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Abstract
In this work, a computer vision sensor for the extraction of slug length, slug velocity and phase ratio from capillary liq-
uid–liquid slug flows from video feeds in real-time, including the necessary post-processing algorithms, is developed. 
The developed sensor is shown to be capable of simultaneously monitoring multiple capillaries and provides reason-
able accuracy at less than 3.5% mean relative error. Subsequently, the sensor is used for the control of a parallelized and 
actively regulated dual-channel slug flow capillary microreactor setup. As a model reaction, the solvent-free epoxida-
tion of methyl oleate with hydrogen peroxide and a phase-transfer catalyst based on tungstophosphoric acid and a 
quaternary ammonium salt to yield the product 9,10-epoxystearic acid methyl ester is conducted. A space–time yield 
of 0.679 kg  L−1  h−1 is achieved.

Article highlights

• A computer vision sensor is developed to accurately 
measure slug characteristics in real-time, facilitating 
efficient monitoring of multiple capillaries.

• The sensor enables effective control of a dual-channel 
slug flow capillary microreactor setup, improving oper-
ational performance.

• The successful model reaction yields a significant 
amount of 9,10-epoxystearic acid methyl ester, show-
casing the system’s high productivity.

Keywords Slug flow · Flow sensor · Machine learning · Video imaging · Computer vision · Epoxidation · Methyl oleate · 
Parallelization · Microreactor

1  Introduction and motivation

The energy consumption of the process industry plays a 
significant role in the total global energy demand [1–3]. 
Chemical processes are core components of most indus-
tries and are the largest consumers of energy in the indus-
trial sector. Considering the global threats emerging 

from excessive energy consumption, it is imperative to 
design and operate efficient processes with significantly 
reduced environmental footprint. Defined by Ramshaw 
[4] as “Devising exceedingly compact plant which reduces 
both the ‘main plant item’ and the installations costs.” and 
Stankiewicz and Moulijn [5] as “Any chemical engineer-
ing development that leads to a substantially smaller, 
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cleaner, and more energy-efficient technology.”, Chemical 
engineers, since the 1970s have slowly began exploring 
intensified processes to better meet the demands of the 
ever-increasing global economic engine. This develop-
ment of chemical processes with emphasis on increased 
selectivity, space–time yield, and decreased specific 
energy consumption is commonly referred to as process 
intensification [6]. One of the four generic principles of 
Process Intensification according to Gerven and Stankie-
wicz [7] is the targeted enhancement of mass and heat 
transfer rates. This is typically achieved in micro-scale 
equipment, such as microreactors, due to their significant 
increase in specific interfacial area. Because of this, param-
eters relevant for efficiency can differ by several orders of 
magnitude compared to conventional-scale systems [8]. 
This study encompasses various concepts, notably the 
advancement of a controlled automated microfluidic reac-
tor system. The system developed in this research exhibits 
promising prospects as a laboratory tool for conducting 
high throughput screenings of conditions and for generat-
ing valuable products on a smaller–medium scale. These 
applications exemplify the versatility and significance of 
slug flow, offering potential contributions to the ongoing 
process intensification endeavours aimed at enhancing 
the efficiency and effectiveness of chemical processes.

Capillary slug flow is a multiphase flow pattern char-
acterized by the regular occurrence of capsule-shaped 
segments, or “slugs”, made up of a disperse phase, sepa-
rated from each other by liquid segments made up of the 
continuous phase. The wetting behaviour of each liquid 

toward the capillary material determines which phase 
acts as the continuous phase. The disperse phase is com-
pletely enclosed by the continuous phase, which forms a 
thin liquid film at the tube wall of height  hwf, as presented 
in Fig. 1. The well-defined flow pattern provides a uniform 
interfacial area and internal circulation patterns, creat-
ing a favourable environment for mass transfer processes 
between the two phases. This makes the capillary slug flow 
regime a subject of active research in the intensification of 
liquid–liquid contactors. It is, for example, well-established 
that the advantages of the capillary slug flow may be used 
to intensify mass-transfer-limited liquid–liquid multiphase 
reactions [9, 10]. Additionally, the use of capillary tubes 
with an inner diameter of ≤ 1 mm provides a high volume-
specific surface area, intensifying heat- and mass transfer 
across the capillary wall [11].

Liquid–liquid capillary slug flows are characterized by 
three parameters: The slug length  Ls, the translational slug 
velocity  vs and the volumetric phase ratio φ = V ̇continuous/
V ̇disperse between continuous and disperse phase, where 
V ̇ describes a volumetric flow rate [12, 13] go as far as to 
show that the use of a liquid–liquid slug flow capillary 
microreactor (SFCMR) enables control over conversion 
and selectivity in the solvent-free, phase-transfer cata-
lysed epoxidation of methyl oleate (MO) to 9,10-Epoxy-
stearic acid methyl ester (EAME), by adjusting these slug 
flow parameters. As shown in the reaction scheme in Fig. 2, 
hydrogen peroxide is used as a “green” oxidant [14]. The 
reaction is carried out using tungstophosphoric acid (TPA) 
as the oxidation catalyst and quaternary ammonium salt 

Fig. 1  Schematic representa-
tion of liquid–liquid capillary 
slug flow. Here  Ls is the slug 
length,  Lu is the distance 
between the front end of sub-
sequent slugs, R is the radius 
to the wall film,  R0 is the radius 
to the centre of the vortex,  vs is 
the translational slug velocity 
and  hwf is the height of the 
wall film

Fig. 2  Reaction scheme of the solvent-free, phase-transfer cata-
lyzed epoxidation of methyl oleate (MO) to 9,10-Epoxystearic acid 
methyl ester (EAME) using hydrogen peroxide with tungstophos-

phoric acid (TPA) as oxidation catalyst and quaternary ammonium 
salt Aliquat 336 (Q) as phase transfer catalyst [13]
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Aliquat 336 (Q) as a phase transfer catalyst, enabling high 
yields without the need for a solvent [15].

As the favourable effects associated with the liquid–liq-
uid slug flow regime only appear in small capillaries, the 
scale-up of equipment like SFCMRs remains a challenge, 
with strongly limited throughput as the trade-off for inten-
sified mass transfer [16]. Numbering-up by using parallel 
channels is one of the commonly employed methods of 
scale-up in capillary microreactors, and is the strategy used 
in this work. In the case of two-phase microreactors [17], 
differentiate between external and internal numbering-up, 
where the former describes the simple replication of entire 
devices to increase capacity, while the latter describes 
the replication of structures within a device as a means of 
scale-up. External numbering-up usually produces more 
predictable results but introduces redundancy and com-
plexity. Internal numbering-up, on the other hand, aims 
to limit redundancy during numbering-up by replicating 
only (sub)structures with fixed dimensions and scaling all 
other structures and devices [18–20].

Prior research shows that for even fluid distribution in 
all parallel channels of a multi-capillary liquid–liquid con-
tactor, some additional considerations must be made [17]: 
Although all parallel capillaries are nominally identical, 
manufacturing tolerances, corrosion, solid precipitation, 
or deposition are non-negligible for the fluid distribution 
across parallel capillaries at the micro scale. Therefore, to 
achieve uniform results across all units,  vs, φ and  Ls must 
be measured and regulated in each capillary [21, 22]. For 
this purpose, Arsenjuk et al. [21] developed a concept for 
the active regulation of multichannel liquid–liquid con-
tactors with the ability to control all slug flow parameters 
across several parallel capillaries. This is achieved by using 
pressure-controlled distributors, temperature-controlled 

microchannels acting as rheological flow control valves 
(so-called thermorheological valves) and a type of adjust-
able slug flow generator capable of continuously alter-
ing slug length. A flowsheet of the concept is depicted 
in Fig. 3.

Wolffenbuttel [23] provides a summary of the four most 
common sensing techniques employed in liquid–liquid 
slug flow monitoring, including impedance-, absorbance- 
and reflectance sensors, as well as video imaging, which is 
concluded to be slow and elaborate. One commonly used 
approach involves using a video camera coupled with 
graph paper [23]. One approach involves tracking the slug 
flow using a high-speed camera, which provides high-res-
olution images and precise temporal information for ana-
lysing slug/bubble lengths, phase ratios, velocity, and bub-
ble shape. Typically, the raw image data is converted into 
a binary grayscale representation to distinguish between 
different phases. By analysing the number of pixels, slug 
and bubble lengths can be deduced, and in conjunction 
with the snapshot and frame rate, the velocity can be 
calculated. While this method yields accurate results, the 
requirement for high-resolution images and high frame 
rates makes it unsuitable for industrial-scale numbering up 
tasks due to the associated cost of such a camera system 
[24, 25]. Another technique, microparticle image velocime-
try (µPIV), can be utilized for flow characterization and vis-
ualizing internal slug flow patterns. However, like camera 
tracking, µPIV is also costly and adds complexity to data 
processing. These techniques are best suited for obtaining 
detailed insights into flow behaviour in laboratory-scale 
equipment and for calibrating other sensors [26]. Another 
method utilizes conductive fluids and measures imped-
ance with electrodes, which is typically used for two-phase 
flow. While parameter determination is straightforward 

Fig. 3  Flowsheet of the parallel 
slug flow reactor control con-
cept developed by Arsenjuk 
et al. [21]. PIC, GIC and FIC are 
the Pressure Controller, Slug 
Length Controller and Flow 
Controller respectively. Two 
parallel reactors are wrapped 
around each other and then 
placed into a water bath. 
Images of the original setup is 
included in Appendix C
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with this method, the presence of electrodes can signifi-
cantly impact the flow within the capillary [23]. Adding 
dye to one of the fluids offers a non-intrusive way to meas-
ure the parameters of interest by monitoring changes in 
absorbed light through the capillary. However, the use of 
additives may cause significant alterations in fluid proper-
ties [23]. A fourth method involves using modified opti-
cal fibre to discriminate between phases based on their 
reflectance. Nonetheless, the influence of the fibre on the 
capillary flow makes this method less desirable [23]. The 
final method utilizes two pairs of infrared emitters and 
detectors, with the signals processed through filters and 
a sampler. While this method allows monitoring of multi-
ple channels in parallel, there is a trade-off between accu-
racy and computational expense [23]. In addition, Arsen-
juk et al. [21]and Vietinghoff et al. [22] describe the use 
of infrared (IR) optical sensors. While the IR-based sensor 
may be realized in a non-intrusive and cost-effective way, 
at least one sensor per parallel capillary is required and 
the sensor is prone to irregularities in the slug flow pattern 
as well as requiring precise positioning. Moreover, add-
ing reactants into the system, instead of inert substances, 
further increase the need for a sophisticated monitoring 
system to run the plant seamlessly and improve scalability. 
To address this, a video-based approach where raw video 
feed of the monitored capillaries is processed in real time 
by a computer vision algorithm to measure the slug length 
 Ls, phase ratio φ, and slug velocity  vs in multiple parallel 
capillaries is developed. By using a camera as the primary 
sensor equipment, multiple capillaries may be monitored 
using only one piece of hardware while the use of modern 
computer vision software allows for robust detection of 
the relevant slug flow features. In addition, the use of a 
camera and machine learning methods opens the possibil-
ity of future extensions to the image processing algorithm 
capable of making information usually gathered by visual 
inspection available to an automated control system.

The use of a camera is made possible by leveraging 
recent advances in neural-network-based object detec-
tion algorithms. Research by Joseph Redmon [27] and 

Bochovskiy et al. [28] gave rise to the YOLO-class of object 
detection algorithms. YOLO—an acronym for “you only 
look once”—is an object detector based on a convolu-
tional neural network (CNN), capable of classifying and 
localizing objects within an image in a fast and efficient 
manner. Its speed is due to the single-pass working prin-
ciple, where localization and classification is done on the 
entire image in one pass of the network. In contrast, algo-
rithms like the R-CNN series, which employ a two-stage 
approach, first localize objects, and subsequently classify 
them in another algorithm sub-structure [29]. While the 
single-pass approach is slightly less accurate, it is efficient 
and capable of enabling real-time object detection on 
video feeds. As a CNN-based object detector, YOLO is also 
easily adaptable and may be retrained to detect many 
types of objects, provided labelled data sets exist [30].

The general structure of the YOLO-type object detec-
tion algorithm is shown in Fig. 4, where the input to the 
algorithm is the full image, represented as a tensor with 
three colour channels. The image is fed into the backbone, 
which consists of several convolutional layers responsible 
for feature extraction and down sampling of the image. 
The neck collects feature maps at different scales of the 
backbone and carries out pooling operations. Lastly, the 
head is responsible for predicting bounding box locations 
and objectness scores which represent the output of the 
algorithm. Due to the single-pass nature of YOLO, many 
overlapping bounding boxes are predicted for a singular 
object, making it necessary to cull bounding boxes by 
non-max suppression, taking into account the objectness 
scores and intersection-over-union values [28, 31].

As YOLO-type object detection algorithms only classify 
and locate objects in an image, further post processing of 
YOLO’s outputs is necessary to determine the desired slug 
flow parameters from images or video feeds. To achieve 
this, two different algorithms are developed in this work 
and compared in terms of performance and accuracy.

This paper focuses on sustainability and process inten-
sification, by coupling the efficiency of the microreactor 
systems with the efficiency increase in deploying cutting 

Fig. 4  Generalized structure of 
a YOLO-type single-pass object 
detector [28]
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edge technology for system automation by scaling up 
micro reactors for production level quantities, using sus-
tainable green chemicals to produce in-demand products. 
A computer vision sensor for liquid–liquid capillary slug 
flow parameters is developed and applied in control of 
parallel capillary slug flow microreactors. These newly 
developed sensors enable observing multiple microreac-
tors at once in real-time and the developed control sys-
tem helps in using these high frequency control inputs 
to intelligently actuate the microreactor plant. The paper 
concludes with the proof of concept of a scaled-up (dual-
channel) reaction system using the developed sensor and 
control system.

Section 2, outlines the experimental setup for data 
collection to train the YOLO-network. It also details the 
materials utilized for conducting these experiments, along 
with the adaptation steps required to repurpose the classic 
YOLO model for the proposed experimental system. Sec-
tion 3 discusses the results of different iterations of the 
computer vision slug flow sensor are discussed. The evalu-
ations primarily focus on determining the most efficient 
version, which is subsequently integrated into the dual-
channel liquid–liquid SFCMR setup. To simulate practical 
industrial edge device usage, the system is executed on a 
mobile GPU.

2  Materials and methods

To develop the computer vision slug flow sensor, it was 
necessary to collect training data to retrain the YOLO 
object detector for the application in the system at hand. 
Furthermore, algorithms to extract and process the 
desired data from the output of the object detector were 
designed. To validate the resulting sensor as well as to 
test its performance, experimental setups were created. 
Specifically, one setup consists of a single capillary fed by 
syringe pumps to generate images for training and the 
determination of basic indicators of sensor performance. 
A second experimental setup was created to demonstrate 

the ability of the sensor developed in this work to serve as 
part of a feedback control loop for a dual channel SFCMR 
carrying out the solvent-free epoxidation of methyl oleate 
in two parallel capillaries.

2.1  Experimental setups

A two-phase system consisting of technical grade ca. 70 
wt% methyl oleate (Sigma Aldrich, impurities consist of 
methyl stearate and methyl palmitate) as the continuous 
organic phase and demineralized water as the disperse 
(i.e., slug-forming) phase is used in sensor and control-
ler development. In the test setup, syringe pumps send 
the two phases to a variable-geometry slug generator 
where the slug flow is formed [12]. By varying the geom-
etry of the slug generator, the emerging slug length can 
be altered. The slugs flow through a flexible, transparent 
plastic capillary made of fluoroethylene propylene (FEP), 
with a nominal inner diameter of 1 mm. A section of the 
capillary tube is coiled and fixed on top of a white surface 
to simulate a multi-capillary setup. Above this the camera 
is positioned. The setup is illustrated in Fig. 5.

The camera setup consists of a vertical height-adjusta-
ble stand holding the camera (with specifications shown in 
Table 1) in place, in a location with minimum interference 
from external light sources. The video feed is transferred to 
a computer for processing via USB 3.0. The use of a single 

Fig. 5  Flow diagram of the 
experimental setup used to 
calibrate the video sensor. A 
section of the capillary tube 
is coiled and fixed on top of 
a white surface to simulate 
a multi-capillary setup. The 
multi-capillary setup is shown 
in Fig. 6

Table 1  Camera settings for training and validation dataset collec-
tion

Camera type The imaging source DFK 
37BUX265

Lens Computar H0514MP2, 5 mm
Software IC Capture 2.4
Resolution 1280 × 720
Camera distance from capillaries 50–250 mm
Max. Frames per second 20
Video codec and format MJPEG/AVI
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capillary and syringe pumps allows for slug length  Ls, 
phase ratio φ and slug velocity  vs to be set and controlled 
precisely for sensor development and testing.

The data collected on the single-capillary test setup 
was then used to design the capillary reactor test setup. 
A flow diagram of the dual-channel liquid–liquid SFCMR 
is shown in Fig. 6. It consists of two pressurized stainless-
steel holding vessels B1 and B2, thermorheological flow 
control valves TRV 1–4, automatically adjustable slug gen-
erators SG 1 and 2, phase separator B4, and automatically 
adjustable control valves VC8, VC11 and VC12 (Swagelok 
SS-SS1-A). Here, the computer vision sensor fulfils the 
measurement functionality of slug length controllers GIC 
1 and 2, phase ratio controllers QFI(C) 1 and 2, as well as 
slug velocity controllers SI(C) 1 and 2. The reaction zones 
(REAC) consist of FEP capillary with a length of 15 m each, 
suspended in a water bath at 60 °C. The reactants are pres-
surized to 0.5 MPa in the holding vessels for propulsion to 
the slug generators.

The control targets are: (1) Both channels should 
achieve and maintain a set average parameters v ̄s, φ ̄, and 
L̄s and (2) parameters  vs,i, φi, and  Ls,i should remain simi-
lar in both channels during normal operation to ensure 
predictable results during numbering-up. Because both 
reactors are connected both supply-side as well as down-
stream, they act as interconnected channels. As a practical 
means of addressing the coupling behaviour brought on 
by this, control of φi and  vs,i is decomposed into control of 
the average across all reactor channels, as well as control 

of the difference between both channels using the “Delta-
Controller” developed for this task. Further details on this 
can be found in Appendix A. Slug length  Ls is controlled 
by setting the slug generator insertion depth. This is done 
on a per-channel basis as the adjustment of slug length 
shows little coupling with the other parameters. There is 
sufficient dead time in the micro reactor after the slug gen-
erator and before the reaction zone (REAC), where the cool 
reactants form stable slugs and the camera sensor is used 
to measure slug length, phase ratio and slug velocity. This 
helps in isolating the actual reaction zone, which could 
be exposed to higher temperatures without affecting the 
measurements upstream.

2.2  Epoxidation catalyst

As previously mentioned, the solvent-free epoxida-
tion of methyl oleate using hydrogen peroxide requires 
a catalyst to achieve meaningful conversion. Contrary 
to previous works, here the active species consisting of 
TPA  (H3[PW12O40]) and Q (N[(CH3)(C8H17)3]Cl) is not formed 
in-situ, but rather pre-synthesized [13]. This is done as the 
component TPA is present as a solid at room temperature 
and promotes the decomposition of the 35%-w  H2O2 used 
to conduct the reaction. Secondly, TPA has been found to 
cause deposits within the TRVs, especially during cooling.

Because full or partial blockages are detrimental to 
the performance of micro reactors in general, a different 
approach is necessary. Therefore, the active species—also 

Fig. 6  Flow diagram of the dual-channel SFCMR setup including 
main control loops, pressurized holding vessels B1 and B2, ther-
morheological valves TRV 1–4, slug generators SG 1 and 2, reaction 
zones (REAC) with a length of 15 m each, phase separator B4, and 
automatically adjustable control valves VC8, VC11 and VC12. GIC 

1–2 represent the Slug Length indicators and controllers, QFI and 
QFIC represent the Phase Ratio indicator and controller respec-
tively, SI and SIC represent the Slug Velocity indicator and controller 
respectively, LIC represents the phase separator level indicator and 
controller and PIC represents the Pressure indicator and controller
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referred to as Venturello Complex  (Q3[PW12O40(O)])—which 
presents as an ionic liquid soluble in methyl oleate, is pre-
pared according to a modified procedure adapted from 
kinetic studies by Maiti et al. [32], as well as Wang and 
Huang [33]. For a detailed description of the preparation 
procedure used in this work refer to Appendix B.

2.3  Computer vision slug flow sensor

The three parameters of interest—slug length  Ls, volumet-
ric phase ratio φ, and slug velocity  vs—can be divided into 
two groups: Spatial and temporal. In principle, determin-
ing  Ls and φ requires spatial detection and classification in 
single video frames, while  vs estimation requires extraction 
of temporal information on the detections in sequential 
video frames. As shown in Fig. 7, raw image data is first 
captured and pre-processed, which includes cropping 
and resizing of the frame, as well as converting the image 
data into a suitable array format. Next, the object detec-
tion algorithm determines spatial parameters, which are 
also stored in internal memory. Finally, using current and 
previous spatial data, temporal processing takes place to 
yield the corresponding parameter.

The algorithm is implemented using Python with its 
packages Keras and TensorFlow for machine-learning tasks, 
OpenCV for image processing and NumPy for numerical 
operations. As the use of graphics processing units (GPU) 
provides speed advantages over typical central process-
ing units (CPU) in the calculations associated with artifi-
cial neural networks, GPUs are employed in this work [34]. 
Specifically, the Nvidia GeForce GPUs RTX2070 (training 
and inference), and 940M (inference) are used to provide 
benchmarks at different levels of hardware capability and 
cost.

2.3.1  Spatial parameter estimation using object detection

As convolutional neural networks (CNN) have found 
widespread application in computer vision tasks involv-
ing object detection—often vastly outperforming prior 
methods in terms of accuracy and speed—the use of a 
CNN-based algorithm for the extraction of information on 
spatial slug flow parameters from a video feed appears 

reasonable [35, 36]. For this, two possible solutions can 
be considered: In the first, a pre-existing object detector 
network is trained on hand-labelled images of slugs in 
capillaries, and the two parameters are calculated using 
elementary geometry on the detection coordinates. Alter-
natively, a custom network that directly estimates the two 
parameters from a raw video feed could be developed. 
While the latter may result in a fast, purpose-built solu-
tion, it would likely be very time-consuming. Therefore, 
the large volume of available research is leveraged by 
using the existing YOLO object detection algorithm at the 
core of the computer vision slug flow sensor. In addition 
to being fast and simple to re-train for the detection of 
slugs, the YOLO algorithm holds two major benefits for 
the use in a slug flow sensor: Its outputs are in the form 
of rectangular bounding boxes around detected objects, 
which conveniently approximate the shape of a slug, and 
detection of multiple objects per frame is inherently sup-
ported, allowing the monitoring of multiple channels with 
minor additional post-processing [28].

In the context of our study, we have made a deliberate 
decision to focus on using bounding boxes for slug shape 
representation, rather than exploring alternative techniques 
such as contour-based segmentation methods or higher-
order geometric models. Our choice is based on consider-
ing the specific objectives and requirements of our study. 
By utilizing bounding boxes, we have achieved satisfactory 
results in detecting and characterizing slugs accurately 
for the purpose of our proposed detector. This approach 
aligns with the simplicity, efficiency, and practicality that 
are essential for our research goals. As the YOLO-algorithm 
has received much attention in recent years, several versions 
with slightly different architectures have been developed 
by the original authors and others. Therefore, the versions 
YOLOv3 and YOLOv4, as well as the reduced model YOLOv4-
tiny, are investigated for the use in the computer vision slug 
flow sensor. Other models considered have been discussed 
in Appendix D, however only the best models are chosen for 
comparison purposes. YOLOv3 employs the full Darknet53 
backbone, a feature pyramid network as the neck and three 
YOLOv3 heads, while YOLOv4 uses the CSPDarknet53 back-
bone, including several optimizations over Darknet53 which 
make it more accurate but also slower in certain instances, as 

Fig. 7  Schematic representa-
tion of the image processing 
algorithm to extract slug flow 
parameters from a sequence of 
raw images
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well as pooling layers and a path aggregation network as the 
neck. [28, 37]. The heads of YOLOv4 remain unchanged from 
previous iterations. YOLOv4-tiny uses the smaller CSPDark-
net53-tiny backbone with a feature pyramid network neck 
and two YOLOv3 heads, instead of three [38]. All versions of 
YOLO are implemented using the TensorFlow machine learn-
ing framework. As inputs, square images with a width σ of 
416 pixels and 608 pixels are tested, and one class (slug) is 
defined for classification, resulting in the models YOLOv3-
608, YOLOv4-608, YOLOv4-416 and YOLOv4-tiny-416, where 
the number refers to the width of the image the model 
accepts as its input.

The dataset used for training, validation and testing 
consists of 340 unique images at different slug lengths  Ls 
(1.8–8.3 mm), as well as varying slug velocities  vs (0–26 mm 
 s−1). All images were captured at a camera height of 120 mm. 
To further improve the robustness of the training result, the 
dataset is augmented by flipping images horizontally and 
vertically, as well as adjusting brightness up and down by up 
to 40%, resulting in a set of 819 images. The set is split into a 
training set (80%), validation set (10%), and testing set (10%).

The output of the object detector is a matrix of normal-
ized bounding box coordinates with the structure illustrated 
in Fig. 8 below. The bounding boxes determined by the 
object detector approximate the slugs as rectangles. As the 
detections appear in the coordinate matrix in no order, an 
algorithm is introduced which dynamically assigns channel 
coordinates according to the y-components of the detection 
matrix and sorts the detections into their respective chan-
nels on each frame.

The vector of estimated slug lengths �⃗Ls = (Ls,1,...,Ls,nc
) is 

determined from the coordinate matrix C shown in Fig. 8. 
Here, each element of �⃗Ls denotes the maximum estimated 
slug length of a respective channel within a frame, while nc 
is the number of detected channels in the frame. With the 
horizontal coordinates  xi,1, and  xi,2 from matrix  C, as well as 
the pixel density dp (in pixels per millimeter), the length of a 
slug Ls,i for a row of matrix C can be determined as follows:

(1)
(

xi,2 − xi,1
)

⋅ dp = Ls,i

As a single channel may have multiple slugs in a single 
frame, a means of reducing the detected slug lengths to 
one slug per channel is necessary. For the larger model 
YOLOv4-416, which could be trained to exclude partial 
slugs at the edge of the frame, applying the channel-wise 
average appeared suitable. The smaller model YOLOv4-
416-tiny, on the other hand, could not be trained the 
exclude partial slugs, therefore the channel-wise maxi-
mum was used to return sensible slug length estimations.

In addition to the slug length measurements, the detec-
tion coordinate matrix C and channel coordinates are used 
to create a binary sequence array S, which is used in the 
channel-wise estimation of volumetric phase ratios �k.

This is achieved by initializing an array of binary values 
the size of the input image with zero. Using the detection 
coordinates, the initialized array is augmented by writing 
ones at the indices enclosed by the bounding boxes creat-
ing the binary stencil array A. Lastly, the array is simplified 
by including only the rows at the channel coordinates, 
yielding the binary sequence array S of size  nc × σ. A graph-
ical representation of this algorithm is shown in Fig. 9.

From the sequence array S, the vector of estimated vol-
umetric phase ratios ��⃗𝜑 =

(

𝜑1,… ,𝜑n

)

 can be calculated 
according to Eq. 3, where J is a σ ×  nc matrix of ones and ∅ 
denotes the element-wise, or Hadamard, division between 
the resulting vectors.

For the validity of Eq. 2, it is assumed that slug detec-
tions which include the entire width of the frame do not 
occur. As slugs of this length lie outside the intended 
working range of the sensor, this limitation is acceptable.

(2)S =

⎡

⎢

⎢

⎣

s1,1
⋮

… s1,�
⋱ ⋮

snc ,1 … snc ,�

⎤

⎥

⎥

⎦

, sk,m ∈ (0, 1)

(3)��⃗𝜑 = [SJ]⊘
[(

J
T − S

)

J
]

Fig. 8  On the left, bounding 
boxes (red) approximate the 
shape of slugs (blue) within 
an image. On the right, the 
corresponding output of the 
object detector in the form of a 
coordinate matrix C
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2.3.2  Slug velocity estimation by temporal processing 
of spatial slug flow measurements

Estimation of the vector of slug velocities �⃗vs = (vs,1, ..., vs,nc) 
is possible by considering consecutive images from a 
video feed and evaluating the movement of the detected 
slugs for each respective channel. For this, two approaches 
are developed and investigated: In the first, the YOLO 
object detector is extended by an additional neural net-
work structure which accepts a series of the sequence 
arrays S(t) of consecutive images from a video feed as its 
input and returns the vector of estimated slug velocities 
�⃗vs = (vs,1,...,vs,nc

) as its output. In the second approach, 
consecutive sequence arrays S(t) are processed using 
an explicit calculation scheme, based on matrix–vector 
operations.

The neural network approach is realized using a long 
short-term memory network (LSTM) to create a robust 
algorithm for accurate and precise slug velocity estima-
tion. LSTM networks are a widely used variant of recur-
rent neural networks (RNN) introduced by Hochreiter and 
Schmidhuber [39], which tackle important shortcomings 
of recurrent networks developed previously. During the 
training of RNN, error signals flowing through the feed-
back loop tend to either (a) blow up or (b) vanish since 
the evolution of the backpropagated error exponentially 
depends on the size of the weights. Case (a) may lead to 
oscillating weights, while in case (b) learning to bridge 
long time lags can take prohibitively long or does not 
work at all. The originally proposed architecture solves 

this by enforcing constant error flow-through internal 
states of specific units and truncated gradients at certain 
points [39]. There are several LSTM variants found in the 
literature, of which the one introduced by Gers et al. [40] 
will be outlined here, as this version is implemented in the 
Keras API. The central idea behind the LSTM architecture 
is a memory cell that can maintain its state over time, and 
non-linear gating units that regulate the information flow 
into and out of the cell [41]. In addition to the input and 
output gates, the cell described by Gers et al. [40] also uses 
a forget gate which can decide what information will be 
discarded from the cell state. This modification is intro-
duced as the authors observed that the cell states often 
tend to grow linearly during the presentation of a time 
series, which leads to the saturation of the output activa-
tion function and thus vanishing of the gradients during 
training.

Several iterations of the LSTM slug velocity estimator 
were considered, with the best results achieved by the 
model 5-LSTM(256-128)-FC(64-32-16). It accepts an array 
of five  nc × 400 centre subsets S ̲ from a moving window of 
consecutive sequence arrays S, beginning at the time of 
measurement  tm, as its input. Each of the five subsets S ̲ is 
fed into an LSTM block with batch normalization and 20% 
dropout. After this, alternating fully connected layers and 
batch normalization are used. This structure is shown in 
Fig. 10. More information about the model candidates and 
the selection criteria can be found in Appendix E.

The explicit calculation scheme, on the other hand, is 
meant to be a simple and fast approach to the problem 

Fig. 9  a Algorithm for the crea-
tion of the binary sequence 
array S. The bounding box 
coordinates are used to create 
the binary stencil array A, 
which is reduced to include 
only the rows at the detected 
channel y-coordinates ŷc . This 
yields the binary sequence 
array S. b A single row of a 
sequence array S next to the 
image it was generated from

(a)

(b)
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of slug velocity estimation. For this, two core operations 
are necessary: First, the number of detected slugs in each 
channel is determined from the sequence array S(tm) at the 
time of measurement  tm, which is subsetted into its left σ-1 
columns S1 and its right σ − 1 columns S2 . By subtracting 
the two submatrices and taking the absolute value of each 
element, the edges of the detected slugs are highlighted in 
the resulting matrix B. The row-wise sum, here achieved by 
multiplying B with (σ − 1) ×  nc matrix of ones  Jn, yields the 
vector �⃗nt of total transitions in each channel:

With this, the vector of estimated slug velocities �⃗vs is 
determined by subtracting the two consecutive sequence 
arrays S(tm-1) and S(tm), taking the element-wise abso-
lute value to yield matrix SΔ(tm) , and finally applying the 

(4)S1 =

⎡

⎢

⎢

⎣

s1,1
⋮

… s1,�−1
⋱ ⋮

snc ,1 … snc ,�−1

⎤

⎥

⎥

⎦

, S2 =

⎡

⎢

⎢

⎣

s1,2
⋮

… s1,�
⋱ ⋮

snc ,2 … snc ,�

⎤

⎥

⎥

⎦

(5)B =

⎡

⎢

⎢

⎢

⎣

�

�

s1,1 − s1,2
�

�

⋮

… �

�

s1,�−1−s1,�
�

�

⋱ ⋮

�

�

�

snc ,1 − snc ,2
�

�

�

…
�

�

�

snc ,�−1 − snc ,�
�

�

�

⎤

⎥

⎥

⎥

⎦

(6)�⃗nt = BJ
n

row-wise sum as well as scaling factor f, dependent on 
frame-time  tf and pixel density  dp:

As Eq. 9 is only valid so long as no element of �⃗nt is zero, 
safeguards must be in place. Because channel detection 
is performed on every frame, in the absence of slugs in 
one channel, the channel is simply not detected as such, 
and no estimated slug velocity is calculated.

3  Results

In the following section, the different versions of the 
computer vison slug flow sensor developed in this work 
are evaluated. Furthermore, the performance of the most 

(7)

SΔ(tm) =

⎡

⎢

⎢

⎢

⎣

�

�

s1,1(tm−1) − s1,1(tm)
�

�

⋮

… �

�

s1,�(tm−1)−s1,�(tm)
�

�

⋱ ⋮

�

�

�

snc ,1(tm−1) − snc ,1(tm)
�

�

�

…
�

�

�

snc ,�(tm−1) − snc ,�(tm)
�

�

�

⎤

⎥

⎥

⎥

⎦

(8)f =
1

tf dp

(9)�⃗vs(tm) = f
{[

SΔ(tm)J
]

⊘ �⃗nt
}

Fig. 10  Structure of the 
LSTM slug velocity detector 
5-LSTM(256-128)-FC(64-32-16)
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efficient version of the sensor developed in this work, 
YOLOv4-416-tiny with explicit temporal processing, is 
implemented as part of the dual-channel liquid–liquid 
SFCMR setup and executed using the GeForce 940M 
mobile GPU to simulate the use of edge devices avail-
able for industrial settings.

3.1  Performance of the computer vision slug flow 
sensor

Important performance indicators of the computer vision 
slug flow sensor are its accuracy in estimating spatial and 

temporal slug flow parameters, as well as the maximum 
possible sampling rate on a video stream. Figure 11 shows 
a graphical user interface, designed to observe the com-
puter vision slug flow sensor during operation. In this case, 
four parallel channels are monitored simultaneously. The 
indicators “YOLO time” and “PP time” show the execution 
time for the YOLO object detector and the post-processing 
including channel detection, spatial, and temporal pro-
cessing, respectively.

Owing to the way the YOLO class of models infer from 
images, it is expected that increasing the number of 
objects in an image does not increase the inference time 
[31]. This is confirmed by the data presented in Fig. 12, as 
execution time barely increases with the number of chan-
nels as in the case of the model YOLOv4-416.

Execution time of the object detector is instead dictated 
primarily by the version of YOLO used as well as the input 
size of the object detector. This is shown in Fig. 13, where 
execution time decreases as the size of the input frame 
decreases. It is also apparent that for this task, YOLOv4 
holds a clear speed advantage over the older YOLOv3.

The computer vision slug flow sensor’s accuracy can be 
ascertained from the parity plots in Fig. 14: Plots (a) and (b) 
compare average estimates by the computer vision slug 
flow sensor with average manual measurements of five-
second video segments. Measurements are taken at a con-
stant phase ratio φ of 1. For comparison purposes, results 
are shown for temporal parameter estimation by both RNN 
and explicit calculation scheme, as well as spatial param-
eter estimation by YOLOv4-416 and YOLOv4-416-tiny.

The mean absolute error of slug length estimation is 
0.22 mm for YOLOv4-416-tiny and 0.15 mm for YOLOv4-
416, resulting in mean relative errors of 3.41% and 3.30% 
for slug length estimation across all tested settings, 
respectively. The maximum relative error for slug length 
estimation is no more than 7.0% for both models, with the 
highest relative errors occurring at the edge of the tested 
range of slug lengths. Similarly, the mean absolute errors 

Fig. 11  Slug detection on four channels. YOLO Time, PP time, slug 
length  Ls, slug velocity  vs and volumetric phase ratio phi (φ) and 
their respective units have been shown at the top left corner for 
each individual slug in an array form. The system was also checked 
for multiple capillary processing as can be seen in Appendix F

Fig. 12  Execution times of 
the individual sections of the 
algorithm (object detection, 
spatial processing, and tem-
poral processing), using the 
YOLOv4-416 object detection 
model, using a RNN-based, and 
b explicit temporal processing. 
Hardware: CPU—Intel i7-6500U, 
GPU—Nvidia RTX 2070 
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of slug velocity estimation are 0.35 mm  s−1 and 0.47 mm 
 s−1 for explicit calculation scheme and RNN, respectively. 
The mean relative errors are 2.5% for the explicit calcula-
tion scheme and 3.5% for the RNN. The maximum relative 
error is no more than 7.3% at the low end of the tested 
range of slug velocities.

As YOLO is a data-based model, its accuracy of object 
detection is limited by the labelled data used for train-
ing. Furthermore, as indicated by parity plot Fig.  14b, 
the estimation accuracy appears to be less accurate at 
slug lengths which were not included in the training set 
(1.8 mm, 2.2 mm, 3.0 mm, 6.0 mm, and 8.3 mm), resulting 
in an underestimation of slug length at the high end of 
the scale.

Figure  15 shows the results of a dynamic test run 
at a constant phase ratio of 1. Slug length is manually 
decreased in frequent, small steps over two minutes 
to avoid severely irregular flow patterns during the 

transience. The inverse response of slug length to the 
adjustment of slug generator geometry, as described 
previously by Arsenjuk et al. [12], can be observed at each 
step. The detected slug velocity values exhibit some vari-
ation, showing peaks at points where the slug length is 
adjusted. This slight dependency of velocity on the slug 
length is expected due to the characteristics of the slug 
generator, which undergoes a change of its internal vol-
ume at the time of slug length adjustment. As the slug 
length curves show, both YOLOv4-416 as well as YOLOv4-
416-tiny perform similarly, however the full model tends 
to show deeper troughs and slightly slower response to 
slug length changes. This is likely less due to the different 
intrinsic capabilities of the two models. Instead, this effect 
is caused by the different post-processing for each model. 
Taking the channel-wise average, as with YOLOv4-416, 
leads to a delay in response time but returns more precise 
estimates, while applying a channel-wise maximum leads 
to a faster response time, especially in situations where the 
slug length is increasing, but also the over-estimation of 
slug lengths as long as slugs longer than the most recent 
one is visible within the frame.

Figure 16 shows the results of second dynamic test 
run where the slug velocity is changed at a constant slug 
length setting and a phase ratio of 1. A notable detail in 
this run is the non-dependence of slug length on slug 
velocity.

It is visible that both the explicit, as well as the RNN-
based algorithm, show very similar dynamics. The esti-
mates provided by the RNN-based algorithm appear to 
be slightly smoother than those returned by the explicit 
temporal processing scheme. This is likely caused by the 
fact that the RNN-based approach uses samples from five 
consecutive points in time, making the RNN-based algo-
rithm exhibit properties of a filter. A similar reduction of 

Fig. 13  Execution time of inference on a single capillary using dif-
ferent versions and input sizes of YOLO. Hardware: CPU—Intel 
i7-6500U, GPU—Nvidia RTX 2070 

Fig. 14  Parity plots for slug velocity  vs (a) and slug length  Ls (b). The 
plots compare mean estimates by the computer vision slug flow 
sensor with mean manual measurements of five-second video seg-
ments of a single capillary. Measurements are taken at a constant 

phase ratio φ of 1. For comparison purposes, results are shown for 
temporal parameter estimation by both RNN and explicit calcula-
tion scheme, as well as spatial parameter estimation by YOLOv4-
416 and YOLOv4-416-tiny
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variability in the results of the explicit temporal processing 
scheme can be achieved by employing a simple moving 
average filter at the expense of a fast response time.

All development and testing discussed above was 
conducted with cropped, but otherwise unadulterated 
images and video feed at native camera resolution and a 
vertical camera height of 120 mm. Considering the goal 

of developing a computer vision slug flow sensor suit-
able for the fast and flexible parallelization of capillaries 
(e.g., in capillary reactors), the degree to which the sen-
sor algorithm can function at different camera heights 
as well as with scaled video feed without re-training was 
investigated. As the number of capillaries visible in each 
frame is dependent on the distance of the camera from 

Fig. 15  Dynamic test run with decreasing slug length at a constant velocity—unfiltered data. Phase ratio φ = 1

Fig. 16  Dynamic test run with decreasing velocity at unchanged slug generator setting—unfiltered data. Phase ratio φ = 1
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the capillaries, the robustness of the developed sensor 
algorithm is tested using camera distances between 50 
and 200 mm. Additionally, because the distance of the 
camera from the capillaries cannot be increased arbi-
trarily without compromising clarity, higher resolution 
images are captured and scaled to the input size of 
the respective object detection models. The results are 
shown in Fig. 17:

The error is lowest at camera heights closest to 120 
mm—the height used to record the training data. Con-
sequently, YOLOv4-416 performs less accurately at cam-
era heights deviating from the camera height used for 
the training data, however, even at camera heights of up 
to 183 mm, the average absolute error could be accept-
able for many applications at 5.1% while yielding a 52.5% 
increase in view window width available for additional 
capillaries. Furthermore, the average absolute error rises 
quickly with a decrease in camera height despite expec-
tation that a more detailed image should lead to a more 
accurate estimate. As the YOLO-class of models has no 
prior “knowledge” of slugs, this would be a misconception. 
Additionally, the lager view window may be beneficial to 
estimation accuracy in the sense that it offers a larger num-
ber of slugs for averaging, making the computer vision 
slug flow sensor relatively less sensitive to disturbances 
and failed detections. Similarly, capturing video using 
larger resolutions and scaling it to fit the model input size 
results in less accurate results, the further the resolution 
used deviates from the resolution used for training. A nota-
ble detail is the relatively high accuracy of YOLOv4-416 
at a camera height of 86 mm and a capture resolution of 
800 × 800 px. This is likely caused by the opposing effects 
of scaling the image down, which results in reduction in 
size of the slugs in the view window and the reduction in 
camera height, which increases the size of the slug, indi-
cating that the size of the slug within the image relative to 
the total size of the image is a critical variable for training 
and should be considered in the selection of training data 
sets for future iterations of the sensor.

3.2  Sensor performance in feedback control loops

To evaluate the performance of the sensor as part of a 
feedback control system and present a low-redundancy 
control concept for such reactor setups, it is implemented 
in the two-capillary liquid–liquid SFCMR carrying out the 
solvent-free epoxidation of methyl oleate to 9,10-epoxy-
stearic acid methyl ester presented in Sect. 2.1.

3.2.1  Slug length control

Because the slug lengths only have a minor impact on the 
other slug flow parameters and vice versa, their control is 
rather uncomplicated in terms of inter- and intra-capillary 
coupling and can be achieved using separate SISO PI-con-
trollers. Figure 18 shows a simultaneous step change of 
both reactors’ slug length setpoints:

After the step change, the system takes about 60 s to 
bring the slug lengths of both reactors to within a 10% 
margin of the setpoint and about 100 s until fully settled. 
A notable challenge in slug length control lies in the fact 
that long slug lengths over five millimeters effectively pro-
duce fewer measurement updates due to the fixed size of 
the measurement window, leading to lag effects and an 
emphasis on the natural variation of the slugs produced 
by the slug generators. Furthermore, the system response 
to a change in slug generator position elicits an inverse 
response. In combination, this leads to oscillations as seen 
between 380 and 500 s. These oscillations may be reduced 

Fig. 17  Average absolute 
errors observed in slug length 
estimation (actual slug length 
of 5.6 mm) using YOLOv4-
416 with video feed of sizes 
512 × 512 px, 608 × 608 px, 
and 800 × 800 px scaled to 
416 × 416 px at different cam-
era heights between 50 and 
200 mm

Fig. 18  Slug length setpoint change
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by the reduction of the PI-controller gain at the cost of 
a slower step response and a longer settling time. Ulti-
mately, slug lengths greater than six millimeters are not 
particularly relevant for the task at hand (the epoxidation 
of methyl oleate) and thus present an extreme case, but 
in future iterations, a controller gain schedule could help 
mitigate the effect of these nonlinearities.

3.2.2  Slug velocity and phase ratio control

A set of step inputs to the phase ratio setpoint is depicted 
in Fig. 19. Between zero and 600 s, the setpoint tracking 
for both reactors is satisfactory, keeping within a 10% 
margin of the setpoint for 91.8% of the time. At a phase 
ratio of 6 and after step inputs to the phase ratio setpoint, 
the process shows more variability, mostly in the form of 
oscillations about a mean. This behavior settles once the 
“Delta”-controller becomes active, which is indicated by a 
change in the TRV temperatures.

The results of step inputs to the slug velocity setpoint 
are shown in Fig. 20: As the slug velocity control system is 
realized as a cascaded loop, setpoint changes take several 
minutes to conclude while the “Delta-Controller” keeps the 
error between the two reactors below a deviation of 15% 
for 88.5% of the time. Between 200 and 400 s, the phase 

separator pressure does not track its setpoint. This hap-
pens because the actuator, control valve VC12, is saturated 
(i.e., fully closed). Notably, this behavior is only present for 
a slug velocity setpoint of 15 mm  s−1 and thus represents 
the lower boundary of the reactors’ operating range.

The inherent smoothing provided by the spatial pro-
cessing appears to aid in providing suitable feedback 
signals to the controllers, however, in some cases a more 
rapid sensor response could bear the potential to improve 
both disturbance rejection as well as step responses.

3.2.3  Reactor startup performance

In addition to the control system’s ability to switch 
between and maintain setpoints, it is important the sys-
tem can be brought into operation quickly and reliably to 
avoid unnecessary chemical waste.

In general, the startup procedure consists of three steps: 
From the standby state (i.e., all shut-off valves are in the 
open position, but the flow is halted by the control valves), 
the controllers for the phase separator pressure, and level 
are switched on to start the flow of reactants. Once sta-
ble slug flow is present in both reactors, the slug velocity, 
phase ratio, and slug length control are switched on. From 
there, the controllers first attempt to bring the average 
phase ratio and slug length to their setpoints. Once the 

Fig. 19  Phase ratio (PR) set-
point changes

Fig. 20  Slug velocity (SV) 
setpoint changes
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setpoints of the averages are within their margins for 30 s, 
the “Delta-Controller” begins its operation (i.e., it enters its 
active state). Figures 21 and 22 show this process.

In general, the system behaves as intended and the 
startup process illustrates the actions of the “Delta-Con-
troller” on step 3 well, where the individual reactor’s slug 
flow parameters slowly converge. However, Fig. 22 shows 
that at an average slug velocity of 20 mm  s−1 the “Delta-
Controller” is unable to fully converge the two reactors’ 
slug velocities, indicated by the TRV temperatures at the 
edges of their working range. The error approaches zero 
only once a higher slug velocity is set as reference. This is 
likely caused by the interference between the TRVs respon-
sible for controlling phase ratio error and those controlling 
slug velocity error. If the aqueous phase is throttled, the 
phase ratio of the respective reactor must also increase, 
leading to “competition” or coupling between the control 
loops.

Throughout the step tests shown above, the computer 
vision slug flow sensor performs adequately. During the 
first stage of the startup procedure (halted flow) the sen-
sor tends to return false measurements until the operat-
ing parameters are brought to within the sensor’s operat-
ing range, however by employing an open loop control 
scheme during this phase, the sensor’s limitations can be 
overcome.

3.2.4  Reaction performance

To confirm the functionality of the SFCMR, an epoxidation 
reaction was carried out at a phase ratio of 3, a slug velocity 
of 28 mm  s−1, and a methyl oleate to catalyst ratio of 80 g  g−1. 
Because the parallel-capillary reactor includes the phase 
separator, which provides 4.40 ml of holdup volume to the 
organic phase, the samples are drawn after three residence 
times of the system to ensure the system operates at steady 
state. The results are displayed in Fig. 23.

Figure 24 shows the space–time-yields achieved in the 
parallel-capillary SFCMR, a single-capillary of the SFCMR as 
well as in stirred-batch mode.

Overall, the parallel-capillary SFCMR performs similarly 
to the single-capillary SFCMR, indicating that numbering-
up was successful and reaction conditions in the two par-
allel-capillary reactors were like the reaction conditions in a 
single-capillary reactor.

Fig. 21  Phase ratio (PR) during 
startup procedure

Fig. 22  Slug velocity (SV) dur-
ing startup procedure

Fig. 23  Conversion and selectivity achieved in the SFCMR
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4  Discussion

In the research conducted, a computer vision sensor was 
developed for the real-time extraction of slug length, slug 
velocity, and phase ratio from capillary liquid–liquid slug 
flows, utilizing video feeds. This development included the 
necessary post-processing algorithms. The sensor, with a 
demonstrated mean relative error of less than 3.5%, show-
cased its capability to monitor multiple capillaries simul-
taneously. It was then employed to control a parallelized 
and actively regulated dual-channel slug flow capillary 
microreactor setup. In a model reaction, the solvent-free 
epoxidation of methyl oleate was conducted with hydro-
gen peroxide and a phase-transfer catalyst, yielding a 
space–time yield of 0.679 kg  L−1  h−1.

When compared to previously reported results, the 
space–time yield obtained in this study was found to be 
less than the 1.29 kg  L−1  h−1 yield reported by Gladius 
et al. [13], but notably higher than the 0.08 kg  L−1  h−1 yield 
from traditional batch processes. These results indicated a 
careful balance between reactor performance and system 
maintenance as it was observed that the typical capillary 
clogging, frequently occurring with the catalyst system 
reported by Gladius et al., was significantly reduced in 
this study.

While the models for the spatial processing algorithm 
were trained on a single capillary, scaling up to multiple 
capillaries for testing and experimentation was success-
fully accomplished without the necessity for retraining. 
It is noteworthy to mention that the limiting factors for 
implementing the machine learning-based approaches 
are considered to be the capabilities of the GPU and the 
configuration of the camera.

In comparison to the common sensing techniques 
employed in liquid–liquid slug flow monitoring as 
described by Wolffenbuttel [23], the computer vision sen-
sor developed in this study showcases a distinct potential 
for parallelization using centralized processing hardware. 
Wolffenbuttel pointed out that common techniques 
include impedance-, absorbance-, and reflectance sen-
sors, and video imaging. The majority of these methods, 
including works of Xue et al. [24], Pietrasanta et al. [25] 
and Cierpka et al. [26] have inherent drawbacks such as 

the necessity for complex image processing, the high cost 
of recording equipment, the use of electrodes that could 
potentially impact the flow, the addition of dyes that can 
alter fluid properties, or the use of modified optical fibre 
that can influence the capillary flow.

In light of other published works, such as the IR-based 
sensor developed by Vietinghoff et al. [22], it is of impor-
tance to recognize the balance between accuracy, latency, 
cost scaling, and the readiness for market deployment. 
Although the IR-based sensor can deliver slug flow meas-
urements with relatively low latency, the use of decentral-
ized microcontrollers provides little scope for sublinear 
cost scaling. On the other hand, video-based approaches, 
such as the one developed in this study, rely on a moving 
window, which introduces filter characteristics implying 
a loss of detail and increased latency. Nevertheless, the 
computer vision sensor developed in this study offers the 
potential for real-time monitoring of multiple channels, 
which may lead to a more efficient and economical solu-
tion for industrial-scale applications.

A potential drawback of this approach could be per-
ceived as the requirement for a GPU to perform real-time 
inference on machine learning models. However, this 
study utilized a consumer-grade GPU (Nvidia RTX 2070), 
highlighting that the cost can be comparable or even 
lower than most of the sensing equipment currently avail-
able in the market for microfluidics. The increasing rate of 
advancements in computer vision suggest that the future 
could see the use of independent edge devices with com-
putational performance sufficient for such tasks, further 
reducing the costs.

5  Conclusion and outlook

In conclusion, this study has successfully developed and 
validated a computer vision sensor for real-time monitor-
ing of slug flow characteristics in capillary liquid–liquid 
systems. The sensor’s ability to simultaneously monitor 
multiple capillaries with high accuracy provides valuable 
insights into the dynamics of slug flows and opens up new 
possibilities for process understanding and optimization 
in microreactor applications.

Fig. 24  Space–time-yields 
of the epoxidation of methyl 
oleate in batch, single-capillary 
slug flow, and parallel-cap-
illary-slug flow modes. Φ-3, 
MO:Cat (Methyloleat:Catalyst 
Ratio)—80 g  g−1
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By integrating the computer vision sensor into a par-
allelized and actively regulated dual-channel slug flow 
capillary microreactor setup, the study achieved effective 
control and optimization of the solvent-free epoxidation 
reaction, resulting in a space–time yield of 0.679 kg  L−1 
 h−1. This achievement demonstrates the practicality and 
reliability of the sensor in real-world applications, offer-
ing significant value in improving the efficiency and pro-
ductivity of microreactor processes. The developed sen-
sor offers several key advantages that contribute to its 
relevance and added value in the field. Firstly, its real-time 
monitoring capability provides instantaneous and contin-
uous feedback on slug flow parameters, allowing for rapid 
adjustments and optimization of process conditions. This 
real-time feedback enables researchers and engineers to 
make informed decisions and take proactive measures to 
enhance the performance of microreactor systems.

Furthermore, the sensor’s simultaneous monitoring of 
multiple capillaries enhances its versatility and scalability. 
This capability is particularly important in industrial-scale 
applications where multiple reactors operate in parallel. 
The ability to monitor and control multiple channels simul-
taneously streamlines the process, increases efficiency, and 
reduces the need for additional sensing equipment. The 
study also acknowledges certain limitations that warrant 
further investigation and improvement. One limitation is 
the challenge faced by the “Delta-Controller” in fully con-
verging the slug velocities of the two reactors, especially at 
an average slug velocity of 20 mm/s. Interference between 
control loops is identified as a potential cause for this chal-
lenge. Addressing this limitation requires refining the con-
trol system, optimizing control strategies, and exploring 
alternative control schemes during start-up to ensure bet-
ter convergence and control of slug flow parameters.

Additionally, the study recognizes the potential for 
false measurements during the initial halted flow phase. 
To overcome this limitation, the use of an open-loop con-
trol scheme during this phase is suggested. By employ-
ing open-loop control, the sensor’s limitations during the 
start-up procedure can be mitigated, ensuring reliable and 
accurate slug flow measurements. Looking ahead, future 
research should focus on refining and advancing the com-
puter vision sensor technology to unlock its full poten-
tial. Emphasis should be placed on improving the spatial 
processing algorithms to handle a wider range of data 
variations, including different camera heights and slug 
parameters. This will ensure the sensor’s robustness and 
effectiveness in different experimental scenarios, enabling 
its broader application in diverse microreactor setups.

Moreover, exploring the integration of advanced hard-
ware, such as independent edge devices with high com-
putational performance, holds promise for enhancing the 
sensor’s capabilities while reducing costs. By leveraging 

consumer-grade GPUs and exploring alternative micro-
chips like the Nvidia Jetson or Intel Neural Compute Stick, 
the development and implementation costs can be fur-
ther reduced without compromising real-time inference 
capabilities. Furthermore, the video input from the devel-
oped sensors can be leveraged to train complex image/
video recognition algorithms. This would enable the 
detection and control of intricate reaction parameters 
within the slug flow, including stagnant zones, vortices, 
irregular flow patterns, mixing rates, internal reactant/
product circulation, mass transfer in/out of the slug, and 
capillary clogging. The integration of such advanced 
control mechanisms has the potential to significantly 
enhance the efficiency and performance of microreactor 
processes, opening up new opportunities for precise and 
adaptive reaction control.

Overall, the computer vision sensor developed in this 
study demonstrates significant potential for revolutionizing 
slug flow monitoring, control, and optimization in capillary 
liquid–liquid systems. By combining advancements in hard-
ware, algorithmic improvements, and sophisticated control 
strategies, future research can further enhance the sensor’s 
capabilities and drive innovation in the field of microreactor 
technology. Continued efforts in refining the sensor tech-
nology, addressing its limitations, and exploring new appli-
cations will contribute to the advancement of microreactor 
processes and their broader adoption in various industries.
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Appendix

Appendix A: Controller design 
for interconnected capillary slug flow micro 
reactors

Because both reactors of the capillary SFCMR are con-
nected at both the supply side as well as down-stream, 
they act as interconnected channels. As a practical means 
of addressing the coupling behaviour brought on by this, 
control of φi and  vs,I is decomposed into control of the 
average across all reactor channels, as well as control of 
the difference between both channels, using the “Delta-
Controller” developed for this task, with a block diagram 
representation shown in Fig. 25. The average phase ratio 
φ̄ between organic and aqueous phase across all chan-
nels is controlled by proportional-integral-controller (PI) 
QFIC2 using flow control valve VC8, which adjusts the rela-
tive flow resistance between organic and aqueous supply. 
The average slug velocity v̄s is controlled in a cascaded 
control loop by PI-controller SIC2, which sets the pressure 
reference in settler-type phase separator B4. The pressure 
in phase separator B4, in turn, is controlled by PIC3 using 
valve VC12.

The temperatures for both pairs of TRVs, with the pur-
pose of fine adjustment of the flow distribution, is set 
using the “Delta-Controller”. This controller arrangement 
effectively designates a main reactor and a follower. The 
“Delta-Controller” is made up of a PI controller  C∆12 with 
constant gain and an integrator, as well as a constant 
gain  K1 which is used to extend the controller’s work-
ing range. A more detailed analysis of coupling effects 
within multichannel liquid–liquid slug flow setups, the 
working principles of the slug generator, as well as the 
TRVs used here is provided by Arsenjuk et al. and shall 
not be discussed further [12, 21]

Appendix B: Preparation of the epoxidation 
catalyst

In a procedure adapted from Maiti et  al. [32] to pro-
duce the Venturello Complex  Q3[PW12O40(O)], 2.88 g of 
TPA (Carl Roth GmbH and Co. KG) are added to 12 ml of 
50%-w  H2O2 (Carl Roth GmbH and Co. KG) and stirred 
until dissolved. The resulting solution is diluted with 
18 ml of distilled water and stirred for an additional ten 
minutes. To the solution, 2.42 g of Q (Alfa Aesar) in 60 ml 
ethyl acetate are added dropwise over five minutes and 
stirred for 30 min at room temperature and a stirring 
speed of 800 rpm. After settling and separation of the 
phases, the organic phase is desiccated over anhydrous 
magnesium sulfate for 30 min. In a vacuum distillation 
apparatus, the ethyl acetate is evaporated from the 
organic phase at 40°C and collected for reuse. The active 
catalyst species appears as a highly viscous liquid with 
a light-yellow hue and is stored at 6°C to prevent dete-
rioration. As the catalyst is prepared with a two-to-one 
excess of Q, free Q is present in the product.

The catalyst is analysed by ATR-FTIR. Peaks at 
3000–2800  cm−1 and 1465   cm−1 are associated with 
the methyl groups of Q, while peaks at 1077  cm−1 (P-O) 
at 974 cm-1 (W=O) and 816  cm−1 (W–O–W) show that 
all components of the catalyst are present [33, 42, 43]. 
In addition, trial reactions are conducted in stirred 
batches: 3 g of technical grade methyl oleate, 1.27 g 
of 35%-w  H2O2 and 0.0676 g of catalyst are heated to 
60 °C and stirred at 400 rpm for one hour. The reaction 
is quenched using distilled ice water, which is added to 
the mixture rapidly. The products are analysed using an 
Agilent 7693A GC-FID device equipped with an Agilent 
19091J-413 column. The methyl palmitate contained in 
the technical grade methyl oleate reactant is used as a 
reference to determine reaction progress. Under these 
conditions a conversion of methyl oleate of 84.4% at a 
selectivity toward 9,10-Epoxystearic acid methyl ester 

Fig. 25  Block diagram representation of the “Delta-Controller”, 
where  C∆12 is of the form of a standard PI-controller with a propor-
tional gain and an integrator,  K1 is a simple gain,  G1 and  G2 repre-
sent the plant while ∆12 is the difference in φ and  vs between the 
two channels, respectively

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 26  Overview of experi-
mental setup

of 89.9% is observed, falling in line with the results 
obtained in other works [15]. As a control, by adding 
no catalyst, the same procedure shows no measurable 
conversion, further confirming the produced catalyst’s 
efficacy.

Appendix C: Additional photo 
documentation

Shown below in Figs.  26 and 27 are the Overview of 
the experimental setup and the zoomed in View of the 
TRVs and the Stepper Motor and Slug Generator Setup 
respectively.
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Appendix D: Robustness and reliability 
of the proposed sensor

As explained in the main text, many different models were 
tried upon to test the reliability, durability and scalabil-
ity of the sensing technology being developed. Various 
models were tried to test out various environmental/ 
physical problems that the system might face in real world 
application. Some of the experiments conducted and the 
results obtained have been attached here. It is also then 
explained why (Yolov4-416) model was chosen as the main 
challenger.

Figure 28 shows the number of capillaries that could 
be measured at different heights using different models. 
It also shows the maximum number of capillaries that 
could be detected and measured, through extrapola-
tion and actual testing on the stand. Figure 28 also shows 
that when fed with video streams larger than intended, 
these models do not perform well over greater heights 
compared to models fed with their intended sizes. This is 
expected, but it also shows that the models can be flexible 

with decent performance without any additional train-
ing. Points marked with ‘♦’ are the distances where the 
model fails to detect even a single slug or has too many 
false detections. The model fed with the size of the images 
from the training data set performs much better over its 
counterparts.

Also seen in Fig.  28 is that with all object detector 
models, there exists a linear relationship between height 
and the number of capillaries. This can be explained by 
the nature of the angle formed by the field of view of the 
camera, as shown in Fig. 29. The experiments are done 
at angles where Eq. 10 is approximately linear, i.e., the 
value of Tanθ changes linearly and not exponentially, as 
expected.

As expected, regardless of the type of model the larger 
the dimension of the video stream, the higher the number 
of capillaries it could ‘fit’ into its frame. However, to truly 
see the non-linear relationship between vertical distance 

(10)h = w × Tan�

Fig. 27  Zoomed in View of the 
TRVs and the Stepper Motor 
and Slug Generator Setup
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and number of capillaries, either a very wide field-of-view 
of the camera must be used i.e., a model trained on higher 
image size or a model trained with a lower image size must 
be fed higher image size data, with a trade-off of detection 
accuracy.

Figure 30 explains the linear relationship between the 
vertical distance of the camera and the number of capil-
laries for different models at different heights as well as 
the ‘horizon’ of linearity, where the angle of view shows 
strong non-linearity only beyond 82°. For example, Model 
608_702, which uses Yolov4-608, as the base model, where 
the input image of size 702 × 702 is resized to 608 × 608, 
run at different heights correspond to different angles of 
views, hence different values of Tanθ. Strong non-linearity 
in the increase in the number of capillaries will occur if the 

Fig. 28  Vertical distance of the 
camera from capillaries vs. No. 
of capillaries for various ML 
models

Fig. 29  Angle of view from the perspective of the camera’s objec-
tive lens

Fig. 30  Tanθ vs. Angle of views 
for different camera positions 
and models

Fig. 31  Error deviation of slug 
length prediction for different 
models
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angle exceeds 82°, after which even if a greater number 
of capillaries are brought into the field of view, the accu-
racy of detection is still unknown. If a higher field of view 
is necessary, new data will have to be recorded at higher 
pixel densities, e.g., 1024 × 1024 at the same height, and 
new models will have to be trained on this data. Theoreti-
cally, the limiting factor in this experiment is the camera’s 
objective lenses’ field of view.

Complementing the results from Figs. 28, 29, 30, 31 
shows how accurate the object detector is at different 
heights for each model (and its combinations). Most 
of the models predict the slugs within an error margin 
of ± 5%. A general trend that can be observed is that 
error is lower at vertical distances of approximately 120 
mm. This could be attributed to the fact that the original 
training data is recorded at approximately this elevation. 
An unexpected trend is that even the lower dimension 
model (Yolov4-416) showed good accuracy.

Appendix E: Training and evaluation of LSTM 
slug velocity detector model candidates

The first model candidate is illustrated in Fig. 32 for the 
3-timestep case. To facilitate the discussion about different 
model candidates, a simple nomenclature is introduced 
to describe their structure. The model illustrated in Fig. 32 
can be written as 3-RNN (128-64)-FC(32), where the first 
number refers to the number of timesteps and the num-
bers in brackets denote the output dimensions of the cor-
responding layers. Dropout is only used after the recurrent 
layers while batch normalization takes place after all but 
the last fully connected layer.

During training, the root means the squared error is 
applied as the loss function to penalize outlying predic-
tions but the mean absolute error is used as the final per-
formance metric. The training procedure is terminated if 
the validation loss did not decrease for ten consecutive 
training epochs. As before, the Adam optimizer is used 
with η = 0.001 and a batch size of 32.

Fig. 32  Structure of the first 
recurrent network candidate 
with three timesteps
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Table 2 summarizes the structure of the model candi-
dates along with their size in terms of trainable weights 
and performance on the validation set. The funnel-like net-
work arrangements in terms of layer output dimensions 
are mainly inspired by the YOLO network. Following this 
pattern proved to be useful in providing some structure 
to the otherwise arbitrary search after suitable layer sizes 
and permutations.

The first two basic recurrent networks only differ in 
the number of timesteps in the input sequence. While 
the improvement is not dramatic, a decrease in the 
mean absolute error of roughly 0.2 mm/s suggests that 
the assumption about skipped video frames having less 
influence when more frames are used for detection, may 
hold, therefore the use of 5 timesteps is adopted in further 
model candidates.

The existence of missing frames encouraged the trying 
of LSTMs instead of basic recurrent layers, as it is expected 
that the gating mechanisms could help the velocity detec-
tor learn to ignore such irregularities. The third model 

candidate with LSTM layers but with the same layer output 
dimensions and depth further reduced the mean abso-
lute error by 0.24 mm/s. 5-LSTM(256-128)-FC(64-32-16), 
highlighted with red in Table 2, is the only network that 
achieves a mean absolute error less than 0.5 mm/s on 
the validation set. The performance of 5-LSTM(128)-
FC(64-32-16) is also impressive when the much more com-
pact network size is considered. Five further model candi-
dates with inferior performances are listed in the second 
half of the table. Figure 33 shows the evolution of the root 
mean squared error values on the training and validation 
set during the training of 5-LSTM(256-128)-FC(64-32-16), 
which is selected as the final velocity detector.

Figure  34 shows the distribution of mean absolute 
errors over the 352 recordings concerning the actual 
velocity (upper horizontal axis) and grouped by slug 
length settings (lower horizontal axis), revealing no pat-
terns that would indicate the presence of systematic error.

Table 2  Trained RNN model 
candidates along with their 
size and performance

Structure Nr. of trainable weights [−] Mean abs. error 
on validation set 
[mm  s−1]

3-RNN(256-64)-FC(32) 191489 0.997
5-RNN(256-64)-FC(32) 191489 0.808
5-LSTM(256-64)-FC(32) 757697 0.564
5-LSTM(256-128)-FC(64-32-16) 881729 0.491
5-LSTM(128)-FC(64-32-16) 282177 0.564
5-LSTM(128-64)-FC(32) 322753 0.641
5-LSTM(256)-FC(32) 681537 0.696
5-LSTM(128)-FC(128-128-64-32-16) 315713 0.618
5-LSTM(256-128-64)-FC(32) 922369 0.64
5-LSTM(256-128)-FC(64-32) 881153 0.539

Fig. 33  Evolution of the training and validation losses of 5-LSTM(256-128)-FC(64-32-16)



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:263  | https://doi.org/10.1007/s42452-023-05489-3 Research

Appendix F: Investigation of limitations 
in object detection networks for capturing 
capillary slug flow characteristics

This appendix presents the experimental evaluation 
and analysis of object detection networks for capturing 

the unique characteristics of capillary slug flows. The 
limitations and challenges faced by these networks in 
accurately differentiating between closely spaced slugs, 
identifying irregularly shaped slugs, and estimating 
slug lengths and velocities in complex flow patterns, 
as highlighted by the reviewer, are explored. A series of 
experiments was conducted across multiple capillaries 
with different compositions of immiscible substances to 
address these aspects. The obtained results shed light on 
the robustness and reliability of the proposed method. 
Included are figures that visually represent the experi-
mental findings, providing a comprehensive evaluation 
of the performance of object detection networks in the 
context of capillary slug flow detection.

Figures 35, 36 and 37 show the sensor working on 
1, 4, and 8 channels, respectively. The indicators “CNN 
time” and “RNN time” show the overall execution time 
for the object and velocity detector networks in the 
test environment. Owing to the way the YOLO class of 
models infer from images; it is expected that increasing 
the number of objects in an image does not increase 
the inference time. This can be seen in Figs. 36 and 37 

Fig. 34  Error distribution of 
5-LSTM(256-128)-FC(64-32-16) 
on the complete dataset for 
the actual (calculated) velocity 
values and grouped by slug 
length settings

Fig. 35  Detection on a single channel

Fig. 36  Detection on four channels

Fig. 37  Detection on eight channels
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as execution time barely increases with the number of 
channels, which can be attributed to the batching of 
input sequences of the RNN and the high parallel com-
puting capability of the used GPU architecture optimised 
for CNNs and Computer Vision tasks in general.
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