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Benefit of using interaction effects 
for the analysis of high‑dimensional 
time‑response or dose‑response 
data for two‑group comparisons
Julia C. Duda *, Carolin Drenda , Hue Kästel , Jörg Rahnenführer  & Franziska Kappenberg 

High throughput RNA sequencing experiments are widely conducted and analyzed to identify 
differentially expressed genes (DEGs). The statistical models calculated for this task are often not 
clear to practitioners, and analyses may not be optimally tailored to the research hypothesis. Often, 
interaction effects (IEs) are the mathematical equivalent of the biological research question but are 
not considered for different reasons. We fill this gap by explaining and presenting the potential benefit 
of IEs in the search for DEGs using RNA‑Seq data of mice that receive different diets for different time 
periods. Using an IE model leads to a smaller, but likely more biologically informative set of DEGs 
compared to a common approach that avoids the calculation of IEs.

With the rapid developments in next-generation sequencing (NGS) technology in the last decades, analyses of 
gene expression data have become regular in many  laboratories1. A common goal is to identify differentially 
expressed genes (DEGs) that are responsible for the observable differences between, e.g., groups of individuals 
with different treatments or genotypes. Many software applications became available to optimally extract infor-
mation from the large amounts of experimental  data2. The mathematics behind these algorithms and models 
is often complicated, which can lead to suboptimal data analysis from practitioners and bioinformaticians. The 
interaction effect (IE) between two or more factors of interest is a methodological aspect that is often not con-
sidered in analyses where it could be beneficial. IEs are well-known in statistical modeling but are often not used 
in practice. Properly including and interpreting an IE in gene expression data analyses can be challenging, and 
the possibility of using an IE is often overlooked. An obvious reason for not using IEs in DEGs analyses might 
be the complexity of the statistical models and their correct computational implementation.

In the literature, there are many application examples similar to the one we will use throughout the manu-
script, where an IE was likely beneficial to find interesting DEGs, but not considered. For example,3 dealt with 
time-restricted feeding of mice to test whether it could prevent obesity. They used  DESeq24 and the design 
included several factors such as genotype, feeding group, and time. In this setting, combining different variables 
to explore the interaction between e.g. time and genotype could have led to other, potentially more interesting 
DEGs. In another  example5 used four separate study groups to analyze the differences in heart failure in mice. 
They either received a standardized chow or a high-fat diet for 12 weeks, and either additionally received angio-
tensin II after 8 weeks or not. Here as well, analyzing the excluded interaction between diet and hormones could 
lead to additional interesting insights.

Examples with an IE included in the DEG analysis were provided  by6,7. Sloley et al.6 studied the exposure to 
high-frequency head impacts in mice. They use the DESeq2 package and their design contains an IE of the two 
factors treatment and injury. Similar methods are used  in7, in which mice were treated with acarbose at three 
independent study sites. Their model contains the variables treatment, sex, and the interaction between them.

In this work, we explain the use, interpretation, and potential benefit of using IEs in gene expression analysis 
to identify DEGs. The article equips practitioners with a less profound statistical background with the knowl-
edge to decide if the use of an IE helps answer their research question. We therefore aim at keeping the level of 
mathematical complexity low, to reach a wider range of potential users. Mathematical details can be found  in8,9. 
We illustrate, explain, and compare DEG analyses with and without IE using a gene expression data set  from10, 
where mice were fed either an unhealthy or a healthy diet for 3 to 48 weeks.

OPEN

Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany. *email: duda@
statistik.tu-dortmund.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47057-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20804  | https://doi.org/10.1038/s41598-023-47057-0

www.nature.com/scientificreports/

The article is structured as follows. We first explain the IE from different perspectives. Then we conceptually 
compare the use of an IE with the common approach that avoids modeling of interaction w.r.t. the resulting 
DEGs. The two methods are applied to the data set at hand and the differences in the results are discussed and 
explained in detail.

Material and methods
Data
The data set was first presented  by10, where mice were fed with two different diets over the course of 48 weeks. 
One diet was the high-fat or ‘Western’ diet (WD) and the control was a standard diet (SD). The nine analysis time 
points within the 48 weeks were week 3, 6, 12, 18, 24, 30, 36, 42 and 48. In total 79 samples (mice) were used. The 
gene expression data from 35,727 genes were measured using RNA-seq. After removing the weeks with no data 
from mice in one of the two groups, 64 samples from the weeks 3, 6, 30, 36, 42, and 48 were left. To focus on the 
explanatory aim, analyses were mostly restricted to the data of weeks 3 and 6. The sample sizes in the remaining 
weeks are 7, 5, 5, 7, 3, 5 for SD and 5, 5, 5, 5, 4, 8 for WD. Further pre-processing is explained in “Implementation”.

Interaction effects explained
When two or more factors are of interest in an experiment, one should consider including IEs in the statistical 
model. Only using additive or main effects may not result in adequate modeling of the data. In Fig. 1, different 
effect scenarios are visualized using interaction plots for the case of two factors of interest, e.g. some group (0 = 
blue, 1 = red) and a compound with low and high concentration. In Fig. 1a, there is no interaction between the 
group and the concentration: The increase of the response from the low to the high concentration is the same for 
group 0 and group 1. At the same time, for a fixed concentration, the difference in the responses between group 
0 and group 1 is the same. One can describe the absence of an IE graphically, biologically, and mathematically.

• Graphically, an additive effect or the lack of an IE results in parallel lines between the two groups.
• Biologically, the effect of the concentration does not interact with the effect of the group, because it is always 

the same increase in response from low to high concentration, regardless of the group.
• Mathematically, considering two factors with two levels each, a classical linear model, or equivalently an 

ANOVA model, with only additive effects for the two factors and normal noise is appropriate to model the 
data. This formalizes to 

 where j indicates the sample, gj indicates if the jth sample is in group 0 ( gj = 0 ) or in group 1 ( gj = 1 ), and 
cj indicates if the j-th sample is exposed to the low concentration ( cj = 0 ) or the high concentration ( cj = 1).

  The mean difference in the responses for group 1 compared to group 0 is α and for increasing the concen-
tration from low to high, the mean difference is β.

  For example, if the j-th sample is in group 0 ( gj = 0 ) and exposed to the low concentration ( cj = 0 ), the 
expected response is µ+ 0 · α + 0 · β = µ . The intercept µ represents the mean response in the reference 
group (0) with the reference concentration (low).

(1)yj = µ+ α · gj + β · cj + εj

Figure 1.  Schematic depiction of data scenarios without and with IE. (a) Group 0 (blue) and 1 (red) both have 
a positive effect for treatment high compared to low and a positive group effect, but no IE. (b) As in (a), but 
with an additional positive IE. (c) Negative IE between group and treatment. (d) No treatment effect for group 
0. The treatment effect for group 1 is entirely represented by the IE. (e) Both groups display a positive treatment 
effect and there is no group effect in the treatment category low, only in high, i.e. an IE is present. (f) Negative IE 
between group and treatment, but no line crossing as in (c).
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The contrary case, the presence of a clear IE with a changed direction for the concentration effect, is depicted in 
Figure 1c. The crossing lines mean that the effect of a concentration increase is not additive (it is not the same 
within both groups). Instead, the concentration effect depends on the group, i.e. there is an interaction with 
the group effect. For group 0, an increase in the concentration leads to an increase in the response, whereas for 
group 1, an increase in the concentration leads to a decrease in the response. The additive model (1) can not 
capture this interaction as the model fit would force parallel lines into the effect plot. Mathematically, a model 
that accounts for the interaction between group and treatment is, therefore, an extension of the model in Eq. 
(1) by adding the IE γ:

If the j-th sample is exposed to the higher concentration ( cj = 1 ) and is in group 1 ( gj = 1 ), then the mean 
response is µ+ α + β + γ . The interaction term γ · gj · cj allows the lines in the interaction plot to be non-
parallel. It is important to note that an IE does not necessarily visualize as a crossing of lines in an interaction 
plot, but simply non-parallel lines, such as in the examples shown in Fig. 1b, d, e, and 1f. We elucidate the use 
of IEs when analyzing real data in the context of biological research questions in “When do interaction effects 
capture the research question?”.

Interaction effects calculated with DESeq2
In this section, we explain the mathematical background of gene expression modeling with the popular R-package 
DESeq2 4. Details on statistical concepts presented here may not be relevant to readers who are more application-
oriented and can be ignored without risking comprehension of the remaining sections. However, to understand 
an IE in more depth, we encourage to understand the parameters in the model formula (4).

Consider the count matrix K, where Kij are the count reads of gene i for sample j, i ∈ {1, ..., n} , j ∈ {1, ...,m} . 
To model the count data, DESeq2 uses a generalized linear model with a negative binomial distribution 
Kij ∼ NB(µij , τi) with mean µij and gene-specific dispersion τi.

The mean of the observed counts µij = sjqij is modeled with the parameter qij , which is proportional to the 
expected true concentration of fragments for sample j and rescaled with a sample-specific size factor sj . The 
parameter qij is modeled with a generalized linear model using the logarithmic link: log2(qij) =

∑
r βirxjr . In a 

factorial design, xjr ∈ {0, 1} indicates if the rth explanatory variable applies to sample j, such that for the ith gene, 
βir is the log2 FC for factor level r compared to the reference factor level.

For our application example (“Data” ), the model has one factor for the diet (two values) and one factor for 
the week (six values). A model with the parameters for the week and diet without interaction is fitted for each 
gene i, 1 ≤ i ≤ 35, 727 . In the following, we suppress the gene index i and consider the sample (mouse) index j. 
The model used in DEseq2 is then

where µ (intercept) denotes the response at the reference (SD and week 3), and α is the WD (main) effect. The 
variable dj is binary with value 0 for the SD and value 1 for the WD. The parameters βr , r ∈ {2, ..., 6} , correspond 
to the week effects. The variable wjr is the indicator variable for the week, i.e. wj2 = 1 only for week 6.

Now, adding an IE, the model is

The parameter γ2 denotes the IE between the factor diet and the factor week, comparing week 6 to week 3. The 
parameter γ3 refers to the interaction between the diet and week, comparing week 30 to week 3, and so on. Due 
to the log2 transformation for the sample concentration qj , the parameters must all be interpreted accordingly. 
For example, an IE of γ2 = 3 means that the difference between the diet effect in week 3 and the diet effect in 
week 6 is 23 = 8 , or has a FC of 8.

When do interaction effects capture the research question?
In RNA-Seq experiments, often the case of two factors, e.g. treatment and genotype, are analyzed, and it is of 
interest whether the effect of the treatment differs between the genotypes (in certain genes). The research ques-
tion might be formulated as: Does the genotype affect the treatment effect? IEs capture such a research question 
and they should therefore be considered for the analysis.

In our application example, the two factors are diet and week, where diet is either a WD or a SD and week 
indicates the feeding duration. In this dataset measurements for different time points are available, and we focus 
on the two shortest durations, 3 weeks and 6 weeks, to explain the IE concept. The 3-week time point can be 
considered the reference level of the factor week. The research goal is to identify genes where activation/deac-
tivation from weeks 3 to 6 induced by the WD is different compared to the SD. Mathematically, this research 
question translates into identifying genes with an IE between diet and week. Consequently, the use of a model 
that includes an IE should be considered.

(2)yj = µ+ α · gj + β · cj + γ · gj · cj + εj .

(3)log2(qj) = µ+ α · dj +

6∑

r=2

βr · wjr ,

(4)log2(qj) = µ+ α · dj +

6∑

r=2

βr · wjr +

6∑

r=2

γr · dj · wjr .
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How do interaction effects capture the research question?
To explain how IEs capture the research question, we visualize the benefit of adding IEs to a linear model, using 
our example dataset. In Fig. 2, for the mice groups, for each combination of diet type and week, expression values 
and fitted means are plotted, exemplary for one selected gene. Once no IEs are included in the model (Fig. 2, 
left), and once IEs are included (Fig. 2, right).

Without IEs, the estimated effect differences between the diets, represented by arrows, are mathematically 
forced to be the same across all weeks (vertical lines have the same length).

Consequently, in week 3, the effect is markedly overestimated, as the arrow between SD and WD is larger than 
the pure difference in group means. In contrast, if an IE is used (Fig. 2, right), then the group means estimated 
by the model capture well that the diet effect varies across weeks. The mathematical formulas of the estimated 
effects represented by the arrows are explained in “Interaction effects calculated with DESeq2”.

Comparison of methods for estimating interaction effects
In this section, we compare the results obtained by fitting an interaction model between two factors (called 
Method II in the following) with a far more popular alternative, which we call Method I. The alternative approach 
avoids the direct modeling of an IE between two factors as follows: The data are split with respect to the second 
factor (e.g. week) into two groups G0 and G1 . Then for group G0 and G1 separately, a model comparing the groups 
with respect to the first factor (e.g. diet) is fitted. Finally, it is analyzed, if for one group, typically the reference 
group G0 , no significant effect is observed, and for the other group G1 , there is a significant effect present.

The differences between the two approaches are illustrated and discussed on the mouse dataset, where for 
Method I the groups G0 and G1 are defined by week 3 (as reference) and week 6 (or larger week numbers, respec-
tively). The models per week contain only one factor (diet) with two levels, SD and WD. Since separate models 
are fitted per week, the model-wise diet effect is allowed to vary across weeks.

When interpreting the results of the differential expression analysis, a consideration of both statistical sig-
nificance and biological relevance is necessary: A p-value smaller than the significance level, which constitutes a 
statistically significant result, does not necessarily mean that the mean effect level, given here by the log2-Fold 
Change ( log2FC), is of relevant size. On the other hand, a mean effect level larger than a pre-specified threshold, 
motivated by the biological context, does not always correspond to small p-values 11. Thus, to interpret a gene to 
be a differentially expressed gene (DEG), we always require two conditions to be fulfilled: The (FDR-adjusted) 
p-value is smaller than a significance level, and the log2 FC is larger than a pre-specified threshold.

For the mouse dataset and the separate models (Method I), only those genes that show a diet effect (both 
significant and relevant) in week 6, but not in the reference week 3, are considered DEGs. The motivation is 
that interesting genes show no effect at the reference time point, where the diet had too little time to cause a 
differential effect, but later (at 6 weeks) the diet causes such a difference. For the interaction model (Method II), 
not two models but only a single model is fitted. To detect DEGs, one simply checks if the estimated IE is both 
significant and relevant.

• Method I (Separate): Separately for each week: Fit a one-factor model (two-group comparison, see equation 
(1)).

  A gene is DEG if the diet effect is both significant and relevant in week 6, but not both in week 3.
• Method II (Interaction): Fit a two-factor model between week and diet (including week, diet, and interaction), 

see equation (2).
  A gene is DEG if the IE is both significant and relevant.
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Figure 2.  Visualization of the fitted model without IE (left) and with IE (right) for the mice dataset, for the gene 
identifier ENSMUSG00000069170 (Adgrv1). The arrows represent the estimated log2FCs according to Eq. (3) 
for the left fit, and Eq. (4) for the right fit. For both fits, µ (green arrow) is the expected mean gene expression 
level for the reference values three weeks and SD, and α (vertical dark grey arrows) is the estimated FC between 
SD and WD at each week. Further, both models include the week effects βr (blue arrows). The right model 
additionally includes interaction effects (yellow, orange, and red arrows) that correspond to γr in formula (4).
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To visualize the differences between the decision outcomes (gene is DEG or not) of Method I and II, Fig. 3 dis-
plays 7 cases using simulated data scenarios. The data are generated with constant residual variance, so that the 
decision is not influenced by differing variance values, but only by the estimated effect (arrow lengths).

• Case 1: Within both weeks, the estimated diet effect is not relevant (dotted green effect arrow). There is hence 
is no DEG by Method I. Since the effects are of similar size, the IE estimated by Method II (pink arrow) is 
not significant, and neither Method II classifies the gene as DEG.

• Case 2: In week 3, the effect is not relevant, in week 6 it is both significant and relevant. This leads to a sig-
nificant IE for Method II. Therefore, both Method I and Method II classify the gene as DEG.

• Case 3: The diet effect is significant in both weeks. Since it is significant in week 3, Method I does not classify 
the gene as DEG. However, the diet effect in the second week is much larger, such that the IE is significant, 
and Method II classifies the gene as DEG.

• Case 4: Similar to case 3, but the effect direction of the diet effect changes: In the first week, there is a positive 
effect, and in the second week a negative effect. Again, only Method II classifies the gene as DEG.

• Case 5: In week 3, the diet effect is just below the significance level, whereas in week 6 it is just above the 
significance level. Therefore, Method I labels the gene as DEG. For Method II, the IE is not significant as the 
diet effect does not differ much between the weeks. Method II does not label the gene as DEG.

• Case 6: Similar to case 4, but the effect in week 3 is not significant. Now both methods classify the gene as 
DEG.

• Case 7: The direction of the diet effect changes. It is positive in week 3 and negative in week 6. Within each 
week, the effect size is not significant, therefore Method I classifies the gene as not DEG. The overall change 
in the effect represented by the IE is significant. Therefore, Method II labels this gene as DEG.

Implementation
For all calculations,  R12, version 4.2.2, and the packages DESeq24, version 1.38.1, and topGO13, version 2.50.0, 
were used for determining DEGs and performing gene ontology enrichment analyses (GO EA), respectively. 
The entire code is shared on GitHub (https:// github. com/ jcduda/ gene_ expre ssion_ inter action). We specify the 
models of Method I and II in DESeq2 using

• Method I: DESeqDataSet(gse, design = ∼ diet)
• Method II: DESeqDataSet(gse, design = ∼ diet + weeks + diet:weeks)

In the example, the code for Method I is applied twice for separate weeks, i.e. for two different data sets ‘gse’, while 
the code for Method II is applied only once. Note that a model based on ∼ diet + weeks results in the same 
parameter values for each week, making it unsuitable for comparison with Method I and Method II, see Fig. 2.

One notable preprocessing step was the filtering. Removing only genes with less than ten counts over all 
samples resulted in a peak of the estimated diet effect at 0.206 (Supplementary Fig. 1). However, removing genes 
with more than 50% of samples with 0 counts leads to reasonably estimated effects without artifactual spikes 
in the histogram (Supplementary Fig. 2). Further, we shrunk the estimated effects using approximate posterior 
estimation with the lfcShrink  function14. Effects that are non-zero only due to noise are shrunk to zero, while 
large, reliable effects are not affected.

Results
We compare Method I (separate) and Method II (interaction) for the mouse dataset, w.r.t. classification of genes 
as DEG or not DEG, as described in “Comparison of methods for estimating interaction effects”. In the following 
list, we define the terms significant, relevant, and DEG in the context of the example study.

For Method I we call a gene

• significant, if false discovery rate (FDR) adjusted p-value < 0.05 (for a specific week X)
• relevant, if absolute log2 FC > log2(1.5) (for a specific week X)
• DEG for week X, if it is significant and relevant for week X
• DEG, if it is not DEG for week 3, but DEG for week 6

For Method II we call a gene

• significant, if FDR adjusted p-value < 0.05 (for the IE)
• relevant, if absolute log2 FC > log2(1.5) (for the IE)
• DEG, if it is significant and relevant (for the IE)

For Method I, up-regulated DEGs for week X have a positive diet effect in week X. For Method II, up-regulated 
DEGs have a positive IE. Down-regulated DEGs are defined accordingly.

Comparison of genes selected by Method I and Method II
We expect a relevant number of DEGs, since a biological effect of the diet (WD vs. SD) is reported  by10. Table 1 
shows the number of DEGs in week 3 and DEGs in week 6, according to Method I (simple comparison per 
week). There are more DEGs after 6 weeks of feeding compared to 3 weeks, both for up- or down-regulation. 

https://github.com/jcduda/gene_expression_interaction
https://github.com/jcduda/gene_expression_interaction
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For up-regulated genes, 104 genes are DEGs only for week 3, 81 genes that are DEGs in both weeks, and 1,622 
genes that are DEGs only in week 6. Hence, for Method I, regarding up-regulation, one would focus on the 1622 
DEGs that are only identified for week 6 and not for week 3.

Table 2 presents a main finding of our study, a comparison of DEGs identified with Method I and Method II. 
One can see that Method I (separate) identifies more DEGs than Method II (interaction). However, the DEGs 
identified by Method II are not all contained in the DEGs identified by Method I. There are almost 200 genes 
only identified by Method II, both for up-regulation and for down-regulation.

Characterization of genes that are DEG only for Method I or only for Method II
To understand the benefits of the two methods, we characterize the genes that are only identified by one of the 
two approaches, respectively. After a mathematical characterization, we also investigate biological differences.

An insightful example is gene Sirt7 in Fig. 5, which is a typical case for being DEG by Method II, but not 
by Method I. From week 3 to week 6, there is an interaction between the factor week and diet (crossing of grey 
lines). The IE (large yellow arrow) is significant and relevant, making this gene DEG for Method II. However, 
for Method I the log2 FC of the diet effect in week 6 is not large enough to pass the threshold of log2(1.5) . Hence, 
Sirt7 is not identified as DEG by Method I, even though an important underlying diet effect dependent on the 
time seems reasonable. Such genes are overlooked by the popular Method I.

To better understand the differences between the two approaches, Fig. 6 shows regions of genes classified as 
DEG by both, none, or only one of the two methods, dependent on the main effect (diet) and the IE, as obtained 
by the interaction model (2) used by Method II.

Each dot represents a single gene. If there is no interaction (cf. Fig. 1a), the estimated IE is (close to) 0, such 
that the x- and y-value are identical and the gene is on the diagonal. For better illustration, the estimated effects 
are not shrunk and the decision rule depends on the log2 FC threshold only. In practice, log2 FC estimates should 
be subject to shrinkage and the classification into a DEG depends on both, log2 FC and adjusted p-value (Sup-
plementary Fig. 3 in the Appendix).

The genes can be divided into four groups according to the DEG classification of Method I and Method II. 
The numbers 1–7 assigned to regions match the simulated cases in Fig. 3 and a real gene expression pattern of a 
representative gene shown in Fig. 4. In the following, the gene expression patterns corresponding to the colored 
regions in Fig. 6 are explained.

• Orange: not DEG for both methods. Genes closer to the diagonal than log2(1.5), such that the IE is below this 
threshold and the gene is not DEG for Method II. Further, genes with absolute main effect above log2(1.5) 
are DEG for week 3 and thus not DEG for Method I.

• Green: DEG only for Method I. Genes with absolute main effect and IE less than log2(1.5), but overall effect 
in week 6 greater than log2(1.5). These genes are not DEG in week 3 by being slightly below the threshold 
but are DEG in week 6 by being slightly above the threshold. Hence, they are DEG for Method I, but the IE 
is small and the gene is not DEG for Method II.

• Purple: DEG for Method I and II. Genes with an estimated main effect (for week 3) below the log2 FC bounda-
ries, but the sum of main and IE (diet effect for week 6) is outside these boundaries. Hence, these genes are 
DEG for Method I. For Method II, they are DEG since the IE is large enough (points far from the diagonal 
line).

• Blue: DEG only for Method II. Genes that are not DEG for Method I since they are either DEG in week 3 
(main effect outside ± log2(1.5)) or have a main effect inside ± log2(1.5) (as gene 7) but are not DEG in week 
6, since the corresponding effect (main plus IE) is also within ± log2(1.5)).

We further looked at differences concerning the biological conclusions of the found DEGs. First, a qualitative, 
small literature research on the top 10 (lowest adj. p-value) upregulated DEGs found only by Method I or only by 
Method II, respectively, suggests that both methods find genes that are reasonably associated with liver disease 
induced by a fatty diet (Table 4; Supplementary Table 1). On a broader scale, a GO EA was performed on the 
DEGs found by Method I, Method II, and the combination of both DEG sets (Table 3; Supplementary Table 2). 
Despite the smaller number of DEGs identified by Method II, the biological interpretation based on the processes 
identified by GO EA is very similar and plausibly covers immune activation related to fatty liver disease. This 
suggests that the DEGs found by Method II are more specific in the sense that they include fewer non-relevant 
genes while yielding similar GO EA results.

Discussion
Using an IE model with 2 factors (Method II) instead of two separate models with one factor each (Method I) 
clearly changes the set of DEGs found in a gene expression analysis. The set of DEGs found with Method II is 
usually smaller. A theoretical reason for this is that statistical inference that aims at detecting IEs is less powerful 
in the sense that the sample size must be four times larger to have the same power for detecting an IE than to 
detect a main  effect15,16, p. 100f.

Further, a gene that just passed the thresholds for being DEG for the reference group, but just not for the 
other group, is DEG for Method I but usually not for Method II, and it is not a good candidate for a biologically 
meaningful statement. The resulting DEGs for Method II are smaller in number, but lead to equally reasonable 
biological findings based on enrichment analyses. A limitation of Method II is that a single model with two main 
factors and an IE can be more difficult to interpret correctly than two models with one factor each and no IE. 
Quantifying if the smaller set of DEGs found by Method II contains less irrelevant genes is difficult for several 
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Figure 3.  Visualization of seven example scenarios with different main effects and IEs, leading to different 
decisions for Method I (left column) and Method II (right column). Dots represent data points (blue: SD, red: 
WD; left: 3 weeks, right: 6 weeks), arrows represent effects (black: reference mean, green: main effect of diet, 
purple: IE). Dotted arrows indicate non-relevance (absolute effect size below threshold), solid arrows represent 
relevant effects. Dotted arrows are only shown for the main effects of IEs. The label ’DEG’ below a scenario 
indicates if the respective method classifies a gene as DEG (green) or not DEG (red).
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Figure 4.  Example genes that are, according to DEG decision cases 1–7, not always classified in the same 
way by Method I (left) and II (right). Note that the original data are the same per gene (row), but due to the 
differences between Method I and II, background normalizations yield slightly different data for each gene. For 
normalization, DESeq estimates the library sizes as the median of the ratios of observed  counts9. See caption of 
Figure 3 for an explanation of the arrows.
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reasons. First, a literature search to determine if a gene is not reported within the context of liver disease is fruit-
less. Due to false positive results and extensive research in this area, almost any gene can be found as associated. 
Second, the data set at hand does not have a clean reference, because mice were already fed with HFD for three 
weeks in the reference group, instead of being fed for zero weeks. However, within the limits of this study, the 
conceptual reasoning and analyses of GO enrichment analyses suggest that gene sets identified by Method II are 
smaller but likely contain fewer irrelevant genes.

Conclusion
An IE might often be an adequate translation of a biological research question into a statistical concept. However, 
this relationship might remain unnoticed due to a lack of expertise or reluctance to deviate from routines. In 
this work, we offer an extensive explanation of IEs and why they might be scientifically relevant in the context 
of detecting differentially expressed genes (DEGs) in gene expression analysis.

We compare the IE-based approach (Method II) with a popular alternative approach (Method I) that avoids 
the calculation of IEs. While Method I detects more DEGs, many of them might not be scientifically relevant, 
whereas the smaller set of DEGs found with Method II can be interpreted as more specific by having fewer 
irrelevant genes. We encourage researchers to clarify for each project if an IE is the accurate mathematical 
representation of the formulated research question and to use this concept when appropriate. Further, if the 
research goal is to identify a smaller gene set containing less irrelevant genes (less false positives), we encourage 

Table 1.  Overview of DEGs for Method I, comparison of SD and WD.

Week 3 only Overlap Week 6 only

Up 104 81 1,622

Down 81 93 726

Table 2.  Comparison of DEGs identified with Method I and Method II. Note that 914 + 695 = 1609 does not 
equal 1622 in Table 1, because here we do not include genes that are downregulated in week 3, as otherwise 
they would not be DEG by Method I.

Method I only Overlap Method II only

Up-regulated 914 695 167

Down-regulated 540 177 186

9.0

9.5

10.0

10.5

11.0

0 5 10 15 20 25 30 35 40 45 50
weeks

lo
g2

(n
or

m
al

iz
ed

 c
ou

nt
)

count observed mean diet SD WD

Figure 5.  Expression pattern for the gene Sirt7, which is for the comparison week 3 vs. week 6 DEG for Method 
II (interaction), but not by Method I (separate), since the effect size is too low for week 6. See caption of Fig. 2 
for detailed explanation of the arrows.
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to use Method II. However, if the research goal is rather exploratory and more false positives are acceptable, we 
suggest to use Method I.

Data availability
The analyzed data sets are publicly available at the SRA database with reference number PRJNA 953810.

Code availability
The code is available on GitHub (https:// github. com/ jcduda/ gene_ expre ssion_ inter action).

Appendix
See Table 4.

Figure 6.  Characterization of regions of genes that are identified as DEG only by Method I or by Method II, 
or by both or none of the methods. The x-axis shows the estimated main effect (diet), i.e. the estimated log2 FC 
from a SD to WD in the reference week 3, and on the y-axis the sum of this main effect and the IE, i.e. the 
overall effect between the two diets in week 6 in the interaction model, is plotted.

Table 3.  Top 15 most significant GO groups found based on upregulated DEGs by Method I, Method II and 
combining the genes found by Method I and Method II. FDR-adjusted p-values are in parentheses.

Method I Method II Method I or II

1 Immune system process ( 2.44× 10
−29) Immune system process ( 3.33× 10

−28) Immune system process ( 2.27× 10
−29)

2 Immune response ( 2.44× 10
−29) Immune response ( 3.33× 10

−28) Immune response ( 2.27× 10
−29)

3 Defense response ( 2.44× 10
−29) Cell activation ( 3.33× 10

−28) Defense response ( 2.27× 10
−29)

4 Pos. reg. of immune system process ( 2.44× 10
−29) Response to external stimulus ( 5× 10

−28) Regulation of immune system process ( 2.27× 10
−29)

5 Regulation of immune system process ( 2.44× 10
−29) Defense response ( 6× 10

−28) Pos. reg. of immune system process ( 2.27× 10
−29)

6 Response to other organism ( 2.44× 10
−29) Response to stimulus ( 1.65× 10

−27) Response to external stimulus ( 2.27× 10
−29)

7 Response to external biotic stimulus ( 2.44× 10
−29) Leukocyte activation ( 2.57× 10

−27) Response to biotic stimulus ( 2.27× 10
−29)

8 Response to biotic stimulus ( 2.44× 10
−29) Regulation of immune system process ( 1.2× 10

−25) Response to other organism ( 2.27× 10
−29)

9 Response to external stimulus ( 2.44× 10
−29) Response to external biotic stimulus ( 2.27× 10

−25) Response to external biotic stimulus ( 2.27× 10
−29)

10 Defense response to other organism ( 2.44× 10
−29) Response to other organism ( 2.27× 10

−25) Defense response to other organism ( 2.27× 10
−29)

11 Innate immune response ( 2.44× 10
−29) Response to biotic stimulus ( 2.27× 10

−25) Biol. proc. involved in interspecies interaction btw organ-
isms ( 2.27× 10

−29)

12 Cell activation ( 2.44× 10
−29) Pos. reg. of immune system process ( 2.92× 10

−25) Cell activation ( 2.27× 10
−29)

13 Biol. proc. involved in interspecies interaction btw 
organisms ( 2.44× 10

−29)
Pos. regulation of multicellular organismal process 
( 4.31× 10

−25)
Pos. regulation of multicellular organismal process 
( 2.27× 10

−29)

14 Inflammatory response ( 2.44× 10
−29) Biol. proc. involved in interspecies interaction btw 

organisms ( 8.57× 10
−25) Inflammatory response ( 2.27× 10

−29)

15 Pos. reg. of response to external biotic stimulus 
( 2.44× 10

−29) Pos. reg. of response to stimulus ( 2.93× 10
−22) Innate immune response ( 2.27× 10

−29)

https://www.ncbi.nlm.nih.gov/sra/PRJNA953810
https://github.com/jcduda/gene_expression_interaction
https://github.com/jcduda/gene_expression_interaction
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