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Abstract

Memory capabilities in Deep Reinforcement Learning (DRL) agents have become in-
creasingly crucial, especially in tasks characterized by partial observability or imperfect
information. However, the field faces two significant challenges: the absence of a universally
accepted benchmark and limited access to open-source baseline implementations.

We present "Memory Gym", a novel benchmark suite encompassing both finite and
endless versions of the Mortar Mayhem, Mystery Path, and Searing Spotlights environments.
The finite tasks emphasize strong dependencies on memory and memory interactions, while
the remarkable endless tasks, inspired by the game "I packed my bag", act as an automatic
curriculum, progressively challenging an agent’s retention and recall capabilities.

To complement this benchmark, we provide two comprehensible and open-source base-
lines anchored on the widely-adopted Proximal Policy Optimization algorithm. The first
employs a recurrent mechanism through a Gated Recurrent Unit (GRU) cell, while the
second adopts an attention-based approach using Transformer-XL (TrXL) for episodic
memory with a sliding window. Given the dearth of readily available transformer-based
DRL implementations, our TrXL baseline offers significant value.

Our results reveal an intriguing performance dynamic: TrXL is often superior in finite
tasks, but in the endless environments, GRU unexpectedly marks a comeback. This
discrepancy prompts further investigation into TrXL’s potential limitations, including
whether its initial query misses temporal cues, the impact of stale hidden states, and the
intricacies of positional encoding.

Keywords: Memory-based Agents, Deep Reinforcement Learning, Benchmarking,
Transformer-XL, Gated Recurrent Unit.
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Introduction

In the rapidly evolving landscape of Deep Reinforcement Learning (DRL), the role of
memory in decision-making agents is becoming paramount. Real-world tasks often present
agents with imperfect or partial information, where the ability to recall past observations
can be the difference between success and failure. For instance, in financial trading, an
agent might benefit from remembering price trends over time to make informed decisions.
Similarly, in autonomous driving, a car might need to remember the recent actions of
nearby vehicles to predict their future movements and navigate safely.

Recognizing the importance of memory in such scenarios, our research introduces Memory
Gym, a benchmark specifically designed to assess the memory capabilities of agents in
endless tasks. Drawing inspiration from the classic car game "I packed my bag", this
benchmark challenges agents to remember and act upon an ever-growing list of items. At
the heart of our contribution are two memory-driven baseline implementations for Proximal
Policy Optimization (PPO) (Schulman et al., 2017): one powered by Transformer-XL
(Vaswani et al., 2017) and the other by Gated Recurrent Unit (GRU) (Cho et al., 2014).
These baselines make memory-dependent agents more accessible to the research community,
paving the way for further exploration in this crucial area.

This introduction sets the stage for our key contributions, emphasizing the critical role
of memory in decision-making agents, especially when faced with imperfect information.
We conclude this section by providing an overview of the structure and flow of this thesis.

1.1 Memory in the Context of Decision-Making Agents

"I packed my bag" is a classic memory game often played during car journeys. Participants
take turns adding items to an imaginary bag and must remember and recite the entire list
in the correct order. As the list grows, the challenge intensifies, testing the limits of each
player’s memory. The game’s endless nature highlights the challenges of retention and
recall, showcasing the varying memory capacities of individuals.

Memory is not just a game; it is a critical tool for intelligent decision-making under
imperfect information and uncertainty. Without the ability to recall past experiences,
reasoning, creativity, planning, and learning may become elusive.

In the realm of autonomously learning decision-making agents, the agent’s memory
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Chapter 1. Introduction

involves maintaining a representation of previous observations, a knowledge bank that
grounds its next decision. Memory mechanisms, be it through recurrent neural networks
(Rumelhart et al., 1986) or transformers (Vaswani et al., 2017), have enabled these agents
to master tasks both virtual and real. For instance, DRL methods have conquered complex
video games as Capture the flag (Jaderberg et al., 2019), StarCraft II (Vinyals et al., 2019),
and DotA 2 (Berner et al., 2019). Their success extends beyond virtual environments
to real-world challenges as dexterous in-hand manipulation (Andrychowicz et al., 2020)
and controlling tokamak plasmas (Degrave et al., 2022). The remarkable achievements of
DRL agents empowered by memory often come coupled with substantial computational
demands and additional techniques that extend beyond the scope of benchmarking an
agent’s memory interaction abilities.

1.2 Contribution: Endless Task Memory Benchmark

We propose Memory Gym (Pleines et al., 2023), an open-source benchmark, designed to
challenge memory-based DRL agents to memorize events across long sequences, generalize,
and be sample efficient. Memory Gym encompasses three unique environment families:
Mortar Mayhem, Mystery Path, and Searing Spotlights. Every environment within these
families is procedurally generated and offers visual observations and multi-discrete action
spaces. Importantly, mastering these environments is impossible without effective memory
utilization, necessitating regular memory interactions.

Memory Gym offers not only typical finite memory challenges with a single goal but
remarkably extends these to endless tasks, inspired by the "I packed my bag" game.
Such novel endless tasks, behaving as an automatic curriculum, are pivotal for not just
evaluating efficiency but, more critically, assessing the effectiveness of memory mechanisms.
As mirrored in the aforementioned game, capitulating to the ever-expanding list becomes
inevitable. More effective memory mechanisms may handle lengthier lists than less effective
ones.

To our current understanding, no existing Deep Learning (DL) memory benchmark
possesses such endless tasks targeting sequence models. Additionally, DRL tasks exhibit
dynamic behaviors due to the evolving nature of the agent’s policy during training. As
a result, episodes can yield vastly different outcomes. For example, episode lengths can
vary significantly based on the decisions made, particularly when dealing with stochastic
agents or environments. This contrasts supervised learning tasks, which typically rely on
a consistent data set.

As detailed in this work, many existing memory tasks exhibit shortcomings, giving reason
to the absence of a standardized memory benchmark. This underscores the importance
of introducing refined tasks, as achieved by Memory Gym, which we believe to be an
invaluable contribution to the field of benchmarking memory-based DRL agents.

2
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1.3 Contribution: Memory-based Agent Baselines
A recurring theme in the realm of memory-based DRL is the lack of accessible and
reproducible baselines. Many significant works, particularly those utilizing transformers
(Fortunato et al., 2019; Parisotto et al., 2020; Hill et al., 2021; Lampinen et al., 2021;
Parisotto and Salakhutdinov, 2021), have not made their implementations publicly available.
As implementation details of DRL algorithms are vital (Engstrom et al., 2020; Andrychowicz
et al., 2021; Huang et al., 2022a), this lack of transparency poses significant challenges for
the research community, hindering progress and reproducibility.

In response to this challenge, we contribute two accessible and easy-to-follow baseline
implementations. These are based on the widely-adopted DRL algorithm Proximal Policy
Optimization (PPO) (Schulman et al., 2017). To allow for memory, one baseline is centered
around a Recurrent Neural Network (RNN) leveraging a GRU cell, while the other one
employs Transformer-XL (TrXL) as an episodic memory leveraging a sliding window
approach.

Integrating these memory mechanisms is not as simple as plug-and-play. Their inclusion
increases the implementation’s complexity, necessitating the collection of more data,
carefully processing of sequential data, and the expansion of agent’s interfaces to its model,
usually an Artificial Neural Network (ANN). Such complexities can be vulnerable to errors
and inflate the hardware memory overhead. Recognizing these challenges, our baselines
are designed to be intuitive and easy to adopt. They serve as a beacon for the community,
especially given the dearth of readily available transformer-based DRL implementations.

In our experimental analysis, we benchmark the TrXL and GRU agents on the finite and
endless tasks presented by Memory Gym. The results indicate that TrXL outperforms in
terms of sample efficiency on Mystery Path and effectiveness on Mortar Mayhem. However,
in the Searing Spotlights environment, GRU demonstrates refined sample efficiency. To
our greatest surprise, in the endless environments, GRU consistently surpasses TrXL in
effectiveness by large margins. In our later discussion, we explore five potential hypotheses
to shed light on the unexpectedly low effectiveness of TrXL.

1.4 Limitations
In the pursuit of advancing the understanding of memory-based DRL, our research has
made significant contributions. However, it is imperative to recognize the constraints of
our study.

The underlying research was conducted within a limited computational budget, approxi-
mately 50,000 GPU hours. This constraint inevitably influenced the depth and breadth of
our experiments. For example, extensive ablation studies on baselines, such as scaling the
agents’ models, or exploring the environments in greater depth, were not feasible within
this budget. Similarly, integrating additional baselines as HELM (Paischer et al., 2022a)
or state-of-the-art DRL algorithms as Soft Actor-Critic (Haarnoja et al., 2018) was beyond
our reach, especially considering the associated costs of hyperparameter tuning.

While Memory Gym is a valuable benchmark, it does not claim to be a universal
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Chapter 1. Introduction

standard for all kinds of memory-based tasks in DRL. We focused on tasks that solely
challenge memory and deliberately excluded others that comprise a broader context. For
instance, while continuous actions are pivotal in many applications such as control tasks,
our research did not venture into creating an environment family for them. Instead, we
prioritized refining the quality of our existing tasks rather than expanding the quantity.

Our research is centered on memory within the realm of DRL. While there are benchmarks
in other contexts, such as natural language processing or supervised learning (e.g. Long
Range Arena (Tay et al., 2021)), our study did not encompass these areas. The vast
landscape of such research would have significantly expanded the scope of our work,
potentially diluting our focus on memory in DRL agents.

1.5 Overview and Structure
This thesis is divided into eight chapters to provide a comprehensive understanding of
memory-based DRL.

In the subsequent chapter, we lay the foundational concepts of DRL. We trace the
evolution of the core algorithm PPO, starting with its rudimentary predecessor, REIN-
FORCE (Williams, 1992). This is further developed into Advantage Actor-Critic (A2C)
and eventually refined into PPO, incorporating a clipped surrogate objective and General-
ized Advantage Estimation (Schulman et al., 2016). We also delve into the intricacies of
notable sequence models, including GRU, Long Short-Term Memory (LSTM), TrXL, and
Gated Transformer-XL (GTrXL).

Chapter 3 reviews relevant literature, focusing on existing memory-based baselines and
tasks. A significant observation is the prevalent lack of accessible and reproducible baselines.
We introduce criteria essential for benchmarks, especially those targeting memory tasks.
An analysis of these benchmarks reveals inconsistencies and gaps, explaining why many
memory baselines do not employ a consistent set of tasks for agent assessment.

To fill in this gap, Chapter 4 unveils our memory task families: Mortar Mayhem,
Mystery Path, and Searing Spotlights. We elucidate both their finite and endless versions,
comparing them with existing tasks. The chapter also offers insights into scaling the
challenges posed by these environments and evaluates their dependence on frequent memory
interactions.

In Chapter 5, we detail our baseline contributions. We first outline the general actor-critic
model architecture, which accommodates multi-discrete actions and optionally supports
observation reconstruction and ground estimation targets. Afterwards, we delve into the
specifics of the GRU and TrXL agents.

Chapter 6 is dedicated to experimentation, where Memory Gym’s environments are pitted
against the GRU and TrXL baselines. We describe the methodologies behind training
and evaluation, encompassing hyperparameters, architectural nuances, and statistical
tools employed. The results section reveals intriguing findings, including the unexpected
superiority of GRU over TrXL in endless scenarios. We also illustrate the computational
demands of our training runs and the behaviors exhibited by the resulting agents.

In Chapter 7, we discuss our most notable findings. We propose five hypotheses
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to potentially narrow the unexpected performance dynamics of TrXL in endless tasks.
These hypotheses touch upon agent model capacity, learning signal strength, temporal
information lacks in TrXL’s initial query, outdated hidden states, and challenges with
positional encoding. We also critically evaluate the Searing Spotlights environment and,
based on our discussions, suggest potential refinements. We conclude the chapter by
positioning Memory Gym in the broader context of standard benchmarks, advocating its
complementary rather than exhaustive nature.

The thesis culminates with a recapitulation of our pivotal findings, followed by potential
avenues for future research. We then offer a reflective critique of our work, highlighting its
limitations and areas for improvement.
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To follow our contributions, it is essential to understand the foundational concepts they
are built upon. We begin by exploring the principles of DRL, followed by an in-depth
look at the widely-used DRL algorithm PPO. Additionally, we explore recurrent and
attention-based neural networks, specifically LSTM, GRU, TrXL, and GTrXL, which are
renowned for tackling memory-dependent tasks.

2.1 Deep Reinforcement Learning

In the realm of machine learning, Reinforcement Learning (RL) stands alongside Supervised
and Unsupervised Learning as a unique subset of data-driven methods. Unlike these
methods where a pre-existing dataset is usually available, RL addresses problems of
sequential decision-making, often starting without prior knowledge. Here, an entity known
as the agent interacts with its surroundings to complete tasks that demand a series of
decisions, or actions. The environment provides feedback in the form of rewards whenever
the agent succeeds. Negative rewards can be signaled to the agent to diminish undesired
behaviors and outcomes. The agent then uses this feedback to reinforce its future decision-
making strategies. This strategy, which governs how the agent decides on actions based
on the environment’s state, is commonly referred to as a "policy". The overall goal in RL
is to find an optimal policy that maximizes the rewards received by the agent.

Traditional RL algorithms usually utilize tabular data structures, where the dimensions
are determined by the number of possible states in an environment and the actions an
agent can execute within it. However, as environments and agents become more complex,
these methods face scalability issues, stemming from the challenges of performing table
look-ups or accommodating potentially boundless tables in computer memory. Merging the
principles of RL with the capabilities of ANNs led to the emergence of the DRL domain.
A ground breaking success in this field is the Deep Q-Network (DQN) algorithm by Mnih
et al. (2015), which demonstrates human-level proficiency in playing a diverse range of
Atari games.

With the context of DRL now set, the subsequent sections delve into its foundational
concepts vital for introducing PPO. At first, the Markov Decision Process (MDP), the
goal of the agent, the Markov property, and the Partially Observable Markov Decision
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Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 2.1: The Markov Decision Process depicts a continuous interaction loop between
the agent and the environment. Once the environment’s state is exposed, the
agent decides on and executes an action in response. Next, the environment
transitions to a new state and conveys a reward to the agent, which the agent
utilizes to refine its policy. Adapted from Sutton and Barto (2018).

Process (POMDP) are detailed. This is followed by differentiating deterministic and
stochastic policies. We then transition to defining both the state-value function and the
action-value function, highlighting their learning processes through Monte Carlo Prediction,
Temporal Difference Learning, and n-step returns. Furthermore, we distinguish DRL
algorithms based on their on-policy or off-policy characteristics. Finally, we enumerate
the key challenges of this domain. The exploration of theoretical foundations, such as the
derivation of the policy gradient theorem and the Bellman equation, are considered out of
scope. Unless otherwise specified, the notation and definitions adhere to those presented
in the book "Reinforcement Learning: An Introduction" by Sutton and Barto (2018).

2.1.1 Markov Decision Process

In RL, an autonomous agent primarily learns through its interactions. This sequential
decision-making is formalized by the Markov Decision Process (MDP), being the founda-
tional framework for various algorithms, agents, and environments. As depicted in Figure
2.1, this interaction is a continuous loop.

For this thesis, the environment is considered to be stochastic. Upon initialization or
"reset", the environment presents its initial state S0 from the distribution p(S0), with
p(S0 = s) being the likelihood of the state being s. With this state as reference, the
agent chooses an action A0 ∈ A(s) to execute at time step t = 0. The action space, A(s),
represents possible actions when in state s.

After taking the action, the environment transitions to a new state St+1 at time t+ 1
and provides the agent with an expected reward Rt+1, defined by the reward function:

R(s, a)
.
= E [Rt+1|St = s, At = a] (2.1)
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Running the MDP produces a trajectory of triplets that are produced during one step
(i.e. one agent-environment interaction):

τ = (S0, A0, R1), (S1, A1, R2), (S2, A2, R3), . . . (2.2)

S, A, and R are random variables, while s, a, and r are specific instances of these
variables. The environment’s dynamics and response to actions is governed by the transition
function. This function assigns a probability to transitioning from state s and action a to
a subsequent state s′ and receiving an expected reward r as:

p(s′, r|s, a) .
= Pr{St+1 = s′, Rt+1 = r | St = s, At = a} (2.3)

2.1.2 Goal: Maximizing Discounted Cumulative Rewards

Over time, the agent’s goal is to strategically act in ways that maximize the received
cumulative rewards. The rewards accumulated by the agent are referred to as the return
Gt:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + · · ·+RT (2.4)

where T represents the terminal time step. An episode in the agent-environment
interaction loop spans from time step 0 to T . While some tasks are episodic as previously
outlined, others persist as continuing tasks without distinct terminal states. For such
continuing tasks, the return Gt becomes impractical, as T may approach infinity. To
address this issue, the concept of discounting is leveraged. The agent’s goal is now to
maximize the expected discounted return Gt:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1 (2.5)

Here, γ denotes the discount factor, constrained within the interval 0 ≤ γ ≤ 1. This
factor acts as a hyperparameter, chosen prior to training. A smaller discount factor makes
agents prioritize immediate rewards, making them shortsighted, whereas larger values
promote farsighted behaviors. For example, when set to 0, the agent’s sole objective
becomes maximizing Rt+1.

2.1.3 Markov Property

The Markov property asserts that the probability of transitioning to the next state and
emitting the expected reward is independent of the prior history of states and actions
(Morales, 2020):

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r | St, At, St−1, At−1, . . .} (2.6)

A state adhering to the Markov property is commonly identified as a Markov state,
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Rt+1
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Environment
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Rt
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StSt+1

Bt+1Bt

Memory

Figure 2.2: In the Partially Observable Markov Decision Process (POMDP), the agent
operates in environments where the true state is hidden. The agent perceives
only a partial observation, an incomplete reflection of the true state. Guided
by its internal belief state and the current observation, the agent selects an
action. This decision-making process updates the belief state from Bt to Bt+1.
Subsequently, the environment transitions to a new state in response to the
agent’s action, providing a fresh observation and corresponding reward. We
refer to the mechanism that characterizes the belief state as "memory".

characterized by its distinct representation that differentiates it from other states. Within
RL, this property ensures that an agent, for optimal decision-making, does not need to
remember all past states and actions. Instead, the present state, which embodies all
relevant information, is sufficient. This simplifies the decision-making process, reducing
the computational demands and saving computer memory. In the following section, we
detail how environments with partially observable states can violate the Markov property.

2.1.4 Partially Observable Markov Decision Process

Environments can differ in the accessibility of their states. While some tasks provide
complete state information, real-world problems often present scenarios where the agent
can only access partial or noisy observations about the true state of the environment. This
violates the Markov property as the agent needs access to the past to make meaningful
decisions. The Partially Observable Markov Decision Process (POMDP) provides a formal
framework to handle such scenarios.

In a POMDP, the agent does not observe or perceive the actual state St. Instead, it
receives an observation Ot which provides imperfect information about St. To get an
estimate on the state of the environment, the agent needs access to the history Ht of past
observations and actions:
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2.1. Deep Reinforcement Learning

Ht
.
= A0, O1, . . . , At−1, Ot (2.7)

The inherent complexity of relying on the full history Ht stems from its ever-growing
nature as the agent interacts with the environment. Instead of using the entire history, a
more tractable approach is to use the concept of a belief state.

A belief state, denoted as b(s), is a probability distribution over all possible states,
reflecting the agent’s current belief about the environment’s state given the history of
observations. It provides a compact representation of the history and encapsulates all the
information necessary for decision-making, thus restoring the Markov property. Formally,
given a history Ht, the belief state at time t for a state s is:

bt(s) = Pr{St = s|Ht} (2.8)

The process of approximating the belief state requires what we term as "memory" within
the agent. This memory distills the accumulated history into a concise representation
that guides the agent’s decision-making. Importantly, this representation should have the
ability to retain and recall relevant information from past interactions.

Figure 2.2 illustrates the agent-environment interaction when modeled as POMDP.

2.1.5 Deterministic and Stochastic Policies

The behavior of an agent within an environment is determined by its policy, denoted as
π. This policy maps states (or observations) to actions. There are primarily two types of
policies: deterministic and stochastic.

A deterministic policy provides a specific action a for a state s:

π(s) = a (2.9)

On the contrary, a stochastic policy defines a probability distribution over the possible
actions for a given state s:

π(a|s) = Pr{At = a | St = s} (2.10)

2.1.6 Value Functions

Value functions are pivotal as they estimate how good it is for an agent to be in a certain
state or to perform a particular action in a state, given a policy. These estimations guide
the agent’s decisions in the learning process and are central to many algorithms.

The state-value function, denoted as vπ, represents the expected return from a particular
state s when following the policy π:

vπ(s)
.
= Eπ[Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
(2.11)
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The action-value function (or q-function), often termed as qπ, quantifies the expected
return from taking an action a in state s and then following policy π:

qπ(s, a)
.
= Eπ[Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
(2.12)

One of the primary benefits of using the q-function is its direct application in determining
actions. For a state s, the most promising action is the one that maximizes the q-value:

π(s) = argmax
a

qπ(s, a) (2.13)

This stands in contrast to the value function, where the agent may require fewer state
visits but would need to anticipate future states to determine the optimal policy.

Another important value function emerges as a result of the relationship between
the value function and the q-function - the so called advantage function Âπ(s, a). The
advantage function quantifies the relative benefit (or advantage) of taking a specific action
a in state s. This quantity is represented by the difference between the action-value and
the value function:

Âπ(s, a) = Qπ(s, a)− Vπ(s) (2.14)

Note that the capital letters Â, Q, and V denote array estimates instead of single scalars.
In conclusion, these value functions offer different perspectives and can be learned through

experience. Common methodologies for this learning include Monte Carlo Prediction and
Temporal Difference Learning, discussed in the subsequent sections. Throughout this work,
we refer to the value function as the value function, while we use the term q-function for
the action-value function.

2.1.7 Monte Carlo Prediction

Monte Carlo (MC) Prediction employs random sampling to estimate value functions and
to offer unbiased estimations of expected returns for states or state-action pairs. The
more samples provided, the closer the estimation moves to the actual value. One popular
variant of this procedure is the constant-α method, which is described next.

To learn the value function V for a given policy π, the initial step is to sample a finite
trajectory:

τ = St, At, Rt+1, . . . , RT , ST ∼ πt:T (2.15)

where t typically starts at 0 and T denotes the terminal step. The subsequent step is to
compute the return for each time step within the trajectory. This is accomplished by a
recursive formulation of the previously defined return (Equation 2.5):

Gt = Rt+1 + γGt+1 (2.16)
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By iterating over the sampled trajectory from T backward to 0, the return for each
time step is computed recursively. It is essential to note that the return for the terminal
state ST is 0 since the episode concludes and no future rewards can be acquired. With the
sampled returns in hand, the value function can be incrementally updated as:

V (St)← V (St) + α[Gt − V (St)] (2.17)

where Gt − V (St) represents the MC error and α is the learning rate. For discrete state
spaces, state-values are often initialized to 0 and stored in a tabular format. In more
complex scenarios, universal function approximators might be used.

2.1.8 Temporal Difference Learning

Temporal Difference (TD) Learning offers a unique advantage compared to MC methods: it
does not necessitate the completion of an entire episode before updating the value function.
Instead, TD Learning updates the value function V after at least one step taken within
the environment, a process facilitated by a technique called bootstrapping. Bootstrapping
in this context refers to the practice of updating value estimates based on other estimates.
For example, these estimates can be drawn from the to-be-optimized value function.

A fundamental difference between the two methods lies in their target for updates.
While MC uses the sampled return Gt as its target, TD relies on an estimated target,
leading to some bias but compensating with reduced variance.

The most basic form of TD learning is termed TD(0), represented by the following
equation:

V (st)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.18)

In this equation:

• α is the learning rate,

• Rt+1 + γV (St+1) serves as the target, and

• the term [Rt+1 + γV (St+1)− V (St)] quantifies the TD error.

While TD(0) looks one step ahead, it can also be used to look ahead for n-steps as
detailed next.

2.1.9 n-Step Returns

An n-step return serves as a bridge between MC and TD methods. While MC prediction
waits until the end of the episode to compute the return, and TD(0) updates the value
function based on the immediate reward and the next state’s value, n-step returns provide
a compromise, considering a specified number of steps ahead before bootstrapping.

To grasp this concept, first consider the two-step return. In this scenario, the agent
expects two rewards before bootstrapping from the third state’s value:

13



Chapter 2. Fundamentals

Gt:t+2
.
= Rt+1 + γRt+2 + γ2Vt+1(St+2) (2.19)

Here, γ2Vt+1(St+2) is the estimate of the terms: γ2Rt+3 + γ3Rt+4 + · · · + γT−t−1Rt.
Building on this foundation, we can generalize to the n-step return, where the subscript
t : t+ n depicts the range from t+ 1 to t+ n:

Gt:t+n
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γnVt+n−1(St+n) (2.20)

This formula captures two pivotal elements: the accrued reward over the next n steps
and the bootstrapped value function from the nth state. If the look-ahead exceeds the
trajectory length (i.e., t+ n ≥ T ), any nonexistent terms are assumed to be 0. Although
n-step returns provide a trade-off, balancing bias (due to bootstrapping) and variance
(from sampling), they bring about added complexity in implementation and introduce an
additional hyperparameter to tune.

2.1.10 On-Policy vs. Off-Policy

RL agents can adopt one of two main strategies to learn from their environment: on-
policy and off-policy. The distinction lies in the relationship between the policy used for
exploration and the policy under optimization.

In on-policy learning, the agent simultaneously learns and makes decisions using its
current policy. Therefore, the policy directing the agent’s actions is the same policy being
optimized. One implication of this approach is the inability to reuse past experiences
efficiently. Since the samples derive from a previous version of the policy, they may become
outdated or irrelevant for the current policy’s optimization. In other words, outdated
samples are considered off-policy.

Off-policy learning decouples the policy used for exploration from the policy being
optimized. This means that the agent may employ different policies for exploring the
environment and gathering training data. A key advantage is the capacity to learn from a
wide array of experiences. This includes data gathered from past iterations of the policy,
or even from an entirely different policy, such as demonstrations by a human expert.

2.1.11 Challenges in Reinforcement Learning

Developing RL agents is accompanied by a multitude of challenges that cutting edge
algorithms try to overcome. Understanding and addressing these is fundamental for the
advancement of RL and its application in diverse fields.

Reward Shaping: Designing an appropriate reward function can be intricate. If rewards
are designed improperly, an agent might find unintended shortcuts or suboptimal behaviors.
Striking a balance between guiding an agent with informative rewards and not handcrafting
every detail is crucial.

14



2.2. Proximal Policy Optimization

Credit Assignment Problem: In environments where rewards are sparse or delayed, it
becomes challenging to identify which actions were responsible for the obtained rewards.
The system must trace back through its action history to assign credit (or blame) to the
appropriate decisions that led to the outcome.

Exploration versus Exploitation: Agents must decide whether to explore new, poten-
tially better strategies or exploit known strategies that work well. Striking the right balance
is critical, as too much exploration can lead to inefficiency, while excessive exploitation
can miss better solutions.

Generalization: An ideal RL agent should be capable of generalizing its learning to
new, unseen situations. Overfitting to a specific environment or set of scenarios limits the
agent’s effectiveness in varied or real-world conditions.

Representation Learning: The way state and action spaces are represented can sig-
nificantly impact the efficiency of learning. Developing representations that capture the
essential features of the environment, while being compact and scalable, is a major chal-
lenge.

Imperfect Information: In many real-world scenarios, agents must act based on partial
or noisy observations. Learning under these conditions requires the agent to develop
strategies that are robust to uncertainty and possible misinformation. This intensifies the
challenge of learning representations that can effectively capture, store, and retrieve past
observations in a reliable manner.

Scalability: As environments become more complex, the computational demands for
training increase. The challenge lies in developing algorithms that can learn efficiently
both in terms of computational resources and the number of samples required.

2.2 Proximal Policy Optimization

In this section, we present the cutting-edge DRL algorithm, Proximal Policy Optimization
(PPO) (Schulman et al., 2017). PPO has demonstrated its capability in training successful
agents for complex games as DotA 2 (Berner et al., 2019). Additionally, its effectiveness
extends to real-world applications, ranging from dexterous in-hand manipulation by
robotic hands (Andrychowicz et al., 2020) to addressing chip placement challenges in the
semiconductor domain (Mirhoseini et al., 2020).

To establish PPO’s background, we trace its lineage with its foundational predecessors
REINFORCE (Williams, 1992) and Advantage Actor-Critic (A2C) (Mnih et al., 2016),
which are based on the policy gradient. Building upon REINFORCE, several progressive
enhancements lead to the realization of PPO.

The journey begins by transforming REINFORCE into an actor-critic algorithm through
the incorporation of a learned value function, acting as a critic. This critic is further
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Deep Reinforcement Learning Algorithms

Model-Free Model-Based

Policy-Based Value-Based

REINFORCE

Proximal Policy
Optimization (PPO)

Advantage Actor-Critic
(A2C)

Importance Weighted
Actor-Learner

Architecture (IMPALA)

Deep Recurrent Q-
Networks (DRQN)

Recurrent Replay
Distributed DQN (R2D2)

Value-Based Maximum a
Posteriori Policy (V-MPO)

Deep Q-Networks
(DQN)

Actor-Critic

Figure 2.3: Taxonomy of Deep Reinforcement Learning Algorithms touched in this work.
This study focuses only on model-free algorithms. The policy gradient algorithm
REINFORCE is the foundation to A2C, which introduces the concept of actor-
critic algorithms. Its successor, PPO, is pivotal for our baselines. Other
algorithms are referenced due to their significance in related work. Actor-critic
combines both value-based and policy-based approaches.
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refined by adopting Generalized Advantage Estimation (GAE) (Schulman et al., 2016),
paving the way for the introduction of PPO’s distinct clipped surrogate objective. To
encourage exploration, an entropy bonus augments this objective. Before delving into the
final PPO algorithm, we detail the to-be-minimized loss functions and the approach for
collecting training data concurrently.

Throughout related work (Chapter 3) and our exploration leading to PPO, we also
touch on further algorithms, with Figure 2.3 visualizing a brief taxonomy.

2.2.1 REINFORCE

REINFORCE (Williams, 1992) is one of the foundational algorithms in the realm of
policy gradient methods in RL. Unlike value-based approaches which seek to learn the
value of being in a given state or taking a certain action, policy gradient methods, like
REINFORCE, aim directly at optimizing the policy itself. Specifically, REINFORCE
works by adjusting the policy parameters in a direction that maximizes expected returns,
relying on the gradient of the expected return with respect to the policy parameters.

To implement REINFORCE, three major components are required:

• A policy defined by parameters, often represented by an artificial neural network.

• A well-defined objective function.

• A technique to optimize the policy parameters, typically relying on gradient ascent.

At its heart, the policy, denoted as π, is parameterized by θ — parameters of a neural
network — that maps a state to its corresponding action probabilities. Actions can
be determined deterministically by choosing the action with the highest probability or
stochastically by sampling from the action probability distribution. The later is more
prevalent as it aids exploration.

The objective function strives to optimize the expected discounted cumulative rewards
(i.e. return):

J(θ) = Eτ∼π

[
T∑
t=0

Gt(τ)

]
(2.21)

where τ symbolizes a trajectory sampled using the policy πθ. The gradient of this
objective, known as the policy gradient, is given by:

∇J(θ) = Eτ∼π

[
T∑
t=0

Gt(τ)∇ log π(at|st, θ)

]
(2.22)

Here, ∇θ log πθ(at|st) constitutes the gradient of the log-probability of selecting action
at in state st governed by the policy πθ. For a complete derivation of the policy gradient,
refer to (Graesser and Keng, 2020, p. 28).
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Algorithm 1 REINFORCE
Require: Policy parameters θ, learning rate α
1: for episode 0, . . . , NumEpisodes do
2: Sample trajectory τ using policy πθ

3: for each step (st, at, rt+1) in reverse order of τ do
4: Compute return Gt(τ) starting from t
5: θ ← θ + α ·Gt(τ)∇ log π(at|st, θ)
6: end for
7: end for

The last component is gradient ascent to optimize θ:

θ ← θ + α∇J(θ) (2.23)

The learning process is based on MC prediction (Section 2.1.7) and is depicted by
Algorithm 1.

Since REINFORCE is an on-policy method, it does not reuse previously acquired training
data, leading to potential sample inefficiencies when the agent-environment interactions
are costly. Another notable challenge with this algorithm is its suffering from high variance.
Incorporating off-policy data to enhance sample efficiency might amplify this variance,
potentially leading to catastrophic changes in the policy gradient. Even minor changes in
the policy gradient can drastically alter the policy. In cases where the policy collapses,
it might not recover, given that this very policy is responsible for collecting the next
trajectory. Such a phenomenon is termed "performance collapse".

REINFORCE is the foundation to PPO, but it necessitates various improvements to
fulfill PPO. The following section explores the notion of subtracting a baseline aiming at
stabilizing training.

2.2.2 REINFORCE with Baseline

REINFORCE, though foundational, benefits from several refinements, one of which is the
incorporation of a baseline bline(st). By subtracting this baseline from the return Gt, a
point of reference is established, effectively indicating whether the realized return was
above or below expectations.

∇J(θ) = Eτ∼πθ

[
T∑
t=0

(
Gt(τ)− bline(st)

)
∇ log π(at|st, θ)

]
(2.24)

While the baseline could simply be the mean return over a trajectory:

bline =
1

T

T∑
t=0

Gt(τ) (2.25)

a more advanced strategy employs a learned value function V (st, θ) parameterized by θ:
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∇J(θ) = Eτ∼π

[
T∑
t=0

(
Gt(τ)− V (st, θ)∇ log π(at|st, θ)

)]
(2.26)

Training the value function can parallel the policy’s training mechanism in MC style.
The value function and the policy can also rely on separate parameters, if desired. However
in this work, shared parameters are the default.

Instead of an objective function, the emphasis shifts to minimizing the Mean Squared
Error (MSE) (James et al., 2021, p. 29):

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (2.27)

ŷi is the predicted value, yi is the target value, and n is the number of data points. In
the context of REINFORCE, ŷi is represented by V (st, θ) and yi corresponds to Gt(τ) for
each time step t. The final loss to minimize is:

LV (θ) =
1

T

T∑
t=0

(V (st, θ)−Gt(τ))
2 (2.28)

As the policy gradient and a learned value function are utilized in REINFORCE with
baseline, one could assume that this concept refers to the idea of actor-critic methods as
PPO. However, this is not the case yet, as elaborated next.

2.2.3 Actor-Critic

Actor-critic algorithms fuse two key components: the actor and the critic. The actor is
responsible for determining the action to take in a given state, effectively directing how
the agent should behave. On the flip side, the critic examines the action chosen by the
actor, supplying feedback through a value estimate. This feedback refines the updates
made to the actor, enhancing its decision-making process. To emphasize, the return used
to reinforce the actor is completely replaced by the critic’s feedback.

REINFORCE combined with a learned value function as a baseline (Equation 2.26)
does not strictly qualify as an actor-critic method. The distinction lies in how states and
actions are assessed. In this setup, the learned value function evaluates only the initiating
state of a transition. The outcome of the action taken, is determined by the sampled
return. However, for a genuine actor-critic approach, the subsequent state resulting from
the action should also be evaluated by the value function.

One prevalent approach in actor-critic methods to learning the value function is through
TD learning (Section 2.1.8), as seen in works like (Mnih et al., 2016; Schulman et al., 2017;
Sutton and Barto, 2018). For simplicity, we transform REINFORCE with baseline to an
actor-critic method by leveraging TD(0). The return in Equation 2.26 can be reinterpreted
as the one-step return Gt:t+1. Thus, the return in REINFORCE with baseline’s objective
can be replaced with the state’s look-ahead value estimation:
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J(θ) = Et

[(
Rt+1 + γV (st+1, θ)− V (st, θ)

)
log π(at|st, θ)

]
(2.29)

Here, the expression Rt+1 + γV (st+1, θ)− V (st, θ) approximates the advantage function,
introduced in Equation 2.14. Employing an n-step return gives rise to the advantage
function Ânstep

π as applied in A2C’s objective (Mnih et al., 2016):

Ânstep
π (st, at) =

n−1∑
i=0

(
γiRt+i + γnV (st+n, θ)− V (st, θ)

)
(2.30)

J (θ) = Et

[
log π(at|st, θ) Ânstep

π (st, at)
]

(2.31)

It is essential to note that we employ the parameters θ when formalizing A2C’s advantage
function. Although the policy and value function may share parameter sets, decoupling
parameters between these components is also a viable strategy.

As the critic is known for stabilizing the training of policy gradient algorithms, PPO
yields further improvements by leveraging GAE (Schulman et al., 2016), introduced next.

2.2.4 Generalized Advantage Estimation

Generalized Advantage Estimation (GAE) (Schulman et al., 2016) offers an advanced
alternative to n-step returns (Section 2.1.9). It brings in a new parameter, λ ∈ [0, 1], that
elegantly smooths between the TD error and the actual sampled return. Unlike n-steps,
which demand a specific choice of n, GAE provides a continuous balance.

Drawing inspiration from Graesser and Keng (2020), the breakdown of GAE can be
presented in smaller steps. We start with three instances of the n-steps advantage function.
To later simplify the notation, the variable δt is defined:

Ât:t+1
.
= δt = Rt + γV (st+1)− V (st)

Ât:t+2
.
= δt + γδt+1 = Rt + γRt+1 + γ2V (st+2)− V (st)

Ât:t+3
.
= δt + γδt+1 + γ2δt+2 = Rt + γRt+1 + γ2Rt+2 + γ3V (st+3)− V (st)

(2.32)

With this foundation, GAE constructs an exponentially-weighted average of the n-step
advantage estimators:

ÂGAE
π (st, at) = (1− λ)(Ât:t+1 + λÂt:t+2 + λ2Ât:t+3 + . . .) (2.33)

This can be compactly represented as (Graesser and Keng, 2020, p. 139-140):

ÂGAE
π =

∞∑
l=0

(
(γλ)lδt+l

)
(2.34)

In essence, GAE offers a flexible approach to smoothly balance variance and bias. In
the following section, we integrate GAE as the critic in the forthcoming objective of PPO.
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2.2.5 Clipped Surrogate Objective

The motivation behind PPO is to prevent overly aggressive updates that can destabilize
learning, leading to performance collapse in the worst case. Schulman et al. (2017) introduce
a surrogate objective that undergoes clipping to ensure that the policy update remains
within a trust region, effectively moderating the extent of each update and preventing
excessive deviations from the current policy. This approach strikes a balance, allowing for
meaningful policy improvements while mitigating the risk of harmful large policy shifts.
The following description of PPO’s objective formulation leans on the notation presented
by Graesser and Keng (2020).

The foundation for PPO is the policy gradient objective of A2C (Equation 2.31) combined
with GAE:

J (θ) = Et

[
log π(at|st, θ) ÂGAE

π (st, at)
]

(2.35)

Transitioning to the surrogate objective is facilitated by the method of importance
sampling (Schulman et al., 2015). An essential construct is the probability ratio, denoted
as ratiot(θ):

ratiot(θ) =
π(at|st, θ)
π(at|st, θold)

(2.36)

Here, θold refers to the policy parameters under which the trajectory data was sampled.
This ratio captures the change in policy for action at in state st from the old policy to
the current one. By incorporating this ratio, the surrogate objective, called Conservative
Policy Iteration (CPI) (Kakade and Langford, 2002), is established:

JCPI(θ) = Et

[
ratiot(θ) Â

GAE
π (st, at)

]
(2.37)

To further mitigate large policy updates, PPO incorporates a clipped version of this
surrogate objective:

JCLIP(θ) = Et

[
min

(
ratiot(θ)Â

GAE
π (st, at), clip(ratiot(θ), 1− ϵ, 1 + ϵ)ÂGAE

π (st, at)
)]
(2.38)

Given the clip range hyperparameter ϵ, the clip function constrains ratiot(θ) to the
clipping neighborhood |ratiot(θ)− 1| ≤ ϵ. Choosing smaller values for ϵ results in more
conservative policy updates. When ratiot(θ) lies within the range [1 − ϵ, 1 + ϵ], both
expressions within the min() function are equivalent. Otherwise, the min function selects
the smaller value, effectively providing a pessimistic bound on the unclipped objective.

The significance of centering this clipping region around the value of 1 becomes evident
when understanding the role of ratiot(θ). When the new policy mirrors the old one, the
equation becomes:
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ratiot(θ) = ratiot(θold) =
π(at|st, θold)

π(at|st, θold)
= 1 (2.39)

This indicates a perfect overlap between the two policies. Conversely, as the new
policy diverges from the old, the value of ratiot(θ) shifts away from 1, encapsulating
both the magnitude and direction of this divergence. When multiplied by the advantage
estimate, this deviation takes on heightened importance, enhancing the utility of the
clipping mechanism.

With the clipped surrogate objective now established for policy updates, the only
remaining element to introduce is the entropy bonus, as discussed subsequently.

2.2.6 Entropy Bonus

Overly deterministic policies can quickly converge to sub-optimal solutions if exploration is
not encouraged. This is where the concept of an entropy bonus comes into play. Entropy,
in the context of RL, measures the randomness or unpredictability of the actions chosen
by a policy. A higher entropy suggests a more exploratory policy, while lower entropy
indicates a more deterministic one.

Mathematically grounded in the concept of the Shannon entropy (Shannon, 1948), the
entropy H of a policy π for a state s is represented as:

H(π(s)) = −
∑
a∈A

π(a|s) log π(a|s) (2.40)

Where s is a given state, and a ranges over all possible actions. This bonus is essentially
a term added to PPO’s loss, which is proportional to the entropy of the policy. By doing
so, the algorithm is incentivized to maintain a degree of stochasticity in its policy.

With the entropy bonus in place, the final loss function of PPO is composed next.

2.2.7 Loss Function

In optimizing both the policy and the value function within the PPO algorithm, it is
essential to derive the loss functions that guide the learning. This section illustrates the
formulation of these loss functions and how they integrate to form the complete loss for
PPO.

The clipped surrogate objective JCLIP
t (θ) is transformed into a loss function, LC

t (θ), by
taking its negative:

LC
t (θ) = −Et

[
min

(
ratiot(θ)Â

GAE
π (st, at), clip (ratiot(θ), 1− ϵ, 1 + ϵ) ÂGAE

π (st, at)
)]
(2.41)

The loss associated with the value function is conventionally defined using the squared
error between the predicted value and the target value:
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(
V (st, θ)− V tar

t

)2 (2.42)

Nevertheless, in line with the knowledge from the code implementation by Schulman
et al. (2017) and as highlighted by Engstrom et al. (2020), the value function can also be
clipped as the policy objective. We adopt this clipped version as well:

LV
t (θ) = max

[(
V (st, θ)− V tar)2 , (clip (V (st, θ), V (st, θold)− ϵ, V (st, θold) + ϵ)− V tar)2]

(2.43)
To conclude, the comprehensive loss function combines the policy loss, the value function

loss, and the entropy bonus to encourage exploration:

LC+V+H
t (θ) = Et

[
LC
t (θ) + c1L

V
t (θ)− c2Ht[πθ](st)

]
(2.44)

In this final form, c1 and c2 are coefficients that control the balance between policy
optimization, value function fitting, and entropy-based exploration. In the subsequent
section, we will explore the methodology for collecting training data, setting the final stage
for a comprehensive presentation of the entire algorithm.

2.2.8 Data Parallelism

Before presenting the entire PPO algorithm, it is worth noting the commonly used
approaches to gathering and utilizing training data for optimization. PPO follows the
notion of A2C, which is a variant based on Asynchronus Advantage Actor-Critic (A3C)
(Mnih et al., 2016). Both these algorithms are built upon REINFORCE with baseline
(Section 2.2.2), where the value function is estimated using n-steps. Their distinctions
emerge in how they leverage data parallelism.

The asynchronicity of A3C arises from the deployment of multiple actor-learner pairs
that operate independently across different threads. Within this setup, every actor-learner
initiates by synchronizing its parameters with the global ones intended for optimization.
Then, a trajectory of fixed length is gathered to update the global parameters.

A2C deviates from this approach in its handling of parallelism. Instead of pairing both
the actor and learner in tandem, A2C allocates one single actor to each thread. Collectively,
these actors collect numerous trajectories, which are subsequently utilized by a single
learner for parameter updates. Post optimization, the actors recommence data sampling,
now informed by the refined policy.

One might question the motivation behind deploying multiple actors. The advantages
are twofold: Parallel data collection enhances efficiency, and perhaps more importantly, it
aids in data decorrelation, an attribute observed to be pivotal in the experience replay
mechanism as manifested in Deep Q-Networks (DQN) (Mnih et al., 2015). Through the
engagement of multiple actors, varied instances of the environment are explored, leading
to encounters with a diverse set of states.

According to Schulman et al. (2017), A2C performed as well as or better than A3C.
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2.2.9 Algorithmic Details

Thus far, we have dissected the various components essential to PPO’s architecture:

• REINFORCE: The foundation of policy gradient algorithms that provide a direct
mapping from states to actions.

• Actor-Critic: A synergy where the actor’s optimization is informed by feedback
from the critic.

• Generalized Advantage Estimation: A balanced approach merging the strengths
of Monte Carlo prediction and temporal difference learning to refine the value
function.

• Clipped Surrogate Objective: This concept ensures policy updates are both
constrained to prevent destabilization and significant enough to drive meaningful
learning.

• Entropy Bonus: A mechanism to bolster exploration during the learning process.

• Final Loss Functions: The target expressions to be minimized in the optimization
process.

• Data Sampling: Reflecting techniques to gather training data akin to A2C.

The pseudocode for understanding PPO’s mechanics is presented in Algorithm 2. A
typical PPO iteration begins by sampling training data concurrently through multiple
actors over a predefined number of steps. These collected trajectories could span multiple
episodes or truncated segments of episodes, which will continue in the subsequent iteration.
Such continuity is feasible because PPO does not rely solely on MC estimates. After data
collection, the GAE is computed. This data is then shuffled into random mini-batches,
serving multiple epochs of optimization, with the objective to minimize the loss as expressed
in Equation 2.44. Notably, after processing the first mini-batch, the policy changes. This
means subsequent mini-batches and epochs deal, to some extent, with off-policy data. In
contrast, A2C runs a single epoch over the complete batch. The resilience of PPO in
managing data derived from a marginally outdated policy, potentially due to its clipped
surrogate objective, makes it more sample-efficient compared to its predecessors (Schulman
et al., 2017).

While PPO is a popular and powerful algorithm, its inner workings are still somewhat
mysterious. One reason for this can be found in the gaps that are apparent in the original
publication (Schulman et al., 2017). For instance, advantages can be normalized prior
optimization or the norm of the gradients can be clipped. Many researchers have taken on
the challenge of demystifying PPO’s details, with studies such as those by Engstrom et al.
(2020); Andrychowicz et al. (2021); Huang et al. (2022a).
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Algorithm 2 Proximal Policy Optimization (PPO)
Require: Parameters θ, learning rate α, clip epsilon ϵ, loss coefficients c1 and c2
Require: Discount factor γ, smoothing parameter λ, mini-batch size M
1: for iteration = 0, 1, . . . , Iterations do
2: // Sample trajectories using πθ

3: for each actor do
4: for step = 0, 1, . . . , Steps do
5: Sample agent-environment interaction transition using πθ

6: end for
7: end for
8:
9: // Generalized advantage estimation

10: for each trajectory τi do
11: for each step (st, at, rt+1, Vt) in reverse order of τi do
12: Compute advantages ÂGAE

t

13: end for
14: end for
15:
16: // Optimize parameters by minimizing LC+V+H

17: for epoch = 0, 1, . . . , E do
18: for mini-batch of M samples do
19: // Compute, aggregate, and combine losses
20: LC(θ) = −E

[∑T
t=0 min

(
ratiot(θ)Â

GAE
π , clip(ratiot(θ), 1− ϵ, 1 + ϵ)ÂGAE

π

)]
21:
22: LV (θ) = 1

T

∑T
t=0

(
V (st, θ)− V target

t

)2
23:
24: LC+V+H(θ) = LC(θ) + c1L

V (θ)− c2
∑T

t=0 H[πθ](st)
25:
26: // Update policy parameters using gradient descent
27: θ ← θ − α∇LC+V+H(θ)
28: end for
29: end for
30: end for
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RNN Cell = RNN Cell RNN Cell RNN Cell RNN Cell
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Figure 2.4: An unfolded representation of a Recurrent Neural Network processing a se-
quence. In DRL, it takes an observation, processes it, and produces a hidden
state. Using an auto-regressive approach, subsequent steps incorporate both
the previous hidden state and the new observation, generating a new hidden
state. The parameters of the RNN are optimized using back-propagation
through time (Werbos, 1990).

2.3 Recurrent Neural Networks

Deep Reinforcement Learning agents may be confronted with dynamic environments where
traditional Artificial Neural Networks (ANNs) may be insufficient. Often, agents find
themselves in scenarios where they must recall past interactions or adapt to sequences of
observations that do not maintain a fixed size. Partial observations, a frequent occurrence
in many real-time strategy games due to constraints like the fog of war, limit the agent’s
access to the complete game state. In such situations, only a limited "camera view" reveals
the game’s current state, challenging the agent to make decisions based on this truncated
information. Furthermore, consider games like top-down shooters, where the number of
enemy units can vary dynamically. Representing such fluctuating game states using a
vector of fixed length becomes problematic. While zero padding the game state vector to a
maximum fixed length is an option, it might not always be the most efficient or practical
approach.

In situations as described above, relying solely on traditional Multi-Layer Perceptrons
(MLPs) or Convolutional Neural Networks (CNNs) may fall short. This is where the
flexibility and memory capabilities of Recurrent Neural Networks (RNNs) (Rumelhart
et al., 1986) shine, offering a more adaptable solution for these DRL challenges. In the
following sections, while providing more context on sequential tasks, we explore the original
kind of RNNs that are known to suffer from exploding or vanishing gradients. Afterwards,
we delve into the more sophisticated architectures of the Long Short-Term Memory (LSTM)
and the Gated Recurrent Unit (GRU), which are both enhanced by leveraging gating
mechanisms.
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(a) One to One (b) One to Many (c) Many to One

(d) Many to Many (e) Many to Many (dynamic)

Figure 2.5: Different types of sequential task mappings. The one to one mapping represents
a non-sequential task. The one to many mapping takes a single input and
produces multiple outputs. In the context of DRL, the many to one mapping
is crucial, where a history of observations leads to a singular current output,
directing an action. There are also two many to many mappings: one with
consistent input and output lengths, and another in a dynamic setting where
not every step has an associated input or output. We typically use the term
"sequence-to-one" to describe a many to one mapping.

2.3.1 Vanilla Recurrent Neural Networks

The roots of Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) can be traced
back to several related architectures, each bearing similarities to notable models as the
Hopfield network (Hopfield, 1982), the Elman network (Elman, 1990), and the Jordan
network (Jordan, 1997). The term "vanilla RNN" typically refers to the foundational
concept of Recurrent Neural Networks (RNNs), which are adept at handling sequential
data. By iterating over sequence elements, these networks preserve a "memory" in the form
of a hidden state. This mechanism ensures that previous sequence elements are retained
and recalled, enabling the network to capture temporal dependencies and patterns. As a
result, RNNs are applicable in applications like time-series forecasting, natural language
processing, and more.

To conceptualize the operation of an RNN, imagine its layers being "unrolled" as a chain
of duplicates across time or sequence steps. As illustrated in Figure 2.4, the recurrent
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layer, often referred to as a "cell", receives an observation ot. This observation undergoes
processing within the cell, outputting a hidden state that aims to provide a useful summary
of past observations. In the subsequent step, the same cell, as parameters are the same,
simultaneously accepts two inputs: the previously output hidden state and the upcoming
observation ot+1. This iterative procedure continues, processing the sequence piece by
piece. These networks are characterized by their auto-regressive nature, where predictions
for the next step are conditioned on previous steps. Moreover, the connections between
hidden states are called recurrent connections.

Sequential tasks can be categorized based on their mappings: one input to many outputs,
many inputs to many outputs, or many inputs to a single output, as depicted in Figure 2.5.
Within DRL, the emphasis is on the last scenario, where only a present action is chosen
based on a history of observations. Obviously, the agent does not make or reconsider
decisions for the past.

Training RNNs involve an algorithm called Back-Propagation Through Time (Back-
Propagation Through Time (BPTT)), which extends the concept of back-propagation
used in traditional feed-forward networks (Werbos, 1990). In BPTT, the gradients are
calculated by unrolling the entire sequence, meaning the error is back-propagated from
the last time step all the way back to the first. This allows the network to update weights
based on the entire sequence, ideally capturing long-range dependencies in the propagated
data. However, back-propagating through these sequential steps leads to two notorious
problems: vanishing and exploding gradients.

Concerning the vanishing gradient problem, gradients with magnitudes smaller than one,
when propagated through multiple layers, shrink exponentially. This causes the weights in
the initial layers (corresponding to earlier time steps) to receive minimal to no updates.
Consequently, the RNN finds it challenging to learn and retain information from earlier
sequence steps, rendering them ineffective in capturing long-range dependencies.

Conversely, when gradients possess values greater than one, their magnitudes can amplify
exponentially during back-propagation, resulting in them "exploding". Such behavior can
induce extremely large weight updates, driving the model to oscillate wildly and hindering
its ability to converge to a meaningful solution. A more detailed view on these gradient
issues can be retrieved from (Goodfellow et al., 2016, pp. 396-399) and (Trask, 2019, pp.
272-273).

To alleviate the computational effort and gradient issues, truncated BPTT can be
implemented. Rather than back-propagating through the entire sequence, this approach
back-propagates only through a fixed number of steps, effectively segmenting the long
sequence into smaller, more manageable chunks. Crucially, even though back-propagation
is limited in these chunks, the initial hidden state for each new segment should not be
reset to a default state, such as zeros. Instead, it should continue or "warm start" from
the last hidden state of the previous segment. This ensures continuity in the sequence
processing. As a result, while the sequence input to the network remains untruncated, the
gradients computed during backpropagation are effectively limited to recent time steps.
This adaptation is not without its trade-offs (Trask, 2019, p. 268). First, it introduces a
slight bias; second, it reduces the span over which an RNN can directly learn to recall
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Figure 2.6: Schematic representation of a Long Short-Term Memory cell showcasing its
three gates and interconnections with its cell state. The rounded rectangles
represent fully connected layers that are activated by either sigmoid or the
hyperbolic tangent function. Adapted from (Yu et al., 2019).

events. Due to the truncation of gradients in BPTT, the gradients cannot instruct the
model to retain information beyond this point. Lastly, determining the truncation point is
a hyperparameter that requires tuning.

In the upcoming subsections, we will explore the intricacies of advanced RNN architec-
tures that employ gating mechanisms to address gradient-related and long-term dependency
challenges.

2.3.2 Long Short-Term Memory

In addressing the limitations of vanilla RNNs, Hochreiter and Schmidhuber (1997) intro-
duced the Long Short-Term Memory (LSTM). This innovation significantly enhanced the
ability to retain information over prolonged sequences (Yu et al., 2019). The architecture
of this recurrent mechanism has been further refined over time, and in our work, we adopt
the version detailed by Graves (2012).

Central to the LSTM cell are its three gating mechanisms: the forget, input, and
output gates (as shown in Figure 2.6). Each gate within the LSTM is typically modelled
using an MLP (i.e. fully connected layer). This layer is then activated using the sigmoid
function, which constrains its output to a range between 0 and 1. A value closer to 0
indicates a nearly closed gate, while one approaching 1 signifies an open gate. These gates
collaboratively determine the flow of information — what to discard, retain, or transmit.
Complementing this, the LSTM cell also incorporates a "cell state", serving as its intrinsic
memory repository.
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Unraveling the mechanics of an LSTM cell’s forward pass, we begin with the forget
gate, which was contributed by Gers et al. (2002). This gate evaluates the relevance of
each piece of information in the cell state. By using the sigmoid function, the forget gate
outputs values between 0 and 1, effectively deciding on which information to forget or to
retain. The equation driving this gate is:

ft = σ(Wfhht−1 +Wfoot + bf ) (2.45)

Here, the terms W and b denote the weight matrices and biases, ot symbolizes the
current time step’s input observation, and ht−1 captures the prior hidden state.

Progressing further, the input gate and the cell state update mechanism come into play.
The input gate is in charge of updating the cell state with new information. The candidate
values for this update are represented by c̃t. Both the decision and the potential update
are expressed by:

it = σ(Wihht−1 +Wioot + bi) (2.46)
c̃t = tanh(Wc̃hht−1 +Wc̃oot + bc̃) (2.47)

With the forget gate’s and input gate’s decisions at its disposal, the cell state ct gets
updated as:

ct = ft · ct−1 + it · c̃t (2.48)

At last, the output gate zt determines what portion of the cell state should be transmitted
as the cell’s output:

zt = σ(Wzhht−1 +Wzoot + bz) (2.49)
ht = zt · tanh(ct) (2.50)

As information flows through an LSTM cell, it undergoes a series of evaluations and
transformations, driven by the three gates and the internal memory, ensuring that the
model captures relevant temporal dependencies without being hampered by issues such as
the vanishing or exploding gradient. Further insights, for example concerning the LSTM’s
backward pass, can be found in (Graves, 2012). A slightly more lightweight recurrent cell,
the Gated Recurrent Unit, is introduced next.

2.3.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU), introduced by Cho et al. (2014), emerged as an
alternative to the LSTM, aiming to simplify the recurrent unit’s design while still efficiently
capturing long-range dependencies. As portrayed in Figure 2.7, the GRU utilizes two
gates: the update and reset gates. The primary distinction between a GRU and an LSTM
is how it combines the hidden state and cell state into one entity. This combination makes
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Figure 2.7: A depiction of the Gated Recurrent Unit cell illustrating its two gates and
interconnections with the content propagated by the prior hidden state. The
rounded rectangles represent fully connected layers that are activated by either
sigmoid or the hyperbolic tangent function. Adapted from (Yu et al., 2019).

GRUs typically more computationally efficient and requires fewer parameters than LSTMs.
However, this also implies a trade-off between model simplicity and capacity.

To understand the GRU cell’s forward pass mechanism, the update gate, similar in
function to the LSTM’s forget and input gates, determines which information to discard
and which new data to incorporate:

zt = σ(Wzhht−1 +Wzoot + bz) (2.51)

Meanwhile, the reset gate decides how much old information to forget, allowing the cell
to ignore data that is no longer important:

gt = σ(Wghht−1 +Wgoot + bg) (2.52)

Subsequently, influenced by the reset gate’s choice, a prospective hidden state undergoes
computation:

h̃t = tanh(Wh̃h(gt · ht−1) +Wh̃oot + bh̃) (2.53)

Lastly, using the update gate, a blend of the preceding hidden state and the candidate
hidden state is created, producing this time step’s final hidden state.

ht = (1− zt) · ht−1 + zt · h̃t (2.54)

GRU offers a balance between computational efficiency and the ability to capture long-
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range dependencies. Selecting between LSTMs and GRUs is often problem-specific, and it
may require empirical evaluation to ascertain the most suitable architecture for a given
task. Research by, for instance, Chung et al. (2014) and Morad et al. (2023), demonstrates
the competitiveness of GRU.

2.4 Transformer-XL

A strong alternative to RNNs is the Transformer architecture (Vaswani et al., 2017).
The primary difference between the two is their approach to processing input sequences.
Whereas RNNs propagate a sequence piece by piece, transformers process the entire
sequence simultaneously, offering enhanced parallelization. This capability is largely
attributed to employing an attention mechanism. Attention allows the model to focus on
different parts of the input sequence, dynamically weighing the significance of each part
in relation to others. This mechanism not only enables efficient parallel processing but
also helps the model capture long-range dependencies and relationships within the data.
Consequently, transformers have profoundly influenced the fields of language understanding
and image processing (Tay et al., 2023) and have showcased superior performance in DRL
(Parisotto et al., 2020; Lampinen et al., 2021).

Concerning sequence-to-sequence tasks, transformers employ both an encoder and a
decoder. However, for the scope of this research, focused on DRL tasks, which are
considered as sequence-to-one problems (Section 2.3.1), only the encoder’s functionality is
relevant. Subsequently, we detail the concept of attention, Multi-Head Attention (MHA),
and positional encodings. Our exploration further shifts to two distinctive elements of the
Transformer-XL (TrXL) that differentiate it from the original transformer. The foremost
is a segment-level recurrence mechanism, enabling the transformer to engage with inputs
beyond a predetermined sequence length. Given the inherent permutation invariance
of attention and extended sequence lengths, the incorporation of a relative positional
encoding becomes necessary. At last, we briefly detail the incorporation of GRU cells to
advance TrXL to GTrXL.

2.4.1 Scaled Dot-Product Attention

The Scaled Dot-Product Attention (Vaswani et al., 2017) enables the transformer to
selectively emphasize certain parts of the input data when formulating an output.

The mechanism involves three major matrices: Query (Q), Key (K), and Value (V).
Drawing an analogy with relational databases helps make their roles more tangible:

• Query (Q): Analogous to a database query, it represents the current focus or the
question being posed.

• Key (K): Resembling the index or metadata in databases, keys provide a "labeling
system" for the input data, indicating how relevant each part is to a given query.
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Figure 2.8: Scaled Dot Product Attention. Adapted from (Vaswani et al., 2017).

• Value (V): Much like the actual rows of data in a database table, values represent
the content of the input data.

However, unlike a traditional database that outputs a discrete set of rows, the attention
mechanism returns a compressed context vector by:

1. Computing the dot product of the query with every key, resulting in a set of scores.
These scores represent the relation between the current focus and each label.

2. Scaling these scores by dividing by the square root of the dimension of the key
vectors (denoted by dk). This scaling step ensures stability in subsequent softmax
computations (Vaswani et al., 2017).

3. Introducing a mask to the scaled scores. This mask selectively ensures that specific
values are not considered during attention by assigning these values a large negative
number, effectively pushing their softmax output towards zero.

4. Applying the softmax function to these scaled scores to derive a set of weights that
collectively sum to 1.

5. Multiplying these weights with their respective values. This produces a weighted
combination of the input data, emphasizing segments with higher attention scores.

The attention operation can be summarized by Figure 2.8 and this equation:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2.55)
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Figure 2.9: Multi-Head Attention. Adapted from (Vaswani et al., 2017).

2.4.2 Multi-Head Attention

Multi-Head Attention (MHA) augments the capabilities of the standard attention mecha-
nism by enabling the model to concurrently focus on different parts of the input sequence
from multiple perspectives or "heads" (Vaswani et al., 2017). By doing so, it enhances the
model’s ability to capture various types of relationships within the data.

In MHA, each head computes its own set of query, key, and value projections and then
uses these projections to compute its attention scores. By processing the sequence in this
manner, each head can potentially capture different patterns within the data. For example,
while one head might focus on short-term dependencies, another might capture long-term
relationships.

To implement this, the original query, key, and value matrices are independently
transformed using n linear layers, corresponding to n heads. These linear transformations
yield different representation subspaces for each head, allowing them to capture unique
patterns.

Once all the heads compute their individual attention results, their outputs are concate-
nated. This concatenated output then undergoes another linear transformation, which is
achieved using a fully connected layer, to produce the final output of the MHA.

The operation of MHA is visualized by Figure 2.9 and can be expressed as:

MHA(Q,K, V ) = Concatenate(head1, . . . , headn)W
O (2.56)

where headi = Attention(QWQ
i , KWK

i , V W V
i )

In this equation:

• headi represents the output from the ith attention head.
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Figure 2.10: Sinusoidal Positional Encoding

• WQ
i , WK

i , and W V
i are the linear projection matrices for the query, key, and value

for the ith head.

• WO is the output linear projection matrix applied after concatenation of all head
outputs.

2.4.3 Absolute and Learned Positional Encodings

The described attention mechanism does not have an inherent sense of order or position
for the input sequence. This means that if the order of elements in the input sequence is
permuted (i.e. rearranged), the attention mechanism by itself would treat them the same
way. To address this limitation, the transformer architecture incorporates a positional
encoding. This encoding embeds information about the position of each item within the
sequence, ensuring that the model can account for the order of elements when processing
them.

Vaswani et al. (2017) introduced a sinusoidal positional encoding scheme. This encoding
is designed to be added to the embeddings of the sequence elements. The sinusoidal
positional encoding, is visualized in Figure 2.10 and defined by the following equations:

P(pos,2i) = sin
( pos

100002i/d

)
(2.57)

P(pos,2i+1) = cos
( pos

100002i/d

)
(2.58)
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Where:

• P represents the positional encoding matrix.

• pos is the position of an item within the sequence.

• i is the dimension of the encoding, ranging from 0 to d− 1, where d is the depth of
the embedding.

• The terms 2i and 2i+ 1 ensure that the sine function is applied to even dimensions
and the cosine function to odd dimensions.

• The division by 100002i/d results in a unique frequency for each dimension, allowing
the model to distinguish positions across a wide range of sequence lengths.

Apart from the sinusoidal positional encoding, there is also the concept of a learned
positional encoding. In this approach, rather than using a fixed mathematical formula to
determine the positional encodings, the model is allowed to learn them during training.
This is achieved by initializing a matrix of positional encodings, which is then updated
using backpropagation, similar to how other model parameters are learned. Vaswani et al.
(2017) show that both approaches achieve equivalent results, but favor the sinusoidal
nature of the encoding, because it ensures that the model can extrapolate to sequence
lengths beyond those seen during training.

In practice, these positional encodings are added directly to the embeddings of the
sequence items before they are fed into the transformer and therefore belong to the family
of Additive Positional Encoding (APE) (Dufter et al., 2022). This addition ensures that
the model has access to both the semantic content of each item and its position within
the sequence, enabling it to process sequences with an understanding of order and context.
One might wonder if the addition of positional encoding might overshadow or distort
the original content of the sequence. However, a helpful analogy is to think of positional
encoding as a subtle background tune in a song. While the tune is present and adds
depth to the song, the main melody (content of the sequence) remains prominent and
recognizable. Similarly, the positional encoding provides the model with a sense of order
without overwhelming the primary content of the sequence.

2.4.4 The Transformer Encoder

A transformer block comprises the following components:

• Multi-Head Attention (MHA) (Section 2.4.2),

• Positional Encoding (Section 2.4.3),

• Fully Connected Layer (often termed as MLP or linear layer),

• Layer Normalization (or Layer Norm) (Ba et al., 2016), and
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Figure 2.11: Illustration of the transformer encoder, based on L stacked transformer blocks.

• Residual Connections (He et al., 2016).

Figures 2.11 (a) and 2.11 (b) depict two possible architectures for the transformer block.
In the original design, layer normalization is applied after MHA and the fully connected
layer. However, prior research (Parisotto et al., 2020; Xiong et al., 2020) proposed an
identity map reordering approach, positioning the layer normalization before these layers.
This adjustment allows the recurrent connections to transmit an unaltered data stream.

The transformer encoder, depicted in Figure 2.11 (c), consists of a series of stacked
transformer blocks. The process starts by embedding the input sequence to align with the
transformer’s dimensions, followed by the integration of the positional encoding.

2.4.5 Segment-Level Recurrence

The conventional transformer architecture processes sequences in fixed-length segments.
When a sequence becomes too lengthy and computationally challenging, it is segmented
into smaller chunks. A limitation arises when a segment is processed in isolation, devoid
of context from its neighboring segments, leading to potential loss in capturing long-term
dependencies.

The Transformer-XL (TrXL), "XL" denoting "extra-long" sequences, addresses this
by weaving recurrent connections between successive segments. This design ensures a
continuous flow of information across segment borders. Rather than recalculating hidden
states for every new segment, TrXL leverages the hidden states from preceding segments.
These cached states act as a contextual memory for the current segment, forging a
recurrent linkage between segments. This architecture facilitates the modeling of extended
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Figure 2.12: Segment-Level Recurrence in Transformer-XL. Consider a sequence-to-one
task, where TrXL is composed of 3 stacked blocks and operates on a segment
length of 4. Nodes represent latent representations: blue for inputs, orange
for intermediary block-produced hidden states, and red for the final context
vector. Bold connections back-propagate gradients, while dotted ones do not.
Recurrent connections reference cached hidden states from previous segments.
Here, the model can attend to information from the current time step back to
time step 1. Contrarily, the original transformer only considers data within
the current segment, from time step 7 to 10. By enlarging the segment length
or adding another transformer block, the context length expands.
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dependencies, as information can traverse through these recurrent pathways. While
information flows freely, gradients do not back-propagate through earlier segments. Figure
2.12 provides a visual representation of this recurrent information flow that transcends
individual segments.

2.4.6 Relative Positional Encoding

The standard transformer model employs absolute positional encodings to embed sequence
order information. However, when reusing hidden states, as done in TrXL, maintaining
coherent positional information becomes more challenging. Specifically, the model might
find it difficult to differentiate between elements from distinct time steps that share the
same absolute position. To circumvent this limitation, relative positional encodings are
introduced. Rather than depending solely on the absolute position of each sequence
element, this method emphasizes the relative distance between elements. This approach is
more intuitive and generalizable, as it allows the model to determine the temporal order
of a segment based solely on the relative distances between items (Dai et al., 2019).

For simplification, consider the unscaled dot product attention for a single attention
value, with the addition of absolute positional encoding, which can be written as:

aij =
(
(xi + pi)W

Q
) (

(xj + pj)W
K
)⊤ (2.59)

Here:
• x represents the input data.

• i and j are the positions of the query and the key in the sequence, respectively.

• p is a positional encoding element, retrieved from Equation 2.57.

• WQ and WK are the weight matrices associated with the query and key, respectively.
Dai et al. (2019) break down this formulation into four components:

aij = (xiW
Q)(xjW

K)⊤ + (xiW
Q)(pjW

K)⊤

+ (piW
Q)(xjW

K)⊤ + (piW
Q)(pjW

K)⊤ (2.60)

Subsequently, the appearances of the absolute positional encoding of Equation 2.60 are
substituted for relative ones and learnable parameters:

aij = (xiW
Q)(xjW

K)⊤ + (xiW
Q)(ri−jW

K)⊤

+ (u⊤WQ)(xjW
K)⊤ + (v⊤WQ)(ri−jW

K)⊤ (2.61)

In this context, ri−j denotes the relative positional encoding derived from the sinusoidal
positional encoding (Equation 2.57), while u and v are trainable parameters. Dai et al.
(2019) interpret the above formulation as follows:
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Figure 2.13: Gated Transformer-XL

• (a) signifies content-based addressing.

• (b) encapsulates a content-dependent positional bias.

• (c) represents a universal content bias.

• (d) conveys a global positional bias.

The just described relative positional encoding is linked to the family of Modifying
Attention Matrix (MAM) approaches. More research is conducted on APE and MAM
variants, where Dufter et al. (2022) provide a comprehensive overview.

2.4.7 Gated Transformer-XL

In DRL, Parisotto et al. (2020) pioneered the utilization of transformers as the underlying
memory structure for an RL agent. They introduced the Gated Transformer-XL (GTrXL)
architecture, an enhancement of TrXL, where the residual connections, associated with
pre-layer normalization, are replaced by GRU cells (Section 2.3.3) as illustrated in Figure
2.13. In this refined design, the outputs from the MHA and the fully connected layer
assume the role of the hidden states for the GRU cells. These former residual connections
now function as the primary inputs to the GRU cells. In this setup, the recurrent cells are
not unfolded. Instead, the gating mechanism is leveraged to regulate information flow.
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The primary contributions of this thesis are twofold: a recurrent and a transformer-
based baseline, and a new benchmark featuring finite and endless tasks. Historically, both
domains have seen extensive research. This section aims to offer a thorough review of
related contributions and highlight significant shortcomings:

• the absence of readily accessible and reproducible memory-based DRL baselines,

• limitations present in current benchmarks concerning strong memory dependencies
and frequent memory interactions, and consequently

• the need for a standard benchmark to evaluate memory-based agents.

Initially, we provide an overview of related memory-based DRL agents and mention the
benchmarks they utilize. Subsequently, the scarcity of accessible baselines is addressed.

In Section 3.2, we differentiate between benchmarks that are considered and those that
are not. Afterwards, we present the desiderata, a tool designed to assess the benchmarks in
our current scope, highlighting that not all environments sufficiently meet the meta criteria.
Beyond these criteria, we pinpoint issues associated with strong memory dependencies
and frequent memory interactions.

3.1 Memory-Based Reinforcement Learning Agents

The seminal work by Mnih et al. (2015) on mastering Atari games (Bellemare et al.,
2013) using DQN marked a significant milestone in the advancement of DRL algorithms.
Multiple Atari games necessitate at least a short-term memory. Consider the game Pong
(Figure 3.1): a single frame displays both paddles and the ball. Given this sole frame,
there is no sense of motion. To derive the velocity, a second frame is essential, while a
third provides insights into acceleration. Mnih et al. (2015) employed a straightforward
technique known as frame stacking to capture this temporal information. Since then,
more advanced memory approaches as part of DRL algorithms emerged, which commonly
employ RNNs or transformers. These are briefly described subsequently.
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Figure 3.1: Consecutive frames in the game of Pong. A single frame does not reveal any
motion information. One consecutive frame is needed to perceive velocity,
while a total of three stacked frames help to identify acceleration. Feeding the
agent the current and n past frames (i.e. observations) is referred to as frame
stacking.

3.1.1 Overview of Current Baselines

Various memory baselines have been explored, each centered on different DRL algorithms,
whether they are on-policy, off-policy, policy-based, value-based, or actor-critic. In the fol-
lowing sections, we chronologically and briefly describe the memory concepts, capabilities,
and used benchmarks of the most prominent baselines.

Deep Recurrent Q-Network (DRQN) (Hausknecht and Stone, 2015) combines DQN
with an LSTM cell. The replay buffer stores sequences, while initializing the recurrent
hidden state to zero during training. The effectiveness of this approach is demonstrated
on Atari games that involve frame flickering.

Asynchronus Advantage Actor-Critic (A3C) (Mnih et al., 2016) primarily empha-
sizes the asynchronous process of actor-learner pairs and the utilization of the advantage
function. The integration of an LSTM cell as memory is not its central discussion point.
However, when the agent is equipped with this memory mechanism, its performance
surpasses frame stacking baselines, as DQN, in 19 of the 57 Atari games.

Importance Weighted Actor-Learner Architecture (IMPALA) (Espeholt et al.,
2018) is an actor-critic algorithm designed for distributed training. In such a setting,
the policy collecting training data can lag behind the policy being optimized. V-Trace
addresses this by adjusting importance sampling weights to correct off-policy data. Like
A3C, IMPALA employs an LSTM cell for memory, though the specifics of this integration
are not elaborated upon in depth. Performance metrics on Atari games and DeepMind
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Lab (DMLab-30) (Beattie et al., 2016) indicate that IMPALA outperforms A3C.

Recurrent Replay Distributed DQN (R2D2) (Kapturowski et al., 2019) extends
Deep Recurrent Q-Network (DRQN) with a distributed prioritized experience replay buffer,
storing overlapping sequences of fixed length. A burn-in period is utilized to address
staleness in recurrent hidden states by propagating a portion of the sequence for a more
effective starting state. R2D2’s performance is evaluated on Atari games and DMLab-30.

Memory Recall Agent (MRA) (Fortunato et al., 2019), built on IMPALA, employs
a twofold memory mechanism: a working memory based on an LSTM and a slot-based
episodic memory containing summaries of past experiences. By utilizing a query-key
approach, information is read from and written to the episodic memory. MRA is evaluated
on the Memory Task Suite contributed by the same publication.

Gated Transformer-XL (GTrXL) (Parisotto et al., 2020) adds the concept of Transformer-
XL to enable an agent, trained with V-MPO (Song et al., 2020), to leverage memory. By
incorporating an identity map reordering and a gating mechanism inspired by GRU, TrXL
is further improved. GTrXL’s performance is demonstrated on DMLab-30, Numpad, and
Memory Maze.

The Hierarchical Chunk Attention Mechanism (HCAM) (Lampinen et al., 2021)
builds upon TrXL by partitioning the agent’s memory into chunks and selecting the
most relevant chunks based on their summaries to attend to their stored information in
detail. HCAM is trained using IMPALA and evaluated on multiple environments including
Dancing the Ballet, Object Permanence, Rapid Word Learning, Visual Match, Paired
Associative Inference, and One-Shot StreetLearn Navigation.

History comprEssion via Language Models (HELM) (Paischer et al., 2022a) utilizes
pre-trained language models to compress a history of observations into a single context
vector (memory). It employs a frozen Transformer-XL encoder, pre-trained on the Wiki-
Text 103 dataset (Merity et al., 2017). HELM is evaluated on the Procgen (Cobbe et al.,
2020) and Minigrid (Chevalier-Boisvert et al., 2018) environments.

3.1.2 Lack of Accessible and Reproducible Memory Baselines

The accessibility of the memory-related approaches discussed above pose a shared concern.
While IMPALA and HELM are open source, the implementations of DRQN, R2D2, A3C,
MRA, and GTrXL are not public. Although HCAM is partially open source in terms of
its model architecture, the method to leverage its interface for effective training remains
ambiguous. The absence of open source implementations makes reproducing their results
more challenging, as implementation details play a crucial role. This issue is particularly
pronounced for GTrXL, as to the best of our knowledge, no one has yet been able to
reproduce its underlying DRL algorithm, V-MPO.
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Within the community, RLlib (Liang et al., 2018), DI-engine (DI-engine Contribu-
tors, 2021), and Brain Agent (Lee et al., 2022) advertise to feature GTrXL. However,
these frameworks are large and complex, supporting multiple DRL algorithms, model
architectures, and environments, which hampers verification, debugging, gaining insights,
and making modifications. We tested RLlib with Memory Gym, but obtained negative
returns even though the environments do not signal negative rewards. DI-Engine’s GTrXL
implementation is based on R2D2, and our experiments revealed poor sample throughput
by a magnitude of 10 compared to our GRU baseline. When debugging Brain Agent’s
implementation, we noticed an unexpected discrepancy in the query length between data
sampling and optimization. We expected only one query to adhere to the sequence-to-one
approach, which we follow. While we do not claim that these frameworks are dysfunctional,
we present our limited experience in exploring them. We believe that our contributed open
source baselines are easy to follow, which facilitates reproducibility and further research in
the field.

3.2 Benchmarking Memory-Based Agents
The aforementioned studies have explored the use of memory-based agents in a variety of
environments. Some of them are originally fully observable but are turned into POMDP by
adding noise or masking out information from the agent’s observation space. For instance,
this was done for the Arcade Learning Environment (Bellemare et al., 2013) by using
flickering frames (Hausknecht and Stone, 2015) and common control tasks by removing
the velocity information from the agent’s observation (Heess et al., 2015; Meng et al., 2021;
Shang et al., 2021).

Control tasks also touch on the context of Meta-Reinforcement Learning, where memory
mechanisms are prominent (Wang et al., 2021; Melo, 2022; Ni et al., 2022). The same
applies to Multi-Agent Reinforcement Learning (Berner et al., 2019; Baker et al., 2020;
Vinyals et al., 2019). As we solely focus on benchmarking the agent’s memory and its ability
to generalize, we do not compare Memory Gym to environments of more complex contexts
such as Obstacle Tower (Juliani et al., 2019), DeepMind (DM) Hard Eight (Gülçehre et al.,
2020a), Crafter (Hafner, 2022), or DM Alchemy (Wang et al., 2021). These might need
additional components to the agent’s architecture and its training paradigm, for instance
to approach a notable exploration challenge.

Following this section, we provide an overview of the considered related environments.
Defining the desiderata towards their assessment follows. Initially, we identify shortcomings
when applying the meta desiderata, which is followed by investigating whether these
environments comply with strong memory dependence and frequent memory interactions.
Finally, we draw the conclusion that a standard benchmark in this context is missing.

3.2.1 Overview of Current Benchmarks

Central to various memory-dependent tasks are the T-Maze (Wierstra et al., 2007) and
the Morris water maze (Morris, 1981). In the T-Maze, the agent must memorize an initial
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goal cue, maintain this memory as it navigates an alley, and then recall the cue at the
T-cross to choose the correct path and complete the task. Within the context of RL and
considering the Morris water maze, the agent’s objective is to find a hidden platform
in a 2D space. Once found, the agent is randomly relocated and tasked with locating
the platform again. Next, we provide a chronological overview of benchmarks recently
employed, offering brief insights into their tasks, observation spaces, and action spaces.

DeepMind Lab (DMLab-30) (Beattie et al., 2016) presents a collection of 30 pro-
cedurally generated first-person 3D environments. Starting from a general motor-control
navigation task based on a set of discrete actions, each environment poses a different goal
such as collecting fruit, playing laser tag, or traversing a maze. Parisotto et al. (2020)
categorize these environments into memory and reactive tasks. The agent receives visual
observations and optionally depth information as well as language instructions.

VizDoom (Wydmuch et al., 2018) features first-person shooter 3D environments that
revolve around motor-control navigation tasks, with the added challenge of computer-
controlled enemies that may confront the agent. The agent’s observation space consists of
visual observations, while its action space is defined by discrete actions.

Minigrid (Chevalier-Boisvert et al., 2018) includes a 2D grid memory task inspired
by the T-Maze. The action space features a discrete set of actions, where the most relevant
actions are to rotate and to move forward. The agent’s perception of the environment is
through a frontal rectangular field of view, presented as a visual observation.

Miniworld (Chevalier-Boisvert, 2018) presents a collection of first-person 3D environ-
ments, drawing inspiration from tasks found in Minigrid. Its mechanics, observation, and
action spaces parallel to some extent those observed in VizDoom and DMLab-30.

The Memory Task Suite (Fortunato et al., 2019) offers a variety of memory-centric
environments spanning four categories: PsychLab (Leibo et al., 2018) for image-based tasks
(such as change detection), Spot the Difference for cue memorization, goal navigation tasks
modeled after the Morris water maze, and transitive object ordering tasks. Within these
settings, the agent is prompted to execute discrete actions. It perceives its surroundings
through visual observations and a game state vector that indicates its position and score.

Procgen (Cobbe et al., 2020) consists of 16 2D environments that offer procedurally
generated and fully observable levels. These environments encompass a combination of
puzzle-solving, platforming, and action-based games. 6 of these environments have been
modified to become partially observable by reducing and centering the agent’s visual
observation on itself. The action space is discrete.

Numpad (Parisotto et al., 2020) requires the agent to accurately press a series of
keys in a specific sequence of fixed length. The sequence itself is not provided to the
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agent, resulting in the agent employing a trial-and-error approach while memorizing the
underlying sequence. In terms of observations, the agent is presented with a game state
vector, and it can execute actions from a discrete set.

Memory Maze (Parisotto et al., 2020) shares similarities with the Morris Water maze, as
the agent must locate an apple, then undergoes random repositioning, requiring it to find
the apple’s location again and again. This environment equips the agent with 8 continu-
ous and one discrete action. The agent’s perception is accomplished by a visual observation.

Dancing the Ballet (Ballet) (Lampinen et al., 2021) presents a sequence of up to
8 dances visually, with the agent remaining stationary. After all the dances are displayed,
the agent is required to identify a specific one to successfully complete the task. While
presented as grid world, the agent utilizes discrete actions, a visual observation, and a
language instruction.

PopGym (Morad et al., 2023) has been published at ICLR 2023 as our original work
contributing Memory Gym (Pleines et al., 2023). It is a benchmark consisting of 15
environments that are tagged as diagnostic, control, noisy, game, or navigation. These
environments are designed to quickly converge by providing vector observations instead of
visual ones. Most environments rely on discrete actions, while others offer a multi-discrete
action space.

3.2.2 Desiderata of Memory Benchmarks

Here, we define the desiderata that we believe are essential to memory benchmarks.

Accessibility refers to the competence to easily set up and execute the environment.
Benchmarks shall be publicly available, acceptably documented, and open source while
running on the commonly used operating systems Linux, macOS, and Windows. Linux, in
general, is important because many High-Performance Computing (HPC) facilities employ
this operating system. As HPC facilities might not support virtualization, benchmarks
should not be solely deployed as a docker image or similar. At last, benchmarks shall run
headless because otherwise, these potentially rely on dependencies as xvfb or EGL, which
HPC facilities may not support as well. Suppose relevant benchmark details, such as
environment dynamics, are missing. In that case, it can be desirable to support humanly
playable environments so that these can be explored in advance.

Fast simulation speeds, which achieve thousands of steps per second (i.e. Frames
per Second or FPS), allow training runs to be more wall time efficient, enabling to upscale
experiments and their repetitions or faster development iterations. The benchmark’s speed
also depends on the time it takes to reset the environment, setting up a new episode for
the agent to play. Towards maxing out FPS on a single machine, benchmarks shall be
able to run multiple instances of their environments concurrently.
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High diversity attributes environments that offer a large distribution of procedurally
generated levels to reasonably challenge an agent’s ability to generalize (Cobbe et al.,
2020). Notably, if diversity is absent, the environment invites the agent to overfit. Also, it
is desirable to implement smoothly configurable environments to evaluate the agent at
out-of-distribution levels. These levels are built using modified generation mechanisms,
ensuring they deviate from those the agent trained on. For example, levels might sample
gravity scales from a predefined range. Values beyond this range are considered as out-of-
distribution.

Scalable difficulty seamlessly complements the concept of high diversity. It shall make
environments controllable such that their current hardness can be increased or decreased.
Easier environments can have benefits: a proof-of-concept state is sooner reachable during
developing novel methods, and research groups can fit the difficulty to their available
resources. Moreover, increasing the difficulty ensures that already competent methods
may prove themselves in new challenges to demonstrate their abilities or limits. While the
combination of scalability and diversity offers extensive control, the inherent complexity
might daunt newcomers to the benchmark. Therefore, a clear default configuration and
comprehensive documentation become imperative.

Strong memory dependence refers to tasks that are only solvable if the agent can recall
past information (i.e. successfully leveraging its memory). Simply put, agents without
memory are supposed to be unsuccessful when confronted with memory-dependent tasks.
To ensure that the utilized memory mechanism is working, the benchmark’s implemen-
tation shall minimize loopholes that hint on past environmental states or observations.
Minimizing, because some details may be pivotal to the underlying task and therefore
cannot be eradicated. In this favor, tasks that can be solved using short-term information,
particularly through basic frame stacking, shall be omitted as well.

Strong dependency on frequent memory interactions is a criteria for tasks that
forces the agent to recall information from and add information to its memory frequently.
This does not apply to tasks, which are closely related to the T-Maze concept, where the
agent requires only two primary interactions: storing the cue information and subsequently
retrieving it to solve the task. Between these interactions, the agent’s primary focus is
on preserving the stored information. We believe the preservation of information over
time and amidst noise is better suited, in terms of efficiency, to other paradigms, such as
supervised learning.

3.2.3 Assessing Meta Desiderata

Table 3.1 provides information on the meta desiderata of the aforementioned environments.
Some environments are inaccessible to some extent, as some cannot be run headless.

DM Memory Maze, DM Numpad, and DM Object Permanence are not publicly available
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Table 3.1: An overview of the simulation speed and meta desiderata of the so far mentioned
environments. The meta desiderata cover the criteria that are applicable to
any benchmark in DRL. The mean FPS are measured across 100 episodes
using constant actions using an AMD Ryzen 7 2700X CPU. Memory Gym
and Procgen are averaged across its memory distribution environments. The
measurement from PopGym is retrieved from their GitHub repository. The
other benchmarks are measured using a single environment.  refers to true
and # to false.
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10123       #     
PopGym (Morad et al., 2023) 39130       #     
Procgen Memory Distribution (Cobbe et al., 2020) 18530       #     
DM Ballet (Lampinen et al., 2021) 6631       #     
MiniGrid Memory (Chevalier-Boisvert et al., 2018) 5185       #   #  
MiniWorld Maze (Chevalier-Boisvert, 2018) 851      # #     
VizDoom (Wydmuch et al., 2018) 549       #     
Crafter (Hafner, 2022) 482       #    #
DM Memory Task Suite (Fortunato et al., 2019) 442  #    #      
DMLab-30 (Beattie et al., 2016) 433    # # # #     
DM Alchemy (Wang et al., 2021) 308  #    #     #
DM Hard Eight (Gülçehre et al., 2020b) 160  #    #     #
Obstacle Tower (Juliani et al., 2019) 43      # #     
DM Numpad (Humplik et al., 2019) #
DM Memory Maze (Parisotto et al., 2020) #
DM Object Permanence (Lampinen et al., 2021) #

and can, therefore, not be used to reproduce and compare results in adjacent research.
DM Memory Task Suite, DM Alchemy, and DM Hard Eight are not open source and can
only be accessed via the virtualization software docker. It may be for these reasons that
those benchmarks are not widely used yet.

However, DMLab-30 has more uses, but the available environments, especially those used
in the context of memory, are superficially documented and thus lack vital information on
their dynamics and more. Parisotto et al. (2020) divide these environments into reactive
and memory tasks without providing further reasoning or evidence. Potential users have
to explore these environments by playing them, which is possible on machines running
Linux only.

Procgen, DM Ballet, MiniGrid, PopGym, and Memory Gym (ours) are the only envi-
ronments that achieve a throughput of thousands of steps per second. By far, PopGym is
the fastest environment, which is plausible, because it relies only on game state vector
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(a) Miner Default

(b) Miner Memory

(c) Maze Default

(d) Maze Memory

(e) Heist Default

(f) Heist Memory

Figure 3.2: Three Procgen environments and their memory views: top row shows default
settings, and the bottom depicts the agent’s memory mode perspective. From
left to right: Miner has a cart-agent collecting 12 diamonds; Maze features a
mouse-agent seeking cheese; Heist expands on Maze, adding key-door puzzles
to reach a golden diamond.

observations, omitting expensive frame rendering. Rendered 3D environments usually
achieve a smaller throughput, as VizDoom or the DM Memory Task Suite.

3.2.4 Assessing Strong Memory Dependence

It is challenging to discern the efficacy of a memory mechanism if an environment can be
somewhat solved by an agent without memory. This dilemma is evident in four of the
six environments from Procgen’s memory distribution: Miner, Maze, Heist, CaveFlyer,
Dodgeball, and Jumper.

In the maze-like terrains of Jumper and CaveFlyer, agents could potentially benefit from
memory. These environments present vast expanses that agents must traverse to reach a
goal, all while dodging hazardous obstacles. Given the complexity and the potential need
for hundreds of steps to achieve success, memory can be advantageous. An agent with

49



Chapter 3. Related Work

effective memory utilization might navigate more efficiently, avoiding repeated visits to
the same dead-ends.

Conversely, the environments of Miner, Maze, and Heist pose concerns. In Miner,
as illustrated in Figure 3.2 (a), the agent’s objective is to gather 12 diamonds before
finding an exit. A significant challenge arises from the boulders. If an agent digs out
the dirt beneath a boulder, it falls, potentially striking the agent and ending the episode.
The absence of dirt and the boulder’s position serve as historical cues. For instance, a
region with less surrounding dirt, as shown in Figure 3.2 (b), indicates the agent’s prior
presence. The agent’s tendency to move upwards when encountering multiple boulders at
the environment’s bottom ground further underscores this.

Both Maze and Heist have levels that are entirely observable, as highlighted in Figures
3.2 (d) and 3.2 (f). Given these characteristics, it is unsurprising that Paischer et al. (2022a)
found comparable performances between memory-based and memory-free approaches. A
similar pattern is observed in Dodgeball, though we will not delve deeper into this.

PopGym features environments that provide similar issues. The game environment
Concentration works like the toddler game "memory". By flipping face down cards, the
agent needs to find pairs. Overtime, the problem gets easier as card pairs are removed
form the game upon unveiling a match. We believe this to be solvable by a memory-less
agent, while being less efficient. This is supported by the similar scores that Morad et al.
(2023) report. A similar impression, based on the reported results, can be retrieved from
the Battleship environment.

Because of these issues, how can one reliably determine whether the implemented
memory mechanism is working or not?

3.2.5 Assessing Frequent Memory Interactions

Concerning frequent memory interactions, we believe that MiniGrid Memory, Spot the
Difference (DM Memory Task Suite), and DM Ballet are not well suited to the need for
memory in sequential decision-making. These environments demand the agent’s memory
to solely memorize the to-be-observed goal cues during the very beginning of the episode.
Once the cues are memorized, there is no need to manipulate the agent’s memory further.
Simply maintaining it is enough to eventually recall the content once to solve the underlying
task. It can be hypothesized that the extracted features from observing the goal cues are
sufficient to solve the ballet environment.

To show this, the ballet environment can be made fully observable by feeding the entire
sequence of cues to an RNN, functioning as an encoder that extracts a context vector
that is later utilized by the agent’s policy. Consequently, the policy does not need to
posses memory as illustrated in Figure 3.3. The task at hand gets much easier because
the agent does not need to make obsolete decisions while observing the sequence of cues
as its position is frozen.

Such tasks would only challenge the capacity and robustness to noise of the agent’s
memory. We believe this can be done more efficiently by other benchmarks that do not
belong to the context of DRL, like Long Range Arena (Tay et al., 2021).
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CNN

RNN

CNN

RNN

CNN

RNN

CNN

RNN

... ...

CNN

Policy

...

CNN

Policy

Agent observes the cue sequence and is immobile Agent has to move to the requested dancer

Figure 3.3: DM Ballet made fully observable. The white square represents the agent amidst
8 dancers. The task involves observing sequential dances, as shown by the
4 frames with the moving orange cross, and then approaching the requested
dancer. While dancing, the agent normally makes inconsequential decisions.
This can be omitted by processing these frames by an encoder comprising a
CNN and RNN. Then, the derived and fixed context vector (final RNN output)
guides the agent’s actions to solve the task, eliminating the need for memory
in its policy.

3.3 Key Insights: Absent Standard Benchmark
When skimming the approaches described in Section 3.1.1, it appears that there is a
lack of consensus regarding the choice of environments for evaluation as they assess their
approaches on different benchmarks, thereby hindering comparisons between them. It
maybe for the reasons that we previously explored:

• Procgen consists of environments that do not strongly depend on memory.

• DM Ballet, Spot the Difference (Memory Task Suite), and MiniGrid Memory do not
require frequent memory interactions.

• DM Numpad, Memory Maze, and Object Permanence are unavailable.

• The Memory Task Suite is only available through virtualization.

• DMLab-30 is purely documented, does not run headless, and only runs on Linux.

• Other 3D environments suffer from low simulation speeds.

PopGym (Morad et al., 2023) shares some of these issues, while several environments
lack novelty. For instance, its maze tasks have existed before (Cobbe et al., 2020; Parisotto
et al., 2020). The same applies to the control tasks where information is masked out
from the game state vector or noise perturbations are added (Heess et al., 2015; Meng
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et al., 2021; Shang et al., 2021). The most promising environment of PopGym seems to
be Minesweeper, where memory baselines outperform a memory-less agent (Morad et al.,
2023).

All those aforementioned issues make it difficult to select a benchmark that adheres to
our defined criteria. Clearly, a comprehensive standard benchmark is lacking. Although it
still needs to be discussed what a standard benchmark should comprise. This discussion is
pursued in Section 7.4.

3.4 Key Insights: Inaccessible Memory Baselines
The essence of Section 3.1 is that memory in DRL agents mostly relies on RNNs or
transformers. Unfortunately, many of the research advancements are not shared openly
through open-source code, making it tough for others to replicate or build upon them.
This is especially pronounced for GTrXL, where no one has yet been able to implement
its main training method called V-MPO. Among all the discoveries, only the authors
behind IMPALA and HELM have fully shared their source code. The community has
made attempts to equip agents with transformer-based memory capabilities. However, we
struggled to leverage these largely grown frameworks effectively.

On a brighter note, numerous community implementations are available for agents
utilizing RNNs. The most notable one is the single file implementation by CleanRL
(Huang et al., 2022b,a), which combines PPO with an LSTM. The details behind it were
published concurrently with our GRU baseline implementation (Pleines et al., 2022).
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Memory Gym Environments

This chapter introduces Memory Gym, a novel benchmark dedicated to address the
shortcomings of existing benchmarks as detailed in Section 3.3. Memory Gym is not
only open-source1 and easily accessible2, but it also features fast simulation speeds (Table
3.1), diversity, and scalability. By harnessing the power of procedural content generation
(Shaker et al., 2016), we achieve both scalability and diversity, while there is a large
interface to easily modify the environments’ difficulties. All environments strongly depend
on memory and frequent memory interactions. The empirical evidence supporting the
former claim can be found in Section 6.2.1, while the latter is proven in this chapter.

At its core, Memory Gym encompasses three unique environment families: Mortar
Mayhem, Mystery Path, and Searing Spotlights. Each family presents both a finite task3,
which concludes once its objective is met, and an endless task, which continues as long
as the agent performs successfully. However, if the agent acts poorly, potentially infinite
episodes terminate. To our knowledge, endless tasks, especially concerned with memory
challenges, do not exist yet.

It is important to clarify that "endless" should not be confused with "open-ended".
Memory Gym’s endless environments are not open-ended in nature; they possess clear
objectives and defined structures. In contrast, open-ended environments offer agents
freedom to develop unique skills and strategies without stringent constraints as depicted
by platforms as Minecraft (Fan et al., 2022).

This chapter is structured as follows: We start by drawing a parallel between endless
memory-dependent tasks and the classic car game "I packed my bag", which inspired
our approach. We then detail shared environment properties, including observation and
action spaces. Each environment family is explored in sequence, emphasizing both finite
and endless versions. We introduce reset parameters for modifying and scaling stochastic
environment levels and conclude by comparing our environments with related ones in the
field. Then, we offer insights into the episode lengths for the finite versions. Finally, we
delve into the finite tasks again to emphasize their demand for frequent memory write and
read interactions.

1Source Code: https://github.com/MarcoMeter/endless-memory-gym
2PyPI Package: https://pypi.org/project/memory-gym/ Accessed: 2023-09-18
3Whenever we refer to Mortar Mayhem, Mystery Path, or Searing Spotlights, it is in the context of their

respective finite tasks.
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Chapter 4. Memory Gym Environments

4.1 The Concept of Endless Memory Tasks

The endless concept can be grasped by following a narrative about "I packed my bag":

Imagine embarking on a long-awaited family vacation, with the open road
stretching ahead. As the car hums along, a lively atmosphere envelops
the passengers, young and old alike, as they engage in a playful game
of "I packed my bag". Each family member takes turns adding an item
to an imaginary bag, attempting to remember and recite the growing
list correctly. However, as the game unfolds and the list lengthens, the
passengers encounter mounting challenges illustrating the finite nature of
their individual memories. Despite best efforts, varying strategies, and
different capabilities, the weight of the growing list eventually leads to
resignation.

Due to the game’s ever-growing or endless concept, it serves as a revealing test of memory
effectiveness, showcasing the limitations that decision-makers face when confronted with
the increasing demands of retention and recall. Our focus is on effectiveness because, in
the context of finite tasks, the performance of successful agents is typically compared
by their efficiency. Efficiency might refer to agents that require fewer agent-environment
interactions or less wall-time. However, the endless framework primarily highlights varying
degrees of effectiveness over efficiency. Such a perspective offers insights into the distinct
capabilities of memory-based agents. By effectiveness, we refer to achieving higher scores,
which is linked to stronger memory capabilities.

4.2 Shared Environment Properties

The environments within Memory Gym are implemented using Python, PyGame, and
Gymnasium (Towers et al., 2023). Their design draws inspiration from the mini-games
found in the commercial video game, Pummel Party4. All these environments possess a
common observation space. Agents perceive their surroundings through a top-down visual
observation, capturing an area of 84× 84 RGB pixels. In the default scenarios, additional
modalities as language are not incorporated, ensuring compatibility with widely used agent
and model architectures.

The action space available to the agent is multi-discrete, spanning two dimensions, each
of size three, as illustrated in Figure 4.1 (a). Simpler grid-based locomotion variants, based
on a single discrete action space, are also incorporated in variants of Mortar Mayhem and
Mystery Path, as depicted in Figures 4.1 (b) to 4.1 (d).

4Pummel Party: http://rebuiltgames.com/ Accessed: 2023-09-18

54

http://rebuiltgames.com/
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(a) Multi-Discrete (b) Move Forward (c) Rotate Left (d) Rotate Right

Figure 4.1: The skin-colored agent in Memory Gym and its action spaces. The agent
utilizes a multi-discrete action space (a) with distinct dimensions for horizontal
(red arrows) and vertical (green arrows) velocity. Both dimensions include
a no-op action, enabling movement in eight distinct cardinal directions (all
arrows). The agent maintains a fixed speed of 3 pixels per step, with its
forward direction determined by the combined horizontal and vertical velocity.
The agent’s forward direction is visually represented by two white-colored
circles, depicting hands. Additionally, Mortar Mayhem and Mystery Path
offer a grid-like locomotion system with a discrete action space of four actions:
moving forward one tile at a time (b), rotating by 90 degrees left (c) or right
(d), and a no-op action.

4.3 Mortar Mayhem

Mortar Mayhem is an environment where agents memorize and execute commands in
sequence. This section unpacks its design, from finite to endless variants, its scaling
mechanisms, and its similarities to related environments.

4.3.1 Finite Mortar Mayhem

Mortar Mayhem (Figure 4.2) takes place inside a grid-like arena and consists of two
memory-dependent tasks. Initially, the agent is immobile and must memorize a sequence
of ten commands (Clue Task), followed by executing each command in the observed order
(Act Task). A command instructs the agent to move to an adjacent floor tile or remain at
the current one. Failure to execute a command results in episode termination, whereas
each successful execution yields a reward of +0.1. Mortar Mayhem can be simplified to
solely provide the act task, where the command sequence is fully observable as a one-hot
encoded game state vector. The act task necessitates frequent memory utilization since it
must discern which commands have been executed to fulfill the subsequent ones, while
considering a maximum of nine target tiles. To overcome this challenge, the agent can
learn to track time (e.g. count steps) where memory is needed.
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Agent

Next Target

Command

(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 4.2: Mortar Mayhem’s relevant entities are depicted in the annotated ground truth
of the environment (a). The ground truth includes a green circle that designates
the next target tile to move to. At the beginning of an episode, the commands
are sequentially rendered onto the agent’s observation (b) while the agent
remains immobile. Once all commands are displayed, the agent must navigate
to the target tile within a specified time frame. Upon completion of the current
command’s execution time, the agent’s success is evaluated, as illustrated
in figure (c). This visual feedback is perceptible to the agent. Standing on
red-colored tiles means failure. Following a brief delay of a few steps during
evaluation, the agent can proceed to the next command unless the episode has
terminated due to failure or completion of the entire command sequence.

...
1
2
3

(a) Observing and Executing Commands (b) Agent Observation

Figure 4.3: In Endless Mortar Mayhem, the visualization and execution of commands
are alternated (a) following the idea of an automatic curriculum. Commands
(blue) are visualized only once in-between executing a new command and the
previous ones. The arena (b) seamlessly occupies the entire screen, enabling
the agent to reenter from the opposite side if it walks off.
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4.3.2 Endless Mortar Mayhem

Endless Mortar Mayhem (Figure 4.3) introduces a unique concept inspired by the game "I
packed my bag". It extends the to-be-executed command sequence continuously, enabling
potentially infinite sequences. Two significant modifications are made to Mortar Mayhem
to accommodate this feature. In the previous setup, the agent had to observe the entire
sequence before executing it. However, in the endless task, we adopt a different approach
by alternating between command visualization and execution.

As shown in Figure 4.3 (a), the agent only perceives one command during visualization.
During execution, the agent must execute all previous commands along with the new one.
An episode begins by displaying one command, followed by its execution. Subsequently,
the next visualization reveals only the second command, requiring the agent to execute
both the first and second commands. This automatic curriculum allows the to-be-executed
command sequence to continually expand, while each new command is presented only
once. A reward of +0.1 is signaled for every single successful command.

The second modification concerns the arena’s boundaries. In Mortar Mayhem, the
agent’s position would need to be reset after command execution due to certain commands
being unavailable when the agent is adjacent to the arena’s boundaries. In Endless Mortar
Mayhem, we eliminate the borders and seamlessly scale the arena to the screen’s dimensions.
Additionally, we implement a screen wrap feature that transforms the arena into a torus.
Consequently, if the agent walks off the screen, it reappears on the opposite side without
requiring relocation. Finally, the agent then executes the sequence of commands again
from its new position.

4.3.3 Scaling Mortar Mayhem

Mortar Mayhem’s difficulty can be scaled by several parameters (Table 4.1), such as the
number of commands, the show duration of a single command, and the delay between
showing commands. Furthermore, the time allocated for executing a single command can
be modified. These options can also be sampled upon resetting an episode. To simplify
the difficulty, the agent can be equipped with grid-like movement, allowing it to move one
tile at a time. Doing so, the agent is not commanded to move to diagonal tiles.

Concerning Endless Mortar Mayhem, it is an auto-curriculum mechanism in itself. The
hardness scales with the agent’s progression.

4.3.4 Comparing Mortar Mayhem to Related Work

While Endless Mortar Mayhem is unmatched by adjacent work, the finite variant bears
similarities to Dancing the Ballet (Lampinen et al., 2021) and PopGym’s Autoencode
(Morad et al., 2023). In each of these environments, there’s an initial cue memorization
phase during which the agent remains stationary. However, while DM Ballet necessitates
only a single decision during the action phase, both Autoencode and Mortar Mayhem
demand a sequence of accurate decisions. A unique aspect of Autoencode is its requirement

57



Chapter 4. Memory Gym Environments

Table 4.1: Reset Parameters for Mortar Mayhem. Parameters marked with an asterisk
(*) are sampled from the provided set "[...]". The to-be-sampled sets usually
default to only one element. While Mortar Mayhem Grid retains most options,
it modifies three of them. Endless Mortar Mayhem removes two parameters
of its predecessor: the episode success reward and the predefined number of
commands.

Mortar Mayhem Execution Duration* [18]
Parameter Default Show Visual Feedback True
Agent Scale 0.25 Reward Command Failure 0
Agent Speed 3 Reward Command Success 0.1
Arena Size 5 Reward Episode Success 0
No. Available Commands 9 Mortar Mayhem Grid
No. Commands* [10] Parameter Default
Command Show Duration* [3] Execution Delay* [2]
Command Show Delay* [1] Execution Duration* [6]
Execution Delay* [6] No. Available Commands 5

for the agent to respond to cues in reverse order, meaning the first cue observed becomes
the last one to be acted upon. Conversely, in Mortar Mayhem, the intervals between
cues and their corresponding actions remain consistent. This particular mechanism shall
be included optionally in upcoming releases. Additionally, Mortar Mayhem offers the
flexibility to sample different delays and durations, a feature adopted from theDM Ballet
environment.

4.4 Mystery Path

Mystery Path offers a unique blend of navigation and memory challenges. Agents traverse
hidden paths, adapting based on past successes and failures. This section provides a
comprehensive overview of the environment, detailing its mechanics, variations, and how
it stands in comparison to other memory benchmarks.

4.4.1 Finite Mystery Path

Mystery Path (Figure 4.4) challenges the agent to traverse an invisible path within a
grid-like level of dimension 7× 7. If the agent deviates from the path and thus falls down
the pit, the agent is relocated to its origin during the next step. The episode terminates
when the agent reaches the goal or exhausts its time budget of 512 steps. Reaching the
goal yields a reward of +1. If a dense reward function is desired, the agent can be rewarded
by 0.1 for visiting previously unexplored tiles. To effectively navigate the environment,
the agent must frequently memorize and remember its steps on the path as well as the
locations where it fell off.
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The invisible path is procedurally generated using the A∗ path-finding algorithm (Hart
et al., 1968). Initially, the path’s origin is randomly sampled from the grid’s border, while
the goal is placed on the opposing side in a random position. Instead of aiming for the
shortest path, the cost function of A∗ is sampled to generate a diverse range of paths.
The path generation process randomizes some cells as untraceable (A∗ walls), which adds
variation to the generated paths. It is important to note that these walls are considered
pits rather than physical obstacles.

4.4.2 Endless Mystery Path

Endless Mystery Path (Figure 4.5) introduces a never-ending path for the agent to traverse.
Based on its original environment, we make several modifications to the path generation,
the agent’s observation, and the terminal conditions.

The path generation in this endless task (Figure 4.5 (a)) involves concatenating path
segments. Each segment is generated as done in Mystery Path, with the only difference
being that the origin of a segment is based on the final tile of the previous segment. To
ensure that path tiles do not have multiple neighbors, an additional tile is added between
segments. The path is always generated from left to right. Consequently, we eliminate the
agent’s ability to move left.

As the endless path cannot be fully captured in an 84 × 84 RGB pixel observation,
we visually fix the agent’s horizontal position. If nothing but the agent is shown in the
observation, the agent lacks information about its horizontal motion. To address this, we
render the path tiles behind the agent (Figure 4.5 (a)), providing visual cues of the local
horizontal position.

Regarding terminal conditions, we aim to shorten episodes if the agent performs poorly.
To achieve this, we implement three terminal conditions. Firstly, the agent is given a time
budget of 20 steps to reach the next tile. Moving in the wrong direction or taking too
long to progress within the budget leads to episode termination. The time budget is reset
when the agent moves to the next tile or falls off and is relocated to the path’s origin.
The second condition terminates the episode if the agent falls off before reaching its best
progress. Lastly, the episode is terminated if the agent falls off at the same location for a
second time. With these conditions in place, an episode can potentially last indefinitely if
the agent consistently succeeds.

In terms of rewards, the agent earns 0.1 for each previously unvisited tile of the path
it reaches. While this may initially appear as a dense reward function, any misstep that
causes the agent to fall off means it cannot reclaim those rewards. The agent must retrace
its steps and regain its prior progress to continue accumulating rewards. The longer it
takes to catch up, the sparser the rewards become.

4.4.3 Scaling Mystery Path

Mystery Path can be simplified to a grid variant called Mystery Path Grid, which features
a single discrete action space of four actions. In this variant, the agent’s time limit is
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Goal
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Agent
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(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 4.4: The annotated ground truth depicts the relevant entities in Mystery Path (a).
The walkable path is distinguished by its blue (origin), green (goal), and white
color (path). Areas outside the path are designated as pits, represented by
black and red colors, causing the agent to fall off and be relocated to the path’s
origin on the next step. The initial randomly chosen red tiles (A∗ Walls) are
only considered during path generation. The agent’s observation includes just
itself (b). If the agent deviates from the path, a red cross provides visual
feedback (c).

(a) Endless Path (b) Agent Observation

Figure 4.5: In Endless Mystery Path, the path (a) is established by concatenating path
segments, following a similar generation process as in Mystery Path. To
avoid multiple neighboring path tiles, we add a transition tile (blue) between
segments. Due to the constraints of representing an endless path within the
observation space (b), we opt to visually fix the agent’s horizontal position.
By rendering the path tiles behind the agent, the agent gains a sense of its
horizontal motion, allowing it to perceive its progress along the path. Its
horizontal position is adjustable, potentially obscuring more of the past path
to increase the challenge.
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Table 4.2: Reset Parameters for Mystery Path. Parameters marked with an asterisk
(*) are sampled from the provided set "[...]". Mystery Path Grid overrides
two parameters of its non-grid variant. Endless Mystery Path adds further
configurations.

Mystery Path Mystery Path Grid
Parameter Default Parameter Default
Max Episode Length 512 Max Episode Length 128
Agent Scale 0.25 Reward Path Progress 0
Agent Speed 3 Endless Mystery Path
Cardinal Origin Choice* [0, 1, 2, 3] Parameter Default
Show Origin False Stamina Level 20
Show Goal False Show Stamina False
Show Visual Feedback True Show Background False
Reward Goal 1 Show Past Path True
Reward Fall Off 0 Camera Offset Scale 5
Reward Path Progress 0.1
Reward Step 0

reduced to 128 steps. Furthermore, Mystery Path can be made easier by including the
path’s goal and origin in the agent’s observation. On the other hand, increasing the
difficulty can be achieved by reducing the agent’s scale, decreasing its speed, or enlarging
the path. Table 4.2 depicts all available options.

Due to the ever-growing path, Endless Mystery Path poses an automatic-curriculum
as Endless Mortar Mayhem. To further add difficulty in this environment, the visual
horizontal position can be shifted further to the left, obscuring more information about the
actual path. Rather than aiding the agent by displaying the previous path, this feature
can be disabled. Instead, a grid-like background can be rendered to provide context for
horizontal movement in the absence of the past path information.

4.4.4 Comparing Mystery Path to Related Work

Mystery Path closely resembles navigation principles found in environments inspired
by the Morris water maze (Morris, 1981). If the agent falls off, it must return to the
point just before the fall and then take alternative actions to advance on the hidden
path. This process, often repeated multiple times, distinguishes Mystery Path from other
environments, such as the goal navigation environment from the Memory Task Suite
(Fortunato et al., 2019). A related task, as posed by Endless Mystery Path, is not apparent
in adjacent research.
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(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 4.6: The environment’s annotated ground truth (a) reveals information about all
relevant entities in Searing Spotlights. The top rows of pixels display the
agent’s remaining health points, its last action, and indicate whether a positive
reward was received during the last step. The last action is encoded using
two chunks and three colors, while the last positive reward is represented by
two colors. Yellow circles indicate coins, while the door-shaped icon represents
the exit. When all coins are collected, the exit turns green. The floor of the
environment is checkered blue and white. In the agent’s observation (b), the
spotlights play a role in revealing or hiding other entities. As an additional
form of visual feedback (c), the blue floor tiles turn red if a spotlight detects
the presence of the agent.

4.5 Searing Spotlights

Searing Spotlights immerses the agent in a dark environment, where it must dodge
hazardous spotlights, collect coins, and locate exits. This section explores the dynamics in
this environment, its endless variant, its scalability in difficulty, and related tasks.

4.5.1 Finite Searing Spotlights

Searing Spotlights (Figure 4.6) presents a pitch-black environment to the agent, where
information is revealed only through roaming and threatening spotlights. The agent starts
with a limited number of health points (e.g. 5) and loses one health point per step if hit
by a spotlight. The episode terminates if the agent runs out of health points or exceeds
the time limit of 256 steps. To evade the imminent threats, the agent must strategically
hide in the darkness. In order to escape from the encroaching spotlights, the agent needs
to remember its past actions and at least one previous position to deduce its current
location. This requires the agent to carefully manage its health point budget to ascertain
its location, ideally with minimal exposure. As part of its observation space, the agent
can perceive its last action, its current health, and whether it received a positive reward
during the previous step.
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To avoid monotonous behavior, two additional tasks are introduced in the environment,
requiring the agent to actively traverse the environment. The first task asks the agent to
collect a predetermined number of coins, while the second task involves reaching an exit
to finish the episode once all the coins have been collected. Both the exit and the coins
are randomly positioned during the environment’s reset phase, while our implementation
ensures that no entity overlaps. Collecting a coin rewards the agent with +0.25, while
successfully utilizing the exit grants a reward of +1. By utilizing its memory effectively,
the agent shall be able to deduce its current location and recall the positions of the coins
and the exit.

4.5.2 Endless Searing Spotlights

Based on just a few modifications, we extrapolate the concept of Searing Spotlights to
Endless Searing Spotlights. The exit task is removed, and the coin collection mechanism
is revamped to spawn a new coin each time one is collected. This coin remains visible
for six frames, and the agent has 160 steps to collect it. Additionally, the agent’s health
points are increased from five to ten. Unlike the original task, spotlights now appear at a
consistent rate, rather than increasing in frequency over time.

While Endless Searing Spotlights unveils performance gaps between the contributed
GRU and TrXL baselines (Section 6.3), the task still offers untapped potential, which we
discuss in Section 7.3.3.

4.5.3 Scaling Searing Spotlights

A simplified grid version of Searing Spotlights is not available. Table 4.3 lists all customiz-
able options. By default, episodes begin with full visibility, which gradually diminishes as
the global light dims. To heighten difficulty, the agent’s health points can be decreased,
or the number, size, and speed of the spotlights can be scaled. The number of coins is
increasable to extended the coin collection task.

4.5.4 Comparing Searing Spotlights to Related Work

Searing Spotlights uniquely challenges an agent to remain hidden in darkness, relying on
memory of past positions and actions to deduce its current location. While this specific
concept appears novel, the additional tasks of coin collection and finding an exit are
reminiscent of tasks in other environments, as, for example, Miner (Cobbe et al., 2020)
and some within DMLab-30 (Beattie et al., 2016).

4.6 Quantification of Finite Episode Lengths
This section provides insights into the quantities of episode lengths in the finite tasks of
Memory Gym. When dealing with DL tasks in general, it is quite useful to know the
structure of the data used for optimization. For time-series data, knowing the sequence
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Table 4.3: Reset Parameters for Searing Spotlights. Parameters marked with an asterisk
(*) are sampled from the provided set "[...]" or range "(...)". Endless Searing
Spotlights removes all parameters concerned with spawning spotlights, while
adding a single parameter to set the constant spawn rate.

Searing Spotlights Spotlight Spawn Threshold 10
Parameter Default Spotlight Radius* (7.5-13.75)
Max Episode Length 256 Spotlight Speed* (0.0025-0.0075)
Agent Scale 0.25 Spotlight Damage 1
Agent Speed 3 Light Dim Off Duration 6
Agent Always Visible False Light Threshold 255
Agent Health 5 Show Visual Feedback True
Sample Agent Position True Show Last Action True
Use Exit True Show Last Positive Reward True
Exit Scale 0.5 Render Background Black False
Exit Visible False Hide Checkered Background False
Number of Coins* [1] Reward Inside Spotlight 0
Coin Scale 0.375 Reward Outside Spotlights 0
Coin Always Visible False Reward Death 0
No. Initial Spotlight Spawns 4 Reward Exit 1
No. Spotlight Spawns 30 Reward Coin 0.25
Spotlight Spawn Interval 30 Reward Max Steps 0
Spotlight Spawn Decay 0.95

lengths can offer a glimpse into the scale of the task. Typically, the training data and
thus the sequence lengths remain stationary. However, in RL tasks, where training data is
dynamically generated by an evolving policy, episode durations can fluctuate significantly.

In Mortar Mayhem, the length of an episode is influenced by the agent’s skill level. As
the agent becomes more adept, episodes tend to extend, but only up to an upper bound
(i.e., the maximum episode length). The equations below outline how the maximum and
minimum episode lengths for Mortar Mayhem, with respect to their default configuration,
are calculated:

Clue Task = (Show Duration + Show Delay)× Command Count
Execution Length = (Execution Duration + Execution Delay)× Command Count

Act Task = Execution Length− Execution Delay
Max Episode Length = Clue Task + Act Task
Min Episode Length = Clue Task + Execution Duration (4.1)

Table 4.4 details the lower and upper bounds for several variants of Mortar Mayhem.
Unlike Mortar Mayhem, episodes in Mystery Path and Searing Spotlights tend to
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Table 4.4: Episode boundaries, measured in steps, in various instances of Mortar Mayhem.

Mortar Mayhem Mortar Mayhem
Act

Mortar Mayhem
Grid

Mortar Mayhem
Act Grid

Lower Bound 58 18 46 6
Upper Bound 274 234 118 78

Table 4.5: Episode length measurements in Mystery Path and Searing Spotlights. Con-
cerning Mystery Path, results are based on training a memory-less agent with
full path visibility. Due to the agent’s stochastic policy, the results may be
slightly inaccurate. From 1000 episodes, each repeated 5 times, the minimum
value was selected from the repetitions for each episode. Out of these, one
episode failed and an outlier with 81 steps was excluded. For Searing Spotlights,
the optimal episode length is determined by summing the distances from the
agent to the coin and from the coin to the exit, then dividing by the agent’s
speed and rounding up.

Mystery Path Mystery Path Grid Searing Spotlights
Min 22 7 14
Max 43 22 63
Mean 29.03 13.37 33.36
Std 4.88 3.16 7.56
Upper Bound 512 128 256
Samples 1000 1000 100,000
Policy Agent Agent Optimal

be shorter as the agent refines its skills. These tasks are more flexible in structure.
For instance, Mystery Path can have varying path lengths, while the distances between
entities in Searing Spotlights can differ. Hence, episode lengths for these environments are
determined empirically, as shown in Table 4.5.

4.7 Key Insights: Frequent Memory Interactions
Once more, we take a closer look at the finite environments and ascertain that frequent
memory interactions are demanded.

Mortar Mayhem comprises two distinct tasks: a clue task and an act task. During the
clue task, there are as many write interactions as there are commands to be executed.
While executing one command in the act task, the agent needs to recall the currently
requested command. To perceive its position within the command sequence, the agent
must memorize additional information. For example, the agent could count the executed
commands to infer the next one. Thus, the agent needs to frequently alternate between
reading from and writing to its memory. This process is illustrated in Figure 4.7.
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Figure 4.7: Within the clue task of Mortar Mayhem, the number of required write events
matches the number of commands to execute. During the act task, the agent
must alternate between reading and writing memory interactions.

Figure 4.8: In Mystery Path, green ticks represent valid path positions, written to memory
once. However, after falling off, this data, alongside fall-off locations, must be
frequently accessed.
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Figure 4.9: Episode visualization in Searing Spotlights. Annotations within the agent’s
observations detail the corresponding time steps. Within the initial 6 frames,
the light gradually dims. During this transition, the agent commits to memory
its position, as well as that of the coin and exit. Once obscured, the agent
interacts continuously with its memory to store and retrieve prior actions,
deducing its current location. The coin’s collection, signified by the yellow
rectangle in frame 42’s top bar, requires memorization. During the remaining
portion of the episode, the exit’s location needs to be recalled.

Unlike Mortar Mayhem’s static episodes, those in Mystery Path are dynamic. Given the
procedural nature of the path — varying in length and complexity — the agent may fall off
at different points or with different frequencies. As shown in Figure 4.8, each advancement
on the hidden path necessitates a single memory write. However, after deviating from the
path, the agent has to document the location and repeatedly access valid path positions
and fall-off locations upon restarting.

In Searing Spotlights, the agent commits the following data to memory:

• Last visible positions of itself, the coin, and the exit.

• Actions taken since its last visibility.

• Coin collection events.

While singular events like positions and coin collections require one-time memory entries,
previous actions demand ongoing storage and retrieval. Figure 4.9 offers a visual breakdown
of an episode within this environment.
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Reinforcement Learning

We employ the widely-recognized DRL algorithm, Proximal Policy Optimization (PPO)
(Schulman et al., 2017), which stands out as a model-free1 and actor-critic method. The
simplicity and potency of PPO have led to its success in varied domains ranging from
video games, as seen in DotA 2 (Berner et al., 2019), to real-world robotic applications,
such as dexterous in-hand manipulation (Andrychowicz et al., 2020), and even in natural
language processing with large language models as ChatGPT (OpenAI, 2022).

However, PPO lacks a built-in mechanism to enable the ability of memory. To overcome
this limitation, either RNNs or attention mechanisms (i.e. transformers) are potential
solutions. Prior works have extensively demonstrated the effectiveness of leveraging RNNs,
such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014), within
the realm of DRL (Mnih et al., 2016; Espeholt et al., 2018; Huang et al., 2022a). This also
applies to previous studies employing transformers, as Gated Transformer-XL (GTrXL)
(Parisotto et al., 2020) and Hierarchical Chunk Attention Mechanism (HCAM) (Lampinen
et al., 2021). Adopting these memory mechanisms is not trivially plug-and-play. They
entail an increase in implementation complexity due to gathering more data, processing
sequential data, and extending model interfaces. This may lead to a higher risk of errors
and an undesired memory overhead in terms of hardware memory usage. To make these
baselines more accessible to the community, we contribute two easy-to-follow baseline
implementations of GRU2 and TrXL3 (Dai et al., 2019) in PPO. It is worth noting that
there is a dearth of readily available and accessible transformer-based DRL implementations
(Sections 3.1.2 and 3.4). Therefore, our realization of TrXL plus PPO is especially valuable
in this context.

The subsequent sections detail the actor-critic model architecture, discussing its uti-
lization of a multi-discrete policy, an auxiliary observation reconstruction loss, and an
optional ground truth estimation target. We then focus on the GRU PPO and TrXL PPO
baselines, culminating in a brief summary.

1References to a model pertain to the agent’s neural network architecture. "Model-free" denotes that
the agent does not use a transition model for future predictions.

2GRU PPO Baseline: https://github.com/MarcoMeter/recurrent-ppo-truncated-bptt
3TrXL PPO Baseline: https://github.com/MarcoMeter/episodic-transformer-memory-ppo
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Figure 5.1: Overview of the actor-critic model architecture. The model features observation
encoders and a memory encoder (green). The encoders’ parameters are shared
among several heads dedicated to the policy, state-value function, observation
reconstruction, and ground truth estimation.

5.1 Model Architecture and Loss Composition

Figure 5.1 presents a broad overview of the actor-critic model architecture. The encoding
process begins with visual observations, and optionally, vector observations (i.e. game state
information). To encode visual observations (i.e. pixel observations) of shape 84× 84× 3,
we employ the Atari CNN, a convolutional neural network that adheres to the standard
topology originally developed for solving Atari games (Mnih et al., 2015). The vector
observation is encoded by an MLP. The outputs of these encoders are concatenated and
subsequently embedded into the input space of the memory encoder, which is based on
either GRU or TrXL. Once the data is propagated through the memory encoder, it is
further processed by each individual head that may contain further fully connected hidden
layers (i.e. MLPs). The policy head (actor) samples multi-discrete actions as required
by Memory Gym, while the value head (critic) approximates the state-value. Optionally,
there is a head dedicated to reconstructing the original visual observation and another
one to estimate ground truth information provided as labels by the environment. Before
presenting the final loss composition with respect to memory, the multi-discrete policy
and the two optional auxiliary optimization targets, are detailed.

5.1.1 Multi-Discrete Action Policy

When trained on Memory Gym, an agent operates within a multi-discrete action space, as
detailed in Section 4.2. The conceptual definition of an agent’s actions remains abstract in
chapter 2. In practical scenarios, an agent’s set of actions can be discrete, continuous, or a
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hybrid of the two.
Owing to the specifications of Memory Gym, we first address the discrete action space

and then progress to the multi-discrete paradigm. Let A be the action space of an agent.
If this space consists of n distinct actions, then it can be characterized as a discrete action
space:

A = {a1, a2, . . . , an} (5.1)

Here, ai denotes a unique action in the action space for all 1 ≤ i ≤ n. Transitioning to the
multi-discrete action space, consider A to encompass multiple discrete dimensions. This
multi-dimensional nature can be expressed as union, while there are k dimensions:

A =
k⋃

j=1

Aj (5.2)

Each Aj signifies a discrete action space:

Aj = {aj1, aj2, . . . , ajnj
} (5.3)

Here, aji is a distinct action in the jth discrete action space, with nj being the count of
unique actions within that dimension. In this multi-discrete setup, an agent’s action is a
vector a = [a1i, a2i, . . . , aki], where each aji is sourced from its corresponding Aj.

The primary benefit of employing a multi-discrete action space is the ability of an agent
to simultaneously perform multiple actions. Take a keyboard as an example; several keys
can be activated concurrently. While such a multi-action scenario can be translated into a
single discrete action space, it mandates enumerating all possible action combinations. For
instance, in the context of Memory Gym’s action space with two discrete dimensions, each
of size three, representing all combinations within a single discrete action space results in
a total of 9 actions. This expansion complicates the credit assignment problem (Section
2.1.11) since the agent must now consider 9 actions instead of the initial 6.

To conclude this section, it is imperative to modify the policy loss formula, referenced
as Equation 2.41 in Section 2.2.7. Each dimension in the multi-discrete action space is
regarded as a distinct policy head. Consequently, the loss for every dimension, where only
one action aji is selected, is determined and subsequently averaged:

LC
t (θ) =

1

k

k∑
j=1

LC
t,aji

(θ) (5.4)

5.1.2 Observation Reconstruction

Utilizing self-supervised learning principles to enhance memory-based DRL agents with an
observation reconstruction head has been shown to be effective (Hill et al., 2021; Lampinen
et al., 2021). This technique is grounded in the autoencoder concept (Goodfellow et al.,
2016, p. 499), where an input is processed through an encoder and then a decoder.
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The resulting output should ideally match the initial input. A common application
of autoencoders involves using the encoder for data compression and the decoder for
decompression.

Within the context of DRL, the strategy entails attaching a decoder to reconstruct the
initial, in our case, visual observation. Introducing this supplementary target amplifies
the learning signal, aiming to improve the learning of suitable latent representations
within the encoder. In practice, the latent output from the memory encoder is channeled
through a transposed Atari CNN to reconstruct the original visual observation. During
the development phase, attempts were made to connect the reconstruction head directly
to the visual encoder; however, this approach resulted in low performances.

The parameters θ for both the encoders and the observation reconstruction head are
optimized using the binary cross-entropy loss (Hill et al., 2021):

LR(ô, o, θ) = − 1

T

T∑
t=0

(
ot log(ôt) + (1− ot) log(1− ôt)

)
(5.5)

In this equation, ot represents the target at time t, which is the observation fed to
the agent’s model. Conversely, ôt refers to the predicted output from the observation
reconstruction head.

Furthermore, observation reconstruction serves as a diagnostic tool. By solely optimizing
the parameters of this head, one can assess whether the encoders have acquired adequate
representations to enable a successful reconstruction. This head can either be trained
concurrently with the agent or post agent-training.

5.1.3 Ground Truth Estimation

The ground truth estimation offers another diagnostic tool. This method relies on ground
truth data from the environment, data that the agent does not observe. For a clearer
illustration, Baker et al. (2020) trained memory-based agents in a multi-agent environment
called hide and seek. After training, the agents were tested on various tasks. One such
task challenges the agent to count boxes. The agent remains stationary, observing boxes
moved in and out of its view field. Ultimately, the agent’s estimation head processes the
output from the agent’s memory and tries to determine the exact number of boxes. This
head’s parameters ϕ are refined using the MSE (Section 2.2.2). The environment provides
the labels, which serve as the ground truth.

We define the ground truth estimation loss as:

LY (ŷ, y, ϕ) =
1

T

T∑
t=0

(ŷt − yt)
2 (5.6)

Here, ŷt represents the estimated value, yt is the label, and T denotes the trajectory’s
length. Unlike the hide and seek example, we ask the agent to estimate the provided
ground truth at every step.

Training just the ground truth estimation head is a valuable diagnostic measure in itself.
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However, another diagnostic strategy involves allowing gradients to update the encoders’
parameters θ as well. Even though using ground truth during the agent’s training is
now considered illegal, it can still offer valuable insights. As will be demonstrated in
Section 7.1.2, the heightened effectiveness of an agent trained with ground truth estimation
suggests that an agent without this feedback might not necessarily be lacking memory
capacity.

5.1.4 Loss Composition for Memory Incorporation

Incorporating memory within optimization necessitates a revision of multiple loss definitions.
Each optimization target discussed previously, as well as the value function (given by
Equation 2.43), not only depends on the current observation ot but also on the entire
observation history. This history undergoes processing by the memory encoder, yielding a
hidden state ht.

The vector ht serves as a context, encapsulating vital information from the observation
history to restore the Markov property. Instead of repetitively adjusting each loss function
associated with PPO, let us introduce a subtle simplification: any instance of the state
st at a given time t is replaced with the combination of the current observation ot and
hidden state ht.

The comprehensive loss for training a memory-based PPO agent can thus be represented
as:

LC+V+H+R+Y
t (θ) = Et

[
LC
t (θ) + c1L

V
t (θ)− c2Ht[πθ](ot, ht) + c3L

R
t (θ) + c4L

Y
t (θ)

]
(5.7)

In the above equation, c1 to c4 are hyperparameters utilized for scaling their respective
targets. The policy loss remains unscaled.

5.2 Gated Recurrent Unit Baseline

As detailed in Section 2.3, RNNs process sequential data iteratively by propagating in-
formation through recurrent connections. This characteristic is harnessed by various
architectures as GRU and LSTM, both of which are supported in our baseline implemen-
tation. Also, our baseline also accommodates truncated back-propagation through time,
vital for managing long sequences.

This section delves into the nuances of integrating a GRU cell into the agent, primarily
to equip it with memory capabilities. This choice for GRU over LSTM was not arbitrary.
Our preference for GRU in our major experiments stemmed from two pivotal reasons.
Firstly, the GRU design is thinner in terms of GPU memory consumption because it
exclusively depends on its hidden state, foregoing the additional cell state characteristic to
LSTM. Moreover, GRU offers a computational advantage; it is less taxing, as demonstrated
by Lambrechts et al. (2022) and Morad et al. (2023). This is also apparent in the results
of our experiments on Memory Gym’s finite environments (Section 6.2.3).
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Figure 5.2: An overview of the two distinct forward passes concerning inference and
optimization when incorporating an RNN, such as GRU (stacked L times),
as a memory encoder. During data sampling (a), the agent interacts with
its environment step by step, updating the prior hidden state based on the
encoded features of the current observation. In the optimization phase (b),
observation encodings and formerly collected hidden states are divided into
sequences. Each sequence is then processed by unfolding the recurrent cell
starting from its corresponding initial hidden state. The output is reshaped to
its original batch dimensions.

Venturing deeper into the GRU baseline, we spotlight three major components that are
pivotal for a working and efficient implementation

• The forward pass differs between training data sampling and the optimization phase.

• To accelerate the forward pass, training data — organized in sequences of varying
lengths — is padded, albeit at the cost of increased GPU memory overhead.

• It is then crucial to mask the introduced paddings during the loss computation.

Lastly, we briefly touch on significant implementation bugs that have hampered progress
for a long time.

5.2.1 Varied Forward Passes in Data Sampling and Optimization

The model’s forward pass changes based on whether it is for inference (sampling training
data) or optimization, as illustrated in Figure 5.2. For data sampling:

• The recurrent cell starts with an initial hidden state of zeros.

• As it interacts with the environment step by step, the cell produces a new hidden
state, influenced by the previous one and the current observation.
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• All produced hidden states during this process are saved for future optimization.

• If the environment resets because of termination, the hidden state goes back to zeros.

• If an episode has not finished by the end of a trajectory, the next sampling phase con-
tinues from where it stopped. It uses the former hidden state and the environment’s
present state.

• During this stage, no gradients for optimization are computed.

Concerning optimization :

• The forward pass works on a data batch, not individual agent-environment interac-
tions as during inference.

• When propagating through the non-recurrent layers, it is more efficient to use the
entire batch instead of a batch of sequences.

• Once data reaches the recurrent cell, it should be given as a batch of sequences. The
recurrent cell then processes it and unfolds itself internally.

• Subsequently, the data is reshaped to its original batch dimensions.

During the forward pass of this phase, it is crucial that all sequences are of the same
length. Due to the possible variability in episode lengths in RL tasks, sequences often
need padding. This process, and how the data is split into sequences, will be described
subsequently.

5.2.2 Splitting Training Data into Sequences

Before optimization, the sampled observations need to be split into sequences. As illustrated
by Figure 5.3, this data is first divided into episodes. If desired, full episodes, most likely
including truncated ones, can be considered as the final sequences. Therefore, the maximum
sequence length is determined by the longest episode within the collected trajectories. If a
fixed sequence length is set before training, the episodes are further split into sequences of
that length. Finally, sequences shorter than the designated or maximum length are zero-
padded to optimize computational efficiency, while considering some computer memory
overhead. At this point, all sequences have the same length and can be efficiently consumed
during optimization.

This process is also executed for the sampled hidden states. While there is no reason for
inputting sequences of hidden states, it simplifies the process of selecting the initial hidden
states for every processed sequence. Because of this, sequences that do not start with
the first time step, begin with their corresponding intermediary hidden state, enabling
truncated back-propagation through time (Section 2.3.1).
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Figure 5.3: Arranging sampled training data into zero-padded sequences of fixed length.
The data processing starts out by sampling trajectories across w workers for T
steps. Next, e episodes of varying length eT are extracted from the trajectories.
Those can be further split into z sequences of varying length zT . At last, zero
padding is used to retrieve sequences of fixed length max(zT ).

5.2.3 Loss Masking to Remove Paddings

As a consequence of using zero padding, the padded values need to be excluded during
loss computation. This is accomplished by leveraging a mask, where Lmask is the average
over all losses not affected by the padding.

Lmask(θ) =

∑T
t

[
maskt × LC+V+H+R+Y

t (θ)
]∑T

t [maskt]
(5.8)

with maskt =

{
0 where padding is used
1 where no padding is used

5.2.4 Challenges in Implementing DRL with Recurrent Layers

DRL algorithms are generally prone to bugs that are difficult to trace. At a glance,
integrating a recurrent layer into a model seems simple. However, the intricacies of doing
so go beyond mere architectural adjustments. The entire training algorithm setup becomes
more nuanced and complex. In our journey to establish the GRU baseline, numerous bugs
arose, stalling our progress for extensive periods. Three particularly vexing issues emerged
due to nuances in the PyTorch library:

• When unintentionally providing "None" as the hidden state to a recurrent layer,
PyTorch defaults the network’s hidden states to zero, leading to exploding gradients.

• PyTorch’s recurrent layer assumes the sequence length to be the input data’s primary
dimension. Careless reshaping can disrupt sequence data, misplacing items among
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unrelated sequences. This can be avoided by activating the "batch first"4 setting
during the recurrent layer’s forward operation.

• It is vital to remember that outputs from both LSTM and GRU cells are already
activated. Applying another activation, as Rectified Linear Unit (ReLU) (Fukushima,
1969), may degrade performance.

In light of these circumstances, we recognize the importance of offering clear, well-
documented, and user-friendly baseline implementations, and have made efforts in this
section and within our GitHub repository to provide just that.

5.3 Transformer-XL Baseline
When leveraging a GRU cell as memory mechanism, the essential components are the
features (i.e. activations) of the encoded observation and the prior hidden state. On the
other hand, a transformer encoder adopts a different strategy. Rather than sequentially
maintaining and updating a single hidden state, it simultaneously processes the entire
history of observations. At a glance, this might resemble the strategy of simply stacking
frames. However, due to its attention mechanism, the transformer can prioritize and focus
solely on the relevant parts of the observation history.

Our attention-based baseline is conceptually influenced by the ideas presented in TrXL
(Dai et al., 2019), GTrXL (Parisotto et al., 2020), and HCAM (Lampinen et al., 2021).
While these studies lack exhaustive explanations and often do not provide functional source
codes, our aim is to bridge these gaps with a transparent implementation and detailed
insights into the concept.

The primary pieces of our Transformer-XL baseline include:

• Addressing a sequence-to-one approach, a common scenario in RL tasks.

• Incorporating an episodic memory to store prior inputs (also referred to as hid-
den states) for the TrXL blocks, thereby supporting the segment-level recurrence
characteristic of TrXL.

• Utilizing a sliding window, which incrementally moves across the episodic memory in
tandem with the agent’s progression within its environment. This ensures that the
sequence length of prior hidden states remains manageable, considering computational
constraints.

• Utilizing positional encoding to embed sequence order information. Our implemen-
tation supports absolute, learned, and relative approaches.

This section will further delve into the episodic memory and its associated sliding window
mechanism, followed by an in-depth examination of the transformer block.

4https://pytorch.org/docs/stable/generated/torch.nn.GRU.html Accessed: 2023-09-18
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Figure 5.4: Illustration of the episodic memory which retains past inputs across all
Transformer-XL blocks for every agent’s step in an episode. A sliding memory
window of a predetermined length helps manage computational demands. The
segment-level recurrence methodology ensures that events outside the window’s
boundaries remain accessible. The TrXL blocks receive input sequences via
this sliding memory window. T represents the episode length and t denotes
the current time step.

5.3.1 Episodic Sliding Memory Window

The segment-level recurrence demands the storage and upkeep of a complete episode of
past hidden states. This becomes particularly challenging within the context of DRL. In
scenarios where episodes might be truncated during a PPO iteration, subsequent iterations
would still necessitate the initial fragment of hidden states from the episode. Hence, we
employ an episodic memory to consistently store entire episodes across these iterations.

As the agent engages with its environment, the episodic memory accumulates data.
The transformer processes the series of hidden states from the ongoing episode, recalling
historical details to make informed decisions. Given computational constraints, especially
in tasks that could continue indefinitely, we utilize a sliding memory window strategy. In
this, the input sequence is extracted from a window of a fixed length (Figure 5.4).

Another challenge emerges during the optimization phase. Storing memory windows
corresponding to every individual time step and worker becomes computationally burden-
some. Given that each window’s position often overlaps with its predecessor, it results in
significant data redundancy. To address this, each worker retains its series of time steps
based on the momentary position of the memory window. Retaining the time steps also
aids in pinpointing the appropriate positional encodings for each sequence element. To
prevent the agent from accessing future hidden states — particularly when the current
time step is shorter than the window’s length — a mask is employed. This ensures that
such data is excluded during multi-head attention.
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Figure 5.5: Detailed visualization of our Transformer-XL block architecture that is stacked
L times. The dashed lines indicate that there is no flow of gradients into the
episodic memory, the absolute positional encoding, and the mask.

5.3.2 Detailed Transformer-XL Block

The architecture of our TrXL block is visualized in Figure 5.5. At each time step t, the
block receives a single input that is based on the current time step. This input is added to
the episodic memory and serves as the query Qt during the execution of MHA. Note that
the query is a single vector rather than a sequence. The keys K and values V used in MHA
are derived from the same data based on self-attention. Specifically, we retrieve K and V
by slicing the episodic memory using the bounding indices i = max(0, t− window length)
and t− 1.

To ensure the positional information of K and V remains coherent, we add an absolute
or learned positional encoding, following the approach from Vaswani et al. (2017). We
use the absolute variant as a default as we found the learned one to be effective, but less
sample efficient. The underlying positional encoding matrix is scaled to the maximum
episode length and not to the length of the window. Therefore, every sequence element
of an episode is associate with its distinct position. In the case of endless episodes, the
length of the positional encoding is fixed to 2048.

To restrict attention to time steps up to the current time step t, we employ a strictly
lower triangular matrix as a mask in MHA. This mask is only necessary when t is smaller
than the length of the sliding memory window. The remaining configuration of the block
adheres to the findings of Parisotto et al. (2020), which suggest improved performance
with pre layer normalization and the identity map reordering (Figure 2.11 (b)). We
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Chapter 5. Memory-based Deep Reinforcement Learning

encountered vanishing gradient issues when leveraging post layer normalization. Although
our implementation supports the gating mechanism of GTrXL, it resulted in either lower
or equivalent performance while being computationally more expensive (Section 6.2.3).

5.3.3 GPU Memory Overhead Challenges

The episodic transformer memory implementation poses significant memory overhead
challenges. For instance, when extracting memory windows for optimization, take into
account a batch size of 16384, 3 TrXL blocks of dimension 384, and a window length of
256. This configuration, solely for the hidden states, demands 18GB of GPU memory,
even when the NVIDIA A100 GPU offers a total of 40GB. In contrast, a batch of visual
observations with dimensions 84× 84× 3 only occupies 1.29GB. The challenge amplifies
when slicing memory windows. Operations on tensors can lead to instantiating a new
tensor, where additional memory is allocated. For example, slicing tensors with masks
introduce this overhead. Although unused memory is freed once the operation completes,
the required GPU memory may already be surpassed during the operation itself.

Another memory overhead concern emerges during data sampling. Before initiating the
sampling process, it is uncertain how many episodes of varying lengths will be gathered.
Consequently, whenever a new episode commences, a tensor as long as the maximum
episode length is setup. This approach can result in considerable and inefficient padding if
numerous short episodes are sampled. Such complications make it challenging to upscale
the transformer. An alternative is to use CPU memory as well, but this comes at the cost
of expensive IO time.

5.4 Key Insights: Comparing both Baselines
To summarizes this chapter, we examine the memory details of the proposed GRU and
TrXL baselines and recite the actor-critic model architecture.

Both baselines require careful processing of sequential data, necessitate padding, and
incorporate masking. The primary differentiation is their approach to handling sequential
data. The GRU baseline processes it incrementally, whereas the TrXL baseline consumes
the entire sequence in one go. Notably, retaining the initial hidden states of a recurrent cell
is more memory-efficient than preserving all hidden states across the entire transformer
blocks for a full episode. Consequently, managing the computational memory overhead of
the TrXL baseline posed a greater challenge in our implementation.

Revisiting the actor-critic model architecture, visual observations are processed by the
Atari CNN, while optionally vector observations are fed to a fully connected layer. The
various heads of the model connect to the outputs of the aforementioned memory encoders.
One head is explicitly designed to accommodate the multi-discrete action space. Another
is tasked with estimating the state value, serving the critic’s function. An additional
avenue to enhance the learning signal and foster better encoder representations is to utilize
a visual observation reconstruction head. For a deeper diagnostic perspective, it is also an
option to integrate a ground truth estimation target.
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Experimental Analysis

To assess the efficacy of the just introduced GRU and TrXL baselines, both backed
by Proximal Policy Optimization (Schulman et al., 2017), we conduct comprehensive
experiments across all Memory Gym environments. These experiments can be reproduced
by leveraging our publicly available research framework1.

In this chapter, we begin by delineating our experimental protocol, including hyperpa-
rameter tuning, utilized statistical tools, and the approach for evaluating generalization.
Subsequent to this, we reveal the outcomes from the finite environments, emphasizing
the memory dependency of all environments. The TrXL agent proves to be more capable
in Mortar Mayhem and sample efficient in Mystery Path, while the GRU agent is more
efficient in Searing Spotlights. Preliminary assessments of GTrXL and LSTM architectures
yield modest, often inferior, results. A focal point is then the unexpected performance
in the endless environments, where the GRU agent distinctly surpasses TrXL. Addition-
ally, a comparison of wall-time costs indicates that GRU is more cost-effective. Prior to
summarizing the pivotal findings, we delve into the peculiarities of agent behaviors post
training.

6.1 Experimental Protocol to Assess Generalization

To ensure reliable and reproducible benchmark results, we detail the protocols used
for experimentation and evaluation in the sections that follow. First, we present the
hyperparameters and their tuning process. Next, we delve into the specific architecture
of the agent’s ANN. Given the significant costs associated with training DRL agents, we
can only conduct a limited number of experiment repetitions. To address the statistical
uncertainty arising from this limitation, statistical methods recommended by Agarwal
et al. (2021) are utilized. Following this, we detail the score metrics of the environments
and describe the approach to assessing generalization.

1DRL Research Framework: https://github.com/MarcoMeter/neroRL
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Chapter 6. Experimental Analysis

Table 6.1: Hyperparameters and architectural details used in our experiments. The "Final"
column denotes the selected hyperparameter values, while the "Search Space"
column represents additional discrete choices explored during the tuning process.
The last column details the old hyperparameters of our previous study (Pleines
et al., 2023). For this column alone, empty cells indicate that the values align
with those in the "Final" column. Xavier (Glorot and Bengio, 2010), Kaiming
(He et al., 2015), and T-Fixup (Huang et al., 2020) are weight initialization
approaches. Most of the parameters of the other ANN are initialized orthogonally.
The AdamW optimizer is contributed by Loshchilov and Hutter (2019).

Hyperparameter Final Search Space Old
Training Seeds (Levels) 100,000
Number of Workers 32
Worker Steps 512
Batch Size 16384
Disocunt Factor Gamma 0.995 0.99
GAE Lamda 0.95
Optimizer AdamW
Epochs 3 2 4
Number of Mini Batches 8 4
Advantage Normalization No Batch MB MB
Clip Range Epsilon 0.1 0.2 0.3 0.2
Value Loss Coefficient 0.5 0.25 0.25
Initial Learning Rate 2.75e-4 2.0e-4 3.0e-4 3.5e-4 3.0e-4
Final Learning Rate 1.0e-5 1.0e-4
Initial Entropy Coefficient 1.0e-4 1.0e-3 1.0e-2
Final Entropy Coefficient 1.0e-6 1.0e-5
Reconstruction Loss Coef. 0.1 0.5 1.0 n/a
Ground Truth Est. Coef. 0.1 n/a
Maximum Gradient Norm 0.25 0.35 0.5 1.0 0.5

Recurrent Neural Network
Number of Recurrent Layers 1 2
Use Embedding Layer Yes No
Layer Type GRU LSTM
Residual False True
Sequence Length 512 or max
Hidden State Size 512 256 384

Transformer-XL
Number of TrXL Blocks 3 2 4
Block Dimension 384 256 512
Block Weight Initialization Xavier Orthogonal Kaiming T-Fixup
Positional Encoding Absolute None Learned
Number of Attention Heads 4 8
Memory Window Length 256 or max

82



6.1. Experimental Protocol to Assess Generalization

Table 6.2: Detailed overview of the model architecture: The Atari CNN (Mnih et al.,
2015) features 3 convolutional layers to process visual observations, resulting
in a vector of dimension 3136 (64×7×74). For training specifically on Mortar
Mayhem’s act task, the 10 commands are one-hot encoded, resulting in a
vector observation of size 180. In experiments proving memory dependence, a
memory-free agent is trained with the help of positional encoding, leading to an
additional vector observation of size 16. When both types of observations are
used, they are concatenated and embedded to match the input dimensions of
the designated memory encoder: 384 for TrXL and 512 for GRU. The memory
encoder is completed by appending a fully connected layer. Every model head
has its own fully connected layer to begin with. All fully connected layers are
activated using ReLU (Fukushima, 1969). Figure 5.1 depicts the model’s flow.

Observation Encoder In Dim Out Dim Filters Size Stride
Convolutional Layer 1 3×84×84 32×20×20 32 8 4
Convolutional Layer 2 32×20×20 64×9×9 64 4 2
Convolutional Layer 3 64×9×9 64×7×7 64 3 1
Vector Observation
Mortar Mayhem Act 180

Vector Observation
Positional Encoding 16

Concatenate
Vector Observation 196

Fully Connected 196 128
Concatenate Observations 3264
Observation Embedding
Fully Connected 3264 384 / 512

Memory Encoder In Dim Out Dim Layers
Gated Recurrent Unit 512 512 1
Transformer-XL 384 384 3
Fully Connected 384 / 512 512
Multi-Discrete Policy In Dim Out Dim
Fully Connected 512 512
Discrete Policy Dimension 1 512 3
Discrete Policy Dimension 2 512 3
State-Value Head In Dim Out Dim
Fully Connected 512 512
State-Value Estimation 512 1
Observation Reconstruction In Dim Out Dim
Fully Connected 512 64×7×7
Transposed Conv. Layers 1-3 64×7×7 3×84×84
Ground Truth Head In Dim Out Dim
Fully Connected 512 512
Ground Truth Estimation 512 2
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6.1.1 Choice of Hyperparameters and Model Architecture

General Settings: The second column of Table 6.1 presents the hyperparameters used
in forthcoming experiments unless otherwise noted.

• The learning rate and entropy coefficient linearly decay from their initial to final
values during the first 10,000 PPO iterations, equivalent to 163,840,000 steps. After
this, the final hyperparameter serves as a lower threshold.

• Sequence lengths and memory window lengths are based on the longest episode in
finite environments. For endless environments, sequence lengths of 512 for GRU and
256 for TrXL are chosen.

• The batch size is computed by multiplying the number of environment workers with
the steps each worker takes to gather data. On a system with 32 CPU cores and
40GB VRAM on an NVIDIA A100 GPU, we opted for a batch size of 16,384 samples.
For larger models, either reducing the batch size or moving data to CPU memory is
required, but both methods increase wall-time.

Hyperparameter Tuning Approach: We utilized a custom implementation based
on the Optuna tuning framework (Akiba et al., 2019) to efficiently search for suitable
hyperparameters. The goal was to identify a single set of hyperparameters offering robust
performances across Memory Gym’s environments for both GRU and TrXL baselines.

• Our search space was constrained by resources. Most tuning experiments centered
on finite environments; thus, the hyperparameters may not be globally optimal.

• For each environment, dedicated tuning experiments were conducted based on Table
6.1. A single parameter from the search space was adjusted in each trial, resulting
in at least 29 trials for TrXL and 24 for GRU. On average, each baseline and
environment underwent 67 trials.

• Using Optuna’s percentile pruner, only the top 25 percentile of trials were retained.
Trials below this cutoff were pruned after a 2,000 PPO iteration warm-up phase.

• Once all single choices were tried, an expanded search allowed permutations us-
ing Optuna’s Tree-structured Parzen Estimator (Bergstra et al., 2011), a Bayesian
optimization technique. This method fits two Gaussian Mixture Models to hyperpa-
rameter values and chooses the value x maximizing the l(x)/g(x) ratio.

• Individual trials were not repeated, but since tuning spanned multiple environments,
these runs are considered as repetitions.

Architecture and Scale of the Agent’s ANN: Table 6.2 outlines the dimensions of
each layer within the agent’s model. For a glimpse of the number of trainable parameters,
consider training the GRU and TrXL baselines in Endless Mystery Path, excluding
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auxiliary heads for observation reconstruction and ground truth estimation. The GRU
agent contains approximately 4.05 million trainable parameters, while the TrXL one has
around 2.8 million. By expanding TrXL to GTrXL and therefore incorporating 6 GRU
cells, the total trainable parameters increase to 9.4 million.

6.1.2 Statistical Tools for Reporting Sample Efficiency Scores

Before exploring the results of the contributed baselines on Memory Gym, it is essential to
clarify the statistical tools in use. Given the inherent stochastic behavior of environments,
agents, and optimization, multiple training runs are essential to get a reliable picture of
the agents’ performances. The feasibility of numerous repetitions is often constrained by
the computational and time costs associated with a DRL algorithm and task. For example,
benchmarking PPO was limited to only 3 repetitions (Schulman et al., 2017). In this
study, each experiment is repeated 5 times, each with a distinct random seed. To address
the challenges posed by statistical uncertainty, the guidelines set forth by Agarwal et al.
(2021) are followed, employing their advocated point and interval estimates. The term
"estimates" is emphasized here due to the variability stemming from the finite and low
number of runs.

Point estimates refer to data aggregation methods, such as computing the mean,
which can be skewed by outliers. Hence, the Interquartile Mean (IQM), which focuses on
the middle 50% of data, is recommended as a more robust alternative (Agarwal et al., 2021).

Interval estimates provide a range within which the true performance value is be-
lieved to lie. A commonly used type is the Confidence Interval (CI). A 95% CI suggests
that, if the experiment were to be repeated many times, the true performance value would
fall within this interval 95% of the time. An actual score outside this 95% CI implies a rare
event, with only a 5% likelihood of occurring by chance. For the underlying situation of
limited samples, Agarwal et al. (2021) recommend stratified bootstrap confidence intervals.
Bootstrapping involves resampling from the existing data with replacement (Efron, 1979).
Stratification ensures that each run is adequately represented in the bootstrap samples,
leading to more reliable and robust confidence intervals (Agarwal et al., 2021).

When evaluating the trained baselines, the IQM and CI, which is based on the stratified
bootstrap method, are used. These metrics form the foundation for the upcoming sample
efficiency curves, presented as line plots. The x-axis represents time in steps, and the
y-axis displays the agent’s aggregated scores across completed episodes. The bold line in
the plots signifies the IQM, with the surrounding shaded region representing the CI.

6.1.3 Evaluating Generalization

During training, the agent encounters 100,000 procedurally generated levels. For assessing
generalization, the performance is evaluated on 50 unseen levels post-training. Given the
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stochastic nature of the environment and the agent’s policy, each of these levels is revisited
three times. In the sample efficiency curves, each data point aggregates results from 5
training runs over 50 levels, with each level repeated three times, leading to a total of 750
episodes per data point.

The type of agent scores differ depending on the specific environment. For all Mortar
Mayhem variants, the designated metric is the count of successfully executed commands.
For finite versions of Mystery Path and Searing Spotlights, the success rate, indicating
the completion of all task objectives, is used. Concerning the remaining endless tasks,
Mystery Path employs the undiscounted return, while Searing Spotlights uses the total of
gathered coins.

6.2 Results in Finite Environments
This section presents the outcomes from several experiments on training agents in Mem-
ory Gym’s finite environments. Initially, the first set of experiments ensures that all
environments require agents to effectively utilize memory. This understanding comes
from contrasting the contributed baselines with minor agent architectures, such as frame
stacking, in more basic environment versions. Subsequent comparisons between GRU and
TrXL in the default finite tasks show that TrXL excels in Mortar Mayhem and Mystery
Path but is less efficient in Searing Spotlights. At last, preliminary results emerge when
employing GTrXL and LSTM in a plug-and-play manner, underscoring the importance of
hyperparameter tuning and implementation verification.

6.2.1 The Finite Tasks Depend on Agents Using Memory

Before assessing GRU and TrXL on the default challenges of the finite environments, the
first set of experiments focuses on confirming that the agents trained on Memory Gym
indeed require memory. To accomplish this, we train several minor baselines alongside
GRU and TrXL on simplified versions of the environments. These baselines include PPO
without memory, PPO with frame stacking (4 and 16 grayscale frames), and PPO with
absolute positional encoding (Section 2.4.3), which is provided as vector observation. By
observing the positional encoding, the agent is informed of the current time step, with the
encoding dimension set to 16 and the length matching the maximum episode length.

Mortar Mayhem Depends on Memory
Results on Mortar Mayhem (Figures 6.1 (a)- (c)) show the number of commands that were
properly executed during one episode. As mentioned in Section 4.3.1, the agent is not
required to memorize the command sequence in the act task as it is included in the agent’s
vector observation. Under these simpler conditions, PPO without memory is ineffective,
while the frame stacking agents achieve nearly either 5 or 8 commands with a slight upward
trend. Agents using GRU or TrXL are the most effective, completing all 10 commands,
while those with relative positional encoding follow closely, completing 9.5 commands.
Once the clue task is present (Figure 6.1 (b)), only GRU and TrXL prove to be effective.
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(a) Mortar Mayhem Act Grid
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(b) Mortar Mayhem Grid

0 200 400
Steps (in millions)

0

2

4

6

8

10

IQ
M

 C
om

m
an

ds
 E

xe
cu

te
d

(c) Mortar Mayhem
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(d) Mystery Path Grid (Cues On)
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(e) Mystery Path Grid
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(f) Mystery Path
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(g) Searing Spotlights

PPO without Memory
Positional Encoding
16 Frames Stack
4 Frames Stack
GRU
GRU + Obs. Rec.
TrXL
TrXL + Obs. Rec.

Figure 6.1: Performance comparison across instances of Memory Gym’s finite environments.
Mortar Mayhem Act Grid (a) provides commands as a fully observable vector,
bypassing the clue task. Both (a) and Mortar Mayhem Grid (b) utilize grid-like
locomotion. (c) represents the default Mortar Mayhem task. Mystery Path
Grid operates on grid-like locomotion, with (a) rendering the goal and origin
to the agent’s observation. (b) and (c) hide these, while (c) is the default
Mystery Path task. Searing Spotlights (g) is not varied, while all conducted
runs leverage observation reconstruction (Obs. Rec.) in this environment.
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Mystery Path Depends on Memory
We obtain a similar impression when training on Mystery Path Grid where the origin and
goal are not perceivable by the agent (Figure 6.1 (e)). In this case, TrXL outperforms GRU
in terms of sample efficiency, while both methods are effective. If the origin and the goal
are visible, a horizon of 16 frames is sufficient to train an effective policy as shown by the
frame stacking agent (Figure 6.1 (d)). Stacking 4 frames or leveraging positional encoding
leads to an IQM success rate of 40% with a slight trend upward. The memory-less agent’s
success rate goes up to about 11%.

Searing Spotlights Depends on Memory
No success is proven by the minor baselines in Searing Spotlights as seen in Figure 6.1 (g).
Only in Searing Spotlights, the minor baselines also utilize observation reconstruction.

6.2.2 Transformer-XL Outperforms Gated Recurrent Unit,
But Not in Searing Spotlights

Based on the results, as seen in Figure 6.1, TrXL proves to be more

• effective in Mortar Mayhem (Figure 6.1 (c)),

• efficient in Mortar Mayhem Grid (Figure 6.1 (b)), and more

• efficient in Mystery Path (Figure 6.1 (f)) and its grid variant (Figure 6.1 (e)).

Concerning the GRU agent, it proves to be more efficient in

• Mortar Mayhem Act Grid (Figure 6.1 (a)),

• Mystery Path Grid (Figure 6.1 (e)), where the origin and goals are observable, and

• Searing Spotlights (Figure 6.1 (g)).

In Mortar Mayhem, the command list is displayed only temporarily, making the encoding
of these rare events pivotal. Leveraging observation reconstruction plays a vital role in this
context, proving indispensable for an effective TrXL agent. However, this auxiliary target
hinders the GRU agent, decreasing its performance from 6 to 5 commands. Conversely,
for Mystery Path, we opted not to train agents using observation reconstruction, as the
always visible agent is the only entity that requires visual encoding.

In summary, TrXL surpasses GRU in terms of effectiveness in Mortar Mayhem and
efficiency in Mystery Path. Conversely, GRU leads in Searing Spotlights with respect to
efficiency.
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(a) Mortar Mayhem
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(b) Mystery Path
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(c) Searing Spotlights

GRU
GRU + Obs. Rec.
LSTM
LSTM + Obs. Rec.
TrXL
TrXL + Obs. Rec.
GTrXL b0
GTrXL b0 + Obs. Rec.
GTrXL b2
GTrXL b2 + Obs. Rec.

Figure 6.2: Preliminary results for GTrXL and LSTM in the finite environments. Without
comprehensive hyperparameter tuning, both GTrXL and LSTM perform less
effectively in Mortar Mayhem and show reduced sample efficiency in Mystery
Path and Searing Spotlights. The terms "b0" and "b2" denote the biases
explored within the GTrXL context.
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6.2.3 Preliminary Results with Gated TrXL and LSTM

Figure 6.2 presents extended results for the finite environments. We include preliminary
results from agents utilizing GTrXL (Parisotto et al., 2020) and LSTM (Hochreiter and
Schmidhuber, 1997). These models are benchmarked without thorough hyperparameter
tuning. For GTrXL, biases of both 0 and 2 are tested, based on the suggestion by Parisotto
et al. (2020) that a larger bias within the GRU cells might enhance learning. All additional
agents in the Searing Spotlights environment employ the observation reconstruction loss
(Obs. Rec.), while it is omitted in the Mystery Path environment.

For Mortar Mayhem (Figure 6.2 (a)), the LSTM agent settles at 3 commands, whereas the
GTrXL agents using observation reconstruction both achieve an IQM of only 2 commands.
In the Mystery Path results (Figure 6.2.3), the LSTM agent achieves full success, albeit
requiring more samples compared to the GRU and TrXL agents. The GTrXL agent with
a bias of 0 reaches a 94% success rate, while the one with a bias of 2 achieves only 81%,
challenging the earlier assertion by Parisotto et al. (2020). The confidence intervals for
these results indicate potential training instability. In the Searing Spotlights environment,
the LSTM agent with observation reconstruction is slightly less efficient than its GRU
counterpart. However, GTrXL agents, though successful, lag behind TrXL with observation
reconstruction.

While preliminary, our results suggest that a plug-and-play approach may not always
yield effective and sample efficient memory-based agents. However, it is important to note
that we avoid making stronger conclusive statements based on these results. This caution
stems from the fact that the LSTM and GTrXL baselines are not tuned. In particular,
the implementation of GTrXL requires further validation.

6.3 Endless Environments:
GRU Outperforms Transformer-XL

To our surprise, across all three endless environments, the recurrent agent consistently
outperforms the transformer-based agent by a significant margin. This diverges from the
observations made by Parisotto et al. (2020) and Lampinen et al. (2021), where the LSTM
was found to be less effective. Importantly, our TrXL baseline employs absolute positional
encoding, deviating from TrXL’s original use of relative encoding. Section 7.1 delves deeper
into this choice and other potential factors that could account for our contrasting findings.

Endless Mortar Mayhem
The most notable gap between GRU and TrXL emerges in the results of Endless Mortar
Mayhem (Figure 6.3 (a)). In this context, GRU attains an impressive IQM of 120 executed
commands using roughly 300 million steps, whereas TrXL only attains an IQM of 18
commands. Furthermore, the incorporation of observation reconstruction exacerbates this
performance difference, leading TrXL to a further deterioration, resulting in an IQM of 10.
Furthermore, GRU exhibits consistently longer IQM episode lengths, with TrXL achieving
an IQM of 288 steps and GRU reaching a peak IQM episode length of 3462 steps.
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GRU GRU + Obs. Rec. TrXL TrXL + Obs. Rec.
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(a) Endless Mortar Mayhem
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(b) Endless Mystery Path
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(c) Endless Searing Spotlights

Figure 6.3: GRU’s consistent superiority over TrXL is revealed in Memory Gym’s endless
environments. The less opaque line marked with crosses depicts the IQM
episode length that refers to the right y-axis.
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Endless Mystery Path
The outcomes depicted in Figure 6.3 (b) illustrate the results obtained from the Endless
Mystery Path environment. In this case, GRU remains more effective than TrXL, although
the gap between their performances is narrower compared to Endless Mortar Mayhem.
GRU achieves an IQM undiscounted return of 2.65, with TrXL achieving 2.02. Although
neither memory approach converges within the allocated training budget of 819 million
steps, GRU displays a more pronounced upward trend in performance. In terms of episode
length, neither agent achieves lengths as seen in Endless Mortar Mayhem. GRU attains
an IQM episode length of 600 steps in Endless Mystery Path, while TrXL reaches up to
400 steps. This divergence can be attributed to the episode’s dynamics, where agents tend
to fall off after significant progress, necessitating more steps to regain lost ground and
accumulate further rewards.

Endless Searing Spotlights
In Endless Searing Spotlights (Figure 6.3 (c)), GRU is about 3.3 times more effective than
TrXL. Both agents utilize the observation reconstruction loss, but TrXL converges to an
IQM of 6 collected coins after approximately 200 million steps, while GRU achieves an
IQM of about 20 coins, continuing to show an upward trend in its performance. The IQM
episode length for TrXL is 200 steps, while GRU achieves a longer IQM episode length of
600 steps.

6.4 Wall-time Expenses of Baselines

Relating time dependent measures to sample efficiency comes with the advantage of a
consistent scale of time. However, understanding the associated costs of a chosen approach
beforehand is crucial. Such details are frequently overlooked in DRL literature. For
instance, in our previous work on Memory Gym’s finite environments (Pleines et al., 2023),
we employed History comprEssion via Language Models (HELM) (Paischer et al., 2022a)
as an additional baseline. Given that HELM is at least five times more time-intensive
than GRU in terms of wall-time, hyperparameter tuning becomes prohibitively expensive.
This overhead originates from the 18 pre-trained and frozen TrXL blocks present in the
HELM architecture. Unfortunately, this constraint was not communicated by the original
authors, even though we acknowledge HELM’s open-source nature and straightforward
implementation. Consequently, we shifted our compute budget from HELM to the TrXL
baseline, which we consider more insightful and valuable.

Further, a comprehensive evaluation of a new baseline should also consider wall-time.
Nevertheless, providing consistent wall-time measurements is often complex due to fac-
tors such as dynamic RL environments, hardware variations, software inconsistencies, or
varying platform loads. To shed light on the time requirements of the GRU and TrXL base-
lines, we present data from Endless Mortar Mayhem and the finite version of Mystery Path.

Endless Mortar Mayhem
Table 6.3 presents wall-time efficiency metrics for agents trained on Endless Mortar May-
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Table 6.3: Wall-time efficiency metrics for agents trained on Endless Mortar Mayhem.
Agents are arranged from left to right based on increasing mean training
duration, measured in hours. Other values, excluding the standard deviation,
are represented in seconds and comprise the time needed for a single PPO
iteration. The second row indicates if the ANN was compiled before training.
To this date, PyTorch faces issues in compiling recurrent cells. Note: "TrXL*"
metrics use 4,000 initial training data points, while other runs utilize 150k data
points covering the full training process. "TrXL + QPos" and "TrXL + LR +
QPos + GT" refer to experiments from Section 7.1.

GRU TrXL TrXL +
QPos

TrXL +
Obs. Rec.

TrXL +
LR + QPos + GT TrXL*

Compiled No Yes Yes Yes Yes No
Mean 4.11 5.53 5.6 5.76 5.86 7.97
Std 0.35 1.12 1.31 1.1 1.68 0.25
Min 3.6 5.2 5 5.4 5.3 7.6
Median 4.1 5.4 5.5 5.7 5.8 7.9
IQM 4.03 5.48 5.53 5.72 5.82 7.93
Mean Duration 57.08 76.81 77.78 80 81.39 110.69

hem, utilizing the noctua2 high-performance cluster2. We leverage 32 CPU cores (AMD
Milan 7763), an NVIDIA A100 GPU, and 100GB RAM for one training run. With PyTorch
version 2, models can be lazily compiled at training onset, reducing TrXL’s training time
by a significant 30%. Previously, plain TrXL training averaged 110 hours, but this has
been reduced to 76 hours. Incorporating observation reconstruction adds roughly 3 hours,
and with ground truth estimation, it extends to 81 hours. The GRU agents are the most
wall-time efficient, completing in approximately 57 hours. Thus, recurrence emerges as
the most effective and efficient architecture in both sample and wall-time metrics for the
endless environments.

Mystery Path
We further take a look at the wall-time of agents trained on Mystery Path (Figure 6.4). It
becomes apparent that TrXL and GRU are quite on par concerning wall-time efficiency,
whereas TrXL needs fewer samples as shown in Section 6.2.2. On first sight, it seems
surprising that GTrXL is faster than TrXL (Table 6.4) even though GTrXL is more
complex. This is due to the more expensive resets of the environment. Better policies
have shorter episodes and thus reset more frequently impairing wall-time. So as GTrXL’s
and LSTM’s policies are inferior, their wall-time is faster. These results were obtained
from the LiDo3 high-performance cluster3. Each run utilized 32 cores (AMD Epyc 7542),
an A100 GPU, and 200GB RAM.

2https://pc2.uni-paderborn.de/de/hpc-services/available-systems/noctua2 Accessed: 2023-
09-18

3https://lido.itmc.tu-dortmund.de/ Accessed: 2023-09-18
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Figure 6.4: Wall-time efficiency curves resulted from experiments in Mystery Path

Table 6.4: Wall-time efficiency metrics for agents trained on Mystery Path. Agents are
arranged from left to right based on increasing mean training duration, measured
in hours. Other values, excluding the standard deviation, are represented in
seconds and comprise the time needed for a single PPO iteration.

LSTM GRU GTrXL B0 TrXL
Compiled No No Yes Yes
Mean 5.09 5.19 6.68 7.39
Std 0.22 0.28 0.31 0.24
Min 4.2 4.0 5.8 6.4
Max 7.6 7.0 62.2 11.5
Median 5.1 5.2 6.6 7.4
IQM 5.09 5.18 6.64 7.39
Mean Duration 35.35 36.04 46.4 51.32
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6.5 Resulted Agent Behaviors

This thesis is complemented by a dedicated website4, which offers a multi-modal media
experience, showcasing various GRU and TrXL agents interacting within Memory Gym’s
environments. The website provides interactive modalities for visualizing an agent’s
gameplay, as follows:

• Videos:

– Ground Truth

– Agent Observation

– Reconstructed Observation (if applicable)

• Charts and Plots:

– Action Probability Distribution (Bar Chart)

– State-Value (Line Plot)

– Entropy (Line Plot)

• Attention Insights (exclusively for TrXL):

– Top or All Attention Scores

For enhanced user experience, data points in the line plots and attention scores are
interactive; clicking them navigates the video to the associated time step.

Given the vast array of agents, including their evolving iterations throughout training,
it would be impractical to inspecting each in detail. Consequently, we showcase the best-
performing final agent from the 5 repetitions. Although the media aids in understanding
agents’ behaviors, the underlying rationale for specific actions can be opaque due to the
inherent black-box nature of ANNs. For transformer models, attention scores provide
insights into significant past events. In Mortar Mayhem, distinct duties emerge for each
TrXL block. Similar impressions are salient in Mystery Path. Finally, we visualize an
agent adeptly dodging spotlights to seize a coin in Endless Searing Spotlights.

6.5.1 Mortar Mayhem: Transformer Blocks Focus Differently

Environments in the Mortar Mayhem family do not leave much room for diverse behaviors
as the structure for time and space is fixed. Upon analyzing the attention scores throughout
an episode, it is evident that different transformer blocks prioritize distinct time steps,
and this varies between the clue and act tasks. Figure 6.5 displays the attention scores at
time step 40, corresponding to the end of the clue task. Interestingly, the first two blocks
consistently direct their attention to every fourth time step, representing the initial visual
frame of a command, while the first block pronounces the episode’s outset as well. The last

4Agent Behavior Media Website: https://marcometer.github.io/
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Figure 6.5: Attention scores in Mortar Mayhem at time 40. The top 16 scores are red.
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Figure 6.6: Attention scores in Mortar Mayhem at time 160. The top 16 scores are red.
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(a) Step 70 (b) Step 50

Figure 6.7: Mystery Path at step 70 (a) and 50 (b). By time 70, the agent has experienced
3 fall offs at steps 5, 28, and 55, indicated by the shaded and crossed agent
icons. At step 50 (b), the agent had previously surpassed its progress from
step 70 but encountered a fall off just 5 steps afterward.

block emphasizes the episode’s initial step. This pattern persists during the clue task but
shifts when the agent starts executing commands, as seen in Figure 6.6. For the task of
executing the 6th command from time step 160, the third block’s primary attention is on
time step 21, showcasing the relevant command’s visualization. It also marginally focuses
on steps 86, 112, 134, and 157, indicative of successful executions, yet it overlooks the first
successful command around step 58. Conversely, the other blocks adapt by concentrating
more on recent past events.

6.5.2 Mystery Path: Fall Off and Prior Positions Matter

In Mystery Path, even though only the agent is rendered, its starting position upon the
episode’s beginning serves as a critical cue: the goal likely lies somewhere on the opposite
side. In the absence of more specific details, such as fall off locations, in the agent’s
memory, a logical approach is to first head in that direction. This tactic is commonly
adopted by agents across tasks in this category.

Inspecting the attention scores of the TrXL agent at time step 70, as illustrated in
Figure 6.7 (a), the first block highlights fall off moments at times 5, 28, and 55, shown in
Figure 6.8. Subsequent blocks shift their attention towards events around step 50, recalling
a position the agent held 20 steps prior (Figure 6.7 (b)). This earlier knowledge aids the
agent in advancing without falling off once more.

Additionally, a performance distinction emerges between the GRU and TrXL agents. In
all evaluation episodes and post training, the GRU agent averages 5.65 fall offs, whereas
the TrXL agent demonstrates improved efficiency with an average of 4.87.

97



Chapter 6. Experimental Analysis

0.0

0.02

0.0

0.05

0 10 20 30 40 50 60 70
Episode Step

0.0

0.20At
te

nt
io

n 
Sc

or
e

Figure 6.8: Attention scores in Mystery Path at time 70. The top 16 scores are red.

(a) (b)

Figure 6.9: Dodging spotlights in Endless Searing Spotlights. The depicted maneuver,
entirely executed in the dark by the TrXL agent, lasts for 64 steps and presents
a considerable challenge.
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6.5.3 Endless Searing Spotlights: Bypassing Spotlight Traps

In the finite environment, episodes conclude so swiftly that spotlights rarely present a
challenge. However, in Endless Searing Spotlights, there are instances where the coin or
the agent is ensnared by spotlights. Figure 6.9 illustrates such a scenario. Faced with
this, agents have adapted to exhibit patience, biding their time to seize an opening and
navigate past the threat. When exploring our media, the GRU5 and TrXL agents exhibit
different maneuvers to solve this instance6.

6.6 Key Insights: Most Significant Results
To wrap up this chapter, the most salient observation emerges from the endless environ-
ments’ results: the recurrent agent leveraging GRU significantly surpasses TrXL. Yet,
in the finite version of Mortar Mayhem, TrXL solves more commands, and it also poses
enhanced efficiency in Mystery Path. During the training in Searing Spotlights, GRU with
observation reconstruction requires fewer training samples. Additionally, benchmarking
both GTrXL and LSTM without preliminary tuning underscores that simple plug-and-play
strategies might not be effective. Finally, insightful agent behaviors were discerned during
exploring their behaviors post training; for example, the attention scores of a transformer
can provide intuitive understanding of an agent’s retrospective reasoning.

5GRU: https://marcometer.github.io/results/ess_gru_rec_seed_200003.html
6TrXL: https://marcometer.github.io/results/ess_trxl_rec_seed_200003.html
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Discussion
We presented our GRU and TrXL baselines and unveiled a new set of memory-dependent

tasks: Memory Gym. Benchmarking these baselines on Memory Gym in the previous
section revealed several insights. Remarkably, the underperformance of TrXL in all endless
environments is highly unexpected. Given the prevailing belief that transformers typically
surpass recurrent architectures, we discuss five hypotheses. These hypotheses require
further in-depth exploration, which is left to future work.

In addition to examining TrXL, we revisit Searing Spotlights. Initially deemed unsolvable
by our recurrent baseline, we now discern that the original results were not perturbed
by noise due to spotlights. Instead, the normalization of advantage estimates, used to
optimize the agent’s policy, emerges as the primary factor. Furthermore, we offer a critical
assessment of both the finite and endless tasks in Searing Spotlights, pinpointing areas for
potential future refinement.

Concluding, we position Memory Gym within the context of a standard benchmark. We
advocate that Memory Gym serves as a valuable complement, rather than a comprehensive
standard benchmark.

7.1 Transformer-XL’s Unexpected Low Effectiveness
The unexpectedly low performance of TrXL prompts us to several hypotheses that are
explored within the next subsections:

• The capacity of the agent’s model is insufficient.

• The learning signal is too weak.

• The initial query in the first TrXL block lacks temporal information.

• Hidden states within TrXL become stale.

• The absolute positional encoding is indistinguishable.

Endless Mortar Mayhem poses the largest performance gap (Section 6.3), and therefore
we utilize this environment for further experiments.
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Figure 7.1: Episode steps in Endless Mortar Mayhem increase exponentially with the length
of the command sequence to be executed. Data points represent episode time
steps where the agent completed the sequence, observed the next command,
and subsequently failed. The cumulative successful commands align with the
episode’s steps and its undiscounted return. The GRU agent’s performance is
highlighted in green, while the TrXL agent is in red. In addition, we show an
agent that illegally includes a ground truth (GT) estimation head as detailed
in Section 7.1.2. The delta indicates the step difference to the previous data
point, essentially showing how far back the agent has to look into the past. In
the default Endless Mortar Mayhem configuration, delta steps grow by 24 for
each added command.

7.1.1 Inadequate Model Capacity and Window Length

Our TrXL baseline comprises 2.8 million trainable parameters, while GRU consists of 4.05
million, prompting the question of whether TrXL’s model architecture lacks the necessary
capacity. To investigate this, we conducted experiments varying the number of blocks (2, 3,
4), and the block’s embedding dimension size (256, 384, 512). None of these adjustments
led to closing the performance gap to GRU.

We also explored different lengths for the sliding memory window (256, 384, 512). A
length of 256 seems theoretically sufficient to rival GRU’s performance. This assertion
becomes clear when comparing the potential context length of TrXL, enabled by segment-
level recurrence, to the lengths needed at certain points in Endless Mortar Mayhem.
With a configuration of 256 length and 3 blocks, the recurrent connections can reference
information from as far back as 256 + 255 + 255 = 766 steps. Even though the GRU
baseline can handle episodes over 3000 steps, it does not need to recall the episode’s
beginning. Figure 7.1 illustrates this, detailing both episode lengths and the steps between
the complete execution of a command list, which increase incrementally. The TrXL
baseline can manage a 5-command sequence, summing to 15 commands. The prior phase
of executing 4 commands and observing the new one takes 124 steps. In comparison, the
GRU agent has a 386-step gap, which is within the TrXL’s context range.
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Figure 7.2: Experiments on Endless Mortar Mayhem with varied TrXL configurations. The
learning rate schedule (LR) is adjusted to decay from 2.75e-4 to 1.0e-4 over 160
million steps, compared to the previous 1.0e-5. We also incorporate observation
reconstruction (Obs. Rec.) and observe the most significant improvement upon
introducing a ground truth estimation head (GT) as sanity check. Another
test augments TrXL’s query with absolute positional encoding (QPos) (Section
7.1.3). The final, but inferior, experiment combines the optimized learning
rate, augmented query, and ground truth estimation.

Scaling up the aforementioned dimensions of TrXL has the side effect of an increased
demand for GPU memory. Based on our implementation and hyperparameters, this
may cause the training to exceed the available 40GB GPU memory of an NVIDIA A100.
Workarounds include reducing the batch size or transferring training data between the
GPU and CPU, but these options significantly worsen wall-time efficiency.

Furthermore, another indication of untapped capacity lies in the amplification of the
learning signal, which we elaborate on next.

7.1.2 Weak Learning Signal

Figure 7.2 depicts several additional experiments aimed at amplifying the learning signal.
We made a naive adjustment to the learning rate schedule, utilized observation recon-
struction, and included a ground truth estimation head (Section 5.1.3). This ground
truth estimation head is added to the actor-critic model architecture and predicts the
target position to move to. Labels are provided by the environment, and the estimates are
optimized using the mean-squared error loss. While ground truth information is typically
unavailable and considered inappropriate for this benchmark, it serves as a useful sanity
check. It helps determine if an additional learning signal is advantageous in this context.
When training incorporates ground truth estimation, there is a noticeable improvement in
the agent’s policy. Previously, the IQM of completed commands stood at 18; with ground
truth estimation, it reaches 50. This outcome implies that the model’s capacity might not
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be the primary constraint. However, using the ground truth estimation head can lead
to instability in training, with the agent’s performance fluctuating between 20 and 50
completed commands after about 300 million steps.

During the initial 160 million training steps, the learning rate linearly decays from 2.75e-4
to 1.0e-5. By setting the final decayed learning rate to 1.0e-4, the IQM performance hits 24
commands. Lower performances are observed when adding the observation reconstruction.

In summary, augmenting the learning signal — either by adjusting the learning rate or
by incorporating ground truth estimation — leads to more performant policies.

7.1.3 Lack of Temporal Information in the Initial Query

The next hypothesis pertains to the initial query of the first TrXL block. This query is
constructed solely based on the features extracted from the observation encoders at the
current time step, encompassing only minimal temporal information. In contrast, the
query of the second block draws from the aggregated outcome of the memory window,
thus capturing more substantial temporal information. However, we believe that the initial
query could be further enriched with additional information. In Figure 7.2, one experiment
augments the query with absolute positional encoding, providing direct access to the
current time step. Despite this enhancement, the agent’s performance only moderately
improves, reaching an IQM of 19 completed commands. We also explored embedding the
original query with the previous output of the last TrXL block, without allowing gradients
to back propagate through time. However, this simple approach ended up in catastrophic
performances.

All of the aforementioned measures by far do not reach the level of the GRU agent,
which peaks at the completion of 140 commands (Figure 6.3 (a)). Even if combined, a low
performance of 33 executed commands is achieved, which is also relatively unstable.

7.1.4 Harmful Off-Policy Data in the Episodic Memory

Next, it can be discussed whether the combination of PPO and TrXL’s episodic memory
pose a threat. PPO is an on-policy algorithm that consumes the training data for a few
epochs. Once the second training epoch on the same batch begins, the batch can already
be considered off-policy, as the new policy has diverged from the data sampling policy.
However, PPO’s loss function can mitigate this issue and hence allows for several epochs.
But this mitigation is likely limited and we wonder whether this issue is enlarged by the
episodic memory.

In our current training setup, an agent collects 512 steps of data, while the TrXL agent,
which leverages ground truth estimation, achieves episode lengths greater than 1200 steps.
As such episodes exceed the length of the collected data, the earlier hidden states from
that episode become outdated by at least one PPO iteration. In future work, it needs to
be investigated if stale TrXL hidden states, hinder training progress.

Two approaches are considerable. First of all, the workers could gather trajectories
that are twice as long. As this overloads GPU memory, the number of workers need to
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be halved, which notably increases the wall-time of gathering data. Another approach is
to recompute hidden states during each epoch as done in Recurrent Replay Distributed
DQN (R2D2) (Kapturowski et al., 2019). Frequently refreshing these come with notable
wall-time and GPU memory overheads. The collected training data would need to be
re-propagated through the network to refresh the episodic memory. This also requires to
maintain all agent observations of an episode across PPO iterations. Efficiently employing
TrXL at scale in the context of RL remains as a tremendous challenge.

7.1.5 Indistinguishable Absolute Positional Encoding

The final hypothesis concerns a potential limitation of the absolute positional encoding.
Without positional encoding, the agent cannot differentiate the time between past observa-
tions. As a default, we rely on absolute positional encodings. This encoding always spans
across the potential maximum episode length. In the finite environments, the longest range
is set to 512, being the sequence length, which is also used in the original transformer
(Vaswani et al., 2017). For the endless tasks, this encoding is set up for 2048 steps, an
episode duration that is yet unreachable to the TrXL agents.

The original work of TrXL introduces a relative positional encoding (2.4.6) as a conse-
quence of extended context of lengths. However, when they refer to the absolute positional
encoding, they only apply it to the range of the current segment. If a segment has a
length of 4, the positions within the segment are always the same (i.e. [0, 1, 2, 3]), even
though the segments moves across the entire sequence. In our case, the absolute positional
encoding considers the entire sequence. If the segment window has progressed in time, the
applied positional encoding relies on the current time step (i.e. [t− 3, t− 2, t− 1, t]).

Nevertheless, the absolute positional encoding needs to be defined prior training. When
scaling it up, the question arises whether the agent’s model is capable of differentiating
time steps, because a longer length indicates a more fine-grained sample frequency over the
underlying positional encoding. To test this, we trained a TrXL agent on the finite task of
Mortar Mayhem and configured an absolute positional encoding of length 1024 and 2048.
Both experiments, which were repeated twice, resulted in an agent that poorly completes
only 1 to 2 commands. This demands for questioning the absolute positional encoding in
endless tasks. But if the elements of the absolute position encoding of length 2048 are not
distinguishable, how do those agents master more than 20 commands in Endless Mortar
Mayhem?

If the assumption holds right that the absolute positional encoding is the culprit in our
TrXL baseline, leveraging learned or relative positional encodings instead should improve
performance. As seen in Figure 7.3, no notable advancement is accomplished by both
variants. We observed two outliers among the 5 runs that utilized relative positional
encoding. One underperformed, completing only 13 commands, while the other excelled,
finishing more than 60 commands. Since the interquartile mean represents only the central
50% of the data, these outliers are not apparent in the sample efficiency curve.

Given this discussion, a more in-depth exploration of positional encoding in this context
is advisable.
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Figure 7.3: Experiments on Endless Mortar Mayhem with varied positional encoding. The
learning rate schedule (LR) is adjusted to decay from 2.75e-4 to 1.0e-4 over
160 million steps, compared to the previous 1.0e-5. The acronym LPE refers
to a learned positional encoding, while RPE depicts the relative one.

7.2 Recurrence is not Vulnerable to
Spotlight Perturbations

Training recurrent agents in Searing Spotlights with previously established hyperparameters
(refer to the last column of Table 6.1) does not yield a meaningful policy. Despite numerous
attempts at hyperparameter tuning, architecture adjustments, and task modifications,
Searing Spotlights remains as a puzzle. Even with full observability, where all entities
are permanently visible, the performance is catastrophic. These challenges prompted
the hypothesis that spotlights might introduce noise, heavily affecting the agent’s policy
(Pleines et al., 2023). Support for this theory come from experiments in the simple
BossFight environment (Cobbe et al., 2020), using identical spotlight dynamics as in Searing
Spotlights, suggesting a potential vulnerability of recurrent agents to such perturbation.

However, the results presented in Figure 6.1 (g) and 6.2 (c) neglect this hypothesis. This
prompted us to conduct an ablation study, beginning with the previous hyperparameters.
In this study, only a single hyperparameter or environment option was replaced with the
current one at a time. Table 7.1 presents the results for Searing Spotlights when full
observability is ensured. Initially, observation reconstruction was presumed to be the
solution. However, the crucial adjustment proved to be the decision to avoid normalizing
advantage estimates during optimization. Only the GRU agent, which omits advantage
normalization, and the memory-less agent, based entirely on previous hyperparameters,
recorded noteworthy success rates of 100% and 96%, respectively.

A salient observation emerges when tracking the gradient norms across the agent
models during training. With normalized advantages, the gradient norm is typically
more than 12 times greater than when normalization is bypassed. This suggests that
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PPO without Memory PPO without Memory + Spotlights GRU GRU + Spotlights
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(b) BossFight Performances on Training Levels

Figure 7.4: GRU and memory-less PPO agents are trained on a single BossFight level
(Cobbe et al., 2020), indicating potential sensitivity to spotlight perturbations.
Due to the boss’s fixed behavior, the environment encourages overfitting, even
though the single level is extrapolated to 100,000 using spotlight perturbations
(a). Utilizing prior hyperparameters (Table 6.1), the results (b) indicate that
while both GRU and memory-less PPO perform well without spotlights, GRU
performance drops catastrophically with them present. The IQM undiscounted
return represents the total rewards the agent earns in one episode. The agent
is depicted by the little space craft in the bottom right corner, while the boss
is the mother ship in the center shooting bullets.
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Table 7.1: Results from the ablation study on Searing Spotlights with full observability.
Each experiment was run 5 times, though the data sourced directly from the
training process deviates from our standard protocol. Every PPO iteration
(of 5,000 total) produces a data point that reflects the average over the last
100 episodes. Rows are ordered in descending fashion by the mean success
rate. The mean is computed from the top-performing data point, averaged
across repetitions, from the specific experiment. Consequently, the time point
is represented as a percentage duration. The gradient norm is accumulated over
all data points within the given duration.

Experiment Value Success Rate Duration Gradient Norm
New Old Mean Std Mean Std

Advantage Norm. Off On 1.00 0.00 31% 0.02 0.01
No Memory 0.96 0.11 99% 0.28 0.03
Agent Health Points 5 10 0.79 0.35 99% 0.30 0.02
Transformer-XL 0.69 0.27 99% 0.30 0.03
Agent Speed 3.0 2.5 0.58 0.22 65% 0.33 0.06
Clip Range 0.1 0.2 0.52 0.25 99% 0.27 0.05
Max Episode Length 256 512 0.48 0.27 99% 0.37 0.04
Old Hyperparameters 0.43 0.06 96% 0.38 0.06
Observation Rec. On Off 0.39 0.06 96% 0.40 0.04
Max Gradient Norm 0.25 0.5 0.36 0.05 99% 0.24 0.01
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during gradient descent, excessively large optimization steps might be taken, resulting
in an oscillating behavior that fails to converge to a local minimum. Simultaneously,
unnormalized advantages remain at a scale of 2e-4, but post-normalization, the magnitudes
stretch beyond 5. Considering that the policy ratio (as per Equation 2.36) is modulated
by these advantage estimates, normalization introduces a strikingly different scale than its
absence. Standard practice typically normalizes advantages by subtracting the mean and
dividing by the standard deviation, often applied at the mini-batch level.

Several comprehensive studies have delved into such nuances of PPO’s implementation
(Engstrom et al., 2020; Andrychowicz et al., 2021; Huang et al., 2022a). Among them,
only Andrychowicz et al. (2021) turned off advantage normalization and found negligi-
ble performance impact. However, their extensive study focused on control tasks with
undiscounted returns in the thousands, contrasting Memory Gym’s finite environments
where the undiscounted rewards does not exceed 2. During hyperparameter optimization,
turning off advantage normalization also enhanced performance in Mortar Mayhem and
Mystery Path.

Given the critical importance of utilizing raw advantages, there remains an opportunity
to delve even deeper into PPO to comprehend and refine its essential aspects.

7.3 Untapped Potential in Searing Spotlights

As demonstrated in Section 3.2.4 and 4.7, Searing Spotlights effectively addresses the
desiderata related to memory dependencies. Furthermore, the environment underscores
the intricacies in the implementation of PPO, particularly in the context of normalizing
advantage estimates. Given these insights, Searing Spotlights and its associated envi-
ronment families stand as a worthwhile contribution. Nevertheless, a critical reflection
reveals opportunities to build upon this robust foundation. In the subsequent sections,
we delve into potential refinements, with a focus on the coin collection task in the finite
environment, the coin spawn mechanism in the endless environment, and the approach
conforming endlessness.

7.3.1 Optimal Agents Swiftly Solve the Finite Task

In Searing Spotlights, optimal agents can complete episodes quickly, averaging 33 steps
as shown in Table 4.5. While reaching this optimal behavior is non-trivial due to the
challenges posed by spotlights during exploration, the rapid completion diminishes the
threat posed by the spotlights (Figure 7.5). To enhance the environment’s complexity,
agents could be tasked with collecting objects in a specific order. For instance, differently
colored coins could indicate the collection sequence. Another idea is to draw inspiration
from (Baker et al., 2020), where agents first have to touch each object and then have to
revisit them in the same order. Combining this concept with Searing Spotlights’ emphasis
on darkness offers a potential direction for further refinement.
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(a) Step 0 (b) Step 16 (c) Step 32

Figure 7.5: In this Searing Spotlights episode, the agent completes the task in 32 steps.
By this stage, the spotlights pose no substantial threat to the agent’s progress.

Got it! So this is
also my current

position.

If I recall correctly,
the coin must be

over here.

Figure 7.6: In Searing Spotlights, a coin event acts as a positional landmark for the agent.
By accurately recalling the coin’s position from memory, the agent can refresh
its global position and discard outdated information, such as its initial position
or past actions.

7.3.2 Refining Coin Spawns in Endless Searing Spotlights

Reflecting on Endless Searing Spotlights, coins spawn anew once collected, and are briefly
made visible to the agent. This mechanic ensures that the agent senses the coin’s location
at least once. However, relying solely on randomly moving spotlights to reveal the coin
can be time-consuming. While extending the agent’s time is an option, it contradicts the
endless nature of the environment where episodes shall terminate as soon as the agent
behaves poorly. We propose two ideas for alternative spawning mechanics: spawning the
coin within an existing spotlight, and introducing a new spotlight that will inevitably
reveal a newly spawned coin. Nonetheless, the first option gives the agent more control over
timing the spawn of the new coin, which may be undesirable. The agent could patiently
wait for improved spotlight positions to take advantage.

7.3.3 Feedback from Coin Events is a Landmark

In the current setup, agents receive immediate feedback upon collecting a coin, with the
new coin being temporarily made visible. This feedback acts as a landmark, as illustrated
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in Figure 7.6, allowing the agent to orient itself without relying on its initial position.
Nonetheless, the endless nature of the task should ideally place a greater memory burden
on the agent. To heighten the challenge, the immediate feedback after coin collection
should be removed. As previously suggested, the coin could spawn in darkness, with a
spotlight eventually revealing it. This mechanism might necessitate added variability in
spotlight spawning, such as introducing two spotlights at once or incorporating short,
random delays. Alternatively, the coin collection task could be replaced, possibly by
rewarding the agent for remaining close to a highlighted spotlight.

7.4 Memory Gym as an Invaluable Complement
The primary objective of this work is to harness the concept of "endlessness" to challenge
memory-based DRL agents. While we believe our contribution is both unique and
invaluable to the field, we do not aim to establish a definitive standard benchmark. This
is a gap that we highlighted in Section 3.3. By "standard benchmark", we mean a set of
versatile memory-dependent tasks that has broad acceptance among practitioners. Such
widespread acceptance or adaptation of existing memory tasks is not evident among
authors who have provided baselines. The reasons become clearer when we analyze these
tasks using our proposed desiderata (Section 3.2.2). Although the desiderata primarily
address individual tasks rather than collections, the criteria for a standard benchmark
remain ambiguous. Defining these criteria for a comprehensive memory task collection
necessitates community-wide discussions and in-depth literature reviews spanning the
entire memory-based DRL domain. As future advancements of other algorithms might
incorporate memory mechanisms, the scope of these reviews may need to extend even
further. Without such collaborative and comprehensive efforts, the proposed benchmark
risks limited adoption.

It is crucial to underscore that an exhaustive exploration of a comprehensive standard
benchmark exceeds this work’s scope. Our primary focus is to contextualize Memory
Gym, emphasizing that it is rather a unique and valuable complement than a standard
benchmark. One key to acceptance is not only the defined task-specific criteria, but also
accessibility in a broader sense. Here, accessibility implies the ease of integrating the
benchmark with existing baselines and ensuring minimal computational costs. A common
facet of this integration involves adapting to the environment’s observation and action
spaces, topics we will explore subsequently.

7.4.1 On Selecting Widely-Adopted Observation Modalities

Real-world applications present diverse modalities, each demanding unique considerations.
For example, an agent might receive observations in the form of vectors, pixels, language,
or a mix of these. Consequently, the architecture of an ANN must be tailored to handle
potentially multi-modal input streams. However, when evaluating memory capabilities, is
it essential for a memory benchmark to accommodate every prevalent modality? While
fusing all modalities presents its own set of challenges, it does not inherently test an agent’s
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memory of past observations. Once this fusion hurdle is overcome, what specific challenges
do fused modalities pose to an agent’s memory?

The need to support various modalities is primarily driven by accessibility. If the
majority of DRL implementations are designed for pixel-based observations, a benchmark
centered around language observations might reach only a limited community. Adapting
to a new modality is not trivial; it can complicate the implementation and potentially
alter its behavior. From our experience, either visual or vector-based inputs are commonly
utilized, with combinations being less frequent and language-based instructions being rare.
Moreover, vector observations are usually less expensive than visual ones.

Memory Gym seamlessly integrates with most setups, primarily focusing on visual
observations, which aligns well with the popular Atari CNN encoder (Mnih et al., 2015).
However, to enhance Memory Gym’s versatility, it could benefit from including task in-
stances based on vector observations. This addition would make Memory Gym’s innovative
endless tasks more accessible to research labs operating with constrained resources.

7.4.2 The Role of Action Modalities

Observation modalities shape the agent’s design, but the selection of an action space is also
important. Agents have the flexibility to operate across diverse action spaces, be it discrete,
multi-discrete, continuous, language-based, or a hybrid approach. This diversity prompts
the question: to what extent do action modalities influence an agent’s memory capabilities?
Drawing insights from our earlier discussion on observation modalities, we suggest that
the influence of action modalities on memory is likely minimal. For example, consider an
agent that has been successfully trained on the Mystery Path using multi-discrete actions.
The optimized parameters from the visual and memory encoder can be reused for a new
agent that operates with continuous actions. During the training of this new agent, these
parameters remain unchanged. We anticipate that this new agent will also be successful,
given that the previously learned representations from the observation history have proven
effective.

In this scenario, it is imperative that the underlying environment supports different
action spaces, or the agent has to convert its actions. In the context of Mystery Path’s
multi-discrete action space, one conversion method is to segment continuous actions
into discrete units using a bucketing strategy (Pleines et al., 2019). On the other hand,
agents specifically tailored for a single discrete action space can streamline or "flatten"
multi-discrete actions, as detailed in Section 5.1.1. It is crucial to understand that such
alterations might pose new exploration challenges for the agent. As a result, agents trained
from scratch with these adjusted modalities may exhibit performance variations when
compared to those in the original multi-discrete action setting.

By converting actions, one can employ baselines rooted in either continuous or discrete
actions to train in Memory Gym’s environments, which primarily feature a multi-discrete
action space. However, the process of discretizing continuous actions may not truly harness
the essence of using continuous actions, especially when Memory Gym does not necessitate
fine-grained locomotion. When establishing a standard benchmark, it seems crucial to
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further assess the significance of tasks that naturally rely on continuous actions.
In conclusion, Memory Gym focuses on implementations that accommodate pixel

observations and multi-discrete action spaces. Single-dimensional discrete action spaces
can be adapted. Although continuous actions can be converted as well, their relevance
remains debatable. By offering task variants that solely utilize vector observations, Memory
Gym can appeal to a broader audience. As such, we envision Memory Gym at its current
state to serve as a valuable complement, distinguished by its endless task nature.
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Conclusion

In this concluding chapter, we revisit the primary challenges faced in memory-based Deep
Reinforcement Learning (DRL) and recap our contributions. We then spotlight key insights,
placing them within the broader context. Subsequent sections offer recommendations for
future research, and we conclude with a critical reflection on our work.

8.1 Recapitulation
Tasks characterized by partial observability or imperfect information in the realm of DRL
emphasize the indispensable role of agents with memory capabilities. As we identified, two
major challenges loom in this research area:

• Absence of a standard benchmark: Researchers introducing memory-based DRL
baselines often employ different tasks to evaluate their agents. This inconsistency
might stem from the inaccessibility of certain tasks or the absence of specific qualities
that rely on memory-dependence. Evidently, there is a void when it comes to a
universally accepted benchmark.

• Limited access to baseline implementations: The broader community often finds itself
at a disadvantage as many implementations of DRL algorithms, particularly those
incorporating memory mechanisms, are not open source. This opacity is especially
noticeable for agents that utilize attention-driven models as transformers. Such
withholding impedes reproducibility, subsequently stalling progress in the domain.

Motivated by these challenges, our goal was to foster research in the field by contributing
a novel benchmark and two accessible and comprehensible baseline implementations. These
are anchored on the widely-adopted Proximal Policy Optimization algorithm. The first
baseline harnesses the utility of recurrence through a Gated Recurrent Unit cell, while the
second adopts an attention-driven approach, utilizing Transformer-XL as episodic memory
with a sliding window approach.

We have introduced a suite of tasks collectively termed "Memory Gym". This suite
features the environment families: Mortar Mayhem, Mystery Path, and Searing Spotlights.
The finite episode variants of these tasks, which conclude upon achieving a singular
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objective, align with the criteria set forth in our research. These environments are heavily
reliant on memory and necessitate frequent memory interactions. Drawing inspiration from
the game "I packed my bag", Memory Gym presents unique endless tasks. Remarkably,
these tasks pose an automatic curriculum that progressively challenges an agent’s retention
and recall capabilities. This allows memory-based agents to showcase their true effectiveness,
rather than just their efficiency.

8.2 Key Insights

Because of numerous results (Dai et al., 2019; Parisotto et al., 2020; Hill et al., 2021;
Lampinen et al., 2021), a prevailing notion in the field suggests that transformers generally
outperform recurrent mechanisms. Our findings from benchmarking the GRU and TrXL
agents on Memory Gym’s finite tasks largely support this sentiment. Specifically, the TrXL
agent demonstrated higher effectiveness in Mortar Mayhem and exhibited greater sample
efficiency in Mystery Path. Conversely, the GRU agent displayed enhanced efficiency in
Searing Spotlights.

A striking deviation from this trend emerged in the endless environments, where recur-
rence made a notable comeback. The GRU agent significantly surpassed the performance
of the TrXL agent. This unforeseen outcome prompted further exploration of our TrXL
baseline. We found TrXL to be more expensive in terms of wall-time and GPU memory
overhead, posing limitations to scaling. While it is unlikely that the TrXL suffers from
capacity constraints, certain modifications, such as adjusting the learning rate or ille-
gally incorporating ground truth estimation, did yield improvements. Nevertheless, these
enhancements were insufficient to match the performance of the GRU agent. Potential
explanations for this divergence include the possibility of TrXL missing temporal cues in
its initial query, the adverse effects of stale hidden states, and the potential need for more
effective positional encoding. These hypotheses present avenues for subsequent research.

In conclusion, Memory Gym presents a unique array of challenges tailored for agents
reliant on memory, with its most indistinguishable feature being the endless tasks, behaving
as an automatic curriculum. Memory Gym’s tasks have played a crucial role in this work,
deepening the understanding of memory-based DRL agents. Our TrXL baseline emerges as
a noteworthy addition in this context. Though it beckons further investigation, its standout
attributes are its accessibility and lucidity. To our knowledge, no other attention-based
baseline in the domain of memory-based DRL agents offers such transparency.

8.3 Future Work

In this section, we outline potential directions for future research, emphasizing the refine-
ment of benchmarks and the exploration of prospective memory baselines.
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8.3.1 Benchmarking Memory-based Agents

Both the finite and endless versions of the Searing Spotlights tasks have demonstrated their
value. The finite version, in particular, shed light on the role of advantage normalization
as a culprit for memory-based agents operating under perfect information. However, as
elaborated in Section 7.3, there is even further potential for refining these tasks. A longer
finite task is commendable since, for an effective agent that completes episodes swiftly,
the spotlights no longer pose a threat. Meanwhile, in Endless Searing Spotlights, it might
be beneficial to eliminate feedback from coin events. Such feedback aids the agent in
reorientation, possibly rendering previous observations dispensable.

In the broader conversation about establishing a universally recognized benchmark, we
posit that Memory Gym serves as a valuable complement to the tools for assessing memory
capabilities. By transitioning from visual observations to vector ones, Memory Gym
can cater to a broader audience and be more accommodating to limited computational
resources. In this vein, introducing tasks tailored for continuous action spaces could further
enhance Memory Gym’s utility. However, it is essential to prioritize the quality of these
tasks over quantity, ensuring they are meaningfully crafted, accessible, and accompanied
by comprehensive documentation.

Lastly, accelerating the simulation speed of Memory Gym’s environments would be a
significant advancement. In fields as robotics, environments can be simulated using GPUs,
facilitating massive parallelization and consequently faster training (Makoviychuk et al.,
2021). While adapting GPUs for environment simulation, especially with rendered visual
observations, presents challenges, the potential benefits make it a worthy endeavor.

8.3.2 Expanding and Enhancing Memory Baselines

Our initial findings, derived from benchmarking Memory Gym using the contributed GRU
and TrXL baselines, set the stage for further exploration. It would be compelling to assess
how other recent advancements in the field, such as HCAM (Lampinen et al., 2021) and
HELMv2 (Paischer et al., 2022b), perform on Memory Gym. Such evaluations would
enable a more comprehensive comparison among these methods.

There are also opportunities to refine our TrXL baseline. By investigating the hypotheses
related to the TrXL’s initial query, the potential drawbacks of stale hidden states, and
the nuances of positional encoding, the performance of this baseline could be enhanced.
Additionally, exploring other transformer architectures might be beneficial, especially
when considering the challenges of managing overheads during scaling. An intriguing
avenue could be the Expire-Span method (Sukhbaatar et al., 2021), a transformer variant
designed to "expire" or forget outdated information, allowing it to handle extended contexts
effectively.

Beyond attention-based and recurrent models, the exploration of structured state space
sequence models (Gu et al., 2022) might be fruitful, especially in light of their recent debut
in DRL (Lu et al., 2023). State space models provide a mathematical framework that
captures the dynamics between observed data and hidden states over time. They can
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be implemented in a convolutional fashion, which benefits from enhanced parallelization,
or in a recurrent fashion, optimized for fast inference. As research progresses, it will be
fascinating to observe whether the Gated Recurrent Unit maintains its leading position on
Memory Gym’s unique endless tasks.

8.4 Critical Reflection
Our scope in this work spans two primary domains: benchmarks and baselines. Each
domain, while deserving its own in-depth exploration, presents a unique set of challenges
that often intersect. Developing a benchmark necessitates the presence of accessible and
working baselines to effectively assert criteria and implementation details. Conversely, the
introduction of novel baselines demands a robust set of tasks to validate their efficacy.
Given the existing gaps in both areas, we found ourselves navigating these intertwined
challenges, often facing decisions that required careful balancing and trade-offs.

Upon reflection, there might have been opportunities to streamline the development of
our baselines and environments. An early adoption of vector observations might have made
the development of the environments less computationally expensive, while this measure
would have enriched Memory Gym’s versatility as well. Additionally, it is plausible that
grayscale visual observations could convey as much information as RGB pixels, potentially
reducing both computational demands and training durations. These saved resources
could have been redirected to delve deeper into Memory Gym’s intricacies. For instance,
examining the environments’ difficulty levels could have provided richer insights. Similarly,
paralleling the findings of Cobbe et al. (2020), we could have evaluated the required
number of unique levels for effective generalization.

In retrospection of our contributed baselines, we recognize that while the TrXL heavily
relies on relative positional encoding, our experiments predominantly employed absolute
positional encodings. Allocating more resources to explore this aspect might have provided
clearer insights into the TrXL’s potential. Regarding the recurrent agent, which did not re-
ceive as much attention as the TrXL one, a direct comparison with related implementations
could have been enlightening, potentially uncovering strengths or areas for improvement.
This is particularly pertinent given the critical impact of implementation details in DRL.

Despite these critical thoughts, we are confident that Memory Gym and our baselines
represent a significant advancement in the realm of memory-based DRL agents. The
recognition of our finite tasks and the recurrent baseline, as evidenced by their acceptance
at the renowned International Conference on Learning Representations (Pleines et al.,
2023), underscores their value. Our introduction of the innovative endless concepts of
ever-growing difficulties, coupled with the open-source TrXL baseline, further amplifies our
contribution. This extension, in the form of a journal paper, is currently under review.
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