N not derivable from the strict past (cf. Karr 1991). The
compensator proves to be vital for the intensity-based modeling of counting processes,
since it can be represented as an integrated intensity process.
The following major theorems are taught in courses on probability theory and are therefore
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not proved here. However, we always provide comprehensive bibliographical references to
facilitate the understanding of the technically demanding proofs.
Note that we will not elaborate on the theory of stopping times and therefore may
not capture the full extent of some results regarding local martingales. Nevertheless,
the concepts covered are quite sufficient for providing the framework of our statistical
inference, hence this compromise of completeness and conciseness is made.

A.2.1. Filtrations and the Usual Conditions

We start by introducing the concept of a filtration and explain why it is commonly referred
to as history. Subsequently, the usual conditions that are often implicitly imposed on the
filtrations under consideration are discussed in the context of counting processes.
Since the following definitions can be found in practically every textbook on probability
theory, the cited references serve only as a rough orientation on where to find a notation
consistent with the one used here.

Definition A.10 (Filtration; cf. Bauer 1996, p. 133 and Jacobsen 2006, p. 301).
Let F be a σ-algebra and I ⊂ R. A collection {Ft}t∈I of sub-σ-algebras of F is called a
filtration of F , if

Fs ⊂ Ft , for all s, t ∈ I with s ≤ t . (A.8)

If (Ω,F ,P) is a probability space and {Ft}t∈I is a filtration of F , then (Ω,F , {Ft}t∈I ,P)
is called a filtered probability space.

Definition A.11 (Natural Filtration and Adapted Process; cf. Ethier and Kurtz 1986,
p. 50).
Let I ⊂ R and X = (Xt)t∈I be a continuous-parameter process with state space (E, E)
defined on a filtered probability space (Ω,F , {Ft}t∈I ,P). X is adapted with respect to the
filtration {Ft}t∈I , if Xt is Ft-E-measurable for each t ∈ I. The natural filtration of X is
defined by

FX
t := σ ({Xs : s ∈ I , s ≤ t}) , t ∈ I .

Remark A.12 (Internal History and General Remarks on Filtrations).

(i) Each stochastic process is adapted with respect to its natural filtration.

(ii) We say abbreviatively that “X is adapted” when it is clear from the context which
filtration is being referred to. In the case of adapted processes on a filtered probability
space

(
Ω,F , {Ft}t∈I ,P

)
, this is always the underlying filtration {Ft}t∈I , unless

otherwise specified.

(iii) Note that to state Equation (A.8) it is only required that I is an ordered set (cf.
Bauer 1996, p. 133). Nevertheless, throughout many textbooks only the more
restrictive case I = [0,∞) is considered (e.g., Ethier and Kurtz 1986, p. 50 and
Jacobsen 2006, p. 301). However, this coincides with our choice of I ⊂ R, since we
will mainly consider counting processes - and their associated natural filtrations -
with index sets [t0,∞), where frequently t0 = 0 is assumed.

(iv) The natural filtration
{
FX

t

}
t∈I

consists of the history of X but does not encom-

pass any further external information. As a consequence, the natural filtration is
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commonly referred to as internal history of the stochastic process. For X to be
adapted w.r.t. a filtration {Ft}t∈I it is required that

Ft ⊃ FX
t

is satisfied for each t ∈ I. Therefore, each such filtration is called a history of X in
that it comprises the internal history of X but may contain additional information.
While we refrain from using this term, it is synonymous with filtrations in many
textbooks, which may be motivated by the above context (e.g., Brémaud 2020,
p. 213 or Daley and Vere-Jones 2008, p. 357).

By virtue of Remark A.12 (iv), a filtration {Ft}t≥t0
is often associated with the

information available at time t. Since we are particularly interested in adapted counting
processes, the natural filtration

{FN
t

}
t≥t0

of such a process N plays a crucial role for us.

In this case, however, Nt0 = 0 implies29

FN
t0

= {∅,Ω} , (A.9)

so no information is available at time t0, which does not accurately reflect reality:
For example, when conducting an experiment, one can expect to already have preliminary
information on events that can influence its outcome, even if they remain unchanged over
the course of the experiment. This information can be accounted for by initial conditioning
on a non-trivial sub-σ-algebra of F , with the most prominent case being randomized
experimental conditions that are specified in advance. However, any information not
initially present at time t0 should be limited to arise from observing the experiment (i.e.,
the stochastic process). The above perception of external prior information leads to the
consideration of intrinsic filtrations, which provide sensible augmentations of the natural
filtration. They are usually referred to as intrinsic histories to emphasize their relationship
to the internal history. We are already giving their definition here, although we will not
experience their benefits until later.

Definition A.13 (Intrinsic Filtration; cf. Daley and Vere-Jones 2003, p. 357).
Let X = (Xt)t≥t0

be a continuous-parameter process defined on a probability space (Ω,F ,P)

and let
{FX

t

}
t≥t0

denote its natural filtration. Any filtration {Ft}t≥t0
satisfying

Ft = FX
t ∨ G0 := σ

(
FX

t ∪ G0

)
, for all t ≥ t0 ,

is called an intrinsic filtration of X, where G0 ⊂ F is a (generally non-trivial) sub-σ-
algebra of F . Note that we introduced the ∨-operator for the smallest σ-algebra containing
the union of the given σ-algebras, which normally is not a σ-algebra itself.

Although sometimes embedded in the definition of a filtration itself, we now want
to impose further constraints on filtered probability spaces that allow for convenient
modifications of the stochastic processes under consideration, namely martingales and sub-
martingales. In particular, the usual conditions - also known as “les conditions habituelles

29More generally, we only require P (Nt0
= 0) = 1, so the σ-algebra generated by Nt0

consists only of
events with probability 0 or 1. Nevertheless, the interpretation remains that there is no essential
information available at time t0.
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(de la théorie générale du processus)”30 - will ensure that, under mild assumptions, any
(sub)martingale permits a càdlàg modification (Liptser and Shiryaev 2001, pp. 57–60 and
Karatzas and Shreve 1988, pp. 16–17). As an essential precondition of the Doob-Meyer
decomposition for non-negative submartingales, these constraints thereby provide the
right-continuity of the predictable compensator (see Theorem A.23 further below for
details). Hence, we will encounter the usual conditions primarily in the more theoretical
parts of this thesis, since in practice the continuity of the compensator will be presumed
for application-oriented modeling.

Definition A.14 (Usual Conditions; Jacobsen 2006, p. 301).
Let t0 ∈ R. A filtered probability space (Ω,F , {Ft}t≥t0 ,P) satisfies the usual conditions,
if the following requirements are fulfilled:

(i) The probability space (Ω,F ,P) is complete, that is,

A0 ∈ F ,P (A0) = 0 , A ⊂ A0 =⇒ A ∈ F .

(ii) For N = {A ∈ F : P(A) = 0} (i.e., N is the collection of P-null sets in F) it
holds31

N ⊂ Ft0 .

(iii) The filtration {Ft}t≥t0 is right-continuous, that is,

Ft = Ft+ :=
⋂

s>t

Fs , for all t ≥ t0 .

The conditions (i) and (ii) from Definition A.14 are closely related and often combined
into one condition: Condition (i) postulates that subsets of P-null sets from F are included
in F as well, while condition (ii) ensures that condition (i) also holds for (Ω,Ft,P) given
any t ≥ t0. Furthermore, condition (i) proves to be a minor technical requirement that
can always be met without affecting the underlying probabilistic structure.

Lemma A.15 (Completion of a Probability Space; Jacobsen 2006, p. 301).
Let (Ω,F ,P) be a probability space. Then there exists a complete probability space(

Ω,F ,P
)

with F ⊂ F and

P(A) = P(A) , for all A ∈ F . (A.10)

(
Ω,F ,P

)
is called the completion of (Ω,F ,P).

Proof. The essence of the proof is given in Jacobsen 2006, p. 301. A slightly more detailed
elaboration can be found in Appendix A.4, albeit the completion of the elementary yet
lengthy proof is left to the reader. Note that while the completion in the above sense
is not uniquely determined, this can be achieved by restricting oneself to the smallest
possible sigma algebra F .

30This designation goes back to Dellacherie 1972, but is widely used throughout the literature, see
Andersen et al. 1993, p. 60 and Karr 1991, pp. 59,415.

31While N depends on F and P, this dependency is neglected in favor of a shorter notation.
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In the previous section, the right-continuity and therefore measurability of counting
processes followed directly from their inherent characteristics. Consequently, these prop-
erties could instead be incorporated in the definition of counting processes, as stated in
the brief summary of Remark A.6. Similarly, the usual condition formulated in Definition
A.14 (iii) arises naturally from the characteristics of a counting process’s internal history.

Lemma A.16 (Right-Continuity of the Internal History of a Counting Process; Protter
2005, p. 16).

Let N = (Nt)t∈[t0,∞) be a counting process. Then the internal history
{
FN

t

}
t≥t0

of N is

a right-continuous filtration.

Proof. Even though the proof stated in Protter 2005, p. 16 is basic, it broadens our
understanding of the interrelation between the properties of a continuous-parameter
process and its natural filtration. For the sake of completeness, it can be found in
Appendix A.4.

While conditions (i) and (iii) of Definition A.14 are easily satisfiable in the context of
counting processes according to Lemmata A.15 and A.16, the same is not necessarily true
for the remaining condition (ii). Although we can plainly transition to the completed
filtration

{F t

}
t≥t0

by successive use of Lemma A.15, this does not guarantee that N ⊂ F t0

holds. Additionally, if one mimics the proof of Lemma A.15 and thereby enforces N ⊂ F t0 ,
then Lemma A.16 no longer applies32. Therefore, a trade-off is made between showing
the validity of condition (ii) or condition (iii), so that the remaining condition must be
assumed to be valid. Heuristically speaking, accepting the inclusion of P-null sets does
not provide any additional information, which justifies our approach to assume condition
(ii) is satisfied. It will turn out that the usual conditions are seemingly redundant for
practical use in intensity-based modeling, since stronger (albeit natural) assumptions will
be employed, see Remarks A.24 and A.36 below. However, this first requires knowledge
about martingales and compensators, which will be acquired in the course of this section.

A.2.2. Martingales and Predictable Processes

Martingales are well known in mathematics for formalizing the notion of a fair game, but
the scope of martingale theory extends beyond that to describing the purely random part
of a compensated process obtained by subtracting its systematic part (Brémaud 2020,
p. 495 and Andersen et al. 1993, p. 46). Indeed, the standard examples of continuous-time
martingales are the Brownian motion and the compensated Poisson process, which is a
recurring example that accompanies us throughout this thesis (cf. Karatzas and Shreve
1988, p. 11). Nevertheless, martingales are naturally linked to increasing information
patterns, namely filtrations, through the concept of conditional expectations, which
becomes evident in studying Definition A.17 below (cf. Brémaud 1981, pp. 3–4). After
extending our view to Sub- and Supermartingales, we will eventually shed some light on a
class of processes complementary to martingales, the predictable processes (Andersen et al.
1993, p. 65). Along the way, we will always emphasize the relevance of these notations in
terms of counting processes.

32Deploying the concept of the usual augmentation, this operation indeed yields an intrinsic filtration
satisfying the usual conditions, see Dellacherie and Meyer 1978, p. 115 for details. Yet, the above proof
does not suffice to prove this statement.
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Definition A.17 (Continuous-Time Martingale, Brémaud 1981, p. 4).
Let X = (Xt)t∈I be a continuous-parameter process defined on a filtered probability space(
Ω,F , {Ft}t∈I ,P

)
for some interval I ⊂ R. The process33 X is said to be a

(
P, {Ft}t∈I

)
-

martingale, if the following conditions are fulfilled:

(i) X is adapted with respect to the filtration {Ft}t∈I .

(ii) For each t ∈ I, Xt is P-integrable (i.e., E (|Xt|) <∞).

(iii) For all s, t ∈ I with s ≤ t, we have P-almost surely: E (Xt | Fs) = Xs.

If in condition (iii) the equality sign “=” is replaced by ≥ or ≤, then X is called a
submartingale or supermartingale, respectively.

The following lemma can be immediately deduced from this definition.

Lemma A.18 (Counting Processes as Non-Negative Submartingales).
Let N = (Nt)t≥t0

be an adapted counting process defined on the filtered probability space(
Ω,F , {Ft}t≥t0

,P
)
. If Nt is P-integrable for each t ≥ t0, then N is a non-negative

(
P, {Ft}t≥t0

)
-submartingale.

Proof. By Equation (A.2) from Definition A.5, every counting process is non-negative by
default. Assuming that condition (ii) of Definition A.17 holds, it suffices to show that for
each t ≥ s ≥ t0 we have E (Nt | Fs) ≥ Ns P-almost surely. Recall that by construction the
sample paths of N are increasing, and the monotonicity of the conditional expectation
yields:

E (Nt | Fs) ≥ E (Ns | Fs) = Ns ,

where the last equation holds since N is adapted with respect to the filtration {Ft}t≥t0
.

The following example can be stated in a more general form, but serves in foreshadowing
the upcoming concepts from intensity theory.

Example A.19 (Compensated Poisson Process; Karatzas and Shreve 1988, p. 12).
Let N = (Nt)t≥0 be a homogeneous Poisson process with intensity λ, see Example A.7.
The compensated Poisson process is defined as

Mt := Nt − λt , t ≥ 0 . (A.11)

Then, (Mt)t≥0 is a
(
P,
{FN

t

}
t≥0

)
-martingale. A proof of this minor statement can be

found in Appendix A.4.

The essential contribution of the Doob-Meyer decomposition is that any adapted
counting process can be uniquely compensated in a fashion similar to Equation (A.11).
Before we can formulate this result, we must first familiarize ourselves with the concept
of predictability.

33Sometimes the term filtered process - denoted with (Xt, Ft)t∈I - is used here, if only the considered
filtration is to be indicated and the underlying probability space is negligible, cf. Karatzas and Shreve
1988, p. 11.
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Definition A.20 (Predictable σ-Algebra and Processes; Daley and Vere-Jones 2003,
p. 425).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space. The {Ft}t≥t0
-predictable σ-algebra

over [t0,∞)× Ω is defined as

P
(
{Ft}t≥t0

)
= σ ({(s, t] × A : t0 ≤ s ≤ t , A ∈ Fs}) ,

that is, the sub-σ-algebra of B ([t0,∞))⊗F generated by the rectangles of the form34

(s, t] × A , t0 ≤ s ≤ t , A ∈ Fs . (A.12)

A continuous-parameter process X = (Xt)t≥t0
with state space (R,B (R)) is said to be

{Ft}t≥t0
-predictable when it is P

(
{Ft}t≥t0

)
-B (R)-measurable.

Remark A.21 (Alternative Characterizations of Predictability).
While Definition A.20 is considered a classical definition of predictability, a variety of
equivalent characterizations exists. We present only a short selection that is tailored to
our needs, but all these relevant to us can be found in the concise standard reference
Dellacherie and Meyer 1978, pp. 121–126.

(i) The most frequently used characterization besides the one given in Definition A.20 is
based on left-continuous, adapted processes (occasionally also requiring the existence
of right limits). More precisely, we have:

P
(
{Ft}t≥t0

)
= σ ({X : X is adapted and left-continuous.})
= σ ({X : X is adapted and left-continuous with right limits.})
= σ ({X : X is adapted and continuous.}) .

As a consequence, any adapted (left-)continuous process is predictable.

(ii) Another concept closely interwoven with predictability is that of “naturalness”, which
provides a martingale characterization of predictability. An integrable, increasing,
right-continuous process X that is adapted with respect to {Ft}t≥t0

is called natural

if for every bounded càdlàg
(
P, {Ft}t≥t0

)
-martingale (Mt)t≥t0 we have

E

[∫ t

0
Ms dXs

]
= E

[∫ t

0
Ms− dXs

]
,

where here the Lebesgue-Stieltjes integral is considered. However, for such adapted,
integrable, increasing, right-continuous processes, the notions of predictability and
naturalness coincide (Karr 1991, p. 416). The whole Section III.8 of Protter 2005 is
devoted to proving this surprising equivalence that is due to Doléans-Dade 1968.

We already noticed that given the usual conditions, any martingale permits a càdlàg
modification, whereas the archetypal predictable process is càglàd35 by virtue of Remark
A.21 (i). This reinforces that the terminology of “predictability” is well chosen, since

34Instead of the traditional set of generators given in Equation (A.12), one could use the simpler set
{(s, ∞) × A : s ≥ t0, A ∈ Fs}, see Brémaud 1981, p. 9.

35Abbreviation of the French term continue à gauche, limite à droite, i.e. left-continuous with right limits.
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by left-continuity the value of the process at time t is fixed just before the time itself.
Moreover, there is an orthogonality between martingales and predictable processes: a (finite
variation) process that is both a (local) martingale and predictable is indistinguishable
from a constant process (Andersen et al. 1993, p. 66, also see Kruglov 2016 for a collection
of proofs on this topic). Further justification of the term “predictability” is given by the
following lemma, where predictability is considered in lieu of left-continuity.

Lemma A.22 (Theorem 3.10 of Liptser and Shiryaev 2001, p. 74).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space satisfying the usual conditions of

Definition A.14 and define36

Ft0− := Ft0 , Ft− := σ


 ⋃

t0≤s<t

Fs


 , for all t > t0 .

Then, any {Ft}t≥t0
-predictable process is {Ft−}t≥t0

-adapted.

Proof. A detailed proof is given in Liptser and Shiryaev 2001, pp. 74-75. For a less
profound sketch of an alternative proof, see Daley and Vere-Jones 2003, p. 425.

In heuristic terms, Lemma A.22 indicates that all information about a predictable
process at time t is already determined at previous points in time, reflecting the prior
statement about left-continuity. For this reason, predictable processes are particularly
suitable for modeling the systematic part of a random system - the so-called compensator.

A.2.3. The Doob-Meyer Decomposition

The concept of compensators can be motivated in several ways, such as in Example
A.19 above. However, the prevalent approach is to incorporate the definition of the
compensator into the assertion of the Doob-Meyer decomposition. For instance, Daley
and Vere-Jones 2008 and Jacobsen 2006 each follow this line, whereas Dellacherie and
Meyer 1978 and Karr 1991 adhere to a more general conception. The version of the
Doob-Meyer decomposition presented here is based on the classical formulation found in
Ethier and Kurtz 1986, pp. 74–77 or Karatzas and Shreve 1988, pp. 24–27, but has been
adapted to fit our framework of counting processes and avoid unnecessary complexity. A
similar modern representation is given in Pang, Talreja and Whitt 2007, p. 208.

Theorem A.23 (Doob-Meyer Decomposition; based on Ethier and Kurtz 1986, pp. 74–75).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space satisfying the usual conditions of

Definition A.14 and let X = (Xt)t≥t0
be a right-continuous, non-negative

(
P, {Ft}t≥t0

)
-

submartingale. Then there exists an {Ft}t≥t0
-predictable, integrable, increasing, right-

continuous process Λ = (Λt)t≥t0
with Λt0 = 0 such that the process M = (Mt)t≥t0

given
by

Mt := Xt − Λt , t ≥ t0 , (A.13)

is a right-continuous
(
P, {Ft}t≥t0

)
-martingale. The process Λ is unique up to indistin-

guishability37 and is called the compensator of X.
36The filtration {Ft−}t≥t0

is the left-continuous analogue of the right-continuous filtration {Ft+}t≥t0

introduced in Definition A.14.
37This means that the sample paths of any two versions must be equal with probability 1, see Protter

2005, p. 4.
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Proof. The Doob-Meyer decomposition owes its name to the fact that it is an extension
of the Doob decomposition for discrete-parameter processes to continuous-parameter
processes, a result due to Meyer 1962 and Meyer 1963 (existence and uniqueness, respec-
tively). At that, the above decomposition can be stated more generally for processes of
class (DL) which includes the right-continuous, non-negative submartingales (see Problem
4.9 of Karatzas and Shreve 1988, p. 24). Avoiding any details, the abbreviation (DL)
stands for the local class (D), whose designation in turn goes back to Doob 1956, p. 60
and which is extensively discussed in Dellacherie and Meyer 1978, pp. 82,84. Several
different methods in proving this theorem can be found throughout the literature (cf.
Beiglböck, Schachermayer and Veliyev 2012 for an overview and alternative proof), but
the more recent of them rely on the techniques of the proof given in Karatzas and Shreve
1988, pp. 24–27. The procedure originates from Rao 1969 and can be briefly outlined as
follows: First, discrete approximations of Equation (A.13) are obtained by applying the
Doob decomposition on dyadic rationals. Then, the Dunford-Pettis compactness criterion
(see Dunford and Schwartz 1957, p. 294) yields weak convergence of these approximations
in L1 (Ω,F ,P) towards the desired decomposition. Finally, the process Λ is shown to be
natural, and predictability follows from this by virtue of Remark A.21 (ii) (Beiglböck,
Schachermayer and Veliyev 2012, p. 1). Further details are omitted and can be found in
the bibliographical references.

Remark A.24 (On the Preconditions of the Doob-Meyer Decomposition).
On initial study of any proof for Theorem A.23, it may not be immediately clear why
(i) the usual conditions and (ii) the predictability of the compensator are required.

(i) The usual conditions ensure that the compensator admits a right-continuous modi-
fication, see Ethier and Kurtz 1986, p. 77. Consequently, showing the validity of
the usual conditions is a non-issue if the (right-)continuity of the compensator is
assumed for all our modeling purposes.

(ii) The predictability of the compensator provides that the decomposition in Equation
(A.13) is unique (cf. Liptser and Shiryaev 2001, pp. 67–70). In fact, uniqueness was
not part of the original solution to Doob’s decomposition problem given by Meyer
1962.

Let us consider the compensator Λ of X and derive from Equation (A.13) and the
martingale property of M = X − Λ that for any t0 ≤ s < t we have:

E (Xt −Xs | Fs) = E ((Mt + Λt)− (Ms + Λs) | Fs)

= E (Mt −Ms | Fs)︸ ︷︷ ︸
=0

+E (Λt − Λs | Fs) = E (Λt − Λs | Fs) . (A.14)

Consequently, the expected increase of the process X on the interval (s, t] given the
information at time s is equal to the expected increase of the predictable compensator.
Furthermore, from Equation (A.14) it follows by the tower property that

E (Xt −Xs) = E (E (Xt −Xs | Fs)) = E (E (Λt − Λs | Fs)) = E (Λt − Λs) ,

and for s = t0 we get
E (Xt −Xt0) = E (Λt) ,
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since Λt0 = 0 holds deterministically. Finally, in the case that Xt0 = 0 - as satisfied by
any counting process - we obtain:

E (Xt) = E (Λt) , for all t ≥ t0 . (A.15)

It is therefore natural to view the compensator as a predictor of the process X and hence
to model its qualitative behavior based on the compensator. The questions arise how such
compensators can be determined and, conversely, which predictable, integrable, increasing,
right-continuous processes appear as compensators of counting processes in the first place.
The intensity theory will lend itself to answering both questions, at least in the special
case of so-called intrinsic histories. Before that, we extend the ongoing example of the
Poisson process (see Examples A.7 and A.19) by Watanabe’s characterization.

Example A.25 (Watanabe’s Characterization of the Poisson Process; Watanabe 1964,
pp. 58–59).

Let
(
Ω,F , {Ft}t≥0 ,P

)
be a filtered probability space and N = (Nt)t≥0 be an adapted

counting process. If there exists a constant λ ∈ (0,∞) such that Nt−λt is a
(
P, {Ft}t≥0

)
-

martingale, then N is a homogeneous Poisson process with intensity λ.

Recall that in Example A.19 we established that the Poisson process compensated by
Λ(t) := λt is a martingale with respect to its natural filtration. Watanabe’s characterization
demonstrates that the converse is also true, in that a counting process compensable by
the above Λ is necessarily a Poisson process. Accordingly, this serves as a first example
that a counting process can be completely determined by the associated compensator. A
framework that allows this type of characterization for counting processes other than the
Poisson process is provided by the intensity theory.

A.2.4. Intensity Theory

The abstract definition of the compensator by virtue of the Doob-Meyer decomposition
hides its dependence on both the probability measure P and the underlying filtration
{Ft}t≥t0

to some extent; in particular, finding an explicit representation of the compensator
(and thus an intelligible interpretation of the above dependence) seems hardly feasible.
However, if the sample paths of the compensator Λ are absolutely continuous with respect
to the Lebesgue measure38, then it admits a density λ = (λt)t≥t0

,

Λt =

∫ t

t0

λu du .

If we assume λ to be bounded by an integrable random variable, we can compute for t ≥ t0
using the averaging and the dominated convergence theorem (cf. Aalen 1978, p. 705):

lim
h↓0

1

h
E (Nt+h −Nt | Ft) = lim

h↓0

1

h
E (Λt+h − Λt | Ft)

= lim
h↓0

E

(
1

h

∫ t+h

t
λu du

∣∣∣Ft

)

38i.e., for each ω ∈ Ω the measure induced by the increasing function t 7→ Λ(t, ω) is absolutely continuous
with respect to the Lebesgue measure. The induced measure on B ([t0, ∞)) is given by µΛ ([t0, t]) :=
Λ(t, ω) (cf. Ethier and Kurtz 1986, p. 74), where the dependence on ω is suppressed.
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= E

(
lim
h↓0

1

h

∫ t+h

t
λu du

∣∣∣Ft

)

= E (λt+| Ft) = λt+ , (A.16)

where λt+ = limu↓t λu, and the last equation holds since λt+ is Ft-measurable (a proof of
this statement can be found in Appendix A.4). This identity motivates the suggestive
relation39

λ(t) dt ≈ E (N (dt) | Ft−) , (A.17)

commonly deployed in the literature (e.g., Daley and Vere-Jones 2003, p. 232, Karr 1991,
p. 69 or Andersen et al. 1993, p. 51), which in a heuristical vein is obtainable by transition
to t−. According to Equation (A.17), the continuous-parameter process λ turns out to be
the conditional instantaneous average rate for the occurrence of a jump of the associated
counting process given the strict past. Moreover, this relation implicitly proposes that
λt is Ft−-measurable, something that can be achieved by retaining the predictability
requirement. We formalize these considerations by incorporating them into the following
definition.

Definition A.26 (Stochastic Intensity; Karr 1991, p. 69).
If in the setting of the Doob-Meyer decomposition (Theorem A.23) a counting process N
is considered and there exists a non-negative, {Ft}t≥t0

-predictable process λ = (λt)t≥t0

satisfying

Λt =

∫ t

t0

λu du , for all t ≥ t0 , (A.18)

then we say that N admits the
(
P, {Ft}t≥t0

)
-intensity λ.

Remark A.27 (On the Existence and Uniqueness of Stochastic Intensities).

(i) Although much emphasis is placed in the literature on counting processes that
admit stochastic intensities, the question of their existence is rarely addressed. For
the compensator to have absolutely continuous sample paths with respect to the
Lebesgue measure, it must necessarily be continuous. The class of counting processes
whose compensator is continuous are precisely the regular counting processes, and
while we do not want to delve further into this topic, the notion accompanies us
in the profound study of the underlying theory (e.g., Daley and Vere-Jones 2003
and Karatzas and Shreve 1988). Sufficient conditions that ensure the existence of
stochastic intensities are given in Dolivo 1974, pp. 100–106 and Boel, Varaiya and
Wong 1975, p. 1007.

(ii) For the mere definition of a stochastic intensity by virtue of Equation (A.18), only the
progressive measurability40 of the process λ must be required instead of predictability
(cf. Andersen et al. 1993, p. 75 and Brémaud 1981, p. 27). In this case, however, one
can always find a predictable version of the intensity. Furthermore, if the stochastic
intensity is constrained to be predictable, it is essentially unique, in that for any two
predictable stochastic intensities λ, λ̃, we have P-almost surely λt = λ̃t µΛ-almost

39In fact, a semi-constructive proof of the Doob-Meyer decomposition can be based on this identity, see
Equations (5.6) and (5.7) of Ethier and Kurtz 1986, p. 76.

40We have already encountered this notion in the Proof of Proposition A.9 and are content to think of it
as a stronger form of measurability within the framework of martingale theory.

187



everywhere, where µΛ once again denotes the measure on B ([t0,∞)) induced by
the increasing function t 7→ Λ(t, ω) (Brémaud 1981, pp. 30–31).

Example A.28 (Intensity of the Homogeneous Poisson Process).
Remember that according to Watanabe’s characterization (Example A.25) a counting
process N with compensator Λ(t) = λt is necessarily a Poisson process with intensity λ.
This notion is well chosen and conforms to the definition of stochastic intensities, since

Λ(t) =

∫ t

0
λ du .

In order to see that not every counting process admits a stochastic intensity, it is
sufficient to enlarge the respective filtration. If in particular we have an intrinsic filtration
(i.e., Ft = FN

t ∨ G0 for each t ≥ t0) satisfying

FN
∞ := σ


⋃

t≥t0

FN
t


 ⊂ G0 ,

all information regarding N is available at time t0 and the counting process is forced
to be its own compensator. To see this, let Λ denote the compensator as given by the
Doob-Meyer decomposition and compute:

Nt − Λt = E (Nt − Λt | Ft0) = Nt0 − Λt0 = 0 ,

where we exploit that Ft ≡ G0 and hence Nt − Λt is Fs-measurable even for t0 ≤ s < t.
We conclude that the smaller the filtration, the more likely a stochastic intensity is to exist
(Karr 1991, p. 69, where also another somewhat less degenerative example is discussed). A
formal representation of this intuitive interrelation is the subject of the following lemma.

Lemma A.29 (Change of Filtration for Intensities; Brémaud 1981, p. 32).

Let N be a counting process defined on the filtered probability space
(
Ω,F , {Ft}t≥t0

,P
)
,

and let {Gt}t≥t0
be another filtration satisfying

FN
t ⊂ Gt ⊂ Ft , for all t ≥ t0 .

If N admits the
(
P, {Ft}t≥t0

)
-intensity λ, then λ̃ =

(
λ̃t

)
t≥t0

given by

λ̃t := E (λt | Gt) , t ≥ t0 , (A.19)

is the
(
P, {Gt}t≥t0

)
-intensity of N .

Proof. A simplified proof, sufficient for all applications where actual computations are
performed, can be found in Brémaud 1981, pp. 32–33. For its validity, it is required that
the process λ̃ defined via Equation (A.19) is {Gt}t≥t0

-predictable, which in practice can

be achieved by considering a left-continuous version of λ̃. The proof then turns out to be
a straightforward application of Fubini’s theorem.

The implications of Lemma A.29 in terms of the aforementioned intrinsic filtrations are
twofold: Firstly, considering intrinsic filtrations in lieu of internal filtrations proves to be
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a useful extension, since in the absence of preliminary information (i.e., G0 = {∅,Ω}) the
updated intensity can be calculated from the former one. Secondly and more importantly,
external effects may cause an increase in information that cannot be reflected by intrinsic
filtrations, in which case the intensity λ̃ still emerges as the best mean square estimate
of λ within the restricted information (cf. Dolivo 1974, p. 106). This henceforth serves
as a justification for focusing the primary attention of this thesis on intrinsic filtrations.
Furthermore, the simple structure of these filtrations carries an additional benefit: It allows
us to deduce an explicit representation of the compensator and thus of the corresponding
intensity function, which dates back to Jacod 1973 and is occasionally referred to as
“Jacod’s formula for the intensity process” (cf. Andersen et al. 1993, pp. 95–96). This
result given in Theorem A.33 concludes a series of lemmas dealing with the successive
derivation of said formula relying on the concepts presented so far. While they are
largely based on the elaboration found in Daley and Vere-Jones 2008, pp. 356–365, we
supplement essential arguments and correct the erroneous proof of Lemma 14.1.III. The
proofs are predominantly of a technical nature and can be reviewed in Appendix A.4.
For readers more familiar with intensity theory, skipping the following results altogether
and consulting only the condensed Summary 1 at the end of the subsection is advised.
We start with the simplest example, a one-point process consisting of only a single point
whose location is defined by some random variable X.

Lemma A.30 (One-Point Process: Compensator w.r.t. the Internal Filtration; Lemma
14.1.II. of Daley and Vere-Jones 2008, p. 359).
Let X be a random variable defined on a probability space (Ω,F ,P) and taking values in
([t0,∞] ,B ([t0,∞])). Let F denote the cumulative distribution function of X and define
the one-point process N by

N : [t0,∞)× Ω −→ R : (t, ω) 7−→ N(t, ω) = 1(−∞,t] (X(ω)) =

{
1 , t ≥ X(ω) ,

0 , t < X(ω) .

The one-point process N has the

(
P,
{
FN

t

}
t≥t0

)
-compensator Λ given by

Λ : [t0,∞)× Ω −→ R : (t, ω) 7−→ Λ(t, ω) = H(t ∧X(ω)) =

{
H(X(ω)) , t ≥ X(ω) ,

H(t) , t < X(ω) ,

where
{
FN

t

}
t≥t0

denotes the internal filtration of N and H is defined via

H(t) :=

∫ t

t0

dF (x)

1− F (x−)
. (A.20)

Remark A.31 (Hazard Measure and Hazard Function; Jacobsen 2006, p. 34 and Daley
and Vere-Jones 2003, p. 109).
If we consider the case of an absolutely continuous cumulative distribution function F in
the situation of Lemma A.30, F admits a density f and the function H from Equation
(A.20) satisfies

H(t) =

∫ t

t0

f(x)

1− F (x)
dx .
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Thus, H can equivalently be stated in terms of the hazard function

h(x) :=
f(x)

1− F (x)
=
f(x)

S(x)
, (A.21)

where S(x) = 1 − F (x) denotes the survival function of X. For this reason, the func-
tion H is called the integrated hazard function (IHF), even in the case where F is not
absolutely continuous. The associated hazard measure Q defined on B ([t0,∞)) can be
obtained through its Radon-Nikodym derivative with respect to the measure induced by
F : Corresponding to the integrated form of Equation (A.20), we have

Q ([t0, t]) =

∫ t

t0

dF (x)

1− F (x−)
, t ≥ t0 ,

where this equation can alternatively be written in the differentiated form

dQ (x) =
dF (x)

1− F (x−)
. (A.22)

An informal proof of Lemma A.30 can be given in the situation of Remark A.31 where
F admits a continuous density f , illustrating the relevance of the heuristic presented in
Equation (A.16). However, the identity below may be considered only on {X > t} (note
that FN

t = {∅, {X > t}, {X ≤ t},Ω}), which turned out to be the more interesting case
in the scope of Lemma A.30:

lim
h↓0

1

h
E

(
Nt+h −Nt

∣∣FN
t

)
= lim

h↓0

1

h
E (Nt+h −Nt |X > t)

= lim
h↓0

1

h
P (Nt+h −Nt = 1 |X > t)

= lim
h↓0

1

h
P (t < X ≤ t+ h |X > t)

= lim
h↓0

1

h

P (t < X ≤ t+ h)

P (X > t)

= lim
h↓0

1

h

F (t+ h)− F (t)

S(t)

=
f(t)

S(t)
= h(t) ,

so that on {X > t} the intensity function is equal to the hazard function. On {X ≤ t},
the difference Nt+h −Nt vanishes and therefore the same is true for the intensity. Thus,

λ(t, ω) =

{
h(t) , t < X(ω) ,

0 , t ≥ X(ω) ,

which by integration yields exactly the compensator from Lemma A.30. The advantage
of a formal proof, given in Appendix A.4, lies in its capability to be easily generalized
to the cases of intrinsic filtrations and counting processes. The following result extends
Lemma A.30 to intrinsic filtrations.
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Lemma A.32 (One-Point Process: Compensator w.r.t. an Intrinsic Filtration; Lemma
14.1.III. of Daley and Vere-Jones 2008, p. 361).
In the situation of Lemma A.30, let G0 denote the prior σ-algebra of an intrinsic filtration
Ft = FN

t ∨ G0. If a regular conditional distribution function F (· | G0) for X exists, the

one-point process N has the
(
P, {Ft}t≥t0

)
-compensator Λ given by

Λ : [t0,∞)× Ω −→ R

(t, ω) 7−→ Λ(t, ω) = H(t ∧X(ω) | G0) =

{
H(X(ω) | G0) , t ≥ X(ω) ,

H(t | G0) , t < X(ω) ,

where H (· | G0) is the conditional integrated hazard function associated with F (· | G0),

H (t | G0) :=

∫ t

t0

dF (x | G0)

1− F (x− |G0)
.

Jacod’s formula for the intensity process (respectively the compensator in the absence
of its absolute continuity) concludes this successive sequence of lemmata. Thereby, the
essential step is the conception of a counting process as a superposition of one-point
processes, writing as in Equation (A.2):

N(t, ω) =
∞∑

i=1

1(−∞,t] (Ti(ω))
︸ ︷︷ ︸

=:Ni(t,ω)

, t ≥ t0 .

By additivity, it then suffices to derive the compensator individually for the one-point
processes Ni. However, this simplification comes at a price: Since we are now considering
an infinite sequence of points (i.e., the point process (Ti)i∈N) rather than a single random
variable X, the information at a given time t can no longer be easily decomposed into a
large atom and the remainder. Instead, we need to contemplate the information of the
associated counting process N up to the random times Ti, that is, the evolution of N until
the arrival of the ith event. This is reflected in the definition of the stopped σ-algebra
FTi

, where for i ∈ N we have:

FTi
:= σ ({Nt∧Ti

: t ≥ t0}) ∨ G0 . (A.23)

Note that stopped σ-algebras are a common concept encountered in further study of
stopping times, see Dellacherie 1972, p. 117 for details, whereas the representation given
in Equation (A.23) is specific to our situation, as outlined in Karr 1991, pp. 54–56. Since
(Ti)i∈N is an almost surely strictly increasing sequence and FTi

contains knowledge about
N up to its ith jump, conditioning on FTi

means we are given G0 as well as T1, . . . , Ti.
Setting T0 ≡ t0 as in Example A.7 finally yields FT0 = G0, a direct consequence of
Equation (A.23) (compare Equation (A.9) on this regard).
After these preliminary considerations, we are now able to state Jacod’s formula, which is
given under this name in Andersen et al. 1993, p. 96. In order to preserve the readability
and the previous notation, we cite Daley and Vere-Jones 2008 again.
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Theorem A.33 (Jacod’s Formula for the Intensity Process; Theorem 14.1.IV. of Daley
and Vere-Jones 2008, pp. 363–364).
Let N = (Nt)t≥t0

be a counting process and T = (Ti)i∈N the associated simple point process.

Let Ft = FN
t ∨G0 denote an intrinsic filtration with prior σ-algebra G0. Suppose there exist

regular versions Fi

(· | FTi−1

)
of the conditional distribution functions of the interarrival

times Wi = Ti−Ti−1, given FTi−1 as in Equation (A.23), such that 1−Fi

(
x− |FTi−1

)
> 0

for x > 0. Let Ni denote the one-point process given by

Ni : [t0,∞)× Ω −→ R : (t, ω) 7−→ Ni(t, ω) = 1(−∞,t] (Ti(ω)) ,

so that N =
∑∞

i=1Ni. Then the
(
P, {Ft}t≥t0

)
-compensator Λi for Ni has the form

Λi(t, ω) =





0 , t < Ti−1(ω) ,

Hi

(
t− Ti−1 | FTi−1

)
, Ti−1(ω) ≤ t < Ti(ω) ,

Hi

(
Ti − Ti−1 | FTi−1

)
, Ti(ω) ≤ t ,

(A.24)

where Hi

(· | FTi−1

)
is the conditional integrated hazard function associated with Fi

(· | FTi−1

)
,

Hi

(
t | FTi−1

)
=

∫ t

0

dFi

(
x | FTi−1

)

1− Fi

(
x− |FTi−1

) . (A.25)

Thus, a version of the
(
P, {Ft}t≥t0

)
-compensator Λ for N is given by

Λ(t, ω) =
∞∑

i=1

Λi(t, ω) . (A.26)

Although we treated the general case first, Theorem A.33, as its name suggests,
serves primarily for the explicit determination of the intensity function in the absolutely
continuous case. The following corollary can be seen as a continuation of Remark A.31,
which dealt with absolute continuity in the case of a one-point process.

Corollary A.34 (Jacod’s Formula, absolutely continuous case; cf. Brémaud 1981,
pp. 61–63 and Daley and Vere-Jones 2008, pp. 364–365).

In the situation of Theorem A.33, the
(
P, {Ft}t≥t0

)
-compensator Λ is almost surely

absolutely continuous if and only if the conditional distribution functions Fi

(· | FTi−1

)

have absolutely continuous versions with densities fi

(· | FTi−1

)
. In this case, one version

of Λ is given by

Λ(t, ω) =

∫ t

t0

λ∗(u, ω) du ,

where

λ∗(t, ω) =
∞∑

i=1

λ∗i (t, ω) ≡
∞∑

i=1

fi

(
t− Ti−1 | FTi−1

)

1− Fi

(
t− Ti−1 | FTi−1

)1{Ti−1≤t<Ti} . (A.27)

An {Ft}t≥t0
-predictable version λ of λ∗ and hence the

(
P, {Ft}t≥t0

)
-intensity of N is
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defined by

λ(t, ω) =
∞∑

i=1

λi(t, ω) ≡
∞∑

i=1

fi

(
t− Ti−1 | FTi−1

)

1− Fi

(
t− Ti−1 | FTi−1

)1{Ti−1<t≤Ti} .

One of the key features of Jacod’s formula is the capability to completely characterize a
process’s intensity by the conditional hazard functions hi

(· | FTi−1

)
, which are in turn fully

determined by the conditional densities fi

(· | FTi−1

)
. Nevertheless, a reasonable modelling

approach tries to avoid having to specify the entire family of conditional distributions.
Hence, the reason why Corollary A.34 is vital for intensity-based modelling is that the
converse statement also holds: a counting process is uniquely characterized by its intensity.

Proposition A.35 (Characterization of Counting Processes via Stochastic Intensities;
Prop. 7.2.IV. of Daley and Vere-Jones 2003, p. 233).

In the situation of Corollary A.34, the
(
P, {Ft}t≥t0

)
-intensity λ determines the probability

structure of N uniquely.

Proof. The proposition is partly embedded in the uniqueness theorem, stating that at
most one probability measure corresponds to a given intensity, see Theorem 2.19 of Karr
1991, p. 63 or Brémaud 1981, pp. 63–64, 77–78, where the latter extensively deals with the
special case of internal filtrations. A detailed elaboration for the absolutely continuous
case can be found in Daley and Vere-Jones 2003, pp. 229–233. A prominent example to
illustrate how the reconstruction of the counting process from its intensity proceeds is
Watanabe’s characterization of the Poisson process, see Example A.25.

Remark A.36 (Technical Preconditions in Intensity-Based Modelling).
Incorporating the findings of Proposition A.35, we want to shed new light on Remark
A.24. Initially, we were faced with the challenge that an intensity-based modelling
approach should satisfy the usual conditions of Definition A.14 on the one hand and
ensure predictability of the compensator on the other. However, we recognized in Remark
A.24 that the usual conditions primarily serve to find a right-continuous modification of
the compensator, whereas left-continuity implies predictability according to Remark A.21.
Now, if we provide a model for the stochastic intensity λ, Proposition A.35 states that
the cumulative intensity

Λ(t, ω) =

∫ t

t0

λ(u, ω) du

is an absolutely continuous compensator of the counting process associated with λ. In
particular, the compensator is right-continuous, which eliminates the need to check the
usual conditions, and left-continuous, which makes it predictable. Consequently, for
many practical applications, we do not need to bother with the technical requirements of
intensity theory and circumvent the necessity of proving the compensator’s predictability.

We round out this subsection by summarizing the key insights in simplified form
sufficient for the most common applications. In doing so, we will also slightly shift
perspective by specifying the intensity based on the point process itself rather than on the
interarrival times. This can be achieved by considering the shifted conditional distribution
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functions F̃i

(· | FTi−1

)
satisfying

F̃i

(
t | FTi−1

)
:= Fi

(
t− Ti−1 | FTi−1

)
,

as well as the shifted conditional integrated hazard function H̃i

(· | FTi−1

)
defined by

H̃i

(
t | FTi−1

)
:=

∫ t

Ti−1

dF̃i

(
x | FTi−1

)

1− F̃i

(
x− |FTi−1

) = Hi

(
t− Ti−1 | FTi−1

)
. (A.28)

If defined as above, F̃i

(· | FTi−1

)
represents the conditional distribution function of Ti

given FTi−1 and Λi from Equation (A.24) can be stated as

Λi(t, ω) =





0 , t < Ti−1(ω) ,

H̃i

(
t | FTi−1

)
, Ti−1(ω) ≤ t < Ti(ω) ,

H̃i

(
Ti | FTi−1

)
, Ti(ω) ≤ t ,

which becomes evident by plugging in the identity of Equation (A.28).

Summary 1 (Intensity Theory of Counting Processes).
Let t1 < t2 < . . . with ti ∈ [t0,∞] be realizations of a point process T . Let fi (t | t1, . . . , ti−1)
denote the absolutely continuous conditional density function of Ti after the observation
of T1 = t1, . . . , Ti−1 = ti−1 and

Si (t | t1, . . . , ti−1) := 1−
∫ t

ti−1

fi (u | t1, . . . , ti−1) du (A.29)

the associated survival function. The corresponding hazard functions are given by

hi (t | t1, . . . , ti−1) :=
fi (t | t1, . . . , ti−1)

Si (t | t1, . . . , ti−1)
. (A.30)

By integrating Equation (A.30), one obtains the cumulative conditional hazard functions:

Hi (t | t1, . . . , ti−1) :=

∫ t

ti−1

hi (u | t1, . . . , ti−1) du . (A.31)

Furthermore, the conditional intensity function can then be piecewise defined as follows:

λ∗(t) :=

{
h1(t) , t0 ≤ t < t1 ,

hi (t | t1, . . . , ti−1) , ti−1 ≤ t < ti, i ≥ 2 .
(A.32)

The conditional intensity can be interpreted as the conditional risk of the occurance
of an event at t, given the realizations of the process over [0, t). Since densities are
unique only up to its values on sets with Lebesgue measure zero, the conditional intensity
need not necessarily be left-continuous. Uniqueness can then be achieved by taking
the left-continuous modification41 λ(t) of λ∗(t) (i.e., λ(t) = λ∗(t−)). This modification
emerges as the canonical choice because it ensures predictability. The cumulative intensity

41Formally this is possible since we presume the existence of continuous conditional density functions for
the Ti, see proofs of Lemma A.29 and Corollary A.34 for details.
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process Λ is defined as the pointwise integral

Λ(t) :=

∫ t

t0

λ(u) du =

∫ t

t0

λ∗(u) du . (A.33)

Then, Λ is an {FN
t }t≥t0-predictable process and M(t) = N(t)−Λ(t) is an

(
P, {FN

t }t≥t0

)
-

martingale. The cumulative intensity process Λ can thus be identified with the compensator
obtained through the Doob-Meyer decomposition of N . Finally, when substituting the
conditional hazard function hi (· | t1, . . . , ti−1) in Equation (A.31) with the predictable
version λ of the conditional intensity function λ∗ from Equation (A.32), one obtains for
t ≤ ti:

Hi (t | t1, . . . , ti−1) =

∫ t

ti−1

λ(u) du = Λ(t)− Λ(ti−1) , (A.34)

where the definition of the cumulative intensity process Λ from Eq. (A.33) is considered.

In the presence of an absolutely continuous compensator Λ, Corollary A.34 allows us to
draw a useful Lemma from Summary 1. It states that with probability one, countably many
independent copies of the underlying counting process have no common discontinuities.

Lemma A.37 (Common Discontinuities of Independent Counting Processes).
Let N (1), N (2), . . . be an at most countable collection of independent counting processes
with index set [t0,∞) defined on a common probability space (Ω,F ,P). Suppose that, for
each j ∈ N, the associated compensator Λ(j) with respect to the canonical filtration of N (j)

is absolutely continuous. Let T (1), T (2), . . . denote the corresponding counting processes.
Then, for all i, j, k, l ∈ N where j 6= l or i 6= k, the following holds:

P

(
T

(j)
i = T

(l)
k , T

(j)
i <∞

)
= 0 . (A.35)

In terms of the processes N (1), N (2), . . ., this implies that P-almost surely they exhibit
no common discontinuities on [t0,∞). In particular, this applies on any subinterval
I ⊂ [t0,∞).

Proof. The lemma is a generalization of the elementary statement that two independent
random variables with absolutely continuous probability distributions almost surely take
on different values. A proof is given in Appendix A.4.

A.2.5. The Itô Isometry for Square-Integrable Martingales

We conclude the current Section A.2 on filtrations, martingales and compensators with a
brief digression on stochastic integrals whose integrator is given by a square-integrable
martingale. Since a comprehensive coverage of the topic of stochastic integration is
outside the scope of this thesis and at the same time promises little insight, we refer for
an introductory reading to the textbooks Kuo 2006 (providing a good overview without
excessive technical depth) and Øksendal 2013 (where the Brownian motion is considered
in place of square-integrable martingales) as well as the monographs Protter 2005 (for
an in-depth look at the general theory) and Kallianpur 1980 (see in particular pages
52 to 59 on useful properties of stochastic integrals). Moreover, the proofs presented
here are each intended to illustrate only the idea of concept, but we consistently refer to
specialized literature for the details that are left out. Our emphasis is on the Itô isometry
for square-integrable martingales, which are the subject of a first definition.
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Definition A.38 (Square-Integrable Martingale; Karatzas and Shreve 1988, p. 30).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space and let M = (Mt)t≥t0
be a

(
P, {Ft}t≥t0

)
-

martingale. Then, M is called square-integrable if for all t ≥ t0 it holds:

E

(
M2

t

)
<∞ .

For any such square-integrable martingale, we obtain by Jensen’s inequality (see Protter
2005, p. 12) and the martingale property:

E

(
M2

t | Fs

)
≥ (E (Mt | Fs))2 = M2

s , for all t ≥ s ≥ t0 .

Accordingly,
(
M2

t

)
t≥t0

is a non-negative
(
P, {Ft}t≥t0

)
-submartingale. Moreover, if M is

right-continuous or has a right-continuous modification (e.g., if the filtered probability
space satisfies the usual conditions, see Remark A.24), the same holds for M2 and hence the
Doob-Meyer decomposition from Theorem A.23 can be applied. The resulting compensator
is often denoted by 〈M〉 and referred to as the (predictable) quadratic variation process of
M (see Karatzas and Shreve 1988, p. 31 and Appendix B of Karr 1991). Remarkably, if
M itself emerges as the martingale from the Doob-Meyer decomposition of a counting
process N with compensator Λ, the quadratic variation process 〈M〉 can be explicitly
stated in terms of Λ. If Λ is assumed to be continuous, then in fact 〈M〉 = Λ holds. This
preliminary consideration forms the framework of the following theorem, which can be
viewed as an extension of the aforesaid Doob-Meyer decomposition.

Theorem A.39 (Extension of the Doob-Meyer Decomposition; cf. Pang, Talreja and
Whitt 2007, p. 211).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space satisfying the usual conditions of

Definition A.14 and let N = (Nt)t≥t0
be a P-integrable adapted counting process. If

the compensator Λ of N provided by the Doob-Meyer decomposition of Theorem A.23 is
continuous, then it holds:

(i) M = N − Λ is a square-integrable
(
P, {Ft}t≥t0

)
-martingale.

(ii) The compensator of M2 is given by Λ.

Proof. The complete proof can be found in Pang, Talreja and Whitt 2007, pp. 265–267. We
give here only a sketch of the proof, which covers the main arguments. The idea is roughly
to explicitly decompose the process M2 into a martingale and a predictable increasing
process, and then infer the statement from the uniqueness property of the Doob-Meyer
decomposition. The first step involves an application of the extended integration-by-parts
formula42 found in Appendix A.50 to obtain:

M2
t = 2

∫ t

t0

Ms− dMs +
∑

t0≤s≤t

(∆Ms)2 ∣∣Ms = Ns − Λs

= 2

∫ t

t0

Ms− dMs +
∑

t0≤s≤t

[
(∆Ns)2 − 2∆Ns∆Λs + (∆Λs)2

] ∣∣∆Ns ∈ {0, 1}

42Applying the ordinary version given in Theorem A.49 proves equally effective, but allows for slightly
less understanding, as will be demonstrated here. As a difference of two increasing càdlàg functions,
M is itself a càdlàg function of bounded variation over finite intervals.
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= 2

∫ t

t0

Ms− dMs +
∑

t0≤s≤t

[
(1− 2∆Λs) ∆Ns + (∆Λs)2

]

= 2

∫ t

t0

Ms− dMs +

∫ t

t0

(1− 2∆Λs) dNs +

∫ t

t0

∆Λs dΛs ,
∣∣Ns = Ms + Λs

=

∫ t

t0

(2Ms− + 1− 2∆Λs) dMs +

∫ t

t0

(1−∆Λs) dΛs , (A.36)

where the second to last step bridges the difference between the two versions of the
integration-by-parts formula, since for f = g = Λ we have:

∫ t

t0

Λs dΛs +

∫ t

t0

Λs− dΛs = 2

∫ t

t0

Λs− dΛs +
∑

t0≤s≤t

(∆Λs)2

⇐⇒
∫ t

t0

Λs dΛs −
∫ t

t0

Λs− dΛs =
∑

t0≤s≤t

(∆Λs)2

⇐⇒
∫ t

t0

∆Λs dΛs =
∑

t0≤s≤t

(∆Λs)2 .

One continues with Equation (A.36) by showing that the first summand is a
(
P, {Ft}t≥t0

)
-

martingale and the second summand is a predictable increasing process (i.e., Equation
(A.36) already represents the Doob-Meyer decomposition of M2). In the case that Λ is
continuous43 and therefore we have ∆Λs ≡ 0, this simplifies to

M2
t =

∫ t

t0

(2Ms− + 1) dMs + Λt , (A.37)

because of Λt0 = 0. As the remaining integrand is left-continuous and hence predictable,
the martingale property of the first summand then follows from a standard result for
integrals with respect to bounded variation martingales, which for convenience is given in
the Lemma A.40 below. As the compensator of N , the second summand is predictable
and increasing by default, so part (ii) follows. Moreover, Equation (A.37) provides a
rationale as to why M is square-integrable, since then

E

(
M2

t

)
= E (Λt) <∞ , for all t ≥ t0 ,

by the integrability of Λ. Note, however, that in the process we have implicitly assumed
square-integrability in order to ultimately show it (e.g., in utilizing the Doob-Meyer de-
composition). For the mathematically rigorous argument, additional regularity conditions
are needed and the required boundedness is achieved by localization via stopping times.
We once again refer to Pang, Talreja and Whitt 2007, p. 266 for the remainder of part
(i).

In particular, Theorem A.39 implies that a counting process “with a continuous compen-
sator is locally and conditionally a Poisson process in the sense that its mean and variance
are equal” (Karr 1991, p. 64). This is indicated by the following heuristic expression in

43The reasoning remains valid even if Λ is not continuous, cf. Theorem 2.21 of Karr 1991, p. 64. However,
with this approach we immediately recognize why the continuity of Λ is beneficial.
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infinitesimal form:

E
[ (
N(dt)− E

(
N(dt)

∣∣Ft−
)

︸ ︷︷ ︸
=M(dt)

)2 ∣∣Ft−
]

= Λ(dt) = E (N(dt) | Ft−) ,

which is understood in the same way as the suggestive relation from Equation (A.17),
recall Remark A.48 in Appendix A.5. The result itself foreshadows Theorem A.44 of the
coming Section A.3, where we will recognize counting processes with absolutely continuous
compensators as Poisson processes under a random time transformation.

The next lemma establishes another relation between predictable processes and martin-
gales (of bounded variation). It turns out to be useful not only for the proof of Theorem
A.39, but also in the later consideration of a minimum (L2-)distance estimator.

Lemma A.40 (Integration with Respect to Bounded Variation Martingales; Theorem
T6 of Brémaud 1981, p. 10).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space and M = (Mt)t≥t0
a
(
P, {Ft}t≥t0

)
-

martingale of bounded variation (i.e., P-almost all sample paths have bounded variation
over finite intervals). Let |M | = (|M |t)t≥t0

denote the total variation process44 associated
with M . Suppose further that M is of locally integrable variation, that is,

E

[∫ t

t0

d |M |s
]
<∞ , for all t ≥ t0 .

Then, for each {Ft}t≥t0
-predictable process f = (ft)t≥t0

satisfying

E

[∫ t

t0

|fs| d |M |s
]
<∞ , for all t ≥ t0 , (A.38)

the stochastic process X = (Xt)t≥t0
, which for each t ≥ t0 is defined by

Xt =

∫ t

t0

fs dMs , (A.39)

is a
(
P, {Ft}t≥t0

)
-martingale.

Proof. A brief outline of the proof is given in Karr 1991, p. 59. It relies on first proving the
statement for the elementary {Ft}t≥t0

-predictable processes which, according to Equation
(A.12), have the form

ft = 1A · 1{u<t≤v} , where t0 ≤ u ≤ v ,A ∈ Fu , (A.40)

and then applying the monotone class theorem as seen in the proof of Theorem A.33.
Since |ft| ≤ 1 for such an elementary process, the condition (A.38) is satisfied for any
martingale of locally integrable variation. Substituting f into Equation (A.39), we get:

Xt = 1A ·
(
Mmin{v,max{u,t}} −Mu

)
. (A.41)

It is shown in an addendum in Appendix A.4 that X is indeed a martingale. The profound

44Accordingly, |M |t < ∞ is the total variation of the path s 7→ Ms over [t0, t] and is not to be confused
with |Mt| (Karr 1991, p. 59).
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proof employs functional analytic tools such as the Hahn-Banach extension theorem. For
details, see Brémaud 1981, pp. 10–11.

Lemma A.40 further consolidates the role of predictable processes in the context of
martingale theory. If M is a martingale of integrable bounded variation, each of the
elementary predictable processes f = (ft)t≥t0

given in Equation (A.40) satisfies the
identity

E

[∫ ∞

t0

fs dMs

]
= 0 , (A.42)

a direct consequence of X being a martingale with Xt0 = 0. But the converse is equally
true: If M is an adapted process of integrable bounded variation satisfying Equation
(A.42) for every such f , then M is already a martingale. This is evident from the following
observation, where for arbitrary t0 ≤ u ≤ v we have:

E

[∫ ∞

t0

1A1{u<s≤v} dMs

]
= 0 , for all A ∈ Fu ,

⇐⇒ E [1A (Mv −Mu)] = 0 , for all A ∈ Fu ,

⇐⇒
∫

A
Mv dP =

∫

A
Mu dP , for all A ∈ Fu ,

⇐⇒ E
(
Mv

∣∣Fu

)
= Mu ,

which is the martingale property from Definition A.17(iii). The elementary predictable
processes can therefore even be considered as part of the definition of martingales (cf.
Brémaud 1981, p. 11). The requirement of predictability in the construction of the integral

∫ t

t0

fs dMs

therefore comes as no surprise, but its main purpose is to compensate the jumps of the
martingale M . If M were not to exhibit any jumps - as it is the case for the Brownian
motion - one could settle for the adaptedness of the integrand instead (see for example
Øksendal 2013, p. 33). For a more elaborate motivation, see Kuo 2006, pp. 75–80. We
have now acquired all the necessary prior knowledge to give the Itô isometry for square-
integrable martingales. It provides a natural extension of the eponymous result usually
formulated only for the Brownian motion, see Øksendal 2013, p. 29. We state it specifically
for the case where M is the innovation martingale from the Doob-Meyer decomposition
of a counting process N .

Theorem A.41 (Itô Isometry for Square-Integrable Martingales; cf. Kuo 2006, p. 88).
Given the situation from Theorem A.39, the martingale M meets the conditions from
Lemma A.40. For any predictable process f satisfying

E

[∫ t

t0

|f |2 dΛs

]
<∞ , for all t ≥ t0 , (A.43)

the following equality holds:

E

(
|Xt|2

)
= E

[∣∣∣∣
∫ t

t0

fs dMs

∣∣∣∣
2
]

= E

[∫ t

t0

|fs|2 dΛs

]
. (A.44)
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Proof. In Chapter 4 of Kuo 2006, pp. 43–48, the original Itô isometry for the Brownian
motion is proved (see Theorem 4.3.5). The proof is carried out in two major steps:
First, Lemma 4.3.2 verifies the isometry for elementary processes, and this can be easily
generalized to square-integrable martingales. Second, Lemma 4.3.3 shows that the isometry
(and even the definition of the stochastic integral itself) extends to all adapted square-
integrable processes. To generalize the second part, one requires predictability instead
of adaptedness. But this is covered in Kallianpur 1980, p. 52, and therefore the result
remains valid.

Remark A.42 (The Isometric Property in Theorem A.41).
Borrowing the notation from Kuo 2006, p. 84, we denote the space of all predictable
processes with index set

[
t0, t

0
]

satisfying Equation (A.43) as L2
pred

([
t0, t

0
]
Λ × Ω

)
. Simi-

larly, let L2 (Ω,F ,P) be the space of square-integrable random variables defined on the
probability space (Ω,F ,P). Then, the mappings It0 defined for each t0 > t0 by

It0 : L2
pred

([
t0, t

0]
Λ
× Ω

)
−→ L2 (Ω,F ,P) : f 7−→

∫ t0

t0

fs dMs

are isometric according to Equation (A.44).

A.3. The Hazard Transformation

Numerous methods of statistical inference are based on knowledge of the probability
distributions involved: For instance, the well-known Kolmogorov-Smirnov test relies on
the Kolmogorov distribution, which emerges as the asymptotic distribution of the test
statistic45. In practise, the underlying distributions are often too complex to be computed
explicitly and, if they are, too unwieldy to work with. However, the transformation
of random variables or processes often results in simpler, familiar distributions, with
the most prominent example being the (inverse) probability integral transform. The
aforementioned Kolmogorov-Smirnov test implements this approach, where the probability
integral transform is utilized to achieve an asymptotic distribution that is independent of
the (continuous) cumulative distribution function under consideration. Notably, while
this transformation preserves as much information as possible, it also requires that the
particular cumulative distribution function is known in advance. This considerably limits
its applicability as soon as more complex random structures such as continuous-parameter
processes are involved: In our situation, the (finite dimensional) distribution of a simple
point process is generally unknown or not conveniently expressible. Consequently, we
are interested in addressing a transformation that is more tailored to our situation: the
hazard transformation. The application of the hazard transformation yields independent
and exponentially distributed random variables under relatively liberal assumptions.
Nonetheless, this comes at a price: the hazard transform not only exhibits a striking
resemblance to the inverse probability integral transform, it also bears similar restrictions.
In particular, to utilize the methods presented in this subsection, knowledge of the
underlying cumulative intensity process or equivalently the compensator of the associated
counting process is required. This appears to be an equally significant constraint at first
glance, but proves to be helpful in the intensity-based modelling approach on which this

45Consequently, the name originates from Andrei N. Kolmogorov, who derived both the test statistic and
its asymptotic distribution named in his honour (Kolmogorov 1933), and Nikolai V. Smirnov, who
published a table of said distribution (Smirnov 1939).
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thesis rests. Beforehand, we start with a motivational introduction on why the hazard
transformation is suited to our needs.

Remark A.43 (The Hazard Transform as a Random Time Change; Daley and Vere-Jones
2003, pp. 257–261).
The following description of what we will refer to as the hazard transformation is due to
Papangelou, who formulated and proved an earlier version of the subsequent Theorem
A.44, which was limited to stationary point processes (cf. Theorem 5 of Papangelou 1974,
p. 132). The original citation is given in Harding and Kendall 1974, while an adapted
rendition can also be found in Daley and Vere-Jones 2003, p. 258. Merely adjusting the
notation to fit this thesis, it reads:

“Suppose that starting at 0 say, we trace the positive half-line [0,∞) in such a way
that at the time we are passing position t our speed is 1/λ∗(t), which can be∞. (The
value of λ∗(t) is determined by the observations of the past, i.e. of what happened in
[t0, t).) Then the time instants at which we shall meet all the non-negative points of
the process form a homogeneous Poisson process.”

In the language of intensity theory, the above statement means that the random time
change

[t0,∞) −→ [0,∞) : t 7−→ Λ(t) (A.45)

transforms the point process with conditional intensity function λ∗ into a homogeneous
Poisson process with intensity 1. The above heuristic is formalized in Theorem A.44.

Theorem A.44 (Random Time Transformation for Adapted Counting Processes; cf.
Daley and Vere-Jones 2003, p. 258 and Brémaud 1981, p. 40).

Let N be a counting process defined on the filtered probability space
(
Ω,F , {Ft}t≥t0

,P
)
.

Suppose that N is adapted and let Λ denote its
(
P, {Ft}t≥t0

)
-compensator which admits

a strictly positive conditional intensity λ∗. If N is non-terminating, that is,

P

(
lim

t→∞
Nt =∞

)
= 1 ,

then the transformed process Ñ =
(
Ñt

)
t≥0

defined by

Ñt := NΛ−1(t) (A.46)

is a homogeneous Poisson process with intensity 1.

Proof. A sketch of proof can be found in Daley and Vere-Jones 2003, pp. 258–259, but
technical details are largely ignored. For instance, the filtration {Ft}t≥t0

is transformed
in conjunction with the counting process, but both a rigorous definition and a strict proof
are omitted. A fuller discussion is deferred to Chapter 14 of Daley and Vere-Jones 2008,
culminating in a reformulation of the above theorem in Proposition 14.6.III. Since the
necessary preliminary considerations would exceed the framework of this thesis, no further
elaboration of this particular Proposition is given.
The existence of the conditional intensity λ∗ implies that Λ is continuous. If, moreover, λ∗

is strictly positive, then Λ is strictly increasing on [t0,∞) and thus a continuous inverse
Λ−1 exists. However, an analogous result holds even if only a generalized inverse for Λ
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can be found, as an alternative proof in Brémaud 1981, pp. 40–43 demonstrates. Once
again, that proof involves stopping times, which we decided not to address in Subsection
A.2. We therefore retain the requirement that λ be strictly positive to enable a more
accessible representation consistent with the notation of previous subsections. Finally, the
requirement that N is non-terminating ensures that there is no final point of the process.
As stated and illustrated by an example in Daley and Vere-Jones 2003, p. 260, “the basic
result remains valid without it, except insofar as the final interval is then infinite and so
cannot belong to a [homogeneous] Poisson-process”.

A counting process N satisfying the conditions of Theorem A.44 is sometimes called a
process of Poisson type, since “all such processes can be derived from a simple Poisson
process by a random time transformation” (Daley and Vere-Jones 2003, p. 259). An
important implication is that these processes can be easily simulated by the inversion
method (the procedure is described in Algorithm 7.4.III. of Daley and Vere-Jones 2003,
p. 260). As the later Theorem A.46 shows, this only requires knowledge of the inverse
conditional cumulative hazard function.

Example A.45 (Time Change for the Homogeneous Poisson Process).
If N = (Nt)t≥0 is a homogeneous Poisson process with intensity λ, we have Λ−1(t) = t

λ

according to Example A.28. Then, the transformed process Ñ with Ñt := N t
λ

is again a

homogeneous Poisson process and has intensity 1:

P

(
Ñ (s, t) = n

)
= P

(
N

(
s

λ
,
t

λ

)
= n

)

=
1

n!

(
λ

(
t

λ
− s

λ

))n

e−λ( t
λ
− s

λ )

=
1

n!
(t− s)ne−(t−s) .

The independence of the increments of Ñ is immediately clear, as it is likewise inherited
from N . Keep in mind that the time change here is not random, but deterministic.

There remains one question for us to answer in this section: how can the random time
change be related to the (cumulative conditional) hazard function that lends its name
to the hazard transformation? For this, we need a change of perspective: Instead of
studying the effects of the random time change on the counting process N via Equation
(A.46), we return to the mapping from Equation (A.45), which immediately tells us how
the simple point process T = (Ti)i∈N associated with N is transformed. We recall the
Equations (A.5) and (A.6) from Example A.7 to remind us that the interarrival times of a
homogeneous Poisson process with intensity 1 follow a standard exponential distribution.
Informally, we obtain:

Λ (Ti)− Λ (Ti−1)
i.i.d.∼ E(1) , i ∈ N . (A.47)

In the setting of Summary 1, we identified the conditional intensity λ∗ as a piecewise
conglomerate of conditional hazard functions, and this relationship carried over to the
cumulative intensity process - or, in other words, the compensator. If we proceed to
substitute Equation (A.47) into Equation (A.34), we observe the following connection
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that justifies the term hazard transformation:

Hi (Ti |T1, . . . , Ti−1)
i.i.d∼ E(1) , i ∈ N . (A.48)

Basically, the statement of Equation (A.48) follows directly from Theorem A.44, but we
still owe a proof of it. We provide a basic one that relies only on the assumptions of
Summary 1 and therefore can be understood without consulting the previous subsections.
Beforehand, the hazard transform shall finally be established in the following theorem.

Theorem A.46 (Hazard Transformation).
In the situation of Summary 1, let T = (Ti)i∈N be a simple point process and assume
fi (t | t1, . . . , ti−1) to be continuous with fi (t | t1, . . . , ti−1) > 0 almost everywhere for each46

t1 < . . . < ti−1 ∈ [0,∞). Then, Hi (Ti |T1, . . . , Ti−1) is exponentially distributed with
parameter 1. The transformed process R = (Ri)i∈N with

Ri := Hi (Ti |T1, . . . , Ti−1) (A.49)

is called the hazard transformation of T . Accordingly, it holds:

R1, R2, . . .
i.i.d.∼ E (1) . (A.50)

Proof. Throughout the proof, we will use the abbreviation from Remark 2.1 wherever
suitable, but switch to the conventional notation situationally. If we assume the conditional
density function of Ti given T1:(i−1) = t1:(i−1) (i.e., T1 = t1, . . . , Ti−1 = ti−1) to be

continuous for each i ∈ N, the associated survival function Si

(
t
∣∣ t1:(i−1)

)
is a differentiable

function of t. Thus, it holds by virtue of the fundamental theorem of calculus and Equation
(A.29) for all t > ti−1:

Hi

(
t
∣∣ t1:(i−1)

)
(A.31)

=

∫ t

ti−1

hi

(
u
∣∣ t1:(i−1)

)
du

(A.30)
=

∫ t

ti−1

−
∂

∂u
Si

(
u
∣∣ t1:(i−1)

)

Si

(
u
∣∣ t1:(i−1)

) du

=

∫ t

ti−1

− ∂

∂u
ln
(
Si

(
u
∣∣ t1:(i−1)

))
du

= ln
(
Si

(
ti−1

∣∣ t1:(i−1)

))
− ln

(
Si

(
t
∣∣ t1:(i−1)

))

= − ln
(
Si

(
t
∣∣ t1:(i−1)

))
. (A.51)

Let Fi

(
t
∣∣ t1:(i−1)

)
denote the conditional cumulative distribution function (conditional

CDF) of Ti, so that Fi

(
t
∣∣ t1:(i−1)

)
= 1−Si

(
t
∣∣ t1:(i−1)

)
according to Equation (A.29). As

fi

(
t
∣∣ t1:(i−1)

)
> 0 a.e., the conditional CDF of Ti is strictly increasing and therefore has

an inverse denoted with F−1
i

(
·
∣∣ t1:(i−1)

)
. It holds for arbitrary u ∈ (0, 1):

P

(
Fi

(
Ti

∣∣T1:(i−1)

)
≤ u

∣∣T1:(i−1) = t1:(i−1)

)

= P

(
Fi

(
Ti

∣∣ t1:(i−1)

)
≤ u

∣∣T1:(i−1) = t1:(i−1)

)

= P

(
Ti ≤ F−1

i

(
u
∣∣ t1:(i−1)

) ∣∣T1:(i−1) = t1:(i−1)

)

46Because of Equations (A.30) and (A.32), we could equivalently require that λ(t) > 0 on {t ≤ Ti}.
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= Fi

(
F−1

i

(
u
∣∣ t1:(i−1)

) ∣∣ t1:(i−1)

)
= u , (A.52)

so that the conditional distribution of Fi

(
Ti

∣∣T1:(i−1)

)
given T1:(i−1) = t1:(i−1) is a uni-

form distribution on [0, 1]. Hence, it is easy to see that the conditional distribution of

Si

(
Ti

∣∣T1:(i−1)

)
given T1:(i−1) = t1:(i−1) is also a uniform distribution:

P

(
Si

(
Ti

∣∣T1:(i−1)

)
≤ u

∣∣T1:(i−1) = t1:(i−1)

)

= 1− P

(
Si

(
Ti

∣∣T1:(i−1)

)
≥ u

∣∣T1:(i−1) = t1:(i−1)

)

(A.29)
= 1− P

(
Fi

(
Ti

∣∣T1:(i−1)

)
≤ 1− u

∣∣T1:(i−1) = t1:(i−1)

)
= 1− (1− u) = u ,

where again u ∈ (0, 1). This eventually implies that for all t ∈ (0,∞) we have:

P

(
Hi

(
Ti

∣∣T1:(i−1)

)
≤ t

∣∣T1:(i−1) = t1:(i−1)

)

(A.51)
= P

(
− ln

(
Si

(
Ti

∣∣T1:(i−1)

))
≤ t

∣∣T1:(i−1) = t1:(i−1)

)
(A.53)

= P

(
Si

(
Ti

∣∣T1:(i−1)

)
≥ exp(−t)

∣∣T1:(i−1) = t1:(i−1)

)
= 1− exp(−t) ,

which means that the conditional distribution of Ri = Hi

(
Ti

∣∣T1:(i−1)

)
given T1:(i−1) =

t1:(i−1) is an exponential distribution with parameter 1. Note that due to the factorization
lemma (see Lemma 11.7, Bauer 2001, p. 62), for each t ∈ (0,∞) there exists a measurable
function gi,t such that

P (Ri ≤ t |T1, . . . , Ti−1) = E

(
1{Ri≤t}

∣∣T1, . . . , Ti−1

)
= gi,t ◦ (T1, . . . , Ti−1)⊤ .

We thus conclude by the law of total expectation47 and Equation (A.53):

P (Ri ≤ t) = E

[
E

(
1{Ri≤t}

∣∣T1, . . . , Ti−1

)]
= E

[
gi,t ◦ (T1, . . . , Ti−1)⊤

]

=

∫
gi,t (t1, . . . , ti−1)
︸ ︷︷ ︸

(A.53)
= 1−exp(−t)

f(T1,...,Ti−1) (t1, . . . , ti−1) dλi−1 (t1, . . . , ti−1)

= (1− exp(−t))
∫
f(T1,...,Ti−1) (t1, . . . , ti−1) dλi−1 (t1, . . . , ti−1)

︸ ︷︷ ︸
=1

= 1− exp(−t) ,

where again t ∈ (0,∞) and λd denotes the d-dimensional Lebesgue measure that should
not be confused with the previously introduced conditional intensity function. This shows
that the random variable Ri follows an exponential distribution with parameter 1, for
each i ∈ N. To complete the proof, we need to show the independence of (Ri)i∈N.
Once again, this result emerges as an immediate consequence of Equation (A.53).
Note that for i < j ∈ N, we have σ (T1, . . . , Ti) ⊂ σ (T1, . . . , Tj−1). Therefore, Ri =
Hi (Ti |T1, . . . , Ti−1) is measurable with respect to the σ-algebra σ (T1, . . . , Tj−1) as a
function of T1, . . . , Ti. For arbitrary t(1), t(2) ∈ (0,∞) we thus obtain by virtue of the

47Equation (A.53) readily implies gi,t ◦ (T1, . . . , Ti−1)⊤ = 1 − exp(−t) almost surely, so that one can easily
deduce E

[
gi,t ◦ (T1, . . . , Ti−1)⊤

]
= 1 − exp(−t).
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tower property:

P

(
Ri ≤ t(1), Rj ≤ t(2)

)
= E

[
E

(
E

(
1{Ri≤t(1),Rj≤t(2)}

∣∣∣T1:(j−1)

) ∣∣∣∣T1:(i−1)

)]

= E

[
E

(
E

(
1{Ri≤t(1)} · 1{Rj≤t(2)}

∣∣∣T1:(j−1)

) ∣∣∣∣T1:(i−1)

)]

= E

[
E

(
1{Ri≤t(1)} · E

(
1{Rj≤t(2)}

∣∣∣T1:(j−1)

) ∣∣∣∣T1:(i−1)

)]

= E

[
E

(
1{Ri≤t(1)} · gj,t(2) ◦ (T1, . . . , Tj−1)⊤

︸ ︷︷ ︸
≡1−exp(−t(2)) almost surely.

∣∣∣∣T1:(i−1)

)]

=
(
1− exp

(
−t(2)

))
· E
[
E

(
1{Ri≤t(1)}

∣∣T1:(i−1)

)]

=
(
1− exp

(
−t(2)

))
· E
[
gj,t(1) ◦ (T1, . . . , Ti−1)⊤

︸ ︷︷ ︸
≡1−exp(−t(1)) almost surely.

]

=
(
1− exp

(
−t(2)

))
·
(
1− exp

(
−t(1)

))

= P

(
Ri ≤ t(1)

)
· P
(
Rj ≤ t(2)

)
, (A.54)

which implies the independence of Ri and Rj . The independence of (Ri)i∈N now easily
follows by induction:
Let In+1 be an arbitrary subset of N with cardinality |In+1| = n+1, In+1 = {i1, . . . , in+1}
and assume that the independence of the collection {Ri : i ∈ In} is shown for each In ⊂ N

with |In| = n. By Equation (A.54), this is true for n = 2.
The independence of {Ri : i ∈ In+1} can then be shown analogously to Equation (A.54),
as for all t(1), . . . , t(n+1) ∈ (0,∞) it holds:

P

(
Ri1 ≤ t(1), . . . , Rin ≤ t(n), Rin+1 ≤ t(n+1)

)

= E

[
E

(
1{Ri1

≤t(1),...,Rin≤t(n),Rin+1
≤t(n+1)}

∣∣∣T1, . . . , Tin+1−1

)]

= E

[
1{Ri1

≤t(1),...,Rin≤t(n)} · gin+1,t(n+1) ◦
(
T1, . . . , Tin+1−1

)⊤]

=
(
1− exp

(
−t(n+1)

))
· E
[
1{Ri1

≤t(1),...,Rin≤t(n)}
]

= P

(
Rin+1 ≤ t(n+1)

)
· P
(
Ri1 ≤ t(1), . . . , Rin ≤ t(n)

)

= P

(
Rin+1 ≤ t(n+1)

)
· P
(
Ri1 ≤ t(1)

)
· . . . · P

(
Rin ≤ t(n)

)
,

by assumption as |{i1, . . . , in}| = n, thus completing the proof of Theorem A.46. In the
course of this, we observed that conditioning on T1, . . . , Tin−1 is not required as the prob-

ability P

(
Ri1 ≤ t(1), . . . , Rin ≤ t(n)

)
breaks down into the known factors P

(
Rik
≤ t(k)

)

for 1 ≤ k ≤ n considered earlier. In hindsight, the same holds true for Equation (A.54), so
that the outer condition could theoretically be neglected. Nevertheless the author decided
to maintain the above form in order to allow a better understanding of the calculations
shown.
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We conclude this section with a useful corollary of Theorem A.46. It shows that if
the conditional hazard function hi(· |T1:(i−1)) for some i ∈ N is P-almost surely constant,
then the interarrival time Ti − Ti−1 also follows an exponential distribution.

Corollary A.47 (Interarrival Times at a Constant Conditional Hazard Function).
In the situation of Theorem A.46, let i ∈ N and suppose that hi(· |T1, . . . , Ti−1) is P-almost
surely constant. Then,

hi(Ti−1 |T1, . . . , Ti−1) (Ti − Ti−1) ∼ E(1) .

We write informally
Ti − Ti−1 ∼ E

(
hi(Ti−1 |T1, . . . , Ti−1)

)
,

which means that the conditional distribution of the interarrival time Ti − Ti−1 given
T1:(i−1) = t1:(i−1) is exponential with rate hi(ti−1 | t1, . . . , ti−1).

Proof. Let us define the random variable

hi(Ti−1 |T1, . . . , Ti−1)(ω) =: λi(ω) .

If hi(· |T1, . . . , Ti−1) is P-almost surely constant, it follows that, with probability one,

hi(· |T1, . . . , Ti−1) ≡ λi .

According to Theorem A.46,

Hi (Ti |T1, . . . , Ti−1) ∼ E(1) . (A.55)

By the definition of the cumulative conditional hazard function in Equation (A.31), we
thus obtain:

Hi (Ti |T1, . . . , Ti−1) =

∫ Ti

Ti−1

hi(u |T1, . . . , Ti−1) du

=

∫ Ti

Ti−1

λi du = λi (Ti − Ti−1) . (A.56)

Substituting Equation (A.56) into Equation (A.55) directly yields

λi (Ti − Ti−1) ∼ E(1) .

The rest of the assertion then follows from the scaling property of the exponential
distribution after division by λi, and since λi is by construction a function of T1:(i−1).

A.4. Complementary Proofs

To conclude Appendix A, we provide the proofs that were omitted from Sections A.1
through A.3. For ease of reference, we restate the corresponding result in each case.

Proof of Remark A.6, part (ii)

Remark A.6. We can easily recognize how the properties that define a simple point
process are transferred to the associated counting process. Let again T = (Ti)i∈N denote
a simple point process and N = (Nt)t∈[t0,∞) its associated counting process.
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(ii) The second condition ensures that almost surely the sample paths of the process
increase only in jumps of size 1.
Accordingly, for P-almost all ω ∈ Ω it holds that ∆Nt(ω) ∈ {0, 1} for all t, where
for any càdlàg48 function f the function ∆f is defined via (cf. Jacobsen 2006, p. 12)

t 7−→ ∆f(t) := f(t)− f(t−) := f(t)− lim
s↑t

f (s) .

Proof. We need to prove that

P
({
ω ∈ Ω : ∆Nt(ω)︸ ︷︷ ︸

∈N0

∈ {0, 1} for all t ∈ [t0,∞)
})

= 1 ,

or equivalently by transition to the complementary event:

P ({ω ∈ Ω : ∃t ∈ [t0,∞) such that ∆Nt(ω) ≥ 2}) = 0 .

Note that the following holds:

{ω ∈ Ω : ∃t ∈ [t0,∞) such that ∆Nt(ω) ≥ 2}
⊂ {ω ∈ Ω : ∃t ∈ [t0,∞) ∃i < j such that Ti(ω) = Tj(ω) = t}
⊂
⋃

i∈N

⋃

j>i

({Ti = Tj} ∩ {Tj <∞}) . (A.57)

By condition (i) of Definition A.3 we obtain for any i ∈ N:

P

( ⋃

j>i

({Ti = Tj} ∩ {Tj <∞})
)

= P

( ⋃

j>i

({Ti = Tj} ∩ {Tj <∞}) ∩ {t0 < T1 ≤ T2 ≤ . . .}
)

= P

( ⋃

j>i

({Ti = Ti+1 = . . . = Tj}︸ ︷︷ ︸
⊂{Ti=Ti+1}

∩{Tj <∞}︸ ︷︷ ︸
⊂{Ti<∞}

) ∩ {t0 < T1 ≤ T2 ≤ . . .}
)

≤ P ({Ti = Ti+1} ∩ {Ti <∞} ∩ {t0 < T1 ≤ T2 ≤ . . .})
≤ P ({Ti = Ti+1} ∩ {Ti <∞}) . (A.58)

Combining Equations (A.57) and (A.58) then yields:

P ({ω ∈ Ω : ∃t ∈ [t0,∞) such that ∆Nt(ω) ≥ 2})

≤ P

( ⋃

i∈N

⋃

j>i

{Ti = Tj} ∩ {Tj <∞}
)

≤
∑

i∈N

P ({Ti = Ti+1} ∩ {Ti <∞}) .

We complete the proof by showing that P ({Ti = Ti+1} ∩ {Ti <∞}) = 0 for each i ∈ N.

48Abbreviation of the French term continue à droite, limite à gauche, i.e. right-continuous with left limits.
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Note that according to condition (ii) of Definition A.3 we have:

P ({Ti < Ti+1} ∩ {Ti <∞})
= P ({Ti <∞})
= P

(( {Ti < Ti+1} ∩ {Ti <∞}
) ∪ ( {Ti ≥ Ti+1} ∩ {Ti <∞}

))

= P ({Ti < Ti+1} ∩ {Ti <∞}) + P ({Ti ≥ Ti+1} ∩ {Ti <∞}) , (A.59)

so by subtracting P ({Ti < Ti+1} ∩ {Ti <∞}) on both sides of Equation (A.59) we obtain:

P ({Ti = Ti+1} ∩ {Ti <∞}) ≤ P ({Ti ≥ Ti+1} ∩ {Ti <∞}) = 0 ,

thereby finishing the proof of Remark A.6, part (ii).

Proof of Proposition A.9

Proposition A.9 (Measurability of Right-Continuous Stochastic Processes).
Let X = (Xt)t∈I be a right-continuous stochastic process, where I ⊂ R is an interval and

the state space is
(
R

d,B
(
R

d
))

for some integer d. Then, X is measurable.

Proof. Without loss of generality we assume I = [t0,∞) with t0 = 0. For all n ∈ N0 and
t ∈ I, let

X(n) : I × Ω −→ (
R

d,B(Rd)
)

(t, ω) 7−→ X
(n)
t (ω) :=

∞∑

k=0

X(k+1)2−n(ω) · 1[k2−n,(k+1)2−n)(t) , (A.60)

so that for each n the interval I is divided into infinitely many subintervals of length 2−n,
where on each subinterval [k2−n, (k + 1)2−n) the sample path t 7→ Xt(ω) is uniformly
approximated by its value on the right edge of the interval (i.e., X(k+1)2−n(ω)).
The proof is carried out in two steps by showing:

1. X(n) is (B(I)⊗F)-B(Rd
)
-measurable.

2. X(n) → X pointwise on I × Ω as n→∞.

For the first step, we obtain for B ∈ B(Rd
)
:

(
X(n)

)−1
(B) =

{
(t, ω) ∈ I × Ω : X

(n)
t (ω) ∈ B

}

=
{

(t, ω) : ∃k ∈ N0 with t ∈ [k2−n, (k + 1)2−n
)

and X(k+1)2−n(ω) ∈ B
}

=
∞⋃

k=0

{
(t, ω) : t ∈ [k2−n, (k + 1)2−n

)
and X(k+1)2−n(ω) ∈ B

}

=
∞⋃

k=0

[
k2−n, (k + 1)2−n

)
︸ ︷︷ ︸

∈B(I)

×
{
X(k+1)2−n(ω) ∈ B

}

︸ ︷︷ ︸
∈F by Definition A.1.︸ ︷︷ ︸

∈B(I)⊗F

∈ B(I)⊗F ,
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and thus X(n) is (B(I)⊗F)-B(Rd
)
-measurable.

For the second step, consider any (t, ω) ∈ I × Ω and note that for each n there exists

a uniquely determined k(n) = k
(n)
t satisfying t ∈

[
k(n)2−n,

(
k(n) + 1

)
2−n

)
. Additionally,∣∣∣t−

(
k(n) + 1

)
2−n

∣∣∣ < 2−n and t <
(
k(n) + 1

)
2−n jointly imply

(
k(n) + 1

)
2−n ↓ t while

n → ∞. As furthermore X
(n)
t (ω) = X(

k(n)+1
)

2−n
(ω) applies by Equation (A.60), the

pointwise convergence follows from the right-continuity of the sample path t 7→ Xt(ω):

lim
n→∞

X
(n)
t (ω) = lim

n→∞
X(

k(n)+1
)

2−n
(ω) = Xt(ω) .

This completes the proof, since pointwise limits of sequences of Borel functions (i.e.,
measurable functions with state space

(
R

d,B(Rd)
)

for some integer d) are itself measurable.

Proof of Lemma A.15

Lemma A.15 (Completion of a Probability Space; Jacobsen 2006, p. 301).
Let (Ω,F ,P) be a probability space. Then there exists a complete probability space(

Ω,F ,P
)

with F ⊂ F and

P(A) = P(A) , for all A ∈ F . (A.10)

(
Ω,F ,P

)
is called the completion of (Ω,F ,P).

Proof. Consider the collection of sets N defined by49

N := {A ⊂ Ω : ∃A0 ∈ F with P(A0) = 0 and A ⊂ A0} ,

and let F = σ (F ∪N ) be the smallest σ-algebra containing both F and N . We show:

F = {F ∪N : F ∈ F , N ∈ N} . (A.61)

Since the inclusion ⊃ is trivial due to the definition of F , it suffices to show that the
right-hand side of Equation (A.61) - hereinafter referenced as (RHS) - is itself a σ-algebra:
By ∅ ∈ N , we have ∅ ∈ (RHS) and the fact that the countable union of P-null sets is
again a P-null set by virtue of the measure’s σ-additivity yields that (RHS) is closed
under countable unions. This renders the stability under complementation the remaining
property to show. For this, consider any F ∈ F , N ∈ N . By definition there exists
N0 ∈ F satisfying N ⊂ N0 and P(N0) = 0. We define Ñ := N0 \N ∈ N and compute by
consecutive application of de Morgan’s laws:

(F ∪N)∁ =
(
F ∪

(
N0 \ Ñ

))∁
= F ∁ ∩

(
N0 \ Ñ

)∁

= F ∁ ∩
(
N∁0 ∪ Ñ

)
=
(
F ∁ ∩N∁0

)
∪
(
F ∁ ∩ Ñ

)

49N is not to be mistaken with the eponymous collection of P-null sets from Definition A.14, hence why
this notation only appears in the appendix. Instead, note the resemblance to condition (i) of the very
same definition.
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=
(
F ∪N0

)∁
︸ ︷︷ ︸

∈F

∪
(
F ∁ ∩ Ñ

)

︸ ︷︷ ︸
∈N

.

Therefore, Equation (A.61) holds and we can utilize the representation of F via (RHS) to
uniquely extend P to a probability measure50

P on F :

P(F ∪N) := P(F ) , for F ∈ F , N ∈ N .

From here, Equation (A.10) follows by choosing N = ∅. Furthermore,
(
Ω,F ,P

)
is

complete by construction, thus finishing the proof of Lemma A.15.

Proof of Lemma A.16

Lemma A.16 (Right-Continuity of the Internal History of a Counting Process; Protter
2005, p. 16).

Let N = (Nt)t∈[t0,∞) be a counting process. Then the internal history
{
FN

t

}
t≥t0

of N is

a right-continuous filtration.

Proof. Recall the state space (R,B (R)) of N and let Γ denote the measurable space of
all mappings from [t0,∞) to R endowed with the product σ-algebra51,

Γ =


∏

t≥t0

R ,
⊗

t≥t0

B(R)


 .

If we consider the mappings

Pt : Ω −→ Γ : ω 7−→
[
s 7→ Nmin{s,t}(ω)

]
,

then Pt(ω) is the sample path of N at ω constantly continued from t onwards. Since the
product σ-algebra is the smallest σ-algebra such that all the coordinate projections

πs : Γ −→ (R,B(R)) , : γ 7−→ γ(s) , s ∈ [t0,∞) ,

are measurable, we have ⊗

t≥t0

B(R) = σ ({πs : s ≥ t0}) ,

and hence for Pt to be measurable it is both necessary and sufficient that πs ◦ Pt is
measurable for each s ≥ t0, see Bauer 2001, p. 35, Theorem 7.4. But obviously we have

πs ◦ Pt =

{
Ns , t0 ≤ s ≤ t ,
Nt , s > t ,

and from this it immediately follows that

FN
t = σ({Ns : t0 ≤ s ≤ t}) = σ({Pt}) . (A.62)

50This is not shown here, but proves to be an easy exercise.
51For a detailed discussion of this σ-algebra commonly used in measure theory, see Bauer 1996, pp. 55–64.
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Instead of dealing with an infinite collection of random variables, Equation (A.62) allows
us to consider only the single function space-valued random variable Pt when generating
the σ-algebra FN

t . Let

A ∈ FN
t+

(∗)
=
⋂

n≥1

FN
t+ 1

n

=
⋂

n≥1

σ
({
Pt+ 1

n

})
,

where (∗) holds because a filtration is an increasing family of σ-algebras. For any n ∈ N

there exists
Bn ∈

⊗

t≥t0

B(R)

such that A = P−1
t+ 1

n

(Bn) =
{
Pt+ 1

n
∈ Bn

}
. Furthermore, we set

Wn :=
{
Pt = Pt+ 1

n

}
, n ∈ N ,

thereby defining an increasing sequence of events. By the right-continuity of N , we have
for all ω ∈ Ω that

lim
n→∞

Nt+ 1
n

(ω) = Nt(ω) ,

and since Nt increases only in jumps of integer size, there exists an n ∈ N such that

s 7→ Ns(ω) is constant on
[
t, t+ 1

n

]
. Accordingly, Pt(ω) = Pt+ 1

n
(ω) and thus ω ∈ Wn,

implying that
Ω =

⋃

n∈N

Wn .

The monotonicity of the sequence (Wn)n∈N ensures lim
n→∞

Wn = Ω and we conclude:

A = lim
n→∞

(Wn ∩A) = lim
n→∞

(
Wn ∩

{
Pt+ 1

n
∈ Bn

})

= lim
n→∞

(Wn ∩ {Pt ∈ Bn}) = lim
n→∞

{Pt ∈ Bn} ∈ σ ({Pt}) = FN
t ,

so that FN
t+ ⊂ FN

t . For the reverse inclusion, we once again utilize the properties of a
filtration to observe:

FN
t ⊂ FN

t+ 1
n

, for each n ∈ N . =⇒ FN
t ⊂

⋂

n≥1

FN
t+ 1

n

= FN
t+ .

Proof of Example A.19

Example A.19 (Compensated Poisson Process; Karatzas and Shreve 1988, p. 12).
Let N = (Nt)t≥0 be a homogeneous Poisson process with intensity λ, see Example A.7.
The compensated Poisson process is defined as

Mt := Nt − λt , t ≥ 0 . (A.11)

Then (Mt)t≥0 is a
(
P,
{FN

t

}
t≥0

)
-martingale.

Proof. We proof the assertion in three parts according to Definition A.17.
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(i) In order to see that (Mt)t≥0 is adapted with respect to the filtration
{
FN

t

}
t≥0

, we

show that for each t ≥ 0, the generated σ-algebras FN
t and FM

t coincide. We have

FN
t = σ ({Ns : 0 ≤ s ≤ t}) = σ


 ⋃

0≤s≤t

N−1
s (B(R))


 , (A.63)

and therefore only need to verify the following equation:

N−1
s (B(R)) = M−1

s (B(R)) , 0 ≤ s ≤ t . (A.64)

For any s ≥ 0 and A ∈ N−1
s (B(R)), there exists B ∈ B(R) such that A = N−1

s (B).
The shifted set

B − λs := {b− λs : b ∈ B}
is again a Borel set satisfying M−1

s (B − λs) = A = N−1
s (B), and thus the inclu-

sion ⊂ holds in Equation (A.64). The inclusion ⊃ is shown analogously, so that
substituting Equation (A.64) into Equation (A.63) yields the assertion.

(ii) For the P-integrability of Mt, application of the triangle inequality and utilizing
the non-negativity of Nt leads to the desired result:

E (|Mt|) ≤ E (|Nt|+ |λt|) = E (Nt) + λt = E (N(0, t)) + λt = 2λt <∞ ,

as N(0, t) = Nt −N0 follows a Poisson distribution with parameter λt.

(iii) For each t ≥ s ≥ 0, note that the independence of increments ensures that Nt −Ns

is independent of FN
s . Therefore, we observe:

E

(
Nt −Ns | FN

s

)
= E (Nt −Ns) = λ(t− s) . (A.65)

Furthermore, Ns is FN
s -measurable and we obtain:

E

(
Nt −Ns | FN

s

)
= E

(
Nt | FN

s

)
− E

(
Ns | FN

s

)
= E

(
Nt | FN

s

)
−Ns (A.66)

By combining Equations (A.65) and (A.66) we conclude:

E

(
Mt | FN

s

)
= E

(
Nt | FN

s

)
− λt = E

(
Nt | FN

s

)
−Ns

︸ ︷︷ ︸
=λ(t−s)

+Ns − λt

= Ns + λ(t− s)− λt = Ns − λs = Ms .

By properties (i)-(iii), the compensated Poisson process is a
(
P,
{FN

t

}
t≥0

)
-martingale.

Proof of Equation (A.16)

If we assume λ to be bounded by an integrable random variable, we can compute for t ≥ t0
using the averaging and the dominated convergence theorem (cf. Aalen 1978, p. 705):

lim
h↓0

1

h
E (Nt+h −Nt | Ft) = lim

h↓0

1

h
E (Λt+h − Λt | Ft)
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= lim
h↓0

E

(
1

h

∫ t+h

t
λu du

∣∣∣Ft

)

= E

(
lim
h↓0

1

h

∫ t+h

t
λu du

∣∣∣Ft

)

= E (λt+| Ft) = λt+ , (A.16)

where λt+ = limu↓t λu, and the last equation holds since λt+ is Ft-measurable.

Proof. Only the last step of Equation (A.16) demands further explanation, so it suffices
to show that λt+ is Ft-measurable. As before, the Lebesgue averaging theorem yields:

λt+ = lim
h→0

1

h

∫ t+h

t
λu du = lim

h→0

Λt+h − Λt

h
. (A.67)

Since Λ is {Ft}t≥t0
-predictable and hence adapted by virtue of Lemma A.22, Λt is

Fu-measurable for each u ≥ t. In particular, for any 0 < h ≤ h0, the difference quotients

Λt+h − Λt

h

from Equation (A.67) are Ft+h0-measurable and thus the same holds for the limit λt+.
Given that h0 can be chosen arbitrarily small, it follows that

σ
( {λt+}

) ⊂
⋂

h0>0

Ft+h0 =
⋂

s>t

Fs = Ft+ = Ft

holds by the right-continuity of the filtration {Ft}t≥t0
, which completes the proof.

Proof of Lemma A.30

Lemma A.30 (One-Point Process: Compensator w.r.t. the Internal Filtration; Lemma
14.1.II. of Daley and Vere-Jones 2008, p. 359).
Let X be a random variable defined on a probability space (Ω,F ,P) and taking values in
([t0,∞] ,B ([t0,∞])). Let F denote the cumulative distribution function of X and define
the one-point process N by

N : [t0,∞)× Ω −→ R : (t, ω) 7−→ N(t, ω) = 1(−∞,t] (X(ω)) =

{
1 , t ≥ X(ω) ,

0 , t < X(ω) .

The one-point process N has the

(
P,
{
FN

t

}
t≥t0

)
-compensator Λ given by

Λ : [t0,∞)× Ω −→ R : (t, ω) 7−→ Λ(t, ω) = H(t ∧X(ω)) =

{
H(X(ω)) , t ≥ X(ω) ,

H(t) , t < X(ω) ,

where
{
FN

t

}
t≥t0

denotes the internal filtration of N and H is defined via

H(t) :=

∫ t

t0

dF (x)

1− F (x−)
. (A.20)
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Proof. The proof proceeds along the lines of Daley and Vere-Jones 2008, pp. 359–360, but
is adapted to our situation. We first find that N and Λ are integrable. This is obviously
true for the former, while for the latter we have:

E (|Λt|) = E (H(t ∧X)) ≤ H(t) <∞ , for all t ≥ t0 .

Since H and thus Λ is right-continuous and increasing in t52 with Λ(t0, ω) = 0, it suffices

to show that (a) Λ is {Ft}t≥t0
-predictable and (b) N − Λ is a

(
P, {Ft}t≥t0

)
-martingale.

(a) To verify that Λ is predictable, we first check that ξ(t, ω) = t ∧X(ω) is predictable.
We study the sets {(t, ω) : ξ(t, ω) > s} generating the σ-algebra σ(ξ) and obtain:

{(t, ω) : ξ(t, ω) > s} = {(t, ω) : t > s ∧ X(ω) > s}
= {t : t > s} × {ω : X(ω) > s}︸ ︷︷ ︸

∈FN
s

= (s,∞)×A , (A.68)

for some A ∈ FN
s . This can be seen as follows:

{ω : X(ω) > s}∁ = {ω : X(ω) ≤ s} = {ω : Ns(ω) ≥ 1}
= N−1

s ([1,∞)) ∈ FN
s ,

whereby the identity from Equation (A.4) is mirrored. If we examine the predictable

σ-algebra P
(
{Ft}t≥t0

)
from Definition A.20, we recognize that the set in Equation

(A.68) has the form of a generating set for this σ-algebra. Therefore, σ(ξ) ⊂
P
(
{Ft}t≥t0

)
and thus ξ is predictable. Since H is increasing and right-continuous,

we have with an argument similar to the proof of the simulation lemma53:

{(t, ω) : H (ξ(t, ω)) ≥ s} = {(t, ω) : ξ(t, ω) ≥ H←(s)} , (A.69)

where H←(s) := inf{t : H(t) ≥ s} denotes the generalized inverse of H. Recall that,
in general, H is not left-continuous and thus has no inverse, since the distribution
of X may contain atoms causing jumps of the associated cumulative distribution
function F . The predictability of ξ now ensures that the sets in Equation (A.69)
are again included in the predictable σ-algebra, and hence the predictability of
Λ = H ◦ ξ follows with the same arguments as above.

(b) In proving that N−Λ is a
(
P, {Ft}t≥t0

)
-martingale, only condition (iii) of Definition

A.17 remains to be shown. We first note that {ω : X(ω) > t} constitutes an atom
of FN

t . In order to see this, we bear in mind that

σ (Nt) =
{∅, {Nt = 0}︸ ︷︷ ︸

={X>t}

, {Nt = 1}︸ ︷︷ ︸
={X≤t}

,Ω
}
,

52The right-continuity is inherited from the cumulative distribution function F , whereas the monotonicity
is trivial. For further details on this regard, see Appendix A4 of Brémaud 1981, pp. 334–339 and
Proposition 4.6.V. of Daley and Vere-Jones 2003, p. 109.

53This result is also widely known as inverse transform sampling, the basics of which can be found among
others in Graham and Talay 2013, p. 22.
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and thereby FN
t is generated by sets of the form {ω : X(ω) > s} for t0 ≤ s ≤ t.

Accordingly, {ω : X(ω) > t} can not be further decomposed within FN
t . We take

advantage of this to explicitly calculate the conditional expectations involved in
verifying the martingale property. For any non-negative measurable function g, we
obtain54:

E

(
g(X)

∣∣FN
t

)
= E

(
g(X) |X > t

)
on {ω : X(ω) > t} ,

and consequently in this case the conditional expectation is given by (see Bauer
1996, p. 110 for reference)

E

(
g(X)

∣∣FN
t

)
=

∫
{X>t} g(X) dP

P(X > t)
=

E

(
g(X)1{X>t}

)

E

(
1{X>t}

) on {ω : X(ω) > t} ,

which in terms of the cumulative distribution function F of X can be written as

E

(
g(X)

∣∣FN
t

)
=

1

1− F (t)

∫ ∞

t
g(x) dF (x) on {ω : X(ω) > t} . (A.70)

Choosing g(x) = 1(−∞,t](x) in Equation (A.70) then yields for t0 ≤ s ≤ t:

E

(
Nt

∣∣FN
s

)
= E

(
g(X)

∣∣FN
s

)
=

1

1− F (s)

∫ ∞

s
g(x) dF (x)

=
1

1− F (s)

∫ ∞

s
1(−∞,t](x) dF (x)

=
1

1− F (s)

∫ t

s
dF (x)

=
F (t)− F (s)

1− F (s)
on {ω : X(ω) > s} . (A.71)

If instead we choose g(x) = H(t∧ x), once again applying Equation (A.70) provides

E

(
Λt

∣∣FN
s

)
=

1

1− F (s)

∫ ∞

s
H(t ∧ x) dF (x)

=
1

1− F (s)

(∫ t

s
H(x) dF (x) +

∫ ∞

t
H(t) dF (x)

)

=
1

1− F (s)

(∫ t

s
H(x) dF (x) +H(t) (1− F (t))

)
on {ω : X(ω) > s} ,

and hence we can compute on {ω : X(ω) > s}:

[1− F (s)]
[
E

(
Λt

∣∣FN
s

)
−H(s)

]

=

∫ t

s
H(x) dF (x) +H(t) (1− F (t))− (1− F (s))H(s)

=

∫ t

s
(H(x)−H(s)) dF (x) +H(t) (1− F (t))−H(s) +H(s)F (t) , (A.72)

54Calculating the conditional expectation on selected subsets of FN
t may seem perplexing at first, but keep

in mind that the conditional expectation is itself a random variable defined on that same σ-algebra.
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where we used that

∫ t

s
−H(s) dF (x) = −H(s) (F (t)− F (s)) = H(s)F (s)−H(s)F (t) .

Proceeding from Equation (A.72), we can apply the Product Formula of the Stieltjes-
Lebesgue Calculus (Theorem A.49 of Appendix A.5) in (∗) to receive:

∫ t

s
(H(x)−H(s)) dF (x) +H(t) (1− F (t))−H(s) +H(s)F (t)

=

∫ t

s
( H(x)−H(s)︸ ︷︷ ︸
=̂f(x) in Thm. A.49

) dF (x) + (H(t)−H(s)) (1− F (t)) (∗)

= (H(t)−H(s))F (t)−
∫ t

s
F (x−) d(H(x)− H(s)) + (H(t)−H(s)) (1− F (t))

= H(t)−H(s)︸ ︷︷ ︸
=
∫ t

s
1 dH(x)

−
∫ t

s
F (x−) dH(x) =

∫ t

s
(1− F (x−)) dH(x) , (A.73)

since the addition of constant terms to the integrator does not change the Lebesgue-
Stieltjes integral. From here, we observe that the integration in Equation (A.73) is
in terms of the hazard measure, so by substituting Equation (A.22) we have:

∫ t

s
(1− F (x−)) dH(x) =

∫ t

s
(1− F (x−))

dF (x)

1− F (x−)

=

∫ t

s
dF (x) = F (t)− F (s) . (A.74)

Thus, merging Equations (A.72), (A.73) and (A.74) yields:

E

(
Λt

∣∣FN
s

)
−H(s) =

F (t)− F (s)

1− F (s)
= E

(
Nt

∣∣FN
s

)
on {ω : X(ω) > s} . (A.75)

Considering that Ns = 0 and Λs = H(s ∧X) = H(s) on {ω : X(ω) > s}, Equation
(A.75) can be reformulated as

E

(
Nt − Λt

∣∣FN
s

)
= −H(s) = Ns − Λs on {ω : X(ω) > s} ,

which is the desired martingale property. On the other hand, on {ω : X(ω) > s}∁ =
{ω : X(ω) ≤ s} we have Nt = Ns = 1 and Λt = Λs = H(X), where X and thus
H(X) is FN

s -measurable due to {ω : X(ω) ≤ s} = {ω : N(s, ω) = 1} ∈ FN
s .

Therefore,

E

(
Nt − Λt

∣∣FN
s

)
= 1−H(X) = Ns − Λs on {ω : X(ω) > s}∁ ,

and hence the martingale property applies on Ω = {ω : X(ω) > s}∪{ω : X(ω) > s}∁.
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Proof of Lemma A.32

Lemma A.32 (One-Point Process: Compensator w.r.t. an Intrinsic Filtration; Lemma
14.1.III. of Daley and Vere-Jones 2008, p. 361).
In the situation of Lemma A.30, let G0 denote the prior σ-algebra of an intrinsic filtration
Ft = FN

t ∨ G0. If a regular conditional distribution function F (· | G0) for X exists, the

one-point process N has the
(
P, {Ft}t≥t0

)
-compensator Λ given by

Λ : [t0,∞)× Ω −→ R

(t, ω) 7−→ Λ(t, ω) = H(t ∧X(ω) | G0) =

{
H(X(ω) | G0) , t ≥ X(ω) ,

H(t | G0) , t < X(ω) ,

where H (· | G0) is the conditional integrated hazard function associated with F (· | G0),

H (t | G0) :=

∫ t

t0

dF (x | G0)

1− F (x− |G0)
.

Proof. The proof found here is a corrected version of the erroneous one in Daley and
Vere-Jones 2008, pp. 361-362, which nevertheless provides the key arguments needed to
extend the result from the previous lemma. It is hence performed in analogy to that of
Lemma A.30; in particular, the predictability of Λ can be shown with the exact same
arguments as before. For the required martingale property, recall that we had for any
non-negative measurable function g:

E

(
g(X)

∣∣FN
t

)
=




g(X) , on {ω : X(ω) ≤ t} ,
E(g(X)1{X>t})

E(1{X>t})
, on {ω : X(ω) > t} .

We claim that upon considering Ft = FN
t ∨ G0, the following holds:

E (g(X) | Ft) =




g(X) , on {ω : X(ω) ≤ t} ,
E(g(X)1{X>t} | G0)

E(1{X>t} | G0)
, on {ω : X(ω) > t} . (A.76)

Since {ω : X(ω) ≤ t} = {ω : N(t, ω) = 1} ∈ FN
t ⊂ Ft, the first part of Equation

(A.76) follows again by measurability. For the second part, we utilize once more that
{ω : X(ω) > t} can not be further decomposed within FN

t and hence the restriction55

Ft

∣∣
{X>t}

= {A ∩ {X > t} : A ∈ Ft} ⊂ Ft

of Ft to {ω : X(ω) > t} consists entirely of sets of the form U ∩{ω : X(ω) > t} for some
U ∈ G0. For each such U , we can write by the definition of the conditional expectation:

∫

U∩{X>t}
g(X) dP =

∫

U
g(X)1{X>t} dP =

∫

U
E

(
g(X)1{X>t}

∣∣G0

)
dP . (A.77)

Furthermore, if we exploit the G0-measurability of the conditional expectation with respect

55In the proof of Lemma A.30, this restriction would contain only the atom {ω : X(ω) > t}.
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to G0, we can find that

E


 1{X>t}

E

(
1{X>t}

∣∣G0

) · E
(
g(X)1{X>t}

∣∣G0

) ∣∣∣∣G0




=
E

(
g(X)1{X>t}

∣∣G0

)

E

(
1{X>t}

∣∣G0

) · E
(
1{X>t}

∣∣G0

)

= E

(
g(X)1{X>t}

∣∣G0

)
, (A.78)

so since U ∈ G0, substituting Equation (A.78) into Equation (A.77) yields:

∫

U
E

(
g(X)1{X>t}

∣∣G0

)
dP =

∫

U

1{X>t}

E

(
1{X>t}

∣∣G0

) · E
(
g(X)1{X>t}

∣∣G0

)
dP

=

∫

U∩{X>t}

E

(
g(X)1{X>t}

∣∣G0

)

E

(
1{X>t}

∣∣G0

) dP . (A.79)

As we have G0 ⊂ Ft, the integrand of Equation (A.79) is Ft-measurable and the comparison
of Equations (A.77) and (A.79) shows that

E (g(X) | Ft) =
E

(
g(X)1{X>t}

∣∣G0

)

E

(
1{X>t}

∣∣G0

) , on {ω : X(ω) > t} ,

and thereby the second part of Equation (A.76) as asserted. Assuming that X has a
regular conditional distribution function F (· | G0), this expression can be further reduced
to obtain:

E (g(X) | Ft) =
1

1− F (t | G0)

∫ ∞

t
g(x) dF (x | G0) , (A.80)

representing a conditional version of Equation (A.70). From here, the martingale prop-
erty can be established as in the proof of Lemma A.30, using F (· | G0) in place of the
unconditional cumulative distribution function F .

Proof of Theorem A.33

Theorem A.33 (Jacod’s Formula for the Intensity Process; Theorem 14.1.IV. of Daley
and Vere-Jones 2008, pp. 363–364).
Let N = (Nt)t≥t0

be a counting process and T = (Ti)i∈N the associated simple point process.

Let Ft = FN
t ∨G0 denote an intrinsic filtration with prior σ-algebra G0. Suppose there exist

regular versions Fi

(· | FTi−1

)
of the conditional distribution functions of the interarrival

times Wi = Ti−Ti−1, given FTi−1 as in Equation (A.23), such that 1−Fi

(
x− |FTi−1

)
> 0

for x > 0. Let Ni denote the one-point process given by

Ni : [t0,∞)× Ω −→ R : (t, ω) 7−→ Ni(t, ω) = 1(−∞,t] (Ti(ω)) ,
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so that N =
∑∞

i=1Ni. Then the
(
P, {Ft}t≥t0

)
-compensator Λi for Ni has the form

Λi(t, ω) =





0 , t < Ti−1(ω) ,

Hi

(
t− Ti−1 | FTi−1

)
, Ti−1(ω) ≤ t < Ti(ω) ,

Hi

(
Ti − Ti−1 | FTi−1

)
, Ti(ω) ≤ t ,

(A.24)

where Hi

(· | FTi−1

)
is the conditional integrated hazard function associated with Fi

(· | FTi−1

)
,

Hi

(
t | FTi−1

)
=

∫ t

0

dFi

(
x | FTi−1

)

1− Fi

(
x− |FTi−1

) . (A.25)

Thus, a version of the
(
P, {Ft}t≥t0

)
-compensator Λ for N is given by

Λ(t, ω) =
∞∑

i=1

Λi(t, ω) . (A.26)

Proof. A sketch of the proof is given in Daley and Vere-Jones 2008, pp. 362–364. Since
some of the arguments used in it fall somewhat short, we give a more detailed proof based
in part on the results presented in Karr 199156:
To establish the form of the compensator for Ni given in Equation (A.24), note that for
the predictability, the previous methods can be applied in conjunction with Proposition
2.6. of Karr 1991, p. 57 (see Remark A.51 of Appendix A.5). While that result itself is
fundamental, it is in turn based on the theory of stopping times, and we are therefore
content to refer to the intuitive proof of Lemma A.30 rather than go into further detail.
Specifically, if the conditional distribution functions each have absolutely continuous
versions, the predictability of the intensity process (and thus the associated compensator)
follows directly from Theorem A2, T24 of Brémaud 1981, p. 304, which provides a
generalization of the above proposition.
The assumption that 1− Fi

(
x− |FTi−1

)
> 0 holds for x > 0 ensures the integrability of

the conditional integrated hazard function Hi

(· | FTi−1

)
and hence of Λi. As before, it is

sufficient to prove the requisite equality

E (Ni(t)− Λi(t) | Fs) = Ni(s)− Λi(s) (A.81)

for t0 < s ≤ t, where the dependence on ω is neglected in favor of a shorter notation. Note
that both the series

∑∞
i=1Ni(t) and

∑∞
i=1 Λi(t) are almost surely absolutely convergent:

P

(
∞∑

i=1

|Ni(t)| =∞
)

= P

(
∞∑

i=1

1(−∞,t] (Ti) =∞
)

= P
(
# {i ∈ N : Ti ≤ t} =∞)

= P

(
lim inf

i→∞
Ti ≤ t

)
= 0 ,

by the Bolzano-Weierstraß theorem and since the explosion of counting processes is
prohibited by condition (iii) of Definition A.3, see Remark A.6(iii). Since Λi(t, ω) = 0 for

56In fact, a version of Jacod’s formula can be found in Theorem 2.18 of Karr 1991, p. 62, where the
compensator is derived using dual predictable projections.
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t < Ti−1(ω),
∑∞

i=1 Λi(t, ω) =∞ implies that t ≥ Ti(ω) for infinitely many i ∈ N, and we
obtain in a similar vein:

P

(
∞∑

i=1

|Λi(t)| =∞
)
≤ P

(
# {i ∈ N : Ti ≤ t} =∞) = 0 ,

and hence the desired result. This serves as a justification that if Equation (A.81) applies
for each i ∈ N, we have by additivity and dominated convergence of the conditional
expectation:

E (N(t)− Λ(t) | Fs) = E

(
∞∑

i=1

Ni(t)−
∞∑

i=1

Λi(t)
∣∣∣Fs

)

= E

(
∞∑

i=1

(Ni(t)− Λi(t))
∣∣∣Fs

)

=
∞∑

i=1

E (Ni(t)− Λi(t) | Fs)

=
∞∑

i=1

(Ni(s)− Λi(s)) = N(s)− Λ(s) ,

so that Equation (A.26) holds. In order to prove Equation (A.81), we establish the equality

separately on the sets {ω : Ti−1(ω) ≤ s} and {ω : Ti−1(ω) ≤ s}∁ = {ω : Ti−1(ω) > s},
which are further decomposed according to Figure 20. We will first deal with the
decomposition (2a) illustrated in this figure:

(1) Position of Ti−1 relative to s:

t0 s
time

{Ti−1 ≤ s} {Ti−1 > s}

sTi−1 s Ti−1

(2a) Position of Ti relative to s: (2b) Position of Ti−1 relative to t:

{s ≥ Ti} {Ti−1 ≤ s < Ti} {s < t < Ti−1}{s < Ti−1 ≤ t}

Figure 20: Decomposition of the sample space Ω required for the proof of Jacod’s formula.
The decomposition is performed in two steps, which are illustrated here. In
total, Ω needs to be divided into four disjoint subsets.

We observe that the set {ω : Ti−1(ω) ≤ s} is contained in both FTi−1 (by construction)
and Fs (since {ω : Ti−1(ω) ≤ s} = {ω : N(s, ω) ≥ i− 1} by Equation (A.4)). The
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relationship between these two σ-algebras is further elucidated by the identity

Fs ∩ {ω : Ti−1(ω) ≤ s < Ti(ω)} = FTi−1 ∩ {ω : Ti−1(ω) ≤ s < Ti(ω)} , (A.82)

which means that, given any U ∈ Fs, there exists U ′ ∈ FTi−1 such that

U ∩ {ω : Ti−1(ω) ≤ s < Ti(ω)} = U ′ ∩ {ω : Ti−1(ω) ≤ s < Ti(ω)} ,

and conversely. For the validity of Equation (A.82), one considers the basic sets generating
FN

t (i.e., {ω : N(s, ω) = j} for t0 < s ≤ t), and computes (cf. Karr 1991, p. 57):

{ω : N(s, ω) = j} ∩ {ω : Ti−1(ω) ≤ t < Ti(ω)}
= {ω : N (s ∧ Ti−1(ω), ω) = j}︸ ︷︷ ︸

∈FTi−1

∩{ω : Ti−1(ω) ≤ t < Ti(ω)} ,

since even for s > Ti−1(ω) no further jump of N can occur due to s ≤ t < Ti(ω). Equation
(A.82) can then be obtained by application of the monotone class theorem, see Brémaud
2020, pp. 58–59 for reference57. The relevance of this identity is that on the set above,
the waiting time Wi = Ti − Ti−1 plays the same role for Ni as X does for the one-point
process from Lemma A.32, with FTi−1 here playing the role of G0 there. Accordingly, a
result similar to Equation (A.76) holds by retracing Equations (A.77), (A.78) and (A.79),
where for U ∈ Fs and any non-negative measurable function g we have:

∫

U∩{Ti−1≤s<Ti}
g (Wi) dP =

∫

U ′∩{Ti−1≤s<Ti}
g (Wi) dP

=

∫

U ′
g (Wi)1{Ti−1≤s<Ti} dP

=

∫

U ′
E

(
g (Wi)1{Ti−1≤s<Ti}

∣∣FTi−1

)
dP

=

∫

U ′

1{Ti−1≤s<Ti}

E

(
1{Ti−1≤s<Ti}

∣∣FTi−1

)E
(
g (Wi)1{Ti−1≤s<Ti}

∣∣FTi−1

)
dP

=

∫

U ′∩{Ti−1≤s<Ti}

E

(
g (Wi)1{Ti−1≤s<Ti}

∣∣FTi−1

)

E

(
1{Ti−1≤s<Ti}

∣∣FTi−1

) dP

=

∫

U∩{Ti−1≤s<Ti}

E

(
g (Wi)1{Ti−1≤s<Ti}

∣∣FTi−1

)

E

(
1{Ti−1≤s<Ti}

∣∣FTi−1

) dP ,

for some appropriate U ′ ∈ FTi−1 according to Equation (A.82). As {Ti−1 ≤ s < Ti} =

{Ti−1 ≤ s} ∩ {Ti ≤ s}∁ ∈ Fs by the usual argument, we therefore obtain:

E (g (Wi) | Fs) =
E

(
g (Wi)1{Ti−1≤s<Ti}

∣∣FTi−1

)

E

(
1{Ti−1≤s<Ti}

∣∣FTi−1

) , on {Ti−1 ≤ s < Ti} . (A.83)

Furthermore, we have {Ti−1 ≤ s < Ti} = {Wi > s− Ti−1 ≥ 0}, so that Equation (A.83)

57Given that the prior σ-algebra G0 is included in both FTi−1
and Ft, it does not affect the application of

the monotone class theorem and can thus be neglected in a proof of Equation (A.82).
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can be restated as:

E (g (Wi) | Fs) =
E

(
g (Wi)1{Wi>s−Ti−1}

∣∣FTi−1

)

E

(
1{Wi>s−Ti−1}

∣∣FTi−1

)

=
1

1− Fi

(
s− Ti−1 | FTi−1

)
∫ ∞

s−Ti−1

g(x) dFi

(
x | FTi−1

)
, (A.84)

and we find ourselves in the situation of Equation (A.80). Thus, on {Ti−1 ≤ s < Ti}, the
proof of the martingale equality can be carried out as in Lemma A.30. Additionally,
{Ti ≤ s} resembles the case {X ≤ s} of Lemma A.30, and since we have Λi(t, ω) =
Hi

(
Ti − Ti−1 | FTi−1

)
= Λi(s, ω) as well as Ni(t, ω) = 1 = Ni(s, ω), the martingale

equality is trivially fulfilled. We now turn to decomposition (2b) from Figure 20:
In contrast to decomposition (2a), where the sets {Ti ≤ s} and {Ti−1 ≤ s < Ti} could be
identified with the sets {X ≤ s} and {X > s}, respectively, the decomposition (2b) has
no such counterpart within the proof of Lemma A.30 and appears only as the special (but
trivial) case s = 0. As before, the case {s < t < Ti−1} is trivial (all terms involved are
zero). For the remaining case {s < Ti−1 ≤ t}, scrutiny of the restricted σ-algebras yields
as per construction:

FTi−1

∣∣
{Ti−1>s}

⊃ Fs

∣∣
{Ti−1>s}

.

On {s < Ti−1 ≤ t} ⊂ {s < Ti−1}, this allows us to exploit the tower property for nested
σ-algebras to obtain:

E (Ni(t)− Λi(t) | Fs) = E

(
E
(
Ni(t)− Λi(t) | FTi−1

) ∣∣Fs

)
, (A.85)

which significantly facilitates the calculation of the conditional expectation, since we have:

E
(
g (Wi) | FTi−1

)
=

∫ ∞

0
g(x) dFi

(
x | FTi−1

)
, (A.86)

for each non-negative measurable function g. This mirrors our initial comment in that
this identity - albeit not mathematically rigorous! - appears as the special case s = Ti−1

(which corresponds to s = 0 in Lemma A.30) of Equation (A.84). Indeed, from Equation
(A.86) we derive analogously to Equations (A.71) and (A.74) that

E
(
Ni(t) | FTi−1

)
= Fi

(
t− Ti−1 | FTi−1

)
= E

(
Λi(t) | FTi−1

)
, on {s < Ti−1 ≤ t} ,

which in conjunction with Equation (A.85) implies:

E (Ni(t)− Λi(t) | Fs) = 0 , on {s < Ti−1 ≤ t} .

The martingale equality follows from this, as clearlyNi(s) = 0 = Λi(s) holds on {s < Ti−1},
thereby completing the proof.

Proof of Corollary A.34

Corollary A.34 (Jacod’s Formula, absolutely continuous case; cf. Brémaud 1981,
pp. 61–63 and Daley and Vere-Jones 2008, pp. 364–365).

In the situation of Theorem A.33, the
(
P, {Ft}t≥t0

)
-compensator Λ is almost surely

absolutely continuous if and only if the conditional distribution functions Fi

(· | FTi−1

)
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have absolutely continuous versions with densities fi

(· | FTi−1

)
. In this case, one version

of Λ is given by

Λ(t, ω) =

∫ t

t0

λ∗(u, ω) du ,

where

λ∗(t, ω) =
∞∑

i=1

λ∗i (t, ω) ≡
∞∑

i=1

fi

(
t− Ti−1 | FTi−1

)

1− Fi

(
t− Ti−1 | FTi−1

)1{Ti−1≤t<Ti} . (A.27)

An {Ft}t≥t0
-predictable version λ of λ∗ and hence the

(
P, {Ft}t≥t0

)
-intensity of N is

defined by

λ(t, ω) =
∞∑

i=1

λi(t, ω) ≡
∞∑

i=1

fi

(
t− Ti−1 | FTi−1

)

1− Fi

(
t− Ti−1 | FTi−1

)1{Ti−1<t≤Ti} .

Proof. A direct proof of Corollary A.34 can be found in Brémaud 1981, pp. 61–63, but
we can infer the results immediately from Theorem A.33. In the absolutely continuous
case, Equation (A.25) can be stated as58

Hi

(
t | FTi−1

)
=

∫ t

0

fi

(
x | FTi−1

)

1− Fi

(
x | FTi−1

) dx

with Lebesgue density

hi

(
x | FTi−1

)
:=

fi

(
x | FTi−1

)

1− Fi

(
x | FTi−1

) ,

the conditional equivalent of the hazard function introduced in Remark A.31. By Equation
(A.24), the compensator Λi of Ni is constant on {t < Ti−1} as well as {Ti ≤ t}, which

implies that the intensity vanishes almost everywhere on {Ti−1 ≤ t < Ti}∁, while on
{Ti−1 ≤ t < Ti} we have:

Λi(t, ·) = Hi

(
t− Ti−1 | FTi−1

)

=

∫ t−Ti−1

0

fi

(
x | FTi−1

)

1− Fi

(
x | FTi−1

) dx

=

∫ t

Ti−1

fi

(
x− Ti−1 | FTi−1

)

1− Fi

(
x− Ti−1 | FTi−1

) dx

=

∫ t

0

fi

(
x− Ti−1 | FTi−1

)

1− Fi

(
x− Ti−1 | FTi−1

)1{Ti−1≤t<Ti}

︸ ︷︷ ︸
=: λ∗

i
(t,·)

dx .

By additivity, we thus obtain the density specified in Equation (A.27). Since the difference
between λ∗ and λ occurs only at the Ti’s, λ is a version of λ∗, as we have for each t ≥ t0:

P ({ω : λ∗(t, ω) 6= λ(t, ω)}) = P

(
∞⋃

i=1

{ω : Ti(ω) = t}
)

= 0 ,

58Note that an absolutely continuous version of Fi

(
· | FTi−1

)
is necessarily continuous, which renders the

consideration of the left limit obsolete.
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because the countable union of P-null sets is itself a null set and

P (Ti = t) = E

(
1{Ti=t}

)
= E

(
E

(
1{Ti=t} | FTi−1

))

= E

(
E

(
1{Wi=t−Ti−1} | FTi−1

))
= E

(
P
(
Wi = t− Ti−1 | FTi−1

) )
= 0 ,

by the absolute continuity of the conditional distribution functions Fi

(· | FTi−1

)
. Fur-

thermore, the shape of this density entails its predictability by virtue of Theorem A2,
T24 of Brémaud 1981, p. 304, a corollary of the aforementioned Proposition 2.6 of Karr

1991, p. 57. Thus, according to Remark A.27, λ is the “unique”
(
P, {Ft}t≥t0

)
-intensity

of N .

Proof of Lemma A.37

Lemma A.37 (Common Discontinuities of Independent Counting Processes).
Let N (1), N (2), . . . be an at most countable collection of independent counting processes
with index set [t0,∞) defined on a common probability space (Ω,F ,P). Suppose that, for
each j ∈ N, the associated compensator Λ(j) with respect to the canonical filtration of N (j)

is absolutely continuous. Let T (1), T (2), . . . denote the corresponding counting processes.
Then, for all i, j, k, l ∈ N where j 6= l or i 6= k, the following holds:

P

(
T

(j)
i = T

(l)
k , T

(j)
i <∞

)
= 0 . (A.35)

In terms of the processes N (1), N (2), . . ., this implies that P-almost surely they exhibit
no common discontinuities on [t0,∞). In particular, this applies on any subinterval
I ⊂ [t0,∞).

Proof. We first prove Equation (A.35) for any i, j, k, l with j 6= l or i 6= k. We only need
to consider the case j 6= l, since otherwise conditions (i) and (ii) of Definition A.3 imply
that

P

(
T

(j)
i = T

(j)
k , T

(j)
i <∞

)
= P

(
T

(j)
i = T

(j)
i+1 = . . . = T

(j)
k , T

(j)
i <∞

)

≤ P

(
T

(j)
i = T

(j)
i+1 , T

(j)
i <∞

)
= 0 ,

where without loss of generality we assumed i < k and used the argument following
Equation (A.59), see the proof of Remark A.6(ii) for details.
We observe that the absolute continuity of the compensator Λ(j) entails the absolute

continuity of the conditional distribution functions F
(j)
i

( · |T (j)
1 , . . . , T

(j)
i−1

)
by virtue of

Corollary A.34 and denote by f
(j)
i

( · |T (j)
1 , . . . , T

(j)
i−1

)
the corresponding Lebesgue densities.

We can then step by step reconstruct the Lebesgue density of the joint distribution of(
T

(j)
1 , . . . , T

(j)
i

)
, that is:

f
T

(j)
1

(t1) = f
(j)
1 (t1) ,

f(
T

(j)
1 ,T

(j)
2

) (t1, t2) = f
T

(j)
1

(t1) · f (j)
2 (t2 | t1) ,

...

f(
T

(j)
1 ,...,T

(j)
i

) (t1, . . . , ti) = f(
T

(j)
1 ,...,T

(j)
i−1

) (t1, . . . , ti−1) · f (j)
i (ti | t1, . . . , ti−1) ,
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and integrating out accordingly yields the density of the marginal distribution of T
(j)
i .

In particular, T
(j)
i has an absolutely continuous probability distribution, and the same

procedure can be repeated for T
(l)
k . Since j 6= l implies the independence of these random

variables, a Lebesgue density of the joint distribution of T
(j)
i and T

(l)
k can be obtained by

the product of the respective marginal distributions. However, this means that the joint

distribution of T
(j)
i and T

(l)
k is again absolutely continuous with respect to the Lebesgue

measure. But then follows

P

(
T

(j)
i = T

(l)
k , T

(j)
i <∞

)
= P

(
T

(j)
i

,T
(l)
k

)( {
(x, x) : x ∈ [t0,∞)

}
︸ ︷︷ ︸

=:W

)
= 0 ,

because the (one-dimensional) half-line W is a Lebesgue null set due to the dimension
deficiency. Turning to the associated counting processes, the discontinuities of the jth
process N (j) are located at

JN(j)(ω) = {T (j)
i (ω) : i ∈ N} ∩ [t0,∞) .

Thus, two counting process N (j) and N (l) have a common discontinuity if and only if

JN(j)(ω) ∩ JN(l)(ω) 6= ∅ . (A.87)

If ω ∈ Ω is fixed, then in order for Equation (A.87) to hold, i, k ∈ N must exist such that

T
(j)
i (ω) = T

(l)
k (ω) and T

(j)
i (ω) <∞ are both satisfied. Hence,

{ω ∈ Ω : JN(j)(ω) ∩ JN(l)(ω) 6= ∅} =
⋃

i,k∈N

{
ω ∈ Ω : T

(j)
i (ω) = T

(l)
k (ω) , T

(j)
i (ω) <∞

}
.

However, due to Equation (A.35), this event has probability zero as a countable union of
P-null sets. In the same way, the probability that countable many counting processes
share a common point of discontinuity is again a P-null set.

Addendum to the Proof of Lemma A.40

Lemma A.40 (Integration with Respect to Bounded Variation Martingales; Theorem
T6 of Brémaud 1981, p. 10).

Let
(
Ω,F , {Ft}t≥t0

,P
)

be a filtered probability space and M = (Mt)t≥t0
a
(
P, {Ft}t≥t0

)
-

martingale of bounded variation (i.e., P-almost all sample paths have bounded variation
over finite intervals). Let |M | = (|M |t)t≥t0

denote the total variation process59 associated
with M . Suppose further that M is of locally integrable variation, that is,

E

[∫ t

t0

d |M |s
]
<∞ , for all t ≥ t0 .

Then, for each {Ft}t≥t0
-predictable process f = (ft)t≥t0

satisfying

E

[∫ t

t0

|fs| d |M |s
]
<∞ , for all t ≥ t0 , (A.38)

59Accordingly, |M |t < ∞ is the total variation of the path s 7→ Ms over [t0, t] and is not to be confused
with |Mt| (Karr 1991, p. 59).
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the stochastic process X = (Xt)t≥t0
, which for each t ≥ t0 is defined by

Xt =

∫ t

t0

fs dMs , (A.39)

is a
(
P, {Ft}t≥t0

)
-martingale.

Proof. We only show here that the process X from Equation (A.41) is indeed a martingale.
Recall that X is given by

Xt = 1A ·
(
Mmin{v,max{u,t}} −Mu

)
. (A.41)

For X to be a martingale, we need to verify that for all t0 ≤ s ≤ t holds:

E
(
Xt −Xs

∣∣Fs

)
= 0 . (A.88)

This requires a case differentiation where we distinguish the relative positions of s and t
with respect to u and v. We consider a total of six cases:

t ≤ u: Here, Xt = 0 = Xs and thus Xt −Xs = 0 holds unconditionally.

s < u < t ≤ v: Again, Xs = 0. The tower property yields (recall that A ∈ Fu):

E
(
Xt

∣∣Fs

)
= E

(
1A · (Mt −Mu)

∣∣Fs

)
= E

[
E
(
1A · (Mt −Mu)

∣∣Fu

) ∣∣Fs

]

= E
[
1A · E

(
Mt −Mu

∣∣Fu

) ∣∣Fs

]
= 0 ,

by the martingale property of M .

s < u < v < t: We proceed analogously to the previous case, replacing only Mt by Mv.

u ≤ s < t ≤ v: For this and the following case, note that A ∈ Fu ⊂ Fs. Hence, we have:

E
(
Xt −Xs

∣∣Fs

)
= E

(
1A · (Mt −Mu − (Ms −Mu))

∣∣Fs

)

= 1A · E
(
Mt −Ms

∣∣Fs

)
= 0 .

u ≤ s < v < t: Once more, only Mt needs to be replaced by Mv.

s ≥ v: Similar to the first case, Xt = Xs implies Xt −Xs = 0 unconditionally.

Therefore, Equation (A.88) holds for all t0 ≤ s ≤ t. Since the adaptedness and integrability
of X are inherited from M , it follows that X is a martingale.

A.5. Further Explanations and Remarks

This part of Appendix A contains further notes that aid in the understanding of this
thesis, but would impair the flow of reading if incorporated into the main body. Unlike its
technical counterpart in Section A.4, the current section is characterized by mathematically
less rigorous remarks that do not claim the status of a proof. Consequently, the following
comments merely serve to round off the overall picture, but by no means as a basis for a
mathematically precise discussion of the subject.
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Remark A.48 (Heuristical Explanation of the Suggestive Relation (A.17)).
In Equation (A.17), we established the suggestive relation

λ(t) dt ≈ E (N(dt) | Ft−) ,

but refrained from giving a comprehensible justification. In order to provide one, we
follow Karr 1991, pp. 61 & 69 and first recall that for any t0 ≤ s < t we have by virtue of
the martingale property:

E (Nt −Ns | Fs) = E (Λt − Λs | Fs) . (A.89)

Note that since {Ft}t≥t0 is a filtration and hence an increasing sequence of σ-algebras,
we have

σ

(
lim
s↑t
Fs

)
= σ

(
⋃

s<t

Fs

)
= Ft− .

In infinitesimal form (i.e., for an infinitesimally small difference t− s denoted with dt),
Equation (A.89) therefore becomes the heuristic expression

E (N(dt) | Ft−) = E (Λ(dt) | Ft−) = Λ(dt) , (A.90)

where the last equation “holds” due to Lemma A.22, because Λ is {Ft}t≥t0
-predictable.

If for P-almost all ω ∈ Ω, the function t 7→ Λ(t, ω) is absolutely continuous with respect
to the Lebesgue measure, it admits a Radon-Nikodym derivative λ and the extension of
the fundamental theorem of calculus to Lebesgue integrals (Theorem 7.11 of Rudin 1987,
p. 141) yields

lim
s→t

Λt − Λs

t− s = λt (A.91)

almost everywhere. Transferring Equation (A.91) once again into infinitesimal form gives

Λ(dt)

dt
= λt  Λ(dt) = λt dt , (A.92)

and substituting Equation (A.92) into Equation (A.90) results in the desired relation.

The following theorem and subsequent remark revolve around càdlàg functions of
bounded variation (over finite intervals), see Appendix A4 of Brémaud 1981, pp. 334–339
for an overview.

Theorem A.49 (Product Formula of the Stieltjes-Lebesgue Calculus; cf. Daley and
Vere-Jones 2003, p. 107 and Brémaud 1981, p. 336).
Let f and g be two càdlàg functions of bounded variation over finite intervals. Then the
following holds:

f(t)g(t) = f(s)g(s) +

∫ t

s
f(x) dg(x) +

∫ t

s
g(x−) df(x) .

This result is also known as the Integration-by-Parts Formula.

Proof. The proof amounts to an application of Fubini’s theorem and can be found in
Brémaud 1981, pp. 336-337.

A further extension of Theorem A.49 is found in Proposition 2.8 of Karr 1991.
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Remark A.50 (Extension of the Integration-by-Parts Formula; Karr 1991, p. 58).
Recall the notation of Remark A.6. In the situation of Theorem A.49, it further holds:

f(t)g(t) = f(s)g(s) +

∫ t

s
f(x−) dg(x) +

∫ t

s
g(x−) df(x) +

∑

s≤x≤t

∆f(x)∆g(x) .

Remark A.51 (Predictability in Jacod’s Formula for the Intensity Process).
A naive approach to the proof of predictability in Theorem A.33 can be given based on
the technique presented in the proof of Lemma A.30. We note that the asserted form of
the compensator from Equation (A.24) can equivalently be stated as

Λi(t, ω) = Hi

(
t ∧ Ti(ω)− t ∧ Ti−1(ω) | FTi−1

)
. (A.93)

Scrutiny of Equation (A.68) shows that the processes

(t, ω) 7−→ t ∧ Ti(ω) , i ∈ N ,

are predictable (note that this is true regardless of the concrete value of i), and since the
integrated conditional hazard function is again increasing and right-continuous, one is
tempted to argue by means of Equation (A.69) that Λi must also be predictable. While
certainly valid from a heuristic standpoint, the above proof is not mathematically rigorous:
The transition from the unconditional to the conditional integrated hazard function entails
a dependence on ω itself, which has been suppressed here (e.g., in Equation (A.93)) in
favor of easier comprehensibility. However, if we apply Proposition 2.6 of Karr 1991, p. 57
instead of Equation (A.69), the desired result can be achieved nonetheless.

Remark A.52 (Effects of Type I Censoring on the Hazard Transformation).
Suppose that in the situation of Theorem A.46, the points of the simple point process
T = (Ti)i∈N are right-censored at a preset time τ . We deal in this remark only with the
case where τ is deterministic, although in the context of intensity-based load sharing
models, random type I censoring may occur. The hazard transformed process R = (Ri)i∈N

then no longer consists of independent exponentially distributed random variables. This
can be seen by (semi-)explicitly computing the conditional distribution of Ri for i ∈ N:

Note that due to censoring at τ , we need to consider the process
(
T

(c)
i

)
i∈N

, where

T
(c)
i := min {Ti, τ} , i ∈ N .

Let 0 ≤ t1 < . . . < ti−1 < τ and let S
(c)
i

(
t
∣∣ t1:(i−1)

)
denote the survival function of

T
(c)
i given T

(c)
1:(i−1) = t1:(i−1). Since ti−1 < τ , we can replace T

(c)
1:(i−1) with T1:(i−1) in the

condition to obtain:

S
(c)
i

(
t
∣∣ t1:(i−1)

)
= P

(
T

(c)
i > t

∣∣T (c)
1:(i−1) = t1:(i−1)

)

= P

(
min {Ti, τ} > t

∣∣T1:(i−1) = t1:(i−1)

)

= P

(
{Ti > t} ∩ {τ > t}

∣∣T1:(i−1) = t1:(i−1)

)

= P

(
Ti > t

∣∣T1:(i−1) = t1:(i−1)

)
· P (τ > t)
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=




Si

(
t
∣∣ t1:(i−1)

)
, t < τ ,

0 , t ≥ τ ,
(A.94)

where in the penultimate step we utilized that τ is independent of T1, . . . , Ti as a deter-
ministic constant. With the same argument, the probability of {τ > t} is either 1 (if

t < τ) or 0 (if t ≥ τ), explaining the last step. If ti−1 ≥ τ , then T
(c)
i = min{Ti, τ} = τ

and we receive analogously:

S
(c)
i

(
t
∣∣ t1:(i−1)

)
= P

(
τ > t

∣∣T (c)
1:(i−1) = t1:(i−1)

)
= P (τ > t) =

{
1 , t < τ ,

0 , t ≥ τ .

We now discuss the conditional distribution of the random variable S
(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
,

which is closely tied to the hazard transform Ri of T
(c)
i by virtue of Equation (A.51).

For u ∈ (0, 1) and ti−1 < τ , we calculate by once again replacing T
(c)
1:(i−1) with T1:(i−1)

wherever necessary:

P

(
S

(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
≥ u

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

= P

({
S

(c)
i

(
T

(c)
i

∣∣ t1:(i−1)

)
≥ u

}
∩ {Ti < τ}

∣∣∣T1:(i−1) = t1:(i−1)

)

+ P

({
S

(c)
i

(
T

(c)
i

∣∣ t1:(i−1)

)
≥ u

}
∩ {Ti ≥ τ}

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

(A.94)
= P

({
Si

(
Ti

∣∣ t1:(i−1)

)
≥ u

}
∩ {Ti < τ}

∣∣∣T1:(i−1) = t1:(i−1)

)

+ P

(
{0 ≥ u} ∩ {Ti ≥ τ}

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

︸ ︷︷ ︸
= 0, since u > 0.

= P

({
Ti ≤ S−1

i

(
u
∣∣ t1:(i−1)

)}
∩ {Ti < τ}

∣∣∣T1:(i−1) = t1:(i−1)

)

= P

(
Ti ≤ min

{
S−1

i

(
u
∣∣ t1:(i−1)

)
, τ
} ∣∣∣T1:(i−1) = t1:(i−1)

)

= Fi

(
min

{
S−1

i

(
u
∣∣ t1:(i−1)

)
, τ
} ∣∣ t1:(i−1)

)

=




Fi

(
S−1

i

(
u
∣∣ t1:(i−1)

) ∣∣ t1:(i−1)

)
, if S−1

i

(
u
∣∣ t1:(i−1)

)
< τ ,

Fi

(
τ
∣∣ t1:(i−1)

)
, if S−1

i

(
u
∣∣ t1:(i−1)

)
≥ τ ,

=





1− u , if u > Si

(
τ
∣∣ t1:(i−1)

)
,

Fi

(
τ
∣∣ t1:(i−1)

)
, if u ≤ Si

(
τ
∣∣ t1:(i−1)

)
,

utilizing that P

(
Ti = τ

∣∣T1:(i−1) = t1:(i−1)

)
= 0 according to the proof of Theorem A.46.

For t < H
(c)
i

(
τ
∣∣ t1:(i−1)

)
, plugging in Equation (A.51) immediately yields:

P

(
H

(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
≤ t

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

= P

(
S

(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
≥ exp(−t)

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

= 1− exp(−t) , (A.95)
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since the remaining case exp(−t) ≤ Si

(
τ
∣∣ t1:(i−1)

)
translates to t ≥ H

(c)
i

(
τ
∣∣ t1:(i−1)

)
,

which is considered separately due to the lack of differentiability of the conditional survival

function in τ . Here, Equations (A.30) and (A.31) state that H
(c)
i

(
·
∣∣ t1:(i−1)

)
becomes

constant starting from τ , so that for t ≥ H(c)
i

(
τ
∣∣ t1:(i−1)

)
we observe:

P

(
H

(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
≤ t

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

≥ P

(
H

(c)
i

(
T

(c)
i

∣∣ t1:(i−1)

)
≤ H(c)

i

(
τ
∣∣ t1:(i−1)

) ∣∣∣T (c)
1:(i−1) = t1:(i−1)

)
= 1 . (A.96)

Combining Equations (A.95) and (A.96) yields:

P

(
H

(c)
i

(
T

(c)
i

∣∣T (c)
1:(i−1)

)
≤ t

∣∣∣T (c)
1:(i−1) = t1:(i−1)

)

=





1− exp(−t) , if t < − ln
(
Si

(
τ
∣∣ t1:(i−1)

))
,

1 , if t ≥ − ln
(
Si

(
τ
∣∣ t1:(i−1)

))
.

As τ →∞ we have − ln
(
Si

(
τ
∣∣ t1:(i−1)

))
→∞, so this formula conforms with Equation

(A.53). However, for τ < ∞ it becomes apparent that the conditional distribution is
neither exponential nor independent of the points t1, . . . , ti−1. This also carries over to the
unconditional distribution, although the dichotomy of Ti−1 < τ and Ti−1 ≥ τ complicates
its computation. We therefore refrain from any further analysis and close this remark.
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B. Technical Proofs and Complementary Notes

B.1. Proofs of Uniform Bounds for the Intensity and its Partial Derivatives

This part of Appendix B supplements Section 2.4 of the thesis. We provide the technical
proofs omitted there. For the convenience of the reader, we repeat the corresponding
results with the numbering used in the main body.

Lemma 2.14 (Integrals of the Natural Powers of ln).
Let t > 0, q > −1 and p ∈ N0. Then,

∫ t

0
xq · (ln x)p dx =

t1+q

1 + q

p∑

k=0

( −1

1 + q

)p−k p!

k!
(ln t)k . (2.33)

Proof. The validity of Equation (2.33) is easily verified by induction on p. For the base
case p = 0, it boils down to ∫ t

0
xq dx

!
=

t1+q

1 + q
,

which is obviously true since q > −1 implies

∫ t

0
xq dx =

[
x1+q

1 + q

]t

x=0

.

For the induction step, if we assume Equation (2.33) to hold for some p ∈ N0, integration
by parts (differentiating (lnx)p+1 and integrating xq) yields:

∫ t

0
xq · (ln x)p+1 dx =

[
x1+q

1 + q
· (ln x)p+1

]t

x=0

−
∫ t

0

x1+q

1 + q
· p+ 1

x
(ln x)p dx

(∗)
=

t1+q

1 + q
· (ln t)p+1 − p+ 1

1 + q

∫ t

0
xq · (ln x)p dx

∣∣ substitute Eq. (2.33)

=
t1+q

1 + q
· (ln t)p+1 − p+ 1

1 + q

[
t1+q

1 + q

p∑

k=0

( −1

1 + q

)p−k p!

k!
(ln t)k

]

=
t1+q

1 + q
·
( −1

1 + q

)(p+1)−(p+1) (p+ 1)!

(p+ 1)!︸ ︷︷ ︸
=1

(ln t)p+1

+
t1+q

1 + q

p∑

k=0

( −1

1 + q

)(p+1)−k (p+ 1)!

k!
(ln t)k

=
t1+q

1 + q

p+1∑

k=0

( −1

1 + q

)(p+1)−k (p+ 1)!

k!
(ln t)k .

Formally, the above integral is improper for q ∈ (−1, 0]. Depending on p ∈ N0, the
integrand xq · (ln x)p+1 tends to either ∞ or −∞ as t → 0 and therefore cannot be
evaluated at 0. Therefore, in (∗) we take limits implicitly to allow for easier reading,
keeping in mind that by L’Hôpital’s rule for each p ∈ N0 we have:

lim
x↓0

x1+q (ln x)p = lim
x↓0

(ln x)p

x−(1+q)
= lim

x↓0

p (ln x)p−1 · 1
x

−(1 + q) · x−(1+q)−1
= p

( −1

1 + q

)
lim
x↓0

(ln x)p−1

x−(1+q)
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= . . . = p!

( −1

1 + q

)p

lim
x↓0

(ln(x))p−p

x−(1+q)
= p!

( −1

1 + q

)p

lim
x↓0

x1+q = 0 .

Lemma 2.15 (Integrable Bounds for the Intensity Partial Derivatives in the Basquin
Load Sharing Model with Multiplicative Damage Accumulation).

Let
×Dλ

(j)
θ (t) be the conditional intensity function of the Basquin load sharing model with

multiplicative damage accumulation given in Definition 2.8 of Subsection 2.3.2, that is:

×Dλ
(j)
θ (t) := θ1


 sj

I

I −N (j)
t−︸ ︷︷ ︸

=:Bj(t)




θ2

 1

τ

∫ t

0
sj

I

I −N (j)
u−

du

︸ ︷︷ ︸
=:Aj(t)




θ3

· 1{
N

(j)

t− <Cj

}
∩

{
t≤τj

} .

Suppose that the sequence (sj)j∈N is bounded both downward by some 0 < slow ≤ 1 and
upward by an arbitrary constant supp (e.g., if a preset assortment of initial stress levels
s1, . . . , sL ≥ 1 is consecutively repeated). If we assume that Θ ⊂ R

3
+, then the following

holds for all t ∈ I, θ ∈ Θ and ω ∈ Ω:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2+θ3 ,

p, q, r ∈ N0 , j ∈ N . (2.34)

If furthermore the parameter space Θ is bounded, there exists a constant C independent
of θ ∈ Θ and j ∈ N such that

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ C ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

, p, q, r ∈ N0 , j ∈ N . (2.35)

Under these assumptions, differentiation of arbitrary order with respect to θ ∈ Θ and
integration with respect to t ∈ I are interchangeable, that is,

dp

dθp

×DΛ
(j)
θ (t) =

∫ t

0

dp

dθp

×Dλ
(j)
θ (u) du , p ∈ N ,

and we have

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×DΛ
(j)
θ (t)

∣∣∣∣∣ ≤ Cτ
p+q∑

k=0

(p+ q)!

k!

(
ln

(
sjI

s2
low

))k

, (2.36)

where sj can be replaced by supp whenever a uniform bound is desired.

In preparation for the following proof, we first apply Lemma 2.14 to obtain a useful
corollary on the integrability of the derived bounds.
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Corollary B.1.1 (Integrability of Majorants for the Intensity Partial Derivatives in the
Basquin Load Sharing Model with Multiplicative Damage Accumulation).
In the situation of Lemma 2.15, let C > 0, x ∈ I = [0, τ ] and 0 < ε ≤ 1. Then,

∫ x

0
C ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

·
(
slow

u

τ

)ε−1

du

=
Cxε

ε1+p+q

(
slow

τ

)ε−1 p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
τsjI

xs2
low

))k

, p, q ∈ N0 , j ∈ N .

Proof. An application of Lemma 2.14 with q = ε− 1 and p+ q in place of p directly yields
the desired identity:

∫ x

0
C ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

·
(
slow

u

τ

)ε−1

du

= (−1)p+qC

∫ x

0

[
ln

(
s2

low

τsjI︸ ︷︷ ︸
=:κ

·u
) ]p+q

·
(
slow

u

τ

)ε−1

du

= (−1)p+qC

∫ x

0
[ln (κu)]p+q ·

(
sjI

slow
· κu

)ε−1

du
∣∣∣v = κu

= (−1)p+qC

κ

(
sjI

slow

)ε−1 ∫ κx

0
(ln v)p+q vε−1 dv

∣∣∣apply Lemma 2.14

= (−1)p+qC

κ

(
sjI

slow

)ε−1
[

(κx)ε

ε

p+q∑

k=0

(−1

ε

)p+q−k (p+ q)!

k!
(ln(κx))k

]

=
Cxε

ε1+p+q

(
sjI

slow
· κ
)ε−1 p+q∑

k=0

(p+ q)!

k!
(−ε ln(κx))k

=
Cxε

ε1+p+q

(
slow

τ

)ε−1 p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
τsjI

xs2
low

))k

. (B.1)

Notably, the integrand is non-negative (this becomes evident in the proofs of Lemma 2.15
and Corollary 2.17). Therefore, the term from Equation (B.1) increases monotonically in
x and attains its maximum on I at τ .

Proof of Lemma 2.15. We start by noting that
×Dλ

(j)
θ (t) is linear in the argument θ1.

Consequently, the parameter θ1 vanishes at differentiation and all partial derivatives
where we differentiate twice or more with respect to θ1 then amount to zero. Formally,
we obtain60:

θ1
∂

∂θ1

×Dλ
(j)
θ (t) =

×Dλ
(j)
θ (t) , (B.2)

∂2

∂θ2
1

×Dλ
(j)
θ (t) = 0 . (B.3)

To derive the bounds from Equation (2.34), we now consider the partial derivatives of

60One might be tempted to write 1
θ1

on the right-hand side of Equation (B.2), but then problems with
θ1 = 0 might arise.
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arbitrary order with respect to θ2 and θ3. By writing

×Dλ
(j)
θ (t) = θ1 exp

[
θ2 lnBj(t) + θ3 lnAj(t)

] · 1{
N

(j)

t− <Cj

}
∩

{
t≤τj

}

and applying the chain rule, we have for p, q ∈ N0:

∂p+q

∂θp
2∂θ

q
3

×Dλ
(j)
θ (t) = (lnBj(t))p (lnAj(t))q · ×Dλ

(j)
θ (t) . (B.4)

Recall that, for each fixed θ,
×Dλ

(j)
θ (t) can be bounded by giving uniform bounds for Aj(t)

and Bj(t) according to Lemma 2.12. More precisely, we have for all t ∈ I and ω ∈ Ω:

0 ≤ Aj(t) ≤ sjI , slow ≤ Bj(t) ≤ sjI , j ∈ N . (B.5)

We now recall the representation from Equation (2.37) found in Remark 2.16, where the
rescaled initial stress levels s̃j =

sj

slow
were introduced to ensure s̃j ≥ 1. This proves helpful

in view of Equation (B.4), as it causes the upper bounds for the logarithms involved to
be positive. Since slow ≤ 1 by assumption, we have s̃j ≥ sj and observe:

ln(slow)︸ ︷︷ ︸
≤0

≤ lnBj(t) ≤ ln (sjI) ≤ ln (s̃jI)
︸ ︷︷ ︸
≥0

, (B.6)

so that by utilizing max{a, b} ≤ a+ b for a, b ≥ 0, we get

|lnBj(t)| ≤ max {− ln (slow) , ln (s̃jI)} ≤ ln (s̃jI)− ln (slow) = ln

(
sjI

s2
low

)
. (B.7)

While the calculations from Equation (B.6) can be performed in the same way with Aj

instead of Bj to achieve identical results for the upper bound of ln (Aj(t)), this procedure
fails to deliver a proper lower bound because of Aj(0) = 0 and hence ln (Aj(t))→ −∞
for t ↓ 0. However, closer inspection of Aj(t) yields:

lnAj(t) = ln


 1

τ

∫ t

0
sj

I

I −N (j)
u−︸ ︷︷ ︸

≥1

du


 ≥ ln

(
sj
t

τ

)
≥ ln

(
slow

t

τ

)
, (B.8)

so that the right-hand side of Equation (B.8) takes the place of ln(slow) in Equation (B.7)
when Aj is considered instead of Bj :

|ln (Aj(t))| ≤ ln (s̃jI)− ln

(
slow

t

τ

)
= ln

(
sjI

s2
low

· τ
t

)
.

In tandem with Lemma 2.12, for which the requirement Θ ⊂ R
3
+ is needed61, we then

61Technically, θ2 ≥ 0 need not be assumed here because of the lower bound for Bj(t) given in Equation
(B.5), but the resulting model would no longer conform to our interpretation of a load sharing model.
However, θ1 < 0 conflicts with the non-negativity of the intensity function, while θ3 < 0 leads to
unbounded partial derivatives due to Aj(0) = 0.
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obtain by virtue of τ ≥ t:
∣∣∣∣∣
∂p+q

∂θp
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ = |lnBj(t)|p |lnAj(t)|q · ×Dλ
(j)
θ (t)

≤
[
ln

(
sjI

s2
low

)]p [
ln

(
sjI

s2
low

· τ
t

)]q

· θ1 (sjI)θ2+θ3

≤ θ1 ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2+θ3 . (B.9)

From Equations (B.2) and (B.3), we get that the parameter θ1 vanishes at differentiation
with respect to θ1. Thus,

∣∣∣∣∣
∂p+q+1

∂θ1∂θ
p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ 1 ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2+θ3 , (B.10)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ = 0 , r ∈ N \ {1} . (B.11)

Finally, we conclude by combining Equations (B.9) through (B.11):

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2+θ3 ,

where p, q, r ∈ N0 and j ∈ N, hence proving Equation (2.34). To show Equation (2.35) of
Lemma 2.15, note that we can write

max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2+θ3

=

[
ln

(
sjI

s2
low

· τ
t

)]p+q

︸ ︷︷ ︸
=const w.r.t. θ

·max{1, θ1} · (sjI)θ2+θ3

︸ ︷︷ ︸
=:C(θ)

= const · C(θ) ,

where C is a continuous function of θ = (θ1, θ2, θ3). Thereby, the image C(Θ) of any
bounded parameter space Θ is also bounded. We suggestively denote this bound by C(Θ)
and proceed to the proof of the remaining part of Lemma 2.15. In order to apply the
measure theoretic version of the Leibniz integral rule (cf. Lemma 16.2 of Bauer 2001)
and differentiate under the integral sign, the uniform majorant given by (2.35) needs to
be integrable on I as a function of t. We set ε = 1, x = τ and use Corollary B.1.1 to
calculate the integral explicitly62:

∫ t

0
max{1, θ1} ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

· (sjI)θ2+θ3

︸ ︷︷ ︸
>0 for all u∈I

du

62In the first step we transition from t to τ in order to derive a bound that is uniform w.r.t. t. This step
can be omitted if such a bound is not desired.
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≤
∫ τ

0
max{1, θ1} ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

· (sjI)θ2+θ3 du

≤ C(Θ)

∫ τ

0

[
ln

(
sjI

s2
low

· τ
u

)]p+q

du

= C(Θ)τ
p+q∑

k=0

(p+ q)!

k!

(
ln

(
sjI

s2
low

))k

<∞ . (B.12)

By assumption, the sequence (sj)j∈N is bounded above by some constant supp. From this,

suppI

s2
low

≥ sjI

s2
low

=
sj

slow︸︷︷︸
≥1

· 1

slow︸︷︷︸
≥1

·I ≥ 1 ,

and hence the summands of Equation (B.12) are non-negative. From here, the triangle
inequality yields the final statement of Equation (2.36):

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×DΛ
(j)
θ (t)

∣∣∣∣∣ =

∣∣∣∣∣

∫ t

0

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (u) du

∣∣∣∣∣

≤
∫ t

0
max{1, θ1} ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

· (sjI)θ2+θ3 du

≤ C(Θ)τ
p+q∑

k=0

(p+ q)!

k!

(
ln

(
sjI

s2
low

))k

≤ C(Θ)τ
p+q∑

k=0

(p+ q)!

k!

(
ln

(
suppI

s2
low

))k

<∞ ,

and hence completes the proof.

Corollary 2.17 (Extension of Lemma 2.15).

Let again
×Dλ

(j)
θ (t) be the conditional intensity function of the Basquin load sharing model

with multiplicative damage accumulation given in Definition 2.8 of Subsection 2.3.2 and
suppose that the sequence (sj)j∈N is bounded as in Lemma 2.15. Moreover, we assume

that Θ ⊂ R
2
+ × (−1,∞). Then, for each θ ∈ Θ with −1 < θ3 < 0, the following holds for

all t ∈ I and ω ∈ Ω:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ max{1, θ1} ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

· (sjI)θ2

(
slow

t

τ

)θ3

,

p, q, r ∈ N0 , j ∈ N . (2.38)

If further 0 < ε ≤ 1 exists so that Θ ⊂ π−1
3 ([−1 + ε,∞)) (i.e., the third parameter θ3 is

bounded away from −1) and Θ is bounded, then a constant C indepedent of θ ∈ Θ and
j ∈ N can be found such that, for all θ ∈ Θ,

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×Dλ
(j)
θ (t)

∣∣∣∣∣ ≤ C ·
[
ln

(
sjI

s2
low

· τ
t

)]p+q

·
(
slow

t

τ

)ε−1

, p, q, r ∈ N0 , j ∈ N .

(2.39)
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Under these assumptions, differentiation of arbitrary order with respect to θ ∈ Θ and
integration with respect to t ∈ I are also interchangeable. In addition, the following bound
applies: ∣∣∣∣∣

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×DΛ
(j)
θ (t)

∣∣∣∣∣ ≤
Cτsε−1

low

ε1+p+q

p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
sjI

s2
low

))k

, (2.40)

where replacing sj by supp yields a bound that is uniform with respect to j ∈ N.

Proof. Let −1 < θ3 < 0. While the derivatives of the conditional intensity function from
Equation (B.4) as well as the bounds for lnAj(t) and lnBj(t) remain unchanged, the

uniform bounds for
×Dλ

(j)
θ (t) provided by Lemma 2.12 are no longer valid here. However,

similar to Equation (B.8), we observe

Aj(t) ≥ slow
t

τ
=⇒ Aj(t)θ3 ≤

(
slow

t

τ

)θ3

,

and therefore we obtain, as before, that

×Dλ
(j)
θ (t) ≤ θ1 (sjI)θ2

(
slow

t

τ

)θ3

.

From here, Equation (2.38) follows immediately. If we suppose that Θ is bounded, the
image of Θ under the continuous function max{1, θ1} · (sjI)θ2 is again bounded by some
constant C ′. Let C ′′ be the constant given in Equation (2.35) when Θ∩R3

+ is considered,
and set C := max{C ′, C ′′}. Moreover, slow ≤ 1 implies that slow

t
τ
≤ 1 and hence

(
slow

t

τ

)θ3

≤
(
slow

t

τ

)ε−1

︸ ︷︷ ︸
≥ 1, as ε ≤ 1

(B.13)

as long as θ3 > ε− 1. With Equation (B.13) and bearing in mind the constant C above,
Equation (2.39) is then a direct consequence of combining Equations (2.35) and (2.38);
note that Equation (2.39) conforms with Equation (2.35) in the case ε = 1. To complete
the proof, we only need to show that the right-hand side of Equation (2.39) is integrable.
Like in Equation (B.12), this can be inferred from Corollary B.1.1, where x = τ is
considered:

∫ τ

0
C ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

·
(
slow

u

τ

)ε−1

du

=
Cτsε−1

low

ε1+p+q

p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
sjI

s2
low

))k

<∞ .

Finally, this term also serves as a bound for the derivatives of the cumulative intensity
function, compare Equation (2.36). This completes the proof of Corollary 2.17.
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Glivenko-Cantelli Type Convergence Theorems for Derivative Cumulative Intensities

A standard result, based on a Glivenko-Cantelli argument63, is that averages of cumulative
intensities almost surely converge uniformly on compact intervals such as I. However,
the required monotonicity is often lost as soon as derivatives with respect to the model
parameter θ are involved. In the particular case of the Basquin load sharing model
with multiplicative damage accumulation, a related result can still be inferred from the
Inequalities (2.39) and (2.40), namely, the almost sure uniform convergence of aggregated
derivatives of the cumulative intensities (as functions of t for any fixed θ ∈ Θ) on the
compact interval I. Before formulating this corollary, we first provide insight into the
much simpler Glivenko-Cantelli approach. For simplicity, we operate here only within the
framework of Kopperschmidt and Stute from Section 3.

Lemma B.1.2 (Glivenko-Cantelli for Cumulative Intensities).
In the framework of Definition 3.2 and Assumptions 3.5, for all θ ∈ Θ holds almost surely:

Λ
(n)
θ −→ EΛθ uniformly on I as n→∞.

Proof. The advantage of the Glivenko-Cantelli approach shown here is that it remains
valid for (almost) arbitrary cumulative intensities and thus does not depend on the specific
model. We do, however, require the continuity of the expected cumulative intensity, which
can be inferred directly from Assumptions 3.5, see Remark 3.6 for details. If moreover
E (Λθ(τ)) < ∞ holds for each θ ∈ Θ (e.g., due to condition (C̃3)), then for any given
ε > 0 we can choose 0 = t0 < t1 < . . . < tm = τ such that

∣∣E (Λθ(ti+1))− E (Λθ(ti))
∣∣ < ε

2
, for all i = 0, 1, . . . ,m− 1 . (B.14)

By the strong law of large numbers, for all i = 0, 1, . . . ,m− 1 we have with probability 1:

Λ
(n)
θ (ti) −→ E (Λθ(ti)) as n→∞ .

Hence, there exists n0 ∈ N such that Pθ∗-almost surely for all n ≥ n0 simultaneously
holds (note that m is finite):

∣∣∣Λ(n)
θ (ti)− E (Λθ(ti))

∣∣∣ <
ε

2
, for all i = 0, 1, . . . ,m− 1 . (B.15)

The monotonicity of the aggregate process Λ
(n)
θ yields - again Pθ∗-almost surely - that

Λ
(n)
θ (t) ∈

[
Λ

(n)
θ (ti), Λ

(n)
θ (ti+1)

]
, for all t ∈ [ti, ti+1] , (B.16)

from where combining Equations (B.15) and (B.16) in a first step and then exploiting
Equation (B.14) as well as the monotonicity of the expected cumulative intensity in a
second step grants

Λ
(n)
θ (t) ∈

(
E (Λθ(ti))−

ε

2
, E (Λθ(ti+1)) +

ε

2

)

63Named after the Glivenko-Cantelli theorem on the uniform convergence of the empirical distribution
function, see Klenke 2020, p. 129.
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⊂ (E (Λθ(t))− ε, E (Λθ(t)) + ε
)

for all t ∈ [ti, ti+1] .

Therefore, with probability 1 we obtain for all n ≥ n0 that

sup
t∈I

∣∣∣Λ(n)
θ (t)− E (Λθ(t))

∣∣∣ ≤ max
i∈{0,1,...,m−1}

sup
t∈[ti,ti+1]

∣∣∣Λ(n)
θ (t)− E (Λθ(t))

∣∣∣ < ε ,

and thus Pθ∗-almost surely:

∥∥∥Λ(n)
θ − EΛθ

∥∥∥
∞
−→ 0 as n→∞ .

The Glivenko-Cantelli approach can also be applied to the averaged counting process,
as explained in the following remark.

Remark B.1.3 (Further Implications of Lemma B.1.2).
The Glivenko-Cantelli argument in the proof of Lemma B.1.2 implies that

∥∥∥N (n) − EΛθ∗

∥∥∥
∞
−→ 0 as n→∞

holds Pθ∗-almost surely as well. For this, consider the case θ = θ∗ and replace each

instance of Λ
(n)
θ∗ by N

(n)
. Since EN

(n)
= EΛ

(n)
θ∗ = EΛθ∗ according to the Doob-Meyer

decomposition and by the monotonicity of the aggregated counting process, all proof
steps can easily be adopted.
Moreover, it follows that, with probability 1,

∥∥∥M (n)
∥∥∥
∞

=
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
∞
≤
∥∥∥N (n) − EΛθ∗

∥∥∥
∞

+
∥∥∥Λ(n)

θ∗ − EΛθ∗

∥∥∥
∞
−→ 0 as n→∞ .

We now extend Lemma B.1.2 to include derivatives with respect to the parameter θ.
However, additional requirements must be placed on the model for this to work and we
therefore consider only the Basquin load sharing model with damage accumulation. It
is worth mentioning that Kopperschmidt and Stute claim that this convergence holds
without further restrictions “for averages of derivative processes” (see Kopperschmidt
and Stute 2013, p. 1293), although their proposed solution fails since Glivenko-Cantelli
arguments cannot be applied here. The following corollary provides a stronger version of
Lemma 3.16 from Subsection 3.3.

Corollary B.1.4 (Uniform Convergence of Averages of Derivative Cumulative Intensities
in the Basquin Load Sharing Model with Damage Accumulation).
In the situation of Corollary 2.17, for all θ ∈ Θ and p, q, r ∈ N0 holds with probability 1:

1

n

n∑

j=1

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×DΛ
(j)
θ −→ E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

×DΛθ uniformly on I as n→∞.

In particular, for all p ∈ N0, we have Pθ∗-almost surely that

dp

dθp

×DΛ
(n)

θ −→ E
dp

dθp

×DΛθ uniformly on I as n→∞. (B.17)

Proof. In order to shorten the notation, we will omit the model identifier
×D for the time
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being. The special case p = 0 of Equation (B.17) (i.e., in the absence of any derivatives)
was shown in Lemma B.1.2. For the general case, accounting also for differentiation with
respect to θ, we will show the equicontinuity of the aggregate partial derivatives. Let
x, y ∈ I and without loss of generality assume x ≤ y. Then, for all p, q, r ∈ N0 and j ∈ N

we observe
∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(j)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(j)
θ (x)

∣∣∣∣∣ =

∣∣∣∣∣

∫ y

x

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

λ
(j)
θ (u) du

∣∣∣∣∣

≤ sup
u∈(x,y)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

λ
(j)
θ (u)

∣∣∣∣∣ · |y − x| ,

and plugging in the upper bound from Equation (2.39) yields for x > 0:

sup
u∈(x,y)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

λ
(j)
θ (u)

∣∣∣∣∣ ≤ sup
u∈(x,y)

C ·
[
ln

(
sjI

s2
low

· τ
u

)]p+q

︸ ︷︷ ︸
decreasing in u

·
(
slow

u

τ

)ε−1

︸ ︷︷ ︸
decreasing in u

≤ C ·
[
ln

(
sjI

s2
low

· τ
x

)]p+q

·
(
slow

x

τ

)ε−1

≤ C ·
[
ln

(
suppI

s2
low

· τ
x

)]p+q

·
(
slow

x

τ

)ε−1

=: L(p, q, x) <∞ .

Since L(p, q, x) does not depend on j, we obtain by virtue of the triangle inequality:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣

≤ 1

n

n∑

j=1

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(j)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(j)
θ (x)

∣∣∣∣∣

≤ L(p, q, x) · |y − x| . (B.18)

In order to prove (uniform) equicontinuity, we need to show that for each ε > 0 there
exists δ > 0 such that

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣ < ε (B.19)

whenever |x− y| < δ, x, y ∈ [0, τ ]. This seemingly follows from Equation (B.18), but
problems arise in the neighbourhood of 0, where the local Lipschitz constant L(p, q, x)
tends to ∞ and therefore cannot be bounded. However, (pointwise) equicontinuity can
still be ensured according to Corollary 2.17, as we have by virtue of Corollary B.1.1:

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(j)
θ (x)

∣∣∣∣∣ =

∣∣∣∣∣

∫ x

0

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

λ
(j)
θ (u) du

∣∣∣∣∣ ≤
∫ x

0

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

λ
(j)
θ (u)

∣∣∣∣∣ du

≤
∫ x

0
C ·

[
ln

(
sjI

s2
low

· τ
u

)]p+q

·
(
slow

u

τ

)ε−1

du
∣∣∣apply Cor. B.1.1
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≤ Cxε

ε1+p+q

(
slow

τ

)ε−1 p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
τsjI

xs2
low

))k

≤ Cxε

ε1+p+q

(
slow

τ

)ε−1 p+q∑

k=0

(p+ q)!

k!

(
ε ln

(
τsuppI

xs2
low

))k

︸ ︷︷ ︸
independent of j

→ 0 as x→ 0 ,

due to the factor x again dominating the natural powers of the logarithm, compare Lemma
2.14. Consequently, we can find - with a reasoning analogous to the above - some δ > 0
so that ∣∣∣∣∣

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣ <
ε

2
, whenever |x| < δ, x ∈ [0, τ ] . (B.20)

Now let

L := sup
x∈[ δ

2
,τ ]
L(p, q, x) <∞ , and choose 0 < δ̃ < min

{
δ

2
,
ε

L

}
.

Then, for any x, y ∈
[

δ
2 , τ

]
with |x− y| < δ̃, we have by Equation (B.18):

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣ ≤ L · |y − x| < ε .

If |x− y| < δ̃ but |x| < δ
2 , then |y| ≤ |x|+ |y − x| < δ. Hence,

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (y)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣

≤
∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)

∣∣∣∣∣+
∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (y)

∣∣∣∣∣ <
ε

2
+
ε

2
= ε

by Equation (B.20). The case |y| < δ
2 gives the same result for symmetry reasons and

thus uniform equicontinuity ensues. Importantly, δ does also not depend on the particular
realization and since [0, τ ] is compact, the Pθ∗-almost sure pointwise convergence of the
aggregate partial derivatives (again due to the strong law of large numbers) then implies
their uniform convergence. The proof of this conclusion is simple:
Let ε > 0, so that by virtue of the equicontinuity there exists δ > 0 such that Equation
(B.19) holds whenever |x− y| < δ (this is even deterministically true). As [0, τ ] is compact,
there exist some k ∈ N and x1, . . . , xk ∈ [0, τ ] with

[0, τ ] ⊂ Bδ (x1) ∪ . . . ∪ Bδ (xk) .

The strong law of large numbers provides Pθ∗-almost surely for j ∈ {1, . . . , k}:

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj) −→ E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj) as n→∞,
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and thus

Pθ∗

(
lim sup

n→∞

{∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)

∣∣∣∣∣ > ε

})
= 0 .

By Lemma 4.18, this also holds simultaneously for all j ∈ {1, . . . , k}, that is:

Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)

∣∣∣∣∣ > ε

})

= Pθ∗


lim sup

n→∞

k⋃

j=1

{∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)

∣∣∣∣∣ > ε

}
 = 0

Finally, since the uniform continuity implied by Equation (B.19) carries over to the limit
function, we can compute:

Pθ∗

(
lim sup

n→∞

{
sup

x∈[0,τ ]

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (x)

∣∣∣∣∣ > 3ε

})

= Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k
sup

x∈Bδ(xj)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (x)

∣∣∣∣∣ > 3ε

})

≤ Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k
sup

x∈Bδ(xj)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (x)− ∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)

∣∣∣∣∣
︸ ︷︷ ︸

< ε by equicontinuity and the choice of δ.

> ε

})

+ Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k
sup

x∈Bδ(xj)

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)

∣∣∣∣∣ > ε

})

+ Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k
sup

x∈Bδ(xj)

∣∣∣∣∣E
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)− E
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (x)

∣∣∣∣∣ > ε

})

= Pθ∗

(
lim sup

n→∞

{
max

j=1,...,k

∣∣∣∣∣
∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λ
(n)
θ (xj)− E

∂p+q+r

∂θr
1∂θ

p
2∂θ

q
3

Λθ (xj)

∣∣∣∣∣ > ε

})
= 0 ,

and this is Pθ∗-almost sure uniform convergence on I = [0, τ ], hence finishing the proof.

B.2. Tightness on the Space C(K)

In the statistical analysis of counting processes and derived quantities like estimators and
hypothesis tests, statisticians frequently face the challenge that the underlying distributions
remain unknown, or at least that their computation is hardly feasible. The same then
holds true for related characteristics of interest: One can easily imagine having a sequence
of estimators that depend on the number of repetitions of an experiment and whose
standard deviation is unknown. Under these circumstances, it is often helpful to resort to
the asymptotic properties of the random variables involved - in this case, the sequence of
estimators. The research on the asymptotics of such sequences of random variables or
measures is itself a broad field whose best-known results have found their way into basic
statistics courses. As they lend themselves to the derivation of asymptotic distributions,
we will encounter some of these results (such as the central limit theorem) throughout
this thesis. However, before answering the question of an asymptotic distribution, one
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has of course to establish whether a sequence of probability measures converges at all to
some measure, or has at least one convergent subsequence, since the space of distribution
functions is not compact (cf. Shiryaev 2016, pp. 383–384). Hence, one introduces the
term relative compactness: a family Π of probability measures is called relatively compact
if every sequence of elements from Π contains a convergent subsequence whose limit is not
necessarily an element of Π (see Billingsley 1968, pp. 35–37 for a profound discussion). So,
when we consider the space of probability measures64 on a metric space endowed with its
Borel σ-algebra, a characterization of its (relatively) compact subsets is crucial to achieve
convenient asymptotic results. In the case of a complete and separable metric space, the
theorem of Prohorov (a whole section is devoted to this fundamental result in Billingsley
1968, pp. 35–41) relates relative compactness to the notion of tightness. It offers therein
an entry point to the subject, which (largely) omits the topological foundations. We
can thus dive straight into the topic by stating the definition of tightness for a family of
probability measures and defer further motivation for the time being.

Definition B.2.1 (Tight Family of Probability Measures; Billingsley 1968, p. 37).
Let S be a metric space with metric d and let Bd denote the Borel σ-algebra on S induced
by d. A family Π of probability measures on (S,Bd) is said to be tight if for every ε > 0,
there exists a compact set K = K(ε) ∈ Bd such that

P (K) > 1− ε , for all P ∈ Π .

In the aforementioned practice of statistical analysis, we often deal with sequences of
random variables taking values in a metric space. Since the associated image measures
form a family of probability measures, we can extend the notion of tightness to such
sequences.

Definition B.2.2 (Tight Sequences of Random Variables; Billingsley 1968, p. 57).
In the situation of Definition B.2.1, let (Xn)n∈N be a sequence of random variables taking
values in the measurable space (S,Bd). The sequence (Xn)n∈N is said to be tight, if the
corresponding family of image measures Π =

{
P

Xn : n ∈ N
}

is tight, that is, if for all
ε > 0, there exists a compact set K such that

P
Xn (K) = P (Xn ∈ K) > 1− ε , for all n ∈ N.

In the following, we lay special emphasis on the space of continuous functions defined
on a compact topological space and mapping into a normed vector space, which will take
the role of the metric space (S,Bd) in the Definitions B.2.1 and B.2.2.

Definition B.2.3 (Banach Space of Continuous Functions C(X ,Y); cf. Dudley 2002,
pp. 51–53).
For any compact topological space X and normed vector space Y with norm ‖ · ‖, let
C(X ,Y) be the space of all Y-valued continuous functions on X . The supremum norm
‖ · ‖∞ given by

‖f‖∞ = sup
x∈X
‖f(x)‖ , f ∈ C(X ,Y) ,

defines a norm on C(X ,Y) with respect to which C(X ,Y) becomes a Banach space.

64This space can be topologized by the Prohorov metric, see Ethier and Kurtz 1986, pp. 96–103. Since we
obtain a metric space this way, the notions of compactness and sequential compactness are equivalent,
so that compactness ensures the existence of at least one convergent subsequence.
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The reason for focusing on the space C(X ,Y) resides in the following observation: Any
continuous65 stochastic process with index set X and state space Y can be seen as a
C(X ,Y)-valued random variable, so that Definition B.2.2 allows us to relate the property
of tightness to sequences of continuous stochastic processes. As we are primarily interested
in continuous-parameter processes, we naturally restrict the index set X to be a compact
subset of Rd for some d ∈ N and write X = K ⊂ R

d. Moreover, we consider only the
case Y = R

d̃, with the specific dimension d̃ being largely irrelevant. We therefore use the
abbreviated notation C(K) in place of C

(
K,Rd̃

)
and neglect the image space whenever it

is evident from the context. Note that C(K) is complete by default as a Banach space,
and due to the Weierstrass approximation theorem - a consequence of the more general
Stone-Weierstrass theorem - it is also separable (see Dudley 2002, p. 54 for details).
Hence, Prohorov’s theorem is applicable, so that a characterization of tightness on C(K)
simultaneously deals with relative compactness. A major benefit of this equivalence lies
in the fact that such a characterization requires knowledge only of the compact subsets
of the space C(K) itself (as opposed to the relatively compact subsets of the space of
probability measures on C(K)). The theorem of Arzelà-Ascoli provides that knowledge
and thus forms the basis of the following theorem.

Theorem B.2.4 (Tight Family of Probability Measures on C(K); Billingsley 1968, p. 55).
Let Π = {Pn : n ∈ N} be a sequence of probability measures on the Banach space C(K).
The family Π is tight if and only if these two conditions hold:

(i) There exists a θ0 ∈ K such that for each η > 0, there exists an a > 0 with

Pn ({f : ‖f(θ0)‖ > a}) ≤ η , for all n ∈ N .

(ii) For each η > 0 and ε > 0, there exists a δ > 0 and an n0 ∈ N such that

Pn

({
f : sup

‖x−y‖<δ

‖f(x)− f(y)‖ ≥ ε
})
≤ η , for all n ≥ n0 .

Proof. The proof comes as a direct application of Arzelà-Ascoli’s theorem and can be
found in Billingsley 1968, p. 55 for the special case K = [0, 1] ⊂ R. As a side result,
one finds that condition (i) must hold for arbitrary θ0 ∈ K, which is why only θ0 = 0 is
considered in the proof quoted above66.

Applying Theorem B.2.4 to a sequence of image measures like in the Definition B.2.2
yields a useful corollary.

Corollary B.2.5 (Tight Sequences of C(K)-Valued Random Variables; Billingsley 1968,
p. 58).
A sequence (Xn)n∈N of random variables taking values in the space C(K) is tight if and
only if these two conditions hold:

(i) There exists a θ0 ∈ K such that for each η > 0, there exists an a > 0 with

P (‖Xn(θ0)‖ > a) ≤ η , for all n ∈ N . (B.21)
65Formally, Definition A.2 only covers the case where the index set I is an interval, but can be easily

extended to general topological spaces.
66Although this observation is of less interest to us, condition (i) simply states that the sequence

{Pn ◦ π−1
θ0

: n ∈ N} of probability measures on B (R) is tight, where πθ0
(f) = f(θ0).
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(ii) For each η > 0 and ε > 0, there exists a δ > 0 and an n0 ∈ N such that

P

(
sup

‖x−y‖<δ

‖Xn(x)−Xn(y)‖ ≥ ε
)
≤ η , for all n ≥ n0 . (B.22)

Corollary B.2.5 stipulates that in order to be tight, the continuous stochastic processes
Xn need to - in a probabilistic sense - be locally bounded and not oscillate too violently
(cf. Billingsley 1968, p. 58). With this practical interpretation in mind, a reasonable intent
to adduce the concept of tightness can be illustrated by asking (and partially answering)
the following question:
Suppose that we are given a sequence (Xn)n∈N of continuous stochastic processes (i.e.,
random variables taking values in the space C(K) for some compact subset K ⊂ R

d).
Moreover, we assume that we have a sequence (θn)n∈N of random variables converging in
K towards θ0. Under what conditions can we then conclude that, in some sense67,

Xn (θn)−Xn (θ0) −→ 0 (n→∞) (B.23)

holds? Since θn → θ0 by assumption, it should suffice - heuristically speaking - if the
random functions Xn do not oscillate excessively. However, this heuristic coincides
precisely with the above interpretation of Equation (B.22). It is therefore no surprise
that the tightness of the sequence (Xn)n∈N would in fact ensure the convergence (in
probability) from Equation (B.23), at least given that θn → θ0 almost surely as n→∞.
Indeed, the property of tightness seems unnecessarily potent and we often conclude that
proving tightness is more challenging than directly validating the above convergence, as
seen in Subsection 3.3. To address this concern, one often resorts to the easily verifiable
tightness criterion of Kolmogorov, that we formulate here for the case where K = [0, 1]d

is the d-dimensional unit cube.

Theorem B.2.6 (Kolmogorov’s Tightness Criterion; cf. Billingsley 1968, p. 95).
The sequence (Xn)n∈N of random variables taking values in the space C

(
[0, 1]d

)
is tight

if it satisfies these two conditions:

(i) There exists a θ0 ∈ [0, 1]d such that for each η > 0, there exists an a > 0 with

P (‖Xn(θ0)‖ > a) ≤ η , for all n ∈ N . (B.24)

(ii) There exist constants ν > 0 and α > 0 such that

E ‖Xn(x)−Xn(y)‖2 ≤ ν ‖x− y‖d+α , for all x, y ∈ [0, 1]d and n ∈ N . (B.25)

Proof. The one-dimensional case d = 1 is contained in Theorem 12.3 of Billingsley 1968,
p. 95, where one chooses γ = 2 and F = id. The cited source also serves as the main
reference for tightness tools and techniques in the article Kopperschmidt and Stute 2013,
p. 1289. While they also refer to Bickel and Wichura 1971 for multiparameter processes,
we will later find that their condition is not sufficient to derive a moment condition
independent of the dimension d (cf. the exponent from Equation (B.25)). We will instead
draw on the multi-dimensional generalization from Kunita 1990, p. 38. Adapted to our

67Note that we have not yet specified the type of convergence, neither for the sequence (θn)n∈N
, nor the

following Equation (B.23).
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situation, their associated Theorem 1.4.7 replaces conditions (i) and (ii) above with the
following:

(i*) There exists a constant η > 0 such that

E ‖Xn(x)‖2 ≤ η , for all x ∈ [0, 1]d and n ∈ N .

(ii*) There exist constants ν > 0 and α1, . . . , αd > 0 with
∑d

i=1 α
−1
i < 1 such that

E ‖Xn(x)−Xn(y)‖2 ≤ ν
(

d∑

i=1

|xi − yi|αi

)
, for all x, y ∈ [0, 1]d and n ∈ N .

If in condition (ii*) we choose αi = d+ α for i = 1, . . . , d, then

ν

(
d∑

i=1

|xi − yi|αi

)
= ν ‖x− y‖d+α

d+α ,

so condition (ii) implies (ii*) by the equivalence of norms on R
d. Furthermore, condition

(i*) is only used to obtain condition (i) by virtue of the Markov inequality. Overall, the
statement from Theorem 1.4.7 therefore holds even if conditions (i) and (ii) are used instead.
The full proof can be found in Kunita 1990, pp. 38–39. We refrain from reproducing their
proof, because it is rather technical and requires a variant of Kolmogorov’s continuity
criterion (cf. Kunita 1990, pp. 31–35), which lends its name to the tightness criterion we
consider here. Additionally, the techniques used revolve around Hölder continuity, which
is of no further relevance to us.

The primary purpose of considering tightness was to determine conditions under which
the convergence in Equation (B.23) could be guaranteed. With Kolmogorov’s tightness
criterion in mind, we now conclude the subsection by stating that this convergence
basically holds by virtue of a straightforward moment condition and leave behind the
more abstract notion of tightness in the process.

Lemma B.2.7.
Let (Xn)n∈N be a tight sequence of random variables taking values in the space C(K).
Furthermore, let (θn)n∈N ⊂ K be another sequence of random variables that converges
P-almost surely to θ0 ∈ K. Then,

Xn (θn)−Xn (θ0)
P−→ 0 (n→∞) . (B.26)

Proof. In order to prove Lemma B.2.7, we need to show that for all ε > 0 we have

lim
n→∞

P (‖Xn (θn)−Xn (θ0)‖ ≥ ε) = 0 . (B.27)

For any η > 0, there exist δ > 0 and n0 ∈ N with

P

(
sup

θ∈Bδ(θ0)
‖Xn (θ)−Xn (θ0)‖ ≥ ε

)

≤ P

(
sup

‖θ−θ′‖<δ

∥∥Xn (θ)−Xn

(
θ′
)∥∥ ≥ ε

)
≤ η

2
, for all n ≥ n0 , (B.28)
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because Inequality (B.22) holds according to the prerequisite. The P-almost sure conver-
gence of (θn)n∈N to θ0 implies that, given δ > 0, there exists n1 ∈ N such that

P (‖θn − θ0‖ < δ for all n ≥ n1) ≥ 1− η

2
, (B.29)

see Bauer 1996, p. 32 for a reference on this elementary property. For n ≥ max {n0, n1},
the combination of Equations (B.28) and (B.29) yields:

P (‖Xn (θn)−Xn (θ0)‖ ≥ ε)
= P

({
‖Xn (θn)−Xn (θ0)‖ ≥ ε

}
∩
{
‖θm − θ0‖ < δ for all m ≥ n1

}

︸ ︷︷ ︸
holds for m = n, since n ≥ n1.

)

+ P

({
‖Xn (θn)−Xn (θ0)‖ ≥ ε

}
∩
{
‖θm − θ0‖ < δ for all m ≥ n1

}∁)

≤ P

({
‖Xn (θn)−Xn (θ0)‖ ≥ ε

}
∩
{
‖θn − θ0‖ < δ

})

+ P

({
‖θm − θ0‖ < δ for all m ≥ n1

}∁)

︸ ︷︷ ︸
≤ η

2
by virtue of Equation (B.29).

≤ P

(
sup

θ∈Bδ(θ0)
‖Xn (θ)−Xn (θ0)‖ ≥ ε

)

︸ ︷︷ ︸
≤ η

2
by Equation (B.28), since n ≥ n0.

+
η

2
≤ η .

Since η was chosen arbitrarily, convergence in Equation (B.27) thus follows and so does
the assertion.

We end this detour into the topic of tightness by noting that the results shown are of
secondary use to us. In Kopperschmidt and Stute 2013, the authors attempt to apply
Kolmogorov’s tightness criterion from Theorem B.2.6 and the associated Lemma B.2.7
to derive the asymptotic normality of their proposed minimum distance estimator. We
discuss in Remark 3.27 why this approach fails and the tightness of the processes involved
cannot be shown by virtue of Kolmogorov’s criterion. However, to point out the flaws in
their reasoning, a formulation of the statements used is imperative. Moreover, we can
understand Lemma B.2.7 as the essential reason for Kopperschmidt’s consideration of
tightness, in the sense that an alternative approach to proving convergence in Equation
(B.23) leads to the desired asymtptotic normality even without tightness.

B.3. Proof of the Strong Consistency of the Minimum Distance Estimator

The proof presented here is based on the abbreviated version in Kopperschmidt and
Stute 2013, pp. 1284–1288, which in turn goes back to Kopperschmidt 2005, pp. 63–80.
Furthermore, we incorporate additional details provided by the author in his master’s
thesis, Jakubzik 2017, pp. 83–99. The proof can be roughly divided into two parts:
First, we invoke the strong law of large numbers for U-statistics to derive some general
convergence statements. Then, these intermediate results are combined to show that the
minimum distance estimator θ̂n converges to the true parameter θ∗ with probability one.
Throughout the proof of not only the consistency but also the asymptotic normality of the
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minimum distance estimator, we will deal with pathwise integrals with respect to various

stochastic processes, namely the counting processes N (i), the cumulative intensities Λ
(i)
θ

and the innovation martingales M (i) = N (i)−Λ
(i)
θ∗ . In doing so, we often need to determine

the expectation of such integrals. We cite a useful lemma for this purpose, given and
proved in Kopperschmidt 2005, pp. 130–139.

B.3.1. Expectations of Pathwise Integrals

We follow the work of Kopperschmidt 2005 and start by specifying the framework. Let
X,Y and Z = Z+ − Z− be stochastic processes with common index space I = [0, τ ] ⊂ R

and the following properties:

(i) The processes Z+ and Z− are almost surely non-negative, right-continuous and
non-decreasing.

(ii) Almost surely |JX | < ∞ and |JY | < ∞ applies, where JX and JY denote the
(random) sets of discontinuities of X and Y , respectively.

(iii) If µZ+ and µZ− denote the (random) Borel measures on I induced by Z+ and Z−,
respectively, then almost surely holds:

µZ+ (JX) = µZ− (JX) = 0 . (B.30)

(iv) The following expectations exists:

E

[∫

I
|XY |d(Z++Z−

)]
<∞ . (B.31)

In this setting, the following lemma takes place.

Lemma B.3.1 (Expectations of Pathwise Integrals; Lemma A.2.3 of Kopperschmidt
2005, p. 134).

(i) Assume that Xt is independent of σ ({Ys , Zs : s ∈ I , s ≤ t}) for each t ∈ I. If

E

[∫

I
|E (X)Y |d(Z++Z−

)]
<∞ , E

(
sup
t∈I
|Xt|

)
<∞ , (B.32)

and for all t ∈ I we have

P (t ∈ JX) = P (Xt −Xt− 6= 0) = 0 , (B.33)

then

E

[∫

I
XY dZ

]
= E

[∫

I
E (X)Y dZ

]
.

(ii) Assume that Zt is independent of σ ({Xs , Ys : s ∈ I , s ≤ t}) for each t ∈ I. If

E

[∫

I
|XY |d(EZ++ EZ−

)]
<∞ , E (Zt) <∞ for all t ∈ I , (B.34)

and almost surely we have

µZ+ (JY ) = µZ− (JY ) = 0 , (B.35)
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then

E

[∫

I
XY dZ

]
= E

[∫

I
XY dEZ

]
.

Proof. A heuristic idea of proof for Lemma B.3.1 is easily obtained by looking at Riemann
approximations of the integrals involved. Since we only sketch the essential approach, we
limit ourselves to part (i). Let (Sn)n∈N be a sequence of partitions of I, so that

Sn = {0 = sn,0 < sn,1 < . . . < sn,qn = τ}

satisfies
max

i=1,...,qn

(sn,i − sn,i−1) −→ 0 (n→∞),

where (qn)n∈N ⊂ N is an increasing sequence. Then, for sufficiently large n ∈ N,

E

[∫

I
XY dZ

]
≈ E

[
n∑

i=1

Xsn,i−1Ysn,i−1

(
Zsn,i

− Zsn,i−1

)]

=
n∑

i=1

E

[
Xsn,i−1Ysn,i−1

(
Zsn,i

− Zsn,i−1

)]

=
n∑

i=1

E

[
E

(
Xsn,i−1Ysn,i−1

(
Zsn,i

− Zsn,i−1

) ∣∣σ ({Ys , Zs : s ≤ sn,i})
)]

=
n∑

i=1

E

[
Ysn,i−1

(
Zsn,i

− Zsn,i−1

)
E

(
Xsn,i−1

∣∣σ ({Ys , Zs : s ≤ sn,i})
)

︸ ︷︷ ︸
=E(Xsn,i−1)

]

=
n∑

i=1

E

[
E

(
Xsn,i−1

)
Ysn,i−1

(
Zsn,i

− Zsn,i−1

)]

= E

[
n∑

i=1

E

(
Xsn,i−1

)
Ysn,i−1

(
Zsn,i

− Zsn,i−1

)]

≈ E

[∫

I
E(X)Y dZ

]
,

by virtue of the tower property. However, we cannot ensure the convergence of the
Riemann sum to the integral here because we did not account for the discontinuities of
X, Y and Z. The difficulty lies in finding a suitable partition of I. In his Lemma A.2.2
on pages 131 to 134, Kopperschmidt 2005 addresses this issue and validates the desired
convergence of the constructed (Darboux-)Riemann sum to the corresponding integral.
Lemma A.2.3 then emerges as a corollary of this lemma, basically applying the above
heuristic in a mathematically rigorous way. The formal proof is technical and is omitted
here, but can be found in Kopperschmidt 2005, pp. 134–139.

B.3.2. Implications of the Strong Law of Large Numbers for U-Statistics

We now begin the first part of the proof by stating the strong law of large numbers for
U-statistics. For this purpose we have to introduce a few more terms: mainly the Polish
spaces and the U-statistics themselves, but also the standard Borel spaces.
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Definition B.3.2 (Polish Space; Klenke 2020, p. 209).
A topological space (E, T ) is called a Polish space if it is separable and its topology is
induced by a complete metric.

The Polish space we encounter the most is the Banach space
(
R

d, ‖·‖
)

for some d ∈ N.

Another prominent example is the Skorokhod space of càdlàg functions.

Definition B.3.3 (Skorokhod Space; cf. Billingsley 1968, pp. 109–113).
Let I = [0, τ ] ⊂ R. Let D (I) be the space of càdlàg functions on I, that is, the space of
functions x : I → R that are right-continuous and have left-hand limits:

(i) For all t ∈ [0, τ), x(t+) = lim
s↓t

x(s) exists and x(t+) = x(t).

(ii) For all t ∈ (0, τ ], x(t−) = lim
s↑t

x(s) exists.

Let Γ denote the class of strictly increasing, continuous mappings of I onto itself. For
γ ∈ Γ, we define:

‖γ‖ := sup
s 6=t

∣∣∣∣log
γ(t)− γ(s)

t− s

∣∣∣∣ .

Then, a metric d on D (I) is given by

d (x, y) := inf
γ∈Γ

max

{
‖γ‖ , sup

t∈I
|x(t)− y (γ(t))|

}
. (B.36)

If Td is the topology induced by d, the topological space (D (I) , Td) is a Polish space called
Skorokhod space.

Remark B.3.4 (Technical Details Regarding the Skorokhod Space).

(i) It is shown in Billingsley 1968, pp. 111–113, that d given by Equation (B.36) indeed
defines a metric on D (I).

(ii) In the definition of the space D (I), the codomain R can be replaced by any metric
space (E, dE). Ethier and Kurtz 1986, pp. 121–122, show that if (E, dE) is a
Polish space, the same holds for (D (I) , Td). The case E = R is again discussed in
Billingsley 1968, pp. 112–116.

(iii) The Skorokhod space is named after the topology introduced by Skorokhod, see
Skorokhod 1956, p. 265. This topology is also induced by a more easily interpretable
metric, which, however, is not complete (Billingsley 1968, pp. 111–112).

The introduction of the Skorokhod space enables a crucial change in perspective: we
can now conceive of counting processes as well as their compensators and innovation
martingales as D (I)-valued random elements. Moreover, we will recognize that any
random element in a Polish space can be treated like a real-valued random variable. We
can therefore draw on the familiar repertoire of methods - such as the strong law of
large numbers - when dealing with such stochastic processes. We concretize this train of
thought with the help of (standard) Borel spaces.

Definition B.3.5 (Isomorphic Measurable Spaces; Klenke 2020, p. 208).
Two measurable spaces (E, E) and (E′, E ′) are called isomorphic if there exists a bijective
map φ : E → E′ such that φ is E − E ′-measurable and the inverse map φ−1 is E ′ − E-
measurable.
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Definition B.3.6 ((Standard) Borel Space; Klenke 2020, p. 208).
A measurable space (E, E) is called a (standard) Borel space if there exists a Borel set
B ∈ B(R) such that (E, E) and (B,B(B)) are isomorphic.

We occasionally add the term “standard” to avoid confusion with measurable spaces
equipped with the Borel σ-algebra induced by a topology (which are not necessarily Borel
spaces in the sense of Definition B.3.6). However, an essential insight is that every Polish
Space is in fact a Borel space.

Theorem B.3.7 (Polish Spaces as Standard Borel Spaces; Klenke 2020, p. 209).
Let (E, T ) be a Polish space and E = B (T ) the Borel σ-algebra induced by T . Then (E, E)
is a standard Borel space.

Proof. The result is a special case of the more general Theorem 2.12 from Parthasarathy
1967, p. 14. It states that two Borel sets of Polish spaces are isomorphic if and only if they
have the same cardinality. For the detailed proof, see Parthasarathy 1967, pp. 7–14.

We have now completed the necessary preparations to move on to U-statistics. They
were first considered by Wassily Hoeffding, the chosen name indicating the unbiased
nature of the statistic, see Hoeffding 1948, p. 293.

Definition B.3.8 (U-Statistic; cf. Hoeffding 1948, pp. 296–297 and Lee 1990, pp. 2, 7–8).

Let X = (Xn)n∈N be a sequence of independent and identically distributed random variables
taking values in a measurable space (E, E). Furthermore, let m ∈ N and denote by
Em = E×. . .×E the m-fold Cartesian product of E. If we equip Em with the corresponding
product σ-algebra, that is,

Em :=
m⊗

i=1

E ,

then (Em, Em) is a measurable space. For n ≥ m, let (n,m) be the set of all injective
mappings from {1, . . . ,m} to {1, . . . , n}:

(n,m) := {τ : {1, . . . ,m} → {1, . . . , n} : τ(i) 6= τ(j) for i 6= j , 1 ≤ i, j ≤ m} .

Let ψ : (Em, Em)→ (R,B (R)) be a measurable function and define

un

(
(xk)k∈N

)
:=

(n−m)!

n!

∑

τ∈(n,m)

ψ
(
xτ(1), . . . , xτ(m)

)
, m ≤ n ∈ N . (B.37)

Then, Un := un ◦X is called a U-statistic with m-dimensional kernel ψ.

In the literature, Equation (B.37) is expressed in various ways. For instance, the
U-statistic Un is commonly given as

Un =
(n−m)!

n!

∑
ψ (Xi1 , . . . , Xim) , (B.38)

where the sum is extended over all permutations (i1, . . . , im) of m different integers,
1 ≤ ij ≤ n (see Hoeffding 1948, p. 293 and Kopperschmidt and Stute 2013, p. 1294).
We can now state the strong law of large numbers for U-statistics in a form suitable for
our applications.
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Theorem B.3.9 (Strong Law of Large Numbers for U-Statistics; cf. Lee 1990, p. 122).
In the situation of Definition B.3.8, assume that (E, E) is a Polish space (i.e., E = B (T )
as in Theorem B.3.7). Suppose that E |ψ (X1, . . . , Xm)| <∞. Then,

Un −→ E (ψ (X1, . . . , Xm)) (n→∞) P-almost surely. (B.39)

Proof. Several proofs are given in Lee 1990, pp. 122–131. One of these proofs is mentioned
in Kopperschmidt and Stute 2013, p. 1294 and has been discussed in detail by the author,
see Jakubzik 2017, pp. 53–64. It is carried out in 3 steps, where initially we assume that
(E, E) = (B,B (B)) for some Borel set B ∈ B (R):

1. Define Fn := σ (Uj : j ≥ n) and show that (Un,Fn)n∈N is a reverse martingale (cf.
Lee 1990, p. 112).

2. Apply Doob’s second martingale convergence theorem (see Theorem 12.14 of Klenke
2020, p. 264) to obtain

Un −→ U∞ (n→∞) P- almost surely

for some
⋂

n∈N
Fn-measurable random variable U∞.

3. Use the 0-1 law of Hewitt-Savage (see Corollary 12.19 of Klenke 2020, p. 265) to
conclude that

U∞ = E (ψ (X1, . . . , Xm)) P- almost surely.

In the general case that (E, E) is an arbitrary Polish space, according to Theorem B.3.7,
we can find a Borel set B ∈ B (R) and an isomorphism φ : (E, E)→ (B,B(B)). Defining
the kernel ψ̃ : (Bm,B(B)m)→ (R,B (R)) by

ψ̃ (x1, . . . , xm) := ψ
(
φ−1(x1), . . . , φ−1(xm)

)

and applying the above steps to the sequence (φ(Xn))n∈N instead of (Xn)n∈N yields:

Un =
(n−m)!

n!

∑

τ∈(n,m)

ψ
(
Xτ(1), . . . , Xτ(m)

)

=
(n−m)!

n!

∑

τ∈(n,m)

ψ̃
(
φ
(
Xτ(1)

)
, . . . , φ

(
Xτ(m)

))

n→∞−→ E

(
ψ̃
(
φ
(
X1
)
, . . . , φ

(
Xm

)))
= E (ψ (X1, . . . , Xm)) P-almost surely,

and hence the desired result.

Applying the strong law of large numbers for U-statistics immediately yields some
simple limit results. For this, let Bε

r (θ) be the part of the r-ball centred in θ that does
not belong to Bε (θ∗),

Bε
r (θ) :=

{
θ′ ∈ Θ \ Bε (θ∗) :

∥∥θ′ − θ
∥∥ < r

}
.
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The notation was chosen along the lines of Kopperschmidt and Stute 2013, p. 1284. See
Figure 21 for an illustration of this set.

R
d

Θ

θ∗

θ

Bε
r (θ)

r

ε

Bε (θ∗) Br (θ)

Figure 21: Illustration of the set Bε
r (θ). Note that by definition in Equation (3.6), Br (θ)

consists only of the part of the r-ball around θ that belongs to Θ.

Lemma B.3.10 (Applications of the Strong Law of Large Numbers for U-Statistics; cf.
Kopperschmidt and Stute 2013, p. 1285).
Under the assumptions of Theorem 3.7, the following limits hold P-almost surely:

lim
n→∞

1

n

n∑

i=1

sup
θ′∈Bε

r(θ)

∥∥∥N (i) − Λ
(i)
θ′

∥∥∥
2

N(i)
= E

[
sup

θ′∈Bε
r(θ)
‖N − Λθ′‖2N

]
, (B.40)

lim
n→∞

1

n(n− 1)

n∑

i,j=1
i6=j

sup
θ′∈Bε

r(θ)

∥∥∥N (i) − Λ
(i)
θ′

∥∥∥
2

N(j)
= E

[
sup

θ′∈Bε
r(θ)

∥∥∥N (1) − Λ
(1)
θ′

∥∥∥
2

N(2)

]
, (B.41)

lim
n→∞

1

n(n− 1)

n∑

i,j=1
i6=j

sup
θ′∈Bε

r(θ)
〈N (i) − Λ

(i)
θ′ , N

(j) − Λ
(j)
θ′ 〉N(i)

= E

[
sup

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(1)

]
, (B.42)

lim
n→∞

1

n(n− 1)(n− 2)

n∑

i,j,k=1
i6=j 6=k 6=i

sup
θ′∈Bε

r(θ)
〈N (i) − Λ

(i)
θ′ , N

(j) − Λ
(j)
θ′ 〉N(k)

= E

[
sup

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
, (B.43)

where ε, r > 0 and θ ∈ Θ. These limits are also valid without the supremum, that is, they
apply pointwise in θ ∈ Θ. In addition, the supremum can be replaced by an infimum.
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Because of the i.i.d. assumption, the choice of the particular indices in the above limits is
arbitrary as long as they differ appropriately.

Proof. We first recall that the counting processes N (i) can be understood as random
variables with values in the Skorokhod space (D (I) , Td). Moreover, by virtue of (C2),
the associated cumulative intensities can likewise be viewed as random variables, that is,

ω 7−→
[
(t, θ) 7→ Λ

(i)
θ (t, ω)

]
,

mapping into the Banach space C0
(I ×Θ

)
, which is Polish (see Theorem (4.19) of Kechris

1995, p. 24). Since the product of Polish spaces is again Polish (cf. Klenke 2020, p. 305),

the bivariate random variables
(
N (i),Λ

(i)
θ

)
also take values in a Polish space. For each

of the four equations (B.40) to (B.43), we construct a kernel ψ so that we can take the
left-hand sides as U-statistics and apply the corresponding strong law of large numbers:

ψ1 ((N,Λθ)) := sup
θ′∈Bε

r(θ)
‖N − Λθ′‖2N ,

ψ2

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

))
:= sup

θ′∈Bε
r(θ)

∥∥∥N (1) − Λ
(1)
θ′

∥∥∥
2

N(2)
,

ψ3

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

))
:= sup

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(1) ,

ψ4

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

)
,
(
N (3),Λ

(3)
θ

))
:= sup

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3) .

In order to apply Theorem B.3.9, we only need to check that

E |ψ1 ((N,Λθ))| <∞ ,

E

∣∣∣ψ2

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

))∣∣∣ <∞ ,

E

∣∣∣ψ3

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

))∣∣∣ <∞ ,

E

∣∣∣ψ4

((
N (1),Λ

(1)
θ

)
,
(
N (2),Λ

(2)
θ

)
,
(
N (3),Λ

(3)
θ

))∣∣∣ <∞ .

This is immediately clear from (C3), since for all θ′ ∈ Θ holds P-almost surely:

∣∣∣〈N (i) − Λ
(i)
θ′ , N

(j) − Λ
(j)
θ′ 〉N(k)

∣∣∣ =

∣∣∣∣
∫

I

(
N (i) − Λ

(i)
θ′

) (
N (j) − Λ

(j)
θ′

)
dN (k)

∣∣∣∣

≤
∫

I

∣∣∣N (i) − Λ
(i)
θ′

∣∣∣
︸ ︷︷ ︸

≤
∣∣N(i)

∣∣+
∣∣Λ(i)

θ′

∣∣≤2C

∣∣∣N (j) − Λ
(j)
θ′

∣∣∣ dN (k)

≤ 4C2
(
N (k)

τ −N (k)
0

)

≤ 4C3 <∞ , for all i, j, k ∈ N .

Since the bounds hold uniformly in θ′, they are also valid for the supremum with respect
to θ′ ∈ Bε

r (θ). The existence of the expectation then follows trivially. For the additional
statements, one simply adjusts the kernels ψ1 to ψ4 appropriately by either replacing the
supremum with an infimum or omitting it.

Kopperschmidt 2005, pp. 68–70 shows that here as elsewhere the weaker condition (C̃3)
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suffices for finiteness of the above expectations. We demonstrate this using nearly the
same techniques as before, but require Hölder’s inequality in the final step.

E

∣∣∣∣∣ sup
θ′∈Bε

r(θ)
〈N (i) − Λ

(i)
θ′ , N

(j) − Λ
(j)
θ′ 〉N(k)

∣∣∣∣∣ (B.44)

≤ E

[
sup

θ′∈Bε
r(θ)

∣∣∣〈N (i) − Λ
(i)
θ′ , N

(j) − Λ
(j)
θ′ 〉N(k)

∣∣∣
]

≤ E

[
sup

θ′∈Bε
r(θ)

∫ ∣∣∣N (i) − Λ
(i)
θ′

∣∣∣
∣∣∣N (j) − Λ

(j)
θ′

∣∣∣ dN (k)

]

≤ E

[
sup

θ′∈Bε
r(θ)

∫ (∣∣∣N (i)
∣∣∣+

∣∣∣Λ(i)
θ′

∣∣∣
) (∣∣∣N (j)

∣∣∣+
∣∣∣Λ(j)

θ′

∣∣∣
)

dN (k)

]

= E

[
sup

θ′∈Bε
r(θ)

∫
N (i)N (j) +N (i)Λ

(j)
θ′ + Λ

(i)
θ′ N

(j) + Λ
(i)
θ′ Λ

(j)
θ′ dN (k)

]

≤ E

[
sup

θ′∈Bε
r(θ)

(
N (i)

τ N (j)
τ +N (i)Λ

(j)
θ′ (τ) + Λ

(i)
θ′ (τ)N (j)

τ + Λ
(i)
θ′ (τ)Λ

(j)
θ′ (τ)

)
N (k)

τ

]

≤ E

[
sup

θ′∈Bε
r(θ)

N (i)
τ N (j)

τ N (k)
τ

]
+ E

[
sup

θ′∈Bε
r(θ)

N (i)
τ Λ

(j)
θ′ (τ)N (k)

τ

]

+ E

[
sup

θ′∈Bε
r(θ)

Λ
(i)
θ′ (τ)N (j)

τ N (k)
τ

]
+ E

[
sup

θ′∈Bε
r(θ)

Λ
(i)
θ′ (τ)Λ

(j)
θ′ (τ)N (k)

τ

]

≤
(
E

[(
N (i)

τ

)3
]
· E

[(
N (j)

τ

)3
]
· E

[(
N (k)

τ

)3
]) 1

3

+

(
E

[(
N (i)

τ

)3
]
· E
[

sup
θ′∈Bε

r(θ)

(
Λ

(j)
θ′ (τ)

)3
]
· E

[(
N (k)

τ

)3
]) 1

3

+

(
E

[
sup

θ′∈Bε
r(θ)

(
Λ

(i)
θ′ (τ)

)3
]
· E

[(
N (j)

τ

)3
]
· E

[(
N (k)

τ

)3
]) 1

3

+

(
E

[
sup

θ′∈Bε
r(θ)

(
Λ

(i)
θ′ (τ)

)3
]
· E
[

sup
θ′∈Bε

r(θ)

(
Λ

(j)
θ′ (τ)

)3
]
· E

[(
N (k)

τ

)3
]) 1

3

<∞ ,

as a consequence of Equations (3.7) and (3.8) as well as the compactness of Θ.
We now use Lemma B.3.1 to simplify the pointwise version of Equation (B.43).

Lemma B.3.11 (cf. Kopperschmidt and Stute 2013, p. 1285).
Under the assumptions of Theorem 3.7, we have

E

[
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
= ‖EΛθ∗ − EΛθ‖2EΛθ∗

. (B.45)

Proof. We apply Lemma B.3.1 three times in succession, using first part (i) twice and then
part (ii) once. We have Z = Z+ = N (3) and thus Z− = 0 across all these applications.

For X = N (1) − Λ
(1)
θ and Y = N (2) − Λ

(2)
θ , the integrability conditions of Equations

(B.31) and (B.32) are again met by assumption (C̃3) which is implied by (C3). The
discontinuities of X and Y correspond to those of N (1) and N (2), respectively, since the
cumulative intensities are (absolutely) continuous according to (M2). These jump points
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of N (1) and N (2) in I are in turn represented by the associated simple point processes
T (1) and T (2), so that we receive:

JX =
{
T

(1)
i : i ∈ N

}
∩ I , JY =

{
T

(2)
i : i ∈ N

}
∩ I .

By Remark A.6 (iii), almost surely only finitely many jumps can occur in I, so that
|JX | <∞ and |JY | <∞ follows. Now let T (3) denote the simple point process associated
with Z = N (3). Due to the continuous finite-dimensional distribution of the stochastically
independent point processes T (1), T (2) and T (3), with probability 1 the paths of N (1),
N (2) and N (3) have no common discontinuity points, see Lemma A.37. This implies both
the conditions from Equation (B.30) and Equation (B.33), so all preconditions of Lemma
B.3.1 are fulfilled. The application of part (i) yields:

E

[
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
= E

[〈
E
(
N (1) − Λ

(1)
θ

)
, N (2) − Λ

(2)
θ

〉
N(3)

]

= E

[〈
EΛθ∗ − EΛθ, N

(2) − Λ
(2)
θ

〉
N(3)

]
. (B.46)

Repeating the above steps - that EΛθ∗−EΛθ is a continuous function according to Remark
3.6 further facilitates checking the premises of Lemma B.3.1 - results in

E

[〈
EΛθ∗ − EΛθ, N

(2) − Λ
(2)
θ

〉
N(3)

]
= E

[〈
EΛθ∗ − EΛθ,EΛθ∗ − EΛθ

〉
N(3)

]

= E

[
‖EΛθ∗ − EΛθ‖2N(3)

]
. (B.47)

We conclude the proof by applying part (ii) of Lemma B.3.1 to obtain:

E

[
‖EΛθ∗ − EΛθ‖2N(3)

]
= E

[
‖EΛθ∗ − EΛθ‖2EΛθ∗

]

= ‖EΛθ∗ − EΛθ‖2EΛθ∗
, (B.48)

and combining Equations (B.46) through (B.48) yields the desired result.

Before we move on to the next part of the proof, we give an extension of Lemma B.3.11
that accounts for the supremum in Equation (B.43).

Lemma B.3.12 (cf. Kopperschmidt and Stute 2013, p. 1286).
For given ε > 0 and δ > 0, and for each θ ∈ Θ \ Bε (θ∗), there exists r > 0 such that

∣∣∣∣∣E
[

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− inf

θ′∈Bε
r(θ)
‖EΛθ∗ − EΛθ′‖2

EΛθ∗

∣∣∣∣∣ ≤ δ , (B.49)

∣∣∣∣∣E
[

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ , (B.50)

∣∣∣∣∣E
[

inf
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− inf

θ′∈Bε
r(θ)
‖EΛθ∗ − EΛθ′‖2

EΛθ∗

∣∣∣∣∣ ≤ δ , (B.51)

∣∣∣∣∣E
[

inf
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ . (B.52)
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Proof. By the dominated convergence theorem using condition (C̃3), the process

θ 7→ 〈N (1) − Λ
(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

is continuous due to the continuity condition (C2). Let ε > 0 and δ > 0 be given. For
any θ ∈ Θ \ Bε (θ∗), we thus have as r ↓ 0:

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3) ↓ 〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3) ,

inf
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3) ↑ 〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3) .

The application of Beppo Levi’s monotone convergence theorem yields in conjunction
with Lemma B.3.11:

lim
r↓0

E

[
sup

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]

= E

[
lim
r↓0

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]

= E

[
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
= ‖EΛθ∗ − EΛθ‖2EΛθ∗

,

and likewise

lim
r↓0

E

[
inf

θ′∈Bε
r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
= ‖EΛθ∗ − EΛθ‖2EΛθ∗

.

Consequently, there exists r1 > 0 such that for all 0 < r < r1 holds simultaneously:

∣∣∣∣∣E
[

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ ,
∣∣∣∣∣E
[

inf
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ ,

which proves Equations (B.50) and (B.52). The rest of the proof proceeds analogously,
exploiting the continuity of the process

θ 7→ ‖EΛθ∗ − EΛθ‖2EΛθ∗
, (B.53)

which can again be attributed to the continuity condition (C2) by means of the dominated
convergence theorem: For any θ ∈ Θ, we have by the moment condition (C̃3) that

‖EΛθ∗ − EΛθ‖2EΛθ∗
=

∫

I
(EΛθ∗ − EΛθ)2 dEΛθ∗

≤ 2E

[
sup
θ∈Θ

(Λθ(τ))2
] ∫

I
dEΛθ∗

= 2E

[
sup
θ∈Θ

(Λθ(τ))2
]
EΛθ∗(τ) <∞ ,

257



and hence the continuity in Equation (B.53) results. As before, we observe for r ↓ 0:

inf
θ′∈Bε

r(θ)
‖EΛθ∗ − EΛθ′‖2

EΛθ∗
↑ ‖EΛθ∗ − EΛθ‖2EΛθ∗

. (B.54)

If we then choose r2 > 0, such that for all 0 < r < r2 holds simultaneously:

∣∣∣∣∣E
[

sup
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ

2
,

∣∣∣∣∣E
[

inf
θ′∈Bε

r(θ)
〈N (1) − Λ

(1)
θ′ , N

(2) − Λ
(2)
θ′ 〉N(3)

]
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ

2
,

∣∣∣∣∣ inf
θ′∈Bε

r(θ)
‖EΛθ∗ − EΛθ′‖2

EΛθ∗
− ‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ

2
,

from where Equations (B.49) and (B.51) follow by the triangle inequality.

B.3.3. Further Steps of Proof

We begin the second part of the proof by determining the limit of the Cramér-von Mises
distance used to define the minimum distance estimator θ̂n. We will see that, P-almost
surely, ∥∥∥N (n) − Λ

(n)
θ

∥∥∥
2

N
(n) −→ ‖EΛθ∗ − EΛθ‖2EΛθ∗

(n→∞) . (B.55)

By definition, θ̂n minimizes the left-hand side of Equation (B.55), whereas θ∗ minimizes
its right-hand side. We then want to conclude that the almost sure convergence carries
over to the sequence

(
θ̂n

)
n∈N

of minimum distance estimators. A few more steps are
needed for this, but we start with a proof of Equation (B.55).

Lemma B.3.13 (Limit of the Cramér-von Mises Distance; Kopperschmidt and Stute
2013, p. 1286).
For each θ ∈ Θ, P-almost surely holds:

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) −→ ‖EΛθ∗ − EΛθ‖2EΛθ∗

(n→∞) .

Proof. Upon closer examination of the Cramér-von Mises distance, it becomes apparent
that it is suitable for an application of Lemma B.3.10:

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) =

∫

I

[
N

(n) − Λ
(n)
θ

]2
dN

(n)

=
1

n

n∑

k=1

∫

I

[
1

n

n∑

i=1

N (i) − 1

n

n∑

i=1

Λ
(i)
θ

]2

dN (k)

=
1

n3

n∑

k=1

∫

I

[
n∑

i=1

(
N (i) − Λ

(i)
θ

)]2

dN (k)

=
1

n3

n∑

i=1

n∑

j=1

n∑

k=1

∫

I

(
N (i) − Λ

(i)
θ

) (
N (j) − Λ

(j)
θ

)
dN (k)

=
1

n3

n∑

i,j,k=1

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k) .
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We split this sum into sub-sums in order to apply the pointwise versions of Equations
(B.40) through (B.43):

1

n3

n∑

i,j,k=1

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

=
1

n3

n∑

i=1

∥∥∥N (i) − Λ
(i)
θ

∥∥∥
2

N(i)

︸ ︷︷ ︸
=O(n) by Eq. (B.40)

(B.56)

+
1

n3

n∑

i,k=1
i6=k

∥∥∥N (i) − Λ
(i)
θ

∥∥∥
2

N(k)

︸ ︷︷ ︸
=O(n2) by Eq. (B.41)

(B.57)

+
2

n3

n∑

i,j=1
i6=j

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(i)

︸ ︷︷ ︸
=O(n2) by Eq. (B.42)

(B.58)

+
1

n3

n∑

i,j,k=1
i6=j 6=k 6=i

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k) . (B.59)

By virtue of the standardizing factor n−3, applying Equations (B.40), (B.41) and (B.42)
to (B.56), (B.57) and (B.58) thus yields almost sure convergence of the corresponding
terms to 0. For the remaining summand in Equation (B.59), Equation (B.43) and Lemma
B.3.11 provide almost surely:

1

n3

n∑

i,j,k=1
i6=j 6=k 6=i

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

=
n(n− 1)(n− 2)

n3
︸ ︷︷ ︸
→1 (n→∞)

· 1

n(n− 1)(n− 2)

n∑

i,j,k=1
i6=j 6=k 6=i

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

−→ E

[
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
= ‖EΛθ∗ − EΛθ‖2EΛθ∗

(n→∞) ,

which proves the claimed convergence of the Cramér-von Mises distance.

In calculating the minimum distance estimator, the infimum of the Cramér-von Mises
distance is needed. As a result, we require a uniform version of Lemma B.3.13. The above
computations will serve as a blueprint for the essential steps of its proof.

Lemma B.3.14 (Uniform Limit of the Cramér-von Mises Distance; Kopperschmidt and
Stute 2013, p. 1287).
For each ε > 0, P-almost surely holds:

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) −→ inf

θ : ‖θ−θ∗‖≥ε
‖EΛθ∗ − EΛθ‖2EΛθ∗

(n→∞) .

Proof. In order to prove Lemma B.3.14, we will show that for all ε > 0 and all δ > 0 we
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have P-almost surely:

lim sup
n→∞

∣∣∣∣∣ inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ : ‖θ−θ∗‖≥ε
‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ . (B.60)

Let therefore ε > 0 and δ > 0 be given. By Lemma B.3.12, for each θ ∈ Θ \ Bε (θ∗) there
exists r = r(θ) > 0 such that the Equations (B.49) and (B.51) hold simultaneously. Then,

⋃

θ∈Θ\Bε(θ∗)

Bε
r(θ) (θ) = Θ \ Bε (θ∗)

is an open cover of the compact set Θ\Bε (θ∗). Consequently, there exists a finite subcover
and we can find θ1, . . . , θq ∈ Θ \ Bε (θ∗) such that

q⋃

p=1

Bε
r(θp) (θp) = Θ \ Bε (θ∗) .

We set rp := r(θp) and deduce:

∣∣∣∣∣ inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ : ‖θ−θ∗‖≥ε
‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣

=

∣∣∣∣∣ min
1≤p≤q

inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − min

1≤p≤q
inf

θ∈Bε
rp

(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣

≤ max
1≤p≤q

∣∣∣∣∣ inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ∈Bε
rp

(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ , (B.61)

where we used that for any positive real numbers a1, . . . , aq and b1, . . . , bq we have:

∣∣∣∣ min
1≤p≤q

ap − min
1≤p≤q

bp

∣∣∣∣ ≤ max
1≤p≤q

|ap − bp| .

For this, without loss of generality, let min
1≤p≤q

ap ≥ min
1≤p≤q

bp and p0 = arg min
1≤p≤q

bp, so that

∣∣∣∣ min
1≤p≤q

ap − min
1≤p≤q

bp

∣∣∣∣ = min
1≤p≤q

ap − bp0 ≤ ap0 − bp0 = |ap0 − bp0 | ≤ max
1≤p≤q

|ap − bp| .

From Equation (B.61) we can conclude that Equation (B.60) is satisfied if for all 1 ≤ p ≤ q
holds P-almost surely:

lim sup
n→∞

∣∣∣∣∣ inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ∈Bε
rp

(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣∣∣ ≤ δ . (B.62)

Retracing the proof of Lemma B.3.13, we get P-almost surely:

inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) = inf

θ∈Bε
rp

(θp)

1

n3

n∑

i,j,k=1

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

≤ 1

n3

n∑

i,j,k=1

sup
θ∈Bε

rp
(θp)
〈N (i) − Λ

(i)
θ , N (j) − Λ

(j)
θ 〉N(k)
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≤ 1

n(n− 1)(n− 2)

∑

i6=j 6=k 6=i

sup
θ∈Bε

rp
(θp)
〈N (i) − Λ

(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

+
1

n3
O(n2)

−→ E

[
sup

θ∈Bε
rp

(θp)
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
(n→∞) ,

where once again Lemma B.3.10 grants that the sub-sum over partially matching indices
is of order n2 and hence negligible. Analogously, the additional statement of Lemma
B.3.10 regarding the infimum yields:

inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) = inf

θ∈Bε
rp

(θp)

1

n3

n∑

i,j,k=1

〈N (i) − Λ
(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

≥ 1

n3

n∑

i,j,k=1

inf
θ∈Bε

rp
(θp)
〈N (i) − Λ

(i)
θ , N (j) − Λ

(j)
θ 〉N(k)

−→ E

[
inf

θ∈Bε
rp

(θp)
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]
(n→∞) .

Since the radii r1, . . . , rq were chosen appropriately so that the Equations (B.49) and
(B.51) are satisfied, the combination of the above estimates provides

inf
θ∈Bε

rp
(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

− δ

≤ E

[
inf

θ∈Bε
rp

(θp)
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]

≤ lim inf
n→∞

inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n)

≤ lim sup
n→∞

inf
θ∈Bε

rp
(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n)

≤ E

[
sup

θ∈Bε
rp

(θp)
〈N (1) − Λ

(1)
θ , N (2) − Λ

(2)
θ 〉N(3)

]

≤ inf
θ∈Bε

rp
(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

+ δ ,

and in particular we obtain:

−δ ≤ lim inf
n→∞

(
inf

θ∈Bε
rp

(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ∈Bε
rp

(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

)

≤ lim sup
n→∞

(
inf

θ∈Bε
rp

(θp)

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
2

N
(n) − inf

θ∈Bε
rp

(θp)
‖EΛθ∗ − EΛθ‖2EΛθ∗

)
≤ δ ,

which in turn implies Equation (B.62), completing the proof.
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B.3.4. Completion of the Consistency Proof

Lemma B.3.14 paved the way for the proof of Theorem 3.7. We now combine the previous
results to infer the consistency of the minimum distance estimator.

Proof of Theorem 3.7. Let ε > 0 be given. By definition of the minimum distance
estimator θ̂n,

∥∥θ̂n − θ∗
∥∥ ≥ ε is valid only if the infimum of the function

θ 7−→
∥∥∥N (n) − Λ

(n)
θ

∥∥∥
N

(n)

over Θ \ Bε (θ∗) is smaller than its infimum over Bε (θ∗). We hence obtain the inclusions:

{∥∥θ̂n − θ∗
∥∥ ≥ ε

}
⊂
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) < inf
θ : ‖θ−θ∗‖<ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n)

︸ ︷︷ ︸
≤

∥∥∥N
(n)
−Λ

(n)

θ∗

∥∥∥
N

(n)

}

⊂
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n)

}
. (B.63)

According to Lemma B.3.14 and the identifiability condition (C1), P-almost surely holds:

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) −→ inf
θ : ‖θ−θ∗‖≥ε

‖EΛθ∗ − EΛθ‖2EΛθ∗
=: δ > 0 (n→∞) ,

while Lemma B.3.13 yields that

∥∥∥N (n) − Λ
(n)
θ∗

∥∥∥
N

(n) −→ 0 (n→∞) . (B.64)

The combination of these limits then ensures that the set considered in Equation (B.63)
converges to a P-null set. Formally, we first compute:

{
inf

θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n)

}

=
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n) ,
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n) ≤
δ

2

}

∪
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n) ,
∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n) >
δ

2

}

⊂
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
δ

2

}
∪
{∥∥∥N (n) − Λ

(n)
θ∗

∥∥∥
N

(n) >
δ

2

}
. (B.65)

For the second set from Equation (B.65), the P-almost sure convergence given in Equation
(B.64) yields:

P

(
lim sup

n→∞

{∥∥∥N (n) − Λ
(n)
θ∗

∥∥∥
N

(n) >
δ

2

})
= 0 . (B.66)

To deal with the remaining set from Equation (B.65), we subtract δ on both sides and
conclude:

{
inf

θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) <
δ

2

}
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=
{

inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) − inf
θ : ‖θ−θ∗‖≥ε

‖EΛθ∗ − EΛθ‖2EΛθ∗

︸ ︷︷ ︸
=δ by definition.

< −δ
2

}

⊂
{∣∣∣ inf

θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) − inf
θ : ‖θ−θ∗‖≥ε

‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣ >
δ

2

}
.

Reapplying Lemma B.3.14 then provides:

P

(
lim sup

n→∞

{∣∣∣ inf
θ : ‖θ−θ∗‖≥ε

∥∥∥N (n) − Λ
(n)
θ

∥∥∥
N

(n) − inf
θ : ‖θ−θ∗‖≥ε

‖EΛθ∗ − EΛθ‖2EΛθ∗

∣∣∣ >
δ

2

})
= 0 .

(B.67)
From here, by consecutively employing Equations (B.63), (B.65), (B.66) and (B.67), we
deduce that

P

(
lim sup

n→∞

{∥∥θ̂n − θ∗
∥∥ ≥ ε

})
= 0 ,

which proves the consistency of the minimum distance estimator.

B.4. Complementary Notes for the Proof of the Asymptotic Normality of
the Minimum Distance Estimator

B.4.1. Applications of the Continuous Mapping Theorem

When studying the asymptotic behavior of estimators, we often deal with transformations
of random variable sequences with known limits. For example, if g is a continuous function,
the continuous mapping theorem (see Billingsley 1968, p. 31) states that it follows from

Xn
P→ X that g (Xn)

P→ g(X). However, this apparently requires that the admissible
domain of the function g includes the range of the Xn, which in practice may not be
satisfied: Take for instance a sequence of random matrices in R

d×d and consider the
inversion mapping on the open subspace of invertible matrices, that is, the general linear
group GLd(R). While said mapping is continuous, the continuous mapping theorem
cannot be applied unless the invertibility of the Xn can be ensured (which is not possible
in general due to stochastic convergence). Nevertheless, if the limit X is (almost certainly)
invertible, it is plausible that this should also hold for Xn as long as n is sufficiently large
- at least in a stochastic sense. For the special case of X being deterministic, we show
this intuition to be true in Corollary B.4.2. Before doing so, a more general result is
formulated and proved in the following Lemma.

Lemma B.4.1 (Continuous Mapping Theorem for Functions of Restricted Domain).
Let (An)n∈N be a sequence of random variables taking values in a metric space S. Suppose
that

An
P−→ A as n→∞ , (B.68)

where A ∈ S is deterministic. Furthermore, let T denote another metric space and for
S′ ⊂ S consider a Borel-measurable function g : S′ → T . If A is an inner point of S′ and
g is continuous at A, then

g̃ (An) := g (An) · 1{An∈S′}
P−→ g(A) as n→∞ . (B.69)

Proof. First, it should be mentioned that the notation used in Equation (B.69) is not
mathematically rigorous, but is considered an abbreviated version of the formally preferable

263



case distinction

g̃ (An) :=

{
g (An) , An ∈ S′ ,
0 , An /∈ S′ .

(B.70)

It can be seen from Equation (B.70) that g̃ extends the function g to S by setting g̃ ≡ 0
on S \ S′. The particular value 0 is chosen arbitrarily and has no further meaning for us.
Let dS and dT denote the metrics on S and T , respectively. Since A is an inner point of
S′, there exists δ > 0 such that Bδ (A) ⊂ S′. Accordingly,

P
(
An /∈ S′) ≤ P (An /∈ Bδ (A)) = P (dS (An, A) ≥ δ) n→∞−→ 0 , (B.71)

by the assumption of Equation (B.68). Let ε > 0 and observe:

P (dT (g̃ (An) , g(A)) ≥ ε) = P
(
dT (g̃ (An) , g(A)) ≥ ε ,An ∈ S′

)

+ P
(
dT (g̃ (An) , g(A)) ≥ ε ,An /∈ S′)

≤ P
(
dT (g (An) , g(A)) ≥ ε ,An ∈ S′

)
+ P

(
An /∈ S′) . (B.72)

By Equation (B.71), the second summand of Equation (B.72) tends to 0 as n → ∞.
For the remainder, one proceeds as in the continuous mapping theorem by utilizing the
continuity of g at A. For each given ε > 0, there again exists δ > 0 such that for all
A′ ∈ S′ we have:

dS(A′, A) < δ =⇒ dT

(
g
(
A′
)
, g
(
A
))
< ε .

Substituting the contrapositive into Equation (B.72) yields:

P
(
dT (g (An) , g(A)) ≥ ε ,An ∈ S′

) ≤ P
(
dS (An, A) ≥ δ , An ∈ S′

)

≤ P (dS (An, A) ≥ δ) n→∞−→ 0 ,

and hence the desired result.

We now return to the application of Lemma B.4.1 indicated earlier.

Corollary B.4.2 (Limit of an Inverse Matrix Sequence).
Let d ∈ N and consider a sequence of random matrices (An)n∈N in R

d×d. Suppose that
(An)n∈N converges in probability to an invertible (deterministic) matrix A ∈ R

d×d. Then,

A−1
n · 1{An is invertible.}

P−→ A−1 as n→∞ . (B.73)

Proof. The proof boils down to a simple application of the continuous mapping theorem
for functions of restricted domain. For this, let S = T = R

d×d, S′ = GLd(R) and g be the
inversion mapping given by

g : GLd (R) −→ GLd (R) : A 7−→ A−1 .

Since S and T are required to be metric spaces, we equip the R-vector field R
d×d with an

arbitrary matrix norm to obtain a normed vector space. By the equivalence of norms, the
particular choice of norm does not matter, so we opt for the max norm once again. In
order to apply Lemma B.4.1, it suffices to verify that (a) S′ = GLd(R) is an open subset
of Rd×d (and hence every invertible matrix is an inner point of S′) and (b) g is continuous
(which implies Borel-measurability as well as continuity at A).
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(a) We start by proving that the determinant as a function from R
d×d to R is continuous.

For each 1 ≤ i, j ≤ d, the coefficient mapping

πij : R
d×d −→ R : A = (akl)1≤k,l≤d 7−→ aij

is Lipschitz continuous with Lipschitz constant 1:

∣∣πij (A)− πij

(
A′
)∣∣ =

∣∣∣aij − a′ij
∣∣∣ ≤ max

1≤k,l≤d

∣∣akl − a′kl

∣∣ =
∥∥A−A′

∥∥
max .

Then, the mapping

π : R
d×d −→ R

d2
: A 7−→ (π11(A), . . . , π1d(A), π21(A), . . . , πdd(A))

is continuous as well, since all its components are continuous. We recall that
multivariate polynomials on R

d2
are continuous, and since the Leibniz formula

shows that the determinant of a matrix is a polynomial in its d2 components, this
is also true for the determinant mapping. But then we have

GLd(R) = det−1 (R \ {0}) ,

where R \ {0} is an open subset of R, so we can conclude that the general linear
group is an open subset of Rd×d.

(b) The continuity of the inversion mapping is a direct consequence of (a), where
the continuity of the determinant was proved. For this, remember that for any
A ∈ GLd(R) it holds:

g(A) = A−1 =
1

detA
adj(A) ,

where adj(A) is the adjugate of A. The entries of this adjugate matrix consist of
cofactors of A, which in turn can be represented as determinants of sub-matrices of
A, called minors. The continuity of g then follows as a composition of continuous
mappings.

B.4.2. Second Moment Bounds for Sums of Multi-Indexed Random Vectors

In the following lemmas, we consider multi-indexed random vectors under the assumption
of square-integrability and the vanishing of certain mixed moments. The latter - and fairly
specific - requirement is tailored to an application in proving the asymptotic normality of
the minimum distance estimator in Chapter 3, where we exploit that the convergence in
quadratic mean implies the convergence in probability due to the Markov inequality (cf.
Brémaud 2020, p. 189). Since the original but flawed proof of Kopperschmidt and Stute
2013 utilizes the presented results in a similar way, we consequently find them formulated
and proved in Kopperschmidt and Stute 2013, pp. 1295–1297, see Lemmas 15 to 17. For
completeness, we reproduce here the detailed and revised proofs given in the master’s
thesis of the author, see Jakubzik 2017, pp. 144–148. They all require a simple inequality,
which we would like to note beforehand.

265



Lemma B.4.3 (Auxiliary Inequality for the Square Norm of Sums).
For any norm ‖ · ‖ on R

d and a1, . . . , al ∈ R
d it holds:

∥∥∥
l∑

j=1

aj

∥∥∥
2
≤ 2l−1

l∑

j=1

‖aj‖2 .

Proof. The lemma is a generalization of the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
obtained in

the case d = 1 and l = 2. We observe for arbitrary a, b ∈ R:

0 ≤ (a− b)2 = a2 − 2ab+ b2

⇐⇒ 2ab ≤ a2 + b2

⇐⇒ a2 + 2ab+ b2 ≤ 2a2 + 2b2

⇐⇒ (a+ b)2 ≤ 2
(
a2 + b2

)
. (B.74)

Because of the triangle equality, this easily extends to d > 1, as we have for a, b ∈ R
d:

‖a+ b‖2 ≤ (‖a‖+ ‖b‖)2
(B.74)

≤ 2
(
‖a‖2 + ‖b‖2

)
.

The statement for l > 2 follows by induction, with l = 2 serving as the base case: Suppose
it holds for some l ∈ N \ {1}. Then, we conclude:

∥∥∥
l+1∑

j=1

aj

∥∥∥
2
≤

‖al+1‖+

∥∥∥
l∑

j=1

aj

∥∥∥




2

≤ 2


‖al+1‖2 +

∥∥∥
l∑

j=1

aj

∥∥∥
2




≤ 2


‖al+1‖2 + 2l−1

l∑

j=1

‖aj‖2

 ≤ 2


2l−1 ‖al+1‖2 + 2l−1

l∑

j=1

‖aj‖2



= 2l
l+1∑

j=1

‖aj‖2 ,

and thus the statement holds for l + 1, completing the proof.

We will now successively state and prove the Lemmas 15 to 17 from Kopperschmidt
and Stute 2013. Throughout this subsection, we will assume ‖ · ‖ to be the Euclidean
norm on R

d.

Lemma B.4.4 (Lemma 15 of Kopperschmidt and Stute 2013, p. 1295).
For p, k ∈ {1, . . . , n}, let Upk be d-variate random vectors with E ‖Upk‖2 <∞. If

E

[
U⊤pkUql

]
= 0 for k 6∈ {p, q, l} or l 6∈ {p, q, k} , (B.75)

then:

E

∥∥∥
n∑

p,k=1
p6=k

Upk

∥∥∥
2
≤ 2

∑

k≷p,q

E

[
U⊤pkUqk

]
. (B.76)

Proof. An application of Lemma B.4.3 in conjunction with the monotonicity and linearity
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of the expectation yields:

E

∥∥∥
n∑

p,k=1
p6=k

Upk

∥∥∥
2

= E

∥∥∥
n∑

p,k=1
k<p

Upk +
n∑

p,k=1
k>p

Upk

∥∥∥
2
≤ E



∥∥∥

n∑

k<p

Upk

∥∥∥+
∥∥∥

n∑

k>p

Upk

∥∥∥




2

≤ 2E
∥∥∥
∑

k<p

Upk

∥∥∥
2

+ 2E
∥∥∥
∑

k>p

Upk

∥∥∥
2
. (B.77)

By virtue of Equation (B.75), we then obtain:

E

∥∥∥
∑

k<p

Upk

∥∥∥
2

= E

[(∑

k<p

Upk

)⊤(∑

l<q

Uql

)]
=
∑

k<p

∑

l<q

E

[
U⊤pkUql

]

=
∑

k<p,q

E

[
U⊤pkUqk

]
, (B.78)

since k 6= l readily implies k /∈ {p, q, l} or l /∈ {p, q, k}, which can be seen as follows:

• If k < l, then k < q because of l < q and thus k 6= p, q, l.

• If k > l, then l < p because of k < p and thus l 6= p, q, k.

Similarly, we receive:

E

∥∥∥
∑

k>p

Upk

∥∥∥
2

=
∑

k>p,q

E

[
U⊤pkUqk

]
, (B.79)

and substituting Equations (B.78) and (B.79) into Equation (B.77) finishes the proof.

Lemma B.4.5 (Lemma 16 of Kopperschmidt and Stute 2013, p. 1295).
For p, k ∈ {1, . . . , n}, let Upk be d-variate random vectors with E ‖Upk‖2 <∞. If

E

[
U⊤pkUql

]
= 0 whenever one index differs from the rest, (B.80)

then:

E

∥∥∥
n∑

p,k=1
p6=k

Upk

∥∥∥
2
≤ 2

n∑

p,k=1
p6=k

E ‖Upk‖2 . (B.81)

Proof. We again start from Equation (B.77), which holds regardless of the assumptions
given in Lemma B.4.4. Since the condition (B.80) implies (B.75), the Equations (B.78)
and (B.79) remain valid. From there, we further compute:

E

∥∥∥
∑

k<p

Upk

∥∥∥
2

=
∑

k<p,q

E

[
U⊤pkUqk

]

︸ ︷︷ ︸
=0 for p6=q .

=
∑

k<p

E

[
U⊤pkUpk

]
=
∑

k<p

E ‖Upk‖2 , (B.82)

and likewise for k > p. The assertion then follows immediately.
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Lemma B.4.6 (Lemma 17 of Kopperschmidt and Stute 2013, p. 1296).
For p, k, i ∈ {1, . . . , n}, let Upki be d-variate random vectors with E ‖Upki‖2 <∞. If

E

[
U⊤pkiUqlj

]
= 0 whenever k, i, l or j differs from the rest, (B.83)

then68:

E

∥∥∥∥
n∑

p,k,i=1
p6=k 6=i6=p

Upki

∥∥∥∥
2

≤ 32
∑

E

[
U⊤pkiUqki

]
, (B.84)

where the summation on the right takes place over all index combinations in which p and
q have the same position relative to i and k, that is:

p, q < k < i , p, q < i < k , k < p, q < i ,

i < p, q < k , k < i < p, q , i < k < p, q .

Proof. Similar to Equation (B.77), applying Lemma B.4.3 in the first step yields:

E

∥∥∥∥
n∑

p,k,i=1
p6=k 6=i6=p

Upki

∥∥∥∥
2

= E

∥∥∥∥
∑

p<k<i

Upki +
∑

p<i<k

Upki +
∑

k<p<i

Upki

+
∑

i<p<k

Upki +
∑

k<i<p

Upki +
∑

i<k<p

Upki

∥∥∥∥
2

≤ 32


E
∥∥∥
∑

p<k<i

Upki

∥∥∥
2

+ E

∥∥∥
∑

p<i<k

Upki

∥∥∥
2

+ E

∥∥∥
∑

k<p<i

Upki

∥∥∥
2

+E

∥∥∥
∑

i<p<k

Upki

∥∥∥
2

+ E

∥∥∥
∑

k<i<p

Upki

∥∥∥
2

+ E

∥∥∥
∑

i<k<p

Upki

∥∥∥
2


 .

(B.85)

To bound the first expectation, we proceed as in the previous proofs and compute:

E

∥∥∥
∑

p<k<i

Upki

∥∥∥
2

= E



( ∑

p<k<i

Upki

)⊤( ∑

p<k<i

Upki

)


= E


 ∑

p<k<i

∑

q<l<j

U⊤pkiUqlj


 =

∑

p<k<i

∑

q<l<j

E

[
U⊤pkiUqlj

]
.

Whenever i 6= j, the expectation vanishes, since in this case either i /∈ {p, k, q, l, j} or
j /∈ {p, k, i, q, l} follows (compare proof of Lemma B.4.4). Hence, we have:

E

∥∥∥
∑

p<k<i

Upki

∥∥∥
2

=
∑

p<k<i

∑

q<l<i

E

[
U⊤pkiUqli

]
.

68In Kopperschmidt and Stute 2013, the constant factor was miscalculated as 64 instead of 32.
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By the same argument as above, only k = l needs to be considered, so we can conclude:

E

∥∥∥
∑

p<k<i

Upki

∥∥∥
2

=
∑

p,q<k<i

E

[
U⊤pkiUqki

]
. (B.86)

Performing the exact same steps for the remaining expectations of Equation (B.85), we
receive:

E

∥∥∥
∑

p<i<k

Upki

∥∥∥
2

=
∑

p,q<i<k

E

[
U⊤pkiUqki

]
, E

∥∥∥
∑

k<p<i

Upki

∥∥∥
2

=
∑

k<p,q<i

E

[
U⊤pkiUqki

]
,

E

∥∥∥
∑

i<p<k

Upki

∥∥∥
2

=
∑

i<p,q<k

E

[
U⊤pkiUqki

]
, E

∥∥∥
∑

k<i<p

Upki

∥∥∥
2

=
∑

k<i<p,q

E

[
U⊤pkiUqki

]
,

E

∥∥∥
∑

i<k<p

Upki

∥∥∥
2

=
∑

i<k<p,q

E

[
U⊤pkiUqki

]
. (B.87)

Substituting Equations (B.86) and (B.86) into Equation (B.85) then yields the desired
result.

In view of the moment condition in Kolmogorov’s tightness criterion, see part (ii) of
Theorem B.2.6, it is apparent that the Lemmas B.4.4 to B.4.6 are inherently connected
to Kopperschmidt’s proof approach. Nevertheless, we will also make use of basic L2

techniques to infer several straightforward convergences. Since the corresponding lemma
is irrelevant outside our adapted proof, we can resort to the stronger Assumptions 3.8 for
its formulation.

Lemma B.4.7 (Limit Theorem for Joint Means of Multi-Indexed Random Vectors).
Let m ∈ N and (Ω,F ,P) be a probability space. Suppose that Ui1,...,im , i1, . . . , im ∈ N, are
uniformly square-integrable real random vectors, that is, for some constant C > 0 it holds:

E ‖Ui1,...,im‖2 ≤ C <∞ , for all i1, . . . , im ∈ N .

If

E

[
U⊤i1,...,im

Uj1,...,jm

]
= 0 whenever all indices differ, (B.88)

then
1

nm

n∑

i1=1

· · ·
n∑

im=1

Ui1,...,im

L2

−→ 0 as n→∞ . (B.89)

Proof. The proof is elementary. It relies on the fact that the number of summands with
partially matching indices is of negligible order, whereas the summands with differing
indices are zero according to Equation (B.88). We have:

E

∥∥∥∥∥∥
1

nm

n∑

i1=1

· · ·
n∑

im=1

Ui1,...,im

∥∥∥∥∥∥

2

=
1

n2m

∑

i1,...,im

∑

j1,...,jm

E

(
U⊤i1,...,im

Uj1,...,jm

)

Because of Equation (B.88), we need only consider the sub-sum over those index combi-
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nations where at least two indices match. In total, there are

n2m
︸︷︷︸

total number
of combinations

− n(n− 1) · . . . · (n− 2m+ 1)︸ ︷︷ ︸
combinations with differing indices

= O
(
n2m−1

)

of these combinations. But for any such index combination, the Cauchy-Schwarz inequality
yields:

∣∣∣E
(
U⊤i1,...,im

Uj1,...,jm

)∣∣∣ ≤
√
E ‖Ui1,...,im‖2 · E ‖Uj1,...,jm‖2 ≤

√
C · C = C ,

as the involved random vectors are uniformly square-integrable by assumption. Hence,

1

n2m

∑

i1,...,im

∑

j1,...,jm

E

(
U⊤i1,...,im

Uj1,...,jm

)
≤ C

n2m
O
(
n2m−1

)
−→ 0 as n→∞ ,

which proves the assertion.

B.4.3. Other Minor Remarks

Remark B.4.8 (On the Usage of Non-Sub-Multiplicative Matrix Norms).
In Chapter 3 we considered the max norm ‖ · ‖max for matrices. This norm lacks the
commonly demanded property of sub-multiplicativity, which is why the induced vector
norm (i.e., the maximum absolute element of a vector) is not compatible with the matrix
norm itself. A counterexample can easily be given:

2 =

∥∥∥∥∥

(
2
2

)∥∥∥∥∥
max

=

∥∥∥∥∥

(
1 1
1 1

)(
1
1

)∥∥∥∥∥
max

6≤
∥∥∥∥∥

(
1 1
1 1

)∥∥∥∥∥
max

·
∥∥∥∥∥

(
1
1

)∥∥∥∥∥
max

= 1 · 1 = 1 .

Here the problem could be solved by rescaling the matrix norm with the factor d = 2, and
in general the max norm on R

k×l indeed only needs to be multiplied by
√
kl to obtain

a sub-multiplicative (and thus compatible) norm. Although this would hardly lead to
significant complications, the rescaling factor can easily be forgotten and often inflates
subsequent calculations. This raises the following question: If for sequences (xn)n∈N ⊂ R

d

and (An)n∈N ⊂ R
d×d we have xn → 0 (n→∞) and ‖An‖max ≤ C for some C > 0 and all

n ∈ N, does ‖Anxn‖ → 0 (n→∞) follow even though ‖Anxn‖ ≤ ‖An‖max · ‖xn‖ cannot
be ensured? Due to the equivalence of norms on finite dimensional spaces, the answer is
yes. Suggestively, we denote the operator norm induced by the (arbitrary!) vector norm
also with ‖ · ‖ and thus obtain for some constant C‖·‖:

‖Anxn‖ ≤ ‖An‖·‖xn‖ ≤ C‖·‖ ·‖An‖max ·‖xn‖ ≤ C‖·‖ ·C ·‖xn‖ −→ 0 as n→∞ . (B.90)

Note that Equation (B.90) remains valid regardless of the matrix norm chosen. Con-
sequently, it is always sufficient for convergence to prove that the sequence (An)n∈N is
bounded with respect to any - not necessarily sub-multiplicative - matrix norm.

Lemma B.4.9 (Law of Total Expectation).
Let X be an integrable random variable defined on a probability space (Ω,F ,P). For any
event A ∈ F then holds

E
(
X |σ(A)

)
= E

(
X |A) · 1A + E

(
X |A∁) · 1A∁ ,
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where σ(A) =
{∅, A,A∁,Ω} is the σ-algebra induced by A. In particular, if P(A) > 0, the

random variable E
(
X |σ(A)

)
corresponds on A to the usual conditional expectation,

E
(
X |A) :=

∫
X dP

( · |A) =
1

P(A)

∫

A
X dP =

E (X · 1A)

P(A)
.

The expectation E(X) then satisfies the equation

E(X) = E
(
X |A) · P(A)+ E

(
X |A∁) · P(A∁) . (B.91)

We refer to the identity (B.91) as the law of total expectation.

Proof. We first establish the stated representation of E
(
X |σ(A)

)
. For it to hold, the

following must be proved:

∀B ∈ σ(A) :

∫

B
X dP =

∫

B
E
(
X |A) · 1A + E

(
X |A∁) · 1A∁ dP . (B.92)

For any such B, we compute:

∫

B
E
(
X |A) · 1A + E

(
X |A∁) · 1A∁ dP

= E
(
X |A)

∫

B
1A dP + E

(
X |A∁)

∫

B
1A∁ dP

= E
(
X |A) · P(A ∩B)+ E

(
X |A∁) · P(A ∩B)

=

∫

A
X dP · P

(
A ∩B)

P
(
A
) +

∫

A∁

X dP · P
(
A∁ ∩B)

P
(
A∁
) .

For a non-trivial event A ∈ F , we have |σ(A)| = 4, so for B only four different events
need to be considered. If B = A, we obtain:

∫

A
X dP · P

(
A ∩A)

P
(
A
) +

∫

A∁

X dP · P
(
A∁ ∩A)

P
(
A∁
)

=

∫

A
X dP · P

(
A
)

P
(
A
)

︸ ︷︷ ︸
=1

+

∫

A∁

X dP · P
(∅)

P
(
A∁
)

︸ ︷︷ ︸
=0

=

∫

A
X dP ,

and analogously the other cases yield the validity of Equation (B.92). From here, the
tower property then provides:

E(X) = E
(
E
(
X |σ(A)

))
= E

(
E
(
X |A) · 1A + E

(
X |A∁) · 1A∁

)

= E
(
X |A) · P(A)+ E

(
X |A∁) · P(A∁) ,

and thus proves the law of total expectation.
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B.5. Calculations for the Additional Models under Consideration

The applicability of the statistical methods studied in this dissertation was only shown for
the model ×D, the Basquin load sharing model with multiplicative damage accumulation.
In most cases, however, they can also be applied to related models such as model ×E
(exponential damage accumulation) or model ×S (shifted damage accumulation), and the
proofs can be easily adapted. In order to facilitate future research, we recapitulate some
of the major calculations from the main part of this thesis for both models. We refrain
from further reasoning and focus on the comprehensibility of these calculations.

B.5.1. Basquin Load Sharing Model With Exponential Damage Accumulation

We first repeat the definition of the intensity function for model ×E.

Definition 2.10 (Basquin Load Sharing Model With Exponential Damage Accumulation).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with exponential damage accumulation is given via the intensity process

×Eλ
(j)
θ (t) := θ1Bj(t)θ2 exp (θ3Aj(t)) · 1{

N
(j)

t− <Cj

}
∩

{
t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R
3
+ .

We structure the computations presented here in three parts:
In part (i), we give the cumulative conditional hazard function and its inverse for the
model ×E. In part (ii), we derive the probability for a positive sign of the standardized
hazard transform like in Equation (2.61), which then yields the link function required in
condition (D5) for the consistency of the 3-sign depth test. Furthermore, analogous to
Lemma 4.24, we prove the monotonicity of this link function with respect to the “essential
past” of the process, which here corresponds to the damage accumulation term Aj,i. The
part (iii) contains the likelihood function for the model ×E.

(i) (Inverse) cumulative conditional hazard function. A key feature of the model
×D was that both the cumulative conditional hazard function and its inverse could
be calculated explicitly. They are given in Lemmas 2.24 and 2.27, respectively. As
a minimum requirement, we demand to preserve this property when we change the

model, and in fact the calculations performed for the intensity function
×Dλ

(j)
θ can

be adopted almost one-to-one. On
{
t ≥ T (j)

i−1

}
, we have for i ∈ {1, . . . , Ic}:

×Ehθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
= θ1B

θ2
j,i exp (θ3Aj(t)) .

Moreover, Equation (2.56) shows that

d

dt
θ3Aj(t) =

θ3Bj,i

τ
.

We can hence compute:

×EHθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
=

∫ t

T
(j)
i−1

×Ehθ
i

(
u
∣∣T (j)

1:(i−1), sj

)
du

=

∫ t

T
(j)
i−1

θ1B
θ2
j,i exp (θ3Aj(u)) du
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= θ1B
θ2
j,i

[
τ

θ3Bj,i
exp (θ3Aj(u))

]t

u=T
(j)
i−1

=
τθ1B

θ2−1
j,i

θ3

[
exp (θ3Aj(t))− exp

(
θ3
Aj,i

τ

)]

=
τθ1B

θ2−1
j,i

θ3
exp

(
θ3

τ
Aj,i

)[
exp

(
θ3

τ
Bj,i

(
t− T (j)

i−1

))
− 1

]
.

Again, this function is invertible with respect to t on the interval
[
T

(j)
i−1,∞

)
. The

inverse function is given as follows:

(
×EH θ

i

)−1 (
u
∣∣T (j)

1:(i−1), sj

)
= T

(j)
i−1 +

τ

θ3Bj,i
ln

(
1 +

θ3

τθ1B
θ2−1
j,i

exp

(
−θ3

τ
Aj,i

)
u

)
.

(ii) Signs of the standardized hazard transforms. In accordance with Equation
(2.57), we obtain from (i):

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1), sj

)

= exp


−τ θ

∗
1

θ∗3
B

θ∗
2−1

j,i exp

(
θ∗3
τ
Aj,i

)


(

1 +
θ3

τθ1B
θ2−1
j,i

exp

(
−θ3

τ
Aj,i

)
u

) θ∗
3

θ3

− 1





 .

At u = ln(2), this is the conditional probability of a positive sign for the standardized
hazard transform R̃θ

j,i. If we continue in the framework of Chapter 4 and define

κ (l, i, θ) =
θ3

τθ1B
θ2−1
l,i

> 0 ,

then here the link function gl,i can be written as

gl,i (θ, θ∗, x)

= exp


− 1

κ (l, i, θ∗)
exp

(
θ∗3
τ
x

)

(

1 + ln(2)κ (l, i, θ) exp

(
−θ3

τ
x

)) θ∗
3

θ3 − 1




 .

Retracing the proof of Lemma 4.24 tells us that it is sufficient to check the auxiliary
function

γ(x) := exp

(
θ∗3
τ
x

)

(

1 + ln(2)κ (l, i, θ) exp

(
−θ3

τ
x

)) θ∗
3

θ3 − 1




to infer the monotonicity of gl,i (θ, θ∗, ·). Whether gl,i (θ, θ∗, ·) is non-decreasing or
non-increasing once more depends on how θ and θ∗ differ. According to the product
rule, the derivative of γ with respect to x is given by

d

dx
γ(x) =

θ∗3
τ

exp

(
θ∗3
τ
x

)

(

1 + ln(2)κ (l, i, θ) exp

(
−θ3

τ
x

)) θ∗
3

θ3 − 1



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− ln(2)κ (l, i, θ)
θ∗3
θ3

θ3

τ
exp

(
−θ3

τ
x

)
exp

(
θ∗3
τ
x

)

·
(

1 + ln(2)κ (l, i, θ) exp

(
−θ3

τ
x

)) θ∗
3 −θ3

θ3
,

and introducing another auxiliary function via

z(x) := 1 + ln(2)κ (l, i, θ) exp

(
−θ3

τ
x

)

︸ ︷︷ ︸
>0

> 1

allows the simplified representation

d

dx
γ(x) =

θ∗3
τ

exp

(
θ∗3
τ
x

)[
z(x)

θ∗
3

θ3 − 1− (z(x)− 1) · z(x)
θ∗

3 −θ3
θ3

]

=
θ∗3
τ

exp

(
θ∗3
τ
x

)[
z(x)

θ∗
3 −θ3

θ3 − 1

]
.

As
θ∗

3
τ

exp
(

θ∗
3
τ
x
)
> 0, we can further break down this equation in terms of its sign:

0 ≷
d

dx
γ(x) ⇐⇒ 0 ≷ z(x)

θ∗
3 −θ3

θ3 − 1

⇐⇒ 1 ≷ z(x)
θ∗

3 −θ3
θ3 .

Because of z(x) > 1 for all x ∈ R we furthermore receive:

z(x)
θ∗

3 −θ3
θ3





> 1 , for θ∗3 > θ3,

= 1 , for θ∗3 = θ3,

< 1 , for θ∗3 < θ3.

With the same arguments as before, gl,i (θ, θ∗, x) is thus strictly decreasing in x for
θ∗3 > θ3, strictly increasing for θ∗3 < θ3, and constant in the case θ∗3 = θ3.

(iii) (Log-)likelihood function. The likelihood function can be calculated by substi-

tuting the intensity process
×Eλ

(j)
θ into Equation (5.3):

L×E(θ) =
J∏

j=1




N
(j)
τ∏

i=1

×Eλ
(j)
θ

(
t
(j)
i

)
exp

(
−
∫ τ

0

×Eλ
(j)
θ (u) du

)



=
J∏

j=1




N
(j)
τ∏

i=1

θ1B
θ2
j,i exp

(
θ3
Aj,i+1

τ

)
exp


−

C̃j∑

k=1

τθ1B
θ2−1
j,k

θ3

·
(

exp

(
θ3

τ
Ãj,k+1

)
− exp

(
θ3

τ
Ãj,k

))


 ,

where C̃j and Ãj,k are defined as in Theorem 5.4. The corresponding log-likelihood
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is given by:

l×E(θ) =
J∑

j=1




N
(j)
τ∑

i=1

(
log(θ1) + θ2 log (Bj,i) + θ3

Aj,i+1

τ

)

− τθ1

θ3

C̃j∑

k=1

Bθ2−1
j,k

(
exp

(
θ3

τ
Ãj,k+1

)
− exp

(
θ3

τ
Ãj,k

))
 ,

which again (compare Equation (5.19)) admits an expression of the form

l×E

((
θ̂1(θ2, θ3), θ2, θ3

)⊤)
=


log



∑J

j=1N
(j)
τ

G2 (θ2, θ3)


− 1




J∑

j=1

N (j)
τ +G1 (θ2, θ3) .

B.5.2. Basquin Load Sharing Model With Shifted Damage Accumulation

We start again by repeating the definition of the intensity function for model ×S.

Definition 2.9 (Basquin Load Sharing Model With Shifted Damage Accumulation).
In the framework of Section 2.1 and under Assumptions 2.3, the Basquin load sharing
model with shifted damage accumulation is given via the intensity process

×Sλ
(j)
θ (t) := θ1Bj(t)θ2 (1 +Aj(t))θ3 · 1{

N
(j)

t− <Cj

}
∩

{
t≤τj

} , θ = (θ1, θ2, θ3)⊤ ∈ R
3
+ .

We proceed as for the model with exponential damage accumulation by retracing and
adjusting the essential formulas within three parts.

(i) (Inverse) cumulative conditional hazard function. Applying any affine trans-
formation to the damage accumulation term has virtually no effect on the calculation
of the intensity integral. More precisely, adopting Equation (2.54) yields:

×SHθ
i

(
t
∣∣T (j)

1:(i−1), sj

)
=

∫ t

T
(j)
i−1

θ1B
θ2
j,i

[
1 +

1

τ

(
Bj,i

(
u− T (j)

i−1

)
+Aj,i

)]θ3

du

= θ1B
θ2
j,i

(
1

τ

)θ3
∫ t

T
(j)
i−1

[
τ +Bj,i

(
u− T (j)

i−1

)
+Aj,i

]θ3
du

=
θ1B

θ2−1
j,i

τ θ3(θ3 + 1)

[(
τ +Bj,i

(
t− T (j)

i−1

)
+Aj,i

)θ3+1
− (τ +Aj,i)

θ3+1
]
,

with corresponding inverse function

(
×SH θ

i

)−1 (
u
∣∣∣T (j)

1:(i−1)

)

=
1

Bj,i



(
τ θ3 (θ3 + 1)

θ1B
θ2−1
j,i

u+
(
τ +Aj,i

)θ3+1

) 1
θ3+1

− (τ +Aj,i

)
+Bj,iT

(j)
i−1


 .
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(ii) Signs of the standardized hazard transforms. From step (i) we immediately
get that

Pθ∗

(
Rθ

j,i > u
∣∣∣T (j)

1:(i−1), sj

)

= exp


−

θ∗1B
θ∗

2−1
j,i

τ θ∗
3 (θ∗3 + 1)



(
τ θ3 (θ3 + 1)

θ1B
θ2−1
j,i

u+
(
τ +Aj,i

)θ3+1

) θ∗
3 +1

θ3+1

− (τ +Aj,i

)θ∗
3+1





 ,

which is nothing else than Equation (2.57) if we replace each instance of τ + Aj,i

with Aj,i. Accordingly, if we consider a link function
×Sgl,i for condition (D5) of

Assumption 4.14, we have

×Sgl,i(θ, θ
∗, x) =

×Dgl,i(θ, θ
∗, τ + x) ,

where
×Dgl,i is the corresponding link function for the model ×D. Since the shift

x 7→ τ + x preserves the monotonicity properties of this link function, the statement
of Lemma 4.24 remains valid.

(iii) (Log-)likelihood function. We already recognized in steps (i) and (ii) that
shifting the damage accumulation term by 1 involves no significant changes in the
resulting formulas. The same applies to the likelihood function, which is directly
obtained from Theorem 5.4 by once again substituting τ +Aj,i for Aj,i (and likewise
for Ãj,i):

L×S(θ) =
J∏

j=1




N
(j)
τ∏

i=1

θ1B
θ2
j,i

(
1 +

Aj,i+1

τ

)θ3

exp


−

C̃j∑

k=1

τθ1B
θ2−1
j,k

θ3

·
((
τ + Ãj,k+1

)θ3+1 − (τ + Ãj,k

)θ3+1
)



 .

Again, the log-likelihood function can be represented in a way similar to Equation
(5.16), but we omit the explicit specification here due to its repetitive nature.
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C. Additional Tables and Figures

Table 7: List of recurring symbols with a fixed meaning within the thesis.

Symbol Meaning

τ > 0 deterministic constant, marks the end of an experiment

I ⊂ R interval, typically I = [0, τ ] or I = [0,∞)

N = (Nt)t∈I counting process over the interval I
(
Ω,F , {Ft}t∈I ,P

)
probability space consisting of sample space Ω, σ-algebra F ,
filtration {Ft}t∈I and probability measure P

E(·) expected value

B(·) Borel σ-algebra

FN
t σ-algebra generated by the history of N up to time t

G0 σ-algebra, contains information about random external covariates

FN
t ∨ G0 intrinsic filtration

J ∈ N number of processes or repetitions of an experiment

N (1), . . . , N (J) independent copies of a counting process N

X or Xj real-valued random variable of arbitrary dimension

T (j) =
(
T

(j)
i

)
i∈N

simple point process associated with N (j), similar for T and N

t
(j)
i = T

(j)
i (ω) realization of T

(j)
i at ω ∈ Ω

Λ(j) =
(
Λ(j)(t)

)
t∈I

compensator of N (j) given by the Doob-Meyer decomposition

M or M (j) martingale, typically satisfying M (j) = N (j) − Λ(j)

λ(j) =
(
λ(j)(t)

)
t∈I

stochastic intensity or intensity process corresponding to Λ(j)

Θ ⊂ R
d, d ∈ N parameter space and its dimension d

θ, θ∗ ∈ Θ parameter of interest, θ∗ denotes the true parameter

M parametric intensity-based model

λ
(j)
θ or Λ

(j)
θ parametric (cumulative) intensity

1 : n abbreviated notation for (1, . . . , n)

fi, Si, hi (conditional) density, survival, hazard function of Ti, may depend
on θ

λ∗ conditional intensity function, usually identified with λ

W
(j)
i = T

(j)
i − T (j)

i−1 interarrival or waiting time

1A : Ω→ {0, 1} indicator function of a subset A ⊂ Ω

Ij ∈ N covariate, number of components of the jth system; often Ij ≡ I
sj > 0 (random) covariate, initial stress level in the jth system

τj ∈ [0, τ ] (random) covariate, the end of the jth experiment

Cj ∈ {1, . . . , Ij} (random) covariate, number of observable component failures for
the jth system

δx Dirac measure centred on x

E(β) exponential distribution with parameter β

Continues on the following page.
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Table 7: List of recurring symbols with a fixed meaning within the thesis (continued).

Symbol Meaning

Nd (µ,Σ) d-dimensional normal distribution with mean vector µ and covari-
ance matrix Σ

Bλ
(j)
θ (t) intensity process of the Basquin load sharing model without

damage accumulation (model identifier B)

Bj(t), Bj,i load sharing term and its abbreviated notation

Aj(t), Aj,i damage accumulation term and its abbreviated notation
×Dλ

(j)
θ (t) intensity process of the Basquin load sharing model with multi-

plicative damage accumulation (model identifier ×D)
+D, ×S, ×E, ×φ further model identifiers

slow, supp lower and upper bound for the initial stress level sj

supp(·) support of a measure or function

Ic ∈ {1, . . . , I} critical number of component failures; used with Cj ≡ Ic

πi ith coordinate projection (e.g., π2
(
(θ1, θ2, θ3)⊤

)
= θ2)

Hi conditional cumulative hazard function of Ti, may depend on θ

Rθ
j,i hazard transform of T

(j)
i at θ

R̃θ
j,i standardized hazard transform of T

(j)
i at θ

gj,i, gl,i, . . . link functions, typically in conjunction with hazard transforms

H0, H1 null and alternative hypothesis of a statistical hypothesis test

Θ0,Θ1 ⊂ Θ subsets of Θ defining H0 and H1

L2 (Ω,F , µ) space of square-integrable random variables on (Ω,F , µ)

〈·, ·〉µ inner product on L2 (Ω,F , µ)

‖·‖µ norm induced by 〈·, ·〉µ
N

(n)
, Λ

(n)
θ , M

(n)
aggregate counting process, model compensator at θ, martingale

JN , J
N

(n) set of time points belonging to the jumps ofN orN
(n)

, respectively

θ̂n minimum distance estimator for θ∗

C0(X ) = C(X ) space of continuous functions on X
Ck(X ) space of k-times continuously differentiable functions on X
Θ closure of the parameter space Θ; similar for other sets

K either a compact set or an integer (for K-sign depth)

Br (θ) open ball with radius r around θ (in Θ)
d

dθ
, Dθ total derivative with respect to θ

∂
∂θj

partial derivative with respect to θj

dp

dθp , Dp
θ pth total derivative with respect to θ

αn, βn, γn auxiliary parametric processes (vector-valued)

Φn, Φ0, Ψn auxiliary parametric processes (matrix-valued); ΨK is also used
for a functional on D ([0, 1])

D (I) Skorokhod space of càdlàg functions on I
Continues on the following page.
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Table 7: List of recurring symbols with a fixed meaning within the thesis (continued).

Symbol Meaning

Σ(θ∗) asymptotic covariance matrix at θ∗

‖ · ‖max max norm (for matrices)
d−→ convergence in distribution
P−→ convergence in probability
L2

−→ convergence in quadratic mean

O(·) Big O notation for the order of a function

o(1), oP(1) Bachmann-Landau notation: converges to 0 (in probability)

ΨK(W ) asymptotic distribution of the K-sign depth

ΨK

(WN (θ)
)

normalized K-sign depth at θ

qα(·) α-quantile of a given distribution

α ∈ (0, 1) the level of a test or confidence region

η ∈ N total number of observations

L ∈ N number of different distributions or classes

≤acc total order for double-indexed point process transforms

L(θ) likelihood function at θ; often used with model indicator

l(θ) log-likelihood function at θ; often used with model indicator

C̃j , T̃
(j)
i , Ãj,i special notation used only for the (log-)likelihood function

CJ,1−α (1− α)-confidence region for the true parameter θ∗

χ2
d,1−α (1− α)-quantile of the χ2-distribution with d degrees of freedom

279



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

2
.0

2
.5

3
.0

3
.5

4
.0

2
.0

2
.5

3
.0

3
.5

4
.0

θ
1

θ2

lev
el

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
22:

M
in

im
u

m
D

is
t
a
n

c
e

E
s
t
im

a
t
o

r
,

θ
1 -θ

2 -d
ir

e
c
t
io

n
.

V
isu

alization
of

C
(d

ist)
J
,1

−
α

∩
{
θ

3
=

θ
∗3 }

,
th

at
is,

th
e

in
tersection

of
th

e
(1

−
α

)-
con

fi
d
en

ce
region

b
ased

on
th

e
m

in
im

u
m

d
istan

ce
estim

ator
w

ith
th

e
h
y
p

erp
lan

e
{
θ

3
=

θ
∗3 } .

T
h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

o
f

J
(θ̂

J
−

θ
)

⊤
Σ̂

Φ

(θ̂
J

)

−
1
(θ̂

J
−

θ
)

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

F
or

th
e

estim
ation

of
Σ̂

Φ

(θ̂
J

),
w

e
ch

ose
J

sim
=

J
an

d
n

rep
=

3000
in

each
case.

T
h
e

in
tersection

s
of

th
e

con
fi
d
en

ce
region

s
for

α
∈

{0
.01

,0
.05

,0
.1}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
levels;

for
ex

am
p
le,

th
e

in
n
erm

ost
yellow

area
corresp

on
d
s

to
C

(d
ist)

J
,0

.9
∩

{
θ

3
=

θ
∗3 }.

280



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
1

θ3

lev
el

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
23:

M
in

im
u

m
D

is
t
a
n

c
e

E
s
t
im

a
t
o

r
,

θ
1 -θ

3 -d
ir

e
c
t
io

n
.

V
isu

alization
of

C
(d

ist)
J
,1

−
α

∩
{
θ

2
=

θ
∗2 }

,
th

at
is,

th
e

in
tersection

of
th

e
(1

−
α

)-
con

fi
d
en

ce
region

b
ased

on
th

e
m

in
im

u
m

d
istan

ce
estim

ator
w

ith
th

e
h
y
p

erp
lan

e
{
θ

2
=

θ
∗2 } .

T
h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

o
f

J
(θ̂

J
−

θ
)

⊤
Σ̂

Φ

(θ̂
J

)

−
1
(θ̂

J
−

θ
)

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

F
or

th
e

estim
ation

of
Σ̂

Φ

(θ̂
J

),
w

e
ch

ose
J

sim
=

J
an

d
n

rep
=

3000
in

each
case.

T
h
e

in
tersection

s
of

th
e

con
fi
d
en

ce
region

s
for

α
∈

{0
.01

,0
.05

,0
.1}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
levels;

for
ex

am
p
le,

th
e

in
n
erm

ost
yellow

area
corresp

on
d
s

to
C

(d
ist)

J
,0

.9
∩

{
θ

2
=

θ
∗2 }.

281



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

2.0
2.5

3.0
3.5

4.0
2.0

2.5
3.0

3.5
4.0

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
2

θ3

lev
el

(1e+
03

,1e+
04

]

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
24:

M
in

im
u

m
D

is
t
a
n

c
e

E
s
t
im

a
t
o

r
,

θ
2 -θ

3 -d
ir

e
c
t
io

n
.

V
isu

alization
of

C
(d

ist)
J
,1

−
α

∩
{
θ

1
=

θ
∗1 }

,
th

at
is,

th
e

in
tersection

of
th

e
(1

−
α

)-
con

fi
d
en

ce
region

b
ased

on
th

e
m

in
im

u
m

d
istan

ce
estim

ator
w

ith
th

e
h
y
p

erp
lan

e
{
θ

1
=

θ
∗1 }

.
T

h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

o
f

J
(θ̂

J
−

θ
)

⊤
Σ̂

Φ

(θ̂
J

)

−
1
(θ̂

J
−

θ
)

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

F
or

th
e

estim
ation

of
Σ̂

Φ

(θ̂
J

),
w

e
ch

ose
J

sim
=

J
an

d
n

rep
=

3000
in

each
case.

T
h
e

in
tersection

s
of

th
e

con
fi
d
en

ce
region

s
for

α
∈

{0
.01

,0
.05

,0
.1}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
levels;

for
ex

am
p
le,

th
e

in
n
erm

ost
yellow

area
corresp

on
d
s

to
C

(d
ist)

J
,0

.9
∩

{
θ

1
=

θ
∗1 }.

282



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

2
.0

2
.5

3
.0

3
.5

4
.0

2
.0

2
.5

3
.0

3
.5

4
.0

θ
1

θ2

lev
el(

−
1e+

03
,

−
2e+

02
]

(
−

2e+
02

,
−

5e+
01

]

(
−

5e+
01

,
−

2e+
01

]

(
−

2e+
01

,q
0
.0

1
(Ψ

3 )]

(q
0
.0

1
(Ψ

3 ),q
0
.0

5
(Ψ

3 )]

(q
0
.0

5
(Ψ

3 ),
q

0
.1

(Ψ
3 )

]

(
q

0
.1

(Ψ
3 )

,
1

]

F
igu

re
25:

3
-S

ig
n

D
e
p

th
,

θ
1 -θ

2 -d
ir

e
c
tio

n
.

V
isu

alization
of

C
(d

ep
th

)
J
,1

−
α

∩
{
θ

3
=

θ
∗3 },

th
at

is,
th

e
in

tersection
of

th
e

(1
−

α
)-con

fi
d
en

ce
region

b
a
sed

o
n

th
e

3
-sig

n
d
ep

th
test

w
ith

th
e

h
y
p

erp
la

n
e

{
θ

3
=

θ
∗3 } .

F
o
r

th
is

p
lo

t,
fi
rst

th
e

sta
n
d
a
rd

ized
h
a
za

rd
tra

n
sfo

rm
s

o
f

th
e

rea
lized

p
o
in

t
p
ro

cesses
a
re

ca
lcu

la
ted

d
ep

en
d
in

g
o
n

θ
a
n
d

o
rd

ered
w

ith
resp

ect
to

≤
a
cc .

T
h
e

p
lo

t
th

en
sh

ow
s

th
e

co
n
to

u
r

lin
es

o
f

th
e

n
o
rm

a
lized

3
-sig

n
d
ep

th
Ψ

3
(W

η
(J

)(θ)
)

b
a
sed

o
n

th
ese

tra
n
sfo

rm
s

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
lev

els;
for

ex
am

p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

o
n
d
s

to
C

(d
ep

th
)

J
,0

.9
∩

{
θ

3
=

θ
∗3 }

.

283



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
1

θ3

lev
el(

−
1e+

03
,

−
2e+

02
]

(
−

2e+
02

,
−

5e+
01

]

(
−

5e+
01

,
−

2e+
01

]

(
−

2e+
01

,q
0
.0

1
(Ψ

3 )]

(q
0
.0

1
(Ψ

3 ),q
0
.0

5
(Ψ

3 )]

(q
0
.0

5
(Ψ

3 ),
q

0
.1

(Ψ
3 )

]

(
q

0
.1

(Ψ
3 )

,
1

]

F
igu

re
26:

3
-S

ig
n

D
e
p

th
,

θ
1 -θ

3 -d
ir

e
c
tio

n
.

V
isu

alization
of

C
(d

ep
th

)
J
,1

−
α

∩
{
θ

2
=

θ
∗2 },

th
at

is,
th

e
in

tersection
of

th
e

(1
−

α
)-con

fi
d
en

ce
region

b
a
sed

o
n

th
e

3
-sig

n
d
ep

th
test

w
ith

th
e

h
y
p

erp
la

n
e

{
θ

2
=

θ
∗2 } .

F
o
r

th
is

p
lo

t,
fi
rst

th
e

sta
n
d
a
rd

ized
h
a
za

rd
tra

n
sfo

rm
s

o
f

th
e

rea
lized

p
o
in

t
p
ro

cesses
a
re

ca
lcu

la
ted

d
ep

en
d
in

g
o
n

θ
a
n
d

o
rd

ered
w

ith
resp

ect
to

≤
a
cc .

T
h
e

p
lo

t
th

en
sh

ow
s

th
e

co
n
to

u
r

lin
es

o
f

th
e

n
o
rm

a
lized

3
-sig

n
d
ep

th
Ψ

3
(W

η
(J

)(θ)
)

b
a
sed

o
n

th
ese

tra
n
sfo

rm
s

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
lev

els;
for

ex
am

p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

o
n
d
s

to
C

(d
ep

th
)

J
,0

.9
∩

{
θ

2
=

θ
∗2 }

.

284



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

2.0
2.5

3.0
3.5

4.0
2.0

2.5
3.0

3.5
4.0

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
2

θ3

lev
el(

−
1e+

03
,

−
2e+

02
]

(
−

2e+
02

,
−

5e+
01

]

(
−

5e+
01

,
−

2e+
01

]

(
−

2e+
01

,q
0
.0

1
(Ψ

3 )]

(q
0
.0

1
(Ψ

3 ),q
0
.0

5
(Ψ

3 )]

(q
0
.0

5
(Ψ

3 ),
q

0
.1

(Ψ
3 )

]

(
q

0
.1

(Ψ
3 )

,
1

]

F
igu

re
27:

3
-S

ig
n

D
e
p

th
,

θ
2 -θ

3 -d
ir

e
c
tio

n
.

V
isu

alization
of

C
(d

ep
th

)
J
,1

−
α

∩
{
θ

1
=

θ
∗1 },

th
at

is,
th

e
in

tersection
of

th
e

(1
−

α
)-con

fi
d
en

ce
region

b
a
sed

o
n

th
e

3
-sig

n
d
ep

th
test

w
ith

th
e

h
y
p

erp
la

n
e

{
θ

1
=

θ
∗1 } .

F
o
r

th
is

p
lo

t,
fi
rst

th
e

sta
n
d
a
rd

ized
h
a
za

rd
tra

n
sfo

rm
s

o
f

th
e

rea
lized

p
o
in

t
p
ro

cesses
a
re

ca
lcu

la
ted

d
ep

en
d
in

g
o
n

θ
a
n
d

o
rd

ered
w

ith
resp

ect
to

≤
a
cc .

T
h
e

p
lo

t
th

en
sh

ow
s

th
e

co
n
to

u
r

lin
es

o
f

th
e

n
o
rm

a
lized

3
-sig

n
d
ep

th
Ψ

3
(W

η
(J

)(θ)
)

b
a
sed

o
n

th
ese

tra
n
sfo

rm
s

a
s

a
fu

n
ctio

n
o
f

θ
fo

r
J

∈
{1

8
,3

0
,9

0
,1

8
0
}

a
n
d

th
e

p
a
ra

m
eters

&
cova

ria
tes

g
iv

en
in

T
a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
lan

e
can

b
e

id
en

tifi
ed

from
th

e
lev

els;
for

ex
am

p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

o
n
d
s

to
C

(d
ep

th
)

J
,0

.9
∩

{
θ

1
=

θ
∗1 }

.

285



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

2
.0

2
.5

3
.0

3
.5

4
.0

2
.0

2
.5

3
.0

3
.5

4
.0

θ
1

θ2

lev
el

(1e+
04

,
∞

)

(1e+
03

,1e+
04

]

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
28:

L
ik

e
lih

o
o

d
R

a
t
io

,
θ

1 -θ
2 -d

ir
e
c
t
io

n
.

V
isu

a
liza

tio
n

o
f

C
(lr)
J
,1

−
α

∩
{
θ

3
=

θ
∗3 }

,
th

a
t

is,
th

e
in

tersectio
n

o
f

th
e

(1
−

α
)-co

n
fi
d
en

ce
region

b
ased

on
th

e
likelih

o
o
d

ratio
test

w
ith

th
e

h
y
p

erp
lan

e
{
θ

3
=

θ
∗3 }

.
T

h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

of
th

e
likelih

o
o
d

ratio
test

statistic
L

R
({

θ}
,Θ

)
in

th
e

m
o
d
el

×
D

as
a

fu
n
ction

of
θ

for
J

∈
{18

,30
,90

,180}
an

d
th

e
p
aram

eters
&

covariates
given

in
T

a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
la

n
e

ca
n

b
e

id
en

tifi
ed

fro
m

th
e

lev
els;

for
ex

am
p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

on
d
s

to
C

(lr)
J
,0

.9
∩

{
θ

3
=

θ
∗3 }.

286



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

0
0.00005

0.00010
0.00015

0.00020
0

0.00005
0.00010

0.00015
0.00020

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
1

θ3

lev
el

(1e+
04

,
∞

)

(1e+
03

,1e+
04

]

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
29:

L
ik

e
lih

o
o

d
R

a
t
io

,
θ

1 -θ
3 -d

ir
e
c
t
io

n
.

V
isu

a
liza

tio
n

o
f

C
(lr)
J
,1

−
α

∩
{
θ

2
=

θ
∗2 }

,
th

a
t

is,
th

e
in

tersectio
n

o
f

th
e

(1
−

α
)-co

n
fi
d
en

ce
region

b
ased

on
th

e
likelih

o
o
d

ratio
test

w
ith

th
e

h
y
p

erp
lan

e
{
θ

2
=

θ
∗2 }

.
T

h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

of
th

e
likelih

o
o
d

ratio
test

statistic
L

R
({

θ}
,Θ

)
in

th
e

m
o
d
el

×
D

as
a

fu
n
ction

of
θ

for
J

∈
{18

,30
,90

,180}
an

d
th

e
p
aram

eters
&

covariates
given

in
T

a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
la

n
e

ca
n

b
e

id
en

tifi
ed

fro
m

th
e

lev
els;

for
ex

am
p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

on
d
s

to
C

(lr)
J
,0

.9
∩

{
θ

2
=

θ
∗2 }.

287



θ
∗

θ
∗

θ
∗

θ
∗

J
=

90
J

=
180

J
=

18
J

=
30

2.0
2.5

3.0
3.5

4.0
2.0

2.5
3.0

3.5
4.0

0
.0

0
.5

1
.0

1
.5

2
.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ
2

θ3

lev
el

(1e+
04

,
∞

)

(1e+
03

,1e+
04

]

(2e+
02

,1e+
03

]

(5e+
01

,2e+
02

]

(

χ
20
.9

9
,5e+

01
]

(

χ
20
.9

5
,

χ
20
.9

9

]

(

χ
20
.9

,
χ

20
.9

5

]

(

0
,

χ
20
.9

]

F
igu

re
30:

L
ik

e
lih

o
o

d
R

a
t
io

,
θ

2 -θ
3 -d

ir
e
c
t
io

n
.

V
isu

a
liza

tio
n

o
f

C
(lr)
J
,1

−
α

∩
{
θ

1
=

θ
∗1 }

,
th

a
t

is,
th

e
in

tersectio
n

o
f

th
e

(1
−

α
)-co

n
fi
d
en

ce
region

b
ased

on
th

e
likelih

o
o
d

ratio
test

w
ith

th
e

h
y
p

erp
lan

e
{
θ

1
=

θ
∗1 }

.
T

h
e

p
lot

sh
ow

s
th

e
con

tou
r

lin
es

of
th

e
likelih

o
o
d

ratio
test

statistic
L

R
({

θ}
,Θ

)
in

th
e

m
o
d
el

×
D

as
a

fu
n
ction

of
θ

for
J

∈
{18

,30
,90

,180}
an

d
th

e
p
aram

eters
&

covariates
given

in
T

a
b
le

2
.

T
h
e

in
tersectio

n
s

o
f

th
e

co
n
fi
d
en

ce
reg

io
n
s

fo
r

α
∈

{0
.0

1
,0

.0
5
,0

.1
}

w
ith

th
e

h
y
p

erp
la

n
e

ca
n

b
e

id
en

tifi
ed

fro
m

th
e

lev
els;

for
ex

am
p
le,

th
e

in
n
erm

ost
y
ellow

area
corresp

on
d
s

to
C

(lr)
J
,0

.9
∩

{
θ

1
=

θ
∗1 }.

288



m
e
th

o
d

J
c
o
v

e
r
a
g

e
#

o
f

g
r
id

p
o

in
ts

in
%

M
in

im
u
m

1st
Q

u
artile

M
ed

ian
M

ean
3
rd

Q
u
artile

M
a
x
im

u
m

9
97.15

0.00
30355.25

34068.00
3
2
048

.51
3545

9.2
5

3
614

5.00

M
in

im
u
m

18
97.50

0.00
19512.50

21570.00
2
0
662

.32
2280

3.2
5

2
348

6.00

D
istan

ce
30

93.75
0.00

9121.00
9344.00

8
760

.81
941

6.0
0

9561.00

E
stim

ator
90

88.85
106.00

1664.50
1830.00

1
6
20.72

1
856

.00
188

9.00

180
86.95

32.00
409.00

578.00
4
87.12

61
4.0

0
647.00

9
94.78

944.00
3469.00

4040.00
4
0
86.14

4
638

.00
745

4.00

3
-S

ign
18

94.92
1137.00

1979.00
2271.00

2
284

.91
2
577

.00
4028.00

D
ep

th
30

94.88
740.00

1256.00
1416.00

1
4
32.65

1
595

.00
242

3.00

T
est

90
94.33

264.00
422.00

470.00
474

.85
523

.0
0

769.00

180
95.37

147.00
206.00

226.00
227

.97
247

.0
0

372.00

9
94.80

239.00
756.00

819.00
819

.71
890

.0
0

1
137

.0
0

L
ik

elih
o
o
d

R
atio

18
94.40

168.00
282.00

297.00
297

.35
312

.0
0

377.00

30
95.15

109.00
132.00

138.00
137

.64
144

.0
0

172.00

90
95.10

18.00
22.00

26.00
25.73

29.00
35.0

0

180
94.70

5.00
9.00

10.00
9
.7

9
11.00

13
.00

T
ab

le
8:

C
om

p
arison

of
2000

sim
u
lated

(1
−

α
)-con

fi
d
en

ce
region

s
b
ased

on
th

e
m

in
im

u
m

d
istan

ce
estim

ator,
th

e
3-sign

d
ep

th
test

an
d

th
e

lik
elih

o
o
d

ra
tio

a
t

α
=

0
.0

5
a
n
d

J
∈

{9
,1

8
,3

0
,9

0
,1

8
0
}.

T
h
e

cov
era

g
e

ra
te

in
%

in
d
ica

tes
h
ow

o
ften

th
e

tru
e

p
a
ra

m
eter

θ
∗

w
a
s

cov
ered

b
y

th
e

sim
u
la

ted
co

n
fi
d
en

ce
reg

io
n
s

a
n
d

sh
o
u
ld

b
e

eq
u
a
l

to
9
5
%

.
T

h
e

ta
b
le

p
rov

id
es

a
fi
v
e-p

o
in

t
su

m
m

a
ry

(p
lu

s
th

e
m

ean
)

of
th

e
size

of
th

e
con

fi
d
en

ce
region

s.
T

h
e

size
of

a
sim

u
lated

con
fi
d
en

ce
region

w
as

m
easu

red
b
y

cou
n
tin

g
th

e
grid

p
oin

ts
of

a
41

×
41

×
41

grid
on

[10
−

6,10
−

2
]

×
[2

,4]×
[0

,2]
⊂

Θ
it

con
tain

s.

289



Minimum Distance Estimator

cont. J
rejection rate at parameter vector

1 2 3 4 θ0 6 7 8 9

9 0.024 0.029 0.025 0.024 0.026 0.031 0.028 0.035 0.036

18 0.032 0.038 0.037 0.040 0.019 0.044 0.040 0.032 0.045

no 30 0.037 0.035 0.048 0.046 0.038 0.045 0.048 0.045 0.053

90 0.068 0.047 0.057 0.058 0.056 0.075 0.076 0.080 0.118

180 0.096 0.059 0.052 0.069 0.060 0.084 0.096 0.118 0.276

9 0.045 0.062 0.071 0.044 0.062 0.061 0.062 0.049 0.058

18 0.087 0.075 0.080 0.079 0.041 0.099 0.066 0.080 0.040

d20 30 0.129 0.099 0.111 0.112 0.140 0.098 0.098 0.102 0.098

90 0.286 0.212 0.176 0.192 0.268 0.159 0.170 0.198 0.175

180 0.556 0.374 0.281 0.289 0.439 0.235 0.306 0.285 0.325

9 0.089 0.101 0.091 0.074 0.096 0.098 0.089 0.080 0.095

18 0.180 0.129 0.131 0.140 0.100 0.147 0.131 0.166 0.079

d40 30 0.264 0.206 0.203 0.214 0.246 0.198 0.192 0.190 0.161

90 0.573 0.458 0.425 0.421 0.465 0.355 0.385 0.400 0.345

180 0.881 0.745 0.695 0.645 0.721 0.571 0.613 0.579 0.569

9 0.216 0.264 0.282 0.181 0.205 0.211 0.209 0.172 0.186

18 0.385 0.359 0.354 0.323 0.256 0.330 0.291 0.304 0.236

q20 30 0.544 0.466 0.480 0.481 0.454 0.448 0.427 0.384 0.403

90 0.907 0.840 0.794 0.791 0.720 0.738 0.760 0.733 0.649

180 0.996 0.983 0.971 0.965 0.890 0.924 0.926 0.896 0.868

9 0.281 0.316 0.249 0.229 0.251 0.229 0.226 0.214 0.216

18 0.491 0.422 0.393 0.411 0.314 0.364 0.372 0.356 0.311

q40 30 0.640 0.568 0.541 0.562 0.480 0.516 0.510 0.459 0.431

90 0.978 0.925 0.910 0.906 0.802 0.874 0.880 0.863 0.738

180 0.999 0.999 1.000 0.995 0.966 0.993 0.994 0.976 0.950

Table 9: Rejection rates by data set of the level α = 0.05 test for H0 : θ∗ = θ0 based
on the minimum distance estimator at the 9 different parameter vectors of
Table 6 and J ∈ {9, 18, 30, 90, 180}. The data sets differ in the proportion
and type of contaminated data: no contamination (“no”), 20% depth-specific
contamination (“d20”), 40% depth-specific contamination (“d40”), 20% quantile-
based contamination (“q20”), and 40% quantile-based contamination (“q40”).
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3-Sign Depth Test

cont. J
rejection rate at parameter vector

1 2 3 4 θ0 6 7 8 9

9 0.774 0.264 0.108 0.061 0.055 0.067 0.101 0.292 0.858

18 0.981 0.488 0.157 0.075 0.048 0.076 0.160 0.533 0.994

no 30 0.999 0.723 0.242 0.097 0.049 0.095 0.241 0.778 1.000

90 1.000 0.997 0.598 0.195 0.048 0.187 0.636 0.998 1.000

180 1.000 1.000 0.900 0.330 0.051 0.347 0.917 1.000 1.000

9 0.674 0.217 0.099 0.060 0.054 0.063 0.090 0.245 0.783

18 0.946 0.399 0.134 0.072 0.048 0.071 0.135 0.452 0.980

d20 30 0.996 0.616 0.206 0.087 0.049 0.086 0.206 0.694 1.000

90 1.000 0.982 0.507 0.166 0.048 0.161 0.545 0.991 1.000

180 1.000 1.000 0.826 0.275 0.050 0.291 0.843 1.000 1.000

9 0.557 0.179 0.089 0.056 0.055 0.060 0.084 0.207 0.696

18 0.868 0.327 0.114 0.064 0.049 0.066 0.117 0.368 0.947

d40 30 0.983 0.512 0.172 0.079 0.049 0.078 0.172 0.589 0.997

90 1.000 0.948 0.415 0.138 0.048 0.136 0.451 0.974 1.000

180 1.000 1.000 0.718 0.226 0.050 0.239 0.753 1.000 1.000

9 0.591 0.185 0.085 0.062 0.052 0.056 0.087 0.215 0.680

18 0.893 0.351 0.119 0.068 0.048 0.070 0.119 0.389 0.946

q20 30 0.987 0.537 0.172 0.074 0.053 0.088 0.175 0.593 0.998

90 1.000 0.964 0.433 0.140 0.047 0.141 0.464 0.980 1.000

180 1.000 1.000 0.749 0.232 0.048 0.245 0.773 1.000 1.000

9 0.372 0.124 0.064 0.061 0.059 0.058 0.074 0.152 0.430

18 0.660 0.225 0.088 0.057 0.051 0.061 0.091 0.239 0.756

q40 30 0.884 0.341 0.117 0.067 0.047 0.065 0.121 0.374 0.936

90 1.000 0.801 0.270 0.102 0.048 0.097 0.277 0.848 1.000

180 1.000 0.984 0.488 0.154 0.048 0.155 0.522 0.990 1.000

Table 10: Rejection rates by data set of the level α = 0.05 test for H0 : θ∗ = θ0

based on the 3-sign depth at the 9 different parameter vectors of Table 6 and
J ∈ {9, 18, 30, 90, 180}. The data sets differ in the proportion and type of
contaminated data: no contamination (“no”), 20% depth-specific contamina-
tion (“d20”), 40% depth-specific contamination (“d40”), 20% quantile-based
contamination (“q20”), and 40% quantile-based contamination (“q40”).
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Likelihood Ratio

cont. J
rejection rate at parameter vector

1 2 3 4 θ0 6 7 8 9

9 0.997 0.608 0.167 0.083 0.054 0.076 0.163 0.516 0.993

18 1.000 0.896 0.313 0.112 0.048 0.099 0.288 0.853 1.000

no 30 1.000 0.987 0.481 0.154 0.051 0.142 0.461 0.981 1.000

90 1.000 1.000 0.944 0.385 0.043 0.346 0.943 1.000 1.000

180 1.000 1.000 0.999 0.675 0.050 0.655 0.999 1.000 1.000

9 1.000 0.838 0.483 0.318 0.200 0.150 0.172 0.364 0.945

18 1.000 0.985 0.757 0.506 0.286 0.186 0.222 0.591 1.000

d20 30 1.000 0.999 0.921 0.708 0.393 0.237 0.276 0.801 1.000

90 1.000 1.000 1.000 0.989 0.785 0.465 0.591 0.998 1.000

180 1.000 1.000 1.000 1.000 0.971 0.708 0.862 1.000 1.000

9 1.000 0.941 0.752 0.611 0.453 0.350 0.293 0.352 0.858

18 1.000 0.998 0.947 0.855 0.675 0.496 0.404 0.504 0.990

d40 30 1.000 1.000 0.995 0.967 0.844 0.668 0.534 0.679 1.000

90 1.000 1.000 1.000 1.000 0.999 0.973 0.895 0.973 1.000

180 1.000 1.000 1.000 1.000 1.000 1.000 0.992 1.000 1.000

9 1.000 0.999 0.999 0.998 0.991 0.980 0.947 0.809 0.395

18 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.967 0.538

q20 30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.701

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975

180 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.946

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998

q40 30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

180 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 11: Rejection rates by data set of the level α = 0.05 test for H0 : θ∗ = θ0 based
on the likelihood ratio at the 9 different parameter vectors of Table 6 and
J ∈ {9, 18, 30, 90, 180}. The data sets differ in the proportion and type of
contaminated data: no contamination (“no”), 20% depth-specific contamina-
tion (“d20”), 40% depth-specific contamination (“d40”), 20% quantile-based
contamination (“q20”), and 40% quantile-based contamination (“q40”).
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