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Abstract

We associate a partial hyperfield U(0)(M) with every matroid M by defining an
addition on the elements of its inner Tutte group with an additional zero element
such that M is representable over U(0)(M), and every representation of M over
a partial hyperfield F factors over the representation of M over U(0)(M).

We investigate the relationship between U(0)(M) and U(0)(N) for minors N
of M and prove that U(0)(M) is the coproduct of U(0)(Mi), i = 1, . . . , k, where
M1, . . . ,Mk are the connected components of M .

Further, we examine the possible non-trivial decompositions of U(0)(M) as a
coproduct and present sufficient geometrical conditions under which no such
decomposition exists.

We develop an Artin-Schreier-Theory for partial hyperfields and show that
the orderings of a partial hyperfield form a prespace of orderings, which is in
general not a space of orderings in the sense of Marshall, even for the partial
hyperfield U(0)(M) of a matroid M .

Moreover, we provide examples of matroids M for which U(0)(M) is a hyper-
field and its prespace of orderings is a space of orderings in the sense of Marshall,
including affine space of dimension at least 3 and affine translation planes whose
kernel contains at least four elements, for which the inner Tutte group was not
known before.
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1 Introduction

Oriented matroids provide a combinatorial abstraction to point configurations
over the reals, real hyperplane arrangements, convex polytopes, directed graphs,
as well as ordered projective spaces and affine spaces. They were introduced and
studied in full generality independently by Bland and Las Vergnas and Folkman
and Lawrence in 1978. An early axiomatic study was already done by Sperner
in 1949.

The study of the geometrical algebra of matroids was developed by Dress and
Wenzel, who introduced the Tutte groups of matroids in 1989 and provided a
characterization of classes of projectively equivalent orientations of a matroid in
terms of homomorphisms of the inner Tutte group. This was further elaborated
by Gelfand, Rybnikov and Stone, who proved a characterization of the inner
Tutte group of a finite matroid in terms of generators and relations.

A different characterization of orientations was given by Baker and Bowler in
2019 within their theory of representations of matroids over partial hyperfields,
where they characterized orientations as representations over the hyperfield of
signs.

Besides the classical case of projective geometries of dimension greater or equal
to 3, the structure of the set of classes of projectively equivalent orientations
of the matroids has only been studied for projective planes, for which Kalhoff
proved in 1989 that they form a space of orderings in the sense of Marshall.

By introducing an addition on the elements of the inner Tutte group of a
matroid together with an additional zero element, we will associate a partial
hyperfield with every matroid, such that the matroid is representable over this
partial hyperfield and every representation of it over a partial hyperfield factors
over this representation.

By generalizing Marshall’s characterization of spaces of orderings as a special
class of hyperfields, we are able to associate a prespace of orderings with a each
oriented matroid. We will further provide necessary and sufficient conditions
under which these prespaces of orderings are spaces of orderings in the sense of
Marshall.

Furthermore, we will use this characterization to compute the inner Tutte
group for matroids, where the inner Tutte group was not known before.
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1 Introduction

1.1 Main results

In chapter 2 we will present an axiomatic characterization of partial hyperfields
that were introduced by Baker and Bowler in [BB19], and provide an algebraic
framework for use in later chapters. Further, for every partial hyperfield we will
explicitly construct an embedding into a hyperfield.

Chapter 3 contains the definition of universal partial hyperfields of matroids
and the relations between the universal partial hyperfield with those of its minors
and its dual. Further, we will prove that a matroid is representable over a partial
hyperfield if and only if there exists a homomorphism from its universal partial
hyperfield to this partial hyperfield.

In Chapter 4 we will present an Artin-Schreier-Theory for partial hyperfields.
Unfortunately, in contrast to the situation for hyperfields there exist partial
hyperfields in which −1 is not a sum of squares that possess no orderings. How-
ever, we will show that every partial hyperfield is embeddable into a hyperfield
in which −1 is not a sum of squares if and only if the original partial hyperfield
possesses an ordering.

We will show that the orderings of a partial hyperfield form a prespace of
orderings which is not necessarily a space of orderings in the sense of Marshall,
even for universal partial hyperfields of matroids. Moreover, we will prove that
the category of these prespaces of orderings is equivalent to the category of
a certain class of partial hyperfields, generalizing the equivalence of spaces of
orderings and real reduced hyperfields by Marshall.

In chapter 5 we introduce the class of artinian matroids, i. e., matroids in
which every element of its inner Tutte group is a cross-ratio. We will show that
they are representable over a field if and only if its universal partial hyperfield
is a subfield of this field.

Futhermore, we will examine the connected components of artinian matroids
and all possible decompositions of the universal partial hyperfield of a matroid
as coproduct of partial hyperfields.

Chapter 6 contains examples of artinian matroids whose universal partial
hyperfield is a hyperfield. First, we generalize a construction by Kalhoff used to
coordinatize matroids of rank 3 to arbitrary rank and obtain a non-desarguesian
analogue of vector space matroids of rank greater or equal to 4. Similar to the
classical case, restricting the matroid to points whose last coordinate is equal to
1, we obtain a non-desarguesian analogue of affine spaces of dimension at least
3.

Second, we will show that the universal partial hyperfield of an affine trans-
lation planes whose kernel contains at least 4 elements is isomorphic to the
universal partial hyperfield of its projective closure.
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2 Partial hyperfields

In this chapter we will present an axiomatic characterization of partial hyperfields,
examine several kinds of homomorphisms of partial hyperfields, and generalize
various constructions for hyperfields and partial fields to our setting.

In this generality partial hyperfields were first studied by Baker and Bowler
in [BB19], who defined them by restricting the operation of a hyperring.

We further generalize the techniques used by Semple in his PhD thesis
([Sem98]) to prove that every partial hyperfield is embeddable into a hyperfield.

2.1 Axiomatic characterization

Definition. A partial hyperoperation1 on a non-empty set X, is a map + from
the set X ×X to the power set of X, denoted by +: X ×X ⊸ X. If A and B
are subsets of X, we define

A+B :=
⋃︂
a∈A
b∈B

a+ b,

and for any a ∈ X and B ⊆ X we set a+B := {a}+B and B + a := B + {a}.
Let F be a set, +: F × F ⊸ F a partial hyperoperation, and · : F × F → F

a binary operation. We call (F,+, ·) a partial hyperfield if the following axioms
are satisfied:

(PH1) a+ b = b+ a for all a, b ∈ F ,

(PH2) there is an element 0 ∈ F such that 0 + a = {a} for all a ∈ F ,

(PH3) there is a map − : F → F such that c ∈ a+ b implies b ∈ c+ (−a) for
all a, b, c ∈ F ,

(PH4) (F \{0}, ·) is an abelian group with neutral element 1 and 0·a = 0 = a·0,

(PH5) a · (b+ c) ⊆ a · b+ a · c for all a, b, c ∈ F .
1We explicitly use the name partial hyperoperation instead of the shorter hyperoperation to

emphasize that we allow a+ b to be empty.
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2 Partial hyperfields

We further set F ∗ := F \ {0} if F is a partial hyperfield. As usual, we set
a− b := a+ (−b) for all a, b ∈ F .

2.1 Lemma. Let F be a partial hyperfield. Then we have:

(a) The element 0 ∈ F is uniquely determined.

(b) For all a, b ∈ F we have b = −a if and only if 0 ∈ a+ b. As a consequence
the map − : F → F is uniquely determined and −(−a) = a for all a ∈ F .

(c) For all a ∈ F we have −a = (−1)a and (−1)2 = 1.

(d) For all a, b, c ∈ F such that a ̸= 0 we have a(b+ c) = ab+ ac.

(e) For all a, b ∈ F we have 0(a+ b) = {0} if and only if a+ b ̸= ∅.

(f) For all a, b, c, d ∈ F we have

(a+ b)(c+ d) ⊆ ((ac+ ad) + (bc+ bd)) ∩ ((ac+ bc) + (ad+ bd)) .2

Proof. To prove (a), let 0′ ∈ F be an element satisfying 0′ + a = {a} for all
a ∈ F . Then 0′ + 0 = {0} and by (PH2) 0 + 0′ = {0′}. Thus, (PH1) implies
0 = 0′.

To show (b), let a, b ∈ F . Applying (PH3) to a ∈ a+ 0 implies 0 ∈ a+ (−a).
Therefore, a = −b yields 0 ∈ a+ b.

Conversely, if 0 ∈ a+ b, it follows that b ∈ 0 + (−a) = {−a} by using (PH1)
and (PH3). Further, using (PH1) we get 0 ∈ a+ (−a) = (−a) + a and therefore
−(−a) = a.

In order to prove (d), let a, b, c ∈ F . a(b+ c) ⊆ ab+ ac follows directly from
(PH5). If a ̸= 0, (PH5) implies additionally that

ab+ ac = aa−1(ab+ ac) ⊆ a(a−1ab+ a−1ac) = a(b+ c).

Moreover, (e) follows from 0 · ∅ = ∅ and 0 ·A = {0} for all non-empty A ⊆ F .
To show (c), let a ∈ F . By using (b), we get 0 ∈ 1 + (−1). Applying (d) and

(e), it follows that 0 ∈ a(1 + (−1)) = a+ (−1)a. Using (b) again, we conclude
that −a = (−1)a. Furthermore, (d) yields

0 = (−1) · 0 ∈ (−1) · (1 + (−1)) = (−1) + (−1)2.

Thus, (b) implies (−1)2 = −(−1) = 1.
2Even in the case of a hyperfield F these sets are not necessarily equal, see [Vir10] for a

counter example.
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2.1 Axiomatic characterization

Clearly, (f) holds whenever a+ b or c+ d are the empty set. Otherwise, it
follows from (PH1) and

(a+ b)(c+ d) =
⋃︂

f∈c+d

(a+ b)f ⊆
⋃︂

f∈c+d

af + bf

⊆ a(c+ d) + b(c+ d) ⊆ (ac+ ad) + (bc+ bd),

using (d) and (e) twice. □

Definition. We call (G, ε) a multiplicative structure if (G, ·) is an abelian group
and ε ∈ G with ε2 = 1.

If (G, ε) and (G′, ε′) are multiplicative structures, we say a group homomor-
phism f : G→ G′ is a multiplicative homomorphism if f(ε) = ε′.

Further, if (F,+, ·) is a partial hyperfield, we define the underlying multiplica-
tive structure as F := (F ∗,−1).

2.2 Proposition. Let (F \ {0}, ε) be a multiplicative structure, where 0 ∈ F
is an element such that 0 · a = 0 = a · 0 for all a ∈ F .

For any family (∆a)a∈F\{0} of subsets of F \ {0} satisfying

b ∈ ∆a ⇒ a ∈ ∆b and a−1 ∈ ∆εa−1b (2.1)

for all a, b ∈ F \{0}, there exists a unique partial hyperoperation +: F ×F ⊸ F
such that (F,+, ·) is a partial hyperfield with −1 = ε and (1− a) \ {0} = ∆a

for all a ∈ F \ {0}.

Proof. If (F,+, ·) is a partial hyperfield, we have 0 + a = {a} = a+ 0 for all
a ∈ F . Further, Lemma 2.1 (b), (c) and (d) imply that a+ b = a(1− (−a−1b))
for all a, b ∈ F ∗. Thus, the partial hyperoperation + is uniquely determined by
the sets of the form (1− a) \ {0}, a ∈ F ∗.

It remains to show that for any family (∆a)a∈F\{0} of subsets of F \ {0}
satisfying (2.1), defining

a+ b :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{b} if a = 0,

{a} if b = 0,

a∆εa−1b if a ̸= εb,

a∆εa−1b ∪ {0} if a = εb,

yields a hyperoperation such that (F,+, ·) is a partial hyperfield with ε = −1
and (1− a) \ {0} = ∆a for all a ∈ F \ {0}. Clearly, (F,+, ·) satisfies (PH2) and
(PH4).
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2 Partial hyperfields

In order to prove (PH5) it is sufficient to show that a(b+ c) = ab+ ac for all
a, b, c ∈ F such that a ̸= 0, since 0 · (b+ c) ⊆ {0} = 0 · b+0 · c. If {b, c} = {x, 0}
for an x ∈ F , we get3

a(b+ c) = a(x+ 0) = {ax} = ax+ 0 = ax+ a · 0 = ab+ ac.

Moreover, if b, c ̸= 0, we have b = εc if and only if ab = εac. Thus, 0 ∈ a(b+ c)
if and only if 0 ∈ ab+ ac. Further,

a(b+ c) \ {0} = ab∆εb−1c = ab∆ε(ab)−1ac = (ac+ bc) \ {0}.

To show (PH1), let a, b ∈ F . Clearly, a+ b = b+ a if 0 ∈ {a, b}. Since a = εb if
and only if b = εa we have 0 ∈ a+ b if and only if 0 ∈ b+ a for all a, b ∈ F \ {0}.
Thus, using (PH5) it is sufficient to prove that

∆c = (1 + εc) \ {0} = (εc+ 1) \ {0} = εc∆c−1

for all c ∈ F \ {0}.
For d ∈ ∆c it follows from (2.1) that c−1 ∈ ∆εc−1d. Again applying (2.1)

yields εc−1d ∈ ∆c−1 . Therefore, d ∈ εc∆c−1 .
Conversely, if d ∈ εc∆c−1 , we have εc−1d ∈ ∆c−1 . Applying (2.1) twice, we

get c ∈ ∆εc(εc−1d) = ∆d and thus d ∈ ∆c.
Finally, to prove (PH3), let a, b, c ∈ F such that c ∈ a+ b. We will show that

c ∈ b+ (−a) for the map − : F → F , a ↦→ εa.
If a = 0 or b = 0, say a = 0, it follows that c ∈ 0 + b = {b}. Hence, b = c and

b ∈ c+ 0 = c+ (ε · 0).
If c = 0 we have a = εb and thus b ∈ 0 + b = 0 + (εa).
Otherwise, a, b, c ̸= 0 and therefore c ∈ a∆εa−1b. Since this is equivalent to

a−1c ∈ ∆εa−1b, we get εa−1b ∈ ∆a−1c using (2.1). Hence, using (PH1) and
(PH5) we obtain

b ∈ εa(1 + εa−1c) ⊆ εa+ c = c+ (εa). □

2.3 Remark and Definition. Lemma 2.1 and (PH3) imply that for any par-
tial hyperfield (F,+, ·) the family of sets (∆a)a∈F ∗ defined by ∆a := (1−a)\{0}
for a ∈ F \ {0} satisfies the implication (2.1).

Thus, for any multiplicative structure (F \ {0}, ·), where 0 ∈ F is an element
such that 0 · a = 0 = a · 0 for all a ∈ F , Proposition 2.2 defines a one-to-one
mapping between the hyperoperations +: F × F ⊸ F such that (F,+, ·) is a

3By construction, we have 0 + x = x+ 0 for all x ∈ F .
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2.1 Axiomatic characterization

partial hyperfield with F = (F \ {0}, ·) and the families (∆a)a∈F\{0} of subsets
∆a of F \ {0}, a ∈ F \ {0} satisfying the implication (2.1).

Let (F,+, ·) be a partial hyperfield. We call an element a ∈ F fundemental4 if
1−a ̸= ∅ and denote by F(F ) the set of fundamental elements of F . Further, we
call F a hyperneofield if F(F ) = F (or equivalently if a+ b ̸= ∅ for all a, b ∈ F )
and a hyperfield if (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F .5

Definition. Let F and F ′ be partial hyperfields. We call a map f : F → F ′ a
homomorphism of partial hyperfields if f(0) = 0, f(1) = 1,6 f(a+b) ⊆ f(a)+f(b),
and f(ab) = f(a)f(b) for all a, b ∈ F .

A homomorphism f : F → F ′ of partial hyperfields is called strong or strict
if f(a+ b) = f(a) + f(b) holds for all a, b ∈ F .

Moreover, a homomorphism f : F → F ′ of partial hyperfields is called a
monomorphism if f is injective, an epimorphism7 if for all a′1, a′2 ∈ F ′ and
a′3 ∈ a′1+ a

′
2 there exist ai ∈ f−1(a′i), i = 1, 2, and a3 ∈ (a1+ a2)∩ f−1(a′3), and

an isomorphism if there is a homomorphism g : F ′ → F such that g ◦ f = idF
and f ◦ g = idF ′ .8 As usual the homomorphism g is uniquely determined by f
and is denoted by f−1.

2.4 Lemma and Definition. Let f : F → F ′ be a homomorphism of partial
hyperfields.

(a) For all a ∈ F we have f(a) = 0 if and only if a = 0. Moreover, we have
f(−a) = −f(a) for all a ∈ F and the map f : F → F ′, a ↦→ f(a), which
we call the underlying multiplicative homomorphism of f , is well-defined.

(b) f is a monomorphism if and only if the multiplicative kernel ker∗f := f−1(1)
of f is trivial, i. e., ker∗f = {1}.

(c) If f is an epimorphism, then f is surjective.9

(d) If f is a strong homomorphism, then f is a monomorphism.

4We adopt the terminology from [PV10] for partial fields here.
5Since 1 ∈ 1 + 0 ⊆ 1 + (a− a) = (1 + a)− a every hyperfield is a hyperneofield.
6In most of the literature on hyperfields these first two conditions are not explicitly mentioned

but otherwise constant maps F → K would be homomorphisms.
7See [DS06, Definition 2.8].
8Clearly all these properties are preserved under composition.
9Not every surjective homomorphism is an epimorphism, cf. Proposition 2.14.
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2 Partial hyperfields

Proof. Since (F, ·) and (F ′, ·) are monoids with neutral element 1 and f is a
monoid homomorphism it follows that f(F ∗) ⊆ F ′∗. Additionally, applying
Lemma 2.1 (b) twice yields that for any a ∈ F we have 0 ∈ a− a and therefore
0 ∈ f(a) + f(−a). Thus, f(−a) = −f(a). This proves (a).

Using (a), it follows that f is injective if and only if f is injective, which
shows (b).

In order to prove (c), let a′ ∈ F ′. Since a′ ∈ a′ + 0 and f is an epimorphism
there exist a ∈ f−1(a′), b ∈ f−1(0) and c ∈ (a + b) ∩ f−1(a′). Hence, f is
surjective.

Finally, to show (d), let f be a strong homomorphism and a ∈ ker∗f . Then
we have 0 ∈ 1− f(a) = f(1− a). So there exists a b ∈ 1− a such that f(b) = 0.
By (a), it follows that b = 0 and therefore a = 1 using Lemma 2.1. □

2.5 Lemma. Let F and F ′ be partial hyperfields and f : F → F ′ be a map
such that f(0) = 0 and f : F → F ′, a ↦→ f(a) is a multiplicative homomorphism.
Then f is a homomorphism of partial hyperfields if and only if

b ∈ 1− a ⇒ f(b) ∈ 1− f(a)

for all a, b ∈ F ∗.

Proof. Clearly, every homomorphism f of partial hyperfields satisfies this
condition.

Conversely, let f be a map satisfying the condition above and c ∈ a+ b for
a, b ∈ F . We have to show that f(c) ∈ f(a) + f(b).

If a = 0 or b = 0, we can assume b = 0 by (PH1). Then c ∈ a+ 0 = {a} and
therefore f(c) = f(a) ∈ f(a) + 0 = f(a) + f(b).

In the case c = 0 it follows by Lemma 2.1 (b) that a = −b. Hence, we obtain
f(a) = f(−b) = f((−1)b) = −f(b). Thus, we get f(c) = 0 ∈ f(a) + f(b) by
applying Lemma 2.1 again.

Otherwise a, b, c ∈ F ∗. It follows that ca−1 ∈ 1− (−ba−1) and thus

f(c)f(a)−1 = f(ca−1) ∈ 1− f(−ba−1) = 1 + f(b)f(a)−1.

Hence f(c) ∈ f(a) + f(b), as desired. □

2.2 Constructions of partial hyperfields

In this section we will introduce several constructions of partial hyperfields for
later usage. We will use terms and definitions from category theory (cf. [AHS06])
but not use any methods from category theory in our proofs to keep this section
self-contained.
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2.2 Constructions of partial hyperfields

2.6 Proposition and Definition. For any partial hyperfield F the following
conditions are equivalent:

(a) For every partial hyperfield F ′ any map f : F → F ′ is a homomorphism of
partial hyperfields if and only if f(0) = 0 and f : F → F ′ is a multiplicative
homomorphism.

(b) (a+ b) \ {0} = ∅ for all a, b ∈ F ∗,

(c) (1− a) \ {0} = ∅ for all a ∈ F ∗.

If F satisfies one (and therefore all) of the above conditions, we say that F is
the discrete partial hyperfield on F .

Proof. By Lemma 2.1, we have a + b = a(1 − (−ba−1)) for all a, b ∈ F ∗.
Therefore, (b) and (c) are equivalent. Since (1− a) \ {0} = ∅ for all a ∈ F ∗ the
implication (c) ⇒ (a) follows directly from Lemma 2.5.

Conversely, if (a) holds, Proposition 2.2 implies that there exists a unique
partial hyperfield F ′ such that F ′ = F and (1 − a) \ {0} = ∅ for all a ∈ F ′∗.
Thus, f is a multiplicative homomorphism for the identity map f : F → F ′,
a ↦→ a and therefore f is a homomorphism of partial hyperfields. Hence, F = F ′,
which yields (c). □

2.7 Proposition and Definition. For any partial hyperfield F the following
conditions are equivalent:

(a) For every partial hyperfield F ′ any map f : F ′ → F is a homomorphism of
partial hyperfields if and only if f(0) = 0 and f : F ′ → F is a multiplicative
homomorphism.

(b) (a+ b) \ {0} = F ∗ for all a, b ∈ F ∗,

(c) (1− a) \ {0} = F ∗ for all a ∈ F ∗.

If F satisfies one (and therefore all) of the above conditions, we call F the
indiscrete partial hyperfield on F .

Proof. This can be proven analogously to Proposition and Definition 2.6. □
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2 Partial hyperfields

2.8 Proposition and Definition. Let F be a partial hyperfield, (Fi)i∈I a
family of partial hyperfields and (fi : F → Fi)i∈I a family of homomorphisms of
partial hyperfields. The following conditions are equivalent:

(a) Let g : F ′ → F be a map from a partial hyperfield F ′ such that g(0) = 0 and
g : F ′ → F is a multiplicative homomorphism. Then g is a homomorphism
of partial hyperfields if and only if fi ◦ g for each i ∈ I is one.

(b) For all a, b ∈ F ∗ we have

(a+ b) \ {0} = {c ∈ F ∗ | ∀i ∈ I : fi(c) ∈ fi(a) + fi(b)}.

(c) For all a ∈ F ∗ we have

(1− a) \ {0} = {b ∈ F ∗ | ∀i ∈ I : fi(b) ∈ 1− fi(a)}.

If one (and therefore all) of the above conditions is satisfied, we call F the initial
partial hyperfield on F with respect to (fi)i∈I .

Proof. Using Proposition 2.2 and Lemma 2.5, we conclude that (b) and (c) are
equivalent.

We will first prove that (c) implies (a). Let F ′ be a partial hyperfield and
g : F ′ → F be a map such that g(0) = 0, g : F ′ → F is a multiplicative
homomorphism. It suffices to prove that g is a homomorphism of partial
hyperfields if fi ◦ g is one for each i ∈ I.

Let a, b ∈ F ′∗ such that b ∈ 1−a. Lemma 2.5 yields that fi(g(b)) ∈ 1−fi(g(a))
for each i ∈ I. Using (c) we obtain g(b) ∈ 1− g(a) and by applying Lemma 2.5
we get that g is a homomorphism of partial hyperfields.

Finally, we show that (a) yields (c). Let F ′ be the partial hyperfield on the
same ground set and with the same multiplication as F but addition defined by

(1− a) \ {0} = {b ∈ F ∗ | ∀i ∈ I : fi(b) ∈ 1− fi(a)}

for all a ∈ F ∗. It follows from Proposition 2.2 and Lemma 2.5 that F ′ is indeed
a partial hyperfield. By construction, the identity map g : F ′ → F , a ↦→ a
is a multiplicative homomorphism and fi ◦ g is a homomorphism of partial
hyperfields for each i ∈ I.

Using (a), we get that g is a bijective homomorphism of partial hyperfields.
Let a, b ∈ F ∗ such that b ∈ 1 − a. Since fi is an homomorphism of partial
hyperfields it follows that fi(b) ∈ 1− fi(a) for all i ∈ I. Hence, b ∈ 1− a in F ′.
Using Proposition 2.2, we get F = F ′, as desired. □
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2.2 Constructions of partial hyperfields

Definition. We call a homomorphism f : F → F ′ of partial hyperfields initial
if F is the initial partial hyperfield with respect to f and embedding if it is an
initial monomorphism.

Let F be a partial hyperfield and U ⊆ F ∗ be a subgroup containing −1. The
initial partial hyperfield with respect to the natural inclusion ι : U ∪ {0} → F is
called the restriction of F to U and is denoted by F|U .

Further, a partial field is defined to be the restriction of a field F to a subgroup
U ⊆ F ∗ containing −1.

We call the restriction of F to the group generated by −1 and the non-zero
fundamental elements the core of F and denote it by F (0). Clearly, the inclusion
map F (0) → F is a strong embedding.

2.9 Proposition and Definition. Let F be a partial hyperfield, (Fi)i∈I a
family of partial hyperfields and (fi : Fi → F )i∈I a family of morphisms of
partial hyperfields. The following conditions are equivalent:

(a) Let g : F → F ′ be a map into a partial hyperfield F ′ such that g(0) = 0 and
g : F → F ′ be a multiplicative homomorphism. Then g is a homomorphism
of partial hyperfields if and only if g ◦ fi is one for each i ∈ I.

(b) For all a, b ∈ F ∗ we have

(a+ b) \ {0} =
{︁
c ∈ F ∗ ⃓⃓ ∃i ∈ I : f−1

i (c) ∩
(︁
f−1
i (a) + f−1

i (b)
)︁
̸= ∅
}︁
.

(c) For all a ∈ F ∗ we have

(1− a) \ {0} =
{︁
b ∈ F ∗ ⃓⃓ ∃i ∈ I : f−1

i (b) ∩
(︁
1− f−1

i (a)
)︁
̸= ∅
}︁
.

If one (and therefore all) of the above conditions is satisfied, we call F the final
partial hyperfield on F with respect to (fi)i∈I .

Proof. Using Proposition 2.2 and Lemma 2.5, we see that (b) and (c) are
equivalent.

In order to prove that (c) implies (a), let F ′ be a partial hyperfield, g : F → F ′

be a map such that g(0) = 0, g : F ′ → F is multiplicative homomorphism. It
suffices to show that g is a homomorphism of partial hyperfields if g ◦ fi is one
for each i ∈ I.

Let a, b ∈ F ∗ such that b ∈ 1− a. Applying (c), there exist i ∈ I, ai ∈ f−1
i (a)

and bi ∈ f−1
i (b) such that bi ∈ 1− ai. Since g ◦ fi is a homomorphism of partial

hyperfields g(b) = g(fi(bi)) ∈ 1− g(fi(ai)) = 1− g(a). Thus, Lemma 2.5 implies
that g is a homomorphism of partial hyperfields.

17



2 Partial hyperfields

To prove that (a) implies (c), let F ′ be a partial hyperfield on the same ground
set as F , with the same multiplication as F but with addition defined by

(1− a) \ {0} =
{︁
b ∈ F ∗ ⃓⃓ ∃i ∈ I : f−1

i (b) ∩
(︁
1− f−1

i (a)
)︁
̸= ∅
}︁

for all a ∈ F ∗. By construction, the identity map g : F → F ′, a ↦→ a is a
multiplicative homomorphism and g◦fi is a homomorphism of partial hyperfields
for for each i ∈ I.

Using (a), we get that g is a bijective homomorphism of partial hyperfields.
Let a, b ∈ F ′∗ such that b ∈ 1 − a. By the construction of the addition,
there exist i ∈ I, ai ∈ f−1

i (a), bi ∈ f−1
i (b) such that bi ∈ 1 − ai. Therefore,

b = fi(bi) ∈ 1− fi(ai) = 1− a in F . Hence, g is an isomorphism and F = F ′,
as desired. □

2.10 Remark and Definition. We call a homomorphism f : F → F ′ of par-
tial hyperfields final if F ′ is the final partial hyperfield with respect to f .

Let F be a partial hyperfield and U ⊆ F ∗ a subgroup. The final partial
hyperfield with respect to the canonical projection π : F → F ∗/U ∪{0} is called
the quotient of F by U and is denoted by F/∗U .10

By [Mar06, Example 2.6], F/∗U is a hyperfield if F is a hyperfield.11

2.11 Remark and Definition. Clearly, if F is a field and we view a+ b as a
subset of F for all a, b ∈ F , then F is a partial hyperfield.

The indiscrete partial hyperfield on the multiplicative structure ({1}, 1) was
named the Krasner hyperfield by Connes and Consani ([CC11]) and is denoted
by K.

Furthermore, the discrete partial hyperfield on the multiplicative structure
({±1},−1) is called the regular partial field and is denoted by U0 (cf. [PV10]).

Additionally, the indiscrete partial hyperfield on the multiplicative structure
({±1},−1) is denoted by W and the partial hyperfield S := Q/∗Q+ is called the
hyperfield of signs. (see [BB19]).

2.12 Corollary. Let (Fi)i∈I be family of partial hyperfields. For each i ∈ I
and a ∈ Fi we define

κi(a) :=

{︄(︁
aδij
)︁
j∈I

12 if a ∈ F ∗
i ,

(0)j∈I else.

10The elements of F/∗U are the cosets of U in F and multiplication is defined in the usual way.
The elements of the sum of two cosets aU and bU are the cosets cU that are contained in
the setwise addition of aU and bU .

11Marshall uses the term multifields instead of hyperfields and a different notation.
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2.2 Constructions of partial hyperfields

Further, let N be the subgroup of the (multiplicative written) direct sum⨁︁
i∈I F

∗
i of the F ∗

i , i ∈ I, generated by κi(−1)κj(−1), i, j ∈ I.
Then the final partial hyperfield

∐︁
i∈I Fi on the multiplicative structure(︁(︁⨁︁

i∈I F
∗
i

)︁
N,κi0(−1)N

)︁
, where i0 ∈ I, with respect to the homomorphisms

ιi : Fi →
∐︂
i∈I

Fi, a ↦→ κi(a)N
13

is the coproduct14 of (Fi)i∈I , i. e., for each family (fi)i∈I of homomorphisms
fi : Fi → F , i ∈ I, of partial hyperfields there exists a unique homomorphism
f :
∐︁

i∈I Fi → F such that f ◦ ιi = fi for all i ∈ I.

Proof. First, note that since ιi(−1) = κi(−1)N = κj(−1)N = ιj(−1) for
all i, j ∈ I, each ιi is a multiplicative homomorphism and thus

∐︁
i∈I Fi is

well-defined.
Let f :

∐︁
i∈I Fi → F be a homomorphism of partial hyperfields satisfying

f ◦ ιi = fi for all i ∈ I. Then for all (ai)i∈IN ∈
∐︁

i∈I Fi we have

f ((ai)i∈IN) = f

(︄∏︂
i∈I

ιi(ai)

)︄
=
∏︂
i∈I

fi(ai).

Hence, there is at most one such f . Conversely, define f :
∐︁

i∈I Fi → F by

f ((ai)i∈IN) :=
∏︂
i∈I

fi(ai)

for all (ai)i∈IN ∈
∐︁

i∈I Fi.
The map f is well-defined, since for all i, j ∈ I we have

f(κi(−1)N) = fi(−1) = −1 = fj(−1) = f(κj(−1)N).

Further, f(ιi(a)) = f(κi(a)N) = fi(a) for all i ∈ I and a ∈ F ∗
i . Thus, f ◦ ιi = fi

for all i ∈ I.
Moreover, to prove that f is a multiplicative homomorphism let (ai)i∈IN ,

(bi)i∈IN ∈
∐︁

i∈I Fi. Then

f((ai)i∈IN · (bi)i∈IN) = f((aibi)i∈IN)

=
∏︂
i∈I

fi(aibi) =

(︄∏︂
i∈I

fi(ai)

)︄
·

(︄∏︂
i∈I

fi(bi)

)︄
= f((ai)i∈IN) · f((bi)i∈IN).

12δij denotes the Kronecker delta, as usual.
13This definition implies that −1 = ιi(−1) = κi(−1)N for all i ∈ I.
14In the sense of category theory, see [AHS06, p. 10.63].
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2 Partial hyperfields

Finally, let (ai)i∈IN, (bi)i∈IN ∈
(︁∐︁

i∈I Fi

)︁∗ such that (bi)i∈IN ∈ 1− (ai)i∈IN .
Proposition and Definition 2.9 implies that there exist i ∈ I and a, b ∈ Fi such
that (ai)i∈IN = ιi(a) and (bi)i∈IN = ιi(b).

Because fi is a homomorphism of partial hyperfields, it follows that

f((bi)i∈IN) = f(ιi(b)) = fi(b) ∈ 1− fi(a)

= 1− f(ιi(a)) = 1− f((ai)i∈IN).

Using Lemma 2.5, we get that f is a homomorphism of partial hyperfields. □

2.13 Remark. For aesthetical reasons we often write F1⊕F2 for the coproduct
of two partial hyperfields F1, F2.

2.14 Proposition. Let f : F → F ′ be a homomorphism of partial hyperfields.

(a) If f is strong, then f is an embedding.

(b) f is epimorphism if and only if f is surjective and final.

(c) The following statements are equivalent:15

(i) f is an isomorphism,

(ii) f is a monomorphism and an epimorphism,

(iii) f is a surjective embedding,

(iv) f is strong and surjective.

Proof. To show (a), let f be strong. If a, b ∈ F such that f(a) = f(b) it follows
from Lemma 2.1 that 0 ∈ f(a) − f(b) = f(a − b). Using Lemma 2.5, we get
0 ∈ a− b, which yields that a = b. Hence, f is a monomorphism.

Further, let a, b ∈ F ∗ such that f(b) ∈ 1−f(a) = f(1−a). Since f is injective,
this implies b ∈ 1− a. It follows from Proposition and Definition 2.8 that f is
initial and thus an embedding.

In order to prove (b), let f be an epimorphism. By Lemma and Definition 2.4,
f is surjective. Let a′, b′ ∈ F ′∗ such that b′ ∈ 1− a′. By definition, there exist
c ∈ ker∗f , ã ∈ f−1(a′) and b̃ ∈ f−1(b′) ∩ (c− a).

We set a := ãc−1 and b := b̃c−1. Then b ∈ 1− a, f(a) = a′, f(b) = b′. Thus,
f−1(b′) ∩ (1− f−1(a′)) ̸= ∅ and hence applying Proposition and Definition 2.9
we get that f is final.
15Although some of these implication follows directly from category theory, see [AHS06,

Proposition 8.14], we will prove them directly in order to have a self-contained proof.
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2.2 Constructions of partial hyperfields

Conversely, let f be a surjective and final homomorphism. We show that for
all a′1, a′2 ∈ F ′ and a′3 ∈ a′1 + a′2 there exist ai ∈ f−1(a′i), i = 1, 2, 3, such that
a3 ∈ a1 + a2.

If 0 ∈ {a′1, a′2}, say a′2 = 0, then a′3 = a′1. Choose a1 ∈ f−1(a′1) and set
a3 := a1 and a2 := 0. Thus, a3 ∈ a1 + a2.

Now, let a′1, a′2 ∈ F ∗. In the case a′3 = 0, Lemma 2.1 implies that a′2 = −a′1.
Choose a1 ∈ f−1(a′1). Thus, −a1 ∈ f−1(a′2), 0 ∈ f−1(a′3) and 0 ∈ a1 − a1.

Otherwise a′3 ∈ F ∗. Set a′ := −a′2a
′−1
1 and b′ := a′3a

′−1
1 . Using Lemma 2.1,

we get b′ ∈ 1− a′. Since f is final there exist a ∈ f−1(a′) and b ∈ f−1(b′) such
that b ∈ 1− a.

Further, we choose an a1 ∈ f−1(a′1), and set a2 := −a1a and a3 := a1b.
Applying Lemma 2.1, we get f(ai) = a′i, for all i = 1, 2, 3 and a3 ∈ a1+a2. This
proves (b).

To show (i ⇒ iv) from (c) let g be a homomorphism of partial hyperfields
such that g ◦ f = idF and f ◦ g = idF ′ . Clearly, f and g are isomophisms and
Lemma and Definition 2.4 implies that f and g are bijective. For all a, b ∈ F
we have further

f(a) + f(b) = f(g(f(a) + f(b))) ⊆ f(g(f(a)) + g(f(b))) = f(a+ b).

Hence, f is strong.
(iv ⇒ iii) follows directly from (a).
In order to prove (iii ⇒ ii) let f be a surjective embedding. By definition, f

is a monomorphism. Let a′, b′ ∈ F ′∗ such that b′ ∈ 1− a′. Since f is bijective
there exist unique a, b ∈ F such that f(a) = a′ and f(b) = b′.

Thus, f(b) ∈ 1− f(a) and therefore Proposition and Definition 2.8 implies
that b ∈ 1− a. Hence, using Proposition and Definition 2.9 and (b) we get that
f is an epimorphism.

Finally, to prove (ii ⇒ i) let f be a mono- and epimorphism. Then f is bijective.
We will first show that f is strong. It suffices to show that f(a)+f(b) ⊆ f(a+b)
for all a, b ∈ F .

Since f is an injective epimorphism for each c′ ∈ f(a) + f(b) we obtain
c := f−1(c′) ∈ a+ b. Therefore, c′ = f(c) ∈ f(a+ b). This implies

f−1(a+ b) = f−1(f(f−1(a)) + f(f−1(b)))

= f−1(f(f−1(a) + f−1(b))) = f−1(a) + f−1(b)

for all a, b ∈ F . Hence, f−1 is a strong homomorphism of partial hyperfields
and thus f is an isomorphism. □
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2 Partial hyperfields

2.15 Proposition. Let f : F → F ′ be a homomorphism of partial hyperfields
and U ⊆ ker∗f a subgroup. Further, let π : F → F/∗U be the canonical
projection. Then there is exactly one homomorphism f̃ : F/∗U → F ′ such that
f = f̃ ◦ π.

Moreover, we have f(F ) = f̃(F ) and ker∗f̃ = ker∗f/U .

Proof. Using Lemma and Definition 2.4 and the homomorphism theorem for
groups, there exists a unique map f̃ : F/∗U → F ′ such that f̃(0) = 0 and
f = f̃ ◦ π.

Further, it follows that f̃(aU) = f(a) for all a ∈ F ∗, f̃(F ) = f(F ) and
ker∗f̃ = ker∗f/U . Since π is final, it follows from Proposition and Definition 2.8
that f is indeed a homomorphism of partial hyperfields. □

2.16 Corollary. Let f : F → F ′ be a homomorphism of partial hyperfields.

(a) If f is initial, then F/∗ker∗f ∼= F ′
|f(F ∗).

(b) If f is final, then the embedding F ′
|f(F ∗) → F ′ is a strong embedding.

(c) If f is an epimorphism, then F ′ ∼= F/∗ker∗f .

Proof. Let U := ker∗f , F̃ := F/∗U and π : F → F̃ the canonical projection. By
Proposition 2.15, there exists a unique homomorphism f̃ : F̃ → F ′ of partial
hyperfields such that f = f̃ ◦ π. Moreover, ker∗f̃ = ker∗f/U = {1}, so f̃ is a
monomorphism.

In order to prove (a), let f be initial. To show that f̃ is also initial, let
F ′′ be a partial hyperfield and g : F ′ → F ′′ a map such that g(0) = 0 and
g : F ′ → F ′′ is a multiplicative homomorphism and g ◦ f̃ is a homomorphism of
partial hyperfields.

Since g ◦ f = g ◦ f̃ ◦ π is a homomorphism of partial hyperfields and f is
initial it follows from Proposition and Definition 2.8 that g is a homomorphism
of partial hyperfields. So f̃ is initial itself.

Again applying Proposition and Definition 2.8 we get that a+ b ⊆ f̃(F̃ ) for all
a, b ∈ f̃(F̃ ). Therefore, f̂ : F̃ → F ′

|f(F ∗), a ↦→ f̃(a) is an isomorphism of partial
hyperfields such that f = ι ◦ f̃ , where ι : F ′

|f(F ∗) → F ′ is the canonical inclusion.
Hence, F̃ ∼= F ′

|f(F ∗).
To show (b), let f be final. Let a′1, a′2 ∈ F ′ and a′3 ∈ a′1 + a′2. Then

Proposition and Definition 2.9 implies that there exist ai ∈ f−1(a′i), i = 1, 2,
and a3 ∈ f−1(a′3) ∩ (a1 + a2). Thus, a′3 = f(a3) ∈ f(F ) and therefore the
inclusion map F ′

|f(F ∗) → F ′ is a strong embedding.
Furthermore, a3 = f̃(π(a3)). Hence, f̃ is final. Therefore, applying Proposi-

tion 2.14 proves (c). □
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2.3 A-regular partial fields

2.17 Corollary. Let f : F → F ′ be an isomorphism of partial hyperfields. If
U ⊆ F ∗ is a subgroup, then F/∗U ∼= F ′/∗f(U).

Proof. Let π : F → F/∗U and π′ : F ′ → F ′/∗f(U) be the canonical projections.
It follows from Proposition 2.15 that there is a unique homomorphism g : F/∗U →
F ′/∗f(U) of partial hyperfields such that π′ ◦ f = g ◦ π. Further, ker∗g =
ker∗(π

′ ◦ f)/U and g is surjective.
Since f is a isomorphism ker∗(π

′ ◦ f) = U and therefore g is a monomorphism.
Using Corollary 2.16 and the fact that π ◦ f is an epimorphism, we get that g is
an epimorphism. Finally, Proposition 2.14 implies that g is an isomorphism, as
desired. □

2.3 A-regular partial fields

Let A be a set of sets. We define A :=
⋃︁

A∈AA and let GA be the free abelian
group generated by ε, (a), (a, 1) for a ∈ A and (a, b) for a, b ∈ A ∈ A, a ̸= b,
where ε, 1 /∈ A are additional elements.

2.18 Lemma. The kernel of the group homomorphism ι : GA → Q(A) defined
by ι(ε) := −1 and

ι((a)) := a, ι((a, 1)) := a− 1, ι((b, c)) := b− c

for all a ∈ A and b, c ∈ A ∈ A, b ̸= c, where Q(A) is a purely transcendental
extension of Q, is generated by ε2 as well as the elements ε(a, b)(b, a)−1 for
a, b ∈ A ∈ A, a ̸= b.

Proof. Clearly, the kernel of ι contains ε2 and ε(a, b)(b, a)−1 for all a, b ∈ A ∈ A,
a ̸= b. Conversely, if g ∈ ker ι, there exist suitable k, la,ma, nb,c ∈ Z, a ∈ A,
b, c ∈ A ∈ A, b ̸= c such that

g = εk
∏︂
a∈A

(a)la(a, 1)ma
∏︂

a,b∈A∈A
a̸=b

(a, b)na,b .

Thus, we have

(−1)k
∏︂
a∈A

ala(a− 1)ma
∏︂

a,b∈A∈A
a̸=b

(a− b)na,b = ι(g) = 1.

Let a ∈ A, Fa := Q(A \ {a}), and x ∈ Fa. Thus, a is transcendental over Fa

and the localization of Fa[a] at the prime ideal (a− x) is defined by

Ra,x := {p/q ∈ Q(A) | p, q ∈ Fa[a], q(x) ̸= 0}.

23



2 Partial hyperfields

Further, let φa,x : Ra,x → Fa be the homomorphism evaluating every function
of Ra,x at x, i. e., the unique ring homomorphism such that φa,x(y) = y for all
y ∈ Fa and φa,x(a) = x.

If la ̸= 0, say la > 0 (otherwise replace g by g−1), we would get the contradic-
tion 1 = φa,0(1) = φa,0(ι(g)) = 0. Therefore, la = 0.

Similarly, we get ma = 0 using φa,1.
Moreover, if there would exist a, b ∈ A ∈ A, a ̸= b, such that na,b + nb,a ≠ 0,

say na,b + nb,a > 0, we obtain na,b = −nb,a using φa,b.
Finally, since −1 has order 2 in the multiplicative group of Q(A), k is even,

which yields our claim. □

The PhD thesis of Semple ([Sem98]) contains a proof of the following lemma.
Nevertheless, to keep this section self-contained we will provide a proof of it.

2.19 Lemma ([Sem98, 3.1.4.1]). Let R := Z[x1, . . . , xn] be the integral
polynomial ring in n variables, X := {x1, . . . , xn} and X̂ := X ∪{0, 1}. Further-
more, set X := {{a, b} ⊆ X̂ | a ̸= b , {a, b} ≠ {0, 1}}.

If p1, p2, p3 ∈ R are three coprime polynomials of the form

pi = (−1)ki
∏︂

{a,b}∈X

(a− b)li,{a,b}

for ki, li,{a,b} ∈ N0, i = 1, 2, 3, such that p1 + p2 + p3 = 0, then there exist
pairwise different a, b, c ∈ X̂ such that

p1 = a− b, p2 = b− c, p3 = c− a,

or pairwise different a, b, c, d ∈ X̂ such that

p1 = (a− b)(c− d), p2 = (a− d)(b− c), p3 = (a− c)(d− b).

Proof. For i = 1, 2, 3 we set

Fi := {{a, b} ∈ X | {a, b} ≠ {0, 1} and (a− b) | pi}

and Fî := Fi ∪ {{0, 1}}. Since the polynomials p1, p2, p3 are coprime the sets
F1, F2, F3 are pairwise disjoint. Further, let mi := |Fi|, i = 1, 2, 3. We may
assume without loss of generality that m1 ≥ m2,m3.

Moreover, we have m1 ≥ 1 as F1 = F2 = F3 = ∅ would lead to the contradic-
tion

0 = (−1)k1 + (−1)k2 + (−1)k3 ∈ {±1,±3}, k1, k2, k3 ∈ Z.
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2.3 A-regular partial fields

Thus, let {a, b} ∈ F1 such that a ∈ X. Applying the unique non-trivial ring
homomorphism α : R→ R such that α(a) = b and α(x) = x for all x ∈ X \ {a},
we get that α(p2) = −α(p3).

By definition of α, every irreducible factor of α(pi), i = 1, 2, 3, is of the form
x− y for {x, y} ∈ X . Since α(p2) and α(p3) have exactly the same irreducible
factors, but p2 and p3 are coprime, it follows that x = b or y = b.

Lifting this to p2 and p3 implies that

Fi ⊆ {{a, z}, {b, z} ∈ X | z ∈ X̂ \ {a, b}}, i = 2, 3. (2.2)

Moreover, we have |m2 −m3| = 1, since the only possibility that α(x − y) is
a unit for an irreducible factor x− y, {x, y} ∈ X , is that {x, y} = {a, z} for a
suitable z ∈ X̂ such that {b, z} = {0, 1}.

In particular, there exists an c ∈ X̂ \ {a, b} such that {b, c} ∈ F̂ i and
{a, c} ∈ F̂ j for {i, j} = {2, 3}. We may assume without loss of generality that
i = 2 and j = 3.

If m1 = 1, it follows that m2,m3 ∈ {0, 1} and there exist ki, ℓi, i = 1, 2, 3,
such that

p1 = (−1)k1(a− b)ℓ1 , p2 = (−1)k2(b− c)ℓ2 , p3 = (−1)k3(c− a)ℓ3 .

Suppose ℓi > ℓj for {i, j} = {1, 3}. Then the coefficient of the monomial aℓi
would be (−1)ki in pi but 0 in p2 and pj , a contradiction. Hence ℓ1 = ℓ3 =: ℓ.

Since b or c can be zero but not a, if ℓ > 1, the coefficient of aℓ−1b in p1 resp.
the coefficient of aℓ−1c in p3 would be 1 but 0 in p2 and p3 resp. p1 and p2, a
contradiction. Thus, ℓ = 1. Using similar arguments we get ℓ2 = 1, as desired.

Finally, we examine the case that m1 ≥ 2. Using the unique non-trivial ring
homomorphism β : R → R such that β(a) = c and β(x) = x for x ∈ X \ {a},
we get

Fi ⊆ {{a, z}, {c, z} ∈ X | z ∈ X̂ \ {a, c}}, i = 1, 2. (2.3)

Therefore, for every {x, y} ∈ F1 \ {{a, b}} there exist a d ∈ X̂ such that
{x, y} = {a, d} or {x, y} = {c, d}.

Further, (2.2) and (2.3) imply that every {x, y} ∈ F̂ 2 is of the form {b, c} or
{a, z} for z ∈ X̂ \ {a}. Using the same arguments that we used to derive (2.2)
from {a, b} ∈ F1, we can conclude that F̂ 2 = {{a, d}, {b, c}} from {a, d} ∈ F1

or {c, d} ∈ F1.
Since a ∈ X we get F1 = {{a, b}, {c, d}} and F̂ 3 = {{a, c}, {b, d}} from

{a, d} ∈ F2. Hence, there exists ki, ℓi, ℓ′i, i = 1, 2, 3, such that

p1 = (−1)k1(a− b)ℓ1(c− d)ℓ
′
1 , p2 = (−1)k2(a− d)ℓ2(b− c)ℓ

′
2 ,

p3 = (−1)k3(a− c)ℓ3(d− b)ℓ
′
3 .
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2 Partial hyperfields

Comparing the coefficients of aℓ2bℓ′2 and aℓ3bℓ
′
3 (if b ̸= 0), aℓ1cℓ′1 and aℓ2cℓ

′
2 (if

c ̸= 0), aℓ1dℓ′1 and aℓ3dℓ
′
3 (if d ̸= 0) and using the fact that two of b, c and d

must be non-zero, we can conclude that ℓ1 = ℓ2 = ℓ3 =: ℓ and ℓ′1 = ℓ′2 = ℓ′3 =: ℓ′.
Additionally, since only one of these two is equal to 1, a similar argument

yields that ℓ = ℓ′. Now, we procede as in the case for m1 = 1 and get that
ℓ = 1. □

2.20 Theorem and Definition (cf. [Sem98, Theorem 3.1.4]). Let A be
a set of sets. The non-trivial fundamental elements16 of the restriction of Q(A)
to the image of ι, which we call the A-regular partial field and denote by UA,
are the elements of the form

a− b

a− c

for pairwise different a, b, c ∈ A ∪ {0, 1}, A ∈ A, and the elements of the form

(a− c)(b− d)

(a− d)(b− c)

for pairwise different a, b, c, d ∈ A ∪ {0, 1}, A ∈ A.

Proof. Since
1− a− b

a− c
=
c− b

c− a
(2.4)

for all pairwise different a, b, c ∈ A ∪ {0, 1}, A ∈ A, and

1− (a− c)(b− d)

(a− d)(b− c)
=

(a− b)(c− d)

(a− d)(c− b)
(2.5)

for all pairwise different a, b, c, d ∈ A ∪ {0, 1}, A ∈ A, these elements are indeed
fundamental elements.

Conversely, if z ∈ UA \ {0, 1} is a fundamental element, there is a z′ ∈ UA
such that 1− z = z′. Then z′ ̸= 0, 1 as otherwise we would have z ∈ {0, 1}. We
write z = p

q and z′ = p′

q′ for suitable p, q, p′, q′ ∈ Z(A) \ {0}.
Through multiplication by the greatest common divisor g of q and q′ we get

an equation p1 + p2 + p3 = 0 such that p1 = g, p2 = −pg
q and p3 = −p′g

q′ are
all elements of an integral polynomial ring with finitely many indeterminants
satisfying the precondition of Lemma 2.19.

Thus, applying this yields that there exists pairwise different a, b, c ∈ A∪{0, 1},
A ∈ A, such that p1 = a− b, p2 = b− c, p3 = c− a and therefore

z =
b− c

b− a
, z′ =

a− c

a− b
,

16Since 1 ∈ 1− 0 and 0 ∈ 1− 1, 0, 1 are fundamental elements of every partial hyperfield.
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2.3 A-regular partial fields

or there exist pairwise different a, b, c, d ∈ A ∪ {0, 1}, A ∈ A, such that

p1 = (a− b)(c− d), p2 = (a− d)(b− c), p3 = (a− c)(d− b)

and therefore
z =

(a− d)(c− b)

(a− b)(c− d)
, z′ =

(a− c)(d− b)

(a− b)(d− c)
.

□

2.21 Proposition. Let A and A′ be sets of sets and φ : A → A′ a map such
that the relation

Rφ := {(A,A′) ∈ A×A′ | φ(A) ⊆ A′ and φ|A : A→ A′ is a bijection}

is left and right total. Then the map φ̂ : UA → UA′ defined by φ̂(0) := 0,
φ̂(−1) := −1 and

φ̂(a) := φ(a), φ̂(a− 1) := φ(a)− 1, φ̂(b− c) := φ(b)− φ(c)

for all a ∈ A and b, c ∈ A ∈ A, b ̸= c, is an epimorphism of partial hyperfields.
The multiplicative kernel of φ̂ is generated by the elements ab−1, (a−1)(b−1)−1

for all a, b ∈ A such that φ(a) = φ(b), and the elements (a − b)(c − d)−1 for
all a, b ∈ A, c, d ∈ B, A,B ∈ A, a ̸= b, c ≠ d such that φ(a) = φ(c) and
φ(b) = φ(d). In particular, φ̂ is an isomorphism if and only if φ is injective.

Proof. It follows from Lemma 2.18 that φ̂ is a multiplicative homomorphism.
Since Rφ is left total Theorem and Definition 2.20 implies that φ̂ maps fun-
damental elements to fundamental elements. Hence, φ̂ is a homomorphism of
partial hyperfields by Lemma 2.5.

The right totality of Rφ implies that every fundamental element of UA′ is the
image of a fundamental element of UA. Thus, Proposition and Definition 2.9
yields that φ̂ is a final homomorphism and is therefore an epimorphism (φ is
necessarily surjective if Rφ is right total and thus also φ̂).

Obviously, all of the elements ab−1, (a − 1)(b − 1)−1 for a, b ∈ A with
φ(a) = φ(b) and (a − b)(c − d)−1 for a, b ∈ A, c, d ∈ B, A,B ∈ A with a ̸= b,
c ̸= d and φ(a) = φ(c), φ(b) = φ(d) are elements of ker∗φ̂.

Conversely, let z ∈ ker∗φ̂. Then there exist suitable k, la,ma, nb,c ∈ Z, a ∈ A,
b, c ∈ A ∈ A, b ̸= c, such that

z = (−1)k
∏︂
a∈A

ala(a− 1)ma
∏︂

a,b∈A∈A
a̸=b

(a− b)na,b .

27



2 Partial hyperfields

Thus, by applying φ̂ we get

1 = φ̂(z) = (−1)k
∏︂

a′∈A′

a′la′ (a′ − 1)ma′
∏︂

a′,b′∈A′∈A′

a′ ̸=b′

(a′ − b′)na′,b′ ,

where
la′ =

∑︂
a∈φ−1(a′)

la, ma′ =
∑︂

a∈φ−1(a′)

ma, nb′,c′ =
∑︂

b∈φ−1(b′),
c∈φ−1(c′)

b,c∈A, (A,A′)∈Rφ

nb,c

for all a′ ∈ A′, b′, c′ ∈ A′ ∈ A′, b′ ≠ c′. Using Lemma 2.18, we get la′ = ma′ = 0
for all a′ ∈ A′ and nb′,c′ = −nc′,b′ for all b′, c′ ∈ A′ ∈ A′, b′ ̸= c′.

If la ̸= 0 for an a ∈ A, there exists a b ∈ A such that lalb < 0. By definition
of Rφ, there exists an A ∈ A such that a, b ∈ A. Thus, we can successively split
off factors of the form ac−1, a, c ∈ B ∈ A with φ(a) = φ(c).

Similarly, if ma ̸= 0 for an a ∈ A, we can split off factors of the form
(a− 1)(b− 1)−1 for a, b ∈ A ∈ A with φ(a) = φ(b), and if na,b ̸= −nb,a, we can
split off factors of the form (a − b)(c − d)−1 for a, b ∈ A, c, d ∈ B, A,B ∈ A,
a ̸= b, c ≠ d such that φ(a) = φ(c) and φ(b) = φ(d), which completes our
proof. □

The following corollary generalizes the notion of k-regular partial fields, k ∈ N0,
introduced by Semple in [Sem98] to arbitrary cardinal numbers:

2.22 Corollary. Let κ be a cardinal number. The isomorphy type of the partial
field U{A} for a set A of cardinality κ is independent of the choice of A.

We denote this partial field by Uκ and call it the κ-regular partial field.

Proof. Let A and A′ be sets of cardinality κ. Since we have {X} = X for
every set X, this follows directly from Proposition 2.21 applied to any bijection
φ : A→ A′. □

2.23 Theorem and Definition. Let F be a partial hyperfield. We set

A := {{(a, 0)} | a ∈ F ∗} ∪ {{(a, b)} | a, b ∈ F ∗ such that 1 ∈ a+ b}

and F̂ := Q(A)/∗R, where Q(A) is a purely transcendental extension of Q, and
R is the subgroup of Q(A)∗ generated by −(−1, 0) and the elements

(a, 0)(b, 0)(ab, 0)−1, (c, d)(c, 0)−1, (1− (c, d))(d, 0)−1

for all a, b, c, d ∈ F ∗ such that 1 ∈ c+ d.
Then the map ι : F → F̂ defined by ι(0) := 0 and ι(a) := (a, 0)R, a ∈ F ∗, is

an embedding, which we call the canonical embedding of F into a hyperfield.
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2.3 A-regular partial fields

Proof. First, note that (a, 0)(b, 0)R = (ab, 0)R for all a, b ∈ F ∗. In particular,
we have (1, 0) ∈ R and therefore (−1, 0)R = (−1)R. Hence, ι is multiplicative
homomorphism.

To prove that ι is a homomorphism of partial hyperfields, let a, b ∈ F ∗ such
that b ∈ 1− a. Then 1 ∈ a+ b and thus

ι(b) = (b, 0)R = (1− (a, b))R ∈ R− (a, b)R17

= (1, 0)R− (a, 0)R = 1− ι(a).

In order to show that ι is injective, let x ∈ ker∗ι. Then (x, 0) ∈ R and there
exist suitable k, la,b,mc,d, nc,d ∈ Z for a, b, c, d ∈ F ∗ satisfying 1 ∈ c + d such
that

(x, 0) = (−(−1, 0))k
∏︂

a,b∈F ∗

(︁
(a, 0)(b, 0)(ab, 0)−1

)︁la,b
·
∏︂

c,d∈F ∗

1∈c+d

(︁
(c, d)(c, 0)−1

)︁mc,d
(︁
(1− (c, d))(d, 0)−1

)︁nc,d . (2.6)

For all c, d ∈ F ∗ the right-side coefficient of (c, d) is mc,d and the right-side
coefficient of 1− (c, d) is nc,d. It follows that mc,d = nc,d = 0 for all c, d ∈ F ∗

such that 1 ∈ c+ d. Therefore, both sides of (2.6) are contained in the subgroup
G of Q(A)∗ generated by the elements −1 and (a, 0), a ∈ F ∗.

Thus, the mapping κ : G→ F ∗ defined by κ(−1) := −1 and κ((a, 0)) := a for
a ∈ F ∗ is a group homomorphism by Lemma 2.18. Applying it to both sides of
(2.6), we get

x = κ((x, 0)) = (−1)2k
∏︂

a,b∈F ∗

(︁
ab(ab)−1

)︁la,b = 1.

Hence, ι is injective.
In order to prove that ι is initial, let a, b ∈ F ∗ such that ι(b) ∈ 1 − ι(a).

Since ι(F ) ⊆ UA/∗R and |A| = 1 for all A ∈ A it follows from Remark and
Definition 2.10 and Theorem and Definition 2.20 that we have ι(a) = a′−b′

a′−c′R and
ι(b) = c′−b′

c′−a′R for {a′, b′, c′} = {0, 1, (c, 0)}, c ∈ F ∗, or {a′, b′, c′} = {0, 1, (d, e)}
for d, e ∈ F ∗ such that 1 ∈ d+ e.

Since ι(b) ∈ 1 − ι(a) and ι(a) ∈ 1 − ι(b), as well as b ∈ 1 − a and a ∈ 1 − b
are equivalent using Proposition 2.2 and Remark and Definition 2.3, our claim
is invariant under exchange of a′ and c′. Similarly, this is true for exchange of b′

17Where − denotes the substraction in the hyperfield Q(A)/∗R.
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2 Partial hyperfields

and c′, as ι(b) ∈ 1 − ι(a) and ι(a−1) ∈ 1 − ι(−a−1b), as well as b ∈ 1 − a and
a−1 ∈ 1− (−a−1b) are also equivalent.

Hence, we can assume without loss of generality that a′ = 0 and c′ = 1.
Furthermore, b′ = g for g = (c, 0), c ∈ F ∗, or g = (d, e) for d, e ∈ F ∗, 1 ∈ d+ e,
and (b, 0)R = ι(b) = (1− g)R.

Obviously, (1−(c, 0))(b, 0)−1 /∈ R for all c ∈ F ∗. Thus, g = (d, e) for d, e ∈ F ∗

such that 1 ∈ d+ e. Therefore, e = b and using that ι(a) = gR = (d, b)R we
further get that d = a. Hence, 1 ∈ a+ b, which implies b ∈ 1− a, as desired. □

2.24 Remark. In [Mas85a] and [Mas85b] Massouros proved that there are
hyperfields that cannot be written as F/∗U for a field F and a subgroup U ⊆ F ∗

(and cannot be strongly embedded into hyperfields of this kind).
But as we have shown in Theorem and Definition 2.23 every partial hyperfield

and therefore every hyperfield is isomorphic to a restriction of a hyperfield of
this form.
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3 Universal partial hyperfields of
matroids

In this chapter we will introduce the universal partial hyperfield of a matroid,
a partial hyperfield whose multiplicative group is its inner Tutte group, which
was introduced by Dress and Wenzel in [DW89]. We will use their results to
present the relation between the universal partial field of a matroid, its minors,
and its dual.

Further, we will connect representations of matroids over a partial hyperfield1

to homomorphism from certain extensions of the universal partial hyperfield
to this partial hyperfields and show that they thus factor over the identity
homomorphism of the universal partial hyperfield.

Moreover, we will introduce a method inspired by the work of Semple for
k-regular matroids (cf. [Sem98]) to determine the universal partial field for
matroids.

For later usage, we will introduce the characterization of matroids by hyper-
plane and base axioms and define the basic concepts. For further reference we
refer the reader to [Whi86].

Definition. Let E be a set. A set H of subsets of E is called the set of
hyperplanes of a matroid M on E if the following axioms are satisfied:

(H0) For each X ⊆ E such that X ⊈ H for all H ∈ H there exists a finite
X ′ ⊆ X such that X ′ ⊈ H for all H ∈ H,2

(H1) E /∈ H,

(H2) H1 ⊆ H2 ⇒ H1 = H2 for all H1, H2 ∈ H,

(H3) for all H1, H2 ∈ H, H1 ̸= H2 and x ∈ E \ (H1 ∪ H2) there exists an
H3 ∈ H such that (H1 ∩H2) ∪ {x} ⊆ H3.

We denote the set of hyperplanes of a given matroid M by H(M) (or by H if
the referenced matroid is apparent from the context).

1Precisely, we mean the weak representations in the sense of Baker and Bowler, cf. [BB19].
2We allow matroids to be infinite as long as their rank is finite, which is ensured by (H0).
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3 Universal partial hyperfields of matroids

A subset B ⊆ E is a base of M if it is minimal with the property B ⊈ H for
all H ∈ H. We denote the set of bases of a matroid M by B(M) (or short by B
if the referenced matroid is apparent from the context).

Let A ⊆ E. Then A is called independent if it is contained in a base, and a
circuit if it is not independent, but A \ {a} is independent for each a ∈ A. Its
rank is the maximum number of elements of an independent set contained in A
and is denoted by ϱM (A) (or short by ϱ(A)). Further, its closure is the (unique)
maximal superset that has the same rank as A and is denoted by σM (A) (or
short by σ(A)).
A is called a flat of M , if σ(A) = A. For any two flats K1 and K2 of M the

flat σ(K1 ∪K2) is called the join of K1 and K2 and is denoted by K1 ∨K2. If
there exists a subset {a} such that K2 = σ({a}), we often write K1 ∨ a instead
of K1 ∨ σ({a}).

The rank of M is the rank of the ground set E and is denoted by ϱ(M).
Clearly, the hyperplanes of M are exactly the flats of M of rank ϱ(M)− 1. A
flat L ⊆ E of rank ϱ(M)− 2 is called a hyperline. We denote by HL the sets of
hyperplanes that contain a given hyperline L.

The set of hyperlines is denoted by L(M) (or short L). Further, we call a flat
P ⊆ E of rank ϱ(M)− 3 a hyperpoint and a flat ℓ ⊆ E of rank 2 a line.

A flat K ⊆ E is called modular if ϱ(K ∨K ′) + ϱ(K ∩K ′) = ϱ(K) + ϱ(K ′)
for any flat K ′ ⊆ E. The matroid M is said to be modular if every flat F of M
is modular.

Furthermore, a collection B is the set of bases of a matroid M if and only if
it satisfies the following three axioms:

(B0) every set in B is finite,

(B1) B1 ⊆ B2 ⇒ B1 = B2 for all B1, B2 ∈ B,

(B2) for all B1, B2 ∈ B and x ∈ B1 \ B2 there is an y ∈ B2 \ B1 such that
(B2 \ y) ∪ {x} ∈ B.

All bases B ∈ B have equal cardinality ϱ(M).

Definition. Let FH(M) be the free abelian group generated by ε and XH,a for
H ∈ H, a ∈ E \H and KH(M) be the subgroup of FH(M) generated by ε2 and
the elements

ε ·XH1,a2 ·X−1
H1,a3

·XH2,a3 ·X−1
H2,a1

·XH3,a1 ·X−1
H3,a2

for H1, H2, H3 ∈ H containing a common hyperline L and ai ∈ Hi \L, i = 1, 2, 3.
The extended Tutte group is defined as TH(M) := FH(M)/KH(M). Further, we
set H(a) := XH,a ·KH(M) for all H ∈ H and a ∈ E \H.
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3.1 Lemma ([DW89, Lemma 1.3]). LetH1, H2 ∈ H such that L := H1∩H2

is a hyperline, a, b ∈ E \ (H1 ∪H2) such that L ∨ a = L ∨ b. Then

H1(a) ·H1(b)
−1 ·H2(b) ·H2(a)

−1 = 1.

Definition. Let FB(M) be the free abelian group generated by ε and (a1, . . . , an)
for {a1, . . . , an} ∈ B and KB(M) be the subgroup of FH(M) generated by ε2,
the elements

ε · (a1, . . . , an) · (aπ(1), . . . , aπ(n))

for all {a1, . . . , an} ∈ B, and π ∈ Sn \An and the elements

(a1, . . . , an−2, b1, c1) · (a1, . . . , an−2, b2, c2)

· (a1, . . . , an−2, b2, c1)
−1 · (a1, . . . , an−2, b1, c2)

−1

for all a1, . . . , an−2, b1, b2, c1, c2 ∈ E such that {a1, . . . , an−2, bi, cj} ∈ B for
i, j ∈ {1, 2} but {a1, . . . , an−2, b1, b2} /∈ B.

We define TB(M) := FB(M)/KB(M). Set [a1, . . . , an] := (a1, . . . , an) ·KB(M)
and

[A |B] := [d1, . . . , dn−1, a] · [d1, . . . , dn−1, b]
−1

for all A = {d1, . . . , dn−1, a}, B = {d1, . . . , dn−1, b} ∈ B.

Definition. We set

H4 := H4(M) :=
{︂
(H1, H2, H3, H4) ∈ H4

⃓⃓⃓
∃L∈L such that Hi∩Hj=L

for all i=1,2, j=3,4

}︂
H+

4 := H+
4 (M) :=

{︂
(H1, H2, H3, H4) ∈ H4

⃓⃓⃓
H1,H2,H3,H4

pairwise different

}︂
.

Following [GRS95], let F(0)(M) be the free abelian group generated by ε and the
elements (H1, H2 |H3, H4) for (H1, H2, H3, H4) ∈ H4 and K(0)(M) the subgroup
of M generated by the elements

(CR0) ε2,

(CR1) (H1, H2 |H3, H3) for (H1, H2, H3, H3) ∈ H4,

(CR2)

(H1, H2 |H3, H4) · (H1, H2 |H4, H5) · (H1, H2 |H5, H3)

for (H1, H2, H3, H4), (H1, H2, H3, H5) ∈ H4,
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3 Universal partial hyperfields of matroids

(CR3)

(H1, H2 |H3, H4) · (H3, H4 |H2, H1)

for (H1, H2, H3, H4) ∈ H4,

(CR4)

ε · (H1, H2 |H3, H4) · (H1, H3 |H4, H2) · (H1, H4 |H2, H3)

for (H1, H2, H3, H4) ∈ H+
4 ,

(CR5) ε if the Fano matroid or its dual is a minor of M ,

(CR6)

(H1, H2 |H6, H9) · (H2, H3 |H4, H7) · (H3, H1 |H5, H8)

for H1, . . . ,H9 ∈ H such that

(i) Li := Hj ∩Hk ∈ L for {i, j, k} = {1, 2, 3},

(ii) ϱ(H1 ∩H2 ∩H3) = ϱ(M)− 3,

(iii) Li ⊆ Hi+3, Hi+6 for i = 1, 2, 3,

(iv) H4 ∩H5 ∩H6, H7 ∩H8 ∩H9 ∈ L,

(v) {H1, H2, H3} ∩ {H4, . . . ,H9} = ∅.

L1

L2

L3

H3

H1H2

H4

H5

H6

H7

H8

H9

Then T(0)(M) := F(0)(M)/K(0)(M) is called inner Tutte group of M . Further-
more, let

[H1, H2 |H3, H4] := (H1, H2 |H3, H4)K(0)(M)

be the cross-ratio of (H1, H2, H3, H4) ∈ H4.
Further, by abuse of notation, we write ε instead of ε ·K(0)(M).
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For finite matroidsM it was already proven by Gelfand, Rybnikov and Stone that
their definition of the inner Tutte group in [GRS95] is equivalent to the original
definition given by Dress and Wenzel in [DW89]. The following proposition
proves that this is also true if M is infinite:

3.2 Proposition. The maps ιHM : T(0)(M) → TH(M), ιBM : T(0)(M) → TB(M)
defined by ιHM (ε) := ε, ιBM (ε) := ε and

ιHM ([H1, H2 |H3, H4]) := H1(a3) ·H1(a4)
−1 ·H2(a4) ·H2(a3)

−1,

ιBM ([H1, H2 |H3, H4]) := [A13 |A14] · [A24 |A23]

for all (H1, H2, H3, H4) ∈ H4(M), where L :=
⋂︁4

i=1Hi, I ⊆ L a maximal
independent set and ai ∈ Hi \ L, Aij := I ∪ {ai, aj}, i, j ∈ {1, 2, 3, 4}, i ̸= j, are
group monomorphisms.

Furthermore, TH(M) and TB(M) are free extensions of T(0)(M).

Proof. First, let G is the subgroup of TH(M) generated by ε and the elements
H(a) ·H(b)−1 for all a, b ∈ E \H, H ∈ H(M), and G′ the subgroup of TB(M)
generated by ε and the elements [A |B] for all A,B ∈ B(M), |A△B| = 2. Then
[DW89, Theorem 1.1 and Theorem 1.2] imply that the map ψ : G→ G′, defined
by ψ(ε) := ε and

ψ
(︁
H(a) ·H(b)−1

)︁
:= [A |B]

for all a, b ∈ E \H, H ∈ H(M), and A := I ∪{a}, B := I ∪{b} for any maximal
independent set I ⊆ H, is a group isomorphism. Since ιBM = ψ ◦ ιHM it suffices
to show that ιHM is a monomorphism.

It follows from [DW90, Proposition 1.1, Lemma 2.4, and Proposition 2.5] and
[GRS95, Theorem 4] that ιHM is a well-defined group homomorphism, which is
injective if M is a finite matroid.

In order to show that this also true for infinite M , let g ∈ ker ιHM . Then there
exist k, n ∈ N0 and

(︂
H

(i)
1 , H

(i)
2 , H

(i)
3 , H

(i)
4

)︂
∈ H4(M), i = 1, . . . , n, such that

g = εk
∏︁n

i=1

[︂
H

(i)
1 , H

(i)
2

⃓⃓⃓
H

(i)
3 , H

(i)
4

]︂
. Then L(i) :=

⋂︁4
j=1H

(i)
j is a hyperline.

Choose a maximal independent set I(i) ⊆ L(i), a(i)j ∈ H
(i)
j \ L(i), j = 1, 2, 3, 4,

for all i = 1, . . . , n, let F ⊆ E be a finite set such that I(i), a(i)j ⊆ F for all
i = 1, . . . , n, j = 1, 2, 3, 4, and N :=M |F .

Further, we define K(i)
j := σN

(︂
I(i) ∪ {a(i)j }

)︂
, i = 1, . . . , n, j = 1, 2, 3, 4, and

h := εk
∏︁n

i=1

[︂
K

(i)
1 ,K

(i)
2

⃓⃓⃓
K

(i)
3 ,K

(i)
4

]︂
. By [DW89, Proposition 4.1] there exist

group homomorphisms f : T(0)(N) → T(0)(M) and fH : TH(N) → TH(M) such
that fH ◦ ιHN = ιHM ◦ f .
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3 Universal partial hyperfields of matroids

Since M |F is a restriction, f is injective and therefore h = 1, which in turn
implies g = f(h) = 1. Thus, ιHM is injective for all matroids M .

Finally, [DW89, Theorem 1.5] yields that TH(M) and TB(M) are free exten-
sions of T(0)(M). □

3.3 Lemma ([DW90, Lemma 2.4, Proposition 2.5]).
Let (H1, H2, H3, H4) ∈ H4, L :=

⋂︁4
i=1Hi, and for every permutation π ∈ S4 set

[H1, H2 |H3, H4]
π := [Hπ(1), Hπ(2) |Hπ(3), Hπ(4)].

(a) For π ∈ {(12)(34), (13)(24), (14)(23)} we have

[H1, H2 |H3, H4]
π = [H1, H2 |H3, H4],

(b) for π ∈ {(12), (34), (1324), (1423)} we get

[H1, H2 |H3, H4]
π = [H1, H2 |H3, H4]

−1,

(c) for H0 ∈ HL \ {H3, H4} and H5 ∈ HL \ {H1, H2} we have

[H1, H2 |H3, H4] = [H1, H0 |H3, H4] · [H0, H2 |H3, H4],

= [H1, H2 |H3, H5] · [H1, H2 |H5, H4],

(d) if H1, H2, H3, H4 are pairwise distinct and π ∈ S4 is an element of order
3,

[H1, H2 |H3, H4] · [H1, H2 |H3, H4]
π · [H1, H2 |H3, H4]

π2
= ε.

3.4 Proposition and Definition. The family (∆a)a∈T(0)(M) defined by

∆a := {[H1, H3 |H2, H4] | ∃(H1, H2, H3, H4) ∈ H+
4 : a = [H1, H2 |H3, H4]}

for all a ∈ T(0)(M) satisfies (2.1).
We denote the unique partial hyperfield on T(0)(M) ∪ {0}, such that −1 = ε

and (1−a) \ {0} = ∆a for all a ∈ T(0)(M) by U(0)(M). We further call U(0)(M)
the universal partial hyperfield of M .3 Its fundamental elements are 0, 1, and
the cross-ratios of M .

3The name is justified by Corollary 3.17.
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3.1 Basic properties

Proof. To prove that the family (∆a)a∈T(0)(M) satifies (2.1), we have to show
that for all a, b ∈ T(0)(M) such that b ∈ ∆a it follows that a ∈ ∆b and
a−1 ∈ ∆εa−1b.

Let a ∈ T(0)(M). If b ∈ ∆a, there exists a tuple (H1, H2, H3, H4) ∈ H+
4 such

that a = [H1, H2 |H3, H4] and b = [H1, H3 |H2, H4].
By construction, we have a ∈ ∆b. Using Lemma 3.3, we obtain

εa−1b = ε · [H1, H2 |H4, H3] · [H1, H3 |H2, H4]

= [H1, H4 |H2, H3].

Hence, a−1 ∈ ∆εa−1b.
Therefore, Proposition 2.2 and Remark and Definition 2.3 yield that there

exists a unique partial hyperfield on T(0)(M) ∪ {0} such that −1 = ε and
(1− a) \ {0} = ∆a. Clearly, its fundamental elements are 0, 1, and the cross-
ratios of M . □

3.5 Corollary. We denote the final partial hyperfield4 on the set TH(M)∪{0}
resp. TB(M) ∪ {0} with respect to the map ιHM resp. ιBM (which we extend by
setting ιHM (0) := 0 and ιBM (0) := 0) by UH(M) resp. UB(M).

The maps ιHM and ιBM are strong embeddings. If we identify U(0)(M) with
its image under ιHM resp. ιBM , then UH(M) resp. UB(M) is the unique partial
hyperfield such that −1 = ε and (1−a)\{0} = ∆a, where we define (∆a)a∈TH(M)

resp. (∆a)a∈TB(M) as in Proposition and Definition 3.4. The core of UH(M)

and UB(M) is equal to U(0)(M).

Proof. It suffices to prove this in the case of UH(M) and ιHM , as the other case
follows analogously.

Since ιHM is injective by Proposition 3.2, Proposition and Definition 2.8 and
Proposition and Definition 2.9 imply that it is initial and final. Thus, Corol-
lary 2.16 yields that ιHM is a strong embedding. Finally, the last sentence follows
directly from the construction of UH(M). □

3.1 Basic properties

3.6 Proposition. Let N be a minor of the matroid M on the set F ⊆ E(M).
For every subset S ⊆ E(M) \ F such that ϱM (S) = ϱ(M)− ϱ(N) we can write
N = (M/S)|F . Then the map fS : U(0)(N) → U(0)(M) defined by fS(0) := 0,
fS(−1) := −1 and

fS([H1, H2 |H3, H4]) := [H1, H2 |H3, H4]

4See Proposition and Definition 2.9.
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3 Universal partial hyperfields of matroids

for all (H1, H2, H3, H4) ∈ H4(N), where Hi := σM (Hi ∪ S), i = 1, 2, 3, 4, is a
homomorphism of partial hyperfields.

Proof. Using [DW89, Proposition 4.1], it follows that fS is a multiplicative
homomorphism. The definition of fS , Lemma 2.5, and Proposition and Defini-
tion 3.4 imply that fS is a homomorphism of partial hyperfields. □

3.7 Remark. The homomorphism fS in Proposition 3.6 depends on the choice
of S, e. g. if M is the uniform matroid of rank 3 on the set {1, 2, 3, 4, 5, 6},
S1 = {5}, S2 = {6}, and F = {1, 2, 3, 4}, (M/S1)|F = (M/S2)|F is the uniform
matroid of rank 2 on F , but fS1 and fS2 are different.

Otherwise, it would follow from Lemma 4.21 that U(0)(U3,6) ∼= U(0)(U2,6).
Since M is representable over F4 but U2,6 is not (cf. [Oxl11, Section 6.5]), this
contradicts Theorem and Definition 3.16.

However, we can always replace S by a maximal independent subset. Thus,
in the special cases that N is rank-preserving restriction or a contraction, fS is
independent of the choice of S.

3.8 Proposition. Let k ∈ N and M be the direct sum of the matroids Mi on
the ground set Ei, i = 1, . . . , k. Then U(0)(M) is the coproduct5 of U(0)(Mi),
i = 1, . . . , k (up to isomorphism).

Proof. Let F :=
∐︁k

i=1U(0)(Mi), ιi : U(0)(Mi) → F be the natural inclusion,
i = 1, . . . , k, and define f : F → U(0)(M) by f(0) := 0, f(−1) := −1, and

f(ιi([H1 ∩ Ei, H2 ∩ Ei |H3 ∩ Ei, H4 ∩ Ei])) := [H1, H2 |H3, H4]

for all (H1, H2, H3, H4) ∈ H+
4 (M) such that Ei ⊈ Hj and El ⊆ Hj for all

j = 1, 2, 3, 4, l = 1, . . . , k, l ̸= i.
[DW89, Proposition 5.1] yields that f is a multiplicative isomorphism. It

follows from Lemma 2.5 and Proposition and Definition 3.4 that f is an isomor-
phism of partial hyperfields. □

3.9 Corollary. For any matroid M of rank n ∈ N0 the universal partial hyper-
field of M ⊕ p, i. e., the direct sum of M with the rank 1 matroid with a single
point p, is isomorphic to that of M .

In particular, if for any partial hyperfield F there exists a matroid M of rank
n ∈ N0 whose universal partial hyperfield is isomorphic to F , there exists a
matroid M ′ of rank n′ for any n′ ∈ N0 such that n′ ≥ n whose universal partial
hyperfield is isomorphic to F .

5See Corollary 2.12.
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3.1 Basic properties

Proof. The only hyperplane of the rank 1 matroid with a single point p is
∅. Further, it has neither the Fano matroid nor its dual as minor. Therefore,
it follows that F(0)(p) = {1, ε} and K(0)(p) = {1}. Thus, its universal partial
hyperfield is isomorphic to U0 and we get U(0)(M ⊕ p) ∼= U(0)(M)⊕ U0 using
Proposition 3.8.

Hence, applying Proposition and Definition 2.6 and Corollary 2.12, we obtain
that U(0)(M ⊕ p) ∼= U(0)(M). Therefore, we can iteratively construct a matroid
M ′ of rank n′ ≥ n such that U(0)(M ′) ∼= U(0)(M), which yields our claim. □

Definition. Let M be a matroid on the ground set E. M is called a combinato-
rial geometry if for all X ⊆ E such that 1 ≤ |X| ≤ 2, there exists a hyperplane
H of M such that |X ∩H| = |X| − 1 (or equivalently there exists a base B of
M such that X ⊆ B).

For every X ⊆ E let sX be the set of rank 1 flats contained in σ(X). Further,
if X is a set of subsets of E, we set sX := {sX |X ∈ X}.

The matroid sM on the ground set sE whose hyperplanes are the sets sH (or
equivalently whose bases are the sets sB) is a combinatorial geometry called the
simplification of M . Moreover, for each X ⊆ E we have ϱsM (sF ) = ϱM (F ). In
particular, ϱ(sM) = ϱ(M).

3.10 Proposition. For every matroid M the map φ : U(0)(M) → U(0)(sM)
defined by φ(0) := 0, φ(−1) := −1, and

φ([H1, H2 |H3, H4]) := [sH1, sH2 | sH3, sH4]

for all (H1, H2, H3, H4) ∈ H4(M) is an isomorphism of partial hyperfields.

Proof. By definition of the simplification for all flats F1, F2 of M we have
s(F1 ∩ F2) = sF1 ∩ sF2 and sF1 = sF2 if and only if F1 = F2. Therefore,
our claim follows directly from the definition of the inner Tutte group and
Proposition and Definition 3.4. □

3.11 Proposition. Let M be a finite matroid on the ground set E.

(a) The map φM : U(0)(M) → U(0)(M∗) defined by φM (0) := 0, as well as
φM (−1) := −1, and

φM ([H1, H2 |H3, H4]) := [H∗
1 , H

∗
2 |H∗

3 , H
∗
4 ]

for all (H1, H2, H3, H4) ∈ H4(M) and

H∗
i := σM∗(E \ (I ∪ {a1, . . . , ˆ︁ai, . . . , a4})), i = 1, 2, 3, 4,

where I ⊆ L :=
⋂︁4

i=1Hi is a maximal independent set and ai ∈ Hi \ L,
i = 1, 2, 3, 4, is a well-defined isomorphism of partial hyperfields.
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3 Universal partial hyperfields of matroids

(b) Let E = F ∪· S∪· S∗ be any partition such that S is an independent set of M ,
ϱM (S) = ϱ(M)− ϱ(N), and N = (M/S)|F . Then S∗ is an independent
set of M∗, ϱM∗(S∗) = ϱ(M∗)− ϱ(N∗), and N∗ = (M∗/S∗)|F .

Further, we have φM ◦ fS = fS∗ ◦φN , where fS : U(0)(N) → U(0)(M) and
fS∗ : U(0)(N∗) → U(0)(M∗) are the homomorphisms of partial hyperfields
from Proposition 3.6.

Proof. Throughout this proof, we will use Proposition 3.2 and identify the
elements of T(0)(M) with its image under ιBM .

In order to prove (a), let T(M) be the subgroup of TB(M) generated by ε
and the elements [A |B] for all A,B ∈ B(M) such that |A△B| = 2, and T(M∗)
be the corresponding subgroup of TB(M∗). Applying [DW89, Proposition 1.1
and Theorem 1.1], the map φ : T(M) → T(M∗) defined by φ(ε) := ε and
φ([A |B]) := [E \ A |E \ B] for all A,B ∈ B(M) such that |A△ B| = 2 is a
group isomorphism.

Let (H1, H2, H3, H4) ∈ H4(M). Then L :=
⋂︁4

i=1Hi is a hyperline of M .
Choose a maximal independent subset I ⊆ L, ai ∈ Hi \ L, i = 1, 2, 3, 4, and set
Aij := I ∪ {ai, aj}, i, j = 1, 2, 3, 4, i ̸= j.

Further, let I∗ := E \ (I ∪ {a1, a2, a3, a4}), A∗
ij := I∗ ∪ {ai, aj}, as well as

H∗
i := σM∗(I∗ ∪ {ai}), i, j = 1, 2, 3, 4, i ̸= j. It follows that

E \Aij = E \ (I ∪ {ai, aj}) = I∗ ∪ {ak, al} = A∗
kl

for all {i, j, k, l} = {1, 2, 3, 4}. Thus, A∗
ij is a base of M∗ for all i, j ∈ {1, 2, 3, 4},

i ̸= j , I∗ is an independent set of M∗, whose closure is a hyperline of M∗, and
(H∗

1 , H
∗
2 , H

∗
3 , H

∗
4 ) ∈ H4(M

∗). Moreover, Lemma 3.3 implies that

φ([H1, H2 |H3, H4]) = φ([A13 |A14] · [A24 |A23])

= [A∗
24 |A∗

23] · [A∗
13 |A∗

14] = [H∗
1 , H

∗
2 |H∗

3 , H
∗
4 ]

Hence, φM (g) = φ(g) for all g ∈ U(0)(M)
∗. Therefore, φM is a multiplicative

isomorphism, and its definition and Lemma 2.5 yield (a).
To prove (b), let E = F ∪· S ∪· S∗ be a partition and N = (M/S)|F such that

S is an independent set of M and ϱM (S) = ϱ(M) − ϱ(N). Applying [Oxl11,
Proposition 3.1.26], we obtain

N∗ = ((M/S)\S∗)∗ = (M/S)∗/S∗ = (M\S)/S∗ = (M/S∗)|F.

By [Oxl11, Proposition 2.1.9], we have ϱM∗(A) = |A|+ ϱM (E \A)− ϱ(M) for
all subsets A ⊆ E. Thus, using ϱM (S ∪ S∗) = |S|, we get

ϱ(M∗)− ϱ(N∗) = |E| − ϱ(M)− (|F |+ ϱM (S ∪ S∗)− ϱ(M))

= |S∗| = |S∗|+ ϱM (F ∪ S)− ϱ(M) = ϱM∗(S∗).
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3.1 Basic properties

In particular, S∗ is an independent set of M∗.
Let (H1, H2, H3, H4) ∈ H4(N), L :=

⋂︁4
i=1Hi, choose a maximal independent

set I ⊆ L, and ai ∈ Hi \ L, i = 1, 2, 3, 4. Further, set Gi := σM (Hi ∪ S),
H∗

i := σN∗(I∗ ∪ {ai}), G∗
i := σM∗(H∗

i ∪ S∗), Aij := I ∪ {ai, aj}, Bij := Aij ∪ S,
A∗

ij := I∗ ∪ {ai, aj}, B∗
ij := A∗

ij ∪ S∗ for all i, j = 1, 2, 3, 4, i ̸= j, where
I∗ := F \ (I ∪ {a1, a2, a3, a4}).

Then Gi resp. G∗
i is a hyperplane of M resp. M∗, Aij resp. A∗

ij is a base
of N resp. N∗, and Bij resp B∗

ij is a base of M resp. M∗, i, j = 1, 2, 3, 4,
i ̸= j. Furthermore, (H∗

1 , H
∗
2 , H

∗
3 , H

∗
4 ) ∈ H4(N

∗), (G1, G2, G3, G4) ∈ H4(M),
(G∗

1, G
∗
2, G

∗
3, G

∗
4) ∈ H4(M

∗) and

E \Bij = E \ (Aij ∪ S) = (A∗
kl ∪ S ∪ S∗) ∩ (E \ S) = A∗

kl ∪ S∗ = B∗
kl

for all {i, j, k, l} = {1, 2, 3, 4}. Hence,

φM (fS([H1, H2 |H3, H4])) = φM ([G1, G2 |G3, G4])

= φM ([B13 |B14] · [B24 |B23]) = [B∗
23 |B∗

24] · [B∗
13 |B∗

14]

= [G∗
1, G

∗
2 |G∗

3, G
∗
4] = fS∗([H∗

1 , H
∗
2 |H∗

3 , H
∗
4 ])

= fS∗(φN ([H1, H2 |H3, H4])). □

Definition. Let M and N be matroids. A bijection φ : E(M) → E(N) is an
isomorphism from M to N if H ∈ H(M) if and only if φ(H) ∈ H(N) (or
equivalently if B ∈ B(M) if and only if φ(B) ∈ B(N)).

3.12 Proposition. Let M and M be matroids and φ be an isomorphism
from M to N . Then the map φ̂ : U(0)(M) → U(0)(N) defined by φ̂(0) := 0,
φ̂(−1) := −1, and

φ̂([H1, H2 |H3, H4]) := [φ(H1), φ(H2) |φ(H3), φ(H4)]

for all (H1, H2, H3, H4) ∈ H4(M) is an isomorphism of partial hyperfields.

Proof. As we have φ(X ∩ Y ) = φ(X) ∩ φ(Y ) and φ(X ∪ Y ) = φ(X) ∪ φ(Y )
for all X,Y ⊆ E (since φ is a bijection), our claim follows directly from the
definition of the inner Tutte group and Proposition and Definition 3.4. □
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3 Universal partial hyperfields of matroids

3.2 Representability of matroids

3.13 Remark. Let E be a set and F be a partial hyperfield. We denote by FE

the set of functions f : E → F , let 0 be the constant 0 function and −f : E → F ,
e ↦→ −f(e), define a binary operation · : F × FE → FE by (a · f)(e) := a · f(e)
for all a ∈ F , f ∈ FE , e ∈ E, and a partial hyperoperation +: FE × FE ⊸ FE

by
f + g := {h ∈ FE | h(e) ∈ f(e) + g(e) for all e ∈ E}

for all f, g ∈ FE .
It follows directly from the definition of a partial hyperfield that

(a) f + g = g + f and 0 + f = {f} for all f, g ∈ FE ,

(b) if f ∈ g + h, then h ∈ f + (−g) for all f, g, h ∈ FE ,

(c) (ab)f = a(bf), 0 · f = 0, 1 · f = f for all a, b ∈ F , f ∈ FE ,

(d) (a+ b)f ⊆ af + bf for all a, b ∈ F , f ∈ FE ,

(e) a(f + g) ⊆ af + ag for all a ∈ F , f, g ∈ FE .

For the rest of this section, let M be a matroid on the ground set E, whose set
of hyperplanes we denote by H and whose set of bases we denote by B.

3.14 Proposition and Definition (cf. [DW89, Theorem 3.1]). Let F be
a partial hyperfield and ι : F → F ′ an embedding of F into a hyperfield F ′. For
a family (fH)H∈H of functions fH : E → F such that f−1

H (0) = H for all H ∈ H
the following statements are equivalent:

(a) For all hyperplanes H1, H2, H3 containing a common hyperline L, there
exist α1, α2, α3 ∈ F ∗ such that

0 ∈ ι(α1) · (ι ◦ fH1) + ι(α2) · (ι ◦ fH2) + ι(α3) · (ι ◦ fH3). (3.1)

(b) The map f : UH(M) → F defined by f(0) := 0, f(−1) := −1 and

f(H(a)) := fH(a) for H ∈ H, a ∈ E \H

is a homomorphism of partial hyperfields.

In particular, the condition in (a) is independent of the choice of the embedding
ι.6 If (fH)H∈H satisfies one (and therefore both) of the preceding conditions,
we call it a family of hyperplane functions for M and F .

6Such an embedding always exists, see Theorem and Definition 2.23.
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3.2 Representability of matroids

Proof. We first prove the implication (a) ⇒ (b). Let H1, H2, H3 be hyperplanes
of M containing a common hyperline L and ai ∈ Hi \ L, i = 1, 2, 3. Let
α1, α2, α3 ∈ F ∗ such that

0 ∈ ι(α1) · (ι ◦ fH1) + ι(α2) · (ι ◦ fH2) + ι(α3) · (ι ◦ fH3).

Since a2 ∈ H2 we have fH2(a2) = 0. Thus, 0 ∈ α1fH1(a2) + α3fH3(a2). It
follows that fH3(a2) = −α1α

−1
3 fH1(a2). We get fH2(a3) = −α1α

−1
2 fH1(a3) and

fH3(a1) = −α2α
−1
3 fH2(a1) using similar arguments. This implies

fH1(a2) · fH1(a3)
−1 · fH2(a3) · fH2(a1)

−1 · fH3(a1) · fH3(a2)
−1

=

(︃
−α3

α1

)︃
·
(︃
−α1

α2

)︃
·
(︃
−α2

α3

)︃
= −1.

Hence, f is a multiplicative homomorphism.
To prove that f is a homomorphism of partial hyperfields, let H1, H2, H3, H4

be four pairwise different hyperplanes containing a common hyperline L and
choose ai ∈ Hi \ L, i = 2, 3, 4. Then (3.1) implies

ι(fH3(a4)) ∈ ι
(︁
−α−1

3 (α1fH1(a4) + α2fH2(a4))
)︁

and thus using the identification of TH(M) with a subgroup of T(0)(M) from
Proposition 3.2, −fH1(a2)fH3(a2)

−1 = α−1
1 α3 and α1α

−1
2 = −fH1(a3)fH2(a3)

−1

from above we obtain

ι(f([H1, H3 |H2, H4]))

= ι
(︁
fH1(a2)fH1(a4)

−1fH3(a4)fH3(a2)
−1
)︁

∈ ι
(︁
−fH1(a2)fH3(a2)

−1fH1(a4)
−1α−1

3 (α1fH1(a4) + α2fH2(a4))
)︁

= ι
(︁
1 + α−1

1 α2fH1(a4)
−1fH2(a4)

)︁
= ι
(︁
1− fH1(a3)fH1(a4)

−1fH2(a4)fH2(a3)
−1
)︁

= ι(1− f([H1, H2 |H3, H4])).

Since ι is an embedding, f([H1, H3 |H2, H4])) ∈ 1 − f([H1, H2 |H3, H4]). Ap-
plying Lemma 2.5 and Proposition and Definition 3.4 yields that f is a homo-
morphism of partial hyperfields.

Conversely, let f be a homomorphism of partial hyperfields and H1, H2, H3

three pairwise different hyperplanes containing a common hyperline L.
We choose ai ∈ Hi \ L, i = 1, 2, 3, and set

α1 := fH2(a3) · fH1(a3)
−1, α2 := −1, α3 := fH2(a1) · fH3(a1)

−1.
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3 Universal partial hyperfields of matroids

In order to prove (3.1), we show that fH2 ∈ α1fH1 + α3fH3 . Since all functions
fHi , i = 1, 2, 3, are identically zero on L, we have fH2(a) ∈ α1fH1(a)+α3fH3(a)
for all a ∈ L.

For a ∈ H1 \ L we have H2(a) ·H2(a1)
−1 = H3(a) ·H3(a1)

−1 by Lemma 3.1
and therefore

fH2(a) = fH3(a) · fH3(a1)
−1fH2(a1)

∈ 0 + fH3(a) · fH3(a1)
−1fH2(a1)

= α1fH1(a) + α3fH3(a).

Similarly, we get fH2(a) ∈ α1fH1(a) + α3fH3(a) for all a ∈ H3 \ L. As f is a
multiplicative homomorphism

fH1(a2) · fH1(a3)
−1 · fH2(a3) · fH2(a1)

−1 · fH3(a1) · fH3(a2)
−1 = −1,

so for all a ∈ H2 \ L we obtain

fH2(a) = 0 ∈ fH2(a3) · fH1(a3)
−1 · fH1(a2) + fH2(a1) · fH3(a1)

−1 · fH3(a2)

= α1fH1(a2) + α3fH3(a2).

Using Lemma 3.1, we have

fH1(a)fH3(a)
−1 = fH1(a2)fH3(a2)

−1 = −α−1
1 α3,

and it follows that fH2(a) ∈ α1fH1(a) + α3fH3(a).
Finally, let a ∈ E \ (H1∪H2∪H3). We set H4 := L∨a and a4 := a. Applying

Proposition 3.2, we get

α3fH3(a) =
(︁
fH3(a4) · fH3(a1)

−1 · fH2(a1) · fH2(a4)
−1
)︁
· fH2(a4)

= f([H3, H2 |H4, H1]) · fH2(a4)

∈ (1− f([H3, H4 |H2, H1]) · fH2(a4)

= (1− f([H1, H2 |H4, H3]) · fH2(a4)

=
(︁
1− fH1(a4) · fH1(a3)

−1 · fH2(a3) · fH2(a4)
−1
)︁
· fH2(a4)

= fH2(a)− α1fH1(a).

Thus, Lemma 2.1 yields fH2(a) ∈ α1fH1(a) + α3fH3(a). □
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3.2 Representability of matroids

3.15 Proposition and Definition (cf. [DW89, Proposition 3.1]).
Let F be a partial hyperfield, ι : F → F ′ an embedding into a hyperfield F ′ and
d : En → F a map such that d(e1, . . . , en) = 0 if and only if {e1, . . . , en} /∈ B.
Then the following statements are equivalent:

(a) For all e1, . . . , en ∈ E and π ∈ Sn

d(eπ(1), . . . , eπ(n)) = signπ · d(e1, . . . , en), (3.2)

and for all e0, . . . , en, f2 ∈ E

0 ∈
2∑︂

i=0

(−1)iι (d(e0, . . . , ˆ︁ei, . . . , en) · d(ei, f2, e3, . . . , en)) . (3.3)

(b) The map d̂ : UB(M) → F defined by d̂(0) := 0, d̂(−1) := −1 and

d̂([e1, . . . , en]) := d(e1, . . . , en)

for all bases B = {e1, . . . , en} of M is a homomorphism of partial hyper-
fields.

In particular, the condition in (a) is independent of the choice of ι. If d satisfies
one (and therefore both) of the preceding conditions, we call it a Grassmann-
Plücker map for M and F .

Proof. We first prove that (a) implies (b). Let a1, . . . , an−2, b1, b2, c1, c2 ∈ E
such that {a1, . . . , an−2, bi, cj} ∈ B for i, j = 1, 2 and {a1, . . . , an−2, b1, b2} /∈ B.
Setting f2 := b1, e0 := b2, ei := ci, i = 1, 2, and ei+2 := ai, i = 1, . . . , n− 2 we
obtain by using (3.2) and (3.3) that

0 ∈+ ι(d(c1, c2, a1, . . . , an−2) · d(b2, b1, a1, . . . , an−2))

− ι(d(b2, c2, a1, . . . , an−2) · d(c1, b1, a1, . . . , an−2))

+ ι(d(b2, c1, a1, . . . , an−2) · d(c2, b1, a1, . . . , an−2))

= + ι(d(a1, . . . , an−2, b1, c1) · d(a1, . . . , an−2, b2, c2))

− ι(d(a1, . . . , an−2, b2, c1) · d(a1, . . . , an−2, b1, c2)).

Using that ι is an embedding and Lemma 2.1, we get that

d(a1, . . . , an−2, b1, c1) · d(a1, . . . , an−2, b2, c2)

· d(a1, . . . , an−2, b2, c1)
−1 · d(a1, . . . , an−2, b1, c2)

−1 = 1.
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3 Universal partial hyperfields of matroids

Therefore, d̂ is a multiplicative homomorphism.
To show that d̂ is a homomorphism of partial hyperfields, let H1, H2, H3, H4

be four pairwise different hyperplanes containing a common hyperline L. We
choose a basis b1, . . . , bn−2 of L and ai ∈ Hi \ L, i = 1, 2, 3, 4. Setting e0 := a1,
e1 := a3, e2 := a4, f2 := a2 and ei := bi−2 for i = 3, . . . , n we obtain

0 ∈+ ι(d(a3, a4, b1, . . . , bn−2) · d(a1, a2, b1, . . . , bn−2))

− ι(d(a1, a4, b1, . . . , bn−2) · d(a3, a2, b1, . . . , bn−2))

+ ι(d(a1, a3, b1, . . . , bn−2) · d(a4, a2, b1, . . . , bn−2)).

Since H1, H2, H3, H4 are paarwise different {b1, . . . , bn−2, ai, aj} is a base of M
and thus d(b1, . . . , bn−2, ai, aj) ̸= 0 for all i, j = 1, 2, 3, 4, i ̸= j.

Therefore, using (3.3) and the fact that ι is an embedding, we get

d̂([H1, H3 |H2, H4]) = d̂

(︃
[b1, . . . , bn−2, a1, a2] · [b1, . . . , bn−2, a3, a4]

[b1, . . . , bn−2, a1, a4] · [b1, . . . , bn−2, a3, a2]

)︃
∈ 1− d̂

(︃
[b1, . . . , bn−2, a1, a3] · [b1, . . . , bn−2, a2, a4]

[b1, . . . , bn−2, a1, a4] · [b1, . . . , bn−2, a2, a3]

)︃
= 1− d̂([H1, H2 |H3, H4]).

Hence, Lemma 2.5 and Proposition and Definition 3.4 yield that d̂ is a homo-
morphism of partial hyperfields.

In order to prove that (b) implies (a), let d̂ be a homomorphism of partial
hyperfields. First, let e1, . . . , en ∈ E. If {e1, . . . , en} /∈ B, then (3.2) is trivially
satisfied. Otherwise it follows from [e1, . . . , en] = signπ · [eπ(1), . . . , eπ(n)] for all
π ∈ Sn.

To show that d satisfies (3.3), let e0, . . . , en, f2 ∈ E, L := σ({e3, . . . , en}),
H1 := L ∨ e0, H2 := L ∨ f2 and Hi := L ∨ ei−2 for i = 3, 4.

If H2 is not a hyperplane, then d(ei, f2, e3, . . . , en) = 0 for all i = 0, 1, 2, which
implies that all the three terms of the sum in (3.3) vanish. A similiar argument
shows that this is also true if one of H1, H3, H4 is not a hyperplane. Therefore,
(3.3) is trivially satisfied in these cases.

Thus, let H1, H2, H3, H4 be hyperplanes. If they are pairwise different, then
{e0, . . . , ˆ︁ei, . . . , en} and {ei, f2, e3, . . . , en} are bases of M for all i = 0, 1, 2 and
thus

d(e3, . . . , en, e0, f2) · d(e3, . . . , en, e1, e2)
d(e3, . . . , en, e0, e2) · d(e3, . . . , en, e1, f2)

= d̂([H1, H3 |H2, H4]) ∈ 1− d̂([H1, H2 |H3, H4])

= 1− d(e3, . . . , en, e0, e1) · d(e3, . . . , en, f2, e2)
d(e3, . . . , en, e0, e2) · d(e3, . . . , en, f2, e1)

.
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3.2 Representability of matroids

Hence,

0 ∈
2∑︂

i=0

(−1)iι(d(e0, . . . , ˆ︁ei, . . . , en) · d(ei, f2, e3, . . . , en)).
In the case that three of the hyperplanes are equal, each of the summands in
(3.3) vanishes, and therefore the inclusion is trivial.

If exactly two of the hyperplanes are equal, using Lemma 3.3, we can
assume without loss of generality that H1, H2 ̸= H3, H4 but H1 = H2 or
H3 = H4, since (3.3) is invariant under cyclic permutation of e0, e1, e2. Hence,
[H1, H2 |H3, H4] = 1 and thus

d(e3, . . . , en, e0, e1) · d(e3, . . . , en, f2, e2)
d(e3, . . . , en, e0, e2) · d(e3, . . . , en, f2, e1)

= 1.

Since d(e1, . . . , en) · d(e0, f2, e3, . . . , en) = 0, this implies (3.3). □

3.16 Theorem and Definition. Let M be a matroid and F a partial hyper-
field. Then the following statements are equivalent:

(a) There exists a family of hyperplane functions for M and F ,

(b) there exists a Grassmann-Plücker map for M and F ,

(c) there exists a homomorphism U(0)(M) → F of partial hyperfields.

If M satisfies one (and therefore all) of the above conditions, we call M is
representable over F .

Proof. First, (a) or (b) imply (c). This follows by restricting the homomorphism
which we obtain from Proposition and Definition 3.14 or Proposition and
Definition 3.15 to the universal partial hyperfield U(0)(M) of M .

Conversely, Proposition 3.2 implies that we can extend every homomorphism
U(0)(M) → F of partial hyperfields to a homomorphism UH(M) → F and
UB(M) → F of partial hyperfields. Thus, Proposition and Definition 3.14 and
Proposition and Definition 3.15 yield that (c) implies (a) and (b). □

3.17 Corollary. Every matroid M is representable over its universal partial
hyperfield U(0)(M). Moreover, if M is representable over a partial hyperfield F ,
the resulting homomorphism of partial hyperfields U(0)(M) → F factors over
the universal homomorphism idU(0)(M) from this representation.

Proof. Follows directly from Theorem and Definition 3.16. □
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3 Universal partial hyperfields of matroids

3.18 Remark. Theorem and Definition 3.16 generalizes the classical theory of
representability of matroids over fields as well as the theory of representability
of matroids over partial hyperfields by Baker and Bowler in [BB19].

In particular, we obtain a homomorphism of partial hyperfields U(0)(M) → F
for every field F over which M is representable.

The characterization of classes of projectively equivalent representations of
matroids over fields was already done by Dress and Wenzel in [DW89] and
inspired our definition of the addition of the universal partial hyperfield of a
matroid.

3.19 Lemma. Let F ′ be a partial hyperfield such that 1 − 1 = {0} in F ′7

and f : F → F ′ be a homomorphism of partial hyperfields. Then we have
ker∗f \ {1} ⊆ F \ F(F ). In particular, f is injective if F is a hyperneofield.

Proof. Let a ∈ ker∗f ∩ F(F ). Then there exists a b ∈ F such that b ∈ 1− a.
It follows that f(b) ∈ 1− f(a) = 1− 1 = {0}. Thus, f(b) = 0 and Lemma 2.5
implies b = 0. Hence, Lemma 2.1 yields that a = 1. □

3.20 Lemma. Every partial hyperfield F such that F = {−1, 0, 1} is isomorphic
to U0, F3, S, W, F2, or K.

Furthermore, if F, F ′ ∈ {U0,F3, S,W,F2,K} and f : F → F ′ is a homomor-
phism of partial hyperfields, then f is uniquely determined and one of the
conditions F = F ′, F = U0, F ′ = K, or (F, F ′) ∈ {(F3,W), (S,W)} is satisfied.

Proof. Let F be a partial hyperfield such that F = {−1, 0, 1}. By Remark and
Definition 2.3, the addition of F is completely determined by the sets (1−1)\{0}
and (1 + 1) \ {0}. If 1 = −1, then 1− 1 = 1 + 1 and we have either 1 + 1 = {0}
or 1 + 1 = {0, 1}. In the former case F ∼= F2 and in the latter case F ∼= K.

Now, let 1 ̸= −1. If a ∈ 1 − 1, we get −a ∈ −1 + 1 = 1 − 1 by Lemma 2.1.
Thus, 1 − 1 = {0} or 1 − 1 = {−1, 0, 1}. Further, Lemma 2.1 implies that
1 ∈ 1− 1 if and only if 1 ∈ 1 + 1.

Therefore, if 1 − 1 = {0}, we have the two possibilities 1 + 1 = ∅, which
implies F ∼= U0, and 1 + 1 = {−1}, which implies F ∼= F3. Otherwise, either
1 + 1 = {1} and F ∼= S, or 1 + 1 = {−1, 1} and F ∼= W.

To finish the proof, let F, F ′ ∈ {U0,F3,S,W,F2,K} and f : F → F ′ be a
homomorphism of partial hyperfields. Since, f(0) = 0, f(1) = 1 and f(−1) = −1,
f is uniquely determined.

7Note that any hyperfield F ′ with this property is already a field, since for any a, b ∈ F ′∗

such that b ∈ 1− a we have 1− a = 1 + (−1 + b) = (1− 1) + b = {b}.
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3.3 Projective planes

Clearly, if −1 = 1 in F , −1 = 1 in F ′ too. In the case −1 ̸= 1 in F but
−1 = 1 in F ′, 1 + 1 ̸= ∅ in F implies 1 + 1 = {0, 1} in F ′. Thus, in this case we
have F = U0 or F ′ = K.

Otherwise, −1 ̸= 1 in F if and only if −1 ̸= 1 in F ′ and f is the identity map
on the set {−1, 0, 1}. Finally, such an f can exist if and only the set 1− a of F ,
a ∈ {−1, 1} is included in the corresponding set of F ′, which proves our claim.□

3.21 Corollary. A matroid M is binary if and only if U(0)(M) ∼= U0 or
U(0)(M) ∼= F2, and regular if and only if U(0)(M) ∼= U0.

Proof. By Tutte’s representation theorem ([Tut65, Th. 5.1.1]) and Theorem
and Definition 3.16, M is binary if and only if there exists a homomorphism
f : U(0)(M) → F2. Further, if M is binary, we have that U(0)(M) = {−1, 0, 1}
(as otherwiseM would contain four pairwise different hyperplanes over a common
hyperline).

Thus, Lemma 3.20 implies that M is binary if and only if U(0)(M) ∼= U0 or
U(0)(M) ∼= F2. Since there are no homomorphisms between fields of different
characteristics, we obtain, using Lemma 3.19, that M is regular if and only if
the former case holds. □

3.3 Projective planes

Throughout this section let Π = (P,H) be a projective plane, i. e., a connected,
modular combinatorial geometry of rank 3. We will coordinatise Π as in [Pic]
and use the extended radical introduced in [Kal89].

For a quadrangle (o, u, v, e) of Π, i. e., {o, u, v, e} is a circuit of Π, we set
F := (o∨e)\(u∨v). For p ∈ P \(u∨v) we set p =: (x, y) if (p∨v)∩(o∨e) = {x}
and (p ∨ u) ∩ (o ∨ e) = {y}. For H ∈ H with v ∈ H we set H =: [∞] if u ∈ H,
and H =: [x] if x ∈ H for x ∈ F .

For H ∈ H such that v /∈ H but o ∈ H we set H =: [m, 0] if H∩ [1] = {(1,m)}.
Each of these lines intersects u ∨ v in a point different from v and we set
(u ∨ v) ∩ [m, 0] =: (m) for all m ∈ F .

Finally, for all other H ∈ H we set H =: [m, c] if H ∩ (u ∨ v) = (m), and
H ∩ [0] = (0, c). Furthermore, let 0 := o and 1 := e. We define a ternary
operation T : F 3 → F by

T (m,x, c) = y ⇔ (x, y) ∈ [m, c]

for all x, y,m, c ∈ F . The tuple (F, T ) is called a planar ternary ring coordi-
natising Π, or a ternary field coordinatising Π.
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3 Universal partial hyperfields of matroids

We further set a · b := T (a, b, 0) and a+ b := T (1, a, b) for all a, b ∈ F . Then
(F,+) and (F ∗, ·) are loops with neutral elements 0 resp. 1. We further denote
by a− b the unique element such that (a− b) + b = a for all a, b ∈ F .

Definition. The radical R := R(F, T ) of (F, T ) is the normal subloop of F ∗

generated by the elements r ∈ F ∗ for which there exist a, b, c, d,m, n, x, u ∈ F
such that a ̸= b, m ̸= n, x ̸= u and T (m,u, c) = T (n, u, d) that satisfy one of
the following equations

T (m,x, a)− T (m,x, b) = r · (a− b),

T (m,x, c)− T (n, x, d) = r · [(n−m)(u− x)].

Moreover, the extended radical Ra := Ra(F, T ) is the normal subloop of F ∗

generated by R(F, T ) and the elements r ∈ F ∗ for which there exist x, y, z ∈ F ∗

that satisfy one of the following equations:

x(yz) = r · (xy)z, xy = r · yx.

3.22 Lemma. Let (F, T ) be a planar ternary ring. For all a ∈ F ∗ and all
non-empty subsets L,K,M ⊆ F satisfying R ·K = K, R · L = L, R ·M =M
we have

(a) L+K = K + L = K − (−L),

(b) L+ (K +M) = (L+K) +M ,

(c) a(L+K) = aL+ aK,

(d) M [(−1)(−a)] =M [−(−a)] =Ma = −M [−a],

(e) Ma = aM if Ra ·M =M .

Proof. First note, that [Kal88, (2.8) Korollar] directly yields (b), (c), and the
first equation of (a). Moreover, [Kal88, (2.2) Lemma and (2.4) Lemma] imply
the last equation of (a).

Further, it follows from [Kal88, (2.2) Lemma] that R[b− (−a)] = R[b+ a] and
R[(−c)d] = R[c(−d)] for all a, b, c, d ∈ F . Substituting b for 0, 1 for c, and d for
−a and using that R ·M =M , we get the first two of the three equations of (d).

Since −Re = R[−e] by [Kal88, (2.3) Satz] for all e ∈ E, the third equation is
implied by substituting e for −a and using R ·M =M .

Finally, if x ∈ aM , there exists an m ∈M such that x = am. By definition
of Ra, there exists an r ∈ Ra such that r · (ma) = am. Therefore, we obtain
x ∈ r(ma) ∈ Ra(Ma) ⊆ Ma. Using a similar argument, one shows that
aM ⊆Ma, which completes our proof. □
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3.23 Proposition. Let (F, T ) be a planar ternary ring. The set {Rax | x ∈ F}
together with the partial hyperoperation ⊕ defined by

Rax⊕Ray := {Raz | z ∈ F such that Raz ⊆ Rax+Ray},

and the multiplication defined by Rax · Ray := Ra(xy) for all x, y ∈ F is a
hyperfield, denoted by F/∗Ra.

Proof. We will first prove that F/∗Ra is a partial hyperfield. If we have
Raz ∈ Rax⊕Ray for x, y, z ∈ F , Lemma 3.22 yields that

Raz ⊆ Rax+Ray = Ray +Rax.

Thus, Rax⊕Ray ⊆ Ray ⊕Rax, which proves (PH1).
Since Ra · 0 +Rax = {0}+Rax = {Rax}, F/∗Ra satisfies (PH2). In order to

prove (PH3), let x, y, z ∈ F such that Raz ∈ Rax ⊕ Ray. Using Lemma 3.22,
we get

Raz ⊆ Rax+Ray = Ray +Rax = Ray −Ra(−x).

Therefore, there exist r, s ∈ Ra such that z = sy − r(−x). It follows that
z + r(−x) = sy, and thus Ray ⊆ Raz +Ra(−x). Hence, Ray ∈ Raz ⊕Ra(−x).

By definition of the extended radical, ({Rax | x ∈ F ∗}, ·) is an abelian group,
Ra ·Rax = Rax, and {0} ·Rax = {0} for all x ∈ F , which directly yields (PH4).

To show (PH5), let x, y, z ∈ F . Then Lemma 3.22 implies that

Rax(Ray +Raz) = Rax ·Ray +Rax ·Raz = Ra(xy) +Ra(xz).

Thus, Rax(Ray ⊕Raz) ⊆ Ra(xy)⊕Ra(xz).
Finally, in order to show that F/∗Ra is a hyperfield, we have to show that

(Rax⊕Ray)⊕Raz ⊆ Rax⊕ (Ray ⊕Raz)

for all x, y, z ∈ F (then (PH1) implies that both sets are equal). Let w ∈ F
such that Raw ∈ (Rax ⊕ Ray) ⊕ Raz. Then there exists a v ∈ F , such that
Raw ∈ Rav ⊕Raz and Rav ∈ Rax⊕Ray. Applying Lemma 3.22, we get

Raw ⊆ (Rax+Ray) +Raz = Rax+ (Ray +Raz).

We can conclude that there exist r, s, t ∈ Ra, such that w = rx+(sy+ tz). This
implies that for u := sy + tz we have Raw ⊆ Rax+Rau and Rau ⊆ Ray +Raz.
Thus, Raw ∈ Rax⊕ (Ray ⊕Raz). □
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3 Universal partial hyperfields of matroids

3.24 Theorem. For every projective plane Π and any planar ternary ring (F, T )
coordinatising Π the family (fH)H∈H of functions fH : P → F/∗Ra defined by
fH(a) = 0 for all a ∈ H ∈ H and

fH(a) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ra(T (m,x, c)− y) if H = [m, c], a = (x, y),

Ra(m− n) if H = [m, c], a = (n),

Ra(x− d) if H = [d], a = (x, y),

Ra else,

for all H ∈ H and a ∈ E \ H, is a system of hyperplane functions for Π
and F/∗Ra such that the map f : U(0)(Π) → F/∗Ra defined by f(0) := {0},
f(−1) := Ra(−1), and

f([H1, H2 |H3, H4]) := fH1(a3) · fH1(a4)
−1 · fH2(a3) · fH2(a4)

−1

for all L ∈ L, Hi−2, Hi ∈ HL, ai ∈ Hi \ L, i = 3, 4, such that H1, H2 ̸= H3, H4,
is an isomorphism of partial hyperfields.

Proof. Using Proposition and Definition 3.14, it suffices to show that f is an
isomorphism.

First, let Π be the projective plane of order 2. Since Π is binary and non-
regular, it follows from Corollary 3.21 that U(0)(Π) ∼= F2. Further, F = {0, 1},
and (F,+) is a loop. This implies Ra = {1}, and using Lemma 3.20 that
F/∗Ra

∼= F2.
For the rest of the proof, let Π a projective plane of order strictly greater than

2. By [Kal92b, Theorem 3] and since Lemma 3.22 yields Ra[(−1)(−x)] = Rax
for all x ∈ F , f is a multiplicative isomorphism.

Furthermore, using our coordinatization, we obtain for any x ∈ F ∗

f([[∞], [0] | [1], [x]]) = f[0](x)f[0](1)
−1 = Rax,

as in [Kal92b, Theorem 3]. Therefore, using Lemma 2.5, it suffices to show that
f(1−[[∞], [0] | [1], [x]]) = Ra⊕Ra(−x) in order to prove that f is an isomorphism
of partial hyperfields. It follows from Proposition and Definition 3.4) and the
fact that f is surjective that

1− [[∞], [0] | [1], [x]] = {[[∞], [1] | [0], [y]] | y ∈ Rax}.

Further, applying Lemma 3.22 yields that for any y ∈ Rax we have

f([[∞], [1] | [0], [y]]) = f[1](y)f[1](0)
−1 = Ra(1− y)

⊆ Ra −Ray = Ra +Ra(−y) = Ra +Ra(−x).

52



3.4 Matroids of rank 2

Converserly, if z ∈ F ∗ such that Raz ⊆ Ra − Rax, we have Ra ⊆ Raz + Rax.
Thus, there exist r, s ∈ Ra such that 1 = rz+ sx. Therefore, rz = 1− sx, which
implies

Raz ∈ Ra(1− sx) = f([[∞], [1] | [0], [sx]]) ∈ f(1− [[∞], [0] | [1], [x]]). □

3.25 Proposition. The universal partial hyperfield of the projective geometry
PG(d, F ) of dimension d ≥ 2 over a skew field F is isomorphic to F/∗F ∗′, where
F ∗′ is the commutator subgroup of F ∗.

Proof. First, note that by setting T (m,x, c) := mx+ c for all m,x, c ∈ F we
can regard F as a planar ternary ring whose extended radical Ra is equal to
F ∗′.

For each hyperplane H of PG(d, F ) we fix a left linear form ΦH such that
Φ−1
H ({0}) = H and set fH : E → F/∗F

∗′, e ↦→ ΦH(e)F ∗′. Clearly, (fH)H∈H is a
system of hyperplane functions for PG(d, F ) and F/∗F ∗′.

It follows from the proof of Theorem and Definition 3.16 that the underlying
multiplicative homomorphism of the induced homomorphism of partial hyper-
fields f : U(0)(PG(d, F )) → F/∗F

∗′ is the same as the group homomorphism
Φ: T(0)(PG(d, F )) → F ∗/F ∗′ induced by the (ΦH)H∈H via [DW90, Proposition
1.5].

Moreover, [DW90, Theorem 3.6] yields that Φ is bijective and thus also f .
Finally, [DW90, Lemma 4.5] and Proposition and Definition 3.4 imply that f is
an isomorphism. □

3.4 Matroids of rank 2

In his PhD thesis ([Sem98]) Semple proved that for all k ∈ N0 the uniform
matroid U2,k+3 on k + 3 points of rank 2 is representable over the partial field
Uk but is not representable over Uk′ for all k′ ∈ N0, where k′ < k.

We will extend this result to infinite uniform matroids of rank 2. Further, we
will prove that the universal partial hyperfield of a uniform matroid of rank 2
that has at least 3 points is isomorphic to Uκ−3, where κ is the cardinality of
the set of points.

Let M = U2,E be the uniform matroid of rank 2 on the set E, which contains
at least 3 elements named ∞, 0, 1. Let A := E \ {∞, 0, 1} and Q(A) be a purely
transcendental extension of Q.
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3.26 Proposition. Let f : E → Q(A)2 be the map defined by f(∞) := (1, 0)T

and f(e) := (e, 1)T for all e ∈ E \ {∞}. Then the map f̂ : U(0)(U2,E) → Q(A)

defined by f̂(0) := 0, f̂(−1) := −1, and

f̂ ([H1, H2 |H3, H4]) :=
det(f(a1), f(a3)) · det(f(a2), f(a4))
det(f(a1), f(a4)) · det(f(a2), f(a3))

for all hyperplanes Hi = {ai}, i = 1, 2, 3, 4, of U2,E such that H1, H2 ̸= H3, H4

is an embedding of partial hyperfields whose image is equal to U{A}.

Proof. First, we define f{a} : E → Q(A) by f{a}(e) := det(f(a), f(e)), a ∈ E.
Using Tutte’s representation theorem ([Tut65, Th. 5.1.1]), we get that (f{a})a∈E
is a system of hyperplane functions for U2,E and Q(A). Thus, Proposition and
Definition 3.14 implies that f̂ is a homomorphism of partial hyperfields.

Moreover, straightforward computations show that f{a}(a) = 0, f{∞}(b) = 1,
f{b}(∞) = −1, and f{b}(c) = b− c for all a ∈ E, b, c ∈ E \{∞}, b ̸= c. It follows
that

f̂([{∞}, {a} | {b}, {c}]) = a− c

a− b
(3.4)

for all paarwise different a, b, c ∈ E \ {∞}, and

f̂([{a}, {b} | {c}, {d}]) = (a− c)(b− d)

(a− d)(b− c)
(3.5)

for all paarwise different a, b, c, d ∈ E \ {∞}. Hence, the definition of the inner
Tutte group and Lemma 3.3 imply that f̂(F ) ⊆ U{A}, where F := U(0)(U2,E).

Substituting 0 for a and 1 for b in (3.4) yields c ∈ f̂(F ) for all c ∈ A, and
replacing b by 0 in (3.4) yields a−1(a− c) ∈ f̂(F ) for a, c ∈ A, a ̸= c. Therefore,
f̂(F ) = U{A}.

To prove that f̂ is an embedding, we will show that there exists a ho-
momorphism g : U{A} → F such that g ◦ f̂ = idF . For x, y ∈ F we have
|f̂(x+ y)| ≤ |f̂(x) + f̂(y)| ≤ 1, since U{A} is a partial field. Thus, |x+ y| ≤ 1
because f is injective.

Suppose x+ y = ∅ but |f̂(x) + f̂(y)| = 1. This would yield the contradiction
|g(f̂(x) + f̂(y))| ≤ |g(f̂(x)) + g(f̂(y))| = |x + y| = 0. Hence, f̂ is strong and
thus an embedding by Proposition 2.14.

We define g by g(0) := 0, g(−1) := −1 and

g(a) := [{∞}, {0} | {1}, {a}],
g(a− 1) := −[{∞}, {1} | {0}, {a}],
g(b− c) := −[{∞}, {c} | {0}, {b}] · [{∞}, {0} | {1}, {c}]
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for all a, b, c ∈ A, b ̸= c. By using Lemma 3.3, we get

g(b− a) = −[{∞}, {a} | {0}, {b}] · [{∞}, {0} | {1}, {a}]
= [{∞}, {b} | {0}, {a}] · [{∞}, {0} | {a}, {b}] · [{∞}, {0} | {1}, {a}]
= [{∞}, {b} | {0}, {a}] · [{∞}, {0} | {1}, {b}] = −g(a− b).

Thus, Lemma 2.18 implies that g is a well-defined multiplicative homomorphism.
Moreover, for a ∈ A, it follows from Lemma 3.3 that

g(a− 1) = −[{∞}, {1} | {0}, {a}]
= −[{∞}, {1} | {0}, {a}] · [{∞}, {0} | {1}, {1}],

g(1− a) = [{∞}, {1} | {0}, {a}]
= −[{∞}, {a} | {0}, {1}] · [{∞}, {0} | {1}, {a}].

Therefore, all a, b ∈ E \ {∞, 0}, a ̸= b, satisfy

g(a− b) = −[{∞}, {b} | {0}, {a}] · [{∞}, {0} | {1}, {b}]. (3.6)

Since g and f̂ are both multiplicative homomorphisms, it is sufficient to show that
g(f̂([H1, H2 |H3, H4])) = [H1, H2 |H3, H4] for all pairwise different hyperplanes
Hi = {ai}, ai ∈ E, i = 1, 2, 3, 4, of U2,E . Using Lemma 3.3, it remains to prove
this for the following cases:

First, let ai ̸= ∞, 0 for i = 1, 2, 3, 4. It follows from (3.5) and (3.6) that

g(f̂([H1, H2 |H3, H4])) = g

(︃
(a1 − a3)(a2 − a4)

(a1 − a4)(a2 − a3)

)︃
=

[{∞}, H1 | {0}, H3] · [{∞}, H2 | {0}, H4]

[{∞}, H1 | {0}, H4] · [{∞}, H2 | {0}, H3]

= [H1, H2 |H3, H4].

Next, if a1 = ∞ and a2, a3, a4 ̸= 0, (2.4) and (3.6) imply that

g(f̂([H1, H2 |H3, H4])) = g

(︃
a2 − a4
a2 − a3

)︃
=

[{∞}, H2 | {0}, H4]

[{∞}, H2 | {0}, H3]

= [H1, H2 |H3, H4].

Further, let a1 = 0 and a2, a3, a4 ̸= ∞. By using (3.5) and (3.6), we get

g(f̂([H1, H2 |H3, H4])) = g

(︃
a3(a2 − a4)

a4(a2 − a3)

)︃
=

[{∞}, {0} | {1}, H3] · [{∞}, H2 | {0}, H4]

[{∞}, {0} | {1}, H4] · [{∞}, H2 | {0}, H3]

= [H1, H2 |H3, H4].
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If a1 = ∞ and a2 = 0, it follows from (3.4) and (3.6) that

g(f̂([H1, H2 |H3, H4])) = g

(︃
a4
a3

)︃
=

[{∞}, {0} | {1}, H4]

[{∞}, {0} | {1}, H3]

= [H1, H2 |H3, H4].

Finally, let a1 = ∞ and a3 = 0. Then (3.4) and (3.6) imply that

g(f̂([H1, H2 |H3, H4])) = g

(︃
a2 − a4
a2

)︃
= g

(︃
−a4 − a2

a2

)︃
=

[{∞}, H2 | {0}, H4] · [{∞}, {0} | {1}, H2]

[{∞}, {0} | {1}, H2]

= [H1, H2 |H3, H4].

Therefore, g ◦ f̂ = idF , which completes our proof. □

3.27 Theorem. For every cardinal number κ ≥ 3 and every set E of cardinality
κ the universal partial field of U2,E is isomorphic to Uκ−3.

Proof. We choose three pairwise different elements ∞, 0, 1 ∈ E. Using Propo-
sition 3.26, we obtain an embedding f̂ : U(0)(U2,E) → Q(E \ {∞, 0, 1}) whose
image is equal to U{E\{∞,0,1}}. Using Corollary 2.16, we can conclude that
U(0)(U2,E) ∼= U{E\{∞,0,1}}. Hence, Corollary 2.22 completes the proof. □

3.5 Matroids of rank greater or equal to 3

Using the results of the previous section, we will prove that the universal partial
hyperfield of a matroid is the quotient of an A-regular partial field for a suitable
set of sets A. We will use this method to compute the universal partial hyperfield
of the ternary affine plane AG(2, 3) and the ternary Reid geometry R9.

Definition. We denote by L+ the set of those hyperlines ofM that are contained
in at least four distinct hyperplanes of M , and for each L ∈ L+ we denote by
H(3)

L the set of triples of pairwise different hyperplanes containing L.
Further, we call a map K : L+ →

⋃︁
L∈L+ H(3)

L a system of hypercoordinates
for M if K(L) ∈ H(3)

L for all L ∈ L+, write (∞L, 0L, 1L) for the elements of the
triple K(L), L ∈ L+, and set A(K) := {AL | L ∈ L+}, where

AL := {(L,H) |H ∈ HL \ {∞L, 0L, 1L}}.

56



3.5 Matroids of rank greater or equal to 3

3.28 Theorem. For every system of hypercoordinates K : L+ →
⋃︁

L∈L+ H(3)
L

for M the universal partial hyperfield of M is isomorphic to UA(K)/∗R(K), where
R(K) is the subgroup of U∗

A(K) generated by −1 if M has the Fano matroid or
its dual as a minor, and the elements

|H1 H6|K · |H2 H9|K · |H2 H4|K · |H3 H7|K · |H3 H5|K · |H1 H8|K
|H1 H9|K · |H2 H6|K · |H2 H7|K · |H3 H4|K · |H3 H8|K · |H1 H5|K

for hyperplanes H1, . . . ,H9 satisfying the conditions (i) - (v) of (CR6), where
|H H ′|K := det(fL(H), fL(H

′))8 and

fL(H) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1, 0)T if H = ∞L,

(0, 1)T if H = 0L,

(1, 1)T if H = 1L,

((L,H), 1)T else,

for all H,H ′ ∈ HL, H ̸= H ′, L ∈ L.

Proof. For every hyperline L and every hyperplane H of M such that L ⊆ H
the setHL := s(H \ L) is a hyperplane of s(M/L). Thus, applying Corollary 2.22
and Proposition 3.26, the map f̂L : U(0)(s(M/L)) → UA(K) defined by f̂L(0) := 0,
f̂L(−1) := −1, and

f̂L
(︁[︁
HL

1 , H
L
2

⃓⃓
HL

3 , H
L
4

]︁)︁
:=

|H1 H3|K · |H2 H4|K
|H1 H4|K · |H2 H3|K

for all H1, H2, H3, H4 ∈ HL, L ∈ L(M), such that H1, H2 ̸= H3, H4 is an
embedding of partial hyperfields.

Let F :=
∐︁

L∈L+ U(0)(s(M/L)) and ιL : U(0)(s(M/L)) → F be the canonical
injection, L ∈ L+. Using Corollary 2.12, there exists a unique homomorphism
of partial hyperfields f̂ : F → UA(K) such that f̂ ◦ ιL = f̂L for each L ∈ L+. It
follows from Corollary 2.12 and Proposition 3.26 that

f̂(F ) =
⋃︂

L∈L+

f̂L(U(0)(s(M/L))) =
⋃︂

L∈L+

U{AL} = UA(K).

Thus, f̂ is surjective. Since we have U{AL}∩U{AL′} = {−1, 0, 1} by construction
of A(K) for all hyperlines L,L′ of M such that L ̸= L′, and −1 ̸= 1 in F ,
Corollary 2.12 further yields that f̂ is an embedding. Hence, Proposition 2.14
implies that f̂ is an isomorphism.

8Since we always have L = H ∩H ′ in this setting the hyperline L on the right side can be
always inferred from H and H ′.
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Let R(M) be the subgroup of F ∗ generated by −1 if the Fano matroid or its
dual is a minor of M , and the elements of the form[︂

HL3
1 , HL3

2

⃓⃓⃓
HL3

6 , HL3
9

]︂
·
[︂
HL1

2 , HL1
3

⃓⃓⃓
HL1

4 , HL1
7

]︂
·
[︂
HL2

3 , HL2
1

⃓⃓⃓
HL2

5 , HL2
8

]︂
for H1, . . . ,H9 ∈ H and L1, L2, L3 ∈ L satisfying the conditions (i) - (v) from
(CR6). Since f̂ maps R(M) to R(K), we get F/∗R(M) ∼= UA(K)/∗R(K) by
applying Corollary 2.17.

To complete the proof we will show that U(0)(M) ∼= F/∗R(M). Combining
Proposition 3.6 and Proposition 3.10 we obtain that for each L ∈ L+ the map
gL : U(0)(s(M/L)) → U(0)(M), defined by gL(0) := 0, gL(−1) := −1, and

gL
(︁[︁
HL

1 , H
L
2

⃓⃓
HL

3 , H
L
4

]︁)︁
:= [H1, H2 |H3, H4]

for all H1, H2, H3, H4 ∈ HL, such that H1, H2 ̸= H3, H4 is a well-defined
homomorphism of partial hyperfields.

Using Corollary 2.12, there exists a unique homomorphism of partial hy-
perfields g : F → U(0)(M) such that g ◦ ιL = gL for all L ∈ L+. It follows
immediately from the definition of the inner Tutte group that its multiplica-
tive kernel is equal to R(M). Hence, Proposition 2.15 implies that the map
ĝ : F/∗R(M) → U(0)(M) defined by ĝ(0 · R(M)) := 0, ĝ((−1) · R(M)) := −1,
and

ĝ
(︁[︁
HL

1 , H
L
2

⃓⃓
HL

3 , H
L
4

]︁
· R(M)

)︁
:= [H1, H2 |H3, H4]

for all H1, H2, H3, H4 ∈ HL such that H1, H2 ̸= H3, H4, L ∈ L+, is a bijective
homomorphism of partial hyperfields.

To show that ĝ is an isomorphism it suffices to prove that ĝ−1 is a homomor-
phism of partial hyperfields. Clearly, ĝ−1 is a multiplicative homomorphism.
Let a, b ∈ T(0)(M) such that b ∈ 1 − a. Then Proposition and Definition 3.4
implies that there exist L ∈ L+ and pairwise different H1, H2, H3, H4 ∈ HL

such that a = [H1, H2 |H3, H4] and b = [H1, H3 |H2, H4]. It follows that

ĝ−1(b) =
[︁
HL

1 , H
L
3

⃓⃓
HL

2 , H
L
4

]︁
· R(M)

∈ R(M)−
[︁
HL

1 , H
L
2

⃓⃓
HL

3 , H
L
4

]︁
· R(M) = 1− ĝ−1(a).

Thus, ĝ−1 is a homomorphism of partial hyperfields by Lemma 2.5. □

Definition. For any set X, n ∈ N, and any Y ⊆ Xn such that (x1, . . . , xn) ∈ Y
implies (xπ(1), . . . , xπ(n)) ∈ Y for all π ∈ Sn, we call an equivalence relation ≈
on Y a similarity relation if for all (x1, . . . , xn), (y1, . . . , yn) ∈ Y , and π ∈ Sn

(x1, . . . , xn) ≈ (y1, . . . , yn) ⇒ (xπ(1), . . . , xπ(n)) ≈ (yπ(1), . . . , yπ(n)).

58



3.5 Matroids of rank greater or equal to 3

Clearly, any relation ∼ on Y generates a similarity relation ≈, which is defined
by (x1, . . . , xn) ≈ (y1, . . . , yn) for (x1, . . . , xn), (y1, . . . , yn) ∈ Y if there exists a
π ∈ Sn such that (xπ(1), . . . , xπ(n)) ≃ (y1, . . . , yn), where ≃ is the equivalence
relation generated by ∼.

We further call a similarity relation ≈ on H+
4 a congruence relation if for all

(H1, H2, H3, H4), (H ′
1, H

′
2, H

′
3, H

′
4) ∈ H+

4 , (H1, H2, H3, H4) ≈ (H ′
1, H

′
2, H

′
3, H

′
4)

implies that [H1, H2 |H3, H4] = [H ′
1, H

′
2 |H ′

3, H
′
4].

3.29 Proposition and Definition ([DW90, Theorem 2.9]).
The relation ∼ on H+

4 defined by (H1, H2, H3, H4) ∼ (H ′
1, H

′
2, H

′
3, H

′
4) for all

(H1, H2, H3, H4), (H ′
1, H

′
2, H

′
3, H

′
4) ∈ H+

4 if there exists a Z ∈ H such that

(i)
⋂︁4

i=1Hi ̸=
⋂︁4

i=1H
′
i,

(ii) for all i = 1, 2, 3, 4 we have Hi = H ′
i or Hi ∩H ′

i = Hi ∩ Z = H ′
i ∩ Z ∈ L,

generates a similarity relation that is a congruence relation, called projective
equivalence, which is denoted by pr∼.

3.30 Corollary. Let K : L+ →
⋃︁

L∈L+ H(3)
L be a system of hypercoordinates

for M , A′ be a set of sets, and φ : A(K) → A′ be a map such that

Rφ := {(A,A′) ∈ A(K)×A′ | φ(A) ⊆ A′ and φ|A : A→ A′ is a bijection}

is left and right total relation, and for all (L,Hi), (L
′, H ′

i) ∈ A(K) such that
φ((L,Hi)) = φ((L′, H ′

i)), i = 1, 2, we have

(∞L, 0L, 1L, H1)
pr∼ (∞L′ , 0L′ , 1L′ , H ′

1),

(∞L, H1, 0L, H2)
pr∼ (∞L′ , H ′

1, 0L′ , H ′
2).

Then the universal partial hyperfield of M is isomorphic to UA′/∗φ̂(R(K)),
where φ̂ : UA(K) → UA′ is the homomorphism of partial hyperfields from Propo-
sition 2.21, defined by φ̂(0) := 0, φ̂(−1) := −1, φ̂(a) := φ(a), φ̂(a−1) := φ(a)−1,
φ̂(b− c) := φ(b)− φ(c) for all a ∈ A(K) and b, c ∈ A ∈ A(K), b ̸= c.

Proof. First, note that if (H1, H2, H3, H4), (H ′
1, H

′
2, H

′
3, H

′
4) ∈ H+

4 are projec-
tively equivalent, we have

|H1 H3|K · |H2 H4|K
|H1 H4|K · |H2 H3|K

· |H
′
1 H

′
4|K · |H ′

2 H
′
3|K

|H ′
1 H

′
3|K · |H ′

2 H
′
4|K

∈ R(K). (3.7)

This follows from Proposition and Definition 3.29, since if Z ∈ H such that
L :=

⋂︁4
i=1Hi ̸=

⋂︁4
i=1H

′
i =: L

′, and for all i = 1, 2, 3, 4 we have Hi = H ′
i or

59



3 Universal partial hyperfields of matroids

Hi ∩ Z = H ′
i ∩ Z =: Li ∈ L, we can assume without loss of generality that

H1 = H ′
1 using Lemma 3.3 and the proof of Theorem 3.28.

Set L̃1 := L2, L̃2 := L′, L̃3 := L, H̃ i := L̃j ∨ L̃k for {i, j, k} = {1, 2, 3},
H̃ i+3 := L̃i ∨ L3, and H̃ i+6 := L̃i ∨ L4 for i = 1, 2, 3.

Then H̃1, . . . , H̃9 satisfy the conditions (i) – (v) of (CR6). Therefore, as
H̃ i = Hi for i = 1, 2, H̃4 = H3, H̃7 = H4, H̃3 = H ′

2, H̃5 = H ′
3, H̃8 = H ′

4, and
H̃6 = H̃9, (3.7) is implied by Theorem 3.28.

Moreover, Proposition 2.21 yields that φ̂ is an epimorphism and ker∗φ̂ is
generated by the elements ab−1 and (a− 1)(b− 1)−1 for all a, b ∈ A(K) such
that φ(a) = φ(b) and the elements (a− b)(c− d)−1 for all a, c ∈ AL, b, d ∈ AL′ ,
L,L′ ∈ L+ such that φ(a) = φ(c) and φ(b) = φ(d).

For a = (L,H), b = (L′, H ′) ∈ A(K) such that φ(a) = φ(b), and c = (L,H1),
d = (L,H2) ∈ AL, e = (L′, H ′

1), f = (L′, H ′
2) ∈ AL′ such that φ(c) = φ(e) and

φ(d) = φ(f), where L,L′ ∈ L, we obtain using (3.7) and (3.4) from the proof of
Proposition 3.26 that

a

b
=

|∞L 1L|K · |0L H|K · |∞L′ H ′|K · |0L′ 1L′ |K
|∞L H|K · |0L 1L|K · |∞L′ 1L′ |K · |0L′ H ′|K

∈ R(K),

a− 1

b− 1
=

|∞L 0L|K · |1L H|K · |∞L′ H ′|K · |1L′ 0L′ |K
|∞L H|K · |1L 0L|K · |∞L′ 0L′ |K · |1L′ H ′|K

∈ R(K),

(c− d)e

c(e− f)
=

|∞L 0L|K · |H1 H2|K · |∞L′ H ′
2|K · |H ′

1 0L′ |K
|∞L H2|K · |H1 0L|K · |∞L′ 0L′ |K · |H ′

1 H
′
2|K

∈ R(K).

Hence, ker∗φ̂ ⊆ R(K). Therefore, it follows that ker∗(π ◦ φ̂) = R(K), where
π : UA′ → UA′/∗φ̂(R(K)) is the canonical projection. Thus, our proof is com-
pleted by applying Corollary 2.16. □

3.31 Lemma. Let M be PG(2, 3) \ U or PG(2, 3) \ ((U ∪ {p}) \ {ω}), where
U := (1, 0, 0)TF3 + (0, 1, 0)TF3, ω := (1, 1, 0)TF3, p := (−1,−1, 1)TF3. Further,
let o := (0, 0, 1)TF3.

Then (H1, H2, H3, H4) and (H1, H3, H4, H2) are projectivly equivalent for all
{H1, H2, H3, H4} = Ho

9 such that H1 ∩ {ω, p} ≠ ∅.

Proof. Let E be the ground set of M and e := (1, 1, 1)TF3. To reduce the
notational overload we will do all of our computations in PG(2, 3) instead of M .

Clearly, H1 = o+ ω and p, e ∈ H1. Since our claim is invariant under cyclic
permutation of the hyperplanes H2, H3, H4, we can assume without loss of
generality that

H2 := o+ (1, 0, 0)TF3, H3 := o+ (0, 1, 0)TF3, H4 := o+ (1,−1, 0)TF3.

9Since the hyperlines of M are of the form {e}, e ∈ E, we often write e instead of {e}.
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Further, let

K2 := e+ (1, 0, 0)TF3, K3 := e+ (0, 1, 0)TF3, K4 := e+ (1,−1, 0)TF3,

Z1 := ω + (0, 1, 1)TF3, Z2 := ω + (1, 0, 1)TF3.

By straightforward computation, we obtain

(−1, 0, 1)TF3 ∈ H2,K4, Z1, (0, 1, 1)
TF3 ∈ H3,K2, Z1,

(1,−1, 1)TF3 ∈ H4,K3, Z1, (1, 0, 1)
TF3 ∈ H2,K3, Z2,

(0,−1, 1)TF3 ∈ H3,K4, Z2, (−1, 1, 1)TF3 ∈ H4,K2, Z2.

It follows that

(H1, H2, H3, H4)
pr∼ (H1,K4,K2,K3)

pr∼ (H1, H3, H4, H2). □

3.32 Proposition. The universal partial hyperfield of the ternary Reid geome-
try R9, i. e., the combinatorial geometry obtained from PG(2, 3) by removing
four points, of which exactly three of them are collinear, is isomorphic to F3.10

Proof. We continue to use the notations from the previous lemma throughout
this proof and set R9 = PG(2, 3) \ ((U ∪ {p}) \ {ω}). Further, let ∞o := H1,
0o := H2, 1o := H3, ao := H4.

For every f ∈ E \ {o} let Zf be the restriction of a hyperplane of PG(2, 3)
to R9 that contains (o ∨ f) ∩ U but not p. Then three of the hyperplanes
{H1, H2, H3, H4} intersect Zf and therefore (∞o, 0o, 1o, ao)

pr∼ (∞f , 0f , 1f , af )
for suitably chosen {∞f , 0f , 1f , af} = Hf . Setting K(f) := (∞f , 0f , 1f ) for all
f ∈ E defines a system of hypercoordinates K : L+ →

⋃︁
L∈L+ H(3)

L for R9.
Further, let φ : A(K) → A′ be the map defined by φ(af ) = a for all f ∈ E,

where A′ := {{a}}. By construction, φ satisfies the precondition of Corol-
lary 3.30. Therefore, U(0)(R9) ∼= UA′/∗φ̂(R(K)), where φ̂ : UA(K) → UA′ is the
epimorphism of partial hyperfields defined by φ̂(0) := 0, φ̂(−1) := −1, as well
as φ̂(af ) := a and φ̂(af − 1) := a− 1 for all f ∈ E.

Moreover, it follows from Lemma 3.3, Proposition and Definition 3.4 and
Lemma 3.31 that for ā := aφ̂(R(K)) we have ā3 = −1 and 1− ā = {ā−1}. Hence,
U(0)(R9)

∗ is a cyclic group.

10Together with Lemma 3.19 we obtain an alternate proof for the Lemma of Reid, i. e., the
ternary Reid geometry is representable over a field F if and only if F has characteristic 3,
cf. [Kun90, Lemma (2.2.1)]
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3 Universal partial hyperfields of matroids

Now, let e1 := (1, 0, 1)TF3 and (in addition to the hyperplanes H1, H2, H3,
H4, Z1, Z2 from the proof of Lemma 3.31)

G1 := e1 + (1, 1, 0)TF3, G2 := e1 + (0, 1, 0)TF3, Z3 := e+ (1,−1, 0)F3.

Straightforward computation yields

ω ∈ H1, Z1, Z2, (1, 0, 1)
TF3 ∈ H2, G2, Z2, (0,−1, 1)TF3 ∈ H3, G1, Z2, Z3,

as well as e ∈ H1, G2, Z3 and (−1, 0, 1)TF3 ∈ H2, Z1, Z3. Therefore, we obtain

(H1, H2, H3, H4)
pr∼ (Z1, G2, G1, H4)

pr∼ (H2, H1, H3, H4).

Thus, it follows from Lemma 3.3 that ā2 = 1 and hence ā = ā3 = −1. This
yields 1− 1 = {−1} and 1 ̸= −1. Finally, the proof of Lemma 3.20 implies our
claim. □

3.33 Lemma and Definition. The sixth roots of unity partial field is the
restriction of C to the group of sixth roots of unity and is denoted by 6

√
1.11 If

ζ ∈ C is a primitive sixth root of unity, the addition of 6
√
1 is characterized12 by

1− ζi =

⎧⎪⎨⎪⎩
∅ if i = 2, 3, 4,

{0} if i = 0,

{ζ−i} if i = 1, 5

for all i = 0, . . . , 5.

Proof. Clearly, 1− ζ0 = 1− 1 = {0} and 1− ζ3 = 1 + 1 = ∅. It follows from
X2 −X + 1 = (X − ζ1)(X − ζ5) ∈ C[X] that

1− ζ1 = {−ζ2} = {ζ5} and 1− ζ5 = {−ζ10} = {ζ1}.

Now, suppose 1− ζi ̸= ∅ for i = 2 or i = 4. Since 6
√
1 is a partial field it would

follow 1− ζ2 = {ζ4} and 1− ζ4 = {ζ2}. As (ζ4)2 = ζ2 we could conclude that
X2 +X − 1 = (X − ζ2)(X − ζ4) ∈ C[X].

But the discriminant of X2+X−1 is equal to 12−4 · (−1) = 5, and therefore
this polynomial has two distinct real roots, a contradiction. □

11Since we already use the symbol S for the hyperfield of signs, we denote the partial fields as
the corresponding class of matroids, see [SW96].

12Cf. Proposition 2.2.
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3.34 Lemma. Let M = (E,H) be a matroid with the following property:
For all pairwise different hyperlines L1, L2, L3, L, L

′ ofM containing a common
hyperpoint P such that L,L′ ⊈ Hi := Lj ∨ Lk for all {i, j, k} = {1, 2, 3}
and H1, H2, H3 are pairwise different hyperlines, there exists an n ∈ N0 and
hyperlines L = K0, . . . ,Kn = L′ ⊇ P of M such that for each i = 1, . . . , n and
suitable j ∈ {1, 2, 3} the flat (Ki−1 ∨Ki) ∩Hj is a hyperline of M .

Then K(0)(M) is the subgroup of F(0)(M) generated by the elements from
(CR0) – (CR5) and the elements

(CR6’) (H1, H2 |H3, H4) · (H ′
1, H

′
2 |H ′

4, H
′
3)

for all quadruples (H1, H2, H3, H4), (H ′
1, H

′
2, H

′
3, H

′
4) ∈ H+

4 such that there
exists a Z ∈ H satisfying

(i)
⋂︁4

i=1Hi ̸=
⋂︁4

i=1H
′
i,

(ii) for all i = 1, 2, 3, 4 we have Hi ∩H ′
i = Hi ∩ Z = H ′

i ∩ Z ∈ L or Hi = H ′
i.

In particular, any affine or projective geometry has this property.

Proof. Let U be the subgroup of F(0)(M) generated by the elements from
(CR0) – (CR5) and (CR6’). Using Proposition and Definition 3.29, we get
U ⊆ K(0)(M).

To prove the remaining inclusion, let H1, . . . ,H9 be hyperplanes of M sat-
isfying the conditions (i) – (v) from (CR6). Further, let Li := Hj ∩ Hk for
{i, j, k} = {1, 2, 3}, L := H4∩H5∩H6, L′ := H7∩H8∩H9, and P := L1∩L2∩L3.
Then there exist n ∈ N0 and hyperlines L = K0, . . . ,Kn = L′ ⊇ P of
M such that for each i = 1, . . . , n there exists a j ∈ {1, 2, 3} such that
(Ki−1 ∨Ki) ∩Hj ∈ L. We will prove that

g := (H1, H2 |H6, H9) · (H2, H3 |H4, H7) · (H3, H1 |H5, H8) ∈ U

by induction on n. If n = 0, then Hi+3 = Hi+6 for all i = 1, 2, 3. Thus,
(Hj , Hk, Hi+3, Hi+6) ∈ U for all {i, j, k} = {1, 2, 3}.

Let n ≥ 1 and set Hi+9 := Li ∨ Kn−1 for i = 1, 2, 3. Then H1, . . . ,H6,
H10, H11, H12 satisfy (i) – (v) from (CR6). Hence, applying the induction
hypothesis, we get

(H1, H2 |H6, H12) · (H2, H3 |H4, H10) · (H3, H1 |H5, H11) ∈ U.

Therefore, using (CR2) we obtain

gU = (H1, H2 |H12, H9) · (H2, H3 |H10, H7) · (H3, H1 |H11, H8) · U.
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3 Universal partial hyperfields of matroids

If there exists {i, j, k} = {1, 2, 3} such that Lk ⊆ Kn−1 ∨ L′ =: Z, then
(Hi, Hj |Hk+9, Hk+6) ∈ U . Thus, we obtain that Hi ∩ Z = Lk = Hj ∩ Z,
Hi+6 ∩ Z = L′ = Hj+6 ∩ Z, and Hi+9 ∩ Z = Kn−1 = Hj+9 ∩ Z. Using (CR6’),
this implies

gU = (Hi, Hk |Hj+9, Hj+6) · (Hk, Hj |Hi+9, Hi+6) · U = U.

Otherwise, there exists {i, j, k} = {1, 2, 3} such that Z ∩Hk =: L′
k is a hyperline

of M different from L1, L2 and L3. Therefore, Hk ∩ Z = L′
k = H ′

k ∩ Z for
H ′

k := Lk ∨ L′
k, and using (CR6’), it follows that

(Hl, Hk |Hm+9, Hm+6) · (Hl, H
′
k |Hm+6, Hm+9) ∈ U

for all {l,m} = {i, j}. Hence, (CR2) and (CR3) imply that

gU = (Hi, Hj |Hk+9, Hk+6) · (Hj , Hi |Hk+9, Hk+6) · U = U.

To prove the last sentence, let M be an affine or projective geometry. Let L1,
L2, L3, L, L′ be hyperlines of M containing a common hyperpoint P such that
L,L′ ⊈ Hi := Lj ∨ Lk for all {i, j, k} = {1, 2, 3} and H1, H2, H3 are pairwise
different hyperlines.

Since s(M/P ) is an affine resp. projective plane it follows that there exists a
j ∈ {1, 2, 3} such that (L ∨ L′) ∩Hj is a hyperplane of M . Thus, the desired
property is satisfied by setting n := 1, K0 := L, and K1 := L′. □

3.35 Corollary. The universal partial hyperfield of the ternary affine plane
AG(2, 3) is isomorphic to the sixth roots of unity partial field 6

√
1.

Proof. We choose a base {o, e1, e2} of AG(2, 3) and extend it to a circuit
{o, e1, e, e2} of AG(2, 3). For every p ∈ E \ {o} choose a line Zp that is parallel
to o ∨ p but does not contain p, set ∞o := o ∨ e2, 0o := o ∨ e1, 1o := o ∨ e, and
define ao by Ho = {∞o, 0o, 1o, ao}.

Then three of the hyperplanes {H1, H2, H3, H4} = Hp intersect Zp and there-
fore (∞o, 0o, 1o, ao)

pr∼ (∞p, 0p, 1p, ap) for suitably chosen {∞p, 0p, 1p, ap} = Hp.
Setting K(p) := (∞p, 0p, 1p) for all p ∈ E thus defines a system of hypercoordi-
nates K : L+ →

⋃︁
L∈L+ H(3)

L . Further, let φ : A(K) → A′ be the map defined by
φ(ap) = a for all p ∈ E, where A′ := {{a}}.

Hence, it follows from Corollary 3.30 that U(0)(AG(2, 3)) ∼= UA′/∗φ̂(R(K)),
where φ̂ : UA(K) → UA′ is the epimorphism of partial hyperfields defined by
φ̂(0) := 0, φ̂(−1) := −1, as well as φ̂(ap) := a and φ̂(ap − 1) := a− 1 for p ∈ E.

Moreover, as in the proof of Proposition 3.32 it follows that ā3 = −1 for
ā := aφ̂(R(K)) and 1− ā = {ā−1}. Thus, U(0)(AG(2, 3))

∗ is a cyclic group.
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3.5 Matroids of rank greater or equal to 3

Let p ∈ E \ {o}. For {H1, H2, H3, H4} = Ho, {H ′
1, H

′
2, H

′
3, H

′
4} = Hp and

Z ∈ H such that H1 = H ′
1 and Hi ∩ Z = H ′

i ∩ Z ∈ L we get that Z is parallel
to o ∨ p, since each line of AG(2, 3) contains exactly three points.

Each equivalence class of parallel lines of AG(2, 3) consists of three lines.
Thus, there are only two possibilities for the choice of Z. Since one of them,
Zp, was already used in the construction of K and the other one in the proof of
Lemma 3.31, Lemma 3.31 and Lemma 3.34 yield that φ̂(R(K)) is generated by
a(1− a).

Therefore, 1 − āi = ∅ for i = 2, 3, 4, 1 − ā0 = {0} and 1 − ai = {a−i} for
i = 1, 5. Hence, our claim follows from Lemma and Definition 3.33. □
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4 Universal partial hyperfields of
orientable matroids

In this chapter we will present an Artin-Schreier theory of partial hyperfields.
Although the orderings of a partial hyperfield do not form a space of orderings
in the sense of Marshall, we will construct a real reduced hyperneofield that
corresponds to a prespace of orderings. Further, we will show that the orderings
of the universal partial hyperfield of a matroid correspond to its orientations up
to projective equivalence.

The Artin-Schreier theory of hyperfields and the concept of real reduced
hyperfields where already introduced by Marshall in [Mar06] . For the theory of
spaces of orderings we refer the reader to [Mar96].

4.1 Real partial hyperfields

Throughout this section let F denote a partial hyperfield.

Definition. A subset P of F is said to be an ordering if we have P ∪−P = F ,
P ∩ −P = {0}, P + P ⊆ P , and P · P ⊆ P . We denote the set of orderings of
F by X(F ) and call F an real partial hyperfield if X(F ) ̸= ∅.

Further, a subset T of F is said to be a preordering of F if F 2 ⊆ T , T ·T ⊆ T ,
and T + T ⊆ T . A preordering T of F is called proper if −1 /∈ T and real if
there exists an ordering P of F such that T ⊆ P .

The unique smallest preordering of F is
∑︁
F 2 :=

⋃︁
n∈N0

Σn, where Σ0 := F 2

and Σn := Σn−1 + Σn−1 for n ∈ N. We call F reduced if
∑︁
F 2 = {0, 1} and

quasi-real if −1 /∈
∑︁
F 2.1

4.1 Lemma. Every ordering of F is a proper and real preordering. Further,
for every preordering T of F the set T ∗ := T ∩F ∗ is a subgroup of F ∗ such that
T ∗ + T ∗ ⊆ T ∗ if and only if T is proper.

1A hyperfield F is real if and only if it is quasi-real, cf. [Mar06].
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4 Universal partial hyperfields of orientable matroids

Proof. First, let P be an ordering of F and a ∈ F . Then a ∈ P or a ∈ −P . In
the former case a2 ∈ P ·P ⊆ P . In the latter case there exists a b ∈ P such that
a = −b. Therefore, a2 = (−b)2 = b2 ∈ P . Hence, 1 ∈ F 2 ⊆ P . In particular,
−1 ∈ −P , which shows that P is proper.

Furthermore, if T is a preordering of F , we have 1 = 12 ∈ T ∗ and for all
a, b ∈ T ∗

ab−1 = ab(b−1)2 ∈ T · T · F 2 ⊆ T.

Therefore, ab−1 ∈ T ∗.
If we have additionally 0 ∈ a+ b, then Proposition 2.2 implies that b = −a

and therefore −1 = −(−ab−1) ∈ T . Thus, T is not proper.
Conversely, if T is not proper, ±1 ∈ T ∗, which implies 0 ∈ 1− 1 ⊆ T ∗ + T ∗.□

4.2 Lemma. Let f : F → F ′ be a homomorphism of partial hyperfields, T ′ a
preordering of F ′ and T := f−1(T ′). Then

(a) T is a preordering of F ,

(b) T is proper if and only if T ′ is proper,

(c) T is real if T ′ is real.

Proof. In order to prove (a), let a, b ∈ T . Then f(a2) = f(a)2 ∈ F ′2 ⊆ T ′ and
f(ab) = f(a)f(b) ∈ T ′ · T ′ ⊆ T ′. Further, c ∈ a+ b implies that

f(c) ∈ f(a) + f(b) ⊆ T ′ + T ′ ⊆ T ′.

Thus, T is a preordering of F .
Since f(−1) = −1, −1 ∈ T implies that −1 ∈ T ′. Conversely, if −1 ∈ T ′,

there exists an a ∈ T such that f(a) = −1. This yields f(−a) = 1. Therefore,
−1 = −aa−1 ∈ T · T ⊆ T , which proves (b).

Finally, to prove (c) let P ′ be an ordering of F ′ such that T ′ ⊆ P ′ and
P := f−1(P ′). Using (a) and the fact that f−1(P ′ ∩−P ′) = f−1(P ) ∩−f−1(P )
and f−1(P ′ ∪ −P ′) = f−1(P ′) ∪ −f−1(P ′), we get that P is an ordering. Since
T = f−1(T ′) ⊆ f−1(P ′) = P it follows that T is real. □

4.3 Proposition. For every ordering P of F

σP : F → S, a ↦→

⎧⎪⎨⎪⎩
1 if a ∈ P ∗,

0 if a = 0,

−1 if a ∈ −P ∗

is a homomorphism of partial hyperfields, and the map X(F ) → Hom(F,S),
P ↦→ σP , is a bijection.
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Proof. Lemma 2.1 and Lemma 4.1 imply that σP is a multiplicative homomor-
phism for every ordering P of F . Let a, b ∈ F ∗ such that b ∈ 1− a. If a ∈ −P ,
then a = −c for a c ∈ P . Thus,

b ∈ 1− a = 1− (−c) = 1 + c ∈ P + P ⊆ P,

and therefore σP (b) = 1 ∈ 1 + 1 = 1− σP (a).
Otherwise a ∈ P and σP (b) ∈ {−1, 0, 1} = 1 − 1 = 1 − σP (a). Hence, it

follows from Lemma 2.5 that σP is a homomorphism of partial hyperfields.
To prove that the mapX(F ) → Hom(F,S), P ↦→ σP , is bijective, let σ : F → S

be a homomorphism of partial hyperfields. Then it follows from the proof of
Lemma 4.2 that P := σ−1({0, 1}) is an ordering of F (since obviously {0, 1} is
an ordering of S) such that σ = σP . Further, for all orderings P and Q of F we
have that σP = σQ implies P = Q, which proves our claim. □

4.4 Proposition. Let ι : F → F̂ be the canonical embedding into a hyperfield
(cf. Theorem and Definition 2.23). For every real preordering T of F there exists
a real preordering T̂ of F̂ such that T = ι−1(T̂ ).

Proof. First, recall that F̂ = Q(A)/∗R and ι : F → F̂ is defined by ι(0) := 0
and ι(a) := (a, 0)R for all a ∈ F ∗, where

A := {{(a, 0)} | a ∈ F ∗} ∪ {{(a, b)} | a, b ∈ F ∗ such that 1 ∈ a+ b}

is algebraically independent over Q, and R is the subgroup of Q(A)∗ generated
by −(−1, 0) and the elements

(a, 0)(b, 0)(ab, 0)−1, (c, d)(c, 0)−1, (1− (c, d))(d, 0)−1

for all a, b, c, d ∈ F ∗ such that 1 ∈ c+ d.
We define T̂ to be the subset of F̂ that contains 0 such that T̂ \ {0} is the

subgroup of F̂
∗

generated by the elements (c, 0)R, c ∈ T ∗, (1−(c, 0))R, c ∈ −T ∗,
as well as (c, 0)2R, c ∈ F \ T , and (1− (c, 0))2R, c ∈ F \ −T .

Clearly, T̂ · T̂ ⊆ F̂ . Since F̂
∗

is generated by −1, and the elements (c, 0)R
and (1− (c, 0))R, c ∈ F ∗, it follows that F̂

2 ⊆ T̂ .
As Lemma 4.1 yields that T ∗ is a subgroup of F ∗ and R does not contain any

element of the form 1− (a, 0), a ∈ F ∗, we have x ∈ T ∗ if and only if ι(x) ∈ T̂
∗

for all x ∈ F ∗. Thus, −1 /∈ T̂ and T = ι−1(T̂ ).
In order to prove T̂ + T̂ ⊆ T̂ , using the proof of Theorem and Definition 2.23

it is sufficient to show that x ∈ −T̂ implies 1 − x ∈ T , where x = (c, 0)R for
a c ∈ F ∗, or x = (d, e)R for d, e ∈ F ∗ such that 1 ∈ d+ e. In both cases this
follows directly from the definition of T̂ .
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4 Universal partial hyperfields of orientable matroids

Therefore, T̂ is a proper preordering of F̂ . Hence, [Mar06, Lemma 3.3] implies
our claim. □

4.5 Theorem. A partial hyperfield F is real if and only if −1 /∈
∑︁
F̂

2
, where

ι : F → F̂ is the canonical embedding of F into a hyperfield (cf. Theorem and
Definition 2.23).

Moreover, every proper preordering of a real partial hyperfield is real and is
equal to the intersection of all orderings containing it.

Proof. It was already proven by Marshall that F̂ is real if and only if −1 /∈
∑︁
F̂

2

(see [Mar06, Lemma 3.3]). Thus, if −1 /∈
∑︁
F̂

2
, there exists an ordering P̂ of

F̂ . As in the proof of Lemma 4.2, P := ι−1(P̂ ) is an ordering of F . Hence, F is
real in this case.

Conversely, let F be a real partial hyperfield and T a real preordering of
F . Using Proposition 4.4, there exists a real preordering T̂ of F̂ such that
T = ι−1(T̂ ). In particular, F̂ is real and therefore −1 /∈

∑︁
F̂

2
.

Further, let S be the intersection of all orderings that contain T . If there
existed an a ∈ S \T , we would have ι(a) ∈ Ŝ \ T̂ , where Ŝ is a real preordering of
F̂ such that S = ι−1(Ŝ). Since F̂ is a hyperfield, applying [Mar06, Proposition
3.4], would yield an ordering P̂ ⊇ Ŝ such that a /∈ P̂ . As ι is an embedding and
P := ι−1(P̂ ) would be an ordering of F , as above, we would obtain that a /∈ S,
a contradiction. □

4.6 Remark. By Lemma 4.1, −1 /∈
∑︁
F 2 is a necessary condition for F to be

real. However, unlike in the special case of hyperfields, it is not sufficient. Let G
be a group of exponent 2 of order at least 8, ε ∈ G \ {1} and set F := G ∪ {0}.
Then the sets (∆a)a∈G defined by

∆a :=

⎧⎪⎨⎪⎩
{1} if a = ε,

G if a = 1,

G \ {ε, a} else

for all a ∈ G satisfy (2.1). Further, let + be the unique partial hyperoperation
on F such that (1 − a) \ {0} = ∆a for all a ∈ G and ε = −1. It follows that
(F,+, ·) is a quasi-real reduced partial hyperfield that does not possess any
orderings.

Proof. In order to show that F is a partial hyperfield, using Proposition 2.2
and Remark and Definition 2.3, as well as the fact that a2 = 1 for all a ∈ G, it
suffices to show that for all a, b ∈ G we have that b ∈ ∆a implies a ∈ ∆b ∩∆εab.
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First, suppose there existed a ∈ G and b ∈ ∆a such that a /∈ ∆b. Then
∆ε = {1} and ∆1 = G would imply that a ̸= ε and b ̸= 1. Thus, a = b, leading
to the contradiction b /∈ ∆a.

Second, suppose there existed a ∈ G and b ∈ ∆a such that a /∈ ∆εab. Then
we would have either a ̸= 1 and εab = ε, or a ∈ {ε, εab} and εab ̸= 1, ε. The
former would imply that a = b ̸= 1 and thus b = a /∈ ∆a, a contradiction.

In the latter case we would obtain either that a = ε and b ̸= 1, ε, or b = ε
and a ̸= 1, ε, contradicting ε ∈ ∆g if and only if g = 1 for all g ∈ G.

Further, F is quasi-real reduced, as we have −1 /∈ {0, 1} =
∑︁
F 2. If there

existed an ordering P of F , there would exist an a ∈ −P \ {0,−1}. Therefore,
G \ {−1, a} = 1− a ⊆ P , which would imply P ∗ = F ∗, since P ∗ is a subgroup
of F ∗, a contradiction. □

Definition. Let F and F ′ be partial hyperfields. For any subgroup U of F ∗

we denote the set of homomorphisms f : F → F ′ such that U ⊆ ker∗f by
HomU (F, F

′).

4.7 Proposition and Definition. Let T be a real preordering of F . For all
a ∈ F we define āT : HomT ∗(F,S) → S, σ ↦→ σ(a). Setting āT · b̄T := abT and

āT + b̄T := {c̄T | σ(c) ∈ σ(a) + σ(b) for all σ ∈ HomT ∗(F,S)}

for all a, b ∈ F defines a real reduced hyperneofield QT (F ), called the canonical
real reduced hyperneofield of F with respect to T , on the set {āT | a ∈ F}.

Moreover, if f : F → F ′ is a homomorphism of partial hyperfields and T ′ is a
real preordering of F ′ such that T ⊆ f−1(T ′), then QT,T ′(f) : QT (F ) → QT ′(F ′),
āT ↦→ f(a)T ′ is also a homomorphism of partial hyperfields.

Proof. First, we will show that QT (F ) is a hyperneofield. Clearly, QT (F )
satisfies (PH1), (PH2), (PH4), and āT , b̄T ∈ āT + b̄T for all a, b ∈ F .

To prove (PH3), let a, b, c ∈ F such that c̄T ∈ āT + b̄T . It follows that
σ(c) ∈ σ(a) + σ(b) for all σ ∈ HomT ∗(F,S). Lemma 2.1 and Lemma 2.5 imply
that σ(b) ∈ σ(c) + σ(−a) for all σ ∈ HomT ∗(F,S). Therefore, b̄T ∈ c̄T +−aT .

To show (PH5), let a, b, c, d ∈ F such that d̄T ∈ āT (b̄T + c̄T ). Then there exists
an e ∈ F such that ēT ∈ b̄T + c̄T and aeT = d̄T . Thus, for all σ ∈ HomT ∗(F,S)
we obtain

σ(d) = σ(a)σ(e) ∈ σ(ab) + σ(ac).

Hence, d̄T ∈ āT b̄T + ātc̄T .
Further, our construction of QT implies that for any σ ∈ HomT ∗(F,S) the

map σ̄ : QT (F ), āT ↦→ σ(a) is a homomorphism of partial hyperfields, and for
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4 Universal partial hyperfields of orientable matroids

all a ∈ F such that āT ∈ 1 + 1 we get σ(a) ∈ 1 + 1 = {1}. Hence, āT = 1 and
therefore QT (F ) is real reduced.

Finally, we show that QT,T ′(f) is a homomorphism of partial hyperfields for
any homomorphism of partial hyperfields f : F → F ′ and real preorderings T
of F , T ′ of F ′ such that T ⊆ f−1(T ′). Let a, b ∈ F . If aT = bT , then for
every σ′ ∈ HomT ′∗(F ′, S) we have σ′ ◦ f ∈ HomT ∗(F,S) (since T ⊆ f−1(T ′))
and therefore σ′(f(a)) = σ′(f(b)). Thus, f(a)T ′ = f(b)T ′ and QT,T ′(f) is
well-defined.

Further, f(a)T ′ · f(b)T ′ = f(ab)T ′ and −1T ′ = f(−1)T ′ . Therefore, QT,T ′ is a
multiplicative homomorphism.

To prove that QT,T ′(f) is a homomorphism of partial hyperfields, let a, b, c ∈ F
such that c̄T ∈ āT + b̄T . We have σ(c) ∈ σ(a) + σ(b) for all σ ∈ HomT ∗(F,S).
Thus, σ′(f(c)) ∈ σ′(f(a)) + σ′(f(b)) for all σ′ ∈ HomT ′∗(F,S). Therefore, we
obtain f(c)T ′ ∈ f(a)T ′ + f(b)T ′ . Hence, Lemma 2.5 yields that QT,T ′(f) is a
homomorphism of partial hyperfields. □

4.8 Remark. By convention, we write Q(F ) instead of Q∑︁
F 2(F ) and Q(f)

instead of Q∑︁
F 2,

∑︁
F ′2(f), where f : F → F ′ is a homomorphism of real partial

hyperfields.
If g : F ′ → F ′′ is another homomorphism of real partial hyperfields, we have

Q(g ◦ f)(a) = g(f(a)) = Q(g)(f(a)) = Q(g)(Q(f)(a)).

for all a ∈ F . Thus, Q defines a functor from the category of real partial
hyperfields to the category of real reduced partial hyperfields.

4.9 Lemma. Let f : F → F ′ be a homomorphism of real partial hyperfields
and T and T ′ preorderings of F resp. F ′ such that T ⊆ f−1(T ′).

(a) If the map f∗ : HomT ′∗(F ′, S) → HomT ∗(F,S), σ′ ↦→ σ′ ◦ f is surjective,
QT,T ′(f) is an embedding.

(b) If QT,T ′(f) is surjective, f∗ is injective.

(c) If f is an epimorphism, QT,T ′(f) is also an epimorphism.

Proof. Let a, b, c, u ∈ F such that f(u)T ′ = 1 and f(c)T ′ ∈ f(a)T ′ + f(b)T ′ .
Then σ(f(u)) = 1 and σ(f(c)) ∈ σ(f(a)) + σ(f(b)) for all σ ∈ HomT ′∗(F ′, S).
Since f∗ is surjective this implies that σ(u) = 1 and σ(c) ∈ σ(a) + σ(b) for
all σ ∈ HomT ∗(F,S). Thus, uT = 1 and cT ∈ aT + bT . Hence, QT,T ′(f) is an
embedding, which shows (a).
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In order to prove (b), let σ′1, σ′2 ∈ HomT ′∗(F ′,S) such that σ′1 ◦ f = σ′2 ◦ f .
For each a′ ∈ F ′ there exists an a ∈ F such that a′T ′ = f(a)T ′ , since QT,T ′(f)
is surjective. Therefore, σ′1(a′) = σ′1(f(a)) = σ′2(f(a)) = σ′2(a

′).
To show (c), let f be an epimorphism, U := ker∗f , F̃ := F/∗U and π : F → F̃

be the canonical projection. Using Proposition 2.15, there exists a homomor-
phism f̃ : F̃ → F ′ such that f̃ ◦ π = f . It follows from Lemma 4.2 that
T̃ := f̃

−1
(T ′) is a real preordering of F̃ . In particular, F̃ is real.

Thus, QT̃ ,T ′(f̃) ◦QT,T̃ (π) = QT,T ′(f). Since f̃ is an isomorphism by Corol-
lary 2.16, QT̃ ,T ′(f̃) is a surjective embedding by part (a) of this lemma. Therefore,
Proposition 2.14 yields that QT̃ ,T ′(f̃) is an isomorphism. Hence, it suffices to
show that QT,T̃ (π) is an epimorphism.

Set U := {u | u ∈ U} and let π : QT (F ) → QT (F )/∗U be the canonical
projection. Clearly, U is a subgroup of ker∗Q(f). Thus, Proposition 2.15 implies
that there exists a surjective homomorphism g : QT (F )/∗U → Q(F̃ ) such that
g ◦ π = QT,T̃ (π).

Let a1, a2, a3 ∈ F such that a3U ∈ g(a1U) + g(a2U) = a1U + a2U . For
each σ ∈ Hom(Q(F )/∗U,S), applying Proposition 2.15, there exists a unique
σ̃ ∈ Hom(F̃ ,S) such that σ̃ ◦ π = σ ◦ π ◦ h, where h : F → Q(F ), a ↦→ a, since
obviously U ⊆ ker∗(σ ◦ π ◦ h).

Then σ̃(a3U) ∈ σ̃(a1U) + σ̃(a2U) and therefore σ(a3U) ∈ σ(a1U) + σ(a2U).
Hence, a3U = g(a3U) ∈ g(a1U + a2U). Thus, g is strong and Proposition 2.14
implies that g is an isomorphism, which in turn yields that QT,T̃ (π) is an
epimorphism, as desired. □

4.10 Proposition. Let T be a real preordering of F and qT : F → QT (F ),
a ↦→ aT . Then q−1

T ({0, 1}) = T and we further have

(a) qT is an epimorphism if and only if for all a ∈ F \ −T the set T + Ta is a
preordering of F and F = T ∗ − T ∗,2

(b) the map q∗T : Hom(QT (F ),S) → HomT ∗(F,S), σ ↦→ σ ◦ qT , is a bijection.
In particular, Q(QT (F )) ∼= QT (F ).

(c) if F is a hyperfield, QT (F ) is also a hyperfield.

Proof. First, note that (c) was already proven by Marshall in [Mar06, Corollary
4.4].

By definition of QT (F ), for all a ∈ F ∗ we have aT = 1 if and only if σ(a) = 1
for all σ ∈ HomT ∗(F,S). Thus, it follows from Proposition 4.3 that ker∗qT is

2In fact, in this case we have QT (F ) ∼= F/∗T , cf. Corollary 2.16. This condition is always
satisfied if F is a hyperfield, cf. [Mar06].
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4 Universal partial hyperfields of orientable matroids

the intersection of all P ∗, where P ⊇ T is an ordering of F . Hence, Theorem 4.5
yields that ker∗qT = T ∗ and q−1

T ({0, 1}) = T .
In order to prove (a), we will use the fact that qT is an epimorphism if and

only if it is final, which follows from Proposition 2.14 since qT is surjective by
definition of QT (F ).

Let qT be final. Clearly, 0 ∈ T ∗ − T ∗. For a ∈ F ∗ we have σ(a) ∈ 1− 1 for all
σ ∈ Hom(F,S). Thus, aT ∈ 1− 1 and therefore there exist s, t ∈ T ∗ such that
as ∈ 1− t. Hence, a ∈ s−1 − s−1t ⊆ T ∗ − T ∗.

Further, let a ∈ F \−T and S the intersection of all orderings of F containing
T ∪ {a}. Clearly, T + Ta ⊆ S. If b ∈ S∗, then Proposition 4.3 implies that
σ(b) ∈ 1 + σ(a) for all σ ∈ HomT ∗(F,S) such that σ(a) = 1. Thus, bT ∈ 1 + aT .

Therefore, there exist s, t ∈ T ∗ such that bs ∈ 1 + ta. This implies that
b ∈ s−1 + s−1ta ⊆ T + Ta. Hence, T + Ta = S is a preordering of F .

Conversely, let F = T ∗ − T ∗ and T + Ta be a preordering of F for all
a ∈ F \ −T . Let a, b ∈ F ∗ such that bT ∈ 1 + aT . We have to show that there
exist a′ ∈ F ∗ and b′ ∈ 1 + a′ such that a′T = aT and b′T = bT .

If a ∈ −T , then aT = −1. Let s, t ∈ T ∗ such that b ∈ s − t. Set b′ := bs−1

and a′ := −ts−1. Thus, a′T = −1, b′T = bT and b′ ∈ 1 + a′.
Similarly, if b ∈ T , we set a′ := at−1 and b′ := st−1 for s, t ∈ T ∗ such that

a ∈ s − t, and if b ∈ Ta, we set a′ := at and b′ := as for s, t ∈ T ∗ such that
a−1 ∈ s− t.

Otherwise, a ∈ F \ −T and b ∈ F \ (T ∪ Ta). Thus, T + Ta is a proper
preordering (if −1 = s+ ta for s, t ∈ T , we would get t ∈ T ∗, as T is proper and
hence a = −t−1−t−1s ∈ −T , a contradiction) and therefore real by Theorem 4.5.

Since σ(b) ∈ 1 + σ(a) for all σ ∈ HomT ∗(F,S), Proposition 4.3 implies
that b ∈ P for all orderings P of F such that T ⊆ P and a ∈ P . Applying
Theorem 4.5, their intersection is T + Ta. Hence, b ∈ T + Ta and there exist
s, t ∈ T such that b ∈ s+ ta.

Moreover, s, t ∈ T ∗ (since s = 0 resp. t = 0 would imply that b ∈ T resp.
b ∈ Ta). Thus, b′ ∈ 1 + a′ for a′ := tas−1 and b′ := bs−1. Further, b′T = bT and
a′T = aT , which proves (a).

In order to show (b), let σ ∈ HomT ∗(F,S) and σ : QT (F ) → S, aT ↦→ σ(a).
Since T ∗ ⊆ ker∗σ, we get that σ is a multiplicative homomorphism. If a, b, c ∈ F
such that cT ∈ aT + bT , it follows that

σ(cT ) = σ(c) ∈ σ(a) + σ(b) = σ(aT ) + σ(bT ).

Hence, σ ∈ Hom(QT (F ), S) using Lemma 2.5.
Further, σ = q∗T (σ) and thus q∗T is surjective. As this is also true for qT the ho-
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momorphism QT,{0,1}(qT ) : QT (F ) → Q(QT (F )), which maps āT to qT (a){0,1},
3

is surjective. Therefore, applying Lemma 4.9 twice, we get that q∗T is bijective
and QT,{0,1}(qT ) is a surjective embedding. Hence, Proposition 2.14 yields that
it is an isomorphism. □

For the convenience of the reader we recall the definition of spaces of orderings
from [Mar96]. We will use the first two axioms to define prespaces of orderings.
It follows from [Mar96, Proof of Theorem 2.2.4] that a prespace of orderings in
our sense is a prespace of orderings in the usual sense (cf. [ABR96, Chapter III,
Proposition and Definition 1.1]).

Definition. Let X be a non-empty set and G be a subgroup of {−1, 1}X .4

Further, let χ(G) be the group of quadratic characters of G and ιX : X → χ(G)
the function defined by ι(x)(a) := a(x) for all x ∈ X, a ∈ G.

For a, b ∈ G we set

D⟨a, b⟩ := {c ∈ G | c(x) ∈ {a(x), b(x)} for all x ∈ X}.

A tuple (X,G) is called a prespace of orderings if it satifies the following two
axioms:

(AX1) X is non-empty, G is a subgroup of {−1, 1}X , contains the constant
−1 function and separates points in X (i.e. for all x, y ∈ X, x ̸= y,
there is an a ∈ G such that a(x) ̸= a(y)),

(AX2) if x ∈ χ(G) satisfies x(−1) = −1 and a, b ∈ kerx ⇒ D⟨a, b⟩ ⊆ kerx,
then x is in the image of ιX .

It is called further a space of orderings if it additionally satisfies:

(AX3) For all a1, a2, a3 ∈ G and b ∈ D⟨a1, c⟩ for some c ∈ D⟨a2, a3⟩, we
have b ∈ D⟨d, a3⟩ for some d ∈ D⟨a1, a2⟩.

If (X,G) and (Y,H) are (pre)spaces of orderings, a morphism α : (X,G) →
(Y,H) of (pre)spaces of orderings is a function α : X → Y such that

H → G, a ↦→ a ◦ f

is a group homomorphism.
3Proposition and Definition 4.7 yields that QT (F ) is real reduced.
4For a, b ∈ {−1, 1}X we define a · b : X → {−1, 1}, x ↦→ a(x)b(x).
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4.11 Theorem. The tuple (HomT ∗(F,S), QT (F )
∗) is a prespace of orderings

for any real preordering T of F . It is a space of orderings if and only if QT (F )
is a hyperfield.

Furthermore, if f : F → F ′ is a homomorphism of partial hyperfields and T ′

is a real preordering of F ′ such that T ⊆ f−1(T ′),

f∗ : HomT ′∗(F ′,S) → HomT ∗(F,S), σ ↦→ σ ◦ f

is a morphism of prespaces of orderings.

Proof. Set X := HomT ∗(F,S) and G := QT (F )
∗. Clearly, (X,G) satifies (AX1)

by construction. We will first show that D⟨aT , bT ⟩ = (aT + bT ) \ {0} for all
a, b ∈ F ∗.

Let c ∈ F ∗. By definition, cT ∈ D⟨aT , bT ⟩ if and only if aT (σ) = bT (σ) implies
that cT (σ) = aT (σ) = bT (σ) for all σ ∈ X. Since dT (σ) = σ(d) for all d ∈ F
and σ ∈ X, this is equivalent to σ(c) ∈ σ(a) + σ(b) for all x ∈ X, which is by
definition true if and only if cT ∈ aT + bT .

To prove (AX2), let x ∈ χ(G) such that x(−1) = −1 and D⟨a, b⟩ ⊆ kerx for
all a, b ∈ kerx. We define σ : F → S by σ(0) := 0 and σ(a) := x(āT ) for all
a ∈ F ∗. Obviously, σ is a multiplicative homomorphism.

Let a, b ∈ F ∗ such that b ∈ 1 − a. Then we get bT ∈ 1 − aT , which yields
bT ∈ D⟨1,−aT ⟩. Thus, if -σ(a) = x(−aT ) = 1, it follows that σ(b) = x(bT ) = 1.
This implies that σ(b) ∈ 1− σ(a).

Hence, by Lemma 2.5 we get that σ ∈ HomT ∗(F,S) and ιX(σ) = x, since
āT (σ) = σ(a) = x(āT ) for all a ∈ F ∗.

In order to show that (X,G) satisfies (AX3) if and only ifQT (F ) is a hyperfield,
let a1, a2, a3 ∈ F . Note that if 0 ∈ {a1, a2, a3}, we have

a1T + (a2T + a3T ) = b1T + b2T = (a1T + a2T ) + a3T

for {a1, a2, a3} = {0, b1, b2}.
Further, 0 ∈ a1T + (a2T + a3T ) yields that −a1T ∈ a2T + a3T , and therefore

−a3T ∈ a1T + a2T . Thus, 0 ∈ (a1T + a2T ) + a3T . Since bT , cT ∈ bT + cT for all
b, c ∈ F , we have biT ∈ b1T + (b2T + b3T ), i = 1, 2, 3 for all b1, b2, b3 ∈ F . Hence,
(X,G) satisfies (AX3) if and only if QT (F ) is a hyperfield. Finally, Proposition
and Definition 4.7 implies the last part of our claim. □

4.12 Proposition. Let (X,G) be a prespace of orderings. For all a ∈ G ∪ {0}
we set 0 · a := a · 0 := 0 and a+ 0 := 0 + a := {a}. Further, let

a+ b :=

{︄
D⟨a, b⟩ ∪ {0} if a = −b,
D⟨a, b⟩ if a ̸= −b
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for all a, b ∈ G. Then Q(X,G) := (G ∪ {0}, ·,+) is a real reduced hyperneofield
whose orderings are of the form Px := {a ∈ G | a(x) = 1} ∪ {0}, x ∈ X.

Moreover, if α : (X,G) → (Y,H) is a morphism of prespaces of orderings,
Q(α) : Q(Y,H) → Q(X,G) defined by Q(α)(0) := 0 and Q(α)(a) := a ◦ α for
all a ∈ G is a homomorphism of partial hyperfields.

Proof. By construction, (G,−1) is a multiplicative structure and for all a, b ∈ G
we have {a, b} ⊆ D⟨a, b⟩ ⊆ a + b. In order to show that Q(X,G) is a partial
hyperfield using Remark and Definition 2.3 and the fact that a2 = 1 for all
a ∈ G, it suffices to prove that

b ∈ D⟨1,−a⟩ ⇒ a ∈ D⟨1,−b⟩ ∩D⟨1, ab⟩

for all a, b ∈ G. Let a, b ∈ G such that b ∈ D⟨1,−a⟩. Thus, for all x ∈ X we have
that a(x) = −1 implies b(x) = 1. It follows directly that for all x ∈ X we have
that b(x) = −1 or (ab)(x) = 1 imply a(x) = 1. Hence, a ∈ D⟨1,−b⟩ ∩D⟨1, ab⟩.

By construction of Px, and definition of + and D⟨a, b⟩ for all a, b ∈ G, the
sets Px are orderings of Q(X,G) for all x ∈ X.

It follows that Q(X,G) is a real hyperneofield (X ̸= ∅), which is reduced
since (AX1) implies that a(x) = 1 for all x ∈ X if and only if a = 1 and thus
D⟨1, 1⟩ = {1}.

Conversely, let P be an ordering and σP : G ∪ {0} → S be the corresponding
homomorphism of partial hyperfields (see Proposition 4.3). Since P ∗ +P ∗ ⊆ P ∗

by Lemma 4.1, the restriction of σ to G is a character of G satisfying the
precondition of (AX2). Thus, there exists an x ∈ X such that P = Px.

It remains to show that Q(α) is a homomorphism of partial hyperfields for
any morphism of prespaces of orderings α : (X,G) → (Y,H). Clearly, Q(α) is
by definition a multiplicative homomorphism.

Let a, b ∈ H such that b ∈ D⟨1,−a⟩. Thus, for all y ∈ Y we have that
a(y) = −1 implies b(y) = 1. For x ∈ X such that a(α(x)) = Q(α)(a)(x) = −1
we get Q(α)(b)(x) = b(α(x)) = 1. Hence, Q(α)(b) ∈ D⟨1,−Q(α)(a)⟩. Using
Lemma 2.5, we get that Q(α) is a homomorphism of partial hyperfields. □

4.13 Corollary. We have Q(HomT ∗(F,S), QT (F )
∗) = QT (F ) for every pre-

ordering T of F . Further, if f : F → F ′ is a homomorphism of partial hy-
perfields and T ′ is a real preordering of F ′ such that T ⊆ f−1(T ′), we have
Q(f∗) = QT,T ′(f).

In particular, the category of real reduced hyperneofields and the category of
prespaces of orderings, as well as the category of spaces of orderings, and the
category of real reduced hyperfields are equivalent.5

5For the case of spaces of orderings and real reduced hyperfields this was already proven by
Marshall, cf. [Mar06, p. 461].
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Proof. It follows from the proof of Theorem 4.11 and Proposition 4.12 that
Q(HomT ∗(F,S), QT (F )

∗) = QT (F ). Further, for any a ∈ F we have

Q(f∗)(aT )(σ
′) = aT (f

∗(σ′)) = aT (σ
′ ◦ f) = σ′(f(a)) = f(a)T ′(σ

′)

for all σ′ ∈ HomT ′∗(F ′, S). Thus, Q(f∗) = QT,T ′(f). □

4.2 Orientable Matroids

In this section, we will use the characterization of orientations of matroids by
Dress and Wenzel in [DW89] to show that the classes of orientations modulo
projective equivalence of a matroid M correspond to the homomorphism of
partial hyperfields from the universal partial hyperfield U(0)(M) to the sign
hyperfield S.

For the theory of oriented matroids we refer the reader to [Bjö+99].

Definition. Let M = (E,B) be a matroid of rank n ∈ N0. A chirotope of M is
a map χ : En → {−1, 0, 1} which satisfies the following three properties:

(Ch1) The bases ofM are the subsets {e1, . . . , en} of E where χ(e1, . . . , en) ̸= 0,

(Ch2) χ is alternating, that is, for all e1, . . . , en and π ∈ Sn we have

χ(eπ(1), . . . , eπ(n)) = signσ · χ(e1. . . . , en)

(Ch3) for all e0, . . . , en, f2 ∈ E either all of the terms

ξi := (−1)iχ(e0, . . . , ˆ︁ei, . . . , en)χ(ei, f2, e3, . . . , en), i = 0, 1, 2,

are equal to zero or ξi = −ξj ̸= 0 for some i, j = 0, 1, 2.6

Let χ : En → {−1, 0, 1} be a chirotope of M . For any α ∈ {−1, 1} and any map
η : E → {−1, 1} the map

χα,η : E
n → {−1, 0, 1}, (e1, . . . , en) ↦→ α

(︄
n∏︂

i=1

η(ei)

)︄
χ(e1, . . . , en)

is also a chirotope of M . Two chirotopes χ, χ′ of M are called projectively
equivalent if there exist α ∈ {−1, 1} and η : E → {−1, 1} such that χ′ = χα,η.
M is called orientable if there exists a chirotope χ : En → {−1, 0, 1} for M .

6See Remark 4.15.
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4.14 Proposition. Let M = (E,B) be a matroid of rank n ∈ N0.

(a) A map χ : En → {−1, 0, 1} is a chirotope of M if and only if it is a
Grassmann-Plücker map for M and S.

(b) A multiplicative homomorphism σ : U(0)(M) → S is a homomorphism of
partial hyperfields if and only if for all (H1, H2, H3, H4) ∈ H+

4 exactly one
of the values

σ([H1, H2 |H3, H4]), σ([H1, H3 |H4, H2]), σ([H1, H4 |H2, H3])

is equal to −1.7

Proof. First, note that for any map χ : En → {−1, 0, 1} that satisfies (Ch1),
(Ch2) is equal to (3.2) from Proposition and Definition 3.15.

Moveover, since 0 ∈ a0 + a1 + a2 for all ai ∈ S, i = 0, 1, 2, if and only if
ai = −aj for some i, j = 0, 1, 2, (Ch3) is equivalent to (3.3) from Proposition and
Definition 3.15. Thus, (a) follows directly from Proposition and Definition 3.15.

In order to prove (b), let σ : U(0)(M) → S be a multiplicative homomorphism
and (H1, H2, H3, H4) ∈ H+

4 . Thus, either all or exactly one of the values

σ([H1, H2 |H3, H4]), σ([H1, H3 |H4, H2]), σ([H1, H4 |H2, H3])

are equal to −1. Hence, we have σ([H1, H3 |H2, H4]) ∈ 1− σ([H1, H2 |H3, H4])
if and only if σ([H1, H2 |H3, H4]) = −1 implies that σ([H1, H3 |H4, H2]) = 1.

Since Lemma 2.5 yields that σ is a homomorphism of partial hyperfields if
and only if we have σ(b) ∈ 1− σ(a) for all a, b ∈ U(0)(M)∗ such that b ∈ 1− a,
applying Proposition and Definition 3.4 completes our proof. □

4.15 Remark. Let M = (E,B) be a matroid of rank n ∈ N0.

(a) Instead of (Ch3), frequently the following equivalent axiom is used to
define orientations of matroids: for e0, . . . , en, f2, . . . , fn ∈ E either all of
the terms

ξi := (−1)iχ(e0, . . . , ˆ︁ei, . . . , e0)χ(ei, f2, . . . , fn), i = 0, . . . , n,

are equal to zero or ξi = −ξj ̸= 0 for some i, j = 0, . . . , n.

(b) It follows from part (b) of Proposition 4.14, [DW90, Proposition 2.19]
and the last sentence of Lemma 3.34 that an ordering of the universal
partial hyperfield of a projective geometry is an ordering of the projective
geometry in the classical sense,8 and vice versa.

7A similar characterization was already given by Dress and Wenzel, cf. [DW89, Theorem 6.1].
8See [KK88, p. 125].
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4 Universal partial hyperfields of orientable matroids

4.3 Uniform matroids

We will use the methods developed in the two previous sections to characterize
the preorderings and orderings of uniform matroids of rank 2.

We will employ this characterization to investigate the canonical real reduced
hyperneofield of a uniform matroid and prove that it is not a hyperfield unless
the uniform matroid is regular or isomorphic to U2,4. This proves that there
exist matroids whose canonical real reduced hyperneorfield is not a hyperfield
and thus the corresponding prespace of orderings is not a space of orderings in
the sense of Marshall.

4.16 Lemma. Let E be a set and ∞, 0, 1 ∈ E be pairwise different.

(a) For any partial order ≤ on E satisfying 0 ≤ 1 and a ≤ ∞ for all a ∈ E,
the (multiplicative) submonoid T≤ of U{E} generated by U2

{E} and the
elements a− b for a, b ∈ E \ {∞} such that b < a is a real preordering of
U{E}.

(b) For every proper preordering T of U{E} there exists a partial order ≤ on E
such that T = T≤ that satisfies 0 ≤ 1 and a ≤ ∞ for all a ∈ E. Moreover,
T is an ordering if and only if ≤ is total.

Proof. In order to prove (a), let ≤ be a partial order. Then T ∗
≤ := T≤ \ {0} is

a subgroup of U∗
{E} since for each t ∈ T ∗

≤ we have t−1 = t−2t. Therefore, similar
to the proof of Lemma 2.5, it suffices to show that 1− t ∈ T≤ for all t ∈ −T ∗

≤.
Using Theorem and Definition 2.20, we have to consider two cases:

If −a−b
a−c ∈ T≤ for pairwise different a, b, c ∈ E \ {∞}, it follows that b < a < c

or c < a < b. Thus, c−b
c−a ∈ T≤.

Else, if − (a−c)(b−d)
(a−d)(b−c) ∈ T≤ for pairwise different a, b, c, d ∈ E \ {∞}, we obtain

that one of the following eight statements

a < c < b < d, a < d < b < c, b < c < a < d, b < d < a < c,

c < b < d < a, d < b < c < a, c < b < d < a, d < a < c < b

is true. Therefore, (a−b)(c−d)
(a−d)(c−b) ∈ T≤. Hence, T≤ is a preordering.

To show (b), let T be a proper preordering of U{E}. We define ≤ by a ≤ ∞ for
all a ∈ E, and a ≤ b if b− a ∈ T for all a, b ∈ E \ {∞}. Clearly, ≤ is reflexive.

If there existed a, b ∈ E \ {∞} such that a ≤ b, b ≤ a and a ̸= b, we would
get −1 = −a−b

b−a ∈ T , a contradiction.
Moreover, let a, b, c ∈ E \ {∞} such that a ≤ b and b ≤ c. Then

c− a = (c− b) + (b− a) ∈ T + T ⊆ T

80



4.3 Uniform matroids

and therefore a ≤ c. Hence, ≤ is a partial order. By construction, we have
T = T≤.

Since obviously T≤ ⊆ T≤′ if and only if ≤′ extends ≤, and every partial order
extends to a linear order (cf. [Szp30]), we get that T≤ is an ordering if and only
if ≤ is total. Furthermore, this yields that T≤ is real for every partial order ≤.□

4.17 Lemma. Let E be a set and ∞, 0, 1 ∈ E be pairwise different.

(a) A map χ : E2 → {−1, 0, 1} is a chirotope of U2,E such that χ(a,∞) = 1 for
all a ∈ E \ {∞} if and only if ≤ defined by a ≤ b ⇔ χ(a, b) ∈ {0, 1} for
all a, b ∈ E is a total order on E. Furthermore, this defines a one-to-one
mapping between the chirotopes of U2,E and the total orders on E such
that a ≤ ∞ for all a ∈ E.

(b) A multiplicative homomorphism σ : U(0)(U2,E) → S is a homomorphism
of partial hyperfields if and only if there exists a total order ≤ on E such
that

σ([{∞}, {a} | {b}, {c}]) = −1 ⇔ b < a < c or c < a < b (4.1)

for all pairwise different a, b, c ∈ E \ {∞}. Moreover, this defines a one-to-
one mapping between the orderings of U(0)(U2,E) and the total orders ≤
on E such that 0 ≤ 1 and a ≤ ∞ for all a ∈ E.

Proof. To prove (a), let χ : E2 → {−1, 0, 1} be a map. Obviously, ≤ defined by
a ≤ b if and only if χ(a, b) ∈ {0, 1} for all a, b ∈ E is a reflexive, antisymmetric,
and total relation if and only if χ satisfies (Ch1) and (Ch2).

Clearly, for all a ∈ E \ {∞} we have that χ(a,∞) = 1 is equivalent to a ≤ ∞.
Thus, it remains to show that if χ satisfies (Ch1), (Ch2), and χ(a,∞) = +1 for
all a ∈ E \ {∞}, then it satisfies (Ch3) if and only if ≤ is transitive.

Let e0, e1, e2 ∈ E such that e0 ≤ e1 and e1 ≤ e2. If ∞ ∈ {e0, e1, e2}, we have
e2 = ∞, and thus e0 ≤ e2. Otherwise, set f2 := ∞, and let

ξ0 := χ(e1, e2)χ(e0, f2), ξ1 := −χ(e0, e2)χ(e1, f2), ξ2 := χ(e0, e1)χ(e2, f2).

Straightforward computation yields that ξ0, ξ2 ∈ {0, 1} and ξ1 = −χ(e0, e2). It
follows from (Ch3) that ξ1 ∈ {0,−1}. Hence, e0 ≤ e2.

Conversely, let ≤ be transitive and e0, e1, e2, f2 ∈ E. Let ξi, i = 0, 1, 2, be
defined as above. We may assume without loss of generality that f2 /∈ {e0, e1, e2},
since otherwise trivially ξi = 0 for all i = 0, 1, 2 by (Ch1), and that e0, e1, e2 are
pairwise different, as otherwise (Ch3) is implied by (Ch2) in this case.

Up to multiplication by −1, the ξi, i = 0, 1, 2, are invariant under permutations
of the ei, i = 0, 1, 2, and exchange of e0 and f2. Therefore, we may further assume
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4 Universal partial hyperfields of orientable matroids

without loss of generality that χ(ei, f2) = 1 for all i = 0, 1, 2, χ(e0, e1) = 1 and
χ(e1, e2) = 1. Thus, e0 ≤ e1 and e1 ≤ e2. It follows that e0 ≤ e2 and hence
ξ1 = −1 = ξ0.

The last sentence of (a) follows trivially.

To show (b), first note that using Proposition 3.2, Proposition and Defini-
tion 3.15, and Proposition 4.14 we get that a multiplicative homomorphism
σ : U(0)(U2,E) → S is a homomorpism of partial hyperfields if and only if there
exists a chirotope χ : E2 → {−1, 0, 1} of M such that

σ([{a}, {b} | {c}, {d}]) := χ(a, c)χ(a, d)χ(b, c)χ(b, d)

for all pairwise different a, b, c, d ∈ E.

Since projectively equivalent chirotopes induce the same σ, we can assume
without loss of generality that χ(0, 1) = χ(a,∞) = 1 for all a ∈ E \ {∞}
(otherwise replace χ by χα,η for η : E → {−1, 1} and α ∈ {−1, 1} defined by
η(a) := χ(a,∞) for all a ∈ E \ {∞}, and η(∞) := α := η(0)η(1)χ(0, 1)).

Since σ([{∞}, {a} | {d}, {c}]) = χ(a, b)χ(a, c) for all a, b, c ∈ E \ {∞}, it
follows directly from (a) that σ is a homomorphism of partial hyperfields if and
only if there exists a total order ≤ on E satisfying (4.1), 0 ≤ 1, and a ≤ ∞ for
all a ∈ E.

As for all a, b ∈ E \ {∞, 0}, a ̸= b, we have σ([{∞}, {0} | {1}, {a}]) = χ(0, a)
and σ([{∞}, {a} | {0}, {b}]) = χ(a, 0)χ(a, b), the total order ≤ is uniquely de-
termined by these conditions, which completes our proof. □

To simplify the notation for the rest of this section we will write [a, b | c, d] for the
cross-ratio [{a}, {b} | {c}, {d}] of U2,E , where a, b, c, d ∈ E, E a set containing at
least 2 elements and further [a, b | c, d] for [{a}, {b} | {c}, {d}]T ∈ QT (U(0)(U2,E)),
where the preordering T of U(0)(U2,E) is known from the context.

4.18 Example. Let E = {∞, 0, 1, a, b} be a set of five elements. Then U2,E

has exactly twelve orderings σi, i = 1, . . . , 12, corresponding to the linear orders
≤ on E such that e ≤ ∞ for all e ∈ E and 0 < 1.

Their values on the cross-ratios α := [∞, 0 | 1, a] and α′ := [∞, 1 | a, 0], as well
as β := [∞, 0 | 1, b], β′ := [∞, 1 | b, 0], and γ := [∞, a | 0, b] are
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4.3 Uniform matroids

i Linear order σi(α) σi(α
′) σi(β) σI(β

′) σ(γ)

σ1 0 < 1 < a < b <∞ +1 −1 +1 −1 +1
σ2 0 < 1 < b < a <∞ +1 −1 +1 −1 −1
σ3 0 < a < 1 < b <∞ +1 +1 +1 −1 +1
σ4 0 < b < 1 < a <∞ +1 −1 +1 +1 −1
σ5 0 < a < b < 1 <∞ +1 +1 +1 +1 +1
σ6 0 < b < a < 1 <∞ +1 +1 +1 +1 −1
σ7 a < 0 < 1 < b <∞ −1 +1 +1 −1 −1
σ8 b < 0 < 1 < a <∞ +1 −1 −1 +1 −1
σ9 a < 0 < b < 1 <∞ −1 +1 +1 +1 −1
σ10 b < 0 < a < 1 <∞ +1 +1 −1 +1 −1
σ11 a < b < 0 < 1 <∞ −1 +1 −1 +1 −1
σ12 b < a < 0 < 1 <∞ −1 +1 −1 +1 +1.

4.19 Lemma. Let E = {∞, 0, 1, a, b} be a set of five elements. For pairwise
different a1, a2, a3, a4, b1, b2, b3, b4 ∈ E such that {a1, a2, a3, a4} ≠ {b1, b2, b3, b4}
we obtain

1 + α = {1, α}, 1− α = {1,−αα′,−α, α′}, 1± αβ = {1,±αβ}

for α := [a1, a2 | a3, a4], α′ := [a1, a3 | a4, a2], β := [b1, b2 | b3, b4] ∈ Q(U2,E).

Proof. Let Q := Q(U2,E). Regarded as vector space over F2, Q∗ and the group
G of all monoid homomorphism σ : Q → S together with the multiplication
defined by σ · σ′ : Q→ S, x ↦→ σ(x)σ′(x) for all σ, σ′ ∈ G are dual to each other
and have dimension 6.

Clearly, the set 1 + x is the annihilator of the subspace {σ ∈ G | σ(x) = 1} of
G and contains {1, x} for all x ∈ Q. Moreover, Proposition and Definition 4.7
implies that α′ ∈ 1− α. Hence, also −αα′ ∈ 1− α.

Since |E| = 5, the intersection of {a1, a2, a3, a4} and {b1, b2, b3, b4} contains
exactly three points. Therefore, we can assume without loss of generality that
a1 = b1 = ∞, b2 = a2 = 0, b3 = a3 = 1, a4 = a, and b4 = b.

Using Example 4.18, we compute that {σ ∈ G | σ(x) = 1} has dimension 4 if
x = −α, and dimension 5 if x ∈ {α,±αβ}. Thus, |1 + α| = 2 = |1 +±αβ| and
|1− α| = 4. □

4.20 Lemma. Let E = {∞, 0, 1, a, b} be a set of five elements. Then Q(U2,E)
is not a hyperfield.
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4 Universal partial hyperfields of orientable matroids

Proof. Let α := [∞, 0 | 1, a], α′ := [∞, 1 | a, 0], and α′′ := [∞, a | 0, 1]. Further,
we set β := [∞, 0 | 1, b], β′ := [∞, 1 | b, 0], and β′′ := [∞, b | 0, 1]. It follows from
Lemma 3.3 that αα′α′′ = −1 = ββ′β′′. Therefore, Lemma 4.19 yields that

(−α′ + 1)− αβ′ = {1, α,−α′,−αα′} − αβ′

= {1,−αβ′} ∪ α(1− β′) ∪ (−α′)(1− α′′β′) ∪ α′′(1 + α′β′)

= {1, α, αβ,−α′,−αα′,−αβ′,−aββ′},
⊋ {1, α,−α′,−αα′,−αβ′},
= {1− α} ∪ −α′(1− α′′β′)

= −α′ + {1,−αβ′} = −α′ + (1− αβ′).

Hence, Q(U2,E) is not a hyperfield. □

4.21 Lemma. Let E be a set of at least n ∈ N, n ≥ 2, elements. Then the
map β : U(0)(Un,E) → U(0)(U2,E) defined by β(0) := 0, β(−1) := −1 and

β([H1, H2 |H3, H4]) := [a1, a2 | a3, a4]

for every hyperline L of Un,E , pairwise different a1, a2, a3, a4 ∈ E \ L and
Hi := L ∪ {ai}, i = 1, 2, 3, 4, is an epimorphism of partial hyperfields.

Proof. Let β̃ : F(0)(Un,E) → T(0)(U2,E) be the group homomorphism defined
by β̃(ε) := ε and

β̃((H1, H2 |H3, H4)) := [a1, a2 | a3, a4]

for every hyperline L of Un,E , pairwise different a1, a2, a3, a4 ∈ E \ L and
Hi := L ∪ {ai}, i = 1, 2, 3, 4.

Obviously, the kernel of β̃ is contained in K(0)(Un,E) and contains the elements
of (CR0) – (CR4). Further, neither the Fano matroid nor its dual is a minor of
any uniform matroid.

Finally, let H1, . . . ,H9 be hyperplanes of Un,E that satisfy (i) – (v) from
(CR6). Then there exists a subset P ⊆ E of n−3 elements and pairwise different
a1, a2, a3, a, a

′ ∈ E \ P such that Hi := P ∪ {aj , ak} for all {i, j, k} = {1, 2, 3},
Hi+3 := P ∪ {ai, a} and Hi+6 := P ∪ {ai, a′} for all i = 1, 2, 3. Thus, we obtain

β̃((H1, H2 |H6, H9) · (H2, H3 |H4, H7) · (H3, H1 |H5, H8))

= [a1, a2 | a, a′] · [a2, a3 | a, a′] · [a3, a1 | a, a′] = 1.

Therefore, ker β̃ = K(0)(Un,E).
By construction we have β([H1, H2 |H3, H3]) = β̃((H1, H2 |H3, H4)) for all

(H1, H2, H3, H4) ∈ H4(U2,E). Hence, Lemma 2.5 and Proposition and Defini-
tion 3.4 complete our proof. □
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4.22 Theorem. For any integer n ≥ 2 and any set E that contains at least
max{5, n+ 2} elements Q(Un,E) is not a hyperfield.

Proof. Since we obtain U(0)(Un,E) ∼= U(0)(U|E|−n,E) for finite E using Proposi-
tion 3.11, it suffices to consider the case |E| ≥ 2n.

Further, if n ≥ 3, then |E| − (n− 2) ≥ n+ 2 ≥ 5 and therefore there exists
a hyperline L of Un,E and a 5-element set E′ ⊆ E \ L such that ∞, 0, 1 ∈ E′

are pairwise different. Set F := Q(Un,E), F ′ := Q(U2,E′). Using Proposition 3.6
and Proposition and Definition 4.7, the map α : F ′ → F defined by α(0) := 0,
α(−1) := −1, and

α([a1, a2 | a3, a4]) := [L ∪ {a1}, L ∪ {a2} |L ∪ {a3}, L ∪ {a4}]

is a homomorphism of partial hyperfields.
It is now sufficient to construct a subgroup U ⊆ F ∗ such that π ◦ α is an

isomorphism, where π : F → F/∗U denotes the canonical projection, because, if
F was a hyperfield, then Proposition 4.10 would imply that F ′ is a hyperfield
too, contradicting Lemma 4.20.

Fix a total order ≤ on E \E′. Applying Lemma 4.17, for each σ ∈ Hom(F ′, S)
there exists a total order ≤σ on E′ that satisfies (4.1), 0 ≤σ 1, and a ≤σ ∞
for all a ∈ E′. We extend this to a total order on E by defining a ≤σ b for all
a ∈ E \ E′ and b ∈ E′, and a ≤σ b if and only if a ≤ b for all a, b ∈ E \ E′.
Again using Lemma 4.17, we associate a σ̃ ∈ Hom(F,S) to σ.

Let Y := {σ̃ | σ ∈ Hom(F,S)} and U :=
⋂︁

σ∈Y ker∗σ. Then U ∩ α(F ′∗) = {1}
by construction. In order to show that F ∗ = U · α(F ′∗) =: G, let x = [a, b | c, d]
for pairwise different a, b, c, d ∈ E.

As it follows from Lemma 3.3 that [a, b | c, d] = [ω, b | c, d] · [ω, a | c, d] for all
ω ∈ E \ {a, b, c, d}, we can assume without loss of generality that a = ∞ and
– using a similar argument – also that c = 1. Moreover, let b /∈ E′ or d /∈ E′

(otherwise trivially x ∈ α(F ′∗)). We distinguish four cases:
First, if b = 0 and d /∈ E′, we have d ≤σ 0 ≤σ 1 for all σ ∈ Y . Hence,

x = [∞, 0 | 1, d] ∈ −U ⊆ G, since −1 ∈ α̂(F ′∗).
Second, let b ∈ E′ \ {∞, 0} and d /∈ E′. Therefore, d ≤σ 0, b for all σ ∈ Y .

It follows that [∞, d | 0, b] ∈ U . Thus, Lemma 3.3 and the previous case imply
that [∞, 0 | b, d] = [∞, 0 | b, 1] · [∞, 0 | 1, d] ∈ G. Applying Lemma 3.3 again, we
can conclude that x ∈ G.

In the case b /∈ E′ and d /∈ E′, since σ(x) = −1 if and only if d ≤ b for all
σ ∈ Y and −1 ∈ G, we obtain x ∈ G.

Finally, if d ∈ E′ we get x ∈ U because b ≤σ 0, d for all σ ∈ Y .
Thus, F ∗ is the direct product of U and α(F ′∗), which implies that π ◦ α

is a multiplicative isomorphism. Moreover, our construction of Y shows that
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every ordering of F/∗U is liftable to an ordering of F ′. Therefore, π ◦ α is an
isomorphism, which completes our proof. □

4.23 Corollary. For all n ∈ N0 and sets E containing at least n elements,
Q(Un,E) is not a hyperfield, except in the following special cases:

(a) n ∈ {0, 1} or |E| ∈ {n− 1, n}, and thus is regular,

(b) n = 2 and |E| = 4.

Proof. It follows from Theorem 4.22 that n ∈ {0, 1}, or |E| ∈ {n − 1, n}, or
n = 2 and |E| = 4 if Q(Un,E) is a hyperfield.

Since in the first two cases U2,E is regular, it follows that Q(U2,E) ∼= S, which
is therefore a hyperfield.

In the remaining case we have E = {∞, 0, 1, a} and there exist obviously
three linear orders ≤ on E such that 0 < 1 and 0, 1, a <∞. Thus, Lemma 4.17
implies that we have three orderings in this case.

Furthermore, as in Example 4.18 we get thatG := Q(U2,E)
∗ is generated by −1,

α := [∞, 0 | 1, a] and α′ := [∞, 0 | 1, a], and has order 23. Thus, G = {−1, 1}X for
X := Hom(U(0)(U2,E), S). Hence, it follows from [Mar96, Theorem 3.3.2] that
(X,G) is a space of orderings.9 Therefore, Theorem 4.11 yields that Q(U2,E) is
a hyperfield. □

9It is the SAP space with three orderings.
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matroids

If the universal partial hyperfield of a matroid is a hyperfield, then necessarily
every element of the inner Tutte group is a cross-ratio. We will prove that for
matroids that are representable over a field this is also a sufficient condition for
their universal partial hyperfield to be a hyperfield.

Furthermore, we will show that with at most one possible exception the inner
Tutte group of all connected components of these matroids contains only {1, ε}
and examine conditions of minors such that a matroid satisfies this condition.

Additionally, we will examine under which conditions the universal partial
hyperfield of a matroid is the coproduct of at least two partial hyperfields.

Definition. Let M be a matroid. We denote by F(M) the set of fundamental
elements of U(0)(M). We call M semiartinian if U(0)(M) ⊆ ±F(M), almost
artinian if U(0)(M) \ {−1} ⊆ F(M), and artinian if U(0)(M) ⊆ F(M).

Further, we call M slender if U(0)(M) ⊆ {−1, 0, 1}.

5.1 Remark. Clearly, every artinian matroid is almost artinian and every
almost artinian matroid is semiartinian. The reverse implications are both false,
as AG(2, 3)1 is a semiartinian matroid that is not almost artinian and every
slender matroid is almost artinian, but artinian if and only if it is not regular.

However, if 1 = −1 in U(0)(M), these three properties are equal to each other.

5.2 Proposition. Let M be a matroid representable over a field F .

(a) M is artinian if and only if U(0)(M) is isomorphic to a subfield of F .

(b) If M is almost artinian and one of the following conditions is satisfied,
then M is regular or artinian:2

(i) F is of characteristic ̸= 2, 3,

(ii) F is the field of two or three elements,
1See Corollary 3.35.
2It is unknown to us if there exists an almost artinian matroid that is neither regular nor

artinian.
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(iii) F is of characteristic 3 and M is orientable.

Proof. Since M is representable over F , Theorem and Definition 3.16 implies
the existence of a homomorphism f : U → F of partial hyperfields, where
U := U(0)(M). Clearly, if U is isomorphic to a subfield of F , it is itself a field.
Hence, M is artinian.

Conversely, if M is artinian, Lemma 3.19 yields that f is injective. Further-
more, as F is a field, we get |f(a+b)| ≤ |f(a)+f(b)| ≤ 1 for all a, b ∈ U. Because
M is artinian, this implies |a+ b| = 1. Thus, f is strong and Proposition 2.14
yields that f is an embedding. This proves (a).

In order to prove (b), let M be almost artinian but not regular. We will show
that M is artinian if one of the conditions (i) – (ii) is satisfied and there are no
such matroids if (iii) is satisfied. So let one of (i) – (iii) be fulfilled.

For the particular case F = F2 of condition (ii), we have shown this already
in the proof of Corollary 3.21. Thereby, for the rest of the proof we may assume
that F contains at least three elements.

Suppose f was not injective. Applying Lemma 3.19, we would get that
ker∗f = {1,−1}. Hence, we would have −1 = 1 in F and therefore F would be
a field of characteristic 2 which is not isomorphic to F2, a contradiction.

If F is not of characteristic 2 or 3, by injectivity of f and Lemma 3.20 there
exists an a ∈ U \ {−1, 0, 1}. Since M is almost artinian and −a /∈ {−1, 0, 1},
there exist b ∈ 1− a, c ∈ 1 + a, and d ∈ b+ c (otherwise we would have b = c
and therefore f(a), f(−a) ∈ 1− f(b) by Lemma 2.5, which would imply a = −a,
since f is injective and F is a field). It follows by Lemma 2.5 that

f(d) ∈ f(b) + f(c) = (1− f(a)) + (1 + f(a)) = 1 + 1.

Since F is not of characteristic 2 or 3, f(d) /∈ {−1, 0, 1} and we get d /∈ {−1, 0, 1}
using the injectivity of f . So there exists an e ∈ 1−d. But f(e) = 1−f(d) = −1
and therefore e = −1. Thus, Lemma 2.1 yields that M is artinian in this case.

Now, let F be a field of characteristic 3. If F ∼= F3, then our claim directly
follows from Lemma 3.20. Otherwise, suppose M were orientable. Using Theo-
rem and Definition 3.16 and Proposition 4.14, we would get a homomorphism
of partial hyperfields σ : U → S.

It now suffices to show that there would exist a ∈ U \ {−1, 0, 1} and b ∈ 1− a
such that σ(a) = 1 and σ(b) = −1. Then b = −a would imply that b ∈ 1 + b
and thus f(b) = 1 + f(b), a contradiction.

Thus, b−1a ̸= −1 and there exists a c ∈ b − a = b(1 − b−1a) for which we
would get σ(c) ∈ σ(b) + σ(−a) = {−1}. Hence, σ(c) = −1. On the contrary we
would have

f(c) ∈ f(b)− f(a) = (1− f(a))− f(a) = 1 + f(a) = f(1 + a).
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5.1 Decomposition of the universal partial hyperfield

This would imply that c ∈ 1 + a and therefore σ(c) ∈ 1 + σ(a) = {1}, a
contradiction.

In order to construct such a, b ∈ U, let x ∈ U \ {−1, 0, 1} (exists using
Lemma 3.20 and the fact that f is injective). Since −x /∈ {−1, 0, 1} we can
assume without loss of generality that σ(x) = 1.

Using the fact that M is almost artinian, there exists a y ∈ 1−x. If σ(y) = −1,
we set a := x and b := y. Otherwise, we set a := x−1 and choose a b ∈ 1 − a.
Clearly, σ(a) = 1. Further, Lemma 2.5 implies that

f(b) ∈ 1− f(a) = −f(x)−1(1− f(x)) = f(−x−1y).

Thus, b = −x−1y and σ(b) = −1. □

5.1 Decomposition of the universal partial hyperfield

In Proposition 3.8 we have shown that the universal partial hyperfield of a direct
sum of matroids is the coproduct of the universal partial hyperfields of these
matroids.

We now will characterize geometrically when we can write the universal partial
hyperfield of a matroid M as a coproduct of two partial hyperfields that are
both not contained in {−1, 0, 1}. Since we will show that this is not possible if
M is semiartinian, this enables us to determine the possible universal partial
hyperfields of connected components of M in this case.

Definition. We call a partial hyperfield F decomposable if there exist partial
hyperfields F1 and F2 such that F ∼= F1 ⊕ F2 and Fi ≉ F ′ for all i = 1, 2 and
F ′ ∈ {U0,F3,S,W,F2,K},3 and else we call F indecomposable. Further, we call
a matroid M algebraically decomposable resp. algebraically indecomposable if
U(0)(M) is decomposable resp. indecomposable.

Clearly, every slender matroid is algebraically indecomposable.

5.3 Lemma. Let (Fi)i∈I be a family of partial hyperfields, F :=
∐︁

i∈I Fi and
ιi : Fi → F the canonical injection for i ∈ I as in Corollary 2.12. Then

(a) F(F ) =
⋃︁

i∈I ιi (F(Fi)),

(b) F =
⋃︁

i∈I ιi(Fi) if and only if there exists an i ∈ I such that Fj ⊆ {−1, 0, 1}
for all j ∈ I, j ̸= i.

3See Remark and Definition 2.11 and Lemma 3.20.

89



5 Algebraic decomposition of matroids

Proof. Clearly, Lemma 2.5 implies that
⋃︁

i∈I ιi(F(Fi)) ⊆ F(F ).
If a ∈ F(F ) \ {0, 1}, then there exists a b ∈ F ∗ such that b ∈ 1 − a. By

Proposition and Definition 2.9 and Corollary 2.12, there exist i ∈ I, ai ∈ ι−1
i (a)

and bi ∈ (1− ai) ∩ ι−1
i (b). Thus, a ∈ ιi(F(Fi)), which proves (a).

Moreover, if j ∈ I such that Fi ⊆ {−1, 0, 1} for all i ∈ I, i ̸= j, it follows that
F = ιj(Fj) ⊆

⋃︁
i∈I ιi(Fi).

Conversely, let F ⊆
⋃︁

i∈I ιi(Fi). Further, for each i ∈ I let κi : Fi → K⊕ Fi

and λi : K → K⊕ Fi be the canonical injections. Since 1 + 1 = {0, 1} in K, we
have {0, 1} = λi(1 + 1) ⊆ 1+ 1 in K⊕Fi. Therefore, Lemma 2.5 yields that the
map µi : Fi → K⊕ Fi defined by µi(0) := 0 and µi(ai) := 1 for all ai ∈ F ∗

i is a
homomorphism of partial hyperfields.

Moreover, Corollary 2.12 implies that for each i ∈ I there exists a unique
homomorphism gi : F → K ⊕ Fi such that gi ◦ ιi = κi and gi ◦ ιj = µj for all
j ∈ I \ {i}.

Now, let J ⊆ I be a two element set and ai ∈ F ∗
i , i ∈ J . Then there exist

k ∈ I and ak ∈ F ∗
k such that ιi(ai)ιj(aj) = ιk(ak) for {i, j} = J . If k ̸= i, j,

applying gk, we get ak ∈ {−1, 1}, as kerλk = {−1, 1} by construction of the
coproduct. Using gi or gj yields similarly ai, aj ∈ {−1, 1}.

Otherwise, k = i or k = j. In the former case, we get aia−1
k , aj ∈ {−1, 1} and

in the latter case ai, aja−1
k ∈ {−1, 1} using gi and gj . Thus, it is not possible to

have Fl ⊊ {−1, 0, 1} for both l ∈ J . □

5.4 Lemma. A partial hyperfield F is indecomposable if F ⊆ ±F(F ). In
particular, a semiartinian matroid M is algebraically indecomposable.

Proof. Let F ∼= F1⊕F2 for partial hyperfields F1, F2 and denote by ιi : Fi → F
the canonical injection, i = 1, 2. Then Lemma 5.3 yields that

±F(F ) = (ι1(±F(F1)) ∪ ι2(±F(F2))) ⊆ ι1(F1) ∪ ι2(F2).

Applying Lemma 5.3 again, F ⊆ ±F(F ) implies Fi ⊆ {−1, 0, 1} for an i ∈ {1, 2},
which proves our claim. □

5.5 Theorem. Let M be a matroid.

(a) M is algebraically indecomposable if and only if there exists a slender
matroid S and a connected algebraically indecomposable matroid N such
that M ∼= S ⊕N .

(b) M is semiartinian if and only if there exists a slender matroid S and a
connected semiartinian matroid N such that M ∼= S ⊕N .
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5.1 Decomposition of the universal partial hyperfield

Proof. First, if M is slender, then M ∼=M ⊕N , where N is the empty matroid
and in this case (a) and (b) follow trivially, since every slender matroid is
semiartinian and therefore algebraically indecomposable by Lemma 5.4.

Otherwise, Corollary 2.12 and Proposition 3.8 imply that at least one of the
connected components M1, . . . ,Mk of M is not slender. We may assume without
loss of generality that M1 is such a component. Set N :=M1 and S :=

⨁︁k
i=2Mi.

Further, let U := U(0)(N) and F := U(0)(S). Using Proposition 3.8, we have
U(0)(M) ∼= U⊕ F . Let υ : U → U(0)(M) and ι : F → U(0)(M) be the canonical
injections.

Clearly, U(0)(M) is decomposable if S is not slender and therefore M is not
semiartinian by Lemma 5.3. So let S be slender. Then U(0)(M) = υ(U).

Now, (b) follows quickly as Lemma 5.3 yields that M is semiartinian if and
only if N is semiartinian. In order to prove (a), it suffices to show that M is
algebraically indecomposable if and only if N is algebraically indecomposable.

If N is algebraically decomposable, there exist partial hyperfields F1, F2

such that Fi ⊈ {−1, 0, 1}, i = 1, 2 and U ∼= F1 ⊕ F2. Thus, it follows from
Lemma 5.3 that F2 ⊕ F ⊈ {−1, 0, 1} and U(0)(M) ∼= F1 ⊕ (F2 ⊕ F ). Hence, M
is algebraically decomposable.

Conversely, if M is algebraically decomposable, there exist partial hyperfields
F1 and F2 such that U(0)(M) ∼= F1 ⊕ F2 and Fi ⊈ {−1, 0, 1}, i = 1, 2. Further,
let ιi : Fi → U(0)(M) be the canonical injection, i = 1, 2. Then U(0)(M) = υ(U)
implies ιi(Fi) ⊆ υ(U), i = 1, 2.

Further, let F ′
i be the initial partial hyperfield with respect to the set inclusion

ι′i : υ
−1(ιi(Fi)) → U, i = 1, 2. In order to show U ∼= F ′

1 ⊕ F ′
2 and thus N is

algebraically decomposable, using Corollary 2.12, it is sufficient to show that
for all homomorphisms fi : F ′

i → F ′, i = 1, 2, into a partial hyperfield F ′, there
exists a unique homomorphism f : U → F ′ such that f ◦ ιi = fi, i = 1, 2.

If f : U → F ′ is such an f , then using Corollary 2.12, for every a ∈ U there
exist ai ∈ Fi, i = 1, 2, such that υ(a) = ι1(a1)ι2(a2). Therefore, a = a′1a

′
2 for

suitable a′i ∈ F ′
i , i = 1, 2, and f(a) = f(ι′1(a

′
1)ι

′
2(a

′
2)) = f1(a

′
1)f2(a

′
2). Hence,

there exists at most one such f .
Conversely, setting f(a) = f1(a

′
1)f2(a

′
2) if a = a′1a

′
2 for a′i ∈ F ′

i , yields a
well-defined multiplicative homomorphism f : U → F ′, since if a ̸= 0 and
a = a′1a

′
2 = b′1b

′
2 for a′i, b

′
i ∈ F ′

i , i = 1, 2, it follows from F ′
1∩F ′

2 = {−1, 0, 1} that
a′i = b′i, i = 1, 2, or a′i = −b′i, i = 1, 2. Therefore, f1(a′1)f2(a′2) = f1(b

′
1)f2(b

′
2).

If a, b ∈ U∗ and b ∈ 1−a, we get υ(b) ∈ 1−υ(a). Applying Corollary 2.12, there
exist i ∈ {1, 2} and ai, bi ∈ F ∗

i with ιi(ai) = υ(a), ιi(bi) = υ(b) and bi ∈ 1− ai.
It follows that a, b ∈ F ′

i and therefore f(b) = fi(b) ∈ 1− fi(a) = 1− f(a). Using
Lemma 2.5, f is a homomorphism of partial hyperfields, completing our proof.□
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5 Algebraic decomposition of matroids

5.6 Corollary. Let M be a matroid such that 1 ̸= −1 in U(0)(M).

(a) M is almost artinian if and only if there exists a slender matroid S and a
connected almost artinian matroid N such that M ∼= S ⊕N .

(b) M is artinian if and only if there exists a slender matroid S and a connected
almost artinian matroid N such that M ∼= S ⊕N and at least one of S or
N is artinian.

Proof. Since every almost artinian or artinian matroid is semiartinian, it follows
from Theorem 5.5 that M is neither almost artinian nor artinian, if M is not
the direct sum of a slender and a connected semiartinian matroid.

Thus, it suffices to examine the case M = S⊕N where S is a slender matroid
and N a connected semiartinian matroid. Set U := U(0)(N) and F := U(0)(S),
and let υ : U → U(0)(M) and ι : F → U(0)(M) denote the canonical injections, as
in the proof of Theorem 5.5. Further, note that F ⊆ {−1, 0, 1} and Lemma 5.3
yields U(0)(M) = υ(U).

Since −1 ̸= 1 in U(0)(M), υ is bijective and ι injective. Therefore, Lemma 5.3
implies that υ(F(U) \ {−1}) = F(M) \ {−1}. Thus, M is almost artinian if
and only if N is almost artinian, which proves (a).

Finally, since −1 ∈ F(M) if and only if −1 ∈ F(U) or −1 ∈ F(F ), we obtain
that M is artinian if and only if at least one of S or N is artinian. This proves
(b). □

5.7 Example. The matroid M := AG(2, 3)⊕ PG(2, 2) is semiartinian by The-
orem 5.5. Since the Fano matroid PG(2, 2) is a minor of M we have −1 = 1 in
U(0)(M). Thus, M is artinian.

Both AG(2, 3) and PG(2, 2) are representable over F4 and therefore classical
matroid theory, or Proposition 3.8 and Theorem and Definition 3.16 imply
that M is also representable over F4. Hence, applying Proposition 5.2, we get
U(0)(M) ∼= F4.

5.8 Remark. Unfortunately, a characterization of the universal partial hy-
perfields of the connected components of matroids, whose universal partial
hyperfield is a hyperfield, similar to Theorem 5.5 and Corollary 5.6, does not
exist.

Proof. Let F be a hyperfield. Since U0⊕F ∼= F and F2⊕F ∼= F/∗⟨−1⟩, F ′⊕F
is a hyperfield if F ′ ∈ {U0,F2}.

This is not necessarily the case for F ′ ∈ {F3, S,W,K}. If F is field of
characteristic 0, then 1+ (1+ ι(2)) = 1+ ι(3) = {ι(4)}, where ι : F → F ′ ⊕F is
the canonical injection, but ι(3) ∈ 1 + ι(2) ⊆ (1 + 1) + ι(2) if F ′ ∈ {S,W,K}, or
1 ∈ −1 + ι(2) ⊆ (1 + 1) + ι(2) if F ′ ∈ {F3,W}. □
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5.1 Decomposition of the universal partial hyperfield

5.9 Lemma. The uniform matroid Un,E for any set E containing at least n+2
elements, n ∈ N, n ≥ 2, is not semiartinian.

In particular, a uniform matroid is semiartinian if and only if it is regular.

Proof. Let M := Un,E , N := U2,E and ∞, 0, 1 ∈ E pairwise different. Using
Theorem 3.27, we obtain U(0)(N) ∼= UE\{∞,0,1}. Further, Theorem and Defini-
tion 2.20 and Theorem and Definition 2.23 yield that ±a2 /∈ F(UE\{∞,0,1}) for
any a ∈ E \ {∞, 0, 1} and thus N is not semiartinian.

Applying Lemma 4.21, there exists an epimorphism f : U(0)(M) → U(0)(N).
Now, if M were semiartinian, N would also be semiartinian, since for every
a′ ∈ U(0)(N) there exists an a ∈ f−1(a′). Thus, b ∈ 1 − a or b ∈ 1 + a would
imply that f(b) ∈ 1− a′ or f(b) ∈ 1 + a′. Hence, a′ ∈ F(N).

In all other cases, i. e., n ∈ {0, 1} or |E| ∈ {n − 1, n}, M is regular and
therefore almost artinian. □

5.10 Proposition. Let M be a modular combinatorial geometry.

(a) If M is semiartinian, it is either regular or artinian.

(b) If M is non-slender, then M is semiartinian if and only if M is the
direct sum of a slender modular combinatorial geometry and a non-slender
projective geometry of dimension at least 2.

(c) M is slender if and only if M is the direct sum of matroids of the following
types:

(i) U0,0, U1,1, U2,2, or U2,3,

(ii) PG(d,Fp) for d ∈ N, d ≥ 2, and p ∈ {2, 3},

(iii) a projective plane Π such that the extended radical of a planar ternary
ring coordinatizing it is not {1}, but is either F ∗ or a normal subloop
of F ∗ of index 2 not containing −1.

Proof. Since a combinatorial geometry is modular if and only if it is a direct sum
of projective geometries ([Whi86, Corollary 3.6.5]) it follows from Theorem 5.5
that it is sufficient to examine the universal partial hyperfields of projective
geometries.

Let Π be a projective geometry and E := E(Π). If Π has dimension at most
1, it is uniform and therefore using Lemma 5.9 semiartinian if and only if it is
equal to U0,0, U1,1, U2,2, or U2,3.

Applying Proposition 3.25, any projective geometry of dimension at least 3 is
artinian. It is slender if and only if Π ∼= PG(d,Fp), d ≥ 3, and p ∈ {2, 3}.
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5 Algebraic decomposition of matroids

Finally, let Π be a projective plane and (F, T ) be a planar ternary ring coordi-
natizing it. Then Theorem 3.24 implies that Π is artinian. We have U(0)(Π) ∼= F
for F ∈ {F2,F3} if and only if Π ∼= PG(2,Fp) for p ∈ {2, 3}. Furthermore, if
U(0)(Π) ∼= F for F ∈ {S,W,K}, then Π is non-Pappian. Therefore, Ra ̸= {1}
and we have either Ra = F or F = Ra ∪ −Ra and −1 /∈ Ra.

Conversely, if Ra = F ∗ or F ∗ = Ra ∪ −Ra and −1 /∈ Ra, it follows from
Lemma 3.20 that Π is slender. □

5.11 Remark. Let P be an archimedian ordering of a field F and k ∈ P \{0, 1}.
Setting

T (m,x, c) :=

{︄
mkx+ c if m,x ∈ −P,
mx+ c else,

we obtain a planar ternary ring (F, T ) such that U(0)(Π) ∼= S for the projective
plane Π that is coordinatized by (F, T ) (see [Kal92a, Proposition (4.2)]).

Let (F, T ) be a planar ternary ring coordinatizing a projective plane Π. If
(F, T ) is finite but not a field, U(0)(Π) ∼= K (see Corollary below). However, we
have not found any planar ternary ring (F, T ) such that U(0)(Π) ∼= W.

5.12 Corollary. Let M be a finite modular combinatorial geometry.

(a) M is slender if and only if M is the direct sum of matroids of the following
types:

(i) U0,0, U1,1, U2,2, or U2,3,

(ii) PG(d,Fp) for d ∈ N, d ≥ 2, and p ∈ {2, 3},
(iii) a non-Desarguesian finite projective plane.

(b) M is non-slender and artinian if and only if M is the direct sum of a
slender modular combinatorial geometry and PG(d, F ) for d ∈ N, d ≥ 2,
and a finite field F with at least four elements.

Proof. Follows from Proposition 5.10 and [JK90, Korollar 8]. □

5.13 Proposition. For each matroid M of rank at least 3 such that E = H ∪ ℓ
for a hyperplane H and a line ℓ of M such that ϱ(H ∩ ℓ) ≥ 1 we have

U(0)(M) ∼= U(0)(M |H)⊕ U(0)(M |ℓ).

Moreover, M is algebraically indecomposable if and only if s(M |ℓ) contains at
most 3 points and M |H is algebraically indecomposable.
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5.1 Decomposition of the universal partial hyperfield

Proof. Let s := H ∩ ℓ and n := ϱ(M). Since E is not a hyperplane, ϱ(s) = 1.
In particular, each line of M thus intersects H non-trivially and therefore H is
modular.

We set M1 :=M |H, M2 :=M |ℓ, F := U(0)(M), and Fi := U(0)(Mi), i = 1, 2.
Further, we choose maximal independent sets S1 ⊆ ℓ and S2 ⊆ H such that
σ(S1 ∪ s) = ℓ and σ(S2 ∪ s) = H. Then |S1| = 1 and |S2| = n − 2. Using
Proposition 3.6, it follows that ιi : Fi → F defined by ιi(0) := 0, ιi(−1) := −1
and

ιi([H1, H2 |H3, H4]) := [H1, H2 |H3, H4],

for (H1, H2, H3, H4) ∈ H4(Mi), where Hj := σM (Hj ∪ Si), j = 1, 2, 3, 4, is a
homomorphism of partial hyperfields for i = 1, 2.

Applying Corollary 2.12, F ∼= F1⊕F2 follows if we show that for all homomor-
phisms fi : Fi → F ′, i = 1, 2, into a partial hyperfield F ′ there exists a unique
homomorphism f : F → F ′ such that f ◦ ιi = fi, i = 1, 2.

We first construct a group homomorphism g : F(0)(M) → F ′∗. Set g(ε) := −1.
For any (H1, H2, H3, H4) ∈ H4(M) we set

g((H1, H2 |H3, H4)) :=

⎧⎪⎨⎪⎩
f1([H

′
1, H

′
2 |H ′

3, H
′
4]) if L ⊈ H,

f2([H
′′
1 , H

′′
2 |H ′′

3 , H
′′
4 ]) if s ⊈ L ⊆ H,

1 else,

where L :=
⋂︁4

i=1Hi, and H ′
i := Hi ∩H, H ′′

i := Hi ∩ ℓ. i = 1, 2, 3, 4.
Then g is well-defined, as the modularity of H implies that Hi ∩ H is a

hyperplane and L∩H is a hyperline of M |H, i = 1, 2, 3, 4, if L ⊈ H, and Hi ∩ ℓ
is a hyperplane of M |ℓ if s ⊈ L ⊆ H,4 i = 1, 2, 3, 4.

It is now sufficient to show that all the elements of (CR0) – (CR6) are
contained in ker g, since this implies that K(0)(M) ⊆ ker g and thus there exists
a unique group homomorphism f : F ∗ → F ′∗ such that

f([H1, H2 |H3, H4]) = g((H1, H2 |H3, H4)).

Thus, by setting f(0) := 0 and using Lemma 2.5 as well as Proposition and
Definition 3.4 we obtain the desired homomorphism f : F → F ′ such that
f ◦ ιi = fi, i = 1, 2.

For all hyperlines L ⊇ s of M we have HL = {H,L ∨ ℓ}. Therefore, by
construction, all the elements of (CR0) – (CR4) are contained in ker g. In order
to show that ker g contains ε (this is (CR5)) if M has the Fano matroid or its
dual as a minor, we prove that in this case M1 has the Fano matroid or its dual
as a minor.

4In this case Hi = H or Hi = L ∪ p for a hyperplane p of M |ℓ.
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5 Algebraic decomposition of matroids

Let N be such a minor of M on the set E′ ⊆ E. Then there exist an
independent set I such that N = (M/I)|E′. Since ϱM (ℓ) = 2, |I ∩ ℓ| ≤ 2.

Suppose I ⊆ H. It would follow that E′ ⊆ E \ I and N would be a minor of
M ′ := (M/I)|(E \ I), which has the same rank as N . This would imply that E
is the union of a hyperplane and a line of N , because E \ I is the union of the
hyperplane H \ I and the line ℓ of M ′.

This is a contradiction, as their union can contain at most 6 points and
|E′| = 7 (if N is the Fano matroid both are lines, which contain 3 points, and if
N is the dual of the Fano matroid, each hyperplane contains 4 and each line 2
elements). Therefore, I ⊈ H and let i ∈ I ∩ ℓ.

Further, since I ∩ ℓ contains at most 2 elements, there is at most one j ∈ I \H
such that j ̸= i. If such a j exists, we have ℓ ⊆ σM (I) and therefore, we can
replace j by any j′ ∈ H ∩ ℓ such that ϱ({j′}) = 1.

Hence, we can assume without loss of generality that |I \H| = 1 and E′ ⊆ H
(we have ϱM/i({x, y}) ≤ 1 for all x, y ∈ ℓ \ (H ∪ {i})). Thus, N = (M/I)|E′ is
a minor of (M/i)|H =M1.

Finally, we show that ker g contains all the elements of the form (CR6). Let
H1, . . . ,H9 be hyperplanes satisfying (i) – (v) from (CR6), i. e., Li := Hj ∩Hk,
L4 := H4∩H5∩H6, L5 := H7∩H8∩H9, hyperlines ofM for all {i, j, k} = {1, 2, 3},
P := H1 ∩ H2 ∩ H3 a hyperpoint of M , Li ⊆ Hi+3, Hi+6 for i = 1, 2, 3 and
{H1, H2, H3} ∩ {H4, . . . ,H9} = ∅. We have to prove that

x := (H1, H2 |H6, H9) · (H2, H3 |H4, H7) · (H3, H2 |H5, H8) ∈ ker g.

If L4 = L5, this is trivial, so assume L4 ̸= L5. Then L1, . . . , L5 are pairwise
different. If P ⊈ H, then the H ′

i := Hi ∩H, i = 1, . . . , 9, satisfy (i) – (v) from
(CR6) of M1 and thus

g(x) = [H ′
1, H

′
2 |H ′

6, H
′
9] · [H ′

2, H
′
3 |H ′

4, H
′
7] · [H ′

3, H
′
1 |H ′

5, H
′
8] = 1.

Otherwise, P ⊆ H implies that either three of the hyperlines Li, i = 1, 2, 3, 4, 5,
are contained in H or intersect ℓ \H in a flat of rank 1 (and thus are contained
in the hyperplane P ∨ ℓ) Since H1, H2, H3 are pairwise different we can assume
without loss of generality that these three hyperlines are L3, L4, L5. This implies
H6 = H9 and therefore (H1, H2 |H6, H9) ∈ ker g.

If L3, L4, L5 ⊆ H, we thus obtain for H ′
i := Hi ∩H, i = 1, 2, 3, 4, 5, 7, 8, that

H ′
1 = H ′

2, H ′
4 = H ′

5, H ′
7 = H ′

8. Hence, by definition of g, we get

g(x) = [H ′
1, H

′
3 |H ′

4, H
′
7] · [H ′

3, H
′
1 |H ′

4, H
′
7] = 1.

The case L3, L4, L5 ⊆ P ∨ ℓ is proven similarly. Finally, the last sentence follows
as in the proof of Theorem 5.5. □
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Definition. Let M be a matroid on the ground set E. The free extension of
M is the matroid on the set E ∪ {ω} for any ω /∈ E whose hyperplanes are the
hyperplanes H of M and the sets L ∪ {ω} for hyperlines L of M . It is denoted
by M + ω and its rank is equal to that of M .

Further, let Mi be a matroid on the ground set Ei, i = 1, 2, such that
U := E1 ∩ E2 is a modular flat of M1 and M1|U =M2|U . Then the generalized
parallel connection of M1 and M2 is the matroid on the set E1 ∪E2 whose flats
are the sets K ⊆ E1 ∪E2 such that K ∩Ei is a flat of Mi, i = 1, 2. It is denoted
by PU (M1,M2).5 Further, the rank of a flat K of PU (M1,M2) can be obtained
by

ϱPU (M1,M2)(K) = ϱM1(K ∩ E1) + ϱM2(K ∩ E2)− ϱ(K ∩ U).

Thus, ϱ(PU (M1,M2)) = n1 + n2 − k, where ni = ϱ(Mi), i = 1, 2, and k = ϱ(U).

5.14 Corollary. For each matroid M of rank at least 3 such that E = H ∪ ℓ
and ϱ(H ∩ ℓ) = 0 for a hyperplane H and a line ℓ of M we have

U(0)(M) ∼= U(0)(M |H + ω)⊕ U(0)(M |ℓ+ ω)

for an ω /∈ E. In particular, M is algebraically indecomposable if and only if
M |H + ω is algebraically indecomposable and s(M |ℓ) contains at most 2 points.

Proof. Let M̂ := Ps(M |H +ω,M |ℓ+ω), where s := σM (∅)∪{ω}, and for each
flat K of M we set K̂ := σM̂ (K). We will show that U(0)(M) ∼= U(0)(M̂). Since
M̂ |K̂ =M |K + ω for K ∈ {H, ℓ}, then Proposition 5.13 implies our claim.

Using Lemma 2.5 and Proposition and Definition 3.4, we accomplish this
by proving that the group homomorphism g : F(0)(M) → T(0)(M̂), defined by
g(ε) := −1 and

g((H1, H2 |H3, H4) := [ˆ︂H1,ˆ︂H2 |ˆ︂H3,ˆ︂H4]

for all (H1, H2, H3, H4) ∈ H4(M), is an epimorphism whose kernel is equal to
K(0)(M).

For each flat K of M we have ϱM̂ (K̂) = ϱM (K) and thus K̂ ∩ E = K. Let
K1,K2 be flats of rank k ∈ N of M such that ϱM (K1 ∩K2) = k − 1. Clearly,
ˆ︂K1 ∩K2 ⊆ ˆ︂K1 ∩ ˆ︂K2 and ˆ︂K1 ∨ ˆ︂K2 ⊆ ˆ︂K1 ∨K2. Since ϱM̂ (ˆ︂K1 ∩ ˆ︂K2) = k would

imply that ˆ︂K1 = ˆ︂K2, and thereforeK1 = ˆ︂K1∩E = ˆ︂K2∩E = K2, a contradiction,
we get ˆ︂K1 ∩K2 = ˆ︂K1 ∩ ˆ︂K2.

Thus, ϱM̂ (ˆ︂K1 ∨ ˆ︂K2) = k + 1, which also yields ˆ︂K1 ∨ ˆ︂K2 = ˆ︂K1 ∨K2. In
particular, (ˆ︂H1,ˆ︂H2,ˆ︂H3,ˆ︂H4) ∈ H4(M̂) for all (H1, H2, H3, H4) ∈ H4(M). Hence,

5Cf. [Bry75, Theorem 5.3 and Proposition 5.5]. If U = ∅, then PU (M1,M2) ∼= M1 ⊕M2; if
ϱ(U) = 1 and U = {p}, it is the classical parallel connection.
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5 Algebraic decomposition of matroids

g is well-defined and its kernel contains all the elements from (CR0) – (CR4)
and (CR6).

Further, we have K(0)(M) ⊆ ker g. To prove that ker g contains the element
from (CR5), it suffices to show that if M̂ has the Fano matroid or its dual as a
minor, then this is already a minor of M .

Let N be the Fano matroid or its dual and let it be a minor of M̂ on the
set E′. Using the proof of Proposition 5.13, we obtain that N is a minor
of M |H + ω. Thus, there exists an independent set I ⊆ E \ E′ such that
N = ((M |H + ω)/I)|E′.

We will show that ω ∈ E′. Then we have N = (M/I ′)|E′ for I ′ = I ∪ {p} if
ω /∈ I, and I ′ = (I \ {ω}) ∪ {p, q} else, where {p, q} is a maximal independent
set of ℓ.

Suppose ω ∈ E′. Every hyperplane of M |H + ω which contains ω is of the
form L ∪ {ω} for a hyperline L of M |H, contradicting the fact that in the
case that N is the Fano matroid, every hyperplane contains 3 points and every
hyperline 1 point, and if N is its dual, every hyperplane contains 4 points and
every hyperline 2 points.

Finally, to show that g is surjective, let (H ′
1, H

′
2, H

′
3, H

′
4) ∈ H4(M̂) and

L′ =
⋂︁4

i=1H
′
i. If ω ∈ L′, then the proof of Proposition 5.13 yields that

HL′ = {H ∪ {ω}, L ∨ ℓ} (since σM̂ (ω) = s). Thus, H ′
1 = H ′

2 and H ′
3 = H ′

4, and
we get [H ′

1, H
′
2 |H ′

3, H
′
4] = 1.

Otherwise, L := L′∩E is a hyperline of M such that L̂ = L′ and Hi := H ′
i∩E

is a hyperplane of M such that ˆ︂Hi = H ′
i, i = 1, 2, 3, 4. Hence,

g((H1, H2 |H3, H4)) = [H ′
1, H

′
2 |H ′

3, H
′
4].

Therefore, g is surjective, which completes our claim. □

It follows from Proposition 3.11, Lemma 5.4 and Lemma 5.9 that a matroid
of rank less or equal to 2 is algebraically indecomposable. Thus, it remains to
study matroids of rank greater or equal to 3 whose ground set is not the union
of a hyperplane and a line.

For the rest of this section we will prove that matroids of rank greater or
equal to 3 whose ground set is not the union of two hyperplanes are algebraically
indecomposable if certain additional assumptions are satisfied.

5.15 Lemma. Let Fi be a partial hyperfield, i = 1, 2, ιi : Fi → F1 ⊕ F2 the
canonical injection, i = 1, 2, and E be a set which contains at least 4 elements.
For any homomorphism of partial hyperfields f : U(0)(U2,E) → F1 ⊕ F2 there
exists a k ∈ {1, 2} such that f(U(0)(U2,E)) ⊆ ιk(Fk).
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5.1 Decomposition of the universal partial hyperfield

Proof. There is nothing to prove if f(U(0)(U2,E)) ⊆ {−1, 0, 1}. So let there
exist pairwise different ∞, 0, 1, a ∈ E such that f([{∞}, {0} | {1}, {a}]) ̸= −1, 1.

Using Proposition 3.26, it suffices to prove that for any homomorphism of
partial hyperfields g : F → F1 ⊕ F2, where F := U{E\{∞,0,1}}, with g(a) ̸= −1, 1
there exists a k ∈ {1, 2} such that g(F ) ⊆ ιk(Fk).

Lemma 5.3 yields that there exists a unique k ∈ {1, 2} such that g(a) ∈ ιk(Fk).
We will first show g(b) ∈ ιk(Fk) for all b ∈ E \ {∞, 0, 1}.

Let i, j ∈ {1, 2} such that a−1b−1 ∈ ιi(Fi) and b ∈ ιj(Fj). Since i, j, k cannot
be pairwise different, ιl(F ∗

l ) is a subgroup of (F1 ⊕ F2)
∗ for all l = 1, 2, and as

a · a−1b−1 · b = 1 we obtain that i = j = k.
Further, Corollary 2.12 implies that g(1− b) ∈ ιk(Fk). Thus,

g(b− c) ∈ g(b− 1) + g(1− c) ∈ ιk(Fk)

for all b, c ∈ E \ {∞, 0, 1} such that b ̸= c. Hence, g(F ) ⊆ ιk(Fk). □

Definition. Let f : U(0)(M) → F1 ⊕ F2 be a homomorphism of partial hyper-
fields, where M is a matroid, F1, F2 are partial hyperfields and ιi : Fi → F1⊕F2

is the canonical injection, i = 1, 2.
For each hyperline L of M let kf (L) be the set of all j ∈ {1, 2} such that for

all pairwise different H1, H2, H3, H4 ∈ HL we have f([H1, H2 |H3, H4]) ∈ ιj(Fj).
It follows from Lemma 5.15 that kf (L) ̸= ∅.

Further, we say that M is f-indecomposable if we have kf (L) ⊆ kf (L
′) or

kf (L
′) ⊆ kf (L) for all hyperlines L,L′ of M . Clearly, M is indecomposable if

M is f -indecomposable for any isomorphism f : U(0)(M) → F1 ⊕ F2 such that
Fi ⊈ {−1, 0, 1}, i = 1, 2.

5.16 Lemma. Let L be a hyperline of a matroid M and H1, H2, H3, H4 ∈ HL

pairwise different such that f([H1, H2 |H3, H4]) ̸= −1, 1 for a homomorphism
f : U(0)(M) → F1 ⊕ F2 to the coproduct of two partial hyperfields Fi, i = 1, 2.

(a) If H is a hyperplane such that P := H ∩ L is a hyperpoint, as well as
r ∈ {1, 2, 3, 4} such that H ∩ Hi is a hyperline for i = 1, 2, 3, 4, i ̸= r,
then kf (L

′) = kf (L) for all hyperlines L′ ⊇ P such that L′ ⊈ H,Hi for
i = 1, 2, 3, 4, i ̸= r.

In particular, if H ∩ Hi is a hyperline for all i = 1, 2, 3, 4, we have
kf (L

′) = kf (L) for all hyperlines L′ ⊇ P such that L′ ⊈ H.

(b) If M is the uniform matroid of rank 3 on m ∈ {5, 6} points, and if m = 6
we have additionally −1, 1 /∈ 1− 1 in F1 ⊕ F2, then kf (L) ⊆ kf (L

′) for all
hyperlines L′ of M.

Moreover, we have kf (L′) = kf (L) for at least two hyperlines L′ ̸= L.
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5 Algebraic decomposition of matroids

Proof. First, to prove (a), let H be a hyperplane such that P := H ∩ L is
a hyperpoint, r ∈ {1, 2, 3, 4} such that Li := H ∩Hi ∈ L for all i = 1, 2, 3, 4,
i ̸= r, and L′ ⊇ P be a hyperline such that L′ ⊈ H,Hi for all i = 1, 2, 3, 4,
i ̸= r. If we set H ′

r := Hr and H ′
i := L′ ∨ Li for all i = 1, 2, 3, 4, i ̸= r,

then (H1, H2, H3, H4) and (H ′
1, H

′
2, H

′
3, H

′
4) are projectively equivalent, and

Proposition and Definition 3.29 yields that

α := [H1, H2 |H3, H4] = [H ′
1, H

′
2 |H ′

3, H
′
4].

Since f(α) ̸= −1, 1 there exists a j ∈ {1, 2} such that f(α) = ιj(Fj), where
ιi : Fi → F1 ⊕ F2 is the canonical injection, i = 1, 2. Thus, Lemma 5.15 yields
that kf (L′) = {j} = kf (L).

To show (b), let M be the uniform matroid of rank 3 on the points {1, . . . ,m},
where m ∈ {5, 6} and set ij := {i, j} for all i, j = 1, . . . ,m, i ̸= j. Let L′ be a
hyperline such that kf (L′) ̸= kf (L). It follows from Lemma 3.3

f([H1, H2 |H3, H4]) = f([H1, H2 |H3, H5]) · f([H1, H2 |H5, H4])

for any H5 ∈ HL \ {H1, H2, H3, H4}. Hence, using the fact that every permu-
tation of {1, . . . ,m} is an automorphism of M and Proposition 3.12, we may
assume without loss of generality that L = {1}, L′ = {2} and 1i = Hi−1 for all
i = 2, 3, 4, 5. Applying (CR6) yields that

f([12, 13 | 14, 15]) · f([31, 32 | 34, 35]) · f([23, 21 | 24, 25]) = 1.

Thus, we have

{f([31, 32 | 34, 35]), f([23, 21 | 24, 25])} ⊈ {−1, 1}.

It follows from the proof of Lemma 5.15 that kf ({1}) = {j} = kf ({i}) for an
i ∈ {2, 3}. Hence, kf ({1}) = kf ({3}).

Similarly, we get kf ({1}) = kf ({i}) for an i ∈ {4, 5}, and Lemma 3.3 yields
f([G1, G2 |G3, G4]) ∈ {−1, 1} for all {G1, G2, G3, G4} = {21, 23, 24, 25}. If
m = 5, it follows immediately that kf ({2}) = {1, 2}.

Else, suppose we would have m = 6 and −1, 1 /∈ 1− 1 in F1 ⊕F2. This would
imply f([G1, G2 |G3, G4]) ̸= 1 for all (G1, G2, G3, G4) ∈ H+

4 using the definition
of U(0)(M) from Proposition and Definition 3.4. Thus, Lemma 3.3 would yield
f([21, 23 | 2i, 26]) ̸= −1, 1 for an i ∈ {4, 5} and we would get kf ({2}) = kf ({i′})
for a i′ ∈ {1, 3}. Hence, kf ({2}) = kf ({1}), a contradiction. □
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5.1 Decomposition of the universal partial hyperfield

5.17 Lemma. Let M be a matroid of rank 3 such that E ⊈ H1 ∪H2 for all
hyperplanes H1, H2 of M , and Fi a partial hyperfield, i = 1, 2.

Then M is f -indecomposable for a homomorphism of partial hyperfields
f : U(0)(M) → F1 ⊕ F2 if and only if each minor N ∼= U3,6 is (f ◦ fN )-
indecomposable, where fN : U(0)(N) → U(0)(M) is the homomorphism of partial
hyperfields defined by fN (0) := 0, fN (−1) := −1, and

fN ([H1, H2 |H3, H4]) := [H1, H2 |H3, H4]

for all (H1, H2, H3, H4) ∈ H4(N), where Hi := σM (Hi), i = 1, 2, 3, 4 (cf. Propo-
sition 3.6).

Proof. Clearly, all minors N ∼= U3,6 of M are (f ◦ fN )-indecomposable if M is
f -indecomposable.

Conversely, let Fi be a partial hyperfield, i = 1, 2, f : U(0)(M) → F1 ⊕ F2 be
a homomorphism of partial hyperfields such that each minor N ∼= U3,6 of M
is (f ◦ fN )-indecomposable, and L1, L2 be different hyperlines of M such that
kf (Li) ̸= {1, 2}, i = 1, 2. We will show that kf (L1) = kf (L2).

Let G1 := H1 := L1 ∨ L2. It follows from the proofs of Proposition 3.26 and
Theorem 3.28 that there exist pairwise different H2, H3, H4 ∈ HL1 \ {H1} such
that

{f([H1, H2 |H3, H4]), f([H1, H3 |H4, H2])} ∩ {−1, 1} = ∅. (5.1)

First, we consider the case there exists a hyperplane H such that H ∩Hi ∈ L
for all i = 1, 2, 3, 4. Since Lemma 5.16 yields kf (L) = kf (L1) for all hyperlines
L ⊈ H, let L2 ⊆ H =: G2, as else we have trivially kf (L1) = kf (L2).

Similar as above there exist different G3, G4 ∈ HL2 \ {G1, G2} such that

{f([G1, G2 |G3, G4]), f([G1, G3 |G4, G2])} ⊈ {−1, 1}. (5.2)

Set L3 := G2 ∩ H2. We will show there exists a hyperline L ⊈ H such that
kf (L) = kf (L2).

If there exists a hyperplane G ⊈ L2 such that G ∩Gi ∈ L for all i = 1, 2, 3, 4,
then there exists an L ⊈ G ∪ H for which we have kf (L) = kf (L2) using
Lemma 5.16.

L1

L2

H1

H2 H3

H4

G3
G4

H = G2

G
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5 Algebraic decomposition of matroids

If there exist hyperlines Li+1 ⊆ Gi, Li+1 ̸= L2, i = 3, 4, such that every
hyperline H ′ contains at most two of the four hyperlines L1, L3, L4, L5, let E′

be a set of five points such that ϱ(Li ∩ E′) = 1 for all i = 1, . . . , 5. Then
N := M |E′ ∼= U3,5 and thus Lemma 5.16 implies that kf (L2) = kf (L), where
L := Lj for a suitable j ∈ {4, 5}.

L1

L2

L3

L4L5

H1

H2 H3

H4

H = G2

Else, there necessarily exist a hyperplane G ⊈ L2 and an s ∈ {1, 2, 3, 4} such
that G ∩Gi ∈ L for all i = 1, 2, 3, 4, i ̸= s, but G ∩Gs /∈ L. Then Lemma 5.16
yields that kf (L) = kf (L2) for a hyperline L ⊈ H such that L ⊈ Gi, i = 1, 2, 3, 4,
i ̸= s. If additionally s ̸= 2, we choose a hyperline L ⊆ Gs such that L ̸= L2.

L1

L2

L

H1

H2 H3

H4

G3

G4

H = G2

G

If additionally s = 2, we choose a hyperline L ⊈ G∪H. Since we may assume
without loss of generality that L ⊈ Gi for i = 3, 4 (otherwise we would be in the
second subcase), this follows directly if L ⊈ G1. Else, we choose any hyperline
L3 ⊇ P such that L3 ⊆ H and L3 ̸= L2, and get kf (L2) = kf (L3) = kf (L).

L1

L2

L3

H1

H2 H3

H4

G3G4

H = G2

G

In the remaining case, for all hyperplanesH ⊉ L1 there exists an r ∈ {1, 2, 3, 4}
such that H ∩ Hr /∈ L. Choose a hyperline L3 ⊆ H2, L3 ̸= L1 and set
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5.1 Decomposition of the universal partial hyperfield

G2 := L2 ∨ L3. It follows from the proofs of Proposition 3.26 and Theorem 3.28
that there exist different G3, G4 ∈ HL2 \ {G1, G2} that satisfy (5.2).

Moreover, we may assume without loss of generality that for all hyperplanes
G ⊉ L2 there exists an s ∈ {1, 2, 3, 4} such that G∩Gs /∈ L (otherwise exchange
the roles of L1 and L2 and apply the first case). Thus, using Lemma 3.3, we may
further assume that there exist {k, l} = {3, 4} such that L4 := Gk ∩Hl ∈ L.

If additionally L5 := Gl ∩Hk ∈ L, then every hyperplane H ′ contains at most
two of the five hyperplanes L1, . . . , L5. Hence, we get kf (L1) = kf (L2), as in
the first case. Thus, for the rest of the proof let ϱ(Gl ∩Hk) = 0.

L1

L2

L3

L4

L5

H1

H2

Hl

Hk

G2

Gk

Gl

If there exist L5 ⊆ Hk, L5 ̸= L1, L6 ⊆ Gl, L6 ̸= L2, such that each hyperline
contains at most two of the five hyperlines L1, . . . , L4, Lm, m ∈ {5, 6}, then it
follows from Lemma 5.16 that for

Si := {L ∈ {L1, . . . , L4, L4+i} | kf (L) = kf (Li)}

we have |Si| ≥ 3, i = 1, 2. Clearly, we get kf (L1) = kf (L2) if S1 ∩S2 ̸= ∅. Thus,
let |S1 ∪ S2| = 6 and Li+4 ∈ Si, i = 1, 2.

If additionally K := L5 ∨ L6 contains both L3 and L4, then it follows from
Lemma 5.16 that kf (L1) = kf (L2). Similarly, we get kf (L1) = kf (Li) = kf (L2)
if K contains Li but not Lj for {i, j} = {3, 4}.

L1

L2

L3

L4

L6

L5
H1

H2

Hl

Hk

G2

Gk

Gl

K

Else, K contains neither L3 nor L4 and since the Gi and the Hi, i = 1, 2, 3, 4,
are pairwise different all hyperplanes contain at most two of the six hyperplanes
L1, . . . , L6. Let E′ be a set of six points such that ϱ(Li ∩ E′) = 1 for all
i = 1, . . . , 6. Then N :=M |E′ ∼= U3,6. Since N is (f ◦ fN )-indecomposable we
obtain kf (L1) = kf (L2).
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L1

L2

L3

L4

L6

L5
H1

H2

Hl

Hk

G2

Gk

Gl

If for every choice of L5 ⊆ Hk, L5 ̸= L1, L6 ⊆ Gl, L6 ≠ L2, there exist an
m ∈ {5, 6} and a hyperplane of H that contains at least three of the hyperlines
L1, . . . , L4, Lm, we may assume without loss of generality that m = 5 and
H := L2 ∨ L5 contains Li for {i, j} = {3, 4} (since H1, H2, H3, H4 are pairwise
different). If G := L1 ∨ L6 contains also Li, then Lemma 5.16 yields that
kf (L1) = kf (Lj) = kf (L2).

Else, if G contains neither Li nor Lj , we get kf (L1) = kf (Lm) = kf (L2) for
an m ∈ {j, 5}.

Finally, let G contain Lj . Then there exists a hyperline L ⊈ G ∪H. Further,
we choose n ∈ {j, 5} and p ∈ {i, 5} such that L ⊈ L1 ∨ Lp and L2 ⊈ L ∨ Ln.
Therefore, using Lemma 5.16, we obtain

kf (L1) = kf (Ln) = kf (L) = kf (Lp) = kf (L2).

L1

L2

L3 L4

L6

L5

H1

H2

Hl

Hk

G2

Gk

Gl
□

5.18 Proposition. A matroid M such that E ⊈ H1 ∪H2 for all hyperplanes
H1, H2 with ϱ(H1 ∩H2) ≥ ϱ(M)− 3 is algebraically indecomposable if one of
the following conditions is satisfied:

(a) ϱ(M) = 3 and −1, 1 /∈ 1− 1 in U(0)(M),

(b) ϱ(M) = 3 and M is representable over a field F ,

(c) ϱ(M) ≥ 4, and −1, 1 /∈ 1− 1 as well as −1 /∈ 1 + 1 in U(0)(M),

(d) ϱ(M) ≥ 4 and M is representable over a field F of characteristic ̸= 3.
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5.1 Decomposition of the universal partial hyperfield

Proof. Let n := ϱ(M) ≥ 3 and f : U(0)(M) → F1 ⊕ F2 be a homomorphism of
partial hyperfields, where Fi is a partial hyperfield, i = 1, 2. We will show that
if −1, 1 /∈ 1 − 1 in F1 ⊕ F2, and additionally −1 /∈ 1 + 1 in F1 ⊕ F2 if n ≥ 4,
then M is f -indecomposable.

This proves our claim, since Lemma 2.5 and Theorem and Definition 3.16
imply that (b) is a special case of (a) and (d) is a special case of (c). If n = 3, it
follows directly from Lemma 5.16 and Lemma 5.17 that M is f -indecomposable.

Thus, let n ≥ 4 for the rest of the proof. It follows from the definition of the
addition of U(0)(M) in Proposition and Definition 3.4, the proof of Lemma 3.20,
−1, 1 /∈ 1−1, and −1 /∈ 1+1 that f([H1, H2 |H3, H4]) ̸= −1, 1 for all hyperlines
L and pairwise different H1, H2, H3, H4 ∈ HL. Hence, we obtain from the proof
of Lemma 5.15 that kf (L) = {1, 2} if and only if |HL| = 3 (the case |HL| = 2 is
not possible since otherwise E = H1 ∪H2 for {H1, H2} = HL).

Let L1, L2 be distinct hyperlines of M such that kf (Li) ̸= {1, 2}, i = 1, 2, and
K := L1 ∩ L2. We will prove by induction on ϱ(K) that kf (L1) = kf (L2). If
ϱ(K) = n− 3, this follows from Proposition 3.6 and the proof of (a).

Else, ϱ(K) < n−3 and we choose a hyperpoint P of M such that K ⊆ P ⊆ L1.
Then P ∨ L2 has at least rank n − 1 and therefore there exist ai ∈ L2 \ P ,
i = 1, 2, such that L′

i := P ∨ ai, i = 1, 2 are two distinct hyperlines. Since
L1 ∩ L′

i = P and ϱ(L2 ∩ L′
i) ≥ ϱ(K) + 1 by construction of L′

i, i = 1, 2, we can
apply the induction hypothesis if kf (L′

i) ̸= {1, 2} for an i ∈ {1, 2}, and obtain
kf (L1) = kf (L3) = kf (L2).

Otherwise, we would have kf (L′
i) = {1, 2} and thus |HL′

i
| = 3 for all i = 1, 2.

We will show that this would imply that the simplification of M/P is isomorphic
to the Fano matroid, a contradiction to kf (L1) ̸= {1, 2}.

Let Gi, Gi+2 ⊇ L′
i be hyperplanes such that HL′

i
= {H,Gi, Gi+2}, i = 1, 2,

and H := L′
1 ∨ L′

2. For each i = 1, 2 every hyperline L′ ⊇ P such that L′ ⊈ H
would be contained in Gi or Gi+2. Thus, there would exist an r ∈ {4, 5, 6} and
pairwise different hyperlines L′

3, . . . , L
′
r ⊇ P such that L′

i ⊈ H, i = 3, . . . , r, and
E = H ∪

⋃︁r
i=3 L

′
i. Further, r ≥ 5, since E ⊈ H ∪ (L′

3 ∨ L′
4).

Moreover, every hyperplane H ′ ⊇ P such that H ′ ̸= H would contain at most
three hyperlines that contain P . In particular, the L′

i ∨ L′
j for i, j ∈ {3, . . . , r},

i ̸= j, are s pairwise different hyperplanes, where s = 3 if r = 5, and s = 6 if
r = 6.

For any hyperline L′ ⊇ P with L′ ⊆ H there would exist {i, j, k} = {3, 4, 5}
such that HL′ = {H,L′ ∨ Li, Lj ∨ Lk}, or {i, j, k, l} = {3, 4, 5, 6} such that
HL′ = {H,Li ∨ Lj , Lj ∨ Ll}. Thus, we obtain that also H would contain at
most 3 hyperlines that contain P . Hence, |HL′ | = 3 for all hyperlines L′ ⊇ P ,
which yields that s(M/P ) is isomorphic to the Fano matroid. □
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5 Algebraic decomposition of matroids

5.19 Corollary. A matroid M is algebraically indecomposable if one of the
following conditions is satisfied:

(a) sM is uniform; in particular when ϱ(M) ≤ 2,

(b) ϱ(M) ≥ 3 and for every hyperpoint P and every hyperplane H of M such
that P ⊆ H there exist pairwise different hyperlines L1, L2, L3 such that
P ⊆ Li ⊆ H, i = 1, 2, 3.6

Proof. If M is uniform, it follows from Theorem and Definition 2.20, Propo-
sition 3.26, and Lemma 4.21 that there exist a partial hyperfield F and a
homomorphism f : U(0)(M) → F such that f([H1, H2 |H3, H4]) ̸= ±1 for all
(H1, H2, H3, H4) ∈ H+

4 . Thus, Proposition 3.11 and the proof of part (c) of
Proposition 5.18 imply (a).

In order to prove (b), let n := ϱ(M) ≥ 3, f : U(0)(M) → F1 ⊕ F2 be a
homomorphism of partial hyperfields, where Fi is a partial hyperfield, i = 1, 2,
and for every hyperpoint P and every hyperplane H such that P ⊆ H let there
exist pairwise different hyperlines L1, L2, L3 such that P ⊆ Li ⊆ H, i = 1, 2, 3.

We will show that for every hyperpoint P , every hyperline L ⊇ P and all
pairwise different H1, H2, H3, H4 ∈ HL such that f([H1, H2 |H3, H4]) ̸= ±1, all
hyperlines L′ ⊇ P such that kf (L′) ̸= kf (L) are contained in a hyperplane
H ⊇ L. Then if L,L′ ⊇ P are hyperlines such that kf (L) ̸= {1, 2} and
kf (L

′) ̸= kf (L), there exists a hyperline L′′ ⊇ P such that L′′ ⊈ L ∨ L′ = H
and kf (L′′) = kf (L).

Thus, kf (L) = kf (L̃) for all hyperlines L̃ ⊇ P such that L̃ ⊈ H,H ′ := L∨L′′,
that is L̃ ≠ L′ and kf (L′) = {1, 2}. Hence, we get kf (L1) = kf (L2) by induction
on ϱ(L1 ∩ L2), as in the proof of Proposition 5.18.

Suppose, there existed hyperlines L′
i ⊇ P such that kf (L′

i) ̸= kf (L), i = 1, 2,
and L ∨ L′

1 ̸= L ∨ L′
2. Then there would exist hyperlines Li ⊇ P such that

Li ⊆ Hi, Li ̸= L, and Li ⊈ L′
1 ∨ L′

2, i = 1, 2. Further, choose a hyperline
L3 ⊇ P such that L3 ⊆ L1 ∨ L2 =: G, L3 ̸= Li, i = 1, 2.

Using Lemma 3.3, we can assume without loss of generality that L3 ⊆ H3.
Thus, Lemma 5.16 would imply G ∩ H4 = P , L′

1 ⊆ Hr0 , and L2 ⊆ Hs0 for
r0, s0 ∈ {1, 2, 3} such that r0 ̸= s0. Additionally, it follows from Lemma 5.16
that kf (K) = kf (L) for all K ⊆ H4.

Moreover, there would exist hyperlines Kj ⊃ P with Kj ⊆ H4, j = 1, 2, such
that K1,K2, L are pairwise different. Let j ∈ {1, 2}. Then (G1,j , G2,j , G3,j , G4,j)
and (H1, H2, H3, H4) are projectively equivalent, where Gi,j := Li ∨ Kj for
i = 1, 2, 3, and G4,j := H4.

6In particular, a Sylvester matroid, i. e., a matroid whose lines each contain a circuit, is
algebraically indecomposable.
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5.2 Decomposition of the canonical real reduced hyperneofield

Therefore, applying Lemma 5.16, there exist rj , sj ∈ {1, 2, 3}, rj ̸= sj , such
that L′

1 ⊆ Grj ,j and L′
2 ⊆ Gsj ,j . Since K1,K2, L are pairwise different, the same

holds for r0, r1, r2 as well as s0, s1, s2. Hence, there exists a k ∈ {1, 2} such that
sk = r0.

Finally, since H1 intersects Grk,k, Gsk,k, and G4,k in a hyperline, applying
Lemma 5.16 yields kf (L′

2) = kf (Kk), a contradiction to kf (Kk) = kf (L). □

5.2 Decomposition of the canonical real reduced
hyperneofield

We will now prove a characterization of the connected components of oriented
matroids M where Q(M) is a hyperfield. Additionally, we will apply this as an
example for modular combinatorial geometries.

5.20 Lemma. Let F be a partial hyperfield, T a real preordering of F and
x ∈ F ∗.

(a) 1 + xT = {yT ∈ Q(F ) | σ(x) = 1 ⇒ σ(y) = 1 ∀ σ ∈ HomT ∗(F,S)}.

(b) If y, z ∈ F ∗ such that yT ∈ 1 + xT , we have yzT ∈ 1 + xT if and only if
zT ∈ 1 + xT .

Proof. In order to prove (a), let y ∈ F ∗. If yT ∈ 1 + xT and σ ∈ HomT ∗(F,S)
such that σ(x) = 1, it follows that σ(y) ∈ 1 + σ(x) = {1}.

Conversely, if σ(y) = 1 for all σ ∈ HomT ∗(F,S) such that σ(x) = 1, we have
σ(y) = 1 ∈ 1 + 1 = 1 + σ(x) if σ(x) = 1, and σ(y) ∈ 1 − 1 = 1 + σ(x) if
σ(x) = −1 for all σ ∈ HomT ∗(F,S). Thus, yT ∈ 1 + xT .

Finally, (b) follows directly from (a), since for every σ ∈ HomT ∗(F,S) such
that σ(y) = 1 we have σ(yz) = σ(z). □

5.21 Proposition and Definition. For any real preordering T of a partial
hyperfield F the following statements are equivalent:

(a) the map Hom(QT (F ), S) → Hom(QT (F ),W), σ ↦→ h ◦ σ is surjective,
where h : S → W is the unique homomorphism (see Lemma 3.20),

(b) a+ b = {a, b} for all a, b ∈ QT (F )
∗ such that a ̸= −b,

(c) 1 + a = {1, a} for all a ∈ QT (F ) \ {0,−1}.

If one (and therefore all) of the statements above is satisfied, we call QT (F ) a
fan.7 Moreover, in this case QT (F ) is a hyperfield.

7This is equivalent to that the corresponding prespaces of orderings is a fan in the sense of
Marshall.
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5 Algebraic decomposition of matroids

Proof. Using Proposition and Definition 2.7, (a) is fulfilled if and only if
each group homomorphism σ : QT (F )

∗ → {−1, 1} such that σ(−1) = −1 is a
homomorphism of partial hyperfields (by setting σ(0) := 0).

Thus, the equivalence of (a), (b) and (c) is implied by [Mar96, Theorem 3.1.2],
Proposition 2.2, and Theorem 4.11.

The last sentence follows from [Mar96, Theorem 3.1.1] and Theorem 4.11. □

5.22 Lemma. Let I be a set, Ti be a real preordering of a partial hyperfield
Fi, i ∈ I, F :=

∐︁
i∈I Fi, and ιi : F → Fi the canonical injection for i ∈ I as in

Corollary 2.12. Then the (multiplicative) submonoid T of F generated by 0 and
ιi(Ti), i ∈ I, is a real preordering of F . Moreover

(a) the map HomT ∗(F,S) →
∏︁

i∈I HomT ∗
i
(Fi,S), σ ↦→ (σ ◦ ιi)i∈I is a bijection,

(b) for any j ∈ I and aj ∈ Fj we have 1 + ιj(aj)T = QTj ,T (ιj)(1 + ajTj
).

Further, 1 + aT = {1, aT } for any a ∈ F such that aT /∈ QTi,T (ιi) for all
i ∈ I.

(c) QT (F ) is a hyperfield if and only if there exists a j ∈ I such that QTj (Fj)
is a hyperfield and QTi(Fi) is a fan for all i ∈ I \ {j}.

Proof. Applying Corollary 2.12 and Lemma 5.3, we get that T is preordering
of F . Further, (a) follows from the universal property of the coproduct of partial
hyperfields.

In order to prove (b), let F ′
j :=

∐︁
i ̸=j Fi, κi : Fi → F ′

j the canonical injection
i ∈ I, i ̸= j, and T ′

j be the (multiplicative) submonoid of F ′
j generated by 0 and

κi(Ti), i ∈ I, i ≠ j. Using Corollary 2.12, there exists a unique homomorphism
ι′j : F

′
j → F such that ι′j ◦ κi = ιi for all i ∈ I, i ̸= j. Further, set

Hj(σ) := {σ′ ∈ HomT ∗(F,S) | σ ◦ ιi = σ′ ◦ ιi for all i ∈ I, i ̸= j}

for every σ ∈ Hom(F,S).
Let a ∈ F ∗. Clearly, we always have 1, aT ∈ 1 + aT .
Consider the case a = ιj(aj) for an aj ∈ Fj . Lemma 2.5 implies that

QTj ,T (ιj)(1 + ajTj
) ⊆ 1 + aT . If there would exists a b′j ∈ F ′

j such that
bT ∈ 1 + aT \ {1} for b = ι′j(b

′
j), there would be a σ′ ∈ HomT ∗(F,S) such that

σ′(b) = −1. Applying (a) would yield the existence of a σ ∈ Hj(σ
′) such that

σ(ιj(aj)) = 1, contradicting bT ∈ 1 + aT . Hence, using Lemma 5.20, we obtain
1 + aT = QTj ,T (ιj)(1 + ajTj

).

Similarly, we get 1 + ι′j(a
′
j)T = QT ′

j ,T
(ι′j)(1 + a′jT ′

j

). Thus, it remains to show

that 1 + aT = {1, aT } for a = cc′, where c := ιj(aj), c′ := ι′j(a
′
j) for aj ∈ Fj and

a′j ∈ F ′
j , such that α := ajTj

, α′ := a′jT ′
j

̸= ±1.
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5.2 Decomposition of the canonical real reduced hyperneofield

Let b = dd′ such that bT ∈ 1 + aT , where d := ιj(bj), d′ := ι′j(b
′
j) for bj ∈ Fj

and b′j ∈ F ′
j , and β := bjTj

, β′ := b′jT ′
j

̸= 1.

First, let β ∈ 1+α. If α = β, then also α′ = β′, as otherwise there would exist
a σ′ ∈ Hom(F,S) such that σ′(c′) ̸= σ′(d′) and (a) would imply there exists a
σ ∈ Hj(σ

′) with σ(c) = σ′(c′). Thus, σ(a) = 1 but σ(b) = −1, a contradiction
to Lemma 5.20.

Otherwise, α ̸= β and there exists a σj ∈ Hom(Fj , S) such that σj(aj) ̸= σj(bj).
Thus, Lemma 5.20 yields σj(aj) = −1 and σj(bj) = 1. Let σ′ ∈ Hom(F,S).
Then (a) implies the existence of a σ ∈ Hj(σ

′) such that σ(c) = 1 if σ′(c′) = 1 and
σ ◦ ιj = σj else. Hence, σ(a) = 1 and therefore σ′(d′) = σ(b) = 1, contradicting
β′ ̸= 1.

Similarly, we get aT = bT if −β ∈ 1 + α or ±β′ ∈ 1 + α′.
It remains to consider the case β /∈ 1 + α and −β′ /∈ 1 + α′. Applying

Lemma 5.20, we would get a σ′ ∈ Hom(F,S) such that σ′(c′) = 1 = σ(d′) and a
σ ∈ Hj(σ

′) with σ(c) = 1 and σ(d) = −1. Therefore, σ(a) = 1 but σ(b) = −1,
a contradiction to Lemma 5.20.

Finally, we prove (c). Let j ∈ I such that QTj (Fj) is a hyperfield and
QTi(Fi) is a fan for all i ∈ I, i ̸= j, and a, b, c ∈ F . It is sufficient to show
(aT + bT ) + cT = aT + (bT + cT ) for all a, b, c ∈ F ∗, since both sides are equal
to xT + yT for all {x, y, 0} = {a, b, c} ⊆ F .

Set further x := ab−1 and y := cb−1. Therefore, we have to show that
(xT + 1) + yT = xT + (1 + yT ) for all x, y ∈ F ∗.

If xT , yT ∈ F̄ j , where F̄ i := QTi,T (ιi)(QTi(Fi)) for all i ∈ I, this follows
directly from (b).

Otherwise, we can assume without loss of generality that xT /∈ F̄ j , as addition
is commutative. In the case yT /∈ F̄ j , (b) yields

(xT + 1) + yT = {1, xT }+ yT = (1 + yT ) ∪ (xT + yT )

= (xT + yT ) ∪ {1, yT } = xT + (1 + yT ).

In the remaining case, it follows from (b) that xT zT /∈ F̄ j for all z ∈ F such
that zT ∈ 1 + yT , because F̄ ∗

j is a subgroup of QT (F )
∗. Therefore,

(xT + 1) + yT = {1, xT }+ yT = (1 + yT ) ∪ xT (1 + xT yT )

= (1 + yT ) ∪ {xT } =
⋃︂

zT∈1+yT

xT (1 + xT zT )

=
⋃︂

zT∈1+yT

(xT + zT ) = xT + (1 + yT ).

Hence, QT (F ) is hyperfield.
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5 Algebraic decomposition of matroids

Conversely, if QT (F ) is a hyperfield, it follows directly from (b) that each
QTi(Fi) is a hyperfield, i ∈ I. Let j ∈ I such that QTj (Fj) is not a fan and let
k ∈ I \ {j} such that there exists an xT ∈ F̄ k \ F̄ j .

If yT ∈ F̄ j , we obtain as in the last case of the proof of the reverse implication
that

(xT + 1) + yT = xT + (1 + yT ) = {1, xT }+ yT .

Since this set obviously contains each zT ∈ 1 + xT we have zT ∈ 1 + yT or
zT ∈ xT + yT for such a zT . Since it follows from (a) that F̄ k ∩ F̄ j = {−1, 0, 1},
this implies zT ∈ {1, xT }. Hence, (b) yields QTk

(Fk) is a fan. □

5.23 Remark and Definition. Using the notations of Lemma 5.22, we denote
the preordering T of F by

∐︁
i∈I Ti.

Since part (b) Lemma 5.22 yields QTj ,T (ιj) is a strong embedding, for conve-
nience we will identify QTj (Fj) with its image under QTj ,T (ιj), j ∈ I.

If j ∈ I such that each QTi(Fi), i ∈ I, i ̸= j, is a fan and QTj (Fj) is a
hyperfield, then the corresponding space of orderings via Proposition 4.12 of
QT (F ) is a group extension of the corresponding space of orderings of QTj (Fj).
Thus, QT (F ) is a fan if and only if each QTi(Fi) is a fan, i ∈ I.

5.24 Theorem. Let M be a matroid and T a real preordering of U(0)(M).
Then we have that QT (M) is a hyperfield if and only if M = S⊕N for matroids
S and N such that Qι−1

S (T )(S) is a fan and Qι−1
N (T )(N) is a hyperfield, where

ιX : U(0)(X) → U(0)(M) is the canonical injection, X ∈ {S,N}.8

Proof. If QT (M) is a fan, then M ∼= S⊕N for S := N and the empty matroid
N . Otherwise, let M1, . . . ,Mk be the connected components of M .

Since Proposition 3.8 implies that U(0)(M) ∼=
∐︁k

i=1U(0)(Mi), we can assume
without loss of generality that QT1(M1) is not a fan, using Lemma 5.22, where
Ti := ι−1

i (T ) and ιi : U(0)(Mi) → U(0)(M) is the canonical injection, i = 1, . . . , k.
Moreover, Lemma 5.22 yields QT (M) is a hyperfield if and only if QT1(M1) is

a hyperfield and QTi(Mi) is a fan, i = 2, . . . , k. Our claim thus follows from the
fact that Qι−1

S (T )(S) is a fan for S :=
⨁︁k

i=2Mi if each QTi(Mi), i = 2, . . . , k, is
a fan (see Remark and Definition 5.23). □

5.25 Corollary. Let M be an orientable modular combinatorial geometry.

(a) Q(M) is a hyperfield which is not a fan if and only if M is the direct sum
of an orientable modular combinatorial geometry S such that Q(S) is a
fan and a matroid of the following type:

8See Corollary 2.12 and Proposition 3.8.
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(i) U2,4,

(ii) a projective plane Π such that the space of orderings of the planar
ternary ring (F, T ) coordinatizing it is not a fan,

(iii) a projective geometry PG(d, F ), where F is a skew-field whose space
of orderings is not a fan and d ∈ N, d ≥ 3.

(b) Q(M) is a fan if and only if it is the direct sum of matroids of the following
types:

(i) U0,0, U1,1, U2,2, or U2,3,

(ii) a projective plane Π such that the space of orderings of the planar
ternary ring (F, T ) coordinatizing it is a fan,

(iii) a projective geometry PG(d, F ), where F is a skew-field whose space
of orderings is a fan and d ∈ N, d ≥ 3.

Proof. As in the proof of Proposition 5.10, using Theorem 5.24, it suffices to
examine whether Q(M) is a hyperfield for a projective geometry M and whether
it is a fan.

If M has dimension at least 2, this follows from Theorem 3.24, Proposition 3.25
and Proposition 4.10. Otherwise, M has dimension at most 1 and is uniform.
Thus, Corollary 4.23 yields our claim. □

5.3 Minors

Definition. We call a set of minors M of M an algebraic cover of M if there
exists a map S : M ⊸ E(M)9 such that S(N) is an independent set of M ,
ϱM (S(N)) = ϱ(M)− ϱ(N) and N = (M/S(N))|E(N) for each N ∈ M, and

U(0)(M) =
⋃︂

N∈M
fS(N)(U(0)(N)),

where fS(N) : U(0)(N) → U(0)(M) is the homomorphism of partial hyperfields
from Proposition 3.6.

For convenience, we call a minor N an algebraic cover of M if {N} is an
algebraic cover of M . Furthermore, we say that a minor N dominates M
if there exists an independent set S of M such that ϱM (S) = ϱ(M) − ϱ(N),
N = (M/S)|E(N), and fS is an epimorphism of partial hyperfields.

9Where X ⊸ Y denotes a map from the set X to the power set of the set Y .
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5 Algebraic decomposition of matroids

5.26 Remark. Clearly, every dominant minor of a matroid M is an algebraic
cover of M , but the converse is false. As a regular matroid, the non-Fano
matroid is an algebraic cover of the Fano matroid which does not dominate the
Fano matroid.

5.27 Lemma. Let M be a finite matroid.

(a) A set M of minors of M is an algebraic cover of M if and only if the set
M∗ := {N∗ |N ∈ M} of minors of M∗ is an algebraic cover of M∗.

(b) A minor N of M dominates M if and only if N∗ dominates M∗.

Proof. To prove (a), let E := E(M) = E(M∗) and M be an algebraic cover
of M . We define a map S∗ : M∗ ⊸ E by S∗(N∗) := E \ (E(N) ∪ S(N)) for all
N ∈ M. Thus, E = E(N) ∪· S(N) ∪· S∗(N∗) and Proposition 3.11 implies that
S∗(N∗) is an independent set of M∗ for all N ∈ M.

Further, let φM : U(0)(M) → U(0)(M∗) and φN : U(0)(N) → U(0)(N∗) for
each N ∈ M be the isomorphisms of Proposition 3.11, which also yields

U(0)(M∗) = φM (U(0)(M)) =
⋃︂

N∈M
φM (fS(N)(U(0)(N)))

=
⋃︂

N∈M
fS∗(N∗)(φN (U(0)(N))) =

⋃︂
N∗∈M∗

fS∗(N∗)(U(0)(N∗)).

Therefore, M∗ is an algebraic cover of M∗.
In order to prove (b), letN be a minor ofM that dominatesM . As this implies

{N} is an algebraic cover of M , we will reuse the definitions and notations
from the proof of part (a). Set S := S(N) and S∗ := S∗(N∗). It follows from
Proposition 3.11 that fS∗ = φM ◦ fS ◦ φ−1

N .
Since fS is an epimorphism of partial hyperfields and φM as well as φN are

isomorphisms, it follows that fS∗ is also an epimorphism of partial hyperfields.
Hence, N∗ dominates M∗. □

5.28 Proposition. Let M be a matroid and M be an algebraic cover of M .
Then M is semiartinian resp. almost artinian resp. artinian if each N ∈ M has
this property.

Proof. Let S : M ⊸ E(M) be a map such that S(N) is an independent set of
M , ϱM (S(N)) = ϱ(M)− ϱ(N) and N = (M/S(N))|E(N) for each N ∈ M, as
well as U(0)(M) =

⋃︁
N∈M fS(N)(U(0)(N)).

Since fS(N)(F(N)) ⊆ F(M) by Lemma 2.5 for each N ∈ M, we have⋃︁
N∈M fS(N)(αF(N)) ⊆ αF(M) for α ∈ {−1, 1}. Thus, our claim follows from

the definitions of semiartinian, almost artinian, and artinian matroids. □
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5.29 Proposition. Let M be a matroid which has a modular hyperplane U .
Then M |U is an algebraic cover of M if and only if either ϱ(M\U) ̸= 2 or
s(M\U) ∼= U2,2.

Proof. If ϱ(M\U) ≤ 2, then our claim follows from the proof of Proposition 5.13.
Let ϱ(M\U) ≥ 3 and E := E(M). Then Proposition 3.6 implies that the map
f : U(0)(M |U) → U(0)(M) defined by f(0) := 0, f(−1) := −1, and

f([H1, H2 |H3, H4]) := [H1 ∨ p,H2 ∨ p |H3 ∨ p,H4 ∨ p]

for all (H1, H2, H3, H4) ∈ H4(M |U), where p ⊆ E \ U is a flat of M of rank
1, is a homomorphism of partial hyperfields, since f = f{e} for any maximal
independent set {e} ⊆ p.

Set Σ := σM (E \U)∩U , let L be a hyperline of M and H1, H2, H3, H4 ∈ HL

be pairwise different. To show [H1, H2 |H3, H4] ∈ f(T(0)(M)) and thus f is
surjective, we consider three cases:

First, let L ⊈ U . Then L′ := L ∩ U is a hyperline of M |U and each
H ′

i := Hi ∩ U is a hyperplane of M |U containing L′, i = 1, 2, 3, 4. As U is
modular, (H1, H2, H3, H4) and (H̃1, H̃2, H̃3, H4

˜ ) are projectively equivalent,
where H̃ i := H ′

i ∨ p, i = 1, 2, 3, 4. Therefore, Proposition and Definition 3.29
yields

[H1, H2 |H3, H4] = [H̃1, H̃2 | H̃3, H̃4] = f([H ′
1, H

′
2 |H ′

3, H
′
4]).

Second, let L ⊆ U and ϱM (L ∩ Σ) > 0. Using Lemma 3.3, we can assume
without loss of generality that H2 = U . Let {s} be an independent set of L ∩ Σ
and choose a flat P such that σM (P ∪ {s}) = L =: L′

1. Then P is a hyperpoint.
As H3, H4 ̸= U there exist hyperlines L3, L4 of M such that P ⊆ Li ⊆ Hi and
Hi = L∨Li, i = 3, 4. Further, H := L3 ∨L4 intersects U in a hyperline L′

2 ⊇ P .
If there exists a hyperline L′

3 ̸= L of M such that P ⊆ L′
3 ⊆ H1 and

L′
3 ⊈ H, then H ′

i := L′
j ∨ L′

k for all {i, j, k} = {1, 2, 3}, H ′
i+3 := L′

i ∨ L3, and
H ′

i+6 := L′
i ∨ L4 for all i = 1, 2, 3 satisfy the conditions (i) – (v) from (CR6).

Since H1 = L ∨ L′
3 = H ′

2, H2 = U = L ∨ L′
2 = H ′

3, H3 = L ∨ L3 = H ′
4,

H4 = L ∨ L4 = H ′
7, and H ′

5 = H ′
8 = H, it follows from the first case

[H1, H2 |H3, H4] = [H ′
2, H

′
3 |H ′

4, H
′
7] = [H ′

2, H
′
1 |H ′

6, H
′
9] ∈ f(T(0)(M |U)).

Otherwise, H ∩H1 is a hyperline of M and H1 = L∪ (H1∩H). Therefore, there
exists a hyperline L′ of M such that P ⊆ L′ and neither L′ ⊆ U nor L′ ⊆ H,
because E \U ⊈ H (otherwise we would have Σ ⊆ P ). Set H ′ := L1 ∨L′. Using
the previous subcase, we can conclude

[H1, H2 |H3, H4] = [H1, H
′ |H3, H4] · [H ′, H2 |H3, H4] ∈ f(T(0)(M |U)).
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5 Algebraic decomposition of matroids

Finally, let L ⊆ U and ϱ(L ∩ Σ) = 0. We will first show by induction that for
every k ∈ {0, . . . , ϱ(M)− 3} there exist flats K1 ⊆ L of rank k and K2 ⊆ U of
rank k + 1 with K1 ⊆ K2, Σ ⊈ K2, and ϱ(K2 ∩ Σ) > 0. If k = 0, this follows
from the fact that ϱ(M\U) ≥ 3 implies ϱ(Σ) ≥ 2.

Let k > 0. By induction hypothesis there exist flats K1 ⊆ L of rank k − 1
and K2 ⊆ U of rank k such that K1 ⊆ K2, Σ ⊈ K2, and ϱ(K2 ∩ Σ) > 0. Since
k < ϱ(L) there exist two different flats K1,i of rank k such that K1 ⊆ K1,i ⊆ L,
i = 1, 2. As ϱ(K2∩Σ) > 0 and therefore K2 ⊈ L we get K1,i∩K2 = K1, i = 1, 2.
It follows K2,i := K1,i ∨K2, i = 1, 2, are two different flats of rank k + 1 such
that K2,i ⊆ U and K1,i ⊆ K2,i, i = 1, 2.

Suppose Σ ⊆ K2,1 ∩K2,2. Then K1 ∨ Σ ⊆ K2,1 ∩K2,2 = K2, yielding the
contradiction Σ ⊆ K2. Thus, for a suitable j ∈ {1, 2}, K ′

1 := K1,j ⊆ L is a flat
of rank k and K ′

2 := K2,j ⊆ U a flat of rank k + 1 with K ′
1 ⊆ K ′

2, Σ ⊈ K ′
2 and

ϱ(K ′
2 ∩ Σ) ≥ ϱ(K2 ∩ Σ) > 0.

Applying this in the case k = ϱ(M) − 3, there exists a hyperpoint P of M
such that P ⊆ L and a hyperline L′

2 of M such that P ⊆ L′
2 ⊆ U , Σ ⊈ L′

2 and
ϱ(L′

2 ∩ Σ) > 0. Further, set L′
1 := L and choose hyperlines L′

3, Li ⊇ P , i = 3, 4,
with H = L′

1 ∨ L′
3 and Hi = L ∨ Li, i = 3, 4.

Then the hyperplanes H ′
i := L′

j∨L′
k for all {i, j, k} = {1, 2, 3}, H ′

i+3 := L′
i∨L3,

and H ′
i+6 := L′

i ∨L4 for all i = 1, 2, 3 satisfy the conditions (i) – (v) from (CR6)
and – since H1 = L ∨ L′

3 = H ′
2, H2 = U = L ∨ L′

2 = H ′
3, H3 = L ∨ L3 = H ′

4,
H4 = L ∨ L4 = H ′

7 — we get using the previous cases

[H1, H2 |H3, H4] = [H ′
1, H

′
3 |H ′

5, H
′
8] · [H ′

2, H
′
1 |H ′

6, H
′
9] ∈ f(T(0)(M |U)). □

5.30 Remark. Let Mi = (Ei,Hi), i = 1, 2, be matroids such that U := E1∩E2

is a modular hyperplane of M1 and M1|U = M2|U . Then E2 is a modular
hyperplane of the generalized parallel connection PU (M1,M2) of M1 and M2.

Moverover, if M is a matroid which has a modular hyperplane U , and addi-
tionally ϱ(M\U) = 1 or s(M\U) ∼= U2,2, then M |U dominates M (we even have
U(0)(M) ∼= U(0)(M |U)). However, this is not necessarily the case if ϱ(M\U) = 3.

Proof. First, let M := PU (M1,M2), n := ϱ(M2) and k := ϱ(U). Then we have
ϱ(M1) = k + 1 and ϱ(M) = k + 1 + n− k = n+ 1. Further,

ϱM (E2) = ϱM1(E2 ∩ E1) + ϱM2(E2)− ϱ(U) = k + n− k = n.

Therefore, E2 is a hyperplane of M . If E2 was not modular, there would exist a
line ℓ ⊆ E1 ⊆ E of M such that ϱM (ℓ ∩ E2) = 0. Thus, ϱM (ℓ ∩ U) = 0 and U
would not be a modular hyperplane of M1, a contradiction.
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Furthermore, that M |U dominates M (as well as U(0)(M) ∼= U(0)(M |U)) if
U is a modular hyperplane of M , and ϱ(M\U) = 1 or s(M\U) ∼= U2,2, follows
directly from Proposition 5.13.

Finally, if M1 is the Fano matroid and M2 is the non-Fano matroid, then
M := PU (M1,M2), where U is a common 3-point line of M1 and M2, is a binary
matroid which is not regular, but M2 =M |E2 is regular. Thus, Corollary 3.21
yields U(0)(M) ∼= F2 and U(0)(M2) ∼= U0. Hence, M2 does not dominate M ,
completing our proof. □

5.31 Example. Choose a line ℓ of PG(2, 2) and identify its points with the
points of a line of AG(2, 3). Then Proposition 5.29 and Remark 5.30 imply
that AG(2, 3) is an algebraic cover of M := Pℓ(PG(2, 2),AG(2, 3)). Since
AG(2, 3) is semiartinian and M contains the Fano matroid PG(2, 2) as a minor
Proposition 5.28 yields that M is artinian.

Further, AG(2, 3) is representable over F4 and thus a restriction of PG(3, 4).
If we choose any hyperplane of PG(2, 4) which intersects this restriction in
three collinear points, two of these points can be extended to a quadrangle such
that the remaining point is one of its diagonal points. As the restriction of the
chosen hyperplane to the quadrangle and the diagonal points is isomorphic to
PG(2, 2) it follows that M is representable over F4. Hence, U(0)(M) ∼= F4 by
Proposition 5.2.

5.32 Lemma (cf. [Wen89, Proposition 2.9]). Let M be a matroid.

(a) If ϱ(M) ̸= 2, then {M/e | e ∈ E} is an algebraic cover of M .

(b) If |E| ≠ ϱ(M) + 2, then {M\e | e ∈ E} is an algebraic cover of M .

Proof. Let E := E(M). First, we prove (a). If ϱ(M) ∈ {0, 1}, then M and all
of its minors are regular. Thus, (a) follows from Lemma 3.20 in this case.

Otherwise, let ϱ(M) ≥ 3. Then every hyperline L has rank at least 1. If
H1, H2, H3, H4 ⊇ L are pairwise different hyperplanes and {e} ⊆ L is indepen-
dent, we have

f{e}([H1 \ {e}, H2 \ {e} |H3 \ {e}, H4 \ {e}]) = [H1, H2 |H3, H4]

for the homomorphism of partial hyperfields f{e} : U(0)(M/e) → U(0)(M) from
Proposition 3.6. Thus, {M/e | e ∈ E} is an algebraic cover of M .

Using Lemma 5.27, it remains to prove (b) in the case that M is infinite, since
otherwise we have |E| ≠ ϱ(M) + 2 if and only if ϱ(M∗) = |E| − ϱ(M) ̸= 2 and
(M/e)∗ =M∗\e for all e ∈ E.
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5 Algebraic decomposition of matroids

Let L ∈ L and H1, H2, H3, H4 ⊇ L pairwise different hyperplanes. Choose a
maximal independent set I ⊆ L and ai ∈ Hi \ L, i = 1, 2, 3, 4. As M is infinite
there exists an e ∈ E \ (I ∪ {a1, a2, a3, a4}). Therefore, σM (L \ {e}) = L and
σM (Hi \ {e}) = Hi for all i = 1, 2, 3, 4. Thus, using the homomorphism of
partial hyperfields f∅ : U(0)(M\e) → U(0)(M) from Proposition 3.11, we obtain

f∅([H1 \ {e}, H2 \ {e} |H3 \ {e}, H4 \ {e}]) = [H1, H2 |H3, H4],

proving our claim. □

5.33 Theorem. A matroid M is artinian if M/e is artinian for all e ∈ E, or if
M\e is artinian for all e ∈ E.

Proof. First, note if ϱ(M) = 2 resp. |E| = ϱ(M)+2, we have ϱ(M/e) = 1 resp.
|E \ {e}| = ϱ(M\e) + 1 for all e ∈ E. Such matroids are regular and therefore
not artinian.

Thus, applying Lemma 5.32, if M/e is artinian for all e ∈ E resp. M\e is
artinian for all e ∈ E, we get that {M/e | e ∈ E} resp. {M\e | e ∈ E} is an
algebraic cover of M where each minor is artinian. Hence, Proposition 5.28
implies that M is artinian. □

5.34 Remark. The statement above is no longer true if we replace artinian by
almost artinian or semiartinian, e. g. U2,4 is not semiartinian despite U2,4/e and
U2,4\e are regular and thus almost artinian for all e ∈ {1, 2, 3, 4}.

5.35 Theorem. Let N be a minor of the matroid M which dominates M .

(a) U(0)(M) is a hyperfield if U(0)(N) is a hyperfield.

(b) Q(M) is a hyperfield if Q(N) is a hyperfield.

Proof. Follows from Remark and Definition 2.10, Lemma 4.9, and Proposi-
tion 4.10. □

Definition. We call an artinian matroid extremally artinian, if for every e ∈ E
neither M/e nor M\e is artinian.

5.36 Proposition. A finite matroid is extremally artinian if and only if its
dual is extremally artinian.

Proof. Follows from Proposition 3.11 and the fact that (M/e)∗ =M∗\e and
(M\e)∗ =M∗/e. □
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5.37 Theorem. The Fano matroid PG(2, 2), the ternary Reid geometry R9

and their duals are extremally artinian.

Proof. Using Proposition 5.36, it suffices to show that PG(2, 2) and R9 are
extremally artinian. Since PG(2, 2)/e and R9/e have rank 2 for every point e,
Proposition 3.10 and Proposition 3.26 imply they are not artinian.

Furthermore, for every point e of PG(2, 2) the matroid PG(2, 2)\e is a binary
matroid which does not have PG(2, 2) as a minor and therefore is regular. Thus,
PG(2, 2) is extremally artinian.

To prove that R9 is extremally artinian we use the result from [Kun90] that
there are three isomorphy types of ternary combinatorial geometries on 9 points,
which are obtained by removing 4 points from PG(2, 3):

We get the ternary affine plane AG(2, 3) by removing a line, the ternary
Reid geometry R9 by removing 3 points on a common line ℓ and a point ω /∈ ℓ,
and the ternary Dowling geometry over the cyclic group C2 of two elements by
removing a circuit.

Let e be a point of R9. We will show that R9\e is representable over C. This
implies R9\e is not artinian, as if R9\e were artinian, then Proposition 3.6
would imply the existence of a homomorphism f : F3 → U(0)(M) of partial
hyperfields. Hence, Theorem and Definition 3.16 would yield that there would
exist a homomorphism F3 → C (which would be a classical field homomorphism),
a contradiction.

Let ℓ be a line and ω /∈ ℓ a point of PG(2, 3) such that R9 = PG(2, 3)\(ℓ∪{ω}).
If e ∈ ℓ, then R9\e is also a minor of AG(2, 3) and thus Corollary 3.35 yields it
is representable over C.

Otherwise, if e /∈ ℓ, there exits a circuit C containing e, ω and two points from
ℓ. Therefore, R9\e is a minor of the ternary Dowling geometry. It follows from
[Dow73, Theorem 11] that R9\e is representable over C. □
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6 Affine and projective like matroids

In this chapter we will present additional classes of examples for artinian matroids
whose universal partial hyperfield is a hyperfield.

First, we will introduce a generalization of vector matroids over skew fields
(and thus also a generalization of projective geometries) and of affine geometries.
In particular, we will show that each affine geometry of dimension at least 3 has
this property.

Second, we will prove that the universal partial hyperfield of an affine transla-
tion plane, whose kernel contains at least 4 elements, is isomorphic to that of
its projective closure.

6.1 Vectorlike matroids

By generalizing a construction from Kalhoff in [Kal96], we will construct a series
of artinian matroids over quasifields Q of rank greater or equal to three, whose
universal partial hyperfield is the isomorphic to the one of the projective plane
over Q. Although no longer modular in general, these matroids are supersolvable,
i. e., they contain a maximal chain of flats, where each of them is modular. Their
simplifications are thus a generalization of projective geometries of dimension at
least 3 to the quasifields case.

Moreover, we will construct generalizations of affine geometries of dimension
at least 3, whose universal partial field is isomorphic to the one of the projective
plane over Q. In particular, the universal partial hyperfield of an affine geometry
of dimension greater or equal to 3 is isomorphic to the one of their projective
closure.

Definition. A quasifield1 is a set Q with two binary operations +: Q×Q→ Q,
· : Q×Q→ Q that satisfy the following axioms:

(Q1) (Q,+) is a group with neutral element 0 ∈ Q,2

(Q2) (Q \ {0}, ·) is a loop3 with neutral element 1 ∈ Q,
1We consider only left quasifields here. Every quasifield is a planar ternary ring via
T (m,x, c) := mx+ c for all m,x, c ∈ Q.

2This group is always abelian, cf. [Pic, Satz 31, p. 91].
3As usual, we denote by a/b and a\b the unique elements such that (a/b)b = a and a(a\b) = b.
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6 Affine and projective like matroids

(Q3) a(b+ c) = ab+ ac for all a, b, c ∈ Q,

(Q4) for all a, b, c ∈ Q such that a ̸= b the equation ax− bx = c has exactly
one solution x ∈ Q.

For each quasifield Q we define the left nucleus, the right nucleus and the kernel
of Q by

Nl := Nl(Q) := {q ∈ Q | q(ab) = (qa)b for all a, b ∈ Q},
Nr := Nr(Q) := {q ∈ Q | (ab)q = a(bq) for all a, b ∈ Q},
K := KerQ := {q ∈ Nr | (a+ b)q = aq + bq for all a, b ∈ Q}.

In particular, Q is a right-vector space over K.
For any quasifield Q and n ∈ N, n ≥ 2, we call a tuple Λ = (Λ1, . . . ,Λn) a

system of coordinates for Q and n if Λ1 = Λ2 = Q and Λn ⊆ · · · ⊆ Λ3 ⊆ K is
a chain of skew fields. For any system of coordinates Λ for Q and n, we set
En,Λ := {(x1, . . . , xn) ∈ Qn | xi ∈ Λi} and for all a1, . . . , an ∈ Q let

[a1, . . . , an]Λ :=

{︄
x ∈ En,Λ

⃓⃓⃓⃓
⃓

n∑︂
i=1

aixi = 0

}︄
.

Further, we set µ(0) := 0 and

µ(x) := max
⪯

{i ∈ {1, . . . , n} | xi ̸= 0}

for any x ∈ En,Λ \ {0}, where ⪯ is the total order on the set {1, . . . , n} defined
by

2 ≺ 1 ≺ 3 ≺ 4 ≺ · · · ≺ n.

Moreover, if µ(x) ̸= 0, then λ := xµ(x) ̸= 0 and x̄ := (x1/λ, . . . , xn/λ) ∈ En,Λ is
an element such that µ(x̄) = µ(x) and x̄µ(x̄) = λ/λ = 1. We call the elements
x ∈ En,Λ \ {0} such that xµ(x) = 1 the canonical elements of En,Λ.

Furthermore, we call a subgroup V of (En,Λ,+) a Λ-subspace of En,Λ if
x̄Λµ(x) = {x̄λ|λ ∈ Λµ(x)} ⊆ V for all x ∈ V \{0}. The dimension of a Λ-subspace
V of En,Λ is defined as supremum of the length k of chains V0 ⊊ · · · ⊊ Vk ⊆ V
of Λ-subspaces Vi of En,Λ, i = 1, . . . , k, and is denoted by dimV .

For the rest of this section let Q be quasifield.

6.1 Lemma. Let Λ be a system of coordinates for Q and n ∈ N, n ≥ 2. For
any Λ-subspace V of En,Λ we have dimV ≤ n.

Furthermore, the Λ-subspaces of En,Λ of dimension k ∈ {0, . . . , n} are exactly
the sets of the form

∑︁k
i=1 xiΛµ(xi) for canonical elements x1, . . . , xk ∈ En,Λ such

that µ(x1) ≺ · · · ≺ µ(xk). In particular, dimV = n if and only if V = En,Λ.
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Proof. We will first show that for canonical elements x1, . . . , xk ∈ En,Λ with
µ(x1) ≺ · · · ≺ µ(xk) the set V :=

∑︁k
i=1 xiΛµ(xi) is a Λ-subspace of En,Λ.

To prove that V is a subgroup of (En,Λ,+), let x, y ∈ V . Then there exist
λi, µi ∈ Λµ(xi), i = 1, . . . , k, with x =

∑︁k
i=1 xiλi and y =

∑︁k
i=1 xiµi. Using

(Q3), we obtain xiλi + xiµi = xi(λi + µi) for all i = 1, . . . , k. Thus, x+ y ∈ V .
Moreover, let x ∈ V \ {0} and λ ∈ Λm, where m := µ(x). Then there exist

λi ∈ Λµ(xi), i = 1, . . . , k, such that x =
∑︁k

i=1 xiλi. We show x̄λ ∈ V .
For k = 1 we have x̄ = x1, so there is nothing to prove. If m ≥ 3, then Λm is

a skew field contained in K and therefore

x̄λ =

(︄
k∑︂

i=1

xiλiλ
−1
m

)︄
λ =

k∑︂
i=1

xi(λiλ
−1
m λ) ∈ V.

The only remaining case is k = 2 and m = 1. Since λi = 0 for all i = 3, . . . , n
we can assume without loss of generality that n = 2. Then there exists a
u ∈ Q such that x1 = (0, 1) and x2 = (1, u). It follows that x̄ = (1, v), where
v := (λ1 + uλ2)/λ2. Setting w := vλ− uλ we obtain

x̄λ = (0, w) + (λ, uλ) = x1w + x2λ ∈ V.

Conversely, let V be a Λ-subspace of En,Λ. We set

k(V ) := |{µ(x) | x ∈ V \ {0}}| ∈ {0, . . . , n}.

We will prove by induction on k(V ) that dimV = k(V ) and there exist canonical
elements x1, . . . , xk(V ) ∈ V with V =

∑︁k(V )
i=1 xiΛµ(xi).

Clearly, k(V ) = 0 implies V = {0}. If k := k(V ) > 0, we choose a canonical
element xk ∈ V such that µ(xk) is maximal among all µ(x) with respect to ⪯,
x ∈ V , and set Ṽ := {x ∈ V | µ(x) ≺ µ(xk)}.

As µ(x + y) ⪯ max{µ(x), µ(y)} and µ(x̄λ) ⪯ µ(x) for all x, y ∈ Ṽ and
λ ∈ Λµ(x), Ṽ is a Λ-subspace of En,Λ. By construction, we have k(Ṽ ) = k(V )−1.
Thus, the induction hypothesis yields dim(Ṽ ) = k − 1 and there exist canonical
elements x1, . . . , xk−1 ∈ Ṽ such that Ṽ =

∑︁k−1
i=1 xiΛµ(xi).

It follows that
∑︁k

i=1 xiΛµ(xi) ⊆ V , because V is a Λ-subspace of En,Λ. For all
x ∈ V \ Ṽ , we have µ(x) = µ(xk) and therefore x̄− xk ∈ Ṽ . Hence,

x̄ ∈ Ṽ + xkΛµ(xk) =

k∑︂
i=1

xiΛµ(xi).

Since
∑︁k

i=1 xiΛµ(xi) is a Λ-subspace of En,Λ it also contains x. Therefore,
V =

∑︁k
i=1 xiΛµ(xi).
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6 Affine and projective like matroids

Further, dim(V ) ≥ dim(Ṽ )+1 = k. If there would exist a Λ-subspace V ′ ⊊ V

of En,Λ such that k(V ′) = k, then for Ṽ
′
:= {x ∈ V ′ | µ(x) ≺ µ(xk)} we would

have {µ(x) | x ∈ Ṽ
′} = {µ(x) | x ∈ Ṽ }. Using the same argument as above, we

would get Ṽ
′
=
∑︁k−1

i=1 xiΛµ(xi) = Ṽ and thus V ′ = V , a contradiction. Hence,
using the induction hypothesis, we get dim(V ) = k, as desired. □

Definition. Let n ∈ N, n ≥ 2. We call a1, . . . , an ∈ Q admissible for a system
of coordinates Λ for Q and n, if a2 ∈ Nl, and for all j = 1, . . . , n we have

aj ∈
∑︂
i≺j

aiΛi, or aj ̸= 0 and ai = 0 for all i ≺ j. (6.1)

Further, let Hn,Λ be the set of all [a1, . . . , an]Λ, where a1, . . . , an ∈ Q are
admissible for Λ and ai ̸= 0 for at least one i ∈ {1, . . . , n}.

6.2 Lemma. Let n ∈ N, n ≥ 3, a1, . . . , an ∈ Q be admissible for a system
of coordinates Λ for Q and n, and k ∈ {3, . . . , n}. Then a1, . . . , ˆ︁ak, . . . , an are
admissible for Λ(k) := (Λ1, . . . ,ˆ︂Λk, . . . ,Λn).

Proof. Clearly, (6.1) is satisfied if j = 1, . . . , k − 1, or ak = 0, or ai = 0 for all
i ≺ j. Let j ∈ {k+1, . . . , n}, ak ̸= 0, and al ̸= 0 for an l ∈ {1, . . . , j− 1}. Since
a1, . . . , an are admissible for Λ there exist λi ∈ Λi, i = 1, . . . , j − 1 and µi ∈ Λi,
i = 1, . . . , k − 1 such that aj ∈

∑︁j−1
i=1 aiλi and ak ∈

∑︁k−1
i=1 aiµi. Thus,

aj ∈
k−1∑︂
i=1

ai(λi + µiλk) +

j−1∑︂
i=k+1

aiλi.

Hence, a1, . . . , ˆ︁ak, . . . , an are admissible for Λ(k). □

6.3 Lemma and Definition. Let Λ be a system of coordinates for Q and
n ∈ N, n ≥ 2. For each H := [a1, . . . , an]Λ ∈ Hn,Λ we set

µ(H) := min
⪯

{k ∈ {1, . . . , n} | ak ̸= 0}.

Then we have H ⊆ H ′ := [a′1, . . . , a
′
n]Λ ∈ Hn,Λ if and only if m := µ(H) = µ(H ′)

and am\ai = a′m\a′i for all i = 1, . . . , n (and thus H = H ′).
In particular, the ai are uniquely determined by H if am = 1, and we call

these coefficients the canonical representation of H.
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Proof. We will first show that we can assume without loss of generality that
am = 1 = a′m′ , where m′ := µ(H ′). If m = 2, since a2 ∈ Nl, it follows for all
x ∈ En,Λ

n∑︂
i=1

aixi =
n∑︂

i=1

(a2 · a2\ai)xi =
n∑︂

i=1

a2 · (a2\ai · xi) = a2

(︄
n∑︂

i=1

a2\ai · xi

)︄
.

If m ⪰ 1, set j := max⪯(3,m+1). For all x ∈ En,Λ we obtain, as xi ∈ K for all
i ⪰ m′,

amxm +
n∑︂

i=j

aixi = amxm +
n∑︂

i=j

(am · am\ai)xi

= amxm +

n∑︂
i=j

am((am\ai)xi)

= am ·

(︄
n∑︂

i=1

(am\ai) · xi

)︄
.

Further, am\a2 = 0 = a2 ∈ Nl.
Hence, in both cases, am\a1, . . . , am\an are admissible for Λ by definition,

and x ∈ [a1, . . . , an]Λ if and only if x ∈ [am\a1, . . . , am\an]Λ. Thus, we can
assume without loss of generality that am = 1 = a′m′ .

It remains to show H ⊆ H ′ implies ai = a′i for all i ∈ {1, . . . , n}. If m = n, we
obtain a1 = . . . = an−1 = 0 and an = 1. Since for every k ∈ {1, . . . , n− 1} the
element x ∈ En,Λ such that xi = δik for all i = 1, . . . , n is contained in H ′ ⊇ H
it follows that a′i = 0 for all i = 1, . . . , n− 1.

Otherwise, let m < n. We will prove first there exists an x ∈ H such that
µ(x) = n and thus m′ < n. If an = 0, set xi = δin for all i = 1, . . . , n.

If an ≠ 0, there exist λi ∈ Λi, i = 1, . . . , n− 1, such that an =
∑︁n−1

i=1 aiλi, as
a1, . . . , an are admissible for Λ, so we set xi := −λi and xn := 1.

Now, we will proceed by induction on n. If n = 2, it follows that a2 = 1 = a′2
and a1x1 + x2 = 0 = a′1x1 + x2. Thus, a1 = −x2/x1 = a′1.

Else, we have n ≥ 3 and a1, . . . , an−1 as well as a′1, . . . , a′n−1 are admissible
for Λ(n). Additionally, H(n) := [a1, . . . , an−1]Λ(n) and H ′(n) := [a′1, . . . , a

′
n−1]Λ(n)

are the canonical representations of two hyperplanes such that H(n) ⊆ H ′(n).
Therefore, the induction hypothesis implies ai = a′i for i = 1, . . . , n− 1.

Moreover, our construction of x yields an = 0 if and only if a′n = 0 and
an =

∑︁n−1
i=1 aiλi =

∑︁n−1
i=1 a

′
iλi = a′n otherwise. □
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6 Affine and projective like matroids

6.4 Proposition. For any system of coordinates Λ for Q and n ∈ N, n ≥ 2,
the sets of Hn,Λ are the hyperplanes of a matroid M(n,Λ) of rank n on the set
En,Λ.

Proof. First, (H2) follows directly from Lemma and Definition 6.3. To complete
the proof we will show by induction on n that the set of Λ-subspaces of En,Λ of
dimension n− 1 is Hn,Λ, which directly implies (H1).

To prove that it yields also (H3), let H1, H2 ∈ Hn,Λ with H1 ̸= H2 and
x ∈ En,Λ \ (H1∪H2). Then H1∩H2 is subspace of dimension k ∈ N0, k ≤ n−2.
Clearly, the Λ-subspace V generated by H1 ∩H2 and x has dimension k + 1.
Therefore, there exists a Λ-subspace H3 of rank n − 1 for which we have
(H1 ∩H2) ∪ {x} ⊆ H3.

Finally, for any subset X ⊆ En,Λ we have X ⊈ H for all H ∈ Hn,Λ if and
only if for each k = 1, . . . , n the set X contains an x ∈ En,Λ such that µ(x) = k.
Thus, Hn,Λ satisfies (H0) and (H1), and the resulting matroid has rank n.

If n = 2, then H ∈ Hn,Λ if and only if either H = [1, 0]Λ = {(0, y) | y ∈ Q} or
H = [a, 1]Λ = {(x,−ax) | x ∈ Q} for an a ∈ Q. In this case our claim follows
directly from Lemma 6.1.

Else, let n ≥ 3 and H = [a1, . . . , an]Λ ∈ Hn,Λ be in canonical representation.
If a1 = · · · = an−1 = 0 and an = 1, then H =

∑︁n−1
i=1 xiΛi for any canonical

elements xi ∈ En,Λ with µ(xi) = i, i = 1, . . . , n− 1. Hence, H is a Λ-subspace
of En,Λ of dimension n− 1 using Lemma 6.1.

Otherwise, there exist λi ∈ Λi, i = 1, . . . , n − 1, such that an =
∑︁n−1

i=1 aiλi,
since a1, . . . , an−1 are admissible for Λ. Lemma 6.2 yields that a1, . . . , an−1 are
admissible for Λ(n), where Λ(n) = (Λ1, . . . ,Λn−1), and therefore by induction
hypothesis there exist canonical elements y1, . . . , yn−2 ∈ En−1,Λ(n) such that
µ(y1) ≺ · · · ≺ µ(yn−2) ≤ n− 1 and [a1, . . . , an−1]Λ(n−1) =

∑︁n−2
i=1 yiΛµ(yi).

Thus, H =
∑︁n−1

i=1 xiΛµ(xi) and µ(x1) ≺ · · · ≺ µ(xn) for xi := (yi, 0) ∈ En,Λ,
i = 1, . . . , n− 2 and xn−1 := (λ1, . . . , λn,−1). Hence, Lemma 6.1 implies H is a
Λ-subspace of En,Λ of dimension n− 1.

Conversely, let V =
∑︁n−1

i=1 xiΛµ(xi) be a Λ-subspace of En,Λ of dimension n−1,
where x1, . . . , xn−1 are canonical elements of En,Λ with µ(x1) ≺ · · · ≺ µ(xn−1).

If µ(xn−1) < n − 1, then V = [0, . . . , 0, 1]Λ. Else, set yi = (xi,1, . . . , xi,n−1),
where xi = (xi,1, . . . , xi,n), i = 1, . . . , n−2. Then µ(yi) = µ(xi), i = 1, . . . , n−2,
and Ṽ :=

∑︁n−2
i=1 yiΛµ(yi) is a Λ(n)-subspace of En−1,Λ(n) .

By induction hypothesis, there exist a1, . . . , an−1 ∈ Q which are admissible
for Λ(n) such that Ṽ = [a1, . . . , an−1]Λ(n) . Since µ(xn) = n and −1 ∈ K we have
an =

∑︁n−1
i=1 ai(−xi). Thus, V ⊆ [a1, . . . , an]Λ =: H. As both have dimension

n− 1 we get V = H. □
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6.1 Vectorlike matroids

6.5 Corollary. For any system of coordinates Λ for Q and n ∈ N, n ≥ 2, the
flats of rank k of M(n,Λ) are the Λ-subspaces of En,Λ of dimension k.

Proof. Clearly, every intersection of Λ-subspaces of En,Λ is also an Λ-subspace
of En,Λ. Thus, the proof of Proposition 6.4 implies that every flat of M(n,Λ) is
a Λ-subspace of En,Λ.

Conversely, let V be a Λ-subspace of dimension k ∈ {0, . . . , n}. We will prove
by induction on k that V is a flat of rank k of M(n,Λ). If k = n, then V = E
is a flat of M(n,Λ) of rank n.

Otherwise, k < n and it follows from the proofs of Lemma 6.1 and Propo-
sition 6.4 there exist H ∈ Hn,Λ such that V ⊆ H and a canonical element
y ∈ En,Λ with y /∈ H. Thus, V ′ := yΛµ(y) + V is a Λ-subspace of En,Λ of
dimension k + 1. Therefore, the induction hypothesis yields that V ′ is a flat of
rank k + 1. Hence, V = V ′ ∩H is a flat of rank k. □

6.6 Lemma. Let Λ be a system of coordinates for Q and n ∈ N, n ≥ 4. For
each k ∈ {1, . . . , n} the hyperplane Uk

n,Λ := [δ1k, . . . , δnk]Λ of M(n,Λ) is modular
if and only if k ∈ {n− 1, n} or Λk = . . . = Λn−1.

Proof. Throughout this proof, we will use the fact that a hyperplane of a
matroid M is modular if and only if has a non-trivial intersection with each line
of M (see [Bry75, Corollary 3.4]).

Let ℓ = xΛµ(x) + yΛµ(y), where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ En,Λ

are canonical elements such that µ(x) ≺ µ(y). Since µ(x) < n it follows that
x ∈ Un

n,Λ. Furthermore, either µ(x) < n − 1 and x ∈ Un−1
n,Λ , or xyn−1 − y is a

non-zero element which is contained in both ℓ and Un−1
n,Λ . Therefore, Uk

n,Λ is a
modular hyperplane for k ∈ {n− 1, n}.

If Λk = . . . = Λn−1, then xk = 0 and x ∈ Uk
n,Λ, or yk = 0 and y ∈ Uk

n,Λ, or
xk, yk ∈ Λ∗

k. In the last case we obtain xλ− y ∈ ℓ ∩ Uk
n,Λ, where λ := xk\yk.

Conversely, if Uk
n,Λ is modular and k ≤ n− 2, we will show that the dimension

of Λk as a right Λn+1-vector space is 1, which implies Λk = . . . = Λn−1.
Let a, b ∈ Λk and set xn−1 := 1 =: yn, xk := a, yk := b and xi := 0 =: yj for

all i, j = 1, . . . , n such that i ̸= k, n− 1, j ̸= k, n. Then ℓa,b := xΛn−1 + yΛn is
a line of M(n,Λ) with ϱ(ℓa,b ∩ Uk

n,Λ) = 1.
Thus, there exist λi ∈ Λi, i = n− 1, n, such that z = xλn−1 + yλn ∈ Uk

n,Λ. In
particular, we have aλn−1 + bλn = 0. □

6.7 Proposition. Let Λ be a system of coordinates for Q and n ∈ N, n ≥ 3.
For every H ∈ Hn,Λ we set

fH : En,Λ → Q/∗Ra, x ↦→ Ra

(︄
n∑︂

i=1

aixi

)︄
,
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6 Affine and projective like matroids

where H = [a1, . . . , an]Λ is the canonical representation of H. Then (fH)H∈Hn,Λ

is a system of hyperplane functions for M(n,Λ) and Q/∗Ra.

Proof. By construction, we have fH(e) = 0 if and only if e ∈ H for all H ∈ Hn,Λ

and e ∈ En,Λ. We will prove our claim by induction on n.
First, let n = 3 and Π = (E,H) be the projective plane over Q. The map

φ : sE3,Λ → E defined by

φ(s(x, y, 1)) := (x, y), φ(s(1,m, 0)) := (m), φ(s(0, 1, 0)) := (∞)

for all m,x, y ∈ Q is an isomorphism, since we have

φ([−m, 1,−c]Λ) = [m, c], φ([1, 0,−d]Λ) = [d], φ([0, 0, 1]Λ) = [∞]

for all c, d,m ∈ Q.
Let (gH)H∈H be the system of hyperplane functions for Π and Q/∗Ra from

Theorem 3.24. For all c, d,m, n, x, y ∈ Q we obtain

g[m,c]((x, y)) = Ra(mx+ c− y) = −f[−m,1,−c]Λ((x, y, 1)),

g[m,c]((n)) = Ra(m− n) = −f[−m,1,−c]Λ((1, n, 0)),

g[m,c]((∞)) = Ra = f[−m,1,−c]Λ((0, 1, 0)),

g[d]((x, y)) = Ra(x− d) = f[1,0,−d]Λ((x, y, 1)),

g[d]((n)) = Ra = f[1,0,−d]Λ((1, n, 0)),

g[∞]((x, y)) = Ra = f[0,0,1]Λ((x, y, 1)).

Therefore, fH(e) = η(H)η(e)gφ(H)(φ(e)), where

η(H) := −1 ⇔ H = [−m, 1,−c] for m, c ∈ Q,

η(e) := −1 ⇔ e = (0, 1, 0)

for all H ∈ Hn,Λ and e ∈ En,Λ. Thus, Proposition and Definition 3.14 and
Theorem and Definition 3.16 yield that (fH)Hn,Λ

is a system of hyperplane
functions for M(n,Λ) and Q/∗Ra in this case.

Now, let n > 3 and H1, H2, H3 be pairwise different hyperplanes of M(n,Λ)
which contain a common hyperline L and let Hi = [ai,1, . . . , ai,n]Λ be their
canonical representation, i = 1, 2, 3. Applying Proposition and Definition 3.14,
we have to show there exist α2, α3 ∈ (Q/∗Ra)

∗ such that 0 ∈ fH1+α2fH2+α3fH3 .
If L = Un−1

n,Λ ∩ Un
n,Λ, we choose canonical elements xi ∈ Hi \ L, i = 2, 3. We

can assume without loss of generality that µ(x2) = µ(x3) = n. Further, set
α2 := −fH1(x3)fH2(x3)

−1 and α3 := −fH1(x2)fH3(x2)
−1.
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6.1 Vectorlike matroids

As µ(x2 − x3) = n− 1 (otherwise x2 − x3 ∈ L and thus H2 = H3), it follows
from Lemma 6.1 that for every x ∈ En,Λ there exist unique y ∈ L and λi ∈ Λi,
i = n− 1, n with x = y + (x2 − x3)λn−1 + x3λn. This implies

0 ∈ fH1(x)− fH1(x) ⊆ fH1(x)− fH1(x2)λn−1 − fH1(x3)(λn − λn−1)

⊆ fH1(x) + α2fH2(x3)(λn − λn−1) + α3fH3(x2)λn−1

⊆ fH1(x) + α2fH2(x) + α3fH3(x).

Otherwise, there exists a j ∈ {n − 1, n} such that L ⊈ U j
n,Λ. Moreover,

we set Gi := [ai,1, . . . , ˆ︂ai,j , . . . , ai,n]Λ, i = 1, 2, 3. Since U j
n,Λ is modular by

Lemma 6.6 and M(n− 1,Λ(j)) is isomorphic to M(n,Λ)|U j
n,Λ, G1, G2, G3 are

pairwise different hyperplanes of M(n− 1,Λ(j)) which intersect in the hyperline
K := {(x1, . . . , ˆ︁xj , . . . , xn) | x ∈ L}.

Applying the induction hypothesis, we obtain α1, α2, α3 ∈ Q/∗Ra such that
0 ∈ α1fG1 + α2fG2 + α3fG3 . Let x ∈ En,Λ. Using Lemma 6.1, there exist
y ∈ U j

n,Λ and z ∈ L \ U j
n,Λ with x = y + z. Setting w := (y1, . . . , ˆ︁yj , . . . , yn) we

get

0 ∈ α1fG1(w) + α2fG2(w) + α3fG3(w)

⊆ α1fH1(y) + α2fH1(y) + α3fH3(y)

⊆ α1fH1(x) + α2fH2(x) + α3fH3(x),

completing our proof. □

6.8 Theorem. For any system of coordinates Λ for Q and n ∈ N, n ≥ 3, the
universal partial hyperfield of M(n,Λ) is isomorphic to Q/∗Ra.

Proof. Let M :=M(n,Λ) and (fH)H∈Hn,Λ
be the system of hyperplane func-

tions for M and Q/∗Ra from Proposition 6.7. Applying Theorem and Defini-
tion 3.16, it induces a homomorphism f : U(0)(M) → Q/∗Ra. We will show by
induction on n that f is an isomorphism. For n = 3 we obtain this directly from
Theorem 3.24 and the proof of Proposition 6.7.

Let n ≥ 4, Λ′ := Λ(n), M ′ := M(n − 1,Λ′), (f ′H)H∈Hn−1,Λ′ be the system
of hyperplane functions for M ′ and Q/∗Ra, and f ′ : U(0)(M ′) → Q/∗Ra be the
induced homomorphism.

Since it follows from Lemma 6.6 that Un
n,Λ is a modular hyperplane and M ′

is isomorphic to M |Un
n,Λ, the proof of Proposition 5.29 yields that the map

g : U(0)(M ′) → U(0)(M) defined by g(0) := 0, g(−1) := −1, and

g([H1, H2 |H3, H4]) := [H1 ∨ e,H2 ∨ e |H3 ∨ e,H4 ∨ e]
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6 Affine and projective like matroids

for all (H1, H2, H3, H4) ∈ H4(M
′), where e := (δ1n, . . . , δnn) ∈ En,Λ, is a

surjective homomorphism of partial hyperfields.
As [a1, . . . , an−1]Λ′ ∨ e = [a1, . . . , an−1, 0]Λ for all a1, . . . , an−1 ∈ Q which are

admissible for Λ′ and n− 1, Proposition and Definition 3.14 and Proposition 6.7
imply f ◦ g = f ′. Using the induction hypothesis, f ′ is an isomorphism, and
therefore g is bijective. Hence, also f is bijective.

For all a′1, a′2 ∈ Q/∗Ra and a′3 ∈ a′1 + a′2 set ai := g(f ′−1(a′i)) ∈ U(0)(M),
i = 1, 2, 3. Then ai ∈ f−1(a′i) for all i = 1, 2, 3 and a3 ∈ a1 + a2, as f ′ is
an isomorphism and g a homomorphism of partial hyperfields. Thus, f is an
epimorphism and it follows from Proposition 2.14 that f is an isomorphism. □

6.9 Remark. If F is a skew field, n ≥ 3 and Λ = (Λ1, . . . ,Λn), where Λi = F ,
i = 1, . . . , n, then M(n,Λ) is the usual vector space matroid of rank n on Fn.
Thus, s(M(n,Λ)) is isomorphic to the projective geometry PG(n − 1, F ) and
we obtain another proof of the result of Proposition 3.25.

Further, in contrast to the case of projective geometries, s(M(n,Λ)) can
contain two lines ℓ1 and ℓ2 with |ℓ1| ≠ |ℓ2|.

In particular, for all natural numbers k,m, r1, . . . , rk such that there exist
a prime number p and natural numbers s1, . . . , sk with si−1|si, i = 2, . . . , k,
and ri = psi , i = 1, . . . , k, and infinite cardinal numbers κ1 < · · · < κm, the
matroid sM(k +m,Λ) for Λ = (Λ1, . . . ,Λm+k), where Λi = Fri for i = 1, . . . , k
and Λk+i is a field of characteristic p of cardinality κi, i = 1, . . . ,m, such that
Λk+i−1 ⊇ Λk+i, i = 1, . . . ,m, is a combinatorial geometry which has lines of
cardinality ri + 1, i = 1, . . . , k, and lines of cardinality κi, i = 1, . . . ,m.

6.10 Proposition. Let Λ be a system of coordinates for Q and n ∈ N, n ≥ 3.
The empty set and the sets x+ V , where x ∈ En,Λ and V is a Λ-subspace of
En,Λ, are the flats of a matroid N(n,Λ) of rank n+ 1 on the set En,Λ.

Proof. We will show that the bijection

ι : En,Λ → E′, (x1, . . . , xn) ↦→ (x1, . . . , xn, 1),

where E′ := {z ∈ En+1,Λ̂ | zn+1 = 1} and Λ̂ = (Λ1, . . . ,Λn,Λn+1) for a fixed
skew field Λn+1 ⊆ Λn, induces a bijection between the sets x+ V , x ∈ En,Λ and
V a Λ-subspace of En,Λ, and the flats of M :=M(n+ 1, Λ̂)|E′. Then our claim
follows from Proposition 6.4.

Let x ∈ En,Λ and V be an Λ-subspace of En,Λ. Using Lemma 6.1, there exist
k ∈ N0 and canonical elements y1, . . . , yk of En,Λ such that V =

∑︁k
i=1 yiΛµ(yi)
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and µ(y1) ≺ · · · ≺ µ(yk). Thus, for M̂ :=M(n+ 1, Λ̂) we obtain

σM̂ (ι(x+ V )) =

k∑︂
i=1

ziΛµ(zi) + yΛn+1 =:W,

where zi = (yi,1, . . . , yi,n, 0), y = (x1, . . . , xn, 1) ∈ En+1,Λ̂, i = 1, . . . , k. It
follows from Corollary 6.5 that W is a flat of M̂ . Since W ∩ E′ ̸= ∅ we obtain
ι(x+ V ) =W ∩ E′ is a flat of M .

Conversely, let W ∩ E′ be a flat of M , where W ≠ {0} is a flat of M̂ . Then
there exist k ∈ N and canonical elements z1, . . . , zk such that W =

∑︁k
i=1 ziΛµ(zi)

and µ(z1) ≺ · · · ≺ µ(zk) = n+ 1.
Hence, W ∩E′ = ι(yk + V ), where yi = (zi,1, . . . , zi,n) ∈ En,Λ for i = 1, . . . , k,

and V :=
∑︁k−1

i=1 yiΛµ(yi). This proves N(n,Λ) is a matroid isomorphic to M .
Moreover, ϱ(N(n,Λ)) = ϱ(M) = n+ 1, as a hyperplane H := [a1, . . . , an+1]Λ̂

of M̂ that contained all bk := (δ1k, . . . , δnk, 1) ∈ E′, k = 1, . . . , n+ 1, would also
contain bk − bn+1 = (δ1k, . . . , δnk, 0), k = 1, . . . , n. This would imply ak = 0 for
all k = 1, . . . , n+ 1, a contradiction. □

Definition. We call a subset A ⊆ Q a subring of a quasifield Q if (A,+) is a
subgroup of (Q,+), 1 ∈ A and ab ∈ A for all a, b ∈ A.

Moreover, for any subring A of a quasifield Q, n ∈ N, n ≥ 3, and a system of
coordinates Λ for Q and n we call a tuple Ξ = (Ξ1, . . . ,Ξn) a subsystem of Λ
for A and n if Ξ1 = Ξ2 = A, each Ξi is a subring of Λi, i = 1, . . . , n, Ξi−1 ⊇ Ξi

for i = 2, . . . , n and for each λi ∈ Λi there exists a ξ ∈ Ξn such that λiξ ∈ Ξi,
i = 1, . . . , n.

For any subring A of Q and any subsystem Ξ for A and n of a system of
coordinates Λ for Q and n we define En,Λ := {x ∈ En,Λ | xi ∈ Ξi, i = 1, . . . , n}
and let N(n,Ξ) := N(n,Λ)|En,Ξ be the restriction of N(n,Λ) to En,Ξ.

6.11 Lemma. Let Λ be system of coordinates for Q and n ∈ N, n ≥ 3, and Ξ
be a subsystem of Λ for A and n, where A is a subring of Q, and p, q ∈ En,Λ.
Further, let L ∋ p be a hyperline of N(n,Ξ) and H1, H2, H3, H4 ∈ HL be
pairwise different such that q ∈ H1.

Then there exist a hyperline L′ ∋ q′ with L′ ⊆ H1 and pairwise different
H ′

2, H
′
3, H

′
4 ∈ HL′ \ {L1} such that (H1, H2, H3, H4) and (H1, H

′
2, H

′
3, H

′
4) are

projectively equivalent.

Proof. Since obviously for every v ∈ En,Ξ the map τv : En,Ξ → En,Ξ, x ↦→ x+v
is a matroid isomorphism of N(n,Λ), we may assume without loss of generality
that o ∈ L, where o ∈ En,Ξ with oi = 0, i = 1, . . . , n, and µ(x) ⪯ µ(p) for all
x ∈ L. Let W k := Uk

n,Λ for k = 1, . . . , n. We consider two cases:
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First, let there exist a k ∈ {n−1, n} such that L ⊈W k =: Z. Then Hi ̸= Z for
all i = 1, 2, 3, 4, and it follows from Lemma 6.6 that P := L ∩Z is a hyperpoint,
and Li := Hi ∩ Z is a hyperline for all i = 1, 2, 3, 4. Thus, in this case our claim
follows for H ′

i := Li ∨ q, i = 2, 3, 4.
Second, let L = Wn−1 ∩Wn. Applying a suitable τv, v ∈ En,Ξ, we may

further assume without loss of generality that q ∈ Wn and H1 = Wn. Set
Z := [a1, . . . , an]Λ, where ai = 0 for all i = 1, . . . , n − 3 and ai = 1 for
i = n− 2, n− 1, n.

Let i ∈ {2, 3, 4}. If Hi = [ai,1, . . . , ai,n]Λ is the canonical representation, then
ai,j = 0 for all j = 1, . . . , n− 2 and ai,n−1 = 1. As ai,1, . . . , ai,n are admissible
for Λ there exists a xn−1 ∈ Λn−1 with ai,n = ai,n−1xn−1.

Let xn ∈ Ξn such that xn−1xn =: yn−1 ∈ Ξn. Set yn := −xn, yn−2 := xn−yn−1

and yj := 0 for all j = 0, . . . , n− 3. For P := L∩Wn−2 thus the hyperline P ∨ y
is the intersection of Hi and Z.

Hence, for H ′
i := (Hi ∩ Z) ∨ q, i = 2, 3, 4, we obtain our claim. □

6.12 Theorem. For any system of coordinates Λ for Q and n ∈ N, n ≥ 3, the
universal partial hyperfield of N(n,Λ) is isomorphic to Q/∗Ra.

Moreover, if A is a subring of Q and Ξ is a subsystem of Λ for A and n, the
universal partial hyperfield of the restriction N(n,Ξ) of N(n,Λ) to the points
x ∈ En,Λ such that xi ∈ Ξi, i = 1, . . . , n, is also isomorphic to Q/∗Ra.

Proof. It suffices to prove that the universal partial hyperfield of N := N(n,Ξ)
is isomorphic to Q/∗Ra, since Λ is itself a subsystem of Λ for Q and n.

Let o ∈ En,Ξ be defined by oi := 0 for all i = 1, . . . , n. We will show first that
the map

φ : s(En,Ξ \ {o}) → E, sy ↦→ ȳ,

where E is the set of canonical elements of En,Λ, is an isomorphism from N/o
to M :=M(n,Λ)|E.

Clearly, it follows from the definition of N , Lemma 6.1, Corollary 6.5, and
Proposition 6.10 that for all x, y ∈ En,Ξ \ {o} we have sx = sy if and only if
x̄ = ȳ. Thus, φ is well-defined and injective.

To prove that φ is surjective, let z0 ∈ En,Λ be a canonical element. As Ξ is a
subsystem of Λ for A and n there exist ξ1, . . . , ξn ∈ Ξn such that zi := zi−1ξi
satisfies zi,i ∈ Ξi, i = 1, . . . , n. As each Ξi is a subring of Λi, i = 1, . . . , n, we
get zn ∈ Ξi, i = 1, . . . , n. Thus, zo = φ(szn).

Applying Proposition 3.6 and Proposition 3.11, we obtain that the map
β : U(0)(M) → U(0)(N) defined by β(0) := 0, β(−1) := −1, and

β([H1, H2 |H3, H4]) := [H ′
1, H

′
2 |H ′

3, H
′
4],
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6.1 Vectorlike matroids

where H ′
i := Hi ∩ En,Ξ, i = 1, 2, 3, 4, for all (H1, H2, H3, H4) ∈ H4(M), is an

homomorphism of partial hyperfields. It follows from Lemma 3.3 and Lemma 6.11
that β is surjective.

Moreover, using the proof of Proposition 6.10, we can view N as restriction
of the matroid M̂ :=M(n+ 1, Λ̂), where Λ̂ = (Λ1, . . . ,Λn+1) and Λn+1 ⊆ Λn is
a skew field. Thus, Proposition 3.6 yields that the map α : U(0)(N) → U(0)(M̂)
defined by α(0) := 0, α(−1) := −1, and

α([x+H ′
1, x+H ′

2 |x+H ′
3, x+H ′

4]) := [Ĥ1, Ĥ2 | Ĥ3, Ĥ4],

where (H1, H2, H3, H4) ∈ H4(M) and x ∈ En,Ξ, as well as Ĥ i := Hi + x̂Λn+1

and x̂ = (x1, . . . , xn, 1) for all i = 1, 2, 3, 4, is a well-defined homomorphism of
partial hyperfields.

Using the isomorphism g : U(0)(M) → U(0)(M̂) from the proof of Theorem 6.8,
we obtain α ◦ β = g by straightforward computation. Therefore, β is bijective
and thus also α. As in the proof of Theorem 6.8 we get that α is an epimorphism.
Hence, α and also β are isomorphism, which yields our claim. □

Definition. A (not necessarily commutative) integral domain R is said to be a
right Ore domain if aR ∩ bR ̸= ∅ for all a, b ∈ R∗, where R∗ is the set of units
of R.

For any right Ore domain R there exist (unique up to isomorphism) a skew
field F , called field of right fractions, and an embedding ι : R → F such that
for each f ∈ F there exist r, s ∈ R, s ≠ 0, satisfying f = ι(r)ι(s)−1 (see [Coh08,
Proposition 1.3.4]).

6.13 Corollary. Let d ∈ N be at least 3.

(a) For any skew field F the universal partial hyperfield of the affine geometry
AG(d, F ) of dimension d over F is isomorphic to F/∗F ∗′, where F ∗′ is the
commutator subgroup of F ∗.

(b) For any right Ore domain R and its field of right fractions F the universal
partial field of the restriction of AG(d, F ) to the elements Rd is isomorphic
to F/∗F ∗′.

Proof. Let R be a right Ore domain and F be its field of right fractions. Set
Ξ = (Ξ1, . . . ,Ξd) and Λ = (Λ1, . . . ,Λd), where Ξi := R and Λi := F for all
i = 1, . . . , d. Since AG(d, F ) = N(d,Λ) and AG(d, F )|Rd = N(d,Ξ), our claim
follows from Theorem 6.8 and Theorem 6.12 (see Remark 6.9). □
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6 Affine and projective like matroids

6.2 Affine translation planes

The systems of hyperplanes functions for an affine plane M and S which extend
to their projective closure were characterized by Karzel ([Kar63]) to satisfy two
conditions. Later, Kroll ([Kro86]) proved that these two conditions are true in
case of affine translation planes, whose kernel contains at least four elements.

Based on the methods Kroll used in his proof we will show that the homo-
morphism of partial hyperfields from the universal partial hyperfield U(0)(M)
of an affine translation plane to that of its projective closure, which we obtain
from Proposition 3.6, is an isomorphism.

For the theory of affine planes and especially translation planes we refer the
reader to [Pic].

Definition. An affine plane is a combinatorial geometry M = (E,H) of rank
3 such that for each H ∈ H and a ∈ E \H there exists a unique H ′ ∈ H with
a ∈ H ′ and H ∩H ′ = ∅.

Two hyperplanes H,H ′ ∈ H are called parallel (denoted by H ∥ H ′) if H = H ′

or H ∩H ′ = ∅. For any a ∈ E and any H ∈ H we denote the unique H ′ ∈ H
such that a ∈ H ′ and H ∥ H ′ by {a ∥ H}.

6.14 Lemma. Let M = (E,H) be a matroid. For H ∈ H and a1, a2 ∈ E \H
we set [H | a1, a2] := H(a1) ·H(a2)

−1 ∈ TH(M). Then we have

(a) [H | a1, a2] · [H | a2, a3] = [H | a1, a3] for all H ∈ H and a1, a2, a3 ∈ E \H,

(b) [H1 | a1, a2] = [H2 | a1, a2] for all H1, H2 ∈ H and a1, a2 ∈ E \ (H1 ∪H2)
such that L := H1 ∩H2 is a hyperline of M and L ∨ a1 = L ∨ a2,

(c) [H1 | a2, a3] · [H2 | a3, a1] · [H3 | a1, a2] = ε for H1, H2, H3 ∈ H which are
pairwise different such that L := H1 ∩H2 ∩H3 is a hyperline of M and
ai ∈ Hi \ L, i = 1, 2, 3.

Proof. Follows from the definition and Lemma 3.1. □

6.15 Lemma (cf. [Kro86, (1)]). Let C = {z, a1, a2, a3} be a circuit of an
affine plane M = (E,H) and H1, H2, H3 ∈ H three hyperplanes such that
a1 /∈ H2, Hi ∥ aj ∨ ak and Hi ∩Hj ∈ z ∨ ak for all {i, j, k} = {1, 2, 3}. Then

[H1 | a2, a3] · [H2 | a3, a1] · [H3 | a1, a2] = 1.

z
a1

a2

a3

H3

H1

H2
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6.2 Affine translation planes

Proof. Clearly, ai, aj /∈ Hk for all {i, j, k} = {1, 2, 3}, as otherwise we would
have Hk = ai ∨ aj for all {i, j, k} = {1, 2, 3}, a contradiction to a1 /∈ H2.

Further, we have either z ∈ Hi for all i = 1, 2, 3, or z /∈ Hi for all i = 1, 2, 3.
In the former case Hi = z∨ai, i = 1, 2, 3, and our claim follows from Lemma 3.1.

In ther latter case, since Hi∩Hj , ak, z are collinear it follows from Lemma 6.14
that [Hi | ak, z] = [Hj | ak, z] for all {i, j, k} = {1, 2, 3}. Thus,

[H1 | a2, a3] · [H2 | a3, a1] · [H3 | a1, a2]
= [H1 | a2, z] · [H1 | z, a3] · [H2 | a3, z]
· [H2 | z, a1] · [H3 | a1, z] · [H3 | z, a2] = 1. □

Definition. An automorphism σ of an affine planeM = (E,H) is called dilation
if σ(H) ∥ H for all H ∈ H. Any dilation σ which is not the identity map has at
most one fixpoint, thus σ is called a translation if it is the identity map or has
no fixpoint, and dilation with center z if it has z ∈ E as fixpoint.

An affine plane M = (E,H) is said to be an affine translation plane if for
all x, y ∈ E there exists a translation τ such that τ(x) = y. The group of
translations of an affine translation plane is abelian. Its endomorphism ring,
called the kernel of M , is a skew field.

Moreover, for every z ∈ E there exists a bijection between the dilations whose
center is z and the elements of the kernel of M .

6.16 Lemma (cf. [Kro86, (3)]). Let {a, b, z} be a basis of an affine transla-
tion plane M = (E,H). For every non-trivial dilation σ with center z let

z′ := (a ∨ b) ∩ {z ∥ a ∨ σ−1(b)},

and τ the unique translation such that τ(z) = z′. Then σ′ := τστ−1 is a dilation
with center z′ and σ′(a) = b.

Furthermore, the mapping σ ↦→ σ′ is a bijection between the non-trivial
dilations with center z and the dilations with a center mapping a to b.

In particular, there are at least two dilations mapping a to b with different
centers if the kernel of M contains at least four elements.

a

b

σ−1(b)σ(a)

z

z′
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6 Affine and projective like matroids

Proof. Clearly σ′(z′) = z′. Let c := σ−1(b). Since σ′(z′ ∨ a)||z′ ∨ a we have
σ′(a) ∈ σ′(z′ ∨ a) = z′ ∨ a. As a∨ c ∥ z ∨ z′, it follows τ−1(a) ∈ a∨ c. Therefore,
(στ−1)(a) ∈ σ(a) ∨ b ∥ a ∨ c. Thus, σ′(a) ∈ σ(a) ∨ b. Because b ∈ z′ ∨ a, we
obtain σ′(a) = b.

In order to prove that this an injective mapping, let σ1, σ2 be non-trivial
dilations with center z with σ′1 = σ′2. By construction, σ′i has center

z′i := (a ∨ b) ∩ {z ∥ a ∨ σ−1
i (b)},

i = 1, 2. As z′1 = z′2 we obtain a ∨ σ−1
1 (b) = a ∨ σ−1

2 (b). Thus, σ−1
i (b) ∈ z ∨ b

yields σ−1
1 (b) = σ−1

2 (b). Hence, σ1 = σ2.
Finally, if σ̃ is a dilation with center z̃ such that σ̃(a) = b, let τ be a translation

with τ(z̃) = z and σ := τ σ̃τ−1. Then σ(z) = z and therefore σ′ is a dilation
with center z such that σ′ = σ̃, which proves that the mapping is bijective.

The last sentence follows from [Pic, 4. on p. 203]. □

6.17 Lemma (cf. [Kro86, Satz (4)]). Let M = (E,H) be an affine trans-
lation plane whose kernel contains at least four elements, G,H ∈ H, and
a, b ∈ E \ (G ∪H) such that G ∥ H ∥ a ∨ b. Then

[G | a, b] = [H | a, b].

Proof. Let r ∈ {a, b} and p ∈ G. Using Lemma 6.16 there exists a dilation σ1
with center z1 such that σ1(r) = p.

Further, we choose an X ∈ Hp\{G, r∨p} and set q := X∩H. Again applying
Lemma 6.16, there exist two dilations σ with σ(r) = q. Let σ2 be the one whose
center z2 /∈ {z1 ∥ X}.

Since p, q, r are not collinear by choice of X, z1 ̸= z2. Set Z := z1 ∨ z2 and
let x := Z ∩ {r ∥ X} (X ∥ Z would imply z2 ∈ Z = {z1 ∥ X}). Moreover, we
choose an s ∈ (a ∨ b) \ (Z ∪ {r}), set y := X ∩ Z and Y := {y ∥ x ∨ s}.

s

p

q

b

x

y

r = a
z2

z1

G H X
Y

Z
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6.2 Affine translation planes

By construction, {zi, r, x, s}, i = 1, 2, are circuits and r /∈ G∪H. Furthermore,
Y ∥ x ∨ s, G ∥ H ∥ r ∨ s, X ∥ r ∨ x and X ∩ Y = y ∈ zi ∨ x, i = 1, 2. As
σi(r) ∈ X, it follows

σi(x) = σi(Z ∩ (x ∨ r)) = Z ∩X = y

for i = 1, 2. Therefore, we have

Y ∩G = σ1((x ∨ s) ∩ (a ∨ b)) = σ1(s) ∈ z1 ∨ s,
X ∩G = σ1((x ∨ r) ∩ (a ∨ b)) = σ1(r) ∈ z1 ∨ r,
Y ∩H = σ2((x ∨ s) ∩ (a ∨ b)) = σ2(s) ∈ z2 ∨ s,
X ∩H = σ2((x ∨ r) ∩ (a ∨ b)) = σ2(r) ∈ z2 ∨ r.

Thus, applying Lemma 6.15 twice, we get

[Y | s, x] · [X |x, r] · [G | r, s] = 1 = [Y | s, x] · [X |x, r] · [H | r, s].

We conclude [G | r, s] = [H | r, s].
If in one of the cases r = a or r = b, the constructed line Z does not contain

any point of {a, b} we can choose the point s above such that {r, s} = {a, b}
and immediately get [G | a, b] = [H | a, b].

Otherwise, in both cases Z ∩ {a, b} ≠ ∅ and we can choose s ∈ (a ∨ b) \ {a, b}
independently of r ∈ {a, b}. Hence,

[G | a, b] = [G | a, s] · [G | s, b] = [H | a, s] · [H | s, b] = [H | a, b]. □

6.18 Lemma. Let M = (E,H) be an affine translation plane whose kernel
contains at least four elements. For (H1, H2, H3, H4), (H ′

1, H
′
2, H

′
3, H

′
4) ∈ H4 we

have
[H1, H2 |H3, H4] = [H ′

1, H
′
2 |H ′

3, H
′
4]

if there is an H ∈ H such that p, p′ /∈ H, where p :=
⋂︁4

i=1Hi and p′ :=
⋂︁4

i=1H
′
i,

and for all i = 1, 2, 3, 4 either Hi ∩H = H ∩H ′
i or Hi ∥ H ∥ H ′

i.

Proof. If Hi ∩H = H ′
i ∩H for all i = 1, 2, 3, 4, our claim follows directly from

Proposition and Definition 3.29.
Otherwise, using Lemma 3.3 we can assume without loss of generality that

H1 ∥ H ∥ H ′
1. Obviously, we have H1 = H2 if and only if H ′

1 = H ′
2 and H3 = H4

if and only if H ′
3 = H ′

4. In both cases

[H1, H2 |H3, H4] = 1 = [H ′
1, H

′
2 |H ′

3, H
′
4].
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6 Affine and projective like matroids

Finally, let H1, H2, H3, H4 resp. H ′
1, H

′
2, H

′
3, H

′
4 be pairwise different and set

ai := Hi ∩ H = H ′
i ∩ H, i = 3, 4. Since a3, a4, H2 ∩ H ′

2 are collinear and
H1, H ′

1, a3 ∨ a4 are parallel it follows from Lemma 3.1, Lemma 6.17 and the
identification of T(0)(M) as a subgroup of TH(M) from Proposition 3.2 that

[H1, H2 |H3, H4] = [H1 | a3, a4] · [H2 | a4, a3]
= [H ′

1 | a3, a4] · [H ′
2 | a4, a3] = [H ′

1, H
′
2 |H ′

3, H
′
4]. □

6.19 Proposition. Let M = (E,H) be an affine translation plane whose kernel
contains at least four elements. For (H1, H2, H3, H4), (H ′

1, H
′
2, H

′
3, H

′
4) ∈ H4 we

have
[H1, H2 |H3, H4] = [H ′

1, H
′
2 |H ′

3, H
′
4]

if Hi ∥ H ′
i for all i = 1, 2, 3, 4.

Proof. If p = p′, where p :=
⋂︁4

i=1Hi and p′ :=
⋂︁4

i=1H
′
i, we have Hi = H ′

i for
all i = 1, 2, 3, 4 and thus our claim follows trivially. Therefore, let p ̸= p′.

It suffices to show our claim in the case Hi = H ′
i for a suitable i ∈ {1, 2, 3, 4},

because otherwise we obtain using Lemma 3.3

[H1, H2 |H3, H4] = [H1,K |H3, H4] · [K,H2 |H3, H4],

where K := p ∨ p′. We can further assume without loss of generality that
H1 = H ′

1, and thus H1 = H ′
1 = K and Hi ̸= H ′

i for all i = 2, 3, 4.
Since M is of order at least 4 there exists a hyperplane Z of M such that

p /∈ Z and Z ∦ Hi for all i = 1, 2, 3, 4. Set ai := Z ∩Hi, i = 1, 2, 3, 4, and let
τ be the unique translation of M such that τ(p) = p′. Then for Z ′ := τ(Z)
and a′i := τ(ai), i = 1, 2, 3, 4, we have p′ /∈ Z ′, Z ′ ∦ H ′

i and a′i = Z ′ ∩H ′
i for all

i = 1, 2, 3, 4.

p a1

a2 a3

a4

p′ a′1

a′2
a′3

a′4

H2 H3
H4

H ′
2 H ′

3
H ′

4

H1 = K = H ′
1

Moreover, as τ is a non-trivial translation, Z ∥ Z ′ and Z ̸= Z ′. Thus, ai, a′j ,
i, j = 1, 2, 3, 4, are eight pairwise different points and Gi := ai ∨ a′i ∥ p ∨ p′ for

136



6.2 Affine translation planes

all i = 1, 2, 3, 4. Hence, using Lemma 6.17, we get [G1 | ai, a′i] = [G2 | ai, a′i] for
i = 3, 4, and H1 = G1 = H ′

1. Therefore, Lemma 3.1 and Lemma 6.14 yield

[H1 | a3, a4] · [H2 | a4, a3] = [G1 | a3, a4] · [G2 | a4, a3]
= [G1 | a3, a′3] · [G1 | a′3, a′4] · [G1 | a′4, a4]
· [G2 | a4, a′4] · [G2 | a′4, a′3] · [G2 | a′3, a3]
= [G1 | a′3, a′4] · [G2 | a′4, a′3]
= [H ′

1 | a′3, a′4] · [H ′
2 | a′4, a′3].

Thus, we get [H1, H2 |H3, H4] = [H ′
1, H

′
2 |H ′

3, H
′
4] similarly as in the proof of

Lemma 6.18. □

6.20 Lemma. Let M = (E,H) be an affine translation plane whose kernel has
at least four elements. Then for any (H1, H2, H3, H4), (H ′

1, H
′
2, H

′
3, H

′
4) ∈ H4

we have
[H1, H2 |H3, H4] = [H ′

1, H
′
2 |H ′

3, H
′
4]

if
⋂︁4

i=1Hi =
⋂︁4

i=1H
′
i =: p and there exist K ∈ Hp and H,H ′ ∈ H \ Hp such

that for each i = 1, 2, 3, 4 either Hi ∩H and H ′
i ∩H ′ are both points which lie

on a common line parallel to K, or H ∥ Hi and H ′ ∥ H ′
i.

Proof. If H = H ′, then Hi = H ′
i for all i = 1, 2, 3, 4 and thus our claim follows

trivially. Therefore, let H ̸= H ′.
Furthermore, as Hi = Hi+3 if and only if H ′

i = H ′
i+3 for all i = 1, 3, and

Lemma 3.3 implies that both cross-ratios are equal to 1 in this case, we can
assume that H1, H2, H3, H4 as well as H ′

1, H
′
2, H

′
3, H

′
4 are pairwise different.

Let G := {p ∥ H} and G′ := {p ∥ H ′}. As G ∈ {H1, H2, H3, H4} if and only
if G′ ∈ {H ′

1, H
′
2, H

′
3, H

′
4} using Lemma 3.3 we can further assume without loss

of generality that H1 = G and H ′
1 = G′.

a2

a3

a4

a′2

a′3

a′4G

H2

H3

H4

G′

H ′
2

H ′
3

H ′
4

H̃
G̃

Let ai := Hi ∩H and a′i := H ′
i ∩H ′, i = 2, 3, 4, as well as H̃ := a2 ∨ a′2 and

G̃ := {p ∥ a3 ∨ a′4}. Since G ∥ a3 ∨ a4, G′ ∥ a′3 ∨ a′4, H̃ ∥ a3 ∨ a′3 ∥ a4 ∨ a′4, and
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6 Affine and projective like matroids

G̃ ∥ a3 ∨ a′4, it follows from Lemma 6.14 and Lemma 6.17

[G | a3, a4] · [H̃ | a4, a′4] · [G̃ | a′4, a3] = 1,

[G′ | a′3, a′4] · [G̃ | a′4, a3] · [H̃ | a3, a′3] = 1.

Using Lemma 6.14 and Lemma 6.17, we therefore obtain

[H1 | a3, a4] · [H2 | a4, a3] = [G | a3, a4] · [H̃ | a4, a3]
= [G̃ | a3, a′4] · [H̃ | a′4, a4] · [H̃ | a4, a3]
= [G̃ | a3, a′4] · [H̃ | a′3, a3] · [H̃ | a′4, a′3]
= [G′ | a′3, a′4] · [H̃ | a′4, a′3]
= [H1 | a′3, a′4] · [H2 | a′4, a′3].

Hence, our claim follows as in the proof of Lemma 6.18. □

For convenience of the reader we repeat the definition of the projective closure
of an affine plane (cf. [Pic, Satz 7, p. 11]).

Definition. Let M = (E,H) be an affine plane. For a hyperplane H ∈ H we
set [H] := {H ′ ∈ H |H ′ ∥ H} and H := H ∪ {[H]}.

Further, let U := {[H] |H ∈ H}, P := E ∪ U , and H := {H |H ∈ H} ∪ {U}.
Then Π = (P,H) is a projective plane called the projective closure of M .

6.21 Lemma ([Kal92b, p. 6]). For any projective plane Π = (E,H) of order
at least 3 its inner Tutte group is isomorphic to F(0)(M)/U , where U is the
subgroup of F(0)(M) generated by the elements of the form (CR2) and the
elements of the form (CR6’).

6.22 Theorem. For any affine translation plane M = (E,H) whose kernel
contains at least four elements and its projective closure Π = (P,H), the map
α : T(0)(M) → T(0)(Π) defined by α(0) := 0, α(−1) := −1 and

α([H1, H2 |H3, H4]) := [H̄1, H̄2 | H̄3, H̄4],

where H̄ i = σΠ(Hi), i = 1, 2, 3, 4, and (H1, H2, H3, H4) ∈ H4(M), is an isomor-
phism of partial hyperfields.

Proof. As M = Π|E, Proposition 3.6 implies that α = f∅ is a homomorphism
of partial hyperfields. In order to show that α is an isomorphism, we construct
the inverse homomorphism α−1.
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6.2 Affine translation planes

First, we define a group homomorphism β : F(0)(Π) → T(0)(M), whose kernel
contains the subgroup U ⊆ F(0)(Π) from Lemma 6.21. We set β(ε) := ε. Further,
let (G1, G2, G3, G4) ∈ H4(Π) and p :=

⋂︁4
i=1Gi.

If p ∈ E, we set

β((G1, G2 |G3, G4)) := [G1 \ U,G2 \ U |G3 \ U,G4 \ U ].

Otherwise, p /∈ E. We choose an e ∈ Gk \ U , where k ∈ {1, 2, 3, 4} is minimal
such that Gk ̸= U , and a Z ∈ H with e /∈ Z and Z ∦ Gk \ U , and define

β((G1, G2 |G3, G4)) := [G1(e, Z), G2(e, Z) |G3(e, Z), G4(e, Z)] =: v(e, Z),

where Gi(e, Z) := σM ((Z ∩Gi) ∪ {e}) if Gk ∩ Z ∈ E, and Gi(e, Z) := {e ∥ Z}
else, i = 1, 2, 3, 4.

This definition is independent of the choice of e and Z, since for e1, e2 ∈ Gk\U
and Z1, Z2 ∈ H such that ei /∈ Zi and Zi ∦ Gk \ U , i = 1, 2, there exists an
e ∈ Gk \ (U ∪ Z1 ∪ Z2) (M has order at least 4).

As the Gi(ej , Zj) and the Gi(e, Zj), i = 1, 2, 3, 4 and j = 1, 2 satisfy the
precondition of Lemma 6.18 by construction, we have v(ej , Zj) = v(e, Zj) for
j = 1, 2. Similarly, the Gi(e, Z1) and the Gi(e, Z2), i = 1, 2, 3, 4, satisfy the
precondition of Lemma 6.20. Thus, we get v(e, Z1) = v(e, Z2), which yields the
desired result v(e1, Z1) = v(e2, Z2).

Clearly, for all p ∈ P and G1, G2, G3, G4, G5 ∈ Hp such that Gi ̸= Gj , i = 1, 2,
j = 3, 4, 5 we have

(G1, G2 |G3, G4) · (G1, G2 |G4, G5) · (G1, G2 |G5, G3) ∈ kerβ.

Therefore, kerβ contains all elements of F(0)(M) of the form (CR2).
To show that kerβ also contains all elements of F(0)(M) of the form (CR6’),

let (G1, G2, G3, G4), (G′
1, G

′
2, G

′
3, G

′
4) ∈ H4(Π) satisfy (i) and (ii) of (CR6’) and

set p =
⋂︁4

i=1Gi, p′ =
⋂︁4

i=1G
′
i. Thus, there exists a G ∈ H such that p, p′ /∈ G

and G ∩Gi = G ∩G′
i is a point of Π.

If p, p′ ∈ E, let Hi := Gi \ U and H ′
i := G′

i \ U , i = 1, 2, 3, 4.
In the subcase G = U we have Hi ∥ H ′

i for all i = 1, 2, 3, 4. Therefore,
Proposition 6.19 implies

[H1, H2 |H3, H4] = [H ′
1, H

′
2 |H ′

3, H
′
4].

This is also true for the subcase G ̸= U . Since H := G \ U is a line such that
for all i = 1, 2, 3, 4, we have either that H ∩Hi = H ∩H ′

i is a point or Hi ∥ H ′
i,

and it follows from Lemma 6.18.
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6 Affine and projective like matroids

If either p ∈ U or p′ ∈ U , say p′ ∈ U , we set Hi := Gi \ U and H ′
i := G′

i(e, Z)
for all i = 1, 2, 3, 4, where e := p and Z := G \ U . By choice of e and Z, we get
Hi = H ′

i for all i = 1, 2, 3, 4.
Otherwise, p, p′ ∈ U . We choose an e ∈ E \G and set Z := G \ U . Moreover,

let Hi := Gi(e, Z) and H ′
i := G′

i(e, Z) for all i = 1, 2, 3, 4. As in the previous
case we get Hi = H ′

i for all i = 1, 2, 3, 4.
Hence, in all cases we get

(G1, G2 |G3, G4) · (G′
1, G

′
2 |G′

4, G
′
3) ∈ kerβ.

Thus, by the homorphism theorem for groups and Lemma 6.21, there exists a
multiplicative homomorphism β̂ : T(0)(Π) → T(0)(M) such that β̂(ε) := ε and

β̂([G1, G2 |G3, G4]) = β((G1, G2 |G3, G4))

for all (G1, G2, G3, G4) ∈ H4(Π).
The definition of β, Lemma 2.5, and Proposition and Definition 3.4 imply

β̂ : U(0)(Π) → U(0)(M) is a homomorphism of partial hyperfields such that
β̂ ◦ α = idU(0)(M) if we extend it by β̂(0) := 0.

In order to prove that α ◦ β̂ = idU(0)(Π), let (G1, G2, G3, G4) ∈ H4(Π) and
p :=

⋂︁4
i=1Gi. If p ∈ E, we have Hi = Gi, where Hi := Gi\U , for all i = 1, 2, 3, 4.

Otherwise, let e ∈ Gk \ U , where k ∈ {1, 2, 3, 4} is minimal with Gk ̸= U
and Z ∈ H such that e /∈ Z and Z ∦ Gk \ U . Then (G1, G2, G3, G4) and
(H1, H2, H3, H4) satisfy (i) and (ii) of (CR6’), where Hi := Gi(e, Z), i = 1, 2, 3, 4.

Thus, in both cases we have

α(β̂([G1, G2 |G3, G4]) = [H1, H2 |H3, H4] = [G1, G2 |G3, G4],

which proves our claim. □

6.23 Corollary. The universal partial hyperfield of an affine translation plane
M = (E,H) whose kernel contains at least four elements is isomorphic to Q/∗Ra,
where Q is the quasifield coordinatizing its projective closure Π = (P,L) with
respect to a quadrangle (o, u, v, e), where o, e ∈ E and u, v ∈ U .

Proof. Our choice of the points o, u, e, v implies that the planar ternary ring
coordinatizing Π is indeed a quasifield4, see [Pic, §8].

Thus, our claim follows from Theorem 3.24 and Theorem 6.22. □

4The kernel of this quasifield is isomorphic to the kernel of M .
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6.2 Affine translation planes

6.24 Remark. For affine planes M of order at least 3 and their projective
closure Π the map α : U(0)(M) → U(0)(Π) defined in Theorem 6.22 is an epi-
morphism.

However, in general it is not necessarily injective. For example, it follows
from Corollary 3.35 that α is not injective if M is the ternary affine plane.

This is even the case for orientable affine planes M . Joussen ([Jou63] and
[Jou66]) proved that if Π is a free projective plane, then M and Π are orientable,
but there exists a system of hyperplane functions for M and S which does not
extend to Π, and proves α is not injective in this case.
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Notation

Notation

AG(d, F ) Affine geometry of dimension d over F

B(M), B Set of bases of matroid M

F1 ⊕ F2 Coproduct of partial hyperfields F1, F2

F/∗U Quotient of partial hyperfield F by subgroup U

Fq Finite field of order q

F/∗Ra Hyperfield associated to planar ternary ring (F, T )

F|U Restriction of partial hyperfield F to subgroup U

K ∨ a Join of the flat K and the flat generated by a

H(M), H Set of hyperplanes of matroid M

[H1, H2 |H3, H4] Cross-ratio of H1, H2, H3, H4

K Krasner hyperfield

K1 ∨K2 Join of the flats K1 and K2

L(M), L Set of hyperlines of the matroid M

M\F Restriction of M onto E \ F

M |F Restriction of M onto F

M/F Contraction of M onto E \ F

PG(d, F ) Projective geometry of dimension d over F⨁︁k
i=1Mi Direct sum the matroids Mi, i = 1, . . . , k∐︁
i∈I Fi Coproduct of partial hyperfields Fi, i ∈ I

Q(F ) Canonical real reduced hyperneofield of F w.r.t.
∑︁
F 2
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Notation

QT (F ) Canonical real reduced hyperneofield of F w.r.t. T

R9 Ternary Reid geometry

Ra Extended radical of planar ternary ring (F, T )

ϱM (A), ϱ(A) rank of the set A as subset of the matroid M

ϱ(M) Rank of the matroid M

S Hyperfield of signs

σM (A), σ(A) Closure of the set A as subset of the matroid M

sM Simplification of matroid M

T(0)(M) Inner tutte group of matroid M

U0 Regular partial field

UA A-regular partial field

Uκ κ-regular partial field

U(0)(M) The universal partial hyperfield of a matroid M

UB(M) Extension of U(0)(M) to the bases Tutte group

UH(M) Extension of U(0)(M) to the extended Tutte group

Un,E Uniform matroid of rank n on the set E

Un,k Uniform matroid of rank k on the set {1, . . . , k}
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INDEX

Index

affine
geometry, 63, 119, 131
translation plane, 133, 140

base, 32

canonical
embedding, 28, 70
real reduced hyperneofield, 71,

80
circuit, 32
closure, 32
core, 17, 37
cross-ratio, 34, 36, 82

embedding, 17, 20, 22, 42, 45
canonical, 28, 70
strong, 17, 22, 37

epimorphism, 13, 20, 22, 72, 73, 84,
141

fan, 107
final

homomorphism, 18, 20, 22
partial hyperfield, 17, 37

flat, 32
modular, 32, 97

fundamental elements, 13, 26, 36, 87

geometry
affine, 63, 119, 131
combinatorial, 39, 93, 94, 110
projective, 53, 63, 79, 111, 128

ternary Reid, 56, 61, 117
Grassman-Plücker map, 45, 79

homomorphism, 13, 20, 22, 42, 45,
47, 72, 79, 81

final, 18, 20, 22
initial, 17, 22
strong, 13, 20
underlying, 13

hyperfield, 13, 73, 76, 77, 86, 87, 92,
108, 110, 116, 119

Krasner, 18
of signs, 18

hyperline, 32
hyperneofield, 13, 48, 67, 77

canonical real reduced, 71, 80
hyperplane, 31, 94, 97

functions, 42, 52, 126, 141
modular, 113, 125

hyperpoint, 32

independent set, 32
initial

homomorphism, 17, 22
partial hyperfield, 16

inner Tutte group, 31, 34, 87, 138
isomorphism, 13, 20, 23, 39, 41

join, 32

line, 32, 94, 97

matroid, 31
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INDEX

almost artinian, 87, 92, 112
artinian, 87, 92, 93, 112, 116,

119
binary, 49
direct sum, 38, 89, 93, 94, 110,

111
Fano, 57, 117
generalized parallel connection,

97, 114
minor, 37, 111
modular, 32, 93, 94, 110
representable, 47, 87
semiartinian, 87, 90, 93, 112
slender, 87
uniform, 56, 93, 106

modular
flat, 32, 97
matroid, 32, 93, 94, 110

monomorphism, 13, 20
multiplicative homomorphism, 11
multiplicative kernel, 13
multiplicative structure, 11

underlying, 11

ordering, 67, 80

partial field, 17
A-regular, 26
κ-regular, 28, 53
regular, 18

partial hyperfield, 9
coproduct, 19, 89, 108
discrete, 15
indiscrete, 15
initial, 16, 17, 37
quasi-real, 67, 70
quotient, 18
real, 67

reduced, 67
restriction, 17
universal, 31, 36, 38, 53, 56, 67,

78, 119, 132
partial hyperoperation, 9, 42
planar ternary ring, 49, 93, 111
plane

affine, 132
affine translation, 133, 140
projective, 49, 52, 138
ternary affine, 64, 141

preordering, 67
real, 67, 80

prespace of orderings, 75, 77
projective

equivalence, 59, 67, 78
geometry, 53, 63, 79, 111
plane, 49, 52, 138

radical, 50
extended, 50

rank, 32
real

partial hyperfield, 67
preordering, 67, 80

simplification, 39
space of orderings, 75–77
strong

embedding, 17, 22
homomorphism, 13, 20

ternary
affine plane, 64, 141
Reid geometry, 56, 61, 117

underlying
homomorphism, 13
multiplicative structure, 11
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