
A V I S I O N F O R E D G E A I : R O B U S T B I N A R I Z E D N E U R A L N E T W O R K S O N
E M E R G I N G R E S O U R C E - C O N S T R A I N E D H A R D WA R E

Dissertation

zur Erlangung des Grades eines

D O K T O R S D E R I N G E N I E U RW I S S E N S C H A F T E N

der Technischen Universität Dortmund
an der Fakultät Informatik

von

Mikail Yayla

Dortmund
2024

Tag der mündlichen Prüfung: 28.02.2024

Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter: Prof. Dr. Jian-Jia Chen

Prof. Dr.-Ing. Jürgen Teich

A B S T R A C T

The recent success of neural networks (NNs) has brought benefits to numerous
fields, while progressively pervading all aspects of our life. However, to achieve high
accuracy, NNs use a massive number of parameters. Therefore, two main bottlenecks
can be identified for realizing systems that execute NNs: The memory subsystem and
the processing units.

On the NN model side, Binarized NNs (BNNs), offer high efficiency in both memory
and computations at small accuracy cost compared to conventional integer or floating-
point NNs, while still retaining the universal approximation property. The binary
nature of the weights and inputs brings three major benefits: (1) Reduction of data
movements between memories and computing units, (2) replacing the multiplications
with bitwise XNOR and accumulations with popcount operations, and (3) high error
tolerance, i.e. robustness to perturbations in weights, inputs, and intermediate data.

On the hardware side, the principles of approximate computing are applied on
the memory and the processing units, where efficiency is traded for quality of the
operation’s result. In approximate memory, the supply voltage and access latency
parameters of the memory are configured, to achieve lower energy consumption
and faster access at the cost of reliability in form of bit errors. When NNs are
executed using approximate computing units, configurable approximate circuits can
be finely tuned to trade resource usage for computing errors, especially when analog
computing is employed, where signals are represented approximately. All in all,
BNNs synergize excellently with approximate memory and computing due to their
high robustness.

To acquire BNN models with high accuracy, they have to be trained with large
resource cost. The training of BNNs is by orders of magnitude more resource-intensive
than inference. An efficient approach is to train BNNs on dedicated low-power accel-
erators in an on-chip setting, such as FPGAs or ASICs. In addition to energy-efficiency
of on-chip training, privacy issues and data transfer overheads are eliminated, since
the data does not need to be transferred to the cloud for training. For these reasons,
resource-efficient models, such as BNNs, should not only be executed but also be
trained on the edge.

Vision of this Dissertation: This dissertation proposes a vision for highly resource-
efficient future intelligent systems that are comprised of robust BNNs operating
with approximate memory and approximate computing units, while being able to be
trained on the edge. The studies conducted within the scope of this dissertation are
summarized in the following.

iii

BNN Robustness Optimization: The classical approach for increasing the robust-
ness of NNs is injecting bit flips from the error model during training. However, the
drawbacks are that it degrades accuracy and adds high overhead. Achieving robust-
ness in NNs without bit flip injection would be of great benefit for the robustness
optimization of NNs. BNNs are composed of simple structures that enable exploration
of robustness metrics based on margins. We present formal proofs that quantify the
maximum number of bit flips that can be tolerated in neurons, which allows us
to propose the modified hinge loss (MHL). The MHL trains BNNs for robustness
without bit flip injections and enables them to tolerate higher bit error rates than
with bit flip training, thus lowering the requirements on approximate memories and
computing units.

FeFET-based Approximate Memory for BNNs: First, we explore Ferroelectric FET
(FeFET), a promising emerging memory, as on-chip memory for BNNs and show
that changes in memory temperature during runtime causes unacceptable accuracy
drop. We propose two countermeasures for temperature-tolerance across the entire
range of operating temperature: (1) Training BNNs for bit error tolerance by injecting
bit flips and (2) using a post-training bit error rate assignment algorithm. Secondly,
we investigate the use of FeFET-based XNOR gates for logic-in-memory (LiM). We
show that the latency of the XNOR gates, which constitutes a major bottleneck, can
be significantly reduced by exploiting the BNN robustness.

HW/SW Codesign for Efficient BNN Acceleration: First, we propose the Local
Thresholding Approximation (LTA), which significantly increases the efficiency of
the interface circuit in analog-based BNN crossbar accelerators. The LTA reduces
the area, energy, and latency of the BNN HW significantly compared to the state
of the art. Secondly, we optimize another analog computing scheme for BNNs, i.e.
Integrate-and-Fire (IF) Spiking Neural Networks (SNNs). To achieve high inference
accuracy in IF-SNNs, the analog HW needs to represent current-based MAC levels as
spike times, for which a large membrane capacitor is required. To alleviate this, we
propose a HW/SW Codesign method, called CapMin, for capacitor size minimization
in analog computing IF-SNNs. To increase the computation’s tolerance to process
variation, we propose CapMin-V, which trades capacitor size for protection.

Resource-Efficient Training of BNNs: BNN training suffers from high memory
usage, making the design of on-chip BNN training accelerators a challenge. The Binary
optimizer (Bop) is one of the most memory-efficient training procedures for BNNs but
still uses momentum values encoded as Floating Point (FP), leading to high memory
usage. We propose methods for memory-efficient training of BNNs on the edge. To
this end, we theoretically investigate the impact of arbitrary encodings on training
information loss. Based on this, we develop an algorithm to find memory-efficient FP
encodings, reducing memory usage of BNN training significantly compared to using
32-bit FP encoding.

iv

P U B L I C AT I O N S

The following conference and journal publications are included in parts or in extended
versions in this dissertation:

[Bus+21] Sebastian Buschjäger, Jian-Jia Chen, Kuan-Hsun Chen, Mario Günzel,
Christian Hakert, Katharina Morik, Rodion Novkin, Lukas Pfahler, and
Mikail Yayla. “Margin-Maximization in Binarized Neural Networks for
Optimizing Bit Error Tolerance.” In: Design, Automation and Test in Europe
Conference and Exhibition (DATE). 2021.

[Yay+22a] Mikail Yayla, Sebastian Buschjäger, Aniket Gupta, Jian-Jia Chen, Jörg
Henkel, Katharina Morik, Kuan-Hsun Chen, and Hussam Amrouch.
“FeFET-Based Binarized Neural Networks Under Temperature-Dependent
Bit Errors.” In: IEEE Transactions on Computers (2022).

[Yay+22b] Mikail Yayla, Simon Thomann, Sebastian Buschjäger, Katharina Morik,
Jian-Jia Chen, and Hussam Amrouch. “Reliable Binarized Neural Net-
works on Unreliable Beyond Von-Neumann Architecture.” In: IEEE Trans-
actions on Circuits and Systems I: Regular Papers (2022).

[YC22] Mikail Yayla and Jian-Jia Chen. “Memory-Efficient Training of Binarized
Neural Networks on the Edge.” In: Design Automation Conference (DAC).
2022.

[Yay+23c] Mikail Yayla, Fabio Frustaci, Fanny Spagnolo, Jian-Jia Chen, and Hussam
Amrouch. “Unlocking Efficiency in BNNs: Global by Local Thresholding
for Analog-based HW Accelerators.” In: IEEE Journal on Emerging and
Selected Topics in Circuits and Systems (2023).

[Yay+23b] Mikail Yayla, Simon Thomann, Ming-Liang Wei, Chia-Lin Yang, Jian-Jia
Chen, and Hussam Amrouch. “HW/SW Codesign for Robust and Effi-
cient Binarized SNNs by Capacitor Minimization.” In: arXiv:2309.02111
(2023).

v

In my research, I also contributed to the following conference and journal publica-
tions, which are outside of the scope of this dissertation and not included:

[Hak+19] Christian Hakert, Mikail Yayla, Kuan-Hsun Chen, Georg von der Brüggen,
Jian-Jia Chen, Sebastian Buschjäger, Katharina Morik, Paul R. Genssler,
Lars Bauer, Hussam Amrouch, et al. “Stack Usage Analysis for Efficient
Wear Leveling in Non-Volatile Main Memory Systems.” In: Workshop on
Machine Learning for CAD (MLCAD). 2019.

[Wei+21a] Ming-Liang Wei, Mikail Yayla, Shu-Yin Ho, Jian-Jia Chen, Chia-Lin Yang,
and Hussam Amrouch. “Binarized SNNs: Efficient and Error-Resilient
Spiking Neural Networks through Binarization.” In: International Confer-
ence On Computer Aided Design (ICCAD). 2021.

[Yay+22c] Mikail Yayla, Zahra Valipour Dehnoo, Mojtaba Masoudinejad, and Jian-
Jia Chen. “TREAM: A Tool for Evaluating Error Resilience of Tree-Based
Models Using Approximate Memory.” In: Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). 2022.

[Dav+23] Abhilasha Dave, Fabio Frustaci, Fanny Spagnolo, Mikail Yayla, Jian-Jia
Chen, and Hussam Amrouch. “HW/SW Codesign for Approximation-
Aware Binary Neural Networks.” In: IEEE Journal on Emerging and Selected
Topics in Circuits and Systems (2023).

[Sab+23] Muhammad Sabih, Mikail Yayla, Frank Hannig, Jürgen Teich, and Jian-Jia
Chen. “Robust and Tiny Binary Neural Networks using Gradient-based
Explainability Methods.” In: Workshop on Machine Learning and Systems
(EuroMLSys). 2023.

[Moh+23] Vahidreza Mohaghaddas, Hammam Kattan, Tim Buecher, Mikail Yayla,
Jian-Jia Chen, and Hussam Amrouch. “Temperature-Aware Memory
Mapping and Active Cooling of Neural Processing Units.” In: Interna-
tional Symposium on Low Power Electronics and Design (ISLPED). 2023.

[Yay+23a] Mikail Yayla, Cecilia Latotzke, Robert Huber, Somar Iskif, Tobias Gem-
meke, and Jian-Jia Chen. “DAEBI: A Tool for Data Flow and Architecture
Explorations of Binary Neural Network Accelerators.” In: Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS). 2023.

[Wei+23] Ming-Liang Wei, Mikail Yayla, Shu-Yin Ho, Jian-Jia Chen, Hussam Am-
rouch, and Chia-Lin Yang. “Impact of Non-volatile Memory Cells on
Spiking Neural Network Annealing Machine with In-situ Synapse Pro-
cessing.” In: IEEE Transactions on Circuits and Systems I: Regular Papers
(2023).

vi

A C K N O W L E D G M E N T S

First of all, I would like to express my gratitude to my advisor Prof. Dr. Jian-Jia Chen
for his invaluable support during my years, the countless opportunities he provided,
and the freedom and trust to explore my own ideas. I will always remember my time
as a Ph.D researcher and will draw on the lessons I learned under his supervision for
my entire life.

I would also like to thank Prof. Dr.-Ing. Hussam Amrouch. I very much appreciate
all the help and guidance he has given me and I wish him the best for his new path. I
also want to thank Ass.-Prof. Dr.-Ing. Kuan-Hsun Chen for motivating me to start a
career in research in the early days.

A thank you also to Prof. Dr.-Ing Jürgen Teich for taking the time to review this
dissertation, and Prof. Dr. Jens Teubner and Prof. Dr. Stefan Harmeling for agreeing
to serve on the doctoral committee.

To the members our DAES Group and our close collaborators who are now in TU
Munich, now Lamarr members, at Karlsruhe Institute of Technology, at the National
Taiwan University, at the University of Calabria, and at RWTH Aachen: I very much
enjoyed working with you, thank you for all the productive and fun times.

Last but not least, I want to thank my family. Especially my wife Wei, who was was
always willing to provide her support. And my son Elias for brightening up the days.

vii

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Context, Challenges, and Goals 5

1.3 Contributions of this Work 7

1.4 Author’s Contribution to this Dissertation 9

2 background 11

2.1 Neural Networks 11

2.1.1 Notations and Matrix Dimensions 11

2.1.2 Inference and Training of NNs 12

2.1.3 Efficient Neural Networks 14

2.2 Binarized Neural Networks 15

2.2.1 BNN Inference 16

2.2.2 Training BNNs 17

2.2.3 Stochastic Input Binarization in BNNs 18

2.2.4 How to Obtain BNNs 19

2.2.5 Error Tolerance of BNNs 21

2.3 Hardware Systems for BNNs 22

2.3.1 BNNs with Emerging Approximate Memory: Technologies and
Techniques 23

2.3.2 BNN Acceleration 24

3 experiment setup 31

3.1 Datasets 31

3.2 BNN Models 31

3.2.1 BNN Layer Types 32

3.2.2 Training BNNs 33

3.2.3 Experiment Platform 34

4 error tolerance optimization of binarized neural networks 35

4.1 Problem Definition 36

4.2 Bit Error Tolerance Metrics 36

4.2.1 Neuron-Level Bit Error Tolerance 36

4.2.2 Output-Layer Bit Error Tolerance 39

4.3 Margin-Maximization for Bit Error Tolerance Optimization 40

4.4 Experiments 41

4.4.1 Experiment Setup 41

4.4.2 Neuron level metric 42

4.4.3 MHL Only vs. FR 42

4.4.4 MHL Combined with FR 43

4.5 Conclusion 45

5 bnns with fefet 47

ix

x contents

5.1 FeFET 47

5.1.1 Overview of FeFET Technology 47

5.1.2 Our Calibrated 14nm FeFinFET Device and Measurements 49

5.2 FeFET-based BNNs and Under Temperature-dependent Bit Errors 49

5.2.1 Temperature-dependent Bit Error Model of FeFET 50

5.2.2 System Model 51

5.2.3 Problem Definition 53

5.2.4 BNN Execution with Less Buffer Writes 53

5.2.5 Methods for Achieving Bit Error Tolerance against FeFET Bit
Errors 54

5.2.6 Experiments for FeFET Temperature Bit Error Tolerance 55

5.3 FeFET-based LiM for BNNs 59

5.3.1 FeFET-based XNOR LiM Model 61

5.3.2 Variability and Error Modeling in FeFET-based XNOR-LiM 61

5.3.3 System Model and Design Objective 62

5.3.4 Trading-off Reliability and Speed: Error Tolerant BNNs under
XNOR Errors 64

5.3.5 Experiment Results 66

5.4 Conclusion 69

6 hw/sw codesign for efficient bnn inference 71

6.1 Global by Local Thresholding in BNNs for Efficient Crossbar Accelera-
tor Design 71

6.1.1 Problem Definition 72

6.1.2 LTA Execution 73

6.1.3 Training with LTA 75

6.1.4 Dataflow, Interface Circuit, Workload mapping 76

6.1.5 Experiments 81

6.2 CapMin 89

6.2.1 System Model of IF-SNNs 91

6.2.2 Problem Definition 94

6.2.3 Our Proposed Methods: CapMin and CapMin-V 94

6.2.4 Experiments 98

6.3 Conclusion 101

7 efficient training of bnns 103

7.1 Binary Optimizer (Bop) in BNN Training 104

7.2 Recap of Floating Point Encoding 105

7.3 Problem Definition 106

7.4 Impact of Floating Point Encoding in Bop 106

7.5 Memory-Efficient Encoding of Momentum 108

7.6 Experiments 110

7.6.1 Experiment Setup 110

7.6.2 Experiment Results 111

7.7 Discussion: Gradient Computations with Custom FP Formats 112

contents xi

7.7.1 Impact of Custom FP Formats on FPU Efficiency 113

7.7.2 Discussion: Using Custom FP Formats for Gradient Calcula-
tions 114

7.8 Conclusion 115

8 conclusion and outlook 117

8.1 Summary 117

8.2 Future Work 118

bibliography 121

1
I N T R O D U C T I O N

Neural networks (NNs) have profoundly changed our lives in various aspects and
continue to do so with countless emerging breakthroughs. They surpass traditional
algorithms and human performance in many challenges. Due to their exceptional ca-
pability, they have been applied successfully in various fields, such as object detection
and tracking, image and speech recognition, natural language processing, in control
tasks exemplified by autonomous driving or industrial automation, recommendation
systems, in medicine, and many more.

Nevertheless, NNs are highly resource demanding, which makes it a challenge
to deploy them efficiently. A goal worth pursuing is to execute NNs on the edge,
i.e. instead of using powerful servers, the computations are performed close to the
sensors or other forms of data sources, with reduced energy, area, and latency. This is
particularly useful in scenarios where private data needs to be processed efficiently,
such as in autonomous driving, object detection or tracking, speech recognition,
and authentication. To achieve this goal, a promising type of NNs are Binarized
Neural Networks (BNNs), in which the weights and inputs are binarized, leading to
outstanding efficiency in area and energy, enabling inference with low latency, while
also offering high robustness against errors.

Vision of this Dissertation: This dissertation proposes a vision for efficient future intel-
ligent systems that are comprised of robust BNNs operating with approximate memory and
approximate computing units, while being able to be trained on the edge.

The motivation for the vision is given in Sec. 1.1, the challenges and goals are
in Sec. 1.2, and the contributions of this dissertation are in Sec. 1.3.

1.1 motivation

resource demand of nns

To achieve high accuracy, modern and high-performing NN models use a massive
number of parameters and compute an immensely large amount of MAC operations
during their operation. Therefore, two main bottlenecks can be identified for realizing
system that execute NNs: The memory subsystem and the processing units. NNs
need to move data from the memory to the computation units, which necessitates
data movement across the entire memory hierarchy, in which traditionally large, slow
memory is used on the lower end (e.g. DRAM and SSD), and small, fast memory on
the higher end (e.g. caches and registers). The data movement uses a large portion
of the total system energy, for which methods regarding estimations are proposed

1

2 introduction

in [Yan+17]. The study reports that a major portion of the system energy is consumed
for data movements for weight, layer input, and layer output data, which makes
efficient NN execution a challenge. To alleviate this, several approaches to reduce the
data movement are presented in [Sze+17], exploiting the reuse of data to avoid the
data movements, emphasizing again the importance of the computation units. Once
the data has been moved close to or into the computation units, floating-point or high-
bit precision MAC operations need to be computed. Although MAC operations can
be processed efficiently in modern hardware in CPUs and GPUs, the required amount
of MAC operations in NNs still makes the efficient processing challenging. These
problems regarding data movement and processing, are expected to be exacerbated
in the future, as NNs are increasing in size to solve increasingly complex problems.

nns on the edge

Yet, many use cases require efficient and intelligent decisions, which necessitate
the inference to be performed on edge devices to reduce resources and to increase
privacy. However, edge devices provide only limited resources in energy, area, and
execution latency, posing a profound challenge for the design of efficient yet capable
intelligent systems on such devices. Several approaches have been proposed to enable
the efficient processing of NNs on the edge, e.g. regarding data flow in [Sze+17],
while pruning [Lia+21], compression [MGD20], and quantization [Gho+21; Kul+22]
also have shown promising results. Specifically, when using the extreme form of
quantization, i.e. binarization to {0, 1}, the operations of NNs also become extremely
efficient.

binarized neural networks

Binarized NNs (BNNs), introduced in 2016 [Hub+16; Ras+16; KS16], offer high
efficiency in both memory and computations at small accuracy cost compared to con-
ventional integer or floating-point based NNs. On top of that, BNNs are also universal
approximators, meaning they can (under some theoretical restrictions) learn any
task [Wan+18; DLS18; Spa+19]. Since their inception, BNNs have been applied in vari-
ous domains. Examples for applications are real-time image classification [C+22; PE23],
high speed object recognition and human activity recognition [Zha+23b; Luo+23],
autonomous vehicle control [WHA18], text classification [Shr+20], in wildfire de-
tection [CP23], and in agricultural settings [Hua21]. Furthermore, frameworks for
deploying BNNs on various types of hardware have been published, namely the
FINN a framework to deploy BNNs on FPGAs [Umu+17], BMXNet focuses on gen-
eral purpose CPUs and GPUs [Bet+18], whereas [Ban+21] (Larq framework) and
[Zha+19a] (DaBNN framework) focus on mobile platforms with ARM processors.

The binarization in BNNs leads to major benefits to the system compared to multi-
bit NNs. Due to the binarization, the amount of data that needs to be stored compared

1.1 motivation 3

0 5 10 15 20
10
20
30
40
50
60
70
80
90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

FASHION (CNN)
BNN

QNN2
QNN4
QNN8

Figure 1.1: Comparison of error tolerance between BNNs and QNNs. No method for improve-
ment is applied for BNNs or QNNs, that is why QNNs with 2 bit may be less
robust than with more precision (the study in [Stu+23] proposes methods which
makes lower-precision QNNs more error tolerant than higher-precision QNNs).
See Ch. 3 for the experiment settings.

to floating-point NNs is approximately 32× less. This also leads to reduced data
movements between the memory subsystem and the computing units. In addition,
binary multiplications can be performed by bitwise XNOR between the weights and
the inputs, while accumulations can be performed with popcount operations. This
leads to 7× improvement in latency [Hub+16] compared to floating-point NNs.

error tolerance of bnns

BNNs have exceptionally high intrinsic error tolerance [Hir+19b], i.e. they are naturally
error tolerant when classical training methods are employed. In Fig. 1.1, we show the
drastic difference regarding error tolerance between binarized and multi-bit quantized
NNs (QNN), where no countermeasures (e.g. robustness training) are applied.

In fact, the classical approach to achieve robustness in NNs and BNNs is the
robustness training, i.e. the approach to inject bit flips during training. However, this
has significant disadvantages. First, injecting bit flips during training can significantly
degrade accuracy. The higher the bit error rate (BER) during training, the more
significant the accuracy degradation. Another disadvantage is the additional overhead.
For every bit of the error-prone data, a decision has to be made whether to inject a bit
flip, which adds numerous additional steps in the NN training.

Achieving bit error tolerance in NNs without bit flip injection and conquering
the above disadvantages, would be a breakthrough for the area of error tolerance.
However, the principles of bit error tolerance in NNs need to be well understood first.
To the best of our knowledge, before this dissertation work, the theoretical foundations
of NN bit error tolerance have not been reported. Since BNNs have simpler structures,
it allows for easier exploration of bit tolerance properties. When the properties of
error tolerance are known and understood, they can better be exploited for the design
of efficient systems that run BNNs by using approximations in their stored data and

4 introduction

computations. In summary, BNNs have outstanding error tolerance, which needs to be
understood better for more effective optimization.

exploiting the error tolerance of bnns : memory and computation

To reduce the resource cost in traditional NNs, the principles of approximate comput-
ing are applied on the memory and the processing units, where efficiency is traded
for the quality of the operations’ result [Mit16], exploiting the error tolerance of
NNs [TG17].

In approximate memory, the supply voltage and access latency parameters of the
memory are configured, to achieve lower energy consumption and faster access at
the cost of reliability in form of bit errors [Kop+19]. This is especially favorable in
combination with emerging non-volatile memory (NVM) [Bou+17], which use almost
no energy when remained unused and use little energy when used. Furthermore,
when operations are performed near memory or in-memory, such as in logic-in-
memory, less data needs to be loaded into processing units.

When NNs are executed using approximate computing units, configurable ap-
proximate circuits, i.e. MAC units, can be finely tuned to trade resource usage
for computing errors, or computations can be skipped for efficiency [Arm+22]. Es-
pecially analog-computing based hardware (which has been shown to be highly
efficient [Chi+16; Sha+16a]) has an excellent synergy with BNNs, since (1) the signal
levels and computations in the analog domain are inherently approximate, (2) the
number of signal levels in BNNs that need to be represented in the analog domain
is lower compared to higher-precision cases, and (3) high efficiency is achieved due
to computations based on Kirchhoff’s and Ohm’s laws instead of employing costly
digital logic.

The capability of BNNs to be optimized for error tolerance and the opportunity
to exploit during system design has not received much attention in the literature
before the work of this dissertation. BNNs with the high degree of error tolerance
combined with approximate memory or computing approaches would enable the
design of highly efficient intelligent systems, leading to breakthroughs in efficient
edge intelligence. In summary, BNNs synergize excellently with approximate memory and
computing due to their high robustness.

efficient training of bnns

Acquiring BNN models that have high accuracy is also highly challenging. One
method is to to use established NN architectures and simulate the binarization of
their operations during the training [Hub+16], while another method is to employ
neural architecture search (NAS) [Gou+21] where search algorithms are used to
find suitable binarized NN structures. In any case, similar to traditional NNs, the
training of BNNs is by orders of magnitude more resource-intensive than inference,

1.2 context, challenges , and goals 5

as expensive and energy-hungry computation resources, such as modern GPUs with
large memories are required, raising serious concerns regarding sustainability due to
the carbon footprint of the training procedure [SGM20]. An efficient approach is to
train BNNs on dedicated low-power accelerators in an on-chip setting, such as FPGAs
or ASICs. In addition to energy-efficiency of on-chip training, privacy issues and data
transfer overheads are eliminated, since the data does not need to be transferred to
the cloud for training. For these reasons, BNNs should not only be executed but also be
trained on the edge.

1.2 context, challenges , and goals

To realize the vision of this dissertation, we first identify its challenges. Then, we
define goals that aim to overcome the challenges. The vision consists of three parts,
which are: (1) Obtaining error tolerant BNNs, (2) BNNs using approximate memory
and computation units, (3) training BNNs on the edge. Each part has its unique
challenges and goals, which we discuss in the following.

Obtaining Error Tolerant BNNs without Reliance on Error Models

As explained in Sec. 1.1, before the work of this dissertation, the only method to
optimize NNs for error tolerance was applying the error model during the training.
However, the two disadvantages of this method are the accuracy degradation and the
additional overhead of the error model application.

To overcome the two disadvantages, NN error tolerance should be achievable
without applying the error model during training. Specifically, NNs that have general
error tolerance should be obtainable effectively, without accuracy degradation and
without additional overheads. However, this is highly challenging, because of the
“black box” nature of the error tolerance in NNs; it is a property that is not well
understood. Therefore, formal and understandable techniques that uncover the under-
lying principles of error tolerance on NNs need to be examined. This way, methods
can be found for the optimization of error tolerance without the aforementioned
disadvantages.

In this dissertation, we first plan to achieve error tolerance in NNs without applying
the error model during training. In other words, our first goal is to obtain NNs that have
general error tolerance, without depending on any error model.

In Ch. 4, we study the underlying principles of error tolerance in BNNs, which
have a simpler structure, enabling the effective exploration of formal error tolerance
metrics. In particular, we propose neuron and output layer metrics which describe the
error tolerance of BNNs in a closed form. Then we optimize the BNNs based on these
metrics and achieve higher error tolerance compared to classical methods. With BNNs
that have increased error tolerance, the requirements of approximate memory and
computing can be lowered, i.e. the result quality can be further reduced for achieving

6 introduction

higher system efficiency. Next, we discuss how the achieved error tolerance can be
exploited in systems consisting of approximate memory and computing units.

Error Tolerant BNNs Using Approximate Memory and Computation Units

Despite the synergy, designing systems that use approximate memory and computing
units in combination with error tolerant BNNs have not received much attention in
the literature before the work of this dissertation. The reasons are that hardware-level
experts usually do not have in-depth knowledge of NNs or BNNs, and the knowledge
regarding the outstanding error tolerance of BNNs may be difficult to acquire, while
software-level experts are usually not familiar with the details of the hardware and
use simple assumptions to focus on their field. To overcome this challenge, both
hardware and software expertise regarding BNNs is required in order to enable
efficient HW/SW Codesign, where the SW and HW components of the BNN system
are considered together in the design phase to find efficient synergistic solutions.

Considering together the BNN SW, i.e. increased error tolerance of BNNs using
methods from Ch. 4, and the BNN HW, i.e approximate memory and computing
units, it enables us to develop novel techniques that aggressively exploit the error
tolerance for system efficiency. In these techniques, there are knobs on the software
level (e.g. accuracy and error tolerance of BNNs) and on the hardware level (e.g. the
energy, area, and latency of memory or computing units), which need to be identified
and formalized such that the tradeoff regarding approximations and result quality
can be explored effectively. After identifying the knobs, it needs to be known how
to tune them in order to achieve as much efficiency as possible, while keeping the
accuracy of BNNs high.

In this dissertation, our second goal is to consider the BNN SW and HW together
to identify and tune the knobs of BNN systems jointly on the SW and HW level.
Specifically, our second goal is to exploit the error tolerance of BNNs for the design of efficient
systems that employ approximate memory and computing units.

We first identify the knobs and then propose methods for how to tune them in Ch. 5

for BNNs using approximate memory and in Ch. 6 for BNNs using approximate
computing units. In Ch. 5 we focus on the emerging and highly promising FeFET
memory and its tradeoffs when operating it as an approximate memory. In Ch. 6

we explore the design of approximate computing units that operate based on the
principles of the analog instead of the classical digital domain.

Training BNNs on the Edge

In Sec. 1.1 we explained that BNN training is orders of magnitudes more resource
intensive than BNN inference. The reason is that in the backward pass, prediction
errors have to be backpropagated for gradients of parameters, which requires the
computation of floating-point MAC operations for classical NNs and also BNNs.

1.3 contributions of this work 7

Furthermore, in the training, certain kinds of training data needs to be intermediary
stored, such as activations for constructing the backward pass graph and optimizer
data to acquire updates to parameters that approach the optimum reasonably well.

Despite these challenges, the advantages of training on the edge, which are mainly
efficiency and privacy, drive us to bring closer the vision of edge training for BNNs.
However, directly aiming towards full on-chip training is very ambitious. A good way
to optimize any system is to focus on the most resource-consuming bottleneck first.
In NN and also BNN training, this is the memory.

In this dissertation, our third goal is to bring closer the vision of training BNNs
on the edge. Specifically, our third goal is to improve the memory-efficiency of the BNN
training.

In Ch. 7, we aim to increase the memory efficiency of the BNN training by propos-
ing a method to acquire custom memory-efficient floating-point encodings for the
optimizer data. We show that the optimizer data needs by far the largest amount
of memory out of the data that needs to be stored during the BNN training. We
then define memory-efficient FP encodings built upon on a proof-based metric that
measures the number of dropped gradient updates due to the encoding employed.

1.3 contributions of this work

This dissertation explores a vision for highly resource-efficient future intelligent
systems, which run robust BNNs with approximate memory and approximate com-
puting units, while being able to be trained on the edge. The list of contributions
below describes the studies conducted to explore this vision.

• In Ch. 4 we present how to train BNNs for error tolerance without an error
model by exploring the underlying principles of error tolerance. We first perform
a theoretical exploration of BNNs error tolerance on the hidden-layer neuron
level and then on the output-layer-level. We provide formal proofs to quantify
the maximum number of bit flips that can be tolerated. With the proposed
margin-based metrics and the well-known hinge loss for maximum margin
classification in support vector machines (SVMs), we then construct a modified
hinge loss (MHL) to train BNNs for robustness without any bit flip injections.
Our results indicate that the MHL enables BNNs to tolerate higher bit error
rates than with bit flip training. To the best of our knowledge, this is the
first work that explores the underlying principles of BNN error tolerance in a
theoretical manner and connects the error tolerance optimization of BNNs with
margin-maximization.

• In Ch. 5, two studies are discussed, in which we focus on using FeFET memory
as the approximate memory for the system executing the BNNs. In the first study
(Sec. 5.2), we consider BNNs as on-chip memory and reveal the temperature-
dependent bit error model of FeFET memories. We show that BNN accuracy
drops to unacceptable levels under the errors. We explore two countermeasures:

8 introduction

(a) Training BNNs for bit error tolerance by injecting bit flips, and (b) applying
a bit error rate assignment algorithm (BERA) which operates in a layer-wise
manner and does not inject bit flips during training. In our experiments, the
BNNs effectively tolerate temperature-dependent bit errors for the entire range
of operating temperature for both methods. In the second study (Sec. 5.3),
we consider FeFET-based XNOR gates as Logic-in-Memory (LiM) for BNNs,
in which the FeFET-based XNOR LiM gates are the latency bottleneck. We
investigate the probability of error in FeFET-based XNOR LiM, demonstrating
the tradeoff between speed and reliability. Using our reliability model, we
show how BNNs can be proactively trained in the presence of XNOR-induced
errors towards obtaining robust BNNs at design time. Furthermore, we provide
a runtime adaptation technique, that selectively trades off errors and XNOR
speed for every BNN layer. Our results demonstrate that exploiting the tradeoff,
significantly higher LiM latency can be achieved compared to the baseline. To
the best of our knowledge, these two studies are the first to explore the tradeoff
between FeFET reliability and BNN error tolerance.

• In Ch. 6, also two studies are discussed, which both exploit the error tolerance
of BNNs for efficient analog-computing based hardware accelerating the BNNs’
workloads. In the first study (Sec. 6.1), we reduce the resource demand of the in-
terface circuit that performs the analog-to-digital conversion. Analog-computing
BNNs hardware demands a large amount of analog-to-digital converters (ADCs)
and registers, resulting in expensive designs. To increase the inference efficiency,
the classical approach is to divide the interface circuit into an Analog Path (AP),
utilizing cheap analog comparators, and a Digital Path (DP), utilizing expen-
sive ADCs and registers. During BNN execution, a certain path is selectively
triggered. Ideally, as inference via AP is more efficient, it should be triggered
as often as possible. However, unless the number of weights is very small, the
AP is rarely triggered. To overcome this, we propose a novel BNN inference
scheme, called Local Thresholding Approximation (LTA). It approximates the
global thresholdings in BNNs by local ones. This enables the use of the AP
through most of the execution, which significantly increases the interface circuit
efficiency. In the second study (Sec. 6.2), we optimize another analog computing
scheme for BNNs, i.e. Integrate-and-Fire (IF) Spiking Neural Networks (SNNs).
To achieve high inference accuracy in IF-SNNs, the analog hardware needs to
represent current-based MAC levels as spike times, for which a large membrane
capacitor is required. This results in high energy use, considerable area cost,
and long latency, constituting one of the major bottlenecks in analog IF-SNN
implementations. To alleviate this, we propose a HW/SW Codesign method,
called CapMin. CapMin minimizes the capacitor size by reducing the number
of spike times needed for accurate operation of the HW, based on the absolute
frequency of MAC level occurrences in the SW. To increase the computation’s
tolerance to process variation, we propose CapMin-V, which trades capacitor

1.4 author’s contribution to this dissertation 9

size for protection based on the reduced capacitor size found in CapMin. Cap-
Min achieves significant reduction in capacitor size over the state of the art,
while CapMin-V achieves increased variation tolerance, requiring only a small
increase in capacitor size. To the best of our knowledge, these two studies
are the first to exploit the error tolerance of BNNs for the design of efficient
analog-computing hardware.

• In Ch. 7, we propose methods to enable the memory-efficient training of BNNs
on the edge. We first investigate the impact of arbitrary floating-point (FP)
encodings. When the FP format is not properly chosen, we prove that updates
of the momentum values can be lost and the quality of training is therefore
dropped. With this insight, we formulate a metric to determine the number of
unchanged momentum values in a training iteration due to the FP encoding.
Based on the metric, we develop an algorithm to find FP encodings that are
more memory-efficient than the standard FP encodings. In our experiments, the
memory usage in BNN training is significantly decreased with minimal cost in
accuracy. To the best of our knowledge, this is the first study that increases BNN
training efficiency by finding custom FP formats for the momentum values.

1.4 author’s contribution to this dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der Tech-
nischen Universität Dortmund vom 29. August 2011”, the dissertation must include
statements about the author’s contributions that resulted from cooperations with
others. Below the contributions and statements are listed.

• The contents of Ch. 4 have been published in [Bus+20] and [Bus+21], which
were written together with Sebastian Buschjäger, Jian-Jia Chen, Kuan-Hsun
Chen, Mario Günzel, Christian Hakert, Katharina Morik, Rodion Novkin, and
Lukas Pfahler. The work in [Bus+20] is the preliminary work for [Bus+21].
The conceptual idea for these papers originated from a project meeting in the
SFB876-A1 project. The main authors of these papers are Sebastian Buschjäger,
Lukas Pfahler, and me. I performed the experiments and conducted a theo-
retical investigation of the bit error tolerance of BNNs with the help of Mario
Günzel, Sebastian Buschjäger developed the machine learning framework, and
Lukas Pfahler had the idea on margin-maximization. The remaining authors
contributed through discussions and gave feedback during writing.

• The contents of Sec. 5.2 and the introductory part in Sec. 5.1 have been pub-
lished in [Yay+22a]. It was written together with Sebastian Buschjäger, Aniket
Gupta, Jian-Jia Chen, Jörg Henkel, Katharina Morik, Kuan-Hsun Chen, and
Hussam Amrouch. The idea for this paper originated from discussions with
Hussam Amrouch and Kuan-Hsun Chen. The device-level materials regarding
modeling and simulation of FeFET have been produced by Aniket Gupta and

10 introduction

Hussam Amrouch, therefore the figures related to the FeFET materials and the
corresponding text segments are based on their materials. Sebastian Buschjäger
developed the machine learning framework and its initial implementation. I
enhanced and adapted it for the novel methods in the paper and performed
the experiments for evaluation. The remaining authors contributed through
discussions and gave feedback during writing.

• The contents of Sec. 5.3 have been published in [Yay+22b]. It was written together
with Simon Thomann, Sebastian Buschjäger, Katharina Morik, Jian-Jia Chen,
and Hussam Amrouch. The idea for this paper originated from discussions
with Hussam Amrouch. The device-level materials regarding modelling and
simulation of the FeFET-based XNOR gates have been produced by Simon
Thomann and Hussam Amrouch, therefore the figures related to the FeFET-
based XNOR gates materials and the corresponding text segments are based on
their materials. Sebastian Buschjäger developed the machine learning framework
and its initial implementation. I enhanced and adapted it for the novel methods
in the paper and performed the experiments for evaluation. The remaining
authors contributed through discussions and gave feedback during writing.

• The contents of Sec. 6.1 have been published in [Yay+23c]. It was written together
with Fabio Frustaci, Fanny Spagnolo, Jian-Jia Chen, and Hussam Amrouch.
The idea for this paper originated from discussions with Hussam Amrouch.
The area, energy, and latency estimations of the digital components (using
FDSOI technology) as well as the selection of analog components for reference
were contributed by Fabio Frustaci and Fanny Spagnolo. The methods were
conceptualized together with Hussam Amrouch and Fabio Frustaci. I performed
the experiments to evaluate the methods. The remaining authors contributed
through discussions and gave feedback during writing.

• The contents of Sec. 6.2 have been published in [Yay+23b]. It was written
together with Simon Thomann, Ming-Liang Wei, Chia-Lin Yang, Jian-Jia Chen,
and Hussam Amrouch. The idea for this paper originated from discussions
with Simon Thomann and Ming-Liang Wei. The device-level data regarding
the XNOR-array was contributed by Simon Thomann and Hussam Amrouch,
whereas the initial SPICE model was created by me with the help of Ming-Liang
Wei and Simon Thomann. I performed the experiments to evaluate the methods.
The remaining authors contributed through discussions and gave feedback
during writing.

• The contents of Ch. 7 have been publised in [YC22], which were written together
with Jian-Jia Chen. The conceptual idea for the paper originated from discus-
sions with Jian-Jia Chen. I conducted theoretical analyses and performed the
experiments, whereas Jian-Jia Chen contributed through discussions and gave
feedback during writing. For materials that are not in [YC22]: The evaluations
for the data in Fig. 7.4 were contributed by my student Robert Huber, who was
working as one of my student research assistants.

2
B A C K G R O U N D

In this chapter, we cover the background and related work of this thesis. In Sec. 2.1,
we introduce the neural networks (NNs), their inference, training, and most impactful
ideas for efficiency. In Sec. 2.2, we introduce BNNs and give an overview of state-
of-the art methods and tools of how to construct them and deploy them efficiently.
In Sec. 2.3, we introduce the different types of hardware to deploy BNNs.

2.1 neural networks

Neural Networks (NNs) are universal approximators, meaning they can approximate
any continuous function [Cyb89; KB20] with some theoretical limitations (which are
rarely relevant in most real-life problems). Since the last decade, NNs have been
applied in multiple fields and in various applications. In essence, NNs are composed
of one or multiple layers, where each layer consists of a certain number of neurons.
Typically, the topologies of modern NNs is deep, with many layers and a manageable
number of neurons per layer, which makes the inference and training more efficient
compared to shallow and wide NNs. In this dissertation, we focus on feedforward
NNs, where there only exist forward connections and no backward connections.

This section is structured as follows. In Sec. 2.1.1, we introduce the notation for
describing the operations of NNs. In Sec. 2.1.2, we introduce the basics of inference
and training in NNs. In Sec. 2.1.3, we discuss the challenge of efficiency in NNs.

2.1.1 Notations and Matrix Dimensions

We introduce the following conventions for notation of NNs. We assume for a
convolution layer of an NN a weight matrix W with dimensions (α × β), where
α is the number neurons and β the number of weights of a neuron. The activation
matrix A has dimensions (γ× δ), where β = γ (i.e., matrix multiplication between W
and A can be performed) and δ is the number of convolution windows, i.e., unfolded
kernels in the input. Every convolution (1D, 2D, etc.) of a conventional NN can be
mapped to this matrix notation.

In general, each convolution layer in an NN (fully connected, 2D convolution, other
convolution types) computes its outputs by performing the matrix multiplication
W×A, resulting in an output matrix with dimensions α× δ. A matrix multiplication is
performed by scalar products of different combinations of rows from W and columns
from A. These scalar products are the MAC operations.

11

12 background

x1

x2

xd

o11

a`j = σ`
j(

n`−1∑
k=1

w`
j,ka

`−1
k + b`j)

o12

o1n1

o21

o22

o2n2

δ2j =
∑

k δ
3
kw

3
k,jσ

′(s2j)

w3
1,1 = w3

1,1 − λa21δ21

o31

o32

o3n3

δ3 = (δ31 , . . . , δ
3
n3
)>

δ3j = ∂L
∂s3j

= ∂L
∂a3

j
σ′(s3j)

...
...

...
...

a0j , w
1
j,k

a01w
1
1,1

ad1w
1
1,n3

a21w
1
1,2

a1j , w
2
j,k

δ32w
3
2,1σ

′(s22)

a2j , w
3
j,k

δ31w
3
1,1σ

′(s21)

δ33w
3
n3,1σ

′(s2n3
)

input layer
(` = 0)

hidden
layer
(` = 1)

hidden
layer
(` = 2)

output layer
(` = 3)

a31

a32

a33

Figure 2.1: Illustration of the forward (blue) and backward (red) passes in NNs.

When convenient, we add layer indices or introduce more notation in the following
parts to refer to elements in the NN in a more fine-grained way, e.g. to address the
computations of single neurons and activations.

2.1.2 Inference and Training of NNs

In the following we use layer indices and address neurons individually in order to
describe the principles of the forward propagation, also referred to as inference, and
the backward propagation, also referred to as backpropagation. The materials in this
section are based partially on the work in [GBC16] and [Nie15]. Specifically for the
concise notations, we adopt the ideas proposed by Nielsen [Nie15].

2.1.2.1 Inference

NNs mainly consist of parameters and connections, which allow information to flow
forward in the inference. The forward computations are illustrated in blue in Fig. 2.1
and in the following we provide a description. w`

j,k is the weight that connects the
k-th neuron in layer `− 1 to the j-th neuron in layer `. Usually, each neuron also has
a bias term b`j . The term a`−1

j is the activation of a neuron j in layer `− 1.

s`j =
n`−1

∑
k=1

w`
j,ka`−1

k + b`j (2.1)

describes the inner product computations of a neuron j, which has n`−1 weights.
a`j = θ(s`j) describes the activation of neuron j, where θ is the activation function.

We also introduce matrix notations for a layer ` for simpler notations. W` is a
matrix with a row for each neuron in the layer and as many columns as weights in a
neuron. B` has the biases, there are as many biases as neurons in layer `. A`−1 has the
activations of layer `− 1. S` is a matrix resulting from the matrix product between W`

2.1 neural networks 13

and A`−1, with B` added after the multiplication. After the element-wise activation
has been performed on S`, the activation matrix A` is acquired. The operation of layer
can then be summarized with A` = θ(S`) = θ(W`A`−1 + B`), whereas θ operates in
an element-wise manner on all matrix entries.

2.1.2.2 Training

The objective of the training is to reduce as much as possible the loss L, which is used
to quantify the difference between the predictions of the NNs and the ground truth
of the given training data. We denote the training data as D = {(x1, y1), . . . , (xI , yI)}
with the inputs xi and the ground truth labels yi. With fW(x) as the NN output, the
goal is to solve

arg min
W

1
I ∑
(x,y)∈D

L(fW(x), y) (2.2)

With the loss, the performance of the model can be evaluated. When the loss decreases
with a higher number of training iterations, then the training is considered to be
progressing successfully. Since NNs are computation graphs with differentiable com-
ponents, the parameters in NNs can be optimized by computing partial derivatives.
With partial derivatives of the loss with respect to the parameters, the NN model
parameters can be moved towards the opposite direction of the gradient, i.e. the
direction of the steepest descent, which leads to the minimization of the loss.

To train NNs, i.e., to update the weights based on the loss L, the partial derivatives
of the loss with respect to the corresponding weights need to be computed, i.e.

∂L
∂w`

j,k
. (2.3)

The backward computations are illustrated in red in Fig. 2.1 and in the following we
provide explanations.

To calculate Eq. (2.3), several computation steps with the chain rule need to be
performed first. For convenience, we define the term δ`j = ∂L

∂s`j
. To compute δ`j , the

derivative needs to be computed by the chain rule. For starting the backward prop-

agation, the last layer ` = L has to be considered. There, δL
j = ∂L

∂aL
j

∂aL
j

∂sL
j
= ∂L

∂aL
j
θ′(sL

j),

the entries of which can be denoted in a vector δL for the error terms in layer L.
The term ∂L

∂aL
j

can be obtained analytically when the loss function is known. The

other error terms for the remaining L− 1 layers need to be computed as well. Note
that a neuron with product s`j influences all neurons in layer ` + 1. Therefore, to
calculate the error, the sum of the partial derivatives of each neuron influenced by s`j

needs to be computed, which are all the neurons s`+1
k . This is δ`j = ∑k

∂L
∂s`+1

k

∂s`+1
k

∂s`j
. Since

δ`+1
j = ∂L

∂s`+1
j

(per definition) and ∂s`+1
k

∂s`j
=

∂s`+1
k

∂a`j

∂a`j
∂s`j

= w`+1
k,j θ′(s`j) (the index k is fixed, j

14 background

is the neuron index, therefore the w`+1
k,j is the derivative), it can also be written as

δ`j = ∑k w`+1
k,j δ`+1

k θ′(s`j). Note that w`+1
k,j δl+1

k is the matrix operation (W `+1)>δ`+1. The

weight gradients are then obtained by ∂L
∂w`

j,k
= a`−1δ`j . The gradients for the bias values

bj are obtained similarly using the term ∂L
∂b`j

= δ`j , since deriving with respect to the

bias results in a “1” for the bias, and zero for every other term, therefore only the
partial derivatives in δ`j that lead to b`j are needed.

In Alg. 1, we present the typical learning procedure for NNs. We omit indices
for simplicity of presentation. The inputs to the algorithm are specified on the top.
In Line 1, the weights and momentum values (e.g. exponential moving averages
of the weights, explained in the description of Line 5 below) are initialized, for
which different techniques exist, such as random initialization or more sophisticated
approaches [Bou+22]. One training iteration over the entire training data is referred
to as an epoch. The number of specified epochs is processed in Line 2. As explained
above, the general idea of the training is to move the NN model parameters towards
the opposite direction of the gradient to minimize the loss. In practice, instead of
performing this for the entire training data in one step, stochastic gradient descent
(SGD) is employed to save memory and computation resources. In SGD, the gradient
is approximated by using a subset, i.e. batch of the training data. Therefore, data is
sampled from the training set in form of random batches of a certain size. In each
epoch, the NN approximately learns with as many training samples as there are in
the training set. Based on each batch, a gradient is computed in Line 4. Subsequently,
the gradients are processed using a method R and then the weights are updated. The
parameter γ is typically reduced by a certain factor after each epoch, it is also referred
to as the learning rate.

Training with an R that is the identity function may lead to unstable or no conver-
gence in the training. Therefore, different types of optimizers to process the gradients
exist. One example is the Adam optimizer [KB14], which uses, among other tech-
niques, exponential moving averages of the gradient updates over the training steps.
It is currently the standard optimizer in a wide range of applications.

2.1.3 Efficient Neural Networks

In [Sze+17], an overview of methods for the efficient processing of NNs is given.
Additional possibilities are pruning [Lia+21], compression [MGD20], and quantiza-
tion [Gho+21; Kul+22]. Specifically, one of the most common, intuitive, and easily
applicable methods for achieving efficiency is quantization. In quantization, certain
elements in a set (may be infinite) are represented by a smaller set (finite) of elements.
This concept underpins any kind of data processing, most notably when signals from
the real world (typically analog) need to be processed by a computer, where the data
needs to be quantized to enable useful processing with the signals and to increase
efficiency in storage and computation. Quantization always incurs some information

2.2 binarized neural networks 15

Algorithm 1: Training Algorithm for NNs
Input: NN model fW , weights W, loss L, training data (Xtrain, ytrain), adaptivity

rate γ, batch size Bs, epochs E, batches B
1 Initialize W
2 for each epoch e = 0, . . . , E do
3 for each batch b = 0, . . . , B do

// Compute gradients

4 G← 1
Bs

∂L
∂W ∑(x,y)∈batch L(fW(x), y)

// Update weights

5 W← W + γR(G)

loss, but the information that is “quantized away” may not be important or could
even be neglected [OS89].

In NNs, the information loss due to quantization does not lead to high accuracy
drops. In many cases, the quantization has no noticeable impact on the accuracy at all.
The quantization of NNs has been proposed in many works, e.g. [CBD15a; Sze+17;
Jac+] and has since then been used in many other following works, studies, and in
practice, in both inference [Gho+21] and training [CBD15b; Ban+18; Kal+19; Sun+20;
Wan+21]. The quantization has many benefits for the efficiency of the NN system.
The memory needed to store the values is reduced when, for example instead of
32 bit, 8 bit can be stored instead. Due to the reduced number of bits, the costs of
data transfers are (e.g. reads and writes to memory, moving data across the memory
hierarchy) reduced as well. Furthermore, the computations are simplified. Instead
of floating point or high-bit integer logic, simpler logic can be employed for higher
efficiency.

2.2 binarized neural networks

In BNNs, which were introduced in 2016 in [Hub+16; Ras+16; KS16], the most extreme
form of quantization is employed: Binarization. The weights and activations in BNNs
are binarized, which enables inference with small area usage, low latency, and low
energy, enabling the inference on highly resource-constrained edge devices.

Since their inception, the use of BNNs has been explored for various applications
where real-time, low-latency response and resource efficiency is critical. They have
been applied in real-time image classification [C+22], for recognizing objects that
are moving at a high speed [Zha+23b], to control autonomous vehicles [WHA18],
and efficient traffic sign recognition [PE23]. Other application that require real-time
inference and have been explored with BNNs are text classification [Shr+20] and
human activity recognition [Luo+23]. Furthermore, they have been used in the wild
for wildfire detection [CP23] and agricultural settings [Hua21], where resources are
scarce and efficient processing is necessary.

16 background

Similar to traditional NNs, BNNs are also universal approximators. The findings for
traditional NNs [Cyb89] have been extended to quantized and binarized convolutional
NNs as well [Wan+18; DLS18; Spa+19]. Furthermore, the work in [Yay+21] has closed
the gap to fully connected BNNs and shows that two-hidden layer fully connected
BNNs possess the universal approximation capability. These studies prove that BNNs
possess universal approximation property and therefore can learn any task (under
some theoretical restrictions on the task which usually are not relevant in practice).

Tools and frameworks have also already been built to enable efficient BNN infer-
ence on various hardware platforms. In [Umu+17] the framework FINN has been
proposed. Its purpose is to map the computations of BNNs to the resources of FPGAs.
It promises easy usage and efficient acceleration for BNN inference. In [Bet+18], the
BMXNet framework is proposed, which is built on top of the well-known MXNet
library [Che+15]. The framework enables the creation of BNNs and provides function-
ality to produce C/C++-code for BNNs to deploy them efficiently on edge devices.
In [Ban+21], the Larq compute engine (LCE) is proposed. It is a framework which
enables training, benchmarking, and deploying BNNs in a joint manner. Its main
focus are mobile devices with 64-bit ARM processors, which are included in the
Raspberri Pi and various Android phones. The work in [Zha+19a] also focuses in
ARM devices and promises high efficiency by employing for example bit-packing
and memory layout optimization.

Note that there is a plethora of studies on BNNs since their introduction and a
systematic surveys on BNNs have been conducted in [SL19; Zha+21; Say+23; YA23]. In
the following, we give an introduction to the basics of BNN, while also summarizing
the ideas of the most impactful studies that are related to this dissertation.

Specifically, in Sec. 2.2.1, we disscuss the BNN inference. In Sec. 2.2.2, we introduce
how BNNs are trained. In Sec. 2.2.3, we cover how to binarize the inputs of BNNs.
In Sec. 2.2.4, we discuss the available methods to obtain BNNs. Finally, in Sec. 2.2.5,
we discuss the error tolerance optimization of BNNs.

2.2.1 BNN Inference

Since the weights and activations in BNNs are binarized to {±1}, the multiplications
can be performed by performing XNOR. This enables the use of simple logic for
the BNN computations. Therefore, in practice, the binarization to {0, 1} is used
for efficient logic-based execution of the multiplication and accumulation (MAC)
operation of neurons. In this case, the multiplication, summation, and activation can
be computed with

2 ∗ popcount(XNOR(W, A))− #bits > T, (2.4)

where XNOR(W, A) computes the XNOR of the rows in W with the columns in A
(analogue to matrix multiplication), popcount counts the number of set bits in the
XNOR result, #bits is the number of bits of the XNOR operands, and T is a vector of
learnable threshold parameters, with one entry for each neuron. Note that the result

2.2 binarized neural networks 17

...

w1

w2

wn

x1

x2

xn

∑n
i si

s1

s2

sn

s a
θt(s)

wi xi si
0
0
1
1

0
1
0
1

1
0
0
1

wi, xi, si, a ∈ {0, 1}
t, s ∈ Z
θt(s) =

{
1 s > t

0 else

∂L
∂a

∂a

∂s

∂s

∂wi

gi =
∂L
wi

=
∂L
∂a

∂a

∂s

∂s

∂wi

∆wi = R(wi, gi)

Figure 2.2: Overview of BNN inference and training in one neuron with binarized weights
(wi) and inputs (xi). On the left is the table for performing the logical XNOR. After
the XNOR (gates) and popcount operation (sum of products), the popcount result
(s) is compared against a threshold (t) to produce a binary output (a). The blue
arrows indicate the backward pass operations in training, where the chain rule is
applied to compute the gradient gi, which is processed in the function R to acquire
the weight update ∆wi.

of popcount is multiplied by two and then #bits is subtracted, by which the result of
popcount is transformed into a value that would have resulted if the computations
were performed using the binarization {±1}. Instead of transforming the result of
popcount, the threshold can also be adapted instead. The thresholds are computed
with the batch normalization parameters (BN), i.e., T = µ− θ

ψ η, where each neuron
has a mean µ and a standard deviation θ over the result of the left side of Eq. (2.4),
and ψ and η are learnable parameters. For further details about the BN please refer
to Sec. 2.2.2 or [Hub+16; SBN19]. Finally, the comparisons against the thresholds
produce again binary values.

2.2.2 Training BNNs

The simulation of BNNs for inference and training in order to create models is shown
in Alg. 2. The algorithm loops over all data points and all layers in the BNN. In Line 3,
the (full-precision) weights are binarized to {−1,+1}. Due to this, the matrix product
can be computed with the already existing MAC libraries in high-level machine
learning framework such as PyTorch or Tensorflow. Then, the S` are computed (biases
are all set to zero here). Afterwards, the BN function is applied. Finally, the output of
the BN is binarized to {−1,+1}, which serve as the binarized input activations for
the subsequent layer computations.

18 background

Algorithm 2: Algorithm for the Simulation of BNN Inference for Training
Input: Weights W, training data (Xtrain, ytrain),

1 for each data point (x, y) ∈ (Xtrain, ytrain) do
2 for each layer ` ∈ 1, . . . , L do
3 W`

bin ← Binarize(W`)

// Note: Input x is A0

4 S` ← W`
binA`−1

5 A` ← Binarize(BatchNorm(S`))

2.2.2.1 Key Concepts for Training BNNs

In the inference of BNNs, the BN is applied as a simple thresholding. When training
BNNs, i.e. when executing the backward pass, it cannot be regarded as thresholding
and needs to be considered as a transformation. The BN layer is typically applied after
the convolution layers and is defined for each neuron j on layer ` as the transformation

BatchNorm(s`j) = ŝ`j = ψj(
s`j − µ`

j√
σ`

j + ε
) + ηj, (2.5)

where ψj is a scaling factor and ηj is for translation. The nominator centers the s`j
around zero while the denominator normalizes it, where ε is used for numerical
stability. The term µ`

j and σ`
j are the mean and the variance of the s`j over the batch size.

Due to the differentiable subcomponents of the BN, the derivatives can be calculated
in a straightforward manner [IS15]. Note that training BNNs without BN leads to
poor prediction accuracy. Specifically, the study in [SBN19] argues that BNN training
without the BN leads to exploding gradients and therefore infeasible training, which
makes the BN layer necessary for successful BNN training.

Another important issue in BNN training is that the activation function is the
binary threshold function (Line 5 in Alg. 2), for which the derivative is zero for
almost all inputs. Since nonzero derivatives are necessary for successful training, the
straight-through-estimator (STE) is used instead [BLC13]. In essence, the STE just
passes the gradients backwards, as if no activation function exists, and clips the values
between ±1. Although this is only an approximation, it leads to good progress in the
training procedure.

2.2.3 Stochastic Input Binarization in BNNs

The inputs of any NN are usually encoded as floating point or quantized values
(i.e., non-binarized). This makes the execution of the first layer (unlike other hidden
layers) unsuitable to be performed with XNOR-based operations. To overcome this
problem, stochastic input binarization has been proposed [Hir+19c]. It employs

2.2 binarized neural networks 19

Algorithm 3: First layer computations of a BNN with stochastic input binariza-
tion
Input: Input A0, repetitions nrpres, scaled thresholds T̃
Output: A1

1 reps = nrpres

2 A0
b = binarizestoch(A0)

3 A1 = W1A0
b

4 while reps > 0 do
5 A0

b = binarizestoch(A0)

6 A1 = A1 + W1A0
b

7 reps = reps− 1

8 A1 = A1 > T̃

stochastically binarized inputs, which are achieved by normalizing the input values
to values between 0 and 1. These values are interpreted as probabilities and are then
stochastically rounded to “0” or “1”. For controlling the loss of information due to the
stochastic input binarization, the number of input presentations can be tuned. With
this parameter, it is possible to configure the number of times the input is sampled
and processed by the first layer. In case the number of repetitions of training is not
sufficient, the stochastic binarization may lead to accuracy degradation. However, with
sufficient repetitions, the output of the first convolutional layer with stochastically
binarized inputs can become arbitrarily close to the output of a convolutional layer
with normalized input. The rules of computation for stochastic computing in the
first layer are shown in Alg. 3. X0 represents the input, nrpres the number of input
presentations, and T̃ is acquired by multiplying T by nrpres. In Line 2, the input is
stochastically binarized, and in Line 3, matrix product is computed. In the subsequent
steps, these two operations are repeated based on the number of repetitions specified.
When reps is depleted, a binarized output is acquired after thresholding in Line 8.
During BNN training, the stochastic binarization is analogously applied.

2.2.4 How to Obtain BNNs

One method to obtain BNNs is to use standard off-the-shelf NN architectures, such
as VGG, ResNet, MobileNet, Yolo, etc. [SZ14; He+16; How+17; Red+15]. Then, the
weights and activations of these models are binarized. Note that for achieving high
accuracy, binarization-aware training has to be performed, i.e. the binarization has to
be simulated during the training process, as it is performed in Alg. 2 and [Jac+; Wen21].
If the binarization is performed after training, i.e. in a post-quantization manner,
then the model becomes useless since the accuracy drop becomes too high. Another
important component, as mentioned in Sec. 2.2.2.1, are the BN layers, which are
reported to be necessary for successful BNN training [Hub+16; SBN19]. Furthermore,

20 background

components may need to be replaced as well, such as binary activation functions
instead of other activation function such as those related to ReLU. Although the
prediction accuracy of the BNN may be a few percentage points lower than the
traditional NNs, usually high accuracy is still achieved. Different methods exist to
increase the accuracy loss from binarization, such as knowledge distillation [Gou+21],
where the learned knowledge of larger or multi-bit models are distilled into a smaller
or binary NNs.

Another way is to acquire BNN architectures is by employing neural architecture
search (NAS) [Gou+21]. In NAS, a certain search space is defined, and then a search
algorithm (such as genetic algorithm) is used to find BNN topologies and their
subcomponents, from which efficient BNN architectures are constructed automati-
cally [KSC20; BMT20; Wu+20]. However, NAS is typically costly, as the search process
is highly resource intensive.

2.2.4.1 Improvements of the BNN Training Procedure

Several studies have investigated how the BNN training procedure can be improved.
In [Bet+19], several approaches from the training of high-precision NNs are evaluated
for BNNs. Their conclusion is that many of the common methods are not suitable
for NNs. Instead, the training methods should focus on a information flow during
training without bottlenecks. This study in [Xu+21] also claims that forcing updates for
weights that are barely updated in the training process increases accuracy. One other
notable example to achieve this is by increasing the number of shortcut connections.
In [Ali+18] several pointers for best practices regarding BNN training are given based
in empirical evaluations.

The study in [Hel+19] argues that the classical approach to train BNNs using full-
precision weights (i.e. latent weights) and binarizing them during the forward pass in
conjunction the Adam optimizer is not suitable for BNNs and leads to suboptimal
performance. They argue that a special optimizer should be used for BNNs, which
does not rely on binarizing the latent weights and the Adam optimizer. Therefore, they
propose the binary optimizer (Bop), which interprets the latent weights as inertia and
performs binary flipping decisions based on them for training. They show successful
training results with higher accuracy than the previous methods.

Following a different branch, in [He+20], the BNN training procedure is modified
to decrease the quantization error between the latent weights and the binarized
weights. The study in [Lin+20] expands on this and proposes to additionally employ
the angular bias to reduce the quantization error between the latent and binarized
weights. To put it in simple terms, for optimization they rotate the latent weights with
a rotation matrix into binary weights. They report that their methods maximize the
information gain during training, leading to higher training accuracy compared to
the previous approaches. In [BT19], scaling factors for the outputs if binary matrix
multiplications are proposed which are reported to improve training performance.

2.2 binarized neural networks 21

The study in [Mar+20] goes further by using full-precision activations during BNN
training and in [Tu+22] adaptive per-layer binary sets are proposed.

It has recently also been shown that NNs can be optimized to alleviate catastrophic
forgetting, i.e., they are capable of remembering previously learned tasks, even after
they have been optimized for another task, see [Lab+21].

2.2.5 Error Tolerance of BNNs

In NNs, error tolerance is the ability to achieve high prediction accuracy despite errors
in the weights, inputs, activations, and other data that NNs use [TG17]. The errors
are in the form of bit flips that change the stored or processed information. The cause
of the errors may be noise (e.g. interference from the environment, particle strikes in
space), temperature (e.g. in high temperature environments), or even purposefully
created errors due to aggressive control of energy supplies and timing with the aim
of efficient operation at the cost of errors.

The error tolerance of classical NNs has been evaluated by various studies. The
survey in [TG17] provides a comprehensive overview of the recent and further back
work about fault and error tolerant NNs. For BNNs, a survey has summarized the
tolerance to single or multi bit upsets, which happen in in extreme conditions such as
in space or hot environments [KBB20].

The error tolerance of BNNs to more general errors, however, was first evaluated
only in 2019 [Hir+19b]. BNNs can achieve much higher error-tolerance compared
to traditional NNs, while having the ability to perform training with errors, also
referred to as error-aware training. Traditional NNs use floating-point (e.g., 32 bits) or
integer values (e.g., 8 bits) to represent the NN parameters (i.e., weights, activations,
inputs, etc.). In such a case, the position of the occurred error (i.e., the bit flip in
the value) matters. In floating-point NNs, one bit error in one weight can cause the
prediction of the NN to become useless [Kop+19]. This typically occurs when a bit
flip in the exponent of the floating point representation occurs leading to an error
with an unacceptable magnitude. On the other hand, in BNNs, a flip of one bit in a
binary weight or binary input causes a change of the computation result by merely 1

(with binarization to {0, 1}). Additionally, the output of every neuron in the hidden
layers is binarized, which has a saturating effect. Traditional NNs that for example
use ReLU or related activation function typically do not have this effect.

To make NNs and BNNs bit error-tolerant, the classical method is bit flip injections
in the binarized values during the forward pass, as proposed in [Hir+19b]. The idea is
simple: To make BNNs robust against certain types of bit errors, exactly these errors
are simulated during training time. To this end, during each forward pass, a random
bit flip mask is generated and applied to the binary weights. More formally, let M
denote a random bit flip mask with entries ±1. It is of the same size as W. The matrix
M is multiplied component-wise to the weight matrix W, i.e. the matrix operations
are denoted as (B(W) ·M)× X, were B(W) binarizes W, and X are the inputs in ±1.

22 background

Note that there is not as much related work on the error tolerance of BNNs
compared to traditional NNs. Therefore, this thesis focuses as well on the error
tolerance analysis of BNNs. Specifically, how to exploit the error tolerance of BNNs
for designing efficient hardware is one of the key topics in this thesis.

2.3 hardware systems for bnns

As explained above, BNNs are extremely resource-efficient and hardware friendly. In
BNNs, the memory needed to store the parameters is significantly reduced compared
to traditional NNs. When compared to 32 bit floating-point or 8 bit integer-based
NNs, the memory reduction is also close to 32× or 8× respectively. This reduces
the communication overhead in the memory hierarchy, leading to fast data transfers,
while providing more ways to exploit the principles of temporal and spacial locality.

With the use of binary weights and inputs for computation, the costly MAC
operations are performed with simple XNOR and popcount operations. This enables
the use of specialized instructions for the operations, such as bitwise XNOR and
using intrinsic popcount instructions in off-the-shelf CPUs or GPUs.

Hardware to accelerate the operations of BNNs can be realized in different forms.
The operations can be mapped to certain CPU or GPU instructions, or special pur-
pose accelerators such as FPGAs and ASICs can be used. A detailed comparison of
hardware systems to execute BNNs on CPUs, GPUs, FPGAs, and ASICs is given
in [Nur+16]. In all these systems, BNN data (mainly weights and inputs) need to
move from the memory to the computing elements. The memory and the computation
units are also the main resource bottleneck in NN and BNN systems. Although the
resource use is reduced in BNNs due to the binarization, still a lot of data needs to
be moved and processed in binary form. For highly resource-constrained and timing
sensitive edge application, it is still necessary to find and evaluate approaches to
further reduce the cost of resources for BNN systems.

To reduce the resource use in the memory and the computing units, approximations
can be employed. In approximate computing, the quality of the result is traded with
the efforts expended. Although the quality of the results in NNs and BNNs is
high, achieving perfect accuracy of (e.g. “100%”) is a challenge, therefore reasonable
accuracy results (which may be way below “100%”) are accepted and also sufficient
for many applications. Therefore, in NNs and BNNs, approximations can be applied
to trade the result’s quality with the efficiency of the system.

In this thesis, we consider that that the BNN hardware system has approximate
memory and approximate computing units. Therefore, we separate this section into
two parts: Approximate memories used for BNNs in Sec. 2.3.1 and approximate
computation units used in BNN hardware systems in Sec. 2.3.2.

2.3 hardware systems for bnns 23

2.3.1 BNNs with Emerging Approximate Memory: Technologies and Techniques

Approximate memories are realized by tuning the memory parameters, such as the
memory supply voltage and latency parameters, at the cost of bit errors. Although
an approximate memory can achieve lower power consumption and faster access, it
can cause very high bit error rates, which may degrade computing accuracy in NNs
significantly. This trade-off has been explored for a variety of state-of-the-art and
emerging memory technologies, i.e. for non-volatile and volatile memories.

In this section we review studies that mainly exploit the reduced requirements of
NNs on non-volatile memory technologies in Sec. 2.3.1.1, i.e. RRAM, STT-RAM or
MRAM, FeFET and CTF, and the volatile memory technologies SRAM and DRAM
in Sec. 2.3.1.2.

2.3.1.1 Non-volatile Memories (NVMs)

BNNs synergize outstandingly with NVM. As NVM cells only consume energy
when they are used (i.e. when the states switch), while their energy use is near zero
during idle times. Due to their non-volatility, they are significantly more energy
saving compared to traditional volatile memories such as SRAMs and DRAMs, which
have high static power. Furthermore, NVMs are typically feature a high density that
allows accommodating much more data within the same area footprint compared
to traditional memories. Using NVMs for BNNs has the potential to considerably
reduce the overall system energy. An overview of all classical and emerging NVMs is
given in [Bou+17]. Here, we consider the NVMs RRAM, MRAM or STT-RAM, and
FeFET, since they have been considered for the use with BNNs.

RRAM: The closest works are about error tolerant BNNs that operate with reduced
requirements on the memory in order to benefit in terms of power, performance,
area, lifetime, etc. The study in [Hir+19b] proposes to compute BNN operations with
RRAM that features in-memory processing capabilities. They set the write energy of
RRAM low and show that BNNs can tolerate the resulting errors by error tolerance
training. This low energy setting also increases the RRAM cell lifetime since the low
energy writes stress the cells less. In [Yu+16], RRAM is used to implement on-chip
BNNs. They show that under limited bit yield, BNNs can still operate with satisfying
accuracy. The study in [Sun+18] proposes a RRAM synaptic array to deploy BNNs.
They investigate the accuracy impact of errors from sense amplifiers that have intrinsic
offset due to process variation.

MRAM or STT-RAM: Another branch in the literature is about BNNs on STT-
RAM or MRAM, which both operate based on the principles of magnetoresistance.
The study in [Hir+19a] proposes deploying BNNs on MRAM with a low energy
programming setting that causes relatively low error rates, no significant accuracy
drop, but decreases write energy by a factor of two. The study in [TGW19] also
propose operating BNNs on MRAM with reduced voltage with similar results. They
test a wide range of error rates and discuss the implications of BNN bit error tolerance

24 background

on lifetime, performance, and density of MRAM. In [Pan+18], a different approach is
taken for energy reduction, they investigate the benefits of multi-level cell MRAM for
in-memory acceleration of BNNs.

FeFET: The studies in [Che+18; Sol+20b] explore the in-memory processing capa-
bilities of FeFET for BNNs and compare it to other CMOS-based circuits. However,
they do not consider approximate FeFET memory and to the best of our knowledge,
no such study exists.

2.3.1.2 Volatile Memories

Traditional volatile memory that is employed in today’s computing systems mainly
use classical SRAM and DRAM. Due to their volatility, they lose the information
once the energy is cut. SRAM memory is typically used as fast on-chip memory (e.g.
in registers and caches), which not only have high cost, but also which suffer from
high leakage power and large area footprint (six transistors to store a single bit).
DRAM, another classical memory, typically used for larger memories such as main
memory, is composed of transistors and capacitors. The latter loses charge (i.e. the
stored information) over time and needs to be refreshed periodically. Nonetheless,
due to their central position in the semiconductor industry and ease of accessibility,
they are also considered to be used with NN systems, especially when their efficiency
can be increased when applying the trade-offs of approximate memory.

SRAM: For BNN inference systems using on-chip SRAM, the studies in the litera-
ture mainly employ scaling of various device parameters. To reduce energy consump-
tion, the SRAM voltage is scaled in [Sun+17; HLPS20]. In [Yan+18], the weight and
activation memories for BNNs are separately tuned to achieve fine-grained control
over the energy consumption. In [DSM20] a split SRAM is proposed for BNNs, with
an efficient unreliable memory region and a reliable region.

DRAM: For DRAM, the study in [Kop+19] provides an overview over studies
related to NNs that use different DRAM technologies and proposes a framework
to evaluate NN accuracy for using approximate DRAM in various different settings
and inference systems. Specifically, they show that DRAM parameters can be tuned
such that energy and performance are optimized to achieve significant improvements,
whereas the NN accuracy drop stays negligible due to the NNs’ adaptations in
retraining.

2.3.2 BNN Acceleration

All BNN hardware systems use some form of processing components to perform the
BNN workloads. In the case of CPUs [Hu+18; Jaf+18; Zha+18] and GPUs [Che+20a;
LS21] for deploying BNNs, traditional off-the-shelf general purpose processors are
used, while in the case of FPGAs and ASICs, custom hardware for acceleration
is employed. FPGAs and ASICs provide higher efficiency in energy, area, while
providing lower latency than CPUs/GPUs [Nur+16]. In Fig. 2.3, we show a comparison

2.3 hardware systems for bnns 25

CPU
GPU

FPGA
ASIC

101

102

103

104

Pe
rf

or
m

an
ce

/W
at

t

Figure 2.3: Comparison of BNN execution on different hardware: CPU, GPU, FPGA, ASIC.
The data is based on the study in [Nur+16].

...

w1

w2

wn

x1

x2

xn

+
Registers Binarization

Popcount

+

+

+

Figure 2.4: Overview of a BNN computing unit.

of BNN processing of different platforms, i.e. CPU, GPU, FPGA, and ASIC. It shows
the performance per Watt relative to a baseline software implementation for CPUs,
which is not optimized. The data for the figure is based on the study in [Nur+16]. We
focus on ASIC acceleration in the following.

The high-level overview of a BNN accelerator computing unit is shown in Fig. 2.4.
The design is inspired by the study in [Nur+16]. The binary inputs and weights, which
are in form of bitstrings of length n, are loaded into the XNOR gates. The XNOR gates
(representing the binary multiplication) return the result of the XNOR operations as a
bitstring of length n as well. Then, the popcount unit counts the number of bits that
are “1”. Subsequently, the result of the popcount unit is accumulated in the registers.
The binarizer returns binary value once all accumulations are completed.

For high throughput, multiple computing units of the form in Fig. 2.4 can be used
in parallel. Such accelerators are organized with m computing units and n XNOR
gates per computing unit, i.e., they have size (m× n), which determines the workload
they can process. Accelerators of size (m× n) can further be embedded into a higher

26 background

hierarchy, i.e., multiple accelerators of size (m× n) on the same chip, or any other
configuration can be used.

Different types of data flows can be used to feed the hardware with inputs and
weights in Fig. 2.4. The two types of data flow methods are (1) output stationary (OS)
and (2) weight stationary (WS). OS and WS are defined for general NNs in [CES16]
and they can be used efficiently for BNN accelerators [Che+18]. In OS, new input
activations and weights are streamed in each cycle, which necessitates only one
accumulation register per computing unit. In WS, the weights are programmed into
the XNOR gates once and reused as much as possible for multiple input activations,
such that the number of new weight writes to the XNOR gates is minimized. This
however necessitates a large amount of registers for storing intermediate results.
The benefit of OS is a lower area footprint than in WS, as the partial sums are not
intermediary stored but directly accumulated. The benefit of WS is the high reuse of
the weights, requiring significantly less weight movements and smaller number of
rewrites to the XNOR gates compared to OS. The study in [Che+18] chooses to use
WS for FeFET-based XNOR gates, as writing the new weights to XNOR gates is costly
and is worth paying the costs of registers for storing intermediate results.

To accelerate the operations of BNNs, classical digital circuits or the emerging ana-
log computing paradigm can be used. In the following, we focus on BNN acceleration
in the digital domain in Sec. 2.3.2.1 and in the analog domain in Sec. 2.3.2.2.

2.3.2.1 Digital Computing Based BNN Accelerators

Note that, to build digital hardware accelerators, they are first conceptualized then
designed by creating the description of the HW and its behavior in a hardware
description language (HDL), such as VHDL or Verilog. The HDL is then synthesized
and evaluated in Electronic Design Automation (EDA) tools. Manual modifications on
critical parts of the hardware on the circuit or physical level are sometimes required
to meet constraints. The final HW designs will always be in some form of HDL or
even lower level descriptions, and could be engineered or generated in different ways.
More information on the steps of the hardware design process are in [WH10; HH15]

Many recent studies implement digital computing based BNNs on FPGAs and
ASICs. We summarize a few examples in the following. FPGAs: In [Zha+17], BNN
accelerators are generated by compiling C++ code Verilog with the use of High-Level
Synthesis (HLS). The study [Lia+18] proposes an analytical resource aware model
analysis (RAMA) for estimating the cost of a BNN accelerator design and demonstrate
that using their model, highly efficient BNN accelerators can be built. In [Zha+23a]
a BNN accelerator with fractional activations is used, where the information given
by the binary activations are enhanced with additional binary operations, leading to
high accuracy at low resource cost on FPGAs. ASICs: It is well-known that ASICs
are significantly more resource efficient than FPGAs. This is unsurprisingly also
the case for BNN hardware [Nur+16]. Therefore, specialized BNN accelerators have
been designed, fabricated, and evaluated. We give a few notable examples here.

2.3 hardware systems for bnns 27

X
N

O
R

X
N

O
R

X
N

O
R

X
N

O
RV 1

L V m
L

Interface circuits

. . .

. . .

. .
.

. .
.

Input 1

Input n

B B

M-Line Output

(a) (b)

−
+

Vref

+ Reg Bin

ADC

Analog path (AP)

Digital path (DP) (c)

Figure 2.5: (a): Crossbar with interface circuit. A possible realization of an interface circuit is
shown in (c). The voltages V1

L , . . . , Vm
L or the currents are passed to the interface

circuits. (b): Realization of an XNOR gate from FeFET transistors. (c) Interface
circuit with an analog path (AP) and a digital path (DP) in [Che+18]. Reg: Registers,
Bin: Digital comparator.

The first BNN ASIC accelerator has been proposed by [And+18b]. In the study it is
shown how efficient the hardware performes compared to a 12-bit NN accelerator. A
combinational design of BNN accelerator for low-power near-sensor processing has
been designed in [RCB18], which features high energy efficiency. The study proposes
an accelerator architecture for binary/ternary neural networks where the computation
is performed without the need to access any external or off-chip memory [And+18a].
In [DSS20], an accelerator is proposed that uses aggressive, error-inducing voltage
reduction with components to correct the occurring errors. Recently, there have also
been highly specialized designs, i.e. a BNN stereo vision accelerator [Zha+23a].

2.3.2.2 Analog Computing Based BNN Accelerators

Note that, to design an analog circuit, a schematic needs to be drawn. Circuit simula-
tion and verification is performed with a SPICE tool. Then many low-level steps need
to be taken to realize the schematic on a chip. Special attention needs to be paid to
the noise and transients, as they may impair the circuit operation. More information
on the hardware design of analog circuits is in [WH10].

The operations of NNs can also be performed in the analog domain by using
Ohm’s and Kirchhoff’s laws. It has been shown that this offers high efficiency in many
metrics compared to digital systems [Chi+16; Sha+16a]. However, analog computing,
especially with multi-bit NNs, have severe disadvantages. The analog states suffer
from variation due to a combination of several factors such as process variation, IR
drop, and leakage current [Sch+17; Che+20b; Kim+19; MN+21], which are challenging
to overcome. Specifically, one the most critical issues are the imprecisions due to
the aforementioned factors, therefore it is difficult to precisely differentiate between
different analog states (e.g. of a current), which often have limited noise margins
between them. Furthermore, the more states that are needed to be represented given
a certain signal range, the more the requirement on analog computing becomes

28 background

infeasible. Consider as an example the multiplication of two four bit numbers. For
each four-bit number, 24 different analog states are needed to represent them. When
they are multiplied, the product may need up to 8 bits, which means 24 additional
states need to be represented in the analog domain. Additonally, the results of multiple
products may need to be accumulated to complete a MAC operation, potentially
necessitating more analog states.

Fortunately, BNNs have exceptional synergy with analog computing. Due to the
binarizations, BNNs require a much smaller number of states that need to be differ-
entiated compared to higher-precision NNs. Since in BNNs, the result of a product
is a single bit, computing the complete MAC operation using BNNs merely needs
as many analog states as there are XNOR operations. For example, when using the
accelerator in Fig. 2.5(a), only n + 1 (number of XNOR gates and one additional state
for the case that all XNOR gates output “1”) analog states are needed to represent the
popcount result.

Furthermore, to give an example of how analog computing can improve the ef-
ficiency of computing units, consider the case where the digital computing based
popcount unit is replaced with an analog computing based component. For comput-
ing the BNN workload in the digital domain, typically CMOS-based XNOR gates,
popcount units, and other digital components are used. The operations of the ac-
celerator in Fig. 2.4 can also be performed in the analog domain. Especially the
popcount unit uses a large amount of resources (e.g. in [Umu+17], the performance
of BNN acceleration HW is measured by XNOR–popcount operations per second).
An implementation of a popcount unit for n XNOR gates needs n

2 two-bit-input
adders in the first adder tree level (counting from the top). In the second level, n

4
three-bit-input adders are needed, and so on. This means, for n XNOR gates, there are
in total log2(n) levels, and in total ∑

log2(n)
i=0 2i adders are necessary, where with each

additional level, the number of inputs and outputs in each adder gets increased by
one. Furthermore, between each level of adders, pipeline registers are necessary as a
buffer for the intermediate result of each level. As many registers are needed as there
are adders, and the number of bits of each register is determined by the number of
output pins of the adders. Note that in each column in the crossbar array, a popcount
unit is required, unless the popcount units are shared, which in turn costs latency.

In analog computing based BNN accelerators, this popcount unit is completely
removed. The currents that come out of the XNOR gates are just summed by employ-
ing Kirchhoff’s current law, merely using the available wires that pass the current.
However, note that the summed current in the analog domain needs to be converted
again into the digital domain using ADCs. Depending on the used technology and
implementation of the ADC and popcount unit, the resource usage of an ADC may
be close to the popcount unit. In fact, in analog computing based NN accelerators,
are the components that use the majority of the energy and chip area [Sha+16b].
Therefore, care should be taken when using analog-based computing and selecting
ADCs, so that the analog-based circuits do not require more resources compared to
digital circuits.

2.3 hardware systems for bnns 29

A high-level overview of an analog computing based crossbar for BNNs is shown
in Fig. 2.5(a). The input bits (1 to n) are applied to the input lines (in green) to the
XNOR gates. The XNOR gates are programmed to store the binary weights (the
circuits for programming are omitted). The XNOR gates can be built from standard
CMOS or other emerging technologies, such as FeFET, which promise highly efficient
inference [Che+18; Sol+20b]. To give an example, FeFET-based XNOR gates are built
by coupling two FeFET transistors together, as shown in Fig. 2.5(b). The binary weight
is stored in a complementary manner in both transistors. Depending on the input
signal B and its complement B, the output will either be logic “1” or “0”. In practice,
the match line (M-Line) is charged to high, and when there is a match between the
input and the stored value, both transistors will be off and no conducting path is
formed, leading to a logic “1”. Only when there is a mismatch, a conducting path is
formed, which causes the voltage at the output line to drop, returning logic “0”.

In the analog domain, the popcount can be computed using Kirchhoff’s circuit law,
i.e. by the summation of the output currents of all XNOR gate. Since in the analog
domain, the popcount is computed by using Kirchhoff’s circuit law (i.e. summation
of the output currents of all XNOR gate), the resulting m currents (from m different
computing units) are passed to the interface circuits for further processing.

The interface circuits can be built from analog comparators, ADCs, and also digital
components, such as accumulators, registers, and digital comparators, see Fig. 2.5(c).
Here it has two paths. The upper path (analog path) is used when the thresholding
can be directly applied to the result of the popcount, i.e. when the β of the workload
is smaller or equal to n. If β is larger, the lower path (digital path) is used.

Several recent studies have exploited the principles of analog computing for effi-
cient BNN computations. In [Jeb+21], an analog computing based popcount unit is
proposed, promising higher efficiency and low error probabilities compared to using
Kirchhoff’s circuit law in conjunction with ADCs. An SRAM-based analog computing
scheme for BNNs is proposed in [Yin+20], requiring only a 3.64 bit ADC. In [Kim+19;
Zha+20], BNN accelerator architectures are with RRAM and specialized methods for
the compensation of the process variation, which leads to the distortion of analog
computations. The study in [Sun+18] proposes methods to increase the parallelism
in RRAM-based BNN accelerators. In [KLC18], a complete analog implementation
of BNN neurons is built, also using RRAM as weight storage and by using switched
capacitors to realize the binarized neuron operations. The studies in [Che+18; Sol+20b]
propose to use FeFET-based analog computing hardware for BNNs. In [Che+18] it is
shown how FeFET-based analog computing fares against RRAM, and the study in
[Sol+20b] expands on that by reducing the number of ADCs by employing resource
sharing. Both studies argue that FeFET-based BNN accelerators are significantly more
efficient than ones based on RRAM.

3
E X P E R I M E N T S E T U P

In this chapter we present the experiment setup for the evaluations of methods and
proof-of-concepts in this thesis. In Sec. 3.1, we explain the details of the datasets. Then,
in Sec. 3.2, we introduce our BNN models and how they are trained.

3.1 datasets

We use the following image classification datasets for evaluations. The information
about the datasets are also summarized in Table 3.2

FashionMNIST: It contains 60000 training and 10000 testing images of the size
28× 28 in grayscale format. The images are of clothes, categorized into 10 classes sold
on Zalando. The dataset is also referred to as “Fashion” for short. More information
about the dataset can be found in [Fas].

SVHN: It contains 73257 training and 26032 testing 32× 32 images with 3 color
channels. The images depict house numbers in 10 classes from Google Street View.
More information about the dataset can be found in [Svh].

CIFAR10: It includes 50000 training and 10000 testing images of size 32× 32 with
3 color channels. The images are categorized into 10 classes of common objects and
animals. More information about the dataset can be found in [Cif].

Imagenette: It includes 9470 training and 3925 testing images. The images are a
subset of 10 classes from the original ImageNet dataset. The image sizes in the dataset
vary. For the evaluations in this thesis, the images are scaled to 64× 64 (and all images
have 3 color channels). More information about the dataset can be found in [Ima].

3.2 bnn models

The BNN models (Table 3.2) used in this thesis are modified and binarized (weights
and inputs) based on the architectures of VGG and ResNet [SZ14; He+16], adapted for
the above datasets, except the fully connected model, which is a standard two-hidden
layer fully connected (FC) NN. We always use binarization-aware training, i.e. we
simulate the binarization during the training process. We use moderately difficult
prediction tasks, with models referred to FC, VGG3, VGG7, and ResNet18. The BNNs
are up-to-date, suitably sized, not overparametrized, and capable models tailored for
resource-constrained inference.

31

32 experiment setup

Name # Train # Test # Dim # classes

FashionMNIST (FC, VGG3) 60000 10000 (1,28,28) 10

KuzushijiMNIST (VGG3) 60000 10000 (1,28,28) 10

SVHN (VGG7) 73257 26032 (3,32,32) 10

CIFAR10 (VGG7) 50000 10000 (3,32,32) 10

Imagenette (ResNet18) 9470 3925 (3,64,64) 10

Table 3.1: Datasets used for experiments.

The datasets used in this thesis are all multiclass classification tasks. To measure
the performance of the BNNs regarding the train and test dataset, we use the metric
referred to as accuracy. It is defined as

Accuracy =
correct classifications

all classifications
. (3.1)

We report it as a percentage. To give an example, the FC BNN achieves around 89%
accuracy on the test set of the Fashion dataset, meaning that 89% of its preditions are
correct.

3.2.1 BNN Layer Types

In the following we describe the layer types that we use in our BNNs.
Fully-Connected Layer: The fully connected layer connects every neuron in the

current layer with every neuron in the next layer. We write FC1024 when 1024 neurons
are used to compute the output of the FC layer. FC layers have binary weights as
learnable parameters.

Convolution layer: The convolutional layer computes a 2D convolution of the input
with a specified number of filters, e.g. with 64 we write C64. C layers also have binary
weights as parameters. In this work, we use filters of size 3× 3 only.

Maxpooling: The maxpool layer downsamples the input by selecting the maximum
value of the input in a given window size, with 2 we write MP2. MP has no trainable
parameters. We use maxpool with window size 2× 2 only in this work.

Batch Norm and Binary Activation: The batch normalization (BN) layer is used
for faster and more stable training. In this work, it is always followed by the binary
activation function (except for ResNets). For inference, the BN layer followed by
activation can be computed by binary thresholding [SBN19]. Therefore, in BNN
inference, BN layers are fused with the binary activation layer and have thresholds
which are signed integers.

Skip Connection: Skip connections (or residual connections) connect the output
of one layer to the input of another layer, whereas layers may be skipped. By doing
this, the information from earlier layers can bypass any number of layers and can
directly influence other subsequent layers. The main advantage is that it helps during

3.2 bnn models 33

Name Architecture

FC In→ FC2048→ FC2048→ FC10

VGG3 In→ C64→ MP2→ C64→ MP2→ FC2048→ FC10

VGG7 In→ C128→ C128→ MP2→ C256→ C256→ MP2

→ C512→ C512→ MP2→ FC1024→ FC10

ResNet18 In→ C64→ SCB64→ SCB128→ SCB256→ MP2

→ SCB512→ MP4→ FC10

Table 3.2: BNNs with fully connected (FC), convolutional (C), and maxpool (MP) layers. SCB:
Skip-connection block. Convolutional layers are followed by batch normalization
layers, except output layers.

training, as it alleviates the vanishing gradient problem, which leads to faster conver-
gence [He+16]. In this work, the ResNet18 architecture is equipped with a few skip
connections.

3.2.2 Training BNNs

We train the BNNs in the configurations shown in Table 3.2 for the above mentioned
image classification datasets shown in Table 3.1. For training, we develop a framework
based on the PyTorch library. PyTorch does not support the BNN operations XNOR
and popcount operations officially. Therefore, to simulate the usage of BNNs, we
binarize the weights and activations to {−1,+1}. This way, we can still use the official
MAC-libraries in PyTorch for BNN computations.

The standard loss used for multi-class classification is the cross entropy loss (CEL),
which is defined as follows:

LCEL(ŷ, i) = − log

(
exp(ŷi)

∑j exp (ŷj)

)
= log ∑

j
exp (ŷj)− ŷi. (3.2)

The ground truth class is i and ŷj is the prediction of the BNN. We use the CEL in all
experiments unless specified otherwise.

Also, unless specified otherwise, in all experiments, we run the Adam optimizer
for 100 epochs for FashionMNIST and 200 epochs for CIFAR10 and Imagnette to
minimize the cross entropy loss or using a different loss if specified otherwise. We use
the batch sizes of 256 for Fashion, Kuzujishi, SVHN, CIFAR10, and 128 for Imagenette.
In all cases we use an and an initial learning rate of 10−3. To stabilize training, we
exponentially decrease the learning rate every 10 or 25 epochs by 50 percent for
Fashion, and every 50th epoch for CIFAR10 and Imagenette.

34 experiment setup

3.2.3 Experiment Platform

To run the experiments of this dissertation, we use a server with an Intel Core i7-8700K
3.70 Ghz CPU, 32 GB main memory, and two GeForce GTX 1080 8 GB GPUs. To
reduce the latency of the binarization, we employ custom CUDA kernel extensions for
PyTorch. For bit flip injection (e.g. in Ch. 4) and simulating approximate computation
schemes (e.g. in Ch. 6), we also develop custom CUDA kernels, which, instead of the
PyTorch MAC engine, use a MAC engines developed in the scope of the dissertation
work.

4
E R R O R T O L E R A N C E O P T I M I Z AT I O N O F B I N A R I Z E D N E U R A L
N E T W O R K S

To enable the exploration of this dissertation’s vision, our first goal is to optimize
BNNs for higher error tolerance, so that it can be exploited as much as possible with
approximate memory and computing units.

The classical method to achieve bit error tolerance in BNNs and NNs is training
with bit flip injections according to the error model. Bit flip injection during training,
however, has disadvantages. First, recent studies have reported that injecting bit flips
during training can significantly degrade accuracy. The higher the bit error rate during
training, the more significant the accuracy degradation [Hir+19b; Kop+19; Bus+20].
Another disadvantage is the additional overhead [Mra+19]. During the training with
bit flip injection, for every bit of the error-prone data, a decision has to be made
whether to inject a bit flip. This adds numerous additional steps in the NN training.

Achieving bit error tolerance in NNs without bit flip injection, and thus, conquering
the above disadvantages, would be a breakthrough for the research area of NNs
using approximate computing and memory. To achieve this, the principles of bit error
tolerance in NNs need to be understood well. However, to the best of our knowledge,
the underlying principles of NN bit error tolerance have not received much attention
before the work of this dissertation.

The key focus of this chapter is to explore methods to achieve bit error tolerance
without bit flip injection in BNNs. Due to the binarization, BNNs have simple struc-
tures, due to which the error tolerance can be analyzed easier than in the case of
multi-bit NNs. We analyze the bit error tolerance of BNNs and propose margin-based
metrics that measure the bit error tolerance of their structural elements. Then we use
the metrics for bit error tolerance optimization by transforming them to a margin
maximization problem. This allows us to adopt existing methods from support vector
machines (SVMs) to solve the bit error tolerance problem.

In this chapter, we first provide a margin-based bit error tolerance metric for single
hidden-layer neurons in BNNs, which formally characterizes when a neuron flips
its output value. We further propagate this metric to the output layer of the BNN
to quantify the bit error tolerance of the output layer, which is used to quantify the
ultimate impact of bit flips on the inference accuracy. Based on the margin-based
output layer metric and the well-known hinge loss for maximum margin classification
in SVMs, we propose a modified hinge loss (MHL) for bit error tolerance optimization
of BNNs, which works without bit flip injections during training. To evaluate our
methods, we perform extensive experiments to compare with the-state-of-the-art
approaches, which train BNNs with cross entropy loss (CEL) and bit flip injections.
The results show that applying the MHL alone (without any bit flip injections)

35

36 error tolerance optimization of binarized neural networks

outperforms CEL in terms of accuracy. We further evaluate the combination of MHL
and bit flip injections, which significantly improves the accuracy of BNNs at high bit
error rates.

The remainder of this chapter is organized as follows. In Sec. 4.1, we define the
problem of bit error tolerance in BNNs. In Sec. 4.2, we define bit error tolerance
metrics on the hidden-layer-neuron and on the output-layer level. In Sec. 4.3, we
construct the MHL based on the metrics to optimize for bit error tolerance. In Sec. 4.4,
we present our experiment results and compare the MHL to classical methods, i.e.
CEL for achieving bit error tolerance in BNNs.

4.1 problem definition

Given a set of labeled input data, the objective is to train a BNN for high accuracy
and high bit error tolerance. We assume that the bit errors are transient, i.e. bit flips
are injected only when reading the error-prone data and the bit flips are discarded
afterwards, meaning the next time bit flips are injected, the correct data is used. In
this chapter, we focus on the problem of how to train BNNs for bit error tolerance without
bit flip injections.

To solve this problem, we explore bit error tolerance metrics, which allow us to
describe how the bit error tolerance of BNNs can be conceptualized with margins.
Then, we modify the hinge loss known from margin-maximization in SVMs to make
it applicable to BNNs.

4.2 bit error tolerance metrics

In this section, we first introduce a margin-based neuron-level bit error tolerance
metric for BNNs in Sec. 4.2.1, which we then extended to formulate a bit error
tolerance metric for the output layer in Sec. 4.2.2.

4.2.1 Neuron-Level Bit Error Tolerance

In the following, we use a notation describing properties of neurons in fully connected
layers, but our considerations also apply to neurons in convolutional layers. Let j
be the index of one neuron in a BNN, and x ∈ X an input to the BNN. Let sx,j ∈ Z

be the pre-activation value of neuron j before applying the activation function in
fully connected layers. In convolutional layers, we would use sx,j,u,v ∈ Z at the
location (u, v) ∈ {0, . . . , U} × {0, . . . , V} for a feature map with height U and width
V, however, for simplicity of presentation we stick to the fully connected case. For
BNNs, the pre-activation values of a neuron are computed by a weighted sum of
inputs and weights (according to Eq. (2.1)) that are ±1. Therefore, one bit flip in one
weight changes the pre-activation value by 2.

4.2 bit error tolerance metrics 37

Theorem 1. Let j ∈ {0, . . . , J} be the index of one neuron. Furthermore, let q be the number
of bit flips induced into the weights of neuron j. The pre-activation sx,j of a neuron after
induction of these bit flips is in the interval [sx,j − 2q, sx,j + 2q].

Proof. For better readability, we use s for sx,j for abbreviation in the proof. Since the
weights are ±1, each bit flip of one weight of neuron j changes s by 2. Inductively,
this shows that q bit flips change s by up to 2q. Hence, the pre-activation of neuron j
after up to q bit flips is in [s− 2q, s + 2q].

We use this proof to first formulate a neuron-based bit error tolerance metric for
hidden-layer neurons. We define the set of indices of neurons of the hidden layer by
Jh. For hidden layer neurons, i.e., those with index j ∈ Jh, the pre-activation value
is compared with a threshold tj ∈ Z, the comparison against which yields a binary
output. Here, we consider the following activation function:

θtj(sx,j) : sx,j 7→

1 sx,j > tj

−1 else
(4.1)

As long as the weights or input flips do not cause the pre-activation value to pass the
threshold, the activation will not flip, in which case the neuron is bit error tolerant.
Therefore, the bit error tolerance of an hidden layer neuron depends on the margin

Mx,j =
∣∣sx,j − tj

∣∣ (4.2)

between the pre-activation value and the threshold. With each bit flip sx,j may get
closer to tj and may finally flip the output of the activation if tj is passed.

Corollary 1. Let j ∈ Jh be the index of one hidden layer neuron. If sx,j > tj, then

max
(

0,
⌊

Mx,j
2

⌋
− 1
)

many bit flips can be tolerated. Else,
⌊

Mx,j
2

⌋
can be tolerated.

Proof. We denote s for sx,j, t for tj, and M for Mx,j. We analyze the two cases individ-
ually.

1) If s− t > 0, then the output of neuron j is +1. We denote by s̃ the value of s after
up to q := max

(
0,
⌊

Mx,j
2

⌋
− 1
)

bit flips. By theorem 1, we have s̃ ∈ [s− 2q, s + 2q]. We
conclude that s̃− t ≥ s− 2q− t = M− 2q which is > 0 for q defined as above. More
specifically, the output of neuron j is still +1.

2) On the other hand, if s− t ≤ 0, then the output of neuron j is −1. Let s̃ be the
pre-activation value after up to q :=

⌊
Mx,j

2

⌋
bit flips. Again, using theorem 1 yields

s̃ ∈ [s− 2q, s + 2q]. We obtain s̃− t ≤ s + 2q− t = −M + 2q ≤ 0 and the output of
neuron j is still −1.

We demand that the neuron has a bit error tolerance of at least b bit flips. We define
the bit error tolerance Mb

x,j of a neuron j given the input x as

Mb
x,j = 1{Mx,j ≥ b}, (4.3)

38 error tolerance optimization of binarized neural networks

where 1 is the indicator function returning a “1” in case the condition is true and “0”
otherwise. For the case of convolutional layers we consider that a neuron has to be
robust in all convolution windows, i.e.

Mb,conv
x,j =

1
UV

U

∑
u=1

V

∑
v=1

1{Mx,j,u,v ≥ b}. (4.4)

Again, for simplicity, we stick to the notation for the fully connected case. We then
define the bit error tolerance of the entire BNN as the average error tolerance across
all neurons Jtotal :

Mb
x =

1
Jtotal

Jtotal

∑
j=1

Mb
x,j (4.5)

We determine Mb
x by evaluating the BNN on the entire dataset, where |X| is the

number of data points in the data set X:

Mb =
1
|X|

|X|
∑
i=1

Mb
x (4.6)

For a set of values b ∈ {b1, . . . , bB} we consider M to be the tuple M = (Mb1 , . . . , MbB).
The definition of the metric Mb in Eq. (4.6) allows optimization with respect to it.

Since Mb is a count and not a differentiable function, we construct a regularizer that
punishes neurons that do not fulfill a bit error tolerance of at least b. To this end,
we rely on the well-known hinge function to build a convex and sub-differentiable
regularizer. For a given bit error tolerance tolerance with b, we regularize each neuron
j for each input example x using the hinge-function, i.e.

Regb
j (x) = max(0, b−Mx,j). (4.7)

Here, Reg reaches its minimal value when a neuron has Mx,j of at least b. To optimize
the entire BNN for bit error tolerance using Eq. (4.7), we compute the mean of all
neuron regularizers. We weight the regularizer with λ > 0 and add it to the loss for
minimization.

As we will see in the experiments in Sec. 4.4.2, optimizing with respect to Mb un-
fortunately does not increase the bit error tolerance. Note that bit flips may propagate
through the hidden layers of BNNs. If the margins from Eq. (4.2) are small, weight
flips might cause the neuron j to flip its output. This affects subsequent neurons for
which neuron j provides inputs. A flip of the input value for a neuron affects the pre-
activation value exactly as the bit error of a weight, i.e., it modifies the pre-activation
value by 2. Therefore, the subsequent neurons may have to tolerate a higher number
of bit errors.

A detailed analysis of the neuron-based bit error tolerance metric has been con-
ducted in [Bus+20], showing the relation of the metric in Eq. (4.6) to the bit error

4.2 bit error tolerance metrics 39

tolerance of BNN. Using this metric for optimizing bit error tolerance has been re-
ported to be unsuccessful. We provide a summary of the analysis by presenting the
negative result regarding the neuron-level error tolerance in Sec. 4.4.2. In short, based
on the evaluations, we speculate that the reason for the negative result is that bit flips
of neuron outputs can only affect the BNN prediction if the effect of bit flips reach
the output layer and lead to a change of the predicted class. Therefore, we now shift
our focus on applying the notion of margin to the output layer.

4.2.2 Output-Layer Bit Error Tolerance

Each neuron in the output layer has only one output value sx,j (for an input x, where
j is the neuron index) which is one entry in the vector of all neuron predictions ŷ.
There are as many values in ŷ as there are neurons in the last layer. Joutput is the
number of output neurons in the BNN. No activation function is applied to the output
value of the last-layer neurons. The index of the entry with the maximum value in ŷ
determines the class prediction, where we assume that ties are broken arbitrarily.

If bit errors lead to modifications of the output values in the output layer such that
another neuron provides the highest output value, then the class prediction changes.
Let sx,j′ and sx,j′′ with j′, j′′ be the highest and the second highest output value of
neurons in the output layer. The following corollary shows that the margin

m = mx,j′ −mx,j′′ (4.8)

serves as bit error tolerance metric for the output layer. We use m with a small letter
to differentiate the margin for the output layer.

Corollary 2. If m > 0, then the output layer of the BNN tolerates max(0,
⌊m

2

⌋
− 1) bit flips.

Proof. Let q ∈ {0, . . . , max(0,
⌊m

2

⌋
− 1)} be a number of bit flips. We consider any

distribution of the q bit flips to weights or inputs of the output layer, i.e., ∑j∈Joutput qj =

q where qj is the number of bit flips in weights or inputs of the neuron j.
Let j′ be the index of the neuron with the highest output value. Furthermore, let

j 6= j′ ∈ Joutput. For better readability, we denote sj′ for sx,j′ and sj for sx,j. Furthermore,
we denote by s̃j′ and s̃j the values of sj′ and sj after qj′ and qj bit flips. By theorem 1,
we know that s̃j′ ∈ [sj′ − 2qj′ , sj′ + 2qj′] and s̃j ∈ [sj − 2qj, sj + 2qj]. We conclude

s̃j′ − s̃j ≥ sj′ − 2qj′ − sj − 2qj

≥ sj′ − sj′′ − 2q = m− 2q > 0,

as q ≤ max(0,
⌊m

2

⌋
− 1) < m

2 . Since j 6= j′ ∈ Joutput is chosen arbitrarily and we have
shown that s̃j′ > s̃j, the output value of neuron j′ is still maximal even after q bit flips
in the output layer.

40 error tolerance optimization of binarized neural networks

4.3 margin-maximization for bit error tolerance optimization

In this section, we describe how we use the the margin-based bit error tolerance metric
of the output layer and the well-known hinge loss for maximum margin classification
to construct the modified hinge loss for optimizing the bit error tolerance of BNNs.

For bit error tolerance of the last layer, the margin m as introduced in Eq. (4.8) needs
to be large, so that the maximum number of bit flips the output layer can tolerate is
high. The margin can be directly computed by subtracting the second highest entry
ŷc′′ of the output vector ŷ from the highest entry ŷc′ , i.e., m = ŷc′ − ŷc′′ . However,
optimizing with respect to m without considering the other entries ŷc of ŷ may not
exhaust the full potential of the margin between ŷc′ and the output of the other classes
ŷc. The larger the margin between ŷc′ and ŷc of other classes c, i.e. mc = ŷc′ − ŷc, the
more bit errors can be tolerated in the neuron that calculates ŷc and the other neurons
so that the prediction does not change. To put it concisely, for a bit error tolerant
output layer, ŷc′ needs to be as large as possible, while the other ŷc need to be as
small as possible. To achieve this, we build upon the hinge loss for maximum margin
classification.

The hinge loss, as described in [Ros+03], for maximum margin classification is
defined as

LHL(y, f) = max(0, 1− y · f), (4.9)

with the ground truth prediction y = ±1 and the prediction f ∈ R. This loss becomes
small if the predictions have the same sign as the predicted class and are close to 1 in
magnitude. For predicted values larger than 1, the loss becomes 0. The “1” in the loss
forces the classifier to maximize the margin between two class predictions. To solve
optimization problems that use the hinge loss, many of the common optimizers or
algorithms can be used, such as the stochastic gradient descent (SGD) strategy [Zha04].

In the case of BNNs for multi-class problems, the version of the hinge loss in Eq. (4.9)
cannot be directly used. To extend the hinge loss to multiple classes, we define yenc as a
one-hot vector with elements in {−1, 1}, which has a +1 at the index with the ground
truth, else −1. yenc has the same number of elements as ŷ. Then the element-wise
product yenc · ŷ is computed. In this product, in case of correct predictions, positive
predictions in the correct class will stay positive, negative predictions that should
be as negative as possible become positive. In case of wrong predictions, i.e. high
negative value for the correct class and high positive value for the wrong class, the
values become negative. For a high penalty in the wrong case and a small penalty
for the correct case, we subtract the product yenc · ŷ from a parameter b, and get
(b− yenc · ŷ). Since we do not demand higher prediction values than b, we set negative
values to zero with the max function, and denote the modified hinge loss (MHL):

LMHL(ŷ, yenc) = max{0, (b− yenc · ŷ)}. (4.10)

Eq. (4.10) is still a convex function like Eq. (4.9), so it can be used with the same
optimizers. Here, for optimizing BNNs, the L in Eq. (2.2) is replaced with LMHL,

4.4 experiments 41

which optimizes the BNN via the mini-batch SGD strategy to minimize the difference
(b− yenc · ŷ), as described in Sec. 2.2.2. The lower this difference, the larger the margin
between ŷc′ and all the other ŷc. Above, we demanded exactly this property for a bit
error tolerant output layer.

4.4 experiments

This section presents the results demonstrating the performance of BNNs optimized
using the modified hinge loss (MHL) in comparison to the state-of-the-art cross
entropy loss (CEL) [Hir+19b]. The experiment setup is presented in Sec. 4.4.1. We
report the performance of the MHL without and with bit flip injection in Sec. 4.4.3
and Sec. 4.4.4, respectively.

4.4.1 Experiment Setup

We evaluate the three types of BNNs introduced in Ch. 3, namely a fully connected
(FC) BNN and a small convolutional BNN (VGG3), both with the Fashion dataset,
and a larger BNN with CIFAR10 (VGG7). The BNN architectures used are presented
in Table 3.2 and the datasets are specified in Table 3.1. For training, we run the Adam
optimizer [Hub+16] for 200 epochs for Fashion and 500 epochs for CIFAR10, with
either cross entropy loss (CEL) or modified hinge loss (MHL).

To cover a wide spectrum of bit errors, for testing we use bit error rates (BERs) from
0% (no bit errors) up to 35%, with increments of either 1% for Fashion and 0.5% for
CIFAR10. For training with bit flips we use different BERs, from 1% up to 30% BER,
such that accuracy degradation is below 10% from the original accuracy. The bit flips
are transient and symmetric. Depending on the approximate memory or computing
units and their properties, accepting BERs of this extent can improve the key metrics
such as energy consumption, timing parameters, production cost, and others.

As the base line to the MHL, the CEL with bit flip injections is used (proposed
in [Hir+19b] and in [Kop+19]). The CEL measures the performance of classification
NNs returning values that can be interpreted as class probabilities. With the ground
truth class i and softmax as input, the CEL is defined in Eq. (3.2). With large differences
among ŷj, the term ∑j exp (ŷj) becomes approximately the highest value ŷj∗ due to
the exponential, so the term ŷj∗ − ŷi influences the optimization most. In case of good
predictions, this term will be close to zero. In case of bad predictions, i.e. large ŷj∗ and
small ŷi, the ŷj∗ will be decreased and ŷi increased. In these two cases, the margins
between the neuron that returns ŷi and neurons other than the one returning ŷj∗ may
not always be considered in the loss, because of the distortion by the exponential.
However, the actual margins are considered in the MHL, which we compare to the
CEL regarding bit error tolerance next.

42 error tolerance optimization of binarized neural networks

4.4.2 Neuron level metric

In this subsection, our goal is to find out whether there is experimental support for
the neuron-level bit error tolerance metric presented Sec. 4.2.1 and shown in Eq. (4.6).
We plot the accuracy over BER for BNNs trained without bit flip injection (No flips)
and with bit flip injection (Flip, p) using flip regularization, in the top row of Fig. 4.1.
In the bottom row, we plot the results for the neuron-level bit error tolerance metric
Mb, with b = {2, 4, 8, 16, 32, 64}.

For all cases tested, we observe that the accuracy over different BERs correlates
with Mb. Note that when a BNN achieves high bit error tolerance, we also observe
high Mb. Note that the difference between the Mb curves is higher for Fashion than
for CIFAR10. Furthermore, the higher the BERs during training, the higher the values
of the Mb curve.

Fig. 4.2 depicts the results for the direct regularization training shown in Eq. (4.7).
We observe that this training method does not increase the accuracy over error rate,
although the Mb values are high. Instead regularizing the training objective this way
decreases accuracy at any BER. Similar curve progressions can be observed for other
hyperparameter settings and the CIFAR10 dataset. For smaller regularization scalings
λ, the observed curves approach the unregularized curves, however we never obtain
higher accuracies at any error rate.

We conclude that the direct regularization method in the form presented Eq. (4.7)
optimizing Mb is not usable for bit error tolerance optimization. While it effectively
increases Mb, it does so by sacrificing accuracy thereby rendering the resulting models
useless.

4.4.3 MHL Only vs. FR

Fig. 4.3 presents the experimental results of different BNNs with respect to the
accuracy over BER, from 0% to up to 15% for the Fashion dataset, and from 0% to up
to 5% for the CIFAR10 dataset. For each data set, the experiments were conducted
with five BNNs different training runs using the MHL without any bit flip injections
and CEL with different BERs for bit flip injections. For all BNNs trained with MHL,
we employed a parameter search for b, which is shown in Eq. (4.10), testing powers
of two, up to two times of the maximum value the neurons in the output layer can
compute. The reason for the maximum value chosen is that the maximum output
value of a neuron in the output layer is the number of neurons in the layer before the
output layer. Among these configurations of b, the best one was chosen.

We observe that BNNs trained with the MHL without bit flip injections have better
accuracy over BER than the BNNs trained with CEL under bit flip injections, i.e.,
in Fig. 4.3 for Fashion FC and CNN up to 10% and for CIFAR10 up to 5%. The
BNNs trained with CEL suffer from significant accuracy drop for lower BERs, when
the BER during training is high, e.g., CEL 20% and/or CEL 30% in Fig. 4.3 at low
BER. The BNNs trained with MHL, however, do not suffer from this accuracy drop.

4.4 experiments 43

0 2 4 6 8 10
76
78
80
82
84
86
88
90
92
94

Bit Error Rate (%)

A
cc

ur
ac

y
(%

)
FASHION (FC)

No flips
Flips, p = 10%

Flips, p = 20%

0 2 4 6 8 10
76
78
80
82
84
86
88
90
92
94

Bit Error Rate (%)

A
cc

ur
ac

y
(%

)

FASHION (CNN)

No flips
Flips, p = 5%

Flips, p = 10%

0 2 4 6 8 10
30

40

50

60

70

80

Bit Error Rate (%)

A
cc

ur
ac

y
(%

)

CIFAR10 (CNN)

No flips
Flips, p = 5%

Flips, p = 10%

0 20 40 60
0.4

0.5

0.6

0.7

0.8

b

M
b

FASHION (FC)

No flips
Flips, p = 10%

Flips, p = 20%

0 20 40 60
0.4

0.5

0.6

0.7

0.8

b

M
b

FASHION (CNN)

No Flips
Flips, p = 5%

Flips, p = 10%

0 20 40 60

0.6

0.7

0.8

0.9

b

M
b

CIFAR10 (CNN)

No flips
Flips, p = 5%

Flips, p = 10%

Figure 4.1: The relationship between accuracy over BER and Mb with b = {2, 4, 8, 16, 32, 64}.
Top row: accuracy over BER, bottom row: Mb values plotted over b. FC means
fully connected BNN, CNN means convolutional BNN.

0 2 4 6 8 10

70

80

90

Bit Error Rate (%)

A
cc

ur
ac

y
(%

)

FASHION (FC)

No reg.
b : 32, λ : 10−4

b : 64, λ : 10−3

0 20 40 60

0.5

0.6

b

M
b

FASHION (FC)

No reg.
b : 32, λ : 10−4

b : 64, λ : 10−3

Figure 4.2: The experiment results for the direct regularization.

Although the BNNs trained with CEL 20% and bit flip injections have better accuracy
for Fashion CNN in Fig. 4.3 when the error rate is higher than 10%, the accuracy
of the BNNs drops by a significant amount, which may be unacceptable. Further
investigations should be deployed, to be presented in Sec. 4.4.4.

4.4.4 MHL Combined with FR

In this section, we evaluate the BNNs trained with the MHL and bit flip injections
under different BERs. In addition, the BNNs trained with the MHL without bit flip
injections (i.e., those BNNs generated using the MHL in Sec. 4.4.3 under 0% BER) are

44 error tolerance optimization of binarized neural networks

0 5 10 15
50

60

70

80

90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

FASHION (FC)

CEL 0%
CEL 10%
CEL 20%
CEL 30%

MHL b1024

0 5 10 15
50

60

70

80

90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

FASHION (CNN)

CEL 0%
CEL 5%
CEL 10%
CEL 20%

MHL b128

0 2 4
50

60

70

80

90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

CIFAR10 (CNN)

CEL 0%
CEL 5%
CEL 10%
CEL 20%

MHL b128

Figure 4.3: Accuracy over bit error rate for BNNs trained with CEL under a given bit flip
injection rate (specified in the legend, 0%, 5%, 10%, etc.) and BNNs trained with
MHL without bit flip injections for a specified b in Eq. (4.10).

0 10 20 30
10
20
30
40
50
60
70
80
90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

FASHION (FC)

flip 0%b1024
flip 10%b512
flip 20%b256
flip 30%b128

0 10 20 30
10
20
30
40
50
60
70
80
90

Bit error rate (%)

A
cc

ur
ac

y
(%

)
FASHION (CNN)

flip 0%b128
flip 5%b128

flip 10%b128
flip 20%b128

0 2 4 6
10
20
30
40
50
60
70
80
90

Bit error rate (%)

A
cc

ur
ac

y
(%

)

CIFAR10 (CNN)

flip 0%b128
flip 1%b128

flip 2.5%b128
flip 5%b128

Figure 4.4: Accuracy over bit error rate for BNNs trained with MHL and bit flip injections
(denoted as flip 0%, 1%, etc). The number after the b is the value to which the
parameter b in the MHL is set during training (see Eq. (4.10)).

included here as the baseline in this subsection. For all configurations, we employed
the same parameter search for b as in Sec. 4.4.3.

Fig. 4.4 presents the experimental results of different BNNs with respect to the
accuracy over BER (from 0% to up to 30% for Fashion and from 0% to up to 6%
for CIFAR10). In all experiments, we observe that the accuracy over the BER of the
BNNs trained under MHL and bit flip injections is significantly higher than that of
the baseline trained by only MHL. For example, for Fashion in Fig. 4.4, the BER at
which the accuracy degrades significantly is extended from 5% (baseline, green curve)
to 20% and 15% respectively, with a small tradeoff in the accuracy at 0% BER. If more
accuracy at low error bit rates is traded, the BER at which accuracy degrades steeply
can be shifted even further. For CIFAR10 in Fig. 4.4, this breaking point can also be
increased. However, more accuracy has to be traded compared to the previous cases.

If b is higher than the ones shown, the accuracy for lower BERs suffers similar to
using CEL with high BERs. If b is lower, there will be no significant change compared
to CEL with 0% BER. We only show the results with the best b.

4.5 conclusion 45

4.5 conclusion

In this chapter, we proposed a concept of margin to formulate bit error tolerance
metrics for the entire output layer. We formally proved that the metric measures the
maximum number of any bit flips that can be tolerated. Based on this metric and
the well-known hinge loss for maximum margin classification in SVMs, we proposed
the modified hinge loss (MHL) for optimizing the bit error tolerance of BNNs. Our
results show that the BNNs trained with the MHL achieve higher levels of bit error
tolerance and accuracy compared to BNNs trained with the cross entropy loss (CEL)
and bit flip injections according to a bit error model, while the MHL does not need a
bit error model for achieving error tolerance.

5
B N N S W I T H F E F E T

In the vision of this dissertation, we propose to use approximate memory in systems
that run BNNs. In this chapter, we explore how the emerging FeFET memory can be
used as an approximate memory for BNNs.

In Sec. 5.1, we introduce FeFET memory and how it its key properties are simulated
for our explorations. Then, in Sec. 5.2, we present the temperature-dependent error
model of FeFET and show how errors occurring across the entire range of operat-
ing temperature can be tolerated by BNNs when countermeasures are employed.
In Sec. 5.3, we use approximate FeFET-based Logic-In-Memory (LiM), which serves
as both memory and performs computations and explore its tradeoff regarding LiM
latency and BNN accuracy.

5.1 fefet

Non-volatile memories (NVMs) for machine learning algorithms may achieve highly
energy-efficient and sustainable inference. In particular, NNs with different types of
NVMs have been evaluated recently, e.g. resistive RAM (RRAM) [Chi+16; Hir+19b],
spin-transfer torque RAM (STT-RAM) or magnetoresistive RAM (MRAM) [Vin+15;
Pan+18; Sun+18; Hir+19a; TGW19], multi-level charge-trap flash (CTF) memory
[Don+18], and ferroelectric-based memories (FeRAM or FeFET) [Che+18; Lon+18;
ZCH19; Yoo+19].

In this section, we present the FeFET memory technology and how its properties
are simulated to perform the evaluations in this chapter.

5.1.1 Overview of FeFET Technology

The discovery of ferroelectricity in hafnium oxide-based materials in 2012 has enabled
Ferroelectric Field-Effective Transistor (FeFET) to become compatible with the existing
CMOS fabrication process [Dü+17; Tre+16]. Prototypes from both academia and
industry have thereafter successfully demonstrated the ability of turning conventional
FET transistors into NVM devices by integrating a ferroelectric layer into the transistor
gate stack. This allowed to integrate NVM devices alongside logic transistors within
the same silicon die, unlike other existing NVM technologies that still face challenges
regarding CMOS compatibility, which is a key factor for semiconductor manufacturing
with reasonable cost.

Among all existing memory technologies, FeFET is one of the most promising
emerging technologies. FeFET-based memories achieve read and write latencies

47

48 bnns with fefet

HfO2

SiO2

WFIN

H
F
IN

LG

(a) 14nm FinFET tran-
sistor dimensions.

0.0 0.2 0.4 0.6

0

10

20

30

40

50

Transisor Gate Voltage (VGS) [V]

Tr
an

si
st

o
r

D
ra

in
 C

u
rr

e
n

t
(I

D
S)

 [
m

A
]

VDS = 0.05, 0.7V

Symbol: Intel 14nm

Line: Our TCAD

Tr
an

si
st

o
r

D
ra

in
 C

u
rr

e
n

t
(I

D
S)

 [
A

]

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

(b) 14nm FinFET calibration with
Intel measurement data.

-4 -2 0 2 4-40

-20

0

20

40
Symbol: Fabrication
Line: Our TCAD

Fe
rro

el
ec

tri
c P

ol
ar

iza
tio

n
(P

FE
) [

m
C/

cm
2]

Ferroelectric Layer Voltage (VFE) [V]

(c) Ferroelectric capacitor
(FeCAP) calibration
with fabrication data.

Figure 5.1: FeFET-based NVM device calibration.

within 1 ns, which is comparable to SRAM, while using low energy due to the
nonvolatility [Rei+19]. Because FeFET-based memory cells consist of only a single
transistor [Rei+19], they also feature a high density, which is of high importance for
efficient on-chip memories.

FeFET is similar to conventional FET transistors used in all existing CMOS tech-
nologies, with one exception. In FeFET devices, a thick (10nm) layer of a ferroelectric
material is additionally included on top of the oxide layer. The presence of ferroelec-
tricity creates a hysteresis behavior by which the electrical property of the underlying
transistor considerably shifts based on the previously-applied gate voltage.

More specifically, when a high positive write voltage (e.g. +4V) is applied to the
transistor gate, then the polarization direction within the ferroelectric material is
switched to a certain direction. After this write voltage ceases, a relatively high drain
current will be returned every time by the transistor when a smaller voltage (e.g.
0.25V) is applied. The drain current in these cases is typically called low-Vth curve
because the transistor has a low threshold voltage (Vth, recall that the threshold
voltage is the gate voltage at which the transistor switches its state from “high” to
“low” or vice versa). On the other hand, when a negative write voltage (e.g. −4V) is
applied, the polarization direction within the ferroelectric material is switched to the
opposite direction. After this write voltage ceases, a relatively low drain current will
be returned by the transistor every time when a smaller voltage is applied. The drain
current in these cases is typically called high-Vth curve because the transistor has a
high threshold voltage.

Due to the hysteresis behavior, the transistor provides a low or a high current,
which depends on the write voltage previously applied. The low and high currents
allow the differentiation between stored logic “1”, (when positive write voltage was
previously applied, i.e. low-Vth case) and stored logic “0” (when negative write voltage
was previously applied, i.e. high-Vth case).

5.2 fefet-based bnns and under temperature-dependent bit errors 49

5.1.2 Our Calibrated 14nm FeFinFET Device and Measurements

To enable working with and analyzing the properties of FeFET, we first implemented
a 14nm n-type FinFET device, as shown in Fig. 5.1(a), using Synopsys Technology
CAD (TCAD) tool flow [Syn], which is the standard commercial tool to simulate
device fabrication of semiconductor technologies. Afterwards, we calibrated the
device built to reproduce data measurements for production-quality 14nm FinFET
device from Intel [Nat+14]. As shown in Fig. 5.1(b), the electrical characteristics
regarding gate voltage (“voltage applied to transistor”) and drain current (“current
returned by transistor”) of the device we built match very well with 14nm Intel
measurement data. Afterwards, to enable the ferroelectric properties, we deposited
a 10nm ferroelectric layer (Hf0.5Zr0.5O2) on top of the oxide layer. Fig. 5.1(c) shows
the hysteresis loop of voltage and polarization, which both capture the nonvolatile
property in FeFET devices. The curves match very well the measurement data from
a fabricated ferroelectric capacitor [Ni+18]. We will use these simulations and its
properties in the following two sections.

5.2 fefet-based bnns and under temperature-dependent bit errors

In order to use FeFET as memory in systems that execute NNs, it is necessary to
analyze its error model. To the best of our knowledge, the sources of bit errors in
FeFET were not explored at the time of writing the published manuscript on which
this chapter is based on.

Similar to other memory technologies, the errors in FeFET occur due to the physical
principles of its operation. As explained in Sec. 5.1.1, in FeFET, the available dipoles,
which determine the polarization within the ferroelectric layer, can store information,
i.e. logic “0” and logic “1”. However, the directions of those dipoles are sensitive
to temperature. Specifically, fluctuations in temperature can lead to flippings of the
dipoles’ direction. This manifests itself as changes in the induced ferroelectricity
and, hence, sensing circuits may read the erroneous stored value, i.e. a bit flip will
occur during reading. Another source of errors is process variation (PV, unavoidable
variations of transistor dimensions during manufacturing), either within the ferro-
electric material or within the underlying transistor. PV manifests itself as changes
in electrical characteristics of the FeFET device such as the threshold voltage, ON
current, OFF current, etc. This leads, similar to temperature effects, to fluctuation in
the sensing current during read operations. Therefore, bit flips can occur. This raises
the following key question:
(Q1) What is the bit error model of FeFET?

We cover both types of bit flip sources in this chapter, i.e. run-time errors induced
by temperature effects and design-time errors induced by PV. In addition to the above
observation of bit errors on FeFET due to temperature and PV, our model in Sec. 5.2.1
also shows that the effect of temperature manifests itself as highly asymmetric bit
error rates. This means that the probability of a bit flip from logical “1” to “0” is

50 bnns with fefet

-0.5 0.0 0.5 1.0 1.510-10

10-9

10-8

10-7

10-6

10-5

10-4

T
ra

an
si

st
or

 D
ra

in
 C

ur
re

nt
 (

I D
)

[A
]

Transistor Gate Voltage (VG) [V]

 0 °C
 27 °C
 85 °C

 VG sweep:

forward: -4V to 4V
reverse: 4V to -4V

Memory
Window

High-Vth
Curve

Low-Vth
Curve

(a) Temperature impacts on
the memory window of
FeFET. A higher tem-
perature impact more
considerably the high-
Vth curve that repre-
sents logic “0” than low-
Vth curve that represents
logic “1”.

-4 -2 0 2 4

-40

-20

0

20

40

Fe
rro

ele
ct

ric
 P

ol
ar

iza
tio

n
(P

FE
) [

m
C/

cm
2]

Ferroelectric Layer Voltage (VFE) [V]

(b) Impact of intrinsic varia-
tions in the ferroelectric
layer on the induced hys-
teresis loop. Process vari-
ation together with tem-
perature effects cause er-
rors due to read oper-
ations of FeFET-based
NVM.

280 300 320 340 360

15

20

25

30

35

40

45

P
 [
m

C
/c

m
2
]

Temperature [K]

 Ps

 Pr

 Ec

1.06

1.08

1.10

1.12

1.14

E
c
[M

V
/c

m
]

(c) Relation between Pr
(remnant polarization),
Ps (saturation polarisa-
tion), and Ec (coercive
field) over temperature.
These three parameters
capture the key proper-
ties of the ferroelectric
material.

Figure 5.2: FeFET reliability experiments.

different from logical “0” to “1”. In the literature, the effects of asymmetric bit error
rates on NNs have not been assessed at the time of writing and no countermeasures
against them have been investigated yet. For these reasons we explore the following
questions:
(Q2) Do the FeFET asymmetric bit errors cause significant accuracy drop in NNs?
(Q3) How can we exploit the asymmetry of the FeFET bit error model to achieve tolerance
against FeFET bit errors?

The remainder of this section is organized as follows. In Sec. 5.2.1, we answer Q1
by revealing the impact of temperature on the reliability of FeFET-based memories by
a temperature-dependent bit error model acquired from precise device parameters
and FeFET simulations. Then, we cover the system model and the problem definition
in Sec. 5.2.2 and Sec. 5.2.3. To answer Q2 and Q3, we first discuss the less buffer
writes (LBW) execution of BNNs in Sec. 5.2.4, propose our bit error countermeasures
in Sec. 5.2.5, and evaluate the methods in Sec. 5.2.6.

5.2.1 Temperature-dependent Bit Error Model of FeFET

To acquire the bit error model of FeFET, we perform the following high-level steps.
After integrating the temperature and variation effects inside our calibrated TCAD
models, we perform Monte Carlo (MC) simulations for the entire FeFET device. This
provides us with the complete ID-VG hysteresis loops. Then, for a certain read voltage,
we extract the probability of error in which a high Vth curve is wrongly classified as a
low Vth curve and vice versa.

5.2 fefet-based bnns and under temperature-dependent bit errors 51

In Fig. 5.2(a) we show the impact of temperature on the memory window of FeFET.
The read operation in FeFET is performed by applying a gate voltage VG (x-axis) to
the transistor and then sensing the provided drain current ID (y-axis). For different
settings of the applied VG, the temperature-induced shift in the high-Vth curve is
different and hence reading at different VG can result in different probability of errors.
The memory window is defined as the distance between the low-Vth and high-Vth
curves (i.e. ID-VG curves) which represents logic “1” and logic “0”, respectively.
Importantly, temperature increase has a more considerable impact on the high-Vth
curve than the low-Vth curve. At a higher temperature, the high-Vth moves towards the
left side whereas the low-Vth curve remains almost unaffected. Hence, the memory
window becomes smaller and the error tolerance of FeFET-based NVM becomes
smaller, due to which the likelihood of errors during read operations becomes larger.
Because temperature impacts the low-Vth curve and the high-Vth curves asymmetrically,
also errors in logic “1” and “0” will occur asymmetrically. This means in practice that
the bit error rate p10 (flip from 1→ 0) is smaller than the bit error rate p01 (flip from
0→ 1) because temperature impacts logic “0” more than logic “1”.

In Fig. 5.2(b), which is based on MC simulations in TCAD, we observe that intrinsic
variations from PV within the ferroelectric layer strongly impact the induced hysteresis
loop. This, in turn, seriously reduces the error tolerance of FeFET-based NVM devices
to noise and increases the probability of error. In fact, both temperature and PV effects
together degrade the reliability of FeFET-based NVM devices during run-time and
thus errors during read operations occur.

In Fig. 5.2(c), we summarize the relation between temperature and Pr (remnant
polarization), Ps (saturation polarization), and Ec (coercive field), which capture the
key properties of the ferroelectric material. The three parameters degrade linearly with
temperature increase. Therefore, we use the value Tstep ∈ {0, 1, . . . , 16} for describing
the magnitude of temperature. Based on Fig. 5.2(c), the bit error rate at temperature T
for any 0°C ≤ T ≤ Tpeak = 85°C is BER(T) = T

Tpeak
· (p01, p10), where p01 and p10 are

defined at 85°C above.
Since the probability of bit error also depends on the applied read voltage (i.e. gate

voltage VG), we estimate the flip probabilities (p01, p10) at different read voltages 0.1V
and 0.25V. The bit error rates of the FeFET bit error model at 85°C are (p01, p10) =

(2.198%, 1.090%) for using read voltage 0.1V and (p01, p10) = (2.098%, 0.190%) for
using read voltage 0.25V.

5.2.2 System Model

In the following, we focus on studying the impact of FeFET-induced bit errors
described in Sec. 5.2.1 on the accuracy of BNNs and then investigating the tradeoffs
between read energy and reliability of FeFET devices. Because in NN systems, the
read operations occur much more frequently than write operations due to data
reuse [Sze+17] or low cost of storing data in NVMs, reducing the read voltage
provides considerable energy saving. In practice, we assume that FeFET memory

52 bnns with fefet

CPU

Off-Chip DRAM

BNN Accelerator

On-Chip FeFET Memory

Weights*
Inputs*

PEs

Outputs

Unreliable Memory
Reliable Memory

Bit Errors*
PEs Processing Elements

Legend:

Figure 5.3: System model with unreliable on-chip FeFET memory and reliable off-chip DRAM.

devices are being reliably written, i.e. they receive a sufficiently large voltage to flip
all ferroelectric domains during writing. Then, during read operations the bit errors
due to temperature occur.

For these reasons, we focus on the scenario that bit errors only occur during the
reading processes of the parameters (weights) and inputs (input data and activations)
in BNN inference. To clarify, we present the considered system model with in Fig. 5.3.
The assumed system consists of reliable traditional off-chip memory (e.g., DRAM)
and unreliable emerging on-chip FeFET memory. To perform the computations of one
layer, the CPU initiates the retrieval of the weights from the off-chip DRAM to the
on-chip FeFET memory. Then, the values are sent to the processing elements (PEs) for
executing the operations of BNNs in parallel (i.e. XNOR, popcount, accumulation,
and thresholding, etc.). The results of the computations, which are the activations,
are then written back to the on-chip FeFET memory in order to be later used in the
computations for the subsequent layer. Data and instructions for other operations,
which are related to the control of the inference, e.g. from the operating system to
provide a run-time environment to initiate the inference, are not stored in the FeFET
memory, but are stored in a reliable memory, e.g. off-chip DRAM.

Please note that NVM using ferroelectric transistors is an emerging memory, and
commercial processors that employ such technology are not yet publicly available.
Therefore, we do not use real FeFET memory for running the experiments. The way
we model the usage of FeFET is by applying the corresponding bit error model during
training and inference on conventional servers with GPUs. Our focus is on the effect
of FeFET bit errors on BNN accuracy, when on-chip FeFET memory would be used
for storing the weights, inputs, and activations. Therefore, for evaluating the bit error
tolerance of our BNNs with respect to the FeFET-induced errors, the application of
the bit error model is sufficient and the real FeFET memory does not need to be used.

5.2 fefet-based bnns and under temperature-dependent bit errors 53

5.2.3 Problem Definition

The two bit error tolerance (BET) problems below are studied in the following:

• BET Training Problem: Given the FeFET temperature bit error model described
in Sec. 5.2.1 and a set of labeled input data, the objective is to train a BNN for
high accuracy. The inference of the derived BNN does not have to be executed with any
bit error countermeasures at run time.

• BET During Inference Problem: Given the FeFET temperature bit error model
as described in Sec. 5.2.1 and a BNN, the objective is to execute the given BNN
with bit error countermeasures to reduce the accuracy degradation of the BNN
during runtime. The given BNN does not have to be trained with bit flip injection.

The solutions to the above two problems can be combined to yield better bit error
tolerance.

5.2.4 BNN Execution with Less Buffer Writes

Before addressing the two problems in Sec. 5.2.3, we first present the less-buffer-writes
(LBW) BNN execution, in which the BNNs are executed in a way such that less layers
are prone to bit errors compared to regular BNNs.

The FeFET bit errors can only have an effect on BNN accuracy when values are
read from FeFET memory. For this reason, the buffering of data (which implies
writes followed by reads) in FeFET memory should be avoided whenever possible. In
the regular BNN execution, however, values are buffered multiple times, as shown
in Table 5.1, which leads to many (avoidable) reads from FeFET memory. The values
that are buffered to memory during execution are the intermediate results, i.e. the
outputs of the convolution (C), maxpool (MP), and batch norm (BN) layer.

In order to minimize the buffering to FeFET memory, we use the LBW BNN
execution. The LBW execution aims to reduce the reads from FeFET memory so
that less values are affected by bit errors. When using the LBW execution, only the
BNN parameters, inputs, and outputs of the BN layer (activations) suffer from bit
errors. The flow of the LBW execution is listed in Table 5.1 and it is explained in the
following.

In the LBW execution, we compute the C and MP in such a way that they are applied
without buffer writes to memory. The LBW execution begins with the C layer. In the
first iteration of the LBW execution, the C layer computes the convolution results of
the first four values (0, 0), (0, 1), (1, 0), (1, 1) in the input. By MP, the maximum of the
four values is then computed and thresholded with the BN layer to produce a binary
output. After the threshold has been applied, the result has to be buffered in memory,
so that the next C layer of the BNN can compute with it. In the next iteration of the

54 bnns with fefet

Regular execution In→ C→ buffer writes

→ buffer reads→ MP→ buffer writes

→ buffer reads→ BN→ buffer writes

LBW execution In→ 4C→ MP→ BN→ buffer writes

Table 5.1: The regular BNN execution with many buffer writes to memory and the less-buffer-
writes (LBW) execution. Another layer configuration that we use is C → BN, in
which case the thresholding of the BN is applied directly to the C result.

LBW execution, the next four values in line ((0, 2), (0, 3), (1, 2), (1, 3)) are processed
the same way as in the first iteration. These iterations are repeated until the input to
the C layer is fully processed. Due to the processing sequence of the LBW execution,
only a buffer of two values is needed between the C→ MP→ BN computation. One
value is needed for holding the current maximum and the second for the current MP
result. For the case of C → BN layer compositions, the output of the convolutions
do not need to be buffered because the thresholding can directly be applied to the
output of the convolution.

The number of executed operations in the LBW execution is equal to the number of
executed operations in the regular way of execution. The operations of the LBW are
simply executed in a different sequence and thus data from the memory is retrieved
in a different sequence as well. The implications of the LBW execution on inference
efficiency have to be investigated case-by-case for different inference systems during
system design. Here, we do not assume any specific inference system. FeFET could
e.g. be used as on-chip memory for BNN data while processing elements in an
accelerator execute the BNN operations. In these cases, the operations of LBW BNNs
are executed in ALUs and the values for accumulation and maxpool operations are
stored in registers. We assume that once the values are in these components, they are
not affected by bit errors anymore.

Since the correctness of the last-layer BNN outputs and the batch normalization
thresholds (see [SBN19]) are indispensable for BNN accuracy, we assume that this
small fraction of values is protected by software or hardware measures such as
error-correcting code (ECC) or correcting implausible values with memory controller
support (see [Kop+19]).

5.2.5 Methods for Achieving Bit Error Tolerance against FeFET Bit Errors

We present two different methods against the FeFET bit errors. First, we describe how
we take the asymmetry into account in bit flip training in Sec. 5.2.5.1, targeting the
BET training problem posed in Sec. 5.2.3. Then, in Sec. 5.2.5.2, we present our bit
error rate assignment algorithm (BERA) which exploits the asymmetry of the FeFET
bit error model in a layer-wise manner with the goal of minimizing accuracy drop.
This targets the BET during inference problem.

5.2 fefet-based bnns and under temperature-dependent bit errors 55

5.2.5.1 Bit Flip Injection During Training

In order to achieve high accuracy, we train the BNNs by minimizing the cross
entropy loss (CEL), as described in Ch. 3. To also train BNNs for bit error tolerance
against the FeFET bit errors, we use bit flip injection during training, as proposed in
[Hir+19b]. However, simply applying this approach without taking the asymmetry
into account can lead to unacceptable accuracy drops, therefore, additional steps
to the existing methods need to be taken. Specifically, the asymmetry needs to be
taken into account evaluating and training with all bit error rate settings (p01, p10) ∈
{(2.198, 1.090), (1.090, 2.198), (2.098, 0.190), (0.190, 2.098)} by injecting bit flips with
(p01, p10) into all the BNN data that is prone to bit errors. By this we find out which
setting leads to the least accuracy drop under temperature dependent bit errors.

5.2.5.2 Bit Error Rate Assignment Algorithm (BERA)

We present BERA, which exploits the asymmetry of the FeFET temperature bit error
model in a layer-wise manner. The goal of BERA is to reduce the effect of the bit
errors by finding the layer-wise bit error rate configurations which maximize accuracy,
without bit flip training.

BERA operates in two steps. In the first step, the accuracy drop of the entire NN is
estimated by measuring the accuracy after injecting bit errors into one layer of the
network (with the training set). Because of the random nature of the errors, we repeat
the injection a certain number of times and average in the end. In the second step, the
setting with the lowest accuracy drop is chosen and assigned to the layer.

The algorithm realizing BERA is shown in Alg. 4. We first set bers, the bit error
rates, in Line 1. Then we initialize an array for all layers that suffer from bit errors
in Line 2, with a subarray for every bit error rate configuration, since we estimate
the accuracy drop of every configuration. The value reps is the number of repetitions
through the entire training data set for each bit error rate setting. With this parameter,
the precision of the accuracy drop estimation can be tuned. We measure the accuracy
without errors on the training set in Line 4. The accuracy drop is estimated for every
bit error rate setting in every layer individually in the loop. Finally, the results of the
estimation are stored in an array called adpl which is normalized with the number
of repetitions after Line 12. Then, from the adpl array, the setting with the lowest
accuracy drop per layer is chosen and assigned to the layer at hand. We call this
assignment the Greedy-A assignment.

5.2.6 Experiments for FeFET Temperature Bit Error Tolerance

We first evaluate the LBW execution of BNNs and how it compares to the regular
BNN execution in Sec. 5.2.6.1. Then, in Sec. 5.2.6.2, we assess the impact of FeFET bit
errors on BNN accuracy without any countermeasures. We apply the well-known bit
flip training while taking the asymmetry of the FeFET bit error model into account
(addressing the BET training problem). We also evaluate our BERA algorithm that

56 bnns with fefet

Algorithm 4: Accuracy drop per layer estimation for our BERA algorithm
Input: model, (Xtrain, ytrain)

Output: adpl
// Initialize bit error rates

1 bers = {c1, . . . , cS}
// Accuracy drop per layer (adpl)

2 adpl = {{ad1,1, . . . , ad1,S}, . . . , {adL,1, . . . , adL,S}}
// Number of repetitions for a bit error rate setting and layer

3 reps = R
// Measure accuracy of model

4 accv = accuracy(model(Xtrain), ytrain)

5 for each layer l ∈ {0, . . . , L} do
6 for each ci in bers do
7 set bit error rate tuple ci only for layer l
8 for each r in r ∈ {0, . . . , reps} do
9 accl,ci ,r = accuracy(model(Xtrain), ytrain)

10 adpl[l][ci] = adpl[l][ci] + accl,ci ,r

11 reset bit error rates in l

12 for each layer l ∈ {0, . . . , L} do
13 for each ci in bers do
14 adpl[l][ci] = accv − adpl[l][ci]

R

exploits the asymmetry by operating in a layer-wise manner to minimize the impact
of the FeFET bit errors (addressing the BET during inference problem).

5.2.6.1 LBW Execution of BNNs

In all the following experiments we use LBW BNNs, which we proposed in Sec. 5.2.4.
Here, we conduct evaluations for demonstrating that our assumption of using the
LBW execution of BNNs is reasonable and, additionally, to quantify the impact of
such an assumption on system performance. The LBW execution of BNNs buffers less
intermediate results to the memory during execution than the usual way of execution.
We want to demonstrate that the LBW execution of BNNs does not lead to significantly
higher execution times compared to the regular way of execution. We use the LBW
execution in the error tolerance evaluations, to justify bit flip injection in the weights,
input images, and activations, instead of injecting bit flips in all intermediate results.
Here, we evaluate the execution time of LBW BNNs and compare it to regular ones
using commonly available CPUs for the BNN operations. As experiment platforms
for the execution time measurements we use the same hardware setup as in [Bus+18].
Furthermore, we generate C++ code from PyTorch models with the same framework
as the study in [BJBP20], and implement in the C++ code the LBW execution. For

5.2 fefet-based bnns and under temperature-dependent bit errors 57

Platform BNN-type FASHION (ms/el.) CIFAR10 (ms/el.)

Intel Regular 1.09 26.47

LBW 1.05 32.15

ARM Regular 12.28 305.09

LBW 11.03 312.79

PPC Regular 4.55 210.03

LBW 12.45 306.30

Table 5.2: Average execution times evaluation for the regular and LBW BNNs on different
platforms and datasets. The values are in ms per one BNN evaluation. Each BNN
was evaluated 104 times as compiled C++ code.

Intel we used a Intel i7-8550U CPU with 1.80GHz and 16 GB RAM. For ARM we used
an ARM Cortex-A53 with 1.4 GHz and 1GB RAM (RaspberryPi 3B+). For PPC we
used a QorIQ T4240 PowerPC CPU with 1.67 GHz and 6 GB RAM. To summarize
the results in Table 5.2, the execution times for FASHION and CIFAR only differ by a
large factor for PPC, and for the other settings the execution times do not differ by a
large margin.

5.2.6.2 The Impact of FeFET Bit Errors on BNN Accuracy

For the experiments, we use the convolutional BNNs, VGG3 and VGG7, from Ch. 3,
shown in Table 3.2, with the Fashion, SVHN, and CIFAR10 datasets, shown in Table 3.1.
We inject the bit flips in the weights, activations and inputs by implementing a bit flip
injection tool in PyTorch, as explained in Ch. 3. All training and testing experiments
are repeated 10 times due to the random nature of the bit flips.

We plot the accuracy over bit error rate for all experiments in Fig. 5.4. For
the evaluation of accuracy over the temperature-induced bit error rates, we in-
ject bit flips with the bit error rates presented in Sec. 5.2.1, with the combinations
(p01, p10) ∈ {(2.198, 1.090), (1.090, 2.198), (2.098, 0.190), (0.190, 2.098)}. With the tem-
perature steps Tstep ∈ {0, 1, . . . , 16}, we evaluate the full bit error range, which corre-
sponds to the entire range of operating temperature considered in our FeFET analysis.
We incorporate these temperature steps in the evaluation by defining T∗step = 1

16 Tstep

in BER(T∗step) = T∗step · (p01, p10). In the accuracy over bit error rates plots, we annotate
the x-axis with T∗step.

Impact on BNNs with no countermeasures: For BNNs trained without errors (top
row of Fig. 5.4) the impact of the temperature bit errors can be substantial if no bit
error training is used and when no attention is paid to the asymmetry of the bit error
rates. We find accuracy degradation of over 25% for Fashion, over 30% for CIFAR,
and over 7% for SVHN at the highest operating temperature T∗step = 1.

Bit flip injection during training: When training with bit flip injection (bottom
row of Fig. 5.4), we achieve bit error tolerance for the entire range of operating
temperature. The asymmetry of the bit error model, however, plays a key role in these

58 bnns with fefet

0 0.25 0.5 0.75 1
70

75

80

85

90

T ∗
step

A
cc

ur
ac

y
(%

)

FASHION

0 0.25 0.5 0.75 1
50
55
60
65
70
75
80
85

T ∗
step

A
cc

ur
ac

y
(%

)

CIFAR10

Greedy-A
[2.198, 1.090]
[1.090, 2.198]
[2.098, 0.190]
[0.190, 2.098]

0 0.25 0.5 0.75 1

84

86

88

90

92

T ∗
step

A
cc

ur
ac

y
(%

)

SVHN

0 0.25 0.5 0.75 1
70

75

80

85

90

T ∗
step

A
cc

ur
ac

y
(%

)

FASHION

0 0.25 0.5 0.75 1
50
55
60
65
70
75
80
85

T ∗
step

A
cc

ur
ac

y
(%

)

CIFAR10

Greedy-A-Flip
(2.198,1.090)-Flip
(1.090,2.198)-Flip
(2.098,0.190)-Flip
(0.190,2.098)-Flip

0 0.25 0.5 0.75 1

84

86

88

90

92

T ∗
step

A
cc

ur
ac

y
(%

)

SVHN

Figure 5.4: Accuracy over temperature-dependent error rates. Top row: No bit flips during
training, and in the orange plot (Greedy-A) the result for applying BERA after
training. Bottom row: Bit flip training with all bit error rate configurations and
in orange (Greedy-A) the retraining with BERA. T∗step = 1

16 Tstep and Tstep ∈
{0, 1, . . . , 16}. BER = T∗step · (p01, p10) yields the temperature dependent bit error
rate setting. Greedy-A is the accuracy optimal assignment acquired after executing
BERA. In the other four settings, every layer of the BNN is configured with the
same bit error rate. E.g., when we write (2.198, 1.090), then every layer of the BNN
is configured with these bit error rates.

experiments. The differences among the highest and the lowest Fashion curves is
below 0.2% for T∗step = 1. For T∗step = 1 this difference is 0.85%. For CIFAR10, these
gap are larger. First, for T∗step = 0, the difference between the plot with the highest
and the lowest accuracy is 1.75%. For T∗step = 1, this difference is 9.6%. Furthermore,
when comparing the CIFAR10 plots without bit flip training (left column) with the
bit flip trained plots at T∗step = 0, the highest plots differ by 1.1%. In this case, the bit
flip training drops the accuracy by more than one percent. For the other datasets, this
accuracy tradeoff amounts to merely around 0.2%. For SVHN, the difference among
the plots at T∗step = 0 is below 0.2% and for T∗step = 1 it is 1.4% when comparing the
highest accuracy plot with the lowest. In all three datasets, the setting (2.098, 0.190) is
the best one among the four bit error rate settings.

Bit Error Rate Assignment Algorithm (BERA): We present the result for BERA in
the accuracy over bit error rate plots in Fig. 5.4 as Greedy-A (orange plots). In the
top row, we show the plots for only using BERA to protect the BNNs and without
bit flips during training. The Greedy-A plot is able to protect the BNN from bit

5.3 fefet-based lim for bnns 59

errors to a similar extent as using bit flip training. The difference at T∗step = 1 is 0.66%
when compared to BNNs retrained with Greedy-A. For the other two datasets, the
Greedy-A assignment can only reach the same accuracy as (2.098, 0.190), since that
setting is the best one for every layer. We also evaluate the combination of BERA and
bit flip training. In the bottom row we show the plots (in orange) for retraining with
the Greedy-A setting after training without bit flips. We retrained Fashion BNNs for
10 epochs, CIFAR10 for 200, and SVHN for 50. For Fashion, the Greedy-A assignment
improves accuracy by 0.3% compared to the other settings. This eliminates the tradeoff
in accuracy when injecting bit flips during training.

5.3 fefet-based lim for bnns

Several recent studies have demonstrated how a boolean logic function (e.g., XNOR,
NAND, etc.) can be realized within conventional SRAMs [Agr+18] and emerging
NVMs [Ni+19], which is referred to as Logic in Memory (LiM). In LiM, the memory
element acts as both, a storage and a computing unit. Using LiM promises less data
movement compared to traditional von Neumann systems, since the data is already
present in the processing units, due to which expensive data movements do not need
to be performed. As one of the main bottlenecks in systems that execute NNs is the
data movement, LiM constitutes a viable design paradigm for efficiency in NNs.

Specifically, realizing LiM based on emerging NVMs is rapidly gaining attention
because of the non-volatility. It provides significant power savings compared to
SRAMs, which suffers from high static power. Furthermore, the high density (of
NVMs) allows accommodating large amounts of data within a small area.

As discussed in Sec. 5.1, among the emerging NVM technologies, FeFET is an
outstanding candidate for memory in efficient systems with numerous advantages.
On top of its low resource consumption and CMOS-compatibility, realizing a LiM-
based XNOR using FeFET only needs 2 transistors compared to 16 transistors using
SRAM [Ni+19]. FeFET-based LiM and BNNs are a promising combination of emerging
techniques for extremely efficient deployment. For these reasons, we believe that
FeFET-based XNOR LiM with BNNs is a highly synergystic opportunity.

Nevertheless, compared to conventional CMOS logic, the latency of LiM using an
emerging technology is often longer. As we will show later, a FeFET-based XNOR
LiM gate has a latency of around 0.7 ns, whereas popcount and activation circuits that
are needed for BNN hardware have a latency of around 0.43 ns and 0.34 ns [CGC21;
GNA18], respectively. This makes the FeFET-based XNOR LiM a bottleneck in the
processing latency.

To decrease the latency of the XNOR LiM computation, overclocking can be em-
ployed, in which a clock speed higher than the recommended logic latency is used.
However, setting the clock speed too high may result in errors, i.e. in the form of bit
flips. Here, the error tolerance of BNNs can be exploited for higher latency. To the
best of our knowledge, at the time of the writing there have not been any studies
that exploit the error tolerance of BNNs and trade off BNN accuracy with the ex-

60 bnns with fefet

AB B

M-Line Output

FeFinFET1 FeFinFET2

AB B

M-Line Output

FeFinFET1 FeFinFET2

storing A=0 storing A=1

FeFinFET1: Low(VT)

FeFinFET2: High(VT)

FeFinFET1: High(VT)

FeFinFET2: Low(VT)

Figure 5.5: The implementation of FeFET-based XNOR that consists of two FeFinFETs storing
the logic value A in a complementary manner.

A B FeFinFET1 FeFinFET2 Discharge M-Line Vout Output

0 0 OFF OFF No match stays high 1

0 1 ON OFF Yes mismatch drops 0

1 0 OFF ON Yes mismatch drops 0

1 1 OFF OFF No match stays high 1

Table 5.3: The basic operation and the realization of XNOR boolean function by the FeFET-
based XNOR gates in Fig. 5.5. The XNOR’s output is ‘0’ if and only if A 6= B.
Otherwise, the XNOR’s output is ‘1’.

tent of errors in FeFET-based XNOR-LiM computations stemming from low latency
configurations.

In this section, we explore the tradeoff between the probability of error and speed
that FeFET-based XNOR offers. We then demonstrate how the error error tolerance of
BNNs can be increased at the design-time and exploited at run-time to decrease overall
inference latency of LiM. Specifically, we investigate how PV impacts FeFET-based
XNOR and model the relation between probability of error (Perror) and computation
speed. We then explore how XNOR-induced errors can degrade the inference accuracy
of BNNs. Afterwards, we present how error tolerance in BNNs can be achieved
through proactively training the BNNs in the presence of the XNOR-induced errors.
Finally, we investigate the sensitivity of every individual layer in BNNs to XNOR-
induced errors. Then, we demonstrate how a selective approach in which the speed
of FeFET-based XNOR is adjusted for every layer, trading-off Perror with latency. In
exploring this trade off, we maximize the inference speed under a certain inference
accuracy drop constraint.

The remainder of this section is structured as follows. In Sec. 5.3.1, we present
our FeFET-based XNOR-LiM model and in Sec. 5.3.2 we discuss its error model.
In Sec. 5.3.3, we present the system model and design objective. The two techniques
to trade off errors with latency are introduced in Sec. 5.3.4 and they are evaluated
in Sec. 5.3.5.

5.3 fefet-based lim for bnns 61

5.3.1 FeFET-based XNOR LiM Model

The LiM realizing the XNOR-logic function can be achieved through coupling two
FeFET transistors together [Ni+19], shown in Fig. 5.5 and the detailed states in Ta-
ble 5.3. A value A ∈ {0, 1} is stored inside the XNOR in a complementary manner
and B ∈ {0, 1} is the input to the XNOR. When A = 0, FeFinFET1 is in the low and
FeFinFET2 is in the high VT state. Depending on whether the value B matches the
stored value A, the XNOR output will be either “0” or “1”. In practice, the match
line (ML) is charged to high (Vdd) and when A is equal to B, both FeFinFET1 and
FeFinFET2 will be OFF. In this case, no conducting path is formed and the voltage
remains high. Therefore, the XNOR’s output is logic “1”. Only when A is not equal
to B, a conducting path is formed through the FeFET that is in low VT state. In this
case, the voltage rapidly drops and the output provides logic “0”.

To allow the “overclocking”, the XNOR gate is implemented as a dynamic logic
gate. Dynamic XNOR gates have been proposed in the past [TM00; GDM83] and
have the ability to achieve a high speed, small area, full voltage swing, and good
driving capability [Goe+06]. Dynamic XNOR gates are clocked and work in two
phases: Precharge phase and evaluation phase [Wan+11; RCN03]. In the precharge
phase, the output node is charged to Vdd, and in the evaluation phase, the output
node either discharges or does not discharge depending on the combinations of the
inputs applied. Realizing the computations required by BNNs using dynamic XNOR
logics in which a clock is available enables run-time adaptation in which the speed of
calculation can be adjusted as a tradeoff with accuracy.

5.3.2 Variability and Error Modeling in FeFET-based XNOR-LiM

We implement and simulate the FeFET-based XNOR LiM gate (see Fig. 5.5) using the
commercial SPICE tool Cadence Spectre. To capture the effects of manufacturing vari-
ability, we perform 10,000 Monte Carlo (MC) simulations for the FeFET-based XNOR
gate. The analysis is performed for all four possible configurations, i.e. XNOR(0,0),
XNOR(1,0), XNOR(0,1), and XNOR(1,1). In Fig. 5.6(a), we present the results for the
case of XNOR(0,1) as an example. To acquire Perror with variability in the XNOR output,
we analyze the obtained results from the MC SPICE simulations. Here, we differenti-
ate between the following two scenarios: Scenario 1: For the case of match, where the
input of the XNOR matches the value stored within the XNOR(i.e. XNOR(0,0) and
XNOR(1,1)), both FeFinFET1 and FeFinFET2 are in the OFF state (see Table 5.3). Hence,
no current will be flowing through any of transistor (except a tiny leakage current).
In such a case, the output remains at the high voltage and transistor variations has no
impact because both FeFinFETs are OFF. Thus, no errors will be incurred, i.e. Perror = 0
for XNOR(0,0) and XNOR(1,1). Scenario 2: For the case of mismatch in which the input
of the XNOR differs from the value stored within the XNOR (i.e. XNOR(1,0) and
XNOR(0,1)), one of the two FeFET transistors is in the ON state (see Table 5.3). In this
case, a conducting path is formed and a current flows through one of the FeFinFETs.

62 bnns with fefet

m

m

m

m

m

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.2 0.4 0.6 0.8

(a) (b)

(c) (d)

0

400

800

1200

1600

0 0.2 0.4 0.6 0.8

(a) (b)

(c) (d)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

(a) (b)

(c) (d)

1

1.5

2

2.5

3

0 5 10 15 20

(a) (b)

(c) (d)
O

ut
pu

t
vo

lta
ge

[V
]

Time [ns]

C
ou

nt
[#

]

Latency [ns]

Pr
ob

ab
ili

ty
of

er
ro

r
[%

]

Latency [ns]

XNOR(0,1)
XNOR(1,0)

N
or

m
al

iz
ed

sp
ee

du
p

Probability of error [%]

Figure 5.6: (a) Impact of process variation on FeFET-based LiM for XNOR(0,1). (b) The
resulting distribution of XNOR output voltage subject to the XNOR latency (speed).
(c) The probability of error (Perror) of FeFET-based XNOR as function of latency.
(d) The tradeoff in FeFET-based XNOR between speed and reliability (Perror).

The output drops from high to low (see Fig. 5.6(a)) and transistor variations have an
impact leading to errors in the XNOR output.

Due to variation effect, errors are incurred. In practice, the output is considered “0”
when the voltage drops below the threshold of 10% of Vdd. Therefore, depending on
the selected latency (i.e. propagation delay) the XNOR output may mistakenly be “1”
instead of “0” due to variation effects. In Fig. 5.6(b), we present the distribution of the
XNOR latency at which the XNOR output drops below the voltage threshold (10%
Vdd = 0.07V). In Fig. 5.6(c), we present the Perror as a function of latency. For a smaller
latency (i.e. at higher XNOR speed), the Perror becomes larger, as expected. Note that
Perror for the case of XNOR(1,0) and XNOR(0,1) is approximately the same, because
both FeFinFETs that form the XNOR are symmetric and subject to the same amount
and source of variation. Also note that here, the probability of error goes up to 100%,
which would be the case when the input is applied and only a short time (0.1 ns)
passes. The output will always be “1”. Finally, Fig. 5.6(d) summarizes the tradeoff
between the speedup of the FeFET-based XNOR and reliability regarding Perror.

5.3.3 System Model and Design Objective

We model the usage of FeFET-based XNOR in our system by assuming that the results
of XNOR operations in our BNNs follow the same probability of error obtained from
our hardware analysis (details in Sec. 5.3.2). This means, with every execution of
XNOR(0,1) or XNOR(1,0), the XNOR result can flip from “0” to “1” with probability

5.3 fefet-based lim for bnns 63

Activation buffer

Row 0

Row k

XNOR Logic-in-Memory Popcount Activation

…

⁞ ⁞

Latches⁞

⁞

Popc

Acc

n

⁞

Act

… Latches⁞
Popc

Acc

n
Act

Affected by PV

Erronous

interpretation

due to PV

n

n

Figure 5.7: The considered system model used for BNN computations. The FeFET-based
XNOR gates, which store the binary weights, are organized as rows, operate in
parallel, and are connected to Popcount and activation circuits. Note that the
XNOR gates are implemented as dynamic logic. Hence, depending on the clock
speed, internal XNOR latency, and process variation the an erroneous computation
might be latched and passed to the Popcount. The shown system configuration is
just an example and it should be considered without loss of generality.

Perror, which is a function of XNOR latency (see Fig. 5.6(d)). Note that when computing
XNOR(0,0) and XNOR(1,1) during inference, Perror of 0 is applied, as explained
in Sec. 5.3.2. Convolutional and fully connected layers are subject to the XNOR-
induced errors because only in these layers XNOR operations are performed.

In BNN accelerators that use the FeFET-based XNOR gates, data needs to move
from the XNOR gates to the popcount units, and then to the activation units. These
three components might be connected in various system configurations. One example
is shown in Fig. 5.7. Note that this work focuses on how errors caused by the XNOR
gates, when traditional CMOS-based XNOR gates are replaced with emerging FeFET-
based XNOR gates, can propagate from there to corrupt the popcount and activation
units and ultimately reduce the BNN inference accuracy. In general, every XNOR
gate needs to be connected to a popcount unit by a wire, e.g. by multiplexing when
popcount units are shared, or direct connections when a certain number of XNOR
gates each are connected to own popcount units. The signals coming from the XNOR
output then need to be latched, to enable the signal propagation to the popcount
unit. When they are latched, the XNOR outputs are interpreted as a logic “1” or logic
“0”. Due to the impact of variation on FeFET-based XNOR, errors when latching the
XNORs output could occur. Modeling these errors and then injecting them in the BNN
is what our study focuses on. Note that after latching, all subsequent computations of
a layer (i.e. popcount and activation) are performed in a “reliable” way. However, the
errors propagating from the previous component (i.e. FeFET-based XNOR) may still
corrupt them.

Previous work on BNN hardware operate with similar assumptions [Che+18].
Popcount and activation can either be computed in the analog domain (e.g. by

64 bnns with fefet

the sum of currents and analog comparators [Che+18]) or in the digital domain
(e.g. popcount and digital comparison units [CGC21]). The optimization of these
components is not considered in this work. However, it is important to note that
state-of-the-art popcount units operate in the range of sub-nanoseconds (e.g. 0.43

ns, see [CGC21]), while the activation can be computed in the same latency scale
as well (e.g. 0.34 ns, see [GNA18]). Lower latency can certainly be achieved in these
components, depending on the realization. The tradeoffs need to be evaluated case-
by-case. Here we want to show that the optimization of the XNOR gate latency (0.71

ns in this work) has significant effects on the latency of BNN accelerators, since the
FeFET-based XNOR gate is one of the main bottlenecks in latency.

Design Objective: Our key objective is how the demonstrated tradeoff between
reliability and latency in FeFET-based XNOR (shown in Fig. 5.6(d)) can be employed
in error tolerant BNNs, in which higher inference speed is obtained at a small accuracy
loss. We perform our investigation in a scenario with a given set of labelled input data
and a BNN with stochastically binarized inputs performing multiclass classification.
Our goal is to evaluate solutions to the following design problem: Given the tradeoff
between the latency and Perror of FeFET-based XNOR, find the smallest latency (i.e. the highest
Perror), at which the XNOR can operate, while still sustaining a certain inference accuracy
of BNN. Here, we define the setting p as the set containing the Perror of each layer,
where p = {p0, . . . , pL} has elements p` with 0 ≤ ` ≤ L, and ` = L denotes the last
layer in the BNN. To achieve this objective, we propose two techniques to obtain error
tolerant BNNs.

(1) Design-Time Technique: The BNN is optimized with error tolerance training.
Based on the achieved tolerance, p is set, such that a certain inference accuracy is still
sustained. Here, the same p` is set for every layer in the BNN.

(2) Run-Time Technique: Unlike the design-time technique, no re-training is re-
quired here. p is derived by post-training evaluations in which different layers exhibit
different Perror (i.e. XNORs in different layers operate at different speeds), while a
certain inference accuracy is still sustained.

5.3.4 Trading-off Reliability and Speed: Error Tolerant BNNs under XNOR Errors

In this subsection, we cover the two techniques for obtaining error tolerant BNNs, the
design-time technique in Sec. 5.3.4.1 and the run-time technique in Sec. 5.3.4.2.

5.3.4.1 Error Tolerant BNNs during Design-Time

We use the modified hinge loss (MHL) for achieving high accuracy and error tolerance
in our BNNs from Ch. 4. The MHL directly maximizes the margins in the output layer,
which leads to higher accuracy and error tolerance than using the standard cross
entropy loss. To achieve even higher error tolerance, the suggested method in Ch. 4

is to combine the MHL with application of the error model during training.

5.3 fefet-based lim for bnns 65

Before discussing the error model application during training, we first develop an
intuition for the effects that the XNOR errors cause in the computations of the BNNs.
The effect of the XNOR error model (as described in Sec. 5.3.2) is a positive offset
in the result of the popcount. This means, the result popcount(XNOR(W`, A`−1))

from Eq. (2.4) gets shifted by E(`, p`), leading to

popcount(XNOR(W`, A`−1)) + E(`, p`),

because only the results of XNOR(0,1) and XNOR(1,0), which are both “0”, can flip to
“1” with a given error probability of p`. The error tensor is defined by

E(`, p`) = popcount(XNORp`(W
`, A`−1))− popcount(XNOR(W`, A`−1)),

where XNORp` specifies the usage of the XNOR gates that have probability of error p`.
The tensor E(`, p`) contains the error values that shift the result of the popcount due
to the XNOR errors. Note that the error values in E(`, p`) are always positive, depend
on the number of XNOR (1,0) and XNOR (0,1) operations to compute a convolution
in layer `, and on a probability of error specified as p`.

Applying this error model during training is a challenge. For error model appli-
cation during training, the output of affected XNOR operations need to be flipped,
which requires replacing the highly optimized MAC libraries used in NN training
frameworks with customized ones. This slows down the training considerably. In
order to achieve efficient error model application during training, we develop a novel
method, in which we construct tensors E∗(`, p`) such that their values follow the
same distribution as the actual error values in E(`, p`). Due to the properties of the
XNOR error model, the values in the error tensor follow a normal distribution, i.e.
E(`, p`) ∼ N (µ, σ2). To acquire distributions from which error tensors can be sampled,
we first train a BNN with MHL, without application of any error model. We then
sample error tensors of E(`, p) for a specified p` in a specified layer ` during inference
of a BNN under the exact XNOR error model. We then construct a normal distribution
from the obtained samples of values in the error tensors. With the acquired mean µ

and standard deviation σ2 for a combination of `, p`, we can sample values of error
matrices E∗(`, p) during training.

For applying the XNOR error model during training, we add E∗(`, p) to the result
of the popcount, and get

popcount(XNOR(W`
i , A`−1)) + E∗(`, p),

which is a precise approximation. This way of applying the XNOR error model has
similar error distributions as in the precise XNOR error model. It is also applicable in
any training framework, while having low overheads.

Note that values for the mean and standard deviation of the error tensor can only
be derived theoretically if the exact number of XNOR operations with result 0 per
layer are known. This number would have to obtained by a similar way of sampling
as above. For this reason we derive the mean and standard deviation of the error

66 bnns with fefet

tensor by sampling the error tensors that are produced when applying the exact
XNOR error model on a BNN that was trained without any error model application
during training.

5.3.4.2 Error Tolerant BNNs during Run-Time

The architecture and NN parameters are often obtained through high efforts and
using lots of training resources. Training with errors may not be desired because the
parameters will be modified, while injecting errors during training is time consuming
or may even be infeasible in some scenarios. Furthermore, using the same p` for
every layer in the BNNs may not be a good option for p, since different layers in NNs
exhibit different sensitivities to errors [HLPS20; HWC17].

For these reasons, we develop a layer-wise method for optimizing values in p.
One method is to start with high p` in each layer, and decrease it until a certain
accuracy goal is achieved [Ha+21]. In our work, we also have to consider the speedup
for setting p. Our goal is to increase the p` in each layer, such that we achieve the
highest speedup under the sacrificed accuracy drop (AD). Additionally, we want to
incorporate the number of operations of a layer into the optimization. To achieve
this, we define s`,p` as the XNOR speedup obtained when we divide the baseline (or
reference) XNOR latency at Perror = 0 by the new XNOR latency at Perror > 0. We then
define AD`,p` as the accuracy drop (AD), when the error model is applied with p` in
layer ` only. As the objective for maximization, we denote s`,p

AD`,p
. To incorporate the

number of operations, we multiply this value by the number of cycles c` needed to
compute a layer `, divided by the maximum number of cycles needed in any layer,
denoted as cmax. We call this value weighted speed accuracy drop (WSAD):

WSAD`,p` =
s`,p`

AD`,p`

c`
cmax

(5.1)

The higher the WSAD-value, the higher is the speedup for a certain AD, while
weighting values of layers with more operations higher. We use the WSAD-values to
select p` for each layer using a greedy strategy.

5.3.5 Experiment Results

In the following we present the experiment setup in Sec. 5.3.5.1. We then evaluate the
design-time and run-time techniques in Sec. 5.3.5.2 and Sec. 5.3.5.3, respectively.

5.3.5.1 Experiment Setup

To evaluate the error tolerance of BNNs against the XNOR errors, we use a framework
based on PyTorch, as described in Ch. 3. We also use the BNN models VGG3 and
VGG7 (see Table 3.2), which use the stochastic input binarization from Sec. 2.2.3,
with the Fashion and CIFAR10 datasets (see Table 3.1), as described in Ch. 3. In

5.3 fefet-based lim for bnns 67

the PyTorch MAC-library, the exact XNOR error model cannot be applied, since the
code for matrix-multiplication is based on proprietary CUDA libraries. Due to this it
cannot be easily modified. Therefore, to apply the exact error model in our framework,
it was necessary to replace the MAC-library in PyTorch with our own customized
MAC-library with CUDA kernels.

To describe the obtained speedup of our methods, we divide the latency at Perror = 0
by the latency at the Perror obtained by our technique. The Perror can be translated to
the corresponding XNOR latency (see Fig. 5.6(d)). For evaluations, we consider the
following set of accuracy budgets: {0.25, 0.5, 1, 2, 3, 4, 5} percentage points below the
baseline BNN accuracy, which is 90.43% for Fashion, and 83.64% for CIFAR10 in the
absence of XNOR errors, see black plots in the left column of Fig. 5.8((a) and (d)).

5.3.5.2 Design-Time Error Tolerance of BNNs

In Fig. 5.8 (leftmost column), we present the accuracy over Perror for Fashion (Fig. 5.8(a))
and CIFAR10 (Fig. 5.8(d)) BNNs trained with our design-time technique presented
in Sec. 5.3.4.1. We apply the error models during training using Perror with 1%, 2%,
3%, and using Perror with 0.25%, 0.5%, 0.75% for the datasets Fashion and CIFAR10,
respectively, by which the BNNs become error tolerant. Note that in both dataset cases,
0% indicates the baseline BNN without any errors during training. The achieved error
tolerance allows to trade off latency with accuracy.

With the error tolerant BNNs we can evaluate the LiM speedup under an accuracy
budget. The speedup values are derived by utilizing the baseline (0%) and design-time
method (1-3% for Fashion or 0.25-0.75% for CIFAR10) from the plots in Fig. 5.8((a)
and (d)) for a certain accuracy budget by finding the probability of error at which the
average accuracy is high enough such that the accuracy drop is within the accuracy
budget. We then convert the probability of error to a speedup value in Fig. 5.6 (see
rightmost column in Fig. 5.8, (c) and (f), for the results). For example, in the leftmost
column, consider the black plot in Fig. 5.8(a). With an accuracy budget of 1%, the
average accuracy is 89.53% at 1% probability of error. Then, the 1% probability of
error is translated to 0.495 ns. Finally, we acquire a speedup of 43% by dividing the
baseline latency 0.706 ns by 0.495 ns.

In the rightmost column of Fig. 5.8, (c) and (f), we observe that the higher the
accuracy budget, the higher the speedups, but the returns become small, e.g. above
1% budget. For the achieved speedups based on this method, for Fashion Fig. 5.8(c), we
observe that for the small accuracy budgets 0.25%, 0.5% and 1%, we achieve speedups
of 43%, 53%, and 63% respectively for 1% Perror during training and speedups of 67%,
68%, 75% respectively for 2% Perror during training. For CIFAR10 in Fig. 5.8(f), we
observe that for the budgets 0.25%, 0.5% and 1%, we achieve speedups of 26%, 30%,
and 36% respectively for 0.25% Perror during training and speedups of 33%, 36%, 38%
respectively for 0.5% Perror during training.

Importantly, for the design-time method, the higher Perror is during training, the
more the BNNs exhibit adaptation to the Perror. In Fig. 5.8(a) the 3%-curve has an

68 bnns with fefet

0 1 2 3 4 5 6 7 8 9 10
0
10
20
30
40
50
60
70
80
90

Probability of error [%]

In
fe

re
nc

e
ac

cu
ra

cy
[%

] FASHION

0%
1%
2%
3%

(a)

0 1 2 3 4 5 6 7 8 9 10
0
10
20
30
40
50
60
70
80
90

Probability of error [%]

A
cc

ur
ac

y
dr

op
[%

] FASHION
` = 0
` = 1
` = 2
` = 3

(b)

0 1 2 3 4 5
0
10
20
30
40
50
60
70
80
90

Accuracy budget [%]

X
N

O
R

Li
M

sp
ee

du
p

[%
]

FASHION

Baseline
Design-time w. Perror = 1%

Design-time w. Perror = 2%

Run-time adaptation

(c)

0 0.5 1 1.5 2
0
10
20
30
40
50
60
70
80
90

Probability of error [%]

In
fe

re
nc

e
ac

cu
ra

cy
[%

] CIFAR10

0%
0.25%
0.5%
0.75%

(d)

0 0.5 1 1.5
0
10
20
30
40
50
60
70
80
90

Probability of error [%]

A
cc

ur
ac

y
dr

op
[%

] CIFAR10
` = 0
` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7

(e)

0 1 2 3 4 5
0
5
10
15
20
25
30
35
40
45
50

Accuracy budget [%]

X
N

O
R

Li
M

sp
ee

du
p

[%
]

CIFAR10

Baseline
Design-time w. Perror = 0.25%

Design-time w. Perror = 0.5%

Run-time adaptation

(f)

Figure 5.8: Experiment results for the FeFET-based XNOR LiM speedup with the datasets
Fashion and CIFAR10. Left column ((a) and (d)): Accuracy over probability of
error. Middle column ((b) and (e)): Accuracy drop (AD) over probability of error.
Right column ((c) and (f)): XNOR LiM speedup values over accuracy budgets.

average accuracy of 75% for Perror of 0%. In Fig. 5.8(d), the 0.75%-curve has an accuracy
of 73.78% at Perror of 0%. This makes these BNNs inflexible and impractical. In such
a case, BNNs cannot be used for inference in the absence of errors. The reason for
the adaptation is that the errors manifest themselves as positive terms added to
the popcount result, because the XNOR errors only flip “0” to “1” with a certain
probability of error, and never “1” to “0”, meaning the result of the popcount can only
increase, as explained in Sec. 5.3.4.1. Note that we also observe a small adaptation
effect for BNNs trained with lower Perror during training. In other studies on BNN
inference with bit errors, e.g. on RRAM [Hir+19b], the equation for computations is
popcount(XNOR(W`, A`−1))± E(`, p`), since there the assumption is that the binary
weights can flip from “1” to “0” or vice versa with the same probability of error,
which may cause less severe adaptations.

5.3.5.3 Run-Time Error Tolerant BNNs

To use WSAD-values from Eq. (5.1) in Sec. 5.3.4.2 for setting p`, it is first necessary to
evaluate the accuracy drop (AD) per layer. We apply the exact XNOR error model
in a single layer and then evaluate the inference accuracy on the training set. The
AD-values per layer are shown in the middle column in Fig. 5.8((b) and (e)). Based on

5.4 conclusion 69

the AD-values, we calculate the WSAD-values. The number of cycles per layer (c`),
needed for Eq. (5.1), are obtained from the MAESTRO tool [Kwo+20].

We find the setting of p using a greedy approach. In every step of the algorithm,
we select the highest remaining WSAD value and after every step evaluate whether
we retain our accuracy budget. For example, for Fashion, one setting we achieve by
this for 1% accuracy budget is p = {p0 = 0.5%, p1 = 1%, p2 = 1.5%, p3 = 0%}, with
an average accuracy of 89.53%. The next step in the algorithm would be to increase
p1 to 1.5%, as its WSAD value is the highest remaining value. For CIFAR10, with
an accuracy budget of 1%, the setting {p0 = 1.5, p1 = 0.5, p2 = 0.5, p3 = 0.25, p4 =

0%, p5 = 0%, p6 = 0.25, p7 = 0%} leads to an average accuracy of 83.18%. The other
settings have higher or lower error rates depending on the accuracy budget. We
acquire the speedup values from p by multiplying the number of computing cycles
of a layer by the corresponding latency at p`. We perform this for each layer and then
compute the sum over all layers. Afterwards, we divide the baseline latency (0.706

multiplied by the number of cycles for a BNN) by the computed sum and report the
speedup in Fig. 5.8((c) and (f)), in the rightmost column in the black plots.

Our run-time method outperforms the baseline for all considered accuracy budgets
in both datasets. For example, for Fashion, with the budgets 0.25%, 0.5%, and 1%,
we observe speedups of 40%, 49%, 50%, respectively. For CIFAR10, with the budgets
0.25%, 0.5%, and 1%, we observe speedups of 14%, 15%, 24%, respectively. However,
in some cases, the speedup values can deviate from the trend. This is due to the
stochastic nature of the input binarization and error injection. In comparison to the
design-time methods, the run-time method achieves lower speedups. Note that the
run-time method is more flexible, as it does not need any retraining and does not
suffer from accuracy loss at 0% probability of error. The run-time method can also be
applied in cases in which the model is given and cannot be retrained.

5.4 conclusion

In this chapter, we explored the use of FeFET as an approximate memory for BNNs.
FeFET is one of the most promising emerging technologies to date. Due to its CMOS
compatibility, it is expected to be integrated into products in the near future. FeFET is
an emerging technology, therefore some aspects of it need further attention. Here, we
focused on two aspects: The temperature susceptability of FeFET and the latency of
FeFET-based LiM. The sections addressing the two aspects are summarized below.

In Sec. 5.2, we first analyzed the effects of variable temperature on FeFET memory
and proposed an asymmetric bit error model that exhibits the relation between
temperature and bit error rates. We then evaluated the impact of FeFET asymmetric
temperature bit errors on BNN accuracy when no countermeasures are applied
and showed that the accuracy can drop unacceptably. To deploy BNNs with high
accuracy using FeFET memory despite the temperature effects, we proposed two
countermeasures to the bit errors: (1) Bit flip training while taking the asymmetry
into account and (2) a bit error rate assignment algorithm (BERA) which estimates

70 bnns with fefet

accuracy drops per layer and assigns layer-wise the bit error rate configuration with
the lowest accuracy drop. With these methods, the BNNs achieve bit error tolerance
for the entire range of operating temperature and FeFET memory can be used on the
low-power edge for BNNs despite the temperature-dependent bit errors.

In Sec. 5.3, we investigated how the error tolerance of BNNs can be exploited for
decreasing the FeFET-based XNOR-LiM latency, which is a major bottleneck, at the
cost of errors. To perform this investigation, we employed the tradeoff between XNOR
latency and the extent of the errors occurring in the XNOR-LiM. We proposed two
methods to increase the latency: First, by employing design-time training with errors
and secondly, with a run-time approach that does not require training with the errors.
Both methods lead to significant LiM speedups.

6
H W / S W C O D E S I G N F O R E F F I C I E N T B N N I N F E R E N C E

In the vision of this dissertation, we propose to use approximate computing units
in systems that run BNNs. In this chapter, we present HW/SW Codesign methods
that exploit the error tolerance of BNNs in approximate analog-computing units
for inference efficiency. In HW/SW Codesign, we concurrently design the SW (here
BNNs) and the hardware (here HW for accelerating the operations of BNNs) with the
aim of finding synergistic solutions that lead to high efficiency (here in the domain of
analog computing).

Specifically, in Sec. 6.1, we propose a method on the SW level to approximate the
global thresholdings in BNNs with local thresholdings, which leads to highly efficient
interface circuit designs in analog computing based crossbar accelerators for BNNs.
In Sec. 6.2, we exploit the redundancy of quantization levels in the SW of BNNs
to reduce the required capacitor size in analog computing based Integrate and Fire
Spiking NNs (IF-SNNs) circuits.

The methods in both sections lead to measurable reductions in area, energy, and
latency, leading to highly efficient systems that execute BNNs. We present them in
the following.

6.1 global by local thresholding in bnns for efficient crossbar

accelerator design

For processing the workloads of BNNs efficiently, analog computing based crossbar
accelerators have recently been proposed in [Che+18; Sol+20b]. Crossbars are orga-
nized in columns, where each column consist of XNOR gates, circuits to perform the
popcount (e.g. through Kirchhoff’s circuit law in analog computing), and interface
circuits, shown in Fig. 2.5. The interface circuits employ analog-to-digital conversion
and accumulate intermediate results for further processing. This necessitates the use
of analog-to-digital converters (ADCs), registers connected to adders for accumula-
tion, and digital comparators. Specifically, ADCs are one of the most critical building
blocks in crossbar accelerators. It has been reported that in crossbar accelerators, the
ADCs use the most on-chip area and energy. For example, in the ISAAC accelerator,
ADCs use a large portion of the tile power and tile area [Sha+16b].

To avoid using the ADCs and digital components, the classical approach [Che+18]
is to use an “analog path” (AP) in the interface circuit, which only uses an analog
comparator. In contrast, the “digital path” (DP) uses ADCs and other digital com-
ponents. The AP and DP are shown in Fig. 2.5(c). However, the AP of the interface
circuit is and can only be used for a very small number of weights due to technologi-
cal limitations (e.g. up to 64 in [Che+18]), meaning it is not used in common BNN

71

72 hw/sw codesign for efficient bnn inference

architectures (which generally require a large number of weights β per neuron, see
e.g. Table 6.3). Therefore, the DP, with the ADCs and digital components, is used
in every crossbar invocation in BNN inference, causing high energy usage and high
latency. Furthermore, each column in the crossbar needs one interface circuit, causing
high area usage. For example, with 64 crossbar columns, 64 interface circuits with
both APs and DPs are needed.

Without the DP of the interface circuits, only analog comparators would be needed
for the BNN operations. The elimination of the DP would lead to breakthroughs
in small area usage, low energy consumption, and low latency inference in BNN
accelerators.

However, without the DP, the thresholdings in BNNs cannot be performed with the
full result of the popcount, referred to as “global thresholding”. Instead, when using
only the AP, the global thresholdings have to be approximated by “local thresholdings”
using the local popcounts in each crossbar column. To enable this, thresholds for the
local thresholdings have to be derived, while the results of the local thresholdings
have to be combined to reach an approximate global solution. Despite the high error
tolerance of BNNs, this way of approximation may cause high accuracy drop, which
necessitates the evaluation of the tradeoffs between interface circuit efficiency and
BNN inference accuracy.

In this section, we present a novel computing scheme for BNNs, which approximates
the global thresholdings by combining the results of local thresholdings, called local
thresholding approximation (LTA). To tolerate the approximations of LTA, we propose
to train the BNNs with approximations. We propose an efficient interface circuit design
for the LTA and show that it needs less resources than the state of the art. Since LTA
is a novel computing scheme, we propose tailored BNN workload mapping strategies.
In the experiments we reveal the impact of using the LTA in BNNs and show that
using the LTA may lead to significant accuracy degradation if no countermeasures are
employed. We then demonstrate that when training with the approximations from
the LTA, we consistently achieve high accuracy even under noise.

The remainder of this section is structured as follows: In Sec. 6.1.1, we present the
problem definition. We introduce the LTA in Sec. 6.1.2 and the LTA training scheme
in Sec. 6.1.3. We discuss the hardware concepts required for realizing the LTA , the
dataflow, crossbar, interface circuit, and the workload mapping in Sec. 6.1.4. The
experiments are in Sec. 6.1.5.

6.1.1 Problem Definition

In the classical approach by Chen et al. [Che+18], one crossbar column has one
interface circuit, each consisting of an analog comparator, an ADC, an adder, registers,
and a digital comparator, illustrated in Fig. 2.5. In their design, m interface circuits
are needed for a crossbar of size (m× n). To avoid using the ADCs and other digital
components, their approach employs an “analog path” (AP) in the interface circuit,

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 73

which only uses analog comparators. In contrast, the “digital path” (DP) uses ADCs
and other digital components.

However, the AP is only used when the number of weights β per neuron is very
small, i.e. β ≤ n, which is rarely the case (in [Che+18], n is only 64). High-performing
BNN architectures actually use a large β, and the size of β of a layer depends on the
number of neurons in the previous layer. For example, in our VGG-based BNNs, β is
large in every case, as shown in Table 6.3. Therefore, the DP is used in every crossbar
invocation, causing high energy usage and high latency. Further, the interface circuit
is the most area demanding part of the crossbar accelerator, mainly due to the ADCs
and registers, while the other components also cannot be neglected.

Problem Definition: Given a trained BNN with high accuracy and a crossbar
accelerator, as described in Sec. 2.3.2.2, in this section, we focus on the problem of
reducing the complexity of interface circuits in BNN crossbar accelerators, to achieve
inference using small area, low energy, and low latency.

Next, we present our novel method, which enables us to use the AP through most
of the execution (i.e. for β ≤ mn) and needs only one interface circuit for all crossbar
columns (instead of m interface circuits in the SOTA), at the cost of approximations.

6.1.2 LTA Execution

For simplicity of presentation, we consider that the weights and activations are binary
values in {−1, 1}. This way, XNOR can be denoted as multiplication and popcount
as summation. We rely on the notation in Sec. 2.1.1 and, to be able to distinguish
weights from the activations, in this chapter we use X for the inputs to a layer. The
weights of one neuron (a certain row in W) are described as W = (w1, w2, . . . , wβ),
with wj ∈ {−1, 1} and with β as the number of weights. The input (a column in X)
is denoted as X = (x0, x1, . . . , xβ) with xj ∈ {−1, 1}. We assume that the layers have
the following structure, without any operations inbetween: Convolution, batch norm,
binary activation. With this assumptions in BNNs, the activations are computed by

a = 1[
β

∑
i=1

wixi ≥ T]. (6.1)

T is the threshold for the neuron in W and 1[predicate] is a modified Iverson bracket,
which returns 1 if the condition predicate holds and −1 otherwise. The computation
in Eq. (6.1) is precise, i.e. without any errors. To perform precise computations, m
interface circuits with APs and DPs are needed, as described in Sec. 6.1.1.

To use the AP and interface circuits with less complexity, we employ local threshold-
ings using subsequent samples of size n, and combine the results of local thresholdings
with a majority function to obtain an approximate global result. By this, the computa-
tion result of a crossbar column with n XNOR gates is represented by one binary value.
The majority vote of m binary values from all crossbar columns is then performed to
reach a final approximate decision. This means that local thresholdings are performed
to reach an approximate global thresholding result.

74 hw/sw codesign for efficient bnn inference

1 -1 1 1 -1 1 -1 1

1[

β∑

i=1

wixi ≥ T]

1[

n∑

i=1

wixi ≥ T ∗] 1[

2n∑

i=n+1

wixi ≥ T ∗]

Majority vote

Precise execution

LTA execution

Figure 6.1: Precise and LTA execution in BNNs for β = 8, n = 4.

We call this way of computing the local thresholding approximation (LTA). In
the LTA, the AP is triggered throughout most of the execution, i.e. for β ≤ mn.
Furthermore, only one interface circuit is needed for the crossbar, whereas the SOTA
by Chen et al. [Che+18] requires m interface circuits. We focus on the interface circuit
and the corresponding workload mapping in Sec. 6.1.4, with a comparison to the
state of the art.

For the LTA, local thresholdings in the form 1[∑n
i=1 wixi ≥ T∗] are performed, i.e.

the sums are computed up to a value n, which is the number of XNOR gates in a
column of a crossbar. The local thresholdings are performed with a local threshold
T∗, followed by the majority vote of all local thresholdings.

The LTA is defined as:

1[
β

∑
i=1

wixi ≥ T] ≈ 〈a1, a2, . . . , aN〉

= 〈1[
n

∑
i=1

wixi ≥ T∗], 1[
2n

∑
i=n+1

wixi ≥ T∗], . . . , 1[
β

∑
i=(N−1)n+1

wixi ≥ T∗last]〉.
(6.2)

The majority is denoted as 〈a1, . . . , aN〉 = Majority(a1, . . . , aN). The threshold T∗ for
the local thresholdings, except the last, which is acquired by dividing the global T by
the number of local comparisons N =

⌈
β
n

⌉
. The threshold T∗last for the last window

(which may have smaller window size than other windows) is derived by scaling
T∗ according to the size of the rest β− (N − 1) · n. The formulas for deriving the
thresholds in Eq. (6.2) are

T∗ = round
(

T
N

)
, T∗last = round

(
T∗
(

β

n
− (N − 1)

))
, (6.3)

where the round function rounds to the nearest integer and ties are broken by rounding
up. An example for the LTA with n = 4, β = 8, and N = 2 is shown in Fig. 6.1.

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 75

Algorithm 5: Forward pass for LTA training
Input: model, X
Output: X

1 for each binarized layer do
2 Xcopy ← X.clone().detach()

// Regular execution

3 execution(X, regular), according to Eq. (6.1)
// LTA execution

4 for every neuronj for j = 1, 2, . . . , α do
5 derive µj,σj, ψj, and ηj, see Sec. 2.2.2.1, derived from Line 3;
6 Tj ← µj − σj

ψj
ηj;

7 execution(X, LTA), according to Eq. (6.2) (applied for each neuron);
8 X.data← Xcopy.data

9 return X

6.1.3 Training with LTA

One method is to use the inherent error tolerance of BNNs to tolerate the approxi-
mations stemming from the LTA. However, the approximations may depend on the
configurations. To make BNNs error tolerant, applying errors during the training has
been suggested in the literature [Hir+19b].

We use the idea of error application during training to make the BNNs tolerant to
the approximations of the LTA. To this end, we replace the correct activations by the
approximate activations in the forward pass of the training procedure.

Our method for training with the LTA is illustrated in Alg. 5. We refer to the
functions of BNNs that perform the operations of a layer (both 1D and 2D) as
execution. During inference, the BNN layers are first executed in the regular way (i.e.
convolution, batch norm, htanh, activation, Line 3), according to Eq. (6.1). After the
regular execution is finished, the thresholds for each neuron in the layer are extracted
(Line 6), from which the thresholds for the windows in the LTA can be computed,
see Eq. (6.3). Then the BNN operations are performed with the LTA according to
Eq. (6.2) (Line 7). After the LTA, the tensor of the correct activations is replaced with
the tensor of the (approximate) LTA activations (Line 8).

In this method, the LTA operations are removed from the computation graph. They
are not considered during the backpropagation, due to the copy and detach in Line 2.
Furthermore, only the values of X are replaced by the approximated values Xcopy,
see Line 8. This means that the training is performed with the approximations and
that the weights and batch norm parameters of the layer in Line 3 are adapted in the
backpropagation based on the LTA.

76 hw/sw codesign for efficient bnn inference

iFIFO

. . .
C1 C2 Cm

IF IF IF

(a) Input data flow for baseline.

iFIFO

. . .
C1 C2 Cm

. . .

IF

(b) Input data flow for LTA.

Figure 6.2: Comparison of input data flow between the (a) baseline and (b) the LTA execution.
iFIFO: FIFO for input data. C1, . . . Cm: Crossbar columns. IF: Interface circuit.

6.1.4 Dataflow, Interface Circuit, Workload mapping

In the following we present the dataflow in Sec. 6.1.4.1, the interface circuit in Sec. 6.1.4.2,
the crossbar in Sec. 6.1.4.3, and the workload mapping in Sec. 6.1.4.4.

6.1.4.1 Dataflow

Our LTA approach requires a different way to apply inputs (i.e. types of input data
flows) compared to the baseline in [Che+18]. In the following, we consider two ways
of input data flow to an accelerator with sub-components, such as crossbar columns in
BNN accelerators in our case. The two types of input data flows have been explained
by Kung in 1982 [Kun82], in the context of systolic arrays: (1) One input is broadcasted
to all columns (e.g. see design “B1” in [Kun82]), which is a well-known method in
modern NN accelerators and is also applied in [Che+18]. (2) Multiple (different)
inputs are applied to different columns, e.g. the first input is applied to the first
column, the second input to the second column, etc. (see the designs “F” in [Kun82]).
Our LTA method requires the second type of input data flow.

Fig. 6.2 illustrates the input data flow type required by the LTA execution and the
input data flow required by the baseline for comparison. To move the input data to
the accelerator, FIFOs are used, which are called iFIFOs here. The system architecture
regarding the FIFOs is inspired by [CES16]. In the baseline case in Fig. 6.2(a), one
input (striped area) is accessed from the iFIFO. Then, the input is broadcasted to all
columns. In the LTA case in Fig. 6.2(b), m different inputs (striped areas in the iFIFO)
are accessed from the iFIFO. Then, the inputs are moved into the crossbar columns.

In both cases in Fig. 6.2(a) and in Fig. 6.2(b), techniques and corresponding circuits
need to be used to move the data into the crossbar columns, while considering the
design tradeoffs. For example, for both cases, the inputs can be moved into the
crossbar array in an iterating manner over all columns and inputs can be applied to
multiple columns in parallel. The difference between (a) and (b) with respect to the
iFIFOs is that in (a) a single input needs to be accessed and supplied to the columns,

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 77

−
+
A1

−
+

A2

V 1
L

R1

V 1
out

Vref

..
.

−
+
A1

−
+

A2

V m
L

R1

V m
out

Vref

−
+

A3

R3

V Final
out

VMaj

R2

R2
+ Reg Bin

M
ux

ADC

Analog path (AP), β ≤ mn

Digital path (DP), β > mn

Figure 6.3: Our interface circuit design for our proposed LTA method. The voltages V1
L and

Vm
L in are input voltages from Fig. 2.5(a).

while in (b), m inputs need to be accessed. If inputs are applied to multiple columns
in parallel, then in the case of (a), the iFIFO needs one output port (since one input
is accessed), while in (b) multiple output ports are needed (since multiple different
inputs are accessed).

6.1.4.2 Interface Circuit

Our interface circuit design for an entire crossbar with m columns and n XNOR
gates computing with the LTA is shown in Fig. 6.3. See also Fig. 6.2 for the overall
architecture, i.e. where the interface circuits are and that m interface circuits are
needed in the baseline, while only one interface circuit is needed for the entire
crossbar for the LTA. The interface circuit in Fig. 6.3 has m incoming summed currents
from m crossbar columns. These currents are converted into voltages (e.g. V1

L) by the
resistors R1 and then amplified with the operational amplifiers (opamps) A1. The
resulting voltages are compared to thresholds in the analog comparators A2. The
reference voltages Vre f are derived by dividing the original threshold, see Eq. (6.3).
The outputs of A2 are voltage levels, which are converted to currents by the resistors
R2. In the analog path (AP) of the circuit, these currents are summed by Kirchhoff’s
circuit law, converted back to a voltage by R3, and then a majority vote is performed
with the analog comparator A3, by which the final output V f inal

out is obtained.
The AP is employed in our LTA interface circuit design when the workload has

size β ≤ mn. If the workload is larger than that, i.e. β > mn, then the digital path
(DP) is used. In the DP, the sum of currents from the opamps A2 are converted into
the digital domain using an ADC. Then, accumulations are performed, whose results
are stored in registers. When the accumulation is finished, a binary comparison is
performed and the final result is obtained (details are described in Sec. 6.1.4.4).

78 hw/sw codesign for efficient bnn inference

Note that, for the LTA, the AP is used when β ≤ mn and only one interface circuit
for the entire crossbar is needed. In comparison, the AP is used only when β ≤ n in
the SOTA [Che+18], and m interface circuits are needed for the entire crossbar, which
all need an ADC, an accumulator, registers, and binarization logic. The specifications
of the interface circuit for the LTA and a comparison to the state of the art are
summarized in Table 6.1, and the table for explaining the notations is in Table 6.2.

6.1.4.3 Crossbar for Inference

The crossbar computes the matrix multiplication O = W×X. The computation can be
separated into two stages, programming and application. In the programming stage,
the weights of neurons are programmed into the crossbar. In the application stage,
the inputs are applied to the crossbar and the results of the matrix multiplication are
returned.

The work in [Che+18] applies a tile-based approach using a strided workload
mapping scheme, which minimizes the number of reprogammings – an important
issue in NVM-based crossbars. In their approach, the crossbar is programmed with a
weight tile of n weights from m neurons, where each neuron occupies one column
of the crossbar, as shown in Fig. 6.4(a) in W. Note that the tile may not consist of
all weights of the neurons. Then, parts of the columns of X of size n, which are the
corresponding inputs for the programmed weights, are pushed to the crossbar, such
that all inputs that are possible to be processed with the programmed weights are
processed. This is performed so that the programmed weights are reused without
reprogramming. After all the input columns (arrow in X in Fig. 6.4(a)) are finished
for the loaded weights of the current tile, the weights of the next tile are programmed
into the crossbar (arrow in the W matrix for SOTA). This process is repeated over the
columns of X.

However, this mapping scheme rarely uses the AP, since usually β � n, resulting in
heavy use of the DP with a high cost to digitalize and buffer many intermediate results. For
these operations, m DPs (for m crossbar columns) are employed, using m ADCs, mδ

registers, and m other digital components with a large number of bits.

6.1.4.4 Workload Mapping for LTA

Consider now that a crossbar is given with the interface circuit in Sec. 6.1.4.3. In
the LTA, the weights of one neuron in W (one row in W) are programmed into the
crossbar, as shown with mn for the loaded weights in Fig. 6.4(b). The weights are
partitioned to the columns of the crossbar as described in Eq. (6.2). Each column of
the crossbar is mapped to one window of Eq. (6.2). After programming, a column of
X is pushed to the crossbar as input, as shown in Fig. 6.4(b). The crossbar is invoked
and the majority vote of all m local thresholdings is performed. This is repeated with
the same weights until all the columns in X are finished (arrow in X in Fig. 6.4(b)).
When all columns in X are processed, the same procedure is repeated for the next

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 79

W X

α

β

β

δ
Strided (SOTA)

W X

α

β

β

δ
LTA (Our)

mn
mn

n

m

n

Crossbar:

n

(a) (b)

Figure 6.4: Mapping schemes. (a): SOTA [Che+18]. (b): LTA.

Specification This work (LTA) State of the art (SOTA) [Che+18]

ADC resolution blog2(m)c+ 1 blog2(n)c+ 1

Width digital path
⌊

log2(m
⌈

β
mn

⌉
)
⌋
+ 1

⌊
log2(n

⌈
β
n

⌉
)
⌋
+ 1

Registers δ mδ

Crossbar invocations I lta
cb = δα

⌈
β

mn

⌉
Isota
cb = δ

⌈
α
m

⌉ ⌈ β
n

⌉

Area Acb + (m + 1)Aacomp + Aadc + Alta
add + δAlta

reg + Alta
bin Acb + m(Aacomp + Aadc + Asota

add + δAsota
reg + Asota

bin)

For β ≤ mn: Acb + (m + 1)Aacomp For β ≤ n: Acb + mAacomp

Energy I lta
cb (Elta

cb + mEacomp + Eadc + Elta
add + Elta

reg) + αδElta
bin Isota

cb Esota
cb + Isota

cb m(Eadc + Esota
add + Esota

reg) +
⌈

α
m

⌉
mδEsota

bin

For β ≤ mn: I lta
cb Ecb + (m + 1)I lta

cb Eacomp For β ≤ n: Isota
cb Ecb + mIsota

cb Eacomp

Latency I lta
cb (Lcb + Lacomp + Ladc + Llta

add + Llta
reg) + αδLlta

bin Isota
cb (Lcb + Ladc + Lsota

add + Lsota
reg) +

⌈
α
m

⌉
δLsota

bin

For β ≤ mn: I lta
cb Lcb + 2I lta

cb Lacomp For β ≤ n: Isota
cb Lcb + Isota

cb Lacomp

Table 6.1: Crossbar interface circuit comparison between LTA (this work) and the state of
the art (SOTA) in [Che+18], for a crossbar size of m columns and n XNOR gates
per column. The notations are described in Table 6.2. The formulas for the SOTA
in [Che+18] can acquired by the following substitutions: α = Cout, β = WF HFCin,

δ = WO HO, S =
⌈

β
n

⌉
, m = N, and n = M.

neuron (arrow in W in Fig. 6.4(b)). Only the AP is applied when the weights of one
neuron fit into one crossbar, i.e. when β ≤ mn.

When β > mn, the DP needs to be used to digitalize and buffer the intermediate
results, since the weights of one neuron do not fit into the entire crossbar. When using
the DP, the crossbar is first programmed with mn weights of one neuron in W. Then
the inputs that need to be processed with the programmed nm weights are supplied
to the crossbar. The sum of m currents from m analog comparators is converted to the
digital domain using the ADC. The results are accumulated in a designated register
for the column of X. This is repeated until all columns of X are processed. Then, the
next nm weights of one neuron are processed. After all operations for a neuron are
finished, the values in the registers are binarized. The same procedure is repeated for
the subsequent neurons.

In Table 6.1, we summarize the equations for the interface circuit properties and
equations regarding area, energy, and latency. As mentioned above, the intermediate
storage of values is only necessary, if the crossbar is too small to hold all the values
(β > mn). In this case, the number of registers needed for the interface circuit

80 hw/sw codesign for efficient bnn inference

Variable Definition

m Number of columns in a crossbar

n Number of XNOR gates per column

α Number of neurons in a layer

β Number of weights (of neurons) in a layer

δ Second dimension of the input matrix

Icb Number of crossbar invocations

A, E, L Area, energy, and latency of a component, respectively

lta Local thresholding approximation

sota State of the art

cb Crossbar

acomp Analog comparator

adc Analog-to-digital converter

reg Register

bin Digital binarizer

add Digital accumulator

Table 6.2: Notation for Table 6.1.

of the crossbar in LTA is δ. The ADC needs a resolution of blog2(m)c + 1. The
number of bits needed in the registers, accumulator, and binarization component are

blog2(m)c+
⌈

β
mn

⌉
.

Note that, when β is small compared to the crossbar size, i.e. β � mn, the LTA
mapping above may not fully utilize the crossbar in one invocation, since one neuron
always occupies the entire crossbar. For example, with 576 weights per neuron, and
4096 XNOR gates in total, the crossbar utilization is merely around 14.1% (and
seven neurons could be computed in parallel). This may lead to a long latency,
since the number of crossbar invocations is larger than the SOTA. To alleviate this,
when β ≤ mn

2 , multiple neurons can be mapped to one crossbar, enabling parallel
computation, which increases the crossbar utilization. We call this extension LTA
maximum utilization (LTA-MU). Compared to LTA, LTA-MU additionally divides
the number of crossbar invocations I lta

cb in Table 6.1 by the factor f = bmn
β c, which

means f neurons are processed in parallel in one crossbar. However, when LTA-MU
is used, the number of interface circuits with analog comparators in Table 6.1 needs
to be multiplied by f . These tradeoffs are evaluated and compared to the SOTA in
Sec. 6.1.5.3. Note that when β ≥ mn

2 , LTA-MU cannot be used, since multiple neurons
cannot be computed in parallel in this case. We note that using LTA-MU instead of
LTA never influences the inference accuracy, because the computation are the same.
The only difference is that LTA-MU exploits parallelism.

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 81

6.1.5 Experiments

In this subsection, we compare our LTA approach to the state of the art (SOTA). The
structure is as follows. We discuss the experiment setup in Sec. 6.1.5.1. In Sec. 6.1.5.2,
we evaluate the accuracy tradeoff in our proposed LTA method. In Sec. 6.1.5.3, we
evaluate the area, energy, and latency benefits of our LTA. Since there can be different
types of noise in the circuit when analog computing is used, we perform a general
noise analysis and how it can be overcome by training with the noise together with
the LTA in Sec. 6.1.5.4. In Sec. 6.1.5.5, we show the feasibility of the input data flow.
We discuss other methods we explored for finding local thresholds in Sec. 6.1.5.6,
then we discuss other BNN models Sec. 6.1.5.7, and provide a discussion of ADC
modifications in Sec. 6.1.5.8.

6.1.5.1 Experiment Setup

To evaluate the LTA, it is required to implement it in practice. However, it cannot
be easily implemented in deep learning frameworks, as it is a profoundly different
computing scheme compared to standard way of inference. For instance, the well-
known framework PyTorch [Pas+19] uses a proprietary MAC engine, which cannot
be easily modified. To still be able to execute the BNNs with the LTA in PyTorch,
we developed our framework (https://github.com/myay/LTA-BNN) using a custom
MAC library, with our own custom CUDA extensions. The calls to nn.linear and
nn.conv2D layers in PyTorch are redirected to our custom CUDA kernels, which
implement the local thresholding and majority voting according to the LTA scheme
for our BNNs.

We use the VGG3 and VGG7 BNNs from the experiment setting in Ch. 3 and use
the MHL from Ch. 4 with b = 128 as a loss for optimization in all cases. We halve the
learning rate every 10th epoch for Kuzujishi, Fashion, SVHN, and halve it every 50th
epoch for CIFAR10 and Imagenette.

When we train with the LTA, i.e. apply Alg. 5, we always train from scratch with
the LTA execution. This means we always start a completely new training process
when we train with the LTA. This includes the cases in which we train with a certain
number of XNOR gates (see Sec. 6.1.5.2) and the cases in which we perform the noise
analysis (see Sec. 6.1.5.4).

6.1.5.2 Accuracy Tradeoff in LTA

In Fig. 6.5, we show the accuracy tradeoff for the LTA. We use Eq. (6.3) for acquiring
the local thresholds from the global thresholds and in the inference we apply the LTA
computation scheme as shown in Eq. (6.2). In the black line, the accuracy under the
LTA without any countermeasures is shown. For all datasets, we observe that with
an increase of the number of XNOR gates (n), the accuracy increases. However, the
accuracies fluctuate and the accuracy drops can be large, compared to the original

https://github.com/myay/LTA-BNN

82 hw/sw codesign for efficient bnn inference

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

FASHION

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

KUZUJISHI

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

SVHN

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

CIFAR10

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

IMAGENETTE

Baseline (no noise)
LTA-train (no noise)
Baseline-Noise-1%
Baseline-Noise-2%
Baseline-Noise-5%

Figure 6.5: Accuracy over number of XNOR gates for different datasets. In the baseline
case, the BNN is executed with the LTA for varying numbers of XNOR gates,
called “baseline” (the training employs only standard methods). In the “LTA-train”
case, the BNN is trained with a specified number of XNOR gates. The original
test accuracy is shown with the dashed line. The accuracy tradeoff is explained
in Sec. 6.1.5.2. Since there can be different types of noise in the analog circuit, we
show the baseline BNN accuracy with a general type of noise injected alongside
applying the LTA (the evaluations regarding noise are explained in Sec. 6.1.5.4).

accuracy. An explanation for this is that the majority vote is disturbed by the rest
in Eq. (6.3) because of the layer dimensions.

To alleviate these issues, we apply the LTA-train method in Sec. 6.1.3. In these cases,
the accuracy is high consistently, and the difference to the original accuracy becomes
small without any fluctuations. For example, for n = 64 XNOR gates, which is a
reasonable number for a crossbar (see Sec. 6.1.5.3 for the explanation), the accuracy
of Kuzushiji is 89.25% (93.74% baseline), for Fashion 88.34% (90.68% baseline), for
SVHN is 91.88% (92.84% baseline), and for Imagenette 72.00% (72.15% baseline). For
CIFAR10, the accuracy tradeoff is larger, i.e. it is 77.85 (85.50% baseline), which reaches
the maximum of 82.05% for 192 XNOR gates. The reason for the low accuracy in case
of CIFAR10 is that the BNN cannot tolerate the approximations for this dataset. SVHN
uses the same BNN architecture and is a less challenging dataset than CIFAR10, while
having high accuracy. For CIFAR10, a more approximation tolerant BNN model needs
to be chosen to apply the LTA with higher accuracy.

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 83

SOTA (VGG3)

LTA (VGG3)

LTA-M
U (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-M
U (VGG7)

101
102
103
104
105
106
107
108
109
1010

A
re

a
(µ
m

2
)

(a) Area

SOTA (VGG3)

LTA (VGG3)

LTA-M
U (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-M
U (VGG7)

101
102
103
104
105
106
107
108
109
1010

En
er

gy
(p
J

)
(b) Energy

SOTA (VGG3)

LTA (VGG3)

LTA-M
U (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-M
U (VGG7)

101
102
103
104
105
106
107
108
109
1010

La
te

nc
y

(p
s)

(c) Latency

Figure 6.6: Area, energy, and latency comparison for the crossbar and interface circuits
between the state of the art (SOTA), and our proposed method (LTA). Note that the
y-axes are in log scale. For the BNN models, VGG3 and VGG7 are used (Table 3.2).

6.1.5.3 Area, Energy, Latecy

The area, energy, and latency are calculated based on the formulas in Table 6.1. The
formulas are composed of variables for A (area), E (energy), and L (latency). The
variables are defined in Table 6.2. The values for these variables (A, E, and L) are
acquired for digital components by own simulations (in Cadence Genus using 28nm
FDSOI technology). For the ADC and the analog comparator, the values are taken
from other studies. For the latency and energy usage of the FeFET-based crossbar, we
perform circuit simulations based on HSPICE. We explain the details in the following.

We assume the same crossbar configurations as in [Che+18], i.e. it is based on
FeFET technology and it has the dimensions m = 64× n = 64. In the literature,
FeFET-based XNOR crossbars have been built for 64× 64 in [Che+18] and for 48×
64 in [Sol+20b]. Importantly, in [Sol+20a], a full FeFET-based crossbar array for
a commercial 28nm technology node from GlobalFoundries is demonstrated, and
their design only supports activating 64 FeFET gates at once to combat effects from
variations and avoid the cost of large ADCs. In order to compare the LTA to the
SOTA in our manuscript, we use the size 64× 64 for a specific example of a realistic
analog-based BNN accelerator.

In our evaluations, the crossbar energy and latency for application are relevant,
since the number of crossbar invocation differs among the LTA/LTA-MU and SOTA
execution schemes. To estimate the energy and latency of the crossbar, we use the
FeFET simulations and the FeFET transistor introduced in Ch. 5 and build the
FeFET-based XNOR logic according to Sec. 5.3.1. From these components we form
a FeFinFET-based XNOR device array and we then measure the delay, power, and
energy using HSPICE. Depending on the number of mismatches between the input
data and stored data, the array will conduct more or less current (i.e., the higher the
mismatches level, the larger the current). We then calculate the energy and latency for
the worst case in which the highest level of mismatches occurs.

84 hw/sw codesign for efficient bnn inference

Based on the above, the energy usage of the crossbar for application is 1.32 pJ per
crossbar column. To calculate the energy usage of an entire crossbar, this number is
multiplied by the number of used crossbar columns. The latency of one FeFET-based
XNOR gate (and therefore the entire crossbar due to parallelism) is 706 ps according to
the study in Sec. 5.3. We do not need to incorporate the reprogramming performance
of the XNOR gates, since the number of reprogrammings is the same in the LTA and
the SOTA execution. The area usage of the XNOR gates is also not incorporated, since
the crossbar is assumed to be the same in each technique.

To evaluate the LTA, the area, energy, and latency of the analog and digital com-
ponents of the interface circuit is reported in Table 6.4. For the digital path we
synthesized the hardware for the two highest values of β = 3136 and 8192 (for VGG3

and VGG7 respectively, such that all layers of one BNN model can be executed with
one device) using Cadence Genus and is mapped to a commercial 28nm FD-SOI
technology. For the analog components, we have selected from the literature the
ADC and the analog comparator designed in the same technological node size as we
used to synthesize the digital paths (i.e. 28nm). In particular, we selected the ADC
in [Oh+20] for our study because it can be inferred from the survey in [Mur] that it
has the best area and energy tradeoff among the reported 28nm ADC. In a similar
way, we selected the analog comparator in [RST19] since it has the best performance
among the 28nm comparators we could find in the literature.

By considering that the interface circuit of our analog BNN accelerator is composed
of these analog and digital subcomponents, it enables us to compare our proposed LTA
to the SOTA with up-to-date subcomponents. For calculating area/energy/latency
and compare our LTA to the SOTA, we rely on the formulas in Table 6.1, for which
the notation is explained in Table 6.2.

With the crossbar sizes n = m = 64 and the corresponding interface circuit data, we
evaluate the area, energy, and latency of our LTA/LTA-MU computation schemes and
compare them to the SOTA in Fig. 6.6. For the BNN models in our work, in VGG3

only the AP in Fig. 6.3 is used. For VGG7 the DP is only used for layers 5 and 6 (see
Table 6.3). Our results show that the proposed LTA technique is able to reduce the
total area by a factor of 42× and 54× for VGG3 and VGG7, respectively, compared to
the SOTA. Furthermore, the energy consumption is reduced by a factor of 2.7× and
4.2× for VGG3 and VGG7 compared to the SOTA, respectively. LTA does not show a
reduction of latency. It is 2.5× and 1.12× higher than the SOTA, for VGG3 and VGG7

respectively. However, when the LTA-MU scheme is employed, the latency is reduced
by 3.8× and 1.15× compared to the SOTA for VGG3 and VGG7, respectively. As a
drawback, the LTA-MU requires 9.2% (VGG3) and 2.2% (VGG7) more area compared
to its LTA counterpart.

6.1.5.4 Impact of Noise on LTA

When n XNOR gates are in a crossbar column, then the analog comparator needs
to be able to differentiate between n different states. However, n cannot be arbitrary

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 85

NN Architecture Layer index W(α, β) X(γ, δ)

VGG3 1 (64, 576) (576, 196)

2 (2048, 3136) (3136, 1)

VGG7 1 (128, 1152) (1152, 1024)

2 (256, 1152) (1152, 256)

3 (256, 2304) (2304, 256)

4 (512, 2304) (2304, 64)

5 (512, 4608) (4608, 64)

6 (1024, 8192) (8192, 1)

Table 6.3: Matrix dimensions of the weight matrix W and input X.

Interface circuit parameters (28 nm technology node)

Component Specification Energy (pJ/op) Area (µm2) Latency (ps)

Analog Comparator See [RST19] 0.163 78 74

ADC See [Oh+20] 2.55 2000 1000

Digital path SOTA VGG3 | VGG7 1.61 | 4.51 1282.10 | 4011.00 270

Digital path LTA VGG7 0.223 150.9 240

Table 6.4: Energy, area, and latency configurations of the interface circuit’s subcomponents,
based on the literature and own evaluations (i.e. in Cadence Genus using commercial
28nm FDSOI technology). For the digital components, β = 3136 for VGG3, and
β = 8192 for VGG7. Note that for VGG3 under LTA, digital components are not
used. The total energy, area, and latency of the BNN crossbar and interface circuit
are calculated based on the values in this table, which are substituted in the area,
energy, and latency formulas in Table 6.1.

large. Due to inherent variations of the analog signals an arbitrary number of different
states cannot be accomodated.

There are multiple potential sources of noise in our analog hardware design.
Although the sources of noise are not limited to the following cases, for explaining
the concept, we focus on noise caused by variation sources due to: (1) FeFET-based
crossbar columns and (2) resistance value of the resistors. (1) In the crossbar columns,
the FeFET-based XNOR gates consist of FeFET devices, which are prone to errors
when there are temperature fluctuations during run-time (however, in our study, we
assumed no major fluctuations in operating temperature during run-time). In our
previous chapter, we have demonstrated and investigated the impact of temperature
in Sec. 5.2 for single FeFET devices. Since FeFET-based XNOR gates consist of two
FeFET devices, the current coming out of the XNOR gates will have variations due
to high temperature fluctuations as well. Due to the variations of the XNOR gate
currents, the summed current also experiences variation. This in turn may lead to

86 hw/sw codesign for efficient bnn inference

Name No noise, no LTA No noise No noise+LTAtr Noise 1% | Noise+LTAtr Noise 2% | Noise+LTAtr Noise 5% | Noise+LTAtr

FashionMNIST 90.68 81.34 88.34 78.79 | 87.89 76.38 | 87.41 65.03 | 86.90

KuzushijiMNIST 93.74 83.05 89.25 80.50 | 88.55 76.16 | 87.19 64.31 | 85.38

SVHN 92.84 78.62 91.88 73.39 | 91.01 67.13 | 90.54 42.09 | 88.14

CIFAR10 85.50 43.07 77.85 35.08 | 74.46 28.23 | 73.44 14.79 | 67.31

IMAGENETTE 72.15 57.02 72.00 52.89 | 71.69 48.31 | 70.55 31.75 | 70.37

Table 6.5: Comparison of test accuracy (%) for the assumed cases in our with crossbar size 64×
64. The LTA approximation is applied in each column unless specified otherwise.
In cases of “no noise"/“no LTA", we train without noise/without LTA. “Noise"
followed by a percentage means that noise with this percentage is injected, while in
“Noise train", we train with the noise. “Noise+LTAtr" refers to the case in which we
inject noise during the training while simultaneously applying Alg. 5.

errors of the comparator outputs (flips from “0” to “1” or from “1” to “0”) that
binarize the result of one crossbar column. (2) The resistors connected to the output of
the comparators (see R2 in Fig. 6.3) may suffer from varying resistance values as well
(e.g. due to issues in fabrication or temperature), leading to current variation. The
effect of the noise from points (1) and (2) above continues to propagate through the
circuit, which has two paths: The analog path and the digital path. In the analog path,
the result of the majority comparator may be flipped due to the current variations
(i.e., the output may also flip from “0” to “1” or from “1” to “0”). In the digital path,
the ADC may convert the analog signal to an erroneous digital value, which will
be accumulated and binarized in the digital domain. In both cases, any variations
in the analog computations (e.g. in points (1) and (2) above) will affect the result of
the last binarization. In the analog path, the output of the last analog comparator will
be affected. In the digital path, the output of the digital binarizer will be affected.
Therefore, we simulate the noise in the circuit by flipping the output of the last
binarization with a certain error probability.

Noise Analysis: To conduct a general noise study, we model the noise by using the
flip probabilities 1%, 2%, and 5% for the outputs of the last binarizations. Please note
that we are not limited to these error rates, they are merely examples. Any other error
rate can be applied in our open-source framework. When we write “Noise training”
or “Noise+LTAtr”, we refer to the cases in which we always train from scratch with
noise and also the LTA (Alg. 5). In Fig. 6.5, we show the plots for the accuracy results
achieved by the BNNs under the noise in combination with the LTA. We observe
that for small noise, the accuracy degradation is also small. The larger the noise, the
higher the accuracy degradation. In Table 6.5, we also show the result of the retraining
together with the LTA approximations and noise in combination for the crossbar
column dimension n = 64. We also add the results with no noise for reference. We
observe that in all cases of our experiments, although the noise causes large accuracy
drops, a significant amount of accuracy can be regained by training with the noise.

6.1 global by local thresholding in bnns for efficient crossbar accelerator design 87

6.1.5.5 Feasibility of LTA Input Data Flow

To show the feasibility of the input application method, we implement the two types
of data flow (SOTA and LTA, as presented in Sec. 6.1.4.1) in VHDL. The crossbar
dimensions are n = m = 64. For the SOTA case, we consider that one input is
broadcasted to all computing columns. For the LTA case, we assume that each column
receives a different input. In both designs, the weights are set once and stay the same
throughout the computations to simulate the strided move.

To focus on the dataflow, we simulate the input application to the XNOR gates
of all columns. We synthesize the designs using Cadence Genus with 28nm FD-SOI
technology (as in the previous digital circuits). For the SOTA dataflow, 15928 µm2 is
required, along with 273.55 mW of power consumption. For the LTA dataflow, 24733

µm2 is required, along with 360.05 mW of power consumption. Both data flows are
configured for 300 ps.

We observe that the LTA data flow uses 31.6% more power and 55.3% more
area. However, note that when considering the entire crossbar accelerator, the SOTA
requires 128000 µm2 of area for the ADCs alone, while the LTA only needs 2000 µm2

of area for the ADCs alone. This is a decrease by 64× (since in the SOTA circuit,
m = 64 ADCs are needed for m = 64 computing columns, and in the LTA only 1

ADC is needed for m = 64 computing columns) and the mere increase of LTA by
55.3% is small compared to the 64× area reduction. Calculations in the similar scale
can be performed for the energy consumption as well.

The main contribution for area and power in the LTA dataflow implementation
is the increased number of wires (for area) and the different signals (power) that
need to be driven, compared to the SOTA. We illustrate this by the implementation
in Fig. 6.7 using combinational circuits consisting of wires, which are placed between
the memory and the BNN crossbar. Note that memory and the crossbar could also
be connected in a different way, Fig. 6.7 is one example. In the SOTA, in Fig. 6.7(a),
a single input bitvector x (with length n) is retrieved, and then it is replicated as
many times as there are parallel columns (i.e. m) in the crossbar. This means, to
enable the SOTA dataflow, the single input bitvector x is replicated m times with a
combinational circuit (i.e. single in, multiple out) and then the m same bitvectors of x
are passed to the crossbar. In the LTA method, m different inputs are needed, labeled
xi in Fig. 6.7(b), which are then applied to the m crossbars (multiple in, multiple out).
In summary, the increased area and power usage of the LTA are due to the number of
wires and their driving with different signals.

6.1.5.6 Discussion of other Methods

We have also evaluated other methods to improve the accuracy of BNNs under LTA.
However, the only method that worked consistently is the LTA-train method. We
summarize these ideas here.

A possible idea to increase the accuracy under the LTA is to use different thresholds
for each window, instead of using the same threshold for all windows. We have

88 hw/sw codesign for efficient bnn inference

. . .
w1 w2 wm x

.

w1 w2 wm x x x

Combinational circuit

(a) Input data flow circuit for SOTA.

. . .

w1 w2 wm

.

w1 w2 wm x1 x2 xm

. . .

x1 x2 xm

Combinational circuit

(b) Input data flow circuit for LTA.

Figure 6.7: Examples of using combinational circuits consisting of wires to connect the BNN
crossbar to memories (e.g between the FIFOs in Fig. 6.2 and the BNN crossbar). (a)
SOTA and (b) the LTA connections using combinational circuits. The wi are the
weight vectors that are composed of n bits. The weight wires transfer the weights
to the ith column of the crossbar. In the SOTA, the input vector (composed of
n bits) is the same for each crossbar column (it is replicated). In the LTA, each
crossbar column i receives a different input xi.

attempted to increase/decrease the thresholds based on the mean popcount (over the
training data) in windows of n bits. However it did not lead to higher accuracies. We
observed that most popcount results in the windows of size n have similar values
that are closely around the mean, and that there are not any patterns to exploit for
different thresholds (we show histograms of the popcount values for BNNs in Fig. 7.1).
For other n and other datasets, we also observe the mean n

2 and similar distributions.
In general, modifying the thresholds in BNNs manually to optimize certain properties
has been reported to be unsuccessful in other work as well [Bus+20], which is also
included in Sec. 4.2.1.

Another idea for the LTA is to use a smaller stride than n by moving the windows
such that there are overlaps, leading to more local thresholdings. In our explorations,
this only alleviated the sharp drops in accuracy by a small amount (see the accuracy
drops in the black plots in Fig. 6.5). It did not lead to an increase in accuracy for the
peaks. With a smaller stride, more computations need to be performed, taking up
crossbar space, which is a high cost.

We observed negative results for modifying the majority vote as well. In our
framework, the majority can be shifted, meaning it can be configured that for a “1”
(instead of “0”) as output, there needs to be a majority and a certain number of
additional local thresholds that are “1”, for a “1” in the final output. Introducing
majority vote shifts based on the observed mean “1”s in the local thresholds also lead
to no accuracy benefits or when the shifts become high, to poorer accuracy results.

The operation with custom thresholds, the shifted majority votes, and using differ-
ent strides are all implemented in our framework as command line parameters and
can be can be evaluated by the users to perform more research.

6.2 capmin 89

6.1.5.7 Discussion of other BNN models

To demonstrate the proof of concept of the LTA approximation, we assume in Sec. 6.1.2
that the layers have the following structure, without any operations inbetween:
Convolution, batch norm, activation. Currently, our proposed LTA cannot be used
with architectures that do not comply with this assumption. One notable example
are skip connections, such as those in ResNets (see Table 3.2). For computing the
skip connection, a convolution is computed, then the result of another convolution
is added to the previous result, after which an activation is applied. To enable the
LTA for other structures, such as the skip connections, the BNN structure needs to be
modified, which may also require the modification of the BNN acceleration hardware
and the training procedure.

6.1.5.8 Discussion of ADC Modifications

In Table 6.4, we observe that the ADC resource usage is significantly higher than the
other components. Therefore, we discuss the expected impact of using an ADC with
smaller resolution compared to our selected 8-bit ADC from [Oh+20].

The ADC we have selected is not configurable with respect to the resolution.
Therefore, we rely on the data in the study in [Yu+21], where the resource consumption
(area, latency, power, energy) of ADCs is analyzed as a function of the number of bits
(3-6 bits) at the 40 nm technology node. Based on that study, we expect that when a
smaller number of bits are used in the ADC, the resource costs for the ADC will be
proportionally smaller.

However, when an ADC with a smaller resolution is used for our proposed LTA
method, then the analog path will be triggered in less cases. This opposes our main
design idea to trigger the analog path in as many cases as possible. Recall that in the
LTA method, the condition for triggering the analog path for a layer is β ≤ mn. In our
study, the required ADC resolution depends on the crossbar dimension m (number
of crossbar columns), i.e. the required ADC resolution is blog2(m)c+ 1. Therefore,
the smaller the m, the smaller the required resolution of the ADC. The drawback of
this is that when m is reduced, then the analog path will be triggered in less cases,
because the right side of the condition β ≤ mn for triggering the analog path will be
smaller. In addition to that, a smaller number columns increases the inference latency
approximately by the factor of the crossbar column reduction.

6.2 capmin

As stated in the previous chapter, performing the computations of NNs in the
analog domain by using Ohm’s and Kirchhoff’s laws can achieve high resource effi-
ciency [Chi+16; Sha+16a]. An example of a computing scheme that exploits this for
efficiency is Integrate-and-Fire (IF) Spiking Neural Networks (SNNs) [Wei+21a]. In
IF-SNNs, neural activity is event-driven and described by the integration of current
over a certain amount of time, for which a capacitor is used. If the charge in the

90 hw/sw codesign for efficient bnn inference

capacitor becomes high, a predetermined threshold potential is exceeded, causing
the firing of an output spike. The IF-SNN operations use efficient coding and enable
efficient operation, because simple analog components can be employed instead of
costly components such as ADCs. Yet, analog computing based IF-SNNs suffer from
nonidealities and variations. For example, analog multipliers or other components
exhibit noisy behavior due to process variation or factors such as temperature. Further-
more, the capacitor may be too small for correct operation, and analog comparators
have limited gain causing undefined output signals for connected digital components.

In particular, the capacitor size is a major bottleneck in the circuit design of IF-
SNNs, leading to high energy, area, and latency cost [Xia+20; Dut+20; Wei+21b].
Furthermore, it determines the tolerance of the system to nonidealities or variations
caused by inherent and external factors. To the best of our knowledge, principled
approaches for minimizing the capacitor size, especially considering nonidealities or
variations, did not exist at the time of the writing. The work in [Dut+20] compares
several implementations of circuits for spike-based inference, where the capacitor size
is determined empirically under the engineering constraints. The studies in [Wei+21b;
Wei+21a] sweep the capacitor size and pick the one satisfying the accuracy constraint.

These approaches do not use the insights in the SW (NN models), to optimize the
HW (IF-SNN circuits). In the IF-SNN HW, spike times are required to represent the
MAC values that occur with low frequency, wasting valuable capacitor size, in turn
leading to high resource cost. In this work, we focus on the capacitor size reduction
in IF-SNNs executing BNNs. Due to their binary nature, BNNs are highly resource
efficient and robust to variations [Bus+21], making them excellent candidates for
analog-based computing with IF-SNNs. We reveal that many of the MAC values
in the BNN SW have a low probability to occur during inference (also in NNs
with higher precision regarding weights and inputs, see [Zha+19b; Din+19]). The
lowest and the highest MAC values occur five to seven orders of magnitude less
frequently compared to the MAC value at the mean (see histograms in Fig. 6.8 for
five benchmarks). According to the results shown in Fig. 6.8, the histograms of the
MAC values are normally distributed, with a sharp peak at the mean.

The key focus of this section is exploring HW/SW Codesign methods to achieve
IF-SNN operation with a small capacitor, leading to efficient operation through
reductions in energy, area, and latency. We focus on BNNs, which are highly efficient
and robust to variations, making them excellent candidates to be executed with
IF-SNN HW. The insights and methods gained by researching BNNs in this study
may also be applicable to higher-precision NNs, if a significant portion of the MAC
values in these models have a low probability to occur as well.

The remainder of this section is structured as follows. In Sec. 6.2.1, we explain the
basics of analog-based computing in binarized IF-SNNs and in Sec. 6.2.2 we present
the problem definition. In Sec. 6.2.3, we introduce our two methods: (1) CapMin,
which decreases the required capacitor size, and (2) CapMin-V, which increases
variation tolerance. Finally, in Sec. 6.2.4, we present the experiment results.

6.2 capmin 91

0 10 20 30
0
1
2
3
4
·109

MAC value

A
bs

.f
re

qu
en

cy

FASHION

0 10 20 30
0
1
2
3
·109

MAC value
KUZUJISHI

0 10 20 30
0

0.5
1

1.5

·1011

MAC value
SVHN

0 10 20 30
0

0.5

1

·1011

MAC value
CIFAR10

0 10 20 30
0

2

4

·1010

MAC value
IMAGENETTE

Figure 6.8: Abs. frequencies of MAC value occurrences (summed over layers) for training sets.
Details of the BNN models are in Table 3.2.

6.2.1 System Model of IF-SNNs

We first present the basic operation of the HW used in IF-SNNs in Sec. 6.2.1.1. Then,
in Sec. 6.2.1.2, we explain the basic concept of the capacitor, which plays a central role
in IF-SNNs.

6.2.1.1 Operation of Binarized IF-SNNs

The circuit performing the operations of binarized IF-SNNs is shown in Fig. 6.9. In
the computing array, a is the array size, xi, i.e. x1 to xa, are the input spikes, and Mi,
i.e. M1 to Ma are the XNOR gates. To realize the XNOR, different techniques can be
used, e.g. Ohm’s law [Wei+21b]. The neuron circuit consists of a membrane capacitor
Cmem with capacitance C, an analog comparator A, and a flip flop (FF). The steps for
computations of the MAC results in SNNs are as follows:

(1) The XNOR gates will be loaded with the correct weights or are assumed to
be already loaded. We assume that the inputs xi are provided to all multipliers in
parallel, and that the multiplications are all computed in parallel as well.

(2) In the neuron circuit, the incoming summed current from the XNOR gates
charges Cmem. Once the voltage across Cmem reaches the threshold voltage Vth, an
output spike is generated with the analog comparator. The spike time tfire is acquired
by a counter that tracks the clock cycles until the FF latches the spike signal.

(3) The spike time is converted to a MAC value by v
tfire

= ∑a
i=1 wixi, where

v = xmax
CVth
ION

and ION is the on-state current of the multiplier. The conversion can
be described by mappings between sets. Consider the set of spike times SFIRE =

{t1, t2, . . . , tL}, where tL is the largest firing time, and tj < tj+1. Consider also the set
of MAC-values SMAC = {q1, q2, . . . , qL}, where qj ≤ qj+1. In the relation SFIRE → SMAC,
the values are mapped using mj : tj → qL−j+1. We organize the index of qL−j+1 in a
reversed manner to describe the reciprocal relationship between the spike time and
the MAC value. In the state of the art, L is chosen such that each MAC value has
a unique spike time. After completing the calculations, the neuron is reset by the

92 hw/sw codesign for efficient bnn inference

M1 M2 Ma
. . .

x1 x2 xa
Computing array

Neuron circuit

Cmem

−

+

AVth

T1

FF

reset

clk

Figure 6.9: IF-SNN circuit. Top: Computing array with inputs x1 to xa and multipliers M1 to
Ma. Bottom: Neuron circuit with the membrane capacitor Cmem, analog comparator
A and the FF.

−
+

V0

Req I(t)

C

+

−
V (t)

Figure 6.10: Equivalent representation of IF-SNN circuit in Fig. 6.9. V0: Supply voltage. Req:
Equivalent resistance of computing array. Voltage V(t) across capacitor C is
measured over time. I(t) is the current over time flowing into the capacitor.

transistor T1. Because of the limited computing array size, a large vector product
(with dimension higher than a) is separated into multiple smaller vector products,
requiring circuits for addition and accumulation.

6.2.1.2 Capacitor in IF-SNNs

Capacitors have the capacitance C = Q
V (in F for Farad), determined by the charge Q

placed on the capacitor divided by the voltage V caused by that charge. A capacitor
is charged when a voltage, e.g. V0 is applied, which causes a current to flow into it.
The charging of a capacitor is described by the equation

V(t) = V0(1− e(−
t
τ)), (6.4)

6.2 capmin 93

t1 t2 t3

Vth

V
(t
)

3Iinit
0.5Iinit
0.25Iinit

Figure 6.11: Voltage across capacitor over time, based on different initial currents. t1, t2, t3 are
spike times recorded by clock of the FF. Rectangle signal: Clock. Circled points:
Ideal spike times.

where V0 is the supply voltage, t the time, τ = ReqC the time constant, and Req is the
equivalent resistance of the connected circuit from the capacitor’s perspective. We
assume that no initial charge is in the capacitor. When charging, the capacitor voltage
increases rapidly first, but slows down and stops at the maximum capacitor charge
Q = CV0. Since τ is in the denominator, smaller C lead to larger absolute values in
the exponent, in turn causing faster capacitor charging. In contrast, a larger capacitor
leads to slower charging. The same holds for smaller and larger Req.

In the IF-SNN circuit, Req plays an important role. It depends on the total resistance
of all multipliers. The multipliers can have high or low resistance states, based on
the programmed weights. Due to this, Req determines the size of the initial current
Iinit that flows into the capacitor. As the current is the first order derivative of the
charge with respect to time, i.e., I(t) = dQ

dt , by adopting Eq. (6.4) for derivation, we
have I(t) = C dV(t)

dt = V0
Req

e−
t
τ . Thus, Iinit =

V0
Req

, the initial current at t = 0, is the largest
current. When the capacitor is fully charged (t = ∞), no current flows. With Iinit and
V0, the resistance of the computing array is Req =

V0
Iinit

by Ohm’s law. When inserting
Req into Eq. (6.4), we get:

V(t) = V0(1− e(−
t
C

Iinit
V0

)
). (6.5)

Therefore, the larger Iinit, the faster the capacitor is charging. In Fig. 6.11, the voltage
curves for different Iinit are shown. The equivalent RC circuit with V0, Req, I(t), and
V(t) is in Fig. 6.10.

The charging properties of capacitors are used to realize the operation of IF-SNN
circuits. A spike occurs ideally when the charge, which is the integrated current from
the computing array over time, in the capacitor leads to V(t) = Vth. The ideal firing
times, where the voltage curve and the Vth-line cross, are marked with circles in
Fig. 6.11. A spike can only be registered by the FF at the rising edges of the clock,
which is shown in the gray signal in Fig. 6.11). The time points of these clock-spike
times are collected in SFIRE.

With a fixed clock frequency, the size of the capacitor is chosen such that all required
firing times in the set SFIRE are represented uniquely. The higher the number of firing
times to include, the larger the required capacitor size.

94 hw/sw codesign for efficient bnn inference

max/2
MAC valueA

bs
.f

re
qu

en
cy

k

Figure 6.12: Role of inclusion parameter k in histogram of MAC values. All MAC values
within borders get a unique spike time value assigned. The larger k, the more
values within the borders.

6.2.2 Problem Definition

We are given a BNN model and an IF-SNN circuit (see Sec. 6.2.1) to perform its
computations. The IF-SNN circuit has a capacitor with capacitance C, whose behavior
is described in Eq. (6.4). For every different summed current that flows from the
computing array to the capacitor, a unique spike time is placed in SFIRE, representing
a MAC value in SMAC. The higher the number of spike times used to represent the
MAC values, the larger the required capacitor size.

In this work, our first goal is to construct the sets SFIRE and SMAC, such that the
capacitor size is minimized and therefore energy, area, and latency of the IF-SNN
circuit, while limiting the inference accuracy drop of the BNN. Our second goal is
to modify the above acquired sets SFIRE and SMAC, such that the tolerance to process
variation, which can significantly affect the correctness of analog computing schemes,
is increased.

6.2.3 Our Proposed Methods: CapMin and CapMin-V

In Sec. 6.2.3.1, we propose our method CapMin, in which spike times in SFIRE are
only assigned to the most important MAC values. CapMin does not protect against
process variation, therefore, in Sec. 6.2.3.2, we present CapMin-V, which aims to
achieve variation tolerant IF-SNN operation by trading off with capacitor size.

6.2.3.1 Our Method CapMin for Capacitor Minimization

We consider that the most important MAC values are the ones that occur most
frequently during the inference of NNs. In Fig. 6.8, we present the histogram of all
MAC value occurrences in forward passes with the training set. From this intuition,
we propose a capacitor minimization procedure. We reduce the number of required
spike times in SFIRE based on the absolute frequency of the observed MAC value
occurrences in SMAC. This reduces the capacitor size.

6.2 capmin 95

t1 t2 t3

Vth

tRI
1 tLI

2 tRI
2 tLI

3
V
(t
)

Ii + εi
Ii

Ii − εi
Ii+1 + εi+1

Ii+1
Ii+1 − εi+1

Figure 6.13: Effect of current variation on capacitor charging. Charging is shown in black for
Ii and Ii+1. Depending on the sign of the variation (εi or εi+1), the capacitor may
charge faster (brown) or slower (red). Variations can cause any deviation in the
purple (for Ii) or the blue area (for Ii+1). Charging curves under variation may
overlap (striped area).

We denote the MAC values occurring during IF-SNNs operation with SMAC =

{q1, q2, . . . , qL}. To these values, spike times in SFIRE = {t1, t2, . . . , tL} are assigned
bijectively. There are L mappings mj : tj → qL−j+1 (see Sec. 6.2.1.1). For each MAC
value in SMAC, we extract its absolute frequency of occurrences (AFO), i.e. FMAC =

{ f1, f2, . . . , fL}, where fi counts the number of occurrences of the MAC value qi. This
is achieved by tracking the MAC values in the computing array (Fig. 6.9) during the
inference of the NN.

We use the set FMAC to minimize the number of MAC values in SMAC, to construct
a set SMAC,min. To this end, only the k MAC levels with the highest AFO are added to
SMAC,min. MAC values that have low AFO are not added to SMAC,min and get mapped
to the nearest MAC level in SMAC,min. The role of k and its clipping behavior in the
histogram of FMAC is shown in Fig. 6.12. The value of k can be configured based on
the desired number of MAC levels in SMAC,min. Since the mapping from SMAC,min

to SFIRE,min is bijective, the number of spike times in SFIRE,min that are needed to
represent the MAC values are limited by k. In turn, less spike times require a smaller
capacitor in the neuron circuit, leading to its minimization.

As a result of CapMin, the original set SMAC is clipped to the set SMAC,min based in
the information in FMAC and on k. For clipping the set SMAC to SMAC,min the following
function is used, where the smallest MAC value in SMAC,min is qfirst, qlast the largest,
and the MAC value is M = ∑a

i=1 wixi:

M =

M, for qfirst ≤ M ≤ qlast

qfirst, for M ≤ qfirst

qlast, for M ≥ qlast

. (6.6)

96 hw/sw codesign for efficient bnn inference

6.2.3.2 CapMin-V

We solve Eq. (6.5) for t when V(t) = Vth. Denoting Ii with index i for the ith initial
current instead of Iinit, we get

t(Ii) = −
CV0

Ii
ln(1− Vth

V0
), (6.7)

where Ii is decreasing with increasing i, i.e. Ii > Ii+1. In IF-SNNs, Ii leads to the spike
time ti in SFIRE. For example, I1 is the largest current leading to the shortest spike time
t1 (mapped to the highest MAC value qL). IL is the smallest current leading to the
longest spike time (mapped the smallest MAC value q1). Since the currents coming
out of the XNOR cell are all the same (assuming the same states), the difference
between Ii and Ii+1 is constant: Ii − Ii+1 = c > 0 ∀i.

Without variations, the function t(Ii) is deterministic. It produces the same spike
time ti (in the set SFIRE) for a certain Ii (see black plots in Fig. 6.13). If Ii has variations,
t(Ii) will also change. The variations in Ii are proportional to Ii (a certain percentage
of it), with a certain mean and variance. We define the measured maximum of Ii
variation as εi. Due to εi of Ii, t may fall into the interval Ei = [t(Ii + εi), t(Ii − εi)],
where |Ei| is its length. In this case, a t that is not in the set SFIRE will be calculated in
Eq. (6.7). The result of Eq. (6.7) under variations is assigned to the nearest ti in SFIRE,
where the midpoints between two spike times are the assignment thresholds. The
assignment threshold on the right of ti is tRI

i = ti +
ti+1−ti

2 and tLI
i = ti − ti−ti−1

2 on the
left. We define the interval Bi = [tLI

i , tRI
i] and its length as |Bi|. The interval boundaries

are shown in the dashed vertical lines in Fig. 6.13. Any spike time that occurs in Bi is
assigned to ti. If the variation of Ii is large enough to make Eq. (6.7) cross the interval
borders tLI

i or tRI
i , Ii will erroneously be assigned to a wrong spike time, e.g. ti−1, ti+1,

or other spike times farther away. This is shown in the striped area in Fig. 6.13.
The probabilities for ti to assume tj, which may be different than ti due to current

variations, are modeled in the matrix in Eq. (6.8). The first index in Pmap describes the
spike time that has variations. The second index describes the erroneous spike time
selected due to variations. For example, t1 has the probability p1,1 to assume t1 and
p1,2 for t2. If all the diagonal elements are “1” and the rest “0”, then it is equivalent to
the direct mapping mapping in Sec. 6.2.3.1 (ideal case, no variations).

Pmap =

p1,1 p1,2 . . . p1,L

p2,1 p2,2 . . . p2,L

.

pL,1 pL,2 . . . pL,L

(6.8)

To increase variation tolerance, it needs to be known which spike times have lower
or higher variation tolerance. Consider the differences in length between the intervals
Ei and Bi. Due to the increase of t(Ii) with smaller Ii, |Bi| gets larger. In the same
way, |Ei| gets larger as well. However, the variation εi becomes smaller with smaller

6.2 capmin 97

currents, since Ii − Ii+1 = c > 0 ∀i is assumed to be constant, while εi is proportional
to the size of Ii. To conclude, the intervals Bi and Ei both get larger with increasing i,
but the variations εi become smaller, i.e. as Ii becomes smaller, the ratio ri =

|Bi |
|Ei | gets

larger, with a larger margin for tolerating variations. Based on this, we hypothesize
that the spike times with larger ti are more tolerant to variations than spike times
with smaller ti.

Based on this hypothesis and the error matrix in Eq. (6.8), we propose the method
CapMin-V to increase the tolerance of the IF-SNNs to variations at the cost of capacitor
size. As the starting point, we use the set SFIRE,min with k elements and extract its Pmap.
We aim to increase the probabilities in Pmap for a spike time to assume correct values
under current variations. Therefore, the criterion for optimization is to maximize the
individual probabilities on the diagonal, i.e. the pi,i. In CapMin-V, the pi,i are increased
by merging the spike times ti in SFIRE,min of the smallest pi,i with the neighboring
spike times. By this way, a spike time with higher pi,i is created, which in turn leads
to higher tolerance to current variations since the ri is increased.

Before merging, ti and ti+1 in SFIRE,min are different spike times. With application
of CapMin-V, the time intervals of ti and ti+1 are merged to create a new, variation
tolerant spike time. When the neighboring ti+1 (or ti−1) is merged with ti, the spike
time t+i is created, which has a larger time margin to the subsequent spike time
compared to ti. The new spike time intervals of t+i are tRI+

i+1 = ti +
ti+2+ti+1

2 and
tLI+
i = ti − ti+ti−1

2 on the left (stays the same). The interval border to the right of t+i is
larger than the one from ti, since ti+1 + ti < ti+2 + ti+1. The same holds for merging
time ti with ti−1, just the different way around. To merge, the probabilities of two
neighboring columns in Eq. (6.8) need to be added, i.e. pi,j+1 ← pi,j+1 + pi,j∀j for
merging ti with ti+1, and pi,j−1 ← pi,j−1 + pi,j∀j for merging ti with ti−1. Due to the
summing of probabilities, the probabilities on the diagonal are increased.

The procedure of CapMin-V is in Alg. 6. SFIRE,min (from CapMin) and φ (nr. of
mergings to be performed) are the inputs. First, SV

FIRE,min is initialized as SFIRE,min. To
maximize the pi,i, the minimum pi,i in Pmap is determined and the index is stored in
j. If j is the right bound, a left merge will be performed, and the other way around
for the left bound. Then the column of the smallest pi,i is merged with a neighboring
column. Whether to merge it left or right is decided by the pi,i of the left or right
neighbor. If pi−1,i−1 (diagonal entry of left neighbor) is smaller than pi+1,i+1 (diagonal
entry of right neighbor), a left merge will be performed. Otherwise, a right merge
will be performed. Boundary cases are merged to inner directions and ties are broken
arbitrarily. After adding the probabilities, in Pmap, the column of the merged spike
time pi,i is removed (since it has been added to the neighboring spike time) and its
row as well, since the spike time does not occur any more. Then, kV is decremented.
After the specified number of mergings φ, the algorithm pads Pmap with zeros on the
left and right, and adds 1s to realize the clipping from CapMin. Finally, SV

FIRE,min is
returned and its spike times are mapped to the k most frequently occurring MAC
values.

98 hw/sw codesign for efficient bnn inference

Algorithm 6: CapMin-V: Constructing the set SV
FIRE,min

Input: φ, SFIRE,min = {t1, t2, . . . , tk}
Output: SV

FIRE,min

1 SV
FIRE,min ← SFIRE,min

2 φstep ← 1, kV ← k
3 while φstep ≤ φ do
4 j← argmin(diag(Pmap))

5 Handle out-of-bound cases
6 if pj−1,j−1 < pj+1,j+1 then
7 for i in {1, . . . , kV} do
8 pi,j−1 ← pi,j−1 + pi,j

9 else
10 for i in {1, . . . , kV} do
11 pi,j+1 ← pi,j+1 + pi,j

12 Remove column and row j from Pmap

13 Remove tj from SV
FIRE,min

14 φstep ← φstep + 1, kV ← kV − 1

15 Add padding to Pmap

16 return SV
FIRE,min

6.2.4 Experiments

In this section we evaluate the benefit of CapMin and Capmin-V regarding accuracy,
area, energy, and latency. In Sec. 6.2.4.1, we present the experiment setup. CapMin in
evaluated in Sec. 6.2.4.2 and CapMin-V in Sec. 6.2.4.3.

6.2.4.1 Experiment Setup

We use PyTorch for the high-level simulation of BNNs for the SW and use SPICE for
the device-level simulations of the HW.

Setup for PyTorch: To demonstrate the effectiveness of our proposed methods, we
employ BNNs which are executed as IF-SNNs using the hardware configuration in
Fig. 6.9. We use the datasets Fashion, Kuzujishi, SVHN, CIFAR10, and Imagenette,
and other training settings that are explained in Ch. 3. As the loss we use the MHL
(Ch. 4) with b = 128 in all cases. We use the training sets to extract FMAC for the
methods in Sec. 5.2.5 and evaluate the accuracy using the test sets. Note that we
do not train with the errors. All our methods are applied in the post-training stage
without any modifications to the BNNs. To evaluate the BNNs under CapMin or
CapMin-V, our framework in https://github.com/myay/SPICE-Torch loads the the

https://github.com/myay/SPICE-Torch

6.2 capmin 99

30 25 20 15 10 5
75

80

85

90

95

k

A
cc

ur
ac

y
(%

)
FASHION

CapMin (no var.)
CapMin (with var.)

CapMin-V (with var.)

30 25 20 15 10 5
75

80

85

90

95

k

A
cc

ur
ac

y
(%

)

KUZUJISHI

30 25 20 15 10 5
0
10
20
30
40
50
60
70
80
90

k

A
cc

ur
ac

y
(%

)

SVHN

30 25 20 15 10 5
0
10
20
30
40
50
60
70
80
90

k

A
cc

ur
ac

y
(%

)

CIFAR10

30 25 20 15 10 5
0
10
20
30
40
50
60
70
80

k

A
cc

ur
ac

y
(%

)

IMAGENETTE

Figure 6.14: Accuracy over k. The higher k, the larger capacitor size. Capacitor size range:
From 135.2 pF (k = 32) to 1 pF (k = 5).

information about the clippings (Eq. (6.6)) and the error models (Eq. (6.8)) and applies
them during the MAC computations of the BNNs in PyTorch.

Setup for SPICE: In the computing array (Fig. 6.9), we use SRAM-based XNOR cells
with 14 nm FD-SOI technology, of which we reproduce industry measurements with
a ultra-thin body and BOX design [Liu+13]. The transistor model-card parameters
for the industry-standard compact model of FD-SOI (BSIM-IMG) are carefully tuned
until they are in excellent agreement with the measurements. The model is also
calibrated to device-to-device variation measurements. For a comprehensive variability
representation, all important sources of process variation (gate work function, channel
dimension, BOX and channel thickness) are considered. Through SPICE Monte-Carlo
simulations based on the calibrated compact model, the standard deviation for each
model parameter is tuned to match the observed variation in the measurements. We
use an array of a = 32 XNOR cells to realize the computing array. Each XNOR cell
connects V0 to the shared ML and forms a conducting path if the weight does not
match the respective multiplication result, realizing the XNOR operation. Through
the shared ML, Kirchhoff’s law accumulates the individual results. The resulting
current is proportional to the MAC value and charges the capacitor. To reduce SPICE
simulation time, we use ideal Verilog-A implementations of the comparator and the
FF wich operates with 2 GHz.

100 hw/sw codesign for efficient bnn inference

Baselin
e

CapMin

CapMin-V
0
20
40
60
80

100
120
140

C
ap

ac
it

an
ce

(p
F

)

0.5
1
1.5
2
2.5
3

En
er

gy
(p
J

/M
A

C
)

Baselin
e

CapMin

CapMin-V
0

50
100
150
200
250
300
350
400

La
te

nc
y

(n
s)

Figure 6.15: Capacitor size and latency comparison of the neuron circuit (based on max.
capacitor size over the four datasets) for the baseline and our two proposed
methods at 1% accuracy cost.

6.2.4.2 Minimizing Capacitor Size with CapMin

We extract FMAC by forward passes with the BNNs using the training datasets. In
Fig. 6.8 are the histograms of the absolute frequency of occurring MAC values. Since
all histograms are similar, we normalize and add all the absolute frequencies across
datasets and use the resulting FMAC in CapMin (Sec. 6.2.3.1).

We apply CapMin using FMAC, k, and a = 32 to obtain the set SMAC,min. In Fig. 6.14,
the accuracy (test set) for different k is shown in the plots (circle marks), starting with
k = 32 (max. nr. of levels for a = 32) down to k = 5. For Fashion and Kuzujishi, the
accuracy is sustained until k = 8 and then drops sharply for smaller k. For SVHN,
CIFAR10, and Imagenette the accuracy is sustained until k = 8 (SVHN) as well and
k = 14 (CIFAR10 and Imagenette) respectively.

In Fig. 6.15, we show the reduction in capacitor size by CapMin. The baseline
has one spike time for each MAC level. CapMin reduces the capacitor size by 14×,
from 135.2 pF to 9.6 pF. We show this in the bar plot with k = 14, which can be used
in a neuron circuit to achieve high accuracy in all five datasets. This also leads to
lower latency by 14× as shown in Fig. 6.15, where the guaranteed response time
(GRT) [Wei+21a] is used to measure latency. The energy reduction per MAC value
computation is proportional to the capacitor size reduction, since the energy used in
the capacitor is 1

2 CV2
th, where Vth = 0.225 V.

6.2.4.3 Variation Tolerance with CapMin-V

When considering process variation the current has variations. This varies the charging
speed of the capacitor. Consequently, the spike times may change, potentially leading
to wrong MAC values. To extract the error model (matrix Pmap in Sec. 6.2.3.2), we
use a Monte-Carlo approach (1000 samples per spike time). The errors from current
variation are injected during the inference of BNNs and the average test accuracy
of three runs is reported in the plots (star marks) in Fig. 6.14. For all datasets the
accuracy under variations is lower than without. The accuracy drops are expected,
due to the probabilities for wrong mappings. Furthermore, the accuracy increases
with smaller k. This is due to the procedure of CapMin. With smaller k, CapMin shifts

6.3 conclusion 101

the important spike times to more reliable, slower spike times. In the case with e.g.
k = 32, the most reliable (longest) spike time is mapped to the highest MAC value.
In the case with k = 16, the large and small MAC values are removed. By this way,
reliable spike times are mapped to important MAC values. The sweet spots for k and
high accuracy under current variations are achieved for 15 ≤ k ≤ 12 for Fashion,
Kuzujishi, and SVHN, and for 15 ≤ k ≤ 14 for CIFAR10. We conclude that CapMin
alone leads to variation tolerant operation to some extent.

However, under variations the accuracy drops for smaller k compared to no varia-
tions. We apply CapMin-V (Alg. 6) to achieve higher tolerance to current variations.
For this, we use the capacitor size at k = 16 (12.27 pF) with the corresponding SFIRE,min

as a starting point and evaluate for different φ, so φ starts at k = 15 and ends at
k = 5. In Fig. 6.14, applying CapMin-V (triangle plots) sustains higher accuracy
for more points compared to only CapMin (star plots). In Fig. 6.15, the capacitance
in CapMin-V is merely 28% and the latency 27% larger compared to CapMin. The
capacitance (therefore energy) and latency are still 11× smaller than the baseline.

6.3 conclusion

In this chapter, we proposed HW/SW Codesign methods that employ approximate
analog-computing units to exploit the error tolerance of BNNs. Analog-computing
units have excellent synergy with BNNs, as the former uses inherently imprecise
representations for computations and the latter has outstanding error tolerance. The
methods proposed in this chapter lead to significant reductions in area, energy, and
latency. Therefore, the ideas are worth further investigation when designing efficient
BNN systems in the future. The two sections in this chapter are summarized below.

In Sec. 6.1, we proposed a novel BNN inference scheme, called Local Thresholding
Approximation (LTA), which approximates the global thresholdings in BNNs by
local thresholdings. In BNN crossbar accelerators, this enables the use of only analog
comparators through most of the execution, which significantly increases the interface
circuit efficiency compared to the state of the art. However, employing the LTA
without any countermeasures to the approximations results in a significant accuracy
drop. To retain the original accuracy, we propose a training scheme that accounts for
the degradation induced by the LTA, which consistently achieves high accuracy under
approximations. Our results for two BNN models show that using the LTA reduces
the area by factors of 42× and 54×, the energy by 2.7× and 4.2×, and the latency by
3.8× and 1.15×, compared to state-of-the-art crossbar-based BNN accelerators.

In Sec. 6.2, we proposed CapMin, a HW/SW Codesign method for capacitor size
minimization in analog computing IF-SNNs. CapMin reduces the number of spike
times needed in the HW based on MAC level occurrences in the SW. Furthermore,
we proposed CapMin-V, which increases the tolerance to current variation. CapMin
achieves a 14× reduction in capacitor size over the state of the art, while CapMin-V
achieves variation tolerance at small cost. Our methods reduce area usage, energy,
and latency, while increasing variation tolerance.

7
E F F I C I E N T T R A I N I N G O F B N N S

In the vision of this dissertation, we propose to train BNNs on the edge. In this
chapter, we explore how the memory-efficiency of the BNN training procedure can
be achieved in order to enable BNN training with less memory, by which we aim
bringing closer the vision of training BNNs on the edge.

Training of NNs can be efficiently performed on dedicated low-power accelerators
in an on-chip setting, such as FPGAs [Zha+16; Luo+19] or ASICs [HTY17]. In addition
to energy-efficiency of on-chip training, privacy issues and data transfer overheads
are eliminated, since the data does not need to be transferred to the cloud for
training [Kuk+19]. For these reasons, resource-efficient models, such as BNNs, should
not only be executed but also be trained on the edge.

The idea of training BNNs on the edge device is relatively new. In 2021, Wang et
al. [Wan+21] proposed to reduce the memory demand and the operations in BNN
training by exploiting redundancies in gradients, batch normalization, and by using
standard floating point (FP) encodings for optimizer data. A more general study
in [Soh+19] provides a comprehensive overview of memory usage in NN training.
As shown in [Soh+19], the major bottleneck in NN training is the memory usage.
Classical training methods for BNNs use a large number of FP values during training
and use the information stored in them to obtain a binarized model, thereof suffering
from high memory usage as well. When one of the most memory-efficient training
procedures for BNNs, the Binary optimizer (Bop) [Hel+19], is used, one momentum
value encoded as FP per binary weight is stored. We show in Table 7.1 that BNN
training methods such as Bop still suffer from high memory usage. This poses a
challenge for the design of on-chip BNN training accelerators with limited on-chip
memory and energy budgets.

To encode the momentum values in Bop for BNN training, a standard FP for-
mat [Hel+19] and the brain FP format [Wan+21] have been used. However, these
encodings may use an excessive number of bits to encode the momentum values.
Principled approaches to minimize the number of bits to encode the FP representation
of the momentum values in Bop, targeting the number of bits in the exponent and
mantissa, have not received much attention. Minimizing the number of bits in the
FP encoding would lead to training of BNNs with reduced memory size, reduced
overheads for data movements, and simpler components for computations, which are
important steps to enable BNN training on the edge.

The key focus of in this chapter is to develop methods to obtain memory-efficient FP
encodings for the momentum values in Bop, such that they require minimal memory
space, without causing a significant loss in accuracy.

103

104 efficient training of bnns

−2 0 2

·10−5

100

103

106

109 (FC)

−1 0 1

·10−4

100

103

106

109 (VGG3)

−4 0 4

·10−5

100

103

106

109 (VGG7)

Figure 7.1: Histograms of all momentum values (after 10 epochs, 100 bins for values in FP32)
for the three BNN models FC, VGG3, VGG7. The y-axis is in log scale.

This chapter is organized as follows. First, we present the Bop and the general FP
format in Sec. 7.1 and Sec. 7.2. We then present the problem statement in Sec. 7.3.
In Sec. 7.4, we investigate the impact of FP encodings with reduced number of bits on
the momentum values of Bop and provide a theoretical proof for the cases in which
momentum value updates are lost. Based on our theoretical observations, in Sec. 7.5,
we formulate a metric, determining the number of unchanged momentum values due
to the FP encoding. We develop an algorithm to obtain memory-efficient FP encodings
for the momentum values, targeting tradeoffs in range (nr. of bits in exponent) and
precision (nr. of bits in mantissa). In Sec. 7.6, we compare achieved accuracy and ratio
of lost gradient updates of the FP encodings acquired from our method.

7.1 binary optimizer (bop) in bnn training

Recall that to train BNNs (Sec. 2.2.2), the backward pass has to be performed, i.e. the
weights need to be updated based on the partial derivative of the loss L with respect to
the corresponding binarized weights Wbin, i.e., ∂L

∂Wbin
. To obtain the partial derivatives,

error backpropagation based on the chain rule has been widely employed for non-
binarized NNs, as explained in Sec. 2.1.2. For BNNs, the study in [Hub+16] proposes
to estimate the derivative of the binary activation function using the straight-through
estimator, which is also explained in Sec. 2.2.2.

Instead of relying on the full-precision weights in the traditional BNN training
method, to update the binary weights, the study in [Hel+19] proposes the binary
optimizer (Bop) to directly flip the signs based on momentum signals. The momentum
signals are exponential moving averages of the partial derivatives of the loss with
respect to the binary weights. The method stores one momentum value mk ∈ Mt,
encoded in floating point (FP) format, for each binary weight wk ∈ Wbin.

The algorithm for training BNNs with Bop [Hel+19] is recapped in Alg. 7. First Wbin
and Mt are initialized (Line 1), where t counts the number of iterations. Then, in a loop
for each epoch and batch, the gradients are computed (Line 4), the momentum values
are updated (Line 5), and the signs of binary weights are flipped if the magnitude of

7.2 recap of floating point encoding 105

Algorithm 7: Training BNNs with the Binary Optimizer (Bop) [Hel+19].
Input: Wbin, L, (Xtrain, ytrain), threshold τ, adaptivity rate γ, batch size Bs, E, B

1 Initialize Wbin, Mt
2 for each epoch e = 0, . . . , E do
3 for each batch b = 0, . . . , B do

// Compute gradients

4 Gt ← 1
Bs

∂L
∂Wbin

∑(x,y)∈batch L(fWbin (x), y)
// Update momentum terms

5 Mt+1 ← (1− γ)Mt + γGt
6 for each pair mk ∈ Mt+1, wk ∈ Wbin do
7 if |mk| > τ and sgn(mk) = sgn(wk) then
8 wk ← −wk

the momentum value is larger than a predefined threshold τ and if the signs match
(Lines 6-8). More details of the algorithm are in [Hel+19].

Bop has two main advantages over the other BNN optimization procedures. First,
the optimization is tailored for BNNs, providing understanding and control of the
optimization process, leading to higher accuracy. Secondly, Bop only needs to store
one FP value per binary weight, which significantly cuts memory demand for BNN
training. Other approaches, such as Adam with latent weights [Hub+16], need two or
more FP values per binary weight. This makes Bop, to the best of our knowledge, the
most memory-efficient BNN training method to date.

7.2 recap of floating point encoding

As explained above, floating point (FP) values are employed to encode the momentum
values in Bop. The FP encoding is suitable for representing the momentum values,
as most of the values are close to zero, and fewer values are far away from zero, as
shown in the histograms in Fig. 7.1.

In FP encoding, values are mapped from a set (e.g. in R) to a set with a finite
number of values. A FP encoding uses one sign bit, a certain number of bits c for the
exponent (determining the magnitude of values), and a certain number of bits p in
the mantissa (determining the precision of values). The value encoded is computed by
(−1)s× 2exp× prec. The value exp is defined by exp = nn(Cc−1 . . . C1C0)− bias, where
nn(Cc−1 . . . C1C0) = ∑c−1

i=0 Ci2i is the natural number of the binary representation of
the exponent, which is represented as an unsigned integer, and the exponent bias
is used for conversion to a signed integer. The value prec is obtained by prec =

1 + nn(Pp−1 ...P1P0)
2p . The number of bits used in the encoding is c + p + 1, which we aim

to minimize.

106 efficient training of bnns

NN FC VGG3 VGG7

Binarized model 0.76 MB 0.83 MB 1.64 MB

Activations 0.34 MB 0.77 MB 10.0 MB

Optimizer (Bop) 23.36 MB 25.97 MB 51.95 MB

Table 7.1: Memory usage of BNN training with Bop, based on the categorization in [Soh+19].
Binarized model: 1 bit for each weight and bias, 32 bits for each batch normalization
parameter. Activations: One bit per activation value (batch size 256). Optimizer: 32

bits for each BNN model parameter. See Table 3.2 for details of BNN models.

7.3 problem definition

We apply the categorization of data that needs to be stored in the memory throughout
NN training process, as proposed by [Soh+19], to BNNs with Bop: (1) BNN model
memory, consisting of the binary model parameters and the floating-point batch
normalization parameters, (2) optimizer memory, consisting of the FP momentum
values in Bop, and (3) activation memory, which consists of the binarized activations.
In Table 7.1, we show that, out of the data that needs to be stored during the entire
training procedure of BNNs, the momentum values in Bop consume by far the largest
portion of memory. This leads us to the following problem statement.

Problem Definition: Given a set of labelled input data, the objective is to train
a BNN with high accuracy. In this chapter, we focus on the problem of obtaining
memory-efficient FP encodings of the momentum values in Bop, such that the number
of bits needed for encoding in the exponent and mantissa (c and p respectively) are
minimized, without causing a loss in accuracy.

7.4 impact of floating point encoding in bop

To reason about the impact of memory-efficient FP encodings in BNN training, we
consider a single momentum value mt ∈ Mt in the BNN training process in Alg. 7. Its
value is computed by mt+1 ← (1− γ)mt + γgt. We denote the update to a momentum
value in a BNN as

∆mt = mt+1 −mt = (1− γ)mt + γgt −mt = γ(mt − gt). (7.1)

FP encodings have a finite number of levels, which we denote here as an ordered
set Q = {q0, q1, . . . , qL}, where qv < qv+1 for 0 ≤ v ≤ L. We assume nearest rounding
scheme and use the midpoints between two FP levels as rounding thresholds. If an
arbitrary FP encoding is applied to mt, then we describe the FP value as Q(mt) = qv.
The quantization scheme can be uniform (the distances between the quantization
levels are all the same) or non-uniform (the distances between the levels can vary).

If a FP encoding as described in Sec. 7.2 is used to encode the momentum values,
then information loss can occur. If the update ∆mt is too small, then it is lost (“quan-
tized away”). This means, in cases of small ∆mt, the momentum value will not change.

7.4 impact of floating point encoding in bop 107

qv′ qv′+1qv′−1

Figure 7.2: Visual presentation of the intuition behind Theorem 2. Only momentum updates
that are large enough (pass the dashed line) lead to a change in the quantization
level. If the updates are to small (arrow too short), then they are lost.

Thus, the update is not recorded and mt keeps the same value. This leads us to the
following theorem.

Theorem 2. Assume a nearest-level FP encoding from R to an ordered set Q = {q0, . . . , qL}
and that a momentum value in the BNN training is encoded using Q, i.e. mt = qv. The
training performs the update scheme mt+1 ← mt − ∆mt, where the updated value mt+1 is
encoded to values in Q after the update is completed. The encoded momentum value will not
change the level after the update, i.e. Q(mt+1) = mt, if ∆mt <

qv+1−qv
2 for increasing mt+1,

or if ∆mt <
qv−qv−1

2 for decreasing mt+1 (see Fig. 7.2 for a visual presentation).

Proof. Case ∆mt < 0, the momentum value is increased by the update (mt ↑). Assume
that mt is encoded to a level v′. In the update step, mt gets increased by ∆mt to
an updated value mt+1. Here, mt+1 can only be encoded to another level qv′+r, if
|∆mt| ≥ |qv′+1−qv′ |

2 , since mt is always encoded to the nearest value in the FP encoding,
as the nearest rounding scheme is used and the midpoints between two FP levels
are taken as rounding thresholds. It follows that updates with ∆mt <

qv+1−qv
2 do not

cause mt+1 to change, thus Q(mt) = mt+1.
Case ∆mt > 0, the momentum value is decreased (mt ↓). If |∆mt| < |qv−qv−1|

2 then the
momentum value will not change after the update. Here, mt+1 can only be encoded
to another level qv′−r, if |∆mt| ≥ |qv′−qv′−1|

2 , as in the first case.

From Theorem 2, we derive design principles for memory-efficient FP encodings
of the momentum values. For effective training, it has to be ensured that momentum
values change during training. To track the number of unchanged values, we use The-
orem 2 to construct a metric. The ratio of momentum values that do not change their
FP level is

U(Q, Mt) =
1
|Mt| ∑

mt∈Mt

1
[
|∆mt| <

|Q(mt)− qv∗ |
2

]
, (7.2)

where 1[predicate] is the Iverson bracket, which is 1 if the condition predicate holds
and 0 otherwise, |Mt| is the number of momentum values, Q(mt) the encoded
momentum value, and qv∗ is the next value to Q(mt) in the encoding, depending
on the sign of ∆mt (if negative then the subsequent higher level, if positive then the
subsequent lower level). In the following, we refer to this metric as the U-metric.

108 efficient training of bnns

Algorithm 8: Algorithm to find a memory-efficient encoding for momentum
values.

Input: Ure f
0→T , mabsmax

sample , τ, α, pstep, ε, T
Output: Qb,c,p

// Calculate bias b (1)

1 b = −blog2(m
absmax
sample)c+ 1

// Calculate nr. of bits c for exponent (2)

2 c = dlog2(− log2(ατ)− b + 1)e
// Derive nr. of bits p for mantissa (3)

3 Initialize p = −pstep
4 do
5 p← p + pstep
6 Apply Alg. Alg. 7 until t = T using Qb,c,p

7 Extract U0→T(Qb,c,p, M) from Alg. Alg. 7

8 while |U0→T(Qb,c,p, M)−Ure f
0→T | > ε

7.5 memory-efficient encoding of momentum

To overcome the problem of losing momentum updates, one way is to increase the
magnitude of the decay factor γ. For training BNNs with Bop, γ is a hyperparameter
and it is initialized to a suitable value. Furthermore, a schedule is defined to reduce γ

after a certain number of epochs (e.g. γ is halved every second epoch). However, if
γ is chosen to be large, then the training is highly unstable, as reported in [Hel+19].
In practice, suitable initializations and hyperparameter schedules are jointly decided
empirically with lots of efforts, and should not be modified after the search. Instead,
we propose to design a memory-efficient FP encoding for the momentum values.

The key points for FP encodings with a minimal number of bits are (1) largest value
in the encoding, i.e. exponent bias b, (2) the number of bits c in the power-of-two
exponent, determining the range down to the smallest value, and (3) the number
of bits p in the mantissa, determining the precision, i.e. the number of values to
insert uniformly between the powers of two. For these three key points, we propose
three design principles to guide the design of memory-efficient FP encodings for
the momentum values in the Bop-optimization. In the following, we refer to the FP
encoding as Qb,c,p, and without loss of generality, leave out the signs of the values.

(1) Modify bias b: As values larger than the largest momentum value do not need
to be represented, our aim is to clip the range. In the standard FP encoding, the
largest number in the FP encoding is 22c−1−b × (2− 2−p) < 22c−b. Even if the largest
momentum value is given, we can choose different combinations of b and c. We
therefore change the representation of the exponent using exp = nn(Cc−1 . . . C1C0)−
b̃ = −nn(Cc−1 . . . C1C0)− b, where b̃ = 2nn(Cc−1 . . . C1C0) + b, which corresponds to
adding a constant to the exponent for converting the FP encoding to standard FP
encodings. Using the notation exp = −nn(Cc−1 . . . C1C0) − b allows us to directly
calculate the upper bound of the floating point that can be represented by setting b

7.5 memory-efficient encoding of momentum 109

since −nn(Cc−1 . . . C1C0) ≤ 0. The largest number that can be represented by the FP
format is 2−b × (2− 2−p) < 2−b+1. Therefore, b should be chosen such that

2−b+1 > mabsmax
sample ⇔ b < − log2(m

absmax
sample) + 1, (7.3)

where mabsmax
sample is the largest absolute value observed in a sample of the momentum

values Msample. If b is chosen to be too small, there will be no effects other than
potentially unused large levels. If b is chosen to be too large, then large values will be
mapped to smaller levels. This may hinder the training, since Bop relies on large |mt|
to flip signs (see Line 7 in Alg. 7).

(2) Nr. of bits in exponent: Sufficient range is needed for Bop to operate correctly.
When the bias b is already set, then the choice of the number of bits c in the exponent
(exp = −nn(Cc−1 . . . C1C0)− b) determines the smallest values that can be represented
in the encoding. If c is chosen to be too large, there will be no issue on accuracy,
rather than potentially unused small levels. If c is chosen to be too small, then small
values will be mapped to large levels, which may severely disturb training, since Bop
relies on comparisons of momentum value magnitudes to τ (Alg. 7, Line 7), which is
a known hyperparameter in Bop. A lower bound for c is derived analytically with

τ = 2−2c+1−b ⇔ c = dlog2(− log2(τ)− b + 1)e. (7.4)

To calculate suitable c for the FP encoding, it is necessary to further include certain
momentum values that are smaller than τ. Otherwise, these momentum values may
be discarded due to the configuration of τ. We therefore introduce another coefficient
α by replacing τ in Eq. (7.4) with ατ for some 0 < α < 1. With the help of α, the
number c = dlog2(−log2(ατ)− b + 1)e of bits is calculated such that the number of
FP levels below τ can be configured for the FP encoding.

(3) Nr. of bits in mantissa: The number of bits in the mantissa, referred to as p,
determines the number of levels that are inserted uniformly between the power-of-two
levels. If p is chosen too small, then the condition |∆mt| < |Q(mt)−qv∗ |

2 in Eq. (7.2) will
be true for a large amount of the momentum values, which may severely hinder
training, since a large fraction of the momentum updates are lost. For this reason, it
is required to insert levels between the powers of two, such that the updates are not
lost due to the encoding. However, it would be inefficient to derive p by incrementing
it successively. For each p, training until full convergence with the encoding Qb,c,p
would need to be performed. The search for p would terminate once same accuracy
is achieved as in a reference encoding. Instead, we propose an efficient way for
obtaining p, using the U-metric, where training is only needed to be performed with
t = T training iterations in Alg. 7, regardless of the accuracy. With a reference Ure f

0→T,
obtained from a reference encoding using which a high test accuracy can be achieved,
it needs to be ensured that

|U0→T(Qb,c,p, M)−Ure f
0→T| < ε (7.5)

holds, where ε ∈ (0, 1) describes the required approximation of U0→T(Qb,c,p, M) to

Ure f
0→T, and the notation 0→ T describes that U0→T includes all U-values from training

110 efficient training of bnns

iterations 0 to T (the comparison is vectorized over all U-values). When the condition
in Eq. (7.5) holds, it is ensured that enough momentum values change their levels for
the training to converge well.

Based on the three design principles, we summarize our method for obtaining
memory-efficient FP encodings for the momentum values in Alg. 8. In our algorithm,
the bias, exponent, and mantissa are designed such that the number of bits in the FP
encoding is minimized, while ensuring that Bop can operate correctly. The algorithm
has three main steps, corresponding to the three design principles. (1) A suitable
bias b based on the distribution of momentum values is calculated, see Line 1. We
calculate b based on Eq. (7.3). Then, the encoding is clipped, such that larger values
than the observed maximum are not included in the encoding. Furthermore, we
ensure that large FP levels are available in the encoding, which are important in Bop,
since it relies on large moments to flip signs. (2) The number of required bits c in
the exponent is calculated based on Eq. (7.4) with given b, τ, and α, see Line 2. To
ensure that FP levels below τ are included, we multiply τ by a factor α ∈ (0, 1), e.g.
α = 0.1 to add approximately three power-of-two levels below τ. By this, we ensure
that the comparison to τ in Bop is correct, while avoiding to include small FP levels
that may not be necessary. (3) The steps for acquiring the number of bits p in the
mantissa require to run Alg. 7 with different p in Qb,c,p. To record the U0→T(Qb,c,p, M),
a training process with Alg. 7 using Qb,c,p is conducted until training iteration t = T.
Bits in the mantissa are added, to reach a similar U-value as in the reference encoding.
When the U-metrics are close enough regarding ε, the algorithm terminates. This step
ensures that similarly many momentum values change in the obtained encoding as in
the reference encoding, while unnecessary precision is avoided in the obtained FP
encoding. Note that the number of mantissa bits is decided solely based on the U-
metrics, without the need to train until convergence and without comparing achieved
accuracy. The search for the number of mantissa bits is time-efficient because it is
independent from accuracy.

7.6 experiments

In Sec. 7.6.1, we present the experiment setup including details of the training,
hyperparameter settings, and the details of setting up Alg. 8 for evaluation. We
present the experiment results in Sec. 7.6.2.

7.6.1 Experiment Setup

In the following, we first explain which hyperparameters we use in the training and
then how we set up the memory-efficient encoding with Alg. 8.

Training: We run Bop for optimizing BNNs in a PyTorch-based framework, based
on the framework described in Ch. 3. We simulate the FP encoding by applying lookup
tables that map any value to a value in a desired quantization set, such as a custom

7.6 experiments 111

Encoding Range Precision Realization

PT6 o - 1 sign, 5 exp.

FP8 o o- 1 sign, 5 exp., 2 mant.

FP10 o o- 1 sign, 5 exp., 4 mant.

FP12 o o 1 sign, 5 exp., 6 mant.

FP16b + o 1 sign, 8 exp., 7 mant.

FP32 + + 1 sign, 8 exp., 23 mant.

Table 7.2: FP encodings evaluated in Alg. 8. For easy reference, the following encodings are
included: FP16b and FP32. +: High, o: Mid, -: Low.

floating point format in our case. This is achieved by performing the quantization on
the momentum tensors during training with custom CUDA kernels. We use the FC,
VGG3, and VGG7 models described in Table 3.2, for the data sets Fashion, SVHN,
and CIFAR10, shown in Table 3.1. The batch size is 256 for all models. In all models,
we use the threshold τ = 10−8, initial decay γ = 10−3, and decay factor ηdecay = 0.125,
which is multiplied with γ every 10th epoch for FC and VGG3, and for VGG7 we
apply ηdecay = 0.5 every 25th epoch. For the batch normalization parameters, we use
Adam optimization as proposed by [Hel+19], with an initial learning rate of 10−2 for
FC and VGG3, and 10−3 for VGG7. We halve the learning rate every 5th epoch for FC
and VGG3, and halve it every 50th epoch for VGG7. For each model and FP encoding
case, we train 50 epochs for FC and VGG3, and 200 epochs for VGG7. For each case,
we repeat the experiments five times for FC and VGG3, and three times for VGG7.

Memory-Efficient Encoding: As baselines, we use the FP16b (brain FP format),
used in modern processing units to accelerate NN training [Kal+19] and are used in
the state-of-the-art for encoding Bop momentum values for efficient BNN training
in [Wan+21], and FP32. To acquire memory-efficient encodings for the momentum
values with Alg. 8, we sample values for Ure f

0→T using FP16b. When running Alg. 8 for
different FP encodings, we simulate the use of FP encodings by applying them to the
momentum values after each update of the momentum values.

7.6.2 Experiment Results

We run Alg. 8 to obtain memory-efficient encoding schemes for the momentum values,
with τ = 10−8 (hyperparameter in Bop), α = 10−1 (to add approximately three power
of two levels below τ), pstep = 2, and ε = 0.25 (such that the majority of values
can change their FP levels). We use use these parameters as an illustration of the
intermediate steps of the Alg. 8. We now follow the three main steps of Alg. 8 for the
three models: (1) For the bias, Alg. 8 calculates b = 14 as the highest value among all
three models. We use it as the b for all models. To provide context for this choice, we
plot histograms of the momentum values in Fig. 7.1. (2) With given b = 5, c = 5 is
calculated as number of required bits in the exponent to include values smaller than

112 efficient training of bnns

ατ in the FP encoding. (3) To acquire the number of bits in the mantissa, the algorithm
starts with PT6, the encoding with 1 sign bit and 5 exponent bits. Then, for each
subsequent iteration, pstep = 2 mantissa-bits are added. The algorithm stops when
p = 6, i.e. the condition of the while loop (Line 8) is satisfied. We do not conduct
further testing of other configurations. We plot the U-metric and achieved accuracy
in Fig. 7.3. The list of the encodings tested in Alg. 8 with their respective properties
(and the encodings FP16b and FP32 for easy reference) are shown in Table 7.2.

We plot the U-metric over the training epochs in Fig. 7.3, to explain why certain
encoding schemes perform better than others. For all U-curves, the move towards
U = 1 is noticeable, because the decay factor γ is decreased every 10 (50 for VGG7)
epochs. We observe that the encodings with no or few mantissa bits, i.e. PT6 and FP8,
have U-values close to 1 early in the training, which severely hinders training due
to unregistered updates. This is also reflected in the achieved accuracy in all cases
in Fig. 7.3. The case for FP10 has lower U-values than in the previous encodings, but
a large fraction of values still do not change their level. For FP12, the U-metric is
significantly lower, the difference in the U-metrics with ε = 0.25 compared to FP16b
is achieved.

Please note that other exponent-only formats than PT6 with more bits for the
exponent do not lead to better results, since exponent-only formats merely increase
the number of smaller values, which cannot decrease the number of lost momen-
tum updates for momentum values that matter (i.e. that are larger than τ = 10−8).
Therefore other exponent-only formats are omitted for brevity.

In summary, we observe that with Alg. 8, optimized encodings for the momentum-
values can be obtained, based on samples of momentum values, ατ, and a reference
encoding. In our experiments, we observe a correlation between the U-metric and
the achieved accuracy. The closer the U-metric of the FP encoding in Alg. 8 to the
reference encoding, the closer the achieved accuracy of the FP encoding in Alg. 8 to
the reference encoding. In Table 7.1, we summarize the experiment results. We report
test accuracy and the memory saving factors obtained by the FP encodings in Alg. 8

that achieve high accuracy, i.e. FP10 and FP12. The entries for FP16b and FP32 are not
acquired from Alg. 8, they shown for reference.

7.7 discussion : gradient computations with custom fp formats

In the following, we evaluate the impact of using the custom FP encodings from Alg. 8

on the resource efficiency of transprecision (i.e. with configurable number of bits in the
exponent and mantissa) Floating Point Units (FPUs) in Sec. 7.7.1. Then, in Sec. 7.7.2,
we present the future work of using the custom FP encodings for the gradient
computations and the errors caused by them in the computations.

7.7 discussion : gradient computations with custom fp formats 113

0 20 40
60
65
70
75
80
85
90

Epoch

Te
st

ac
cu

ra
cy

(%
)

FASHION (FC)

0 20 40
60
65
70
75
80
85
90

Epoch

Te
st

ac
cu

ra
cy

(%
)

FASHION (VGG3)

0 100 200
30

40

50

60

70

80

90

Epoch

Te
st

ac
cu

ra
cy

(%
)

CIFAR10 (VGG7)

0 20 40
0

0.2

0.4

0.6

0.8

1

Epoch

U

FASHION (FC)

0 20 40
0

0.2

0.4

0.6

0.8

1

Epoch

U

FASHION BNN (VGG3)

0 100 200
0

0.2

0.4

0.6

0.8

1

Epoch

U

CIFAR10 (VGG7)

FP16b FP12 FP10 FP8 PT6

Figure 7.3: Achieved accuracy (top row, the higher the better) and the U-values (bottom
row, the lower the better) of the FP encodings in Alg. 8. FP16b is shown here for
reference. It is not constructed by Alg. 8.

Encoding
Type

Fashion
FC accuracy

Fashion
VGG3 accuracy

CIFAR10

VGG7 accuracy
Memory saving factor

FC VGG3 VGG7

FP10 87.35 (0.36, 0.20) 89.30 (0.69, 0.67) 85.02 (0.15, 0.18) 2.89 2.83 2.28

FP12 88.10 (0.13, 0.22) 90.42 (0.23, 0.24) 88.56 (0.14, 0.14) 2.47 2.43 2.04

FP16b 88.31 (0.13, 0.14) 90.11 (0.35, 0.66) 89.07 (0.18, 0.14) 1.91 1.89 1.69

FP32 88.23 (0.23, 0.27) 90.48 (0.21, 0.19) 89.14 (0.07, 0.12) 1.00 1.00 1.00

Table 7.3: Avg. and (avg.-min., max.-avg.) accuracy (with observed min. and max.) for the
different FP encodings in Alg. 8 on the test sets at the end of the training procedure.
We also report the total memory saving factors. The cases with minimal (approx.
0-1%) accuracy degradation compared to the 32-bit case are in bold. FP16b and
FP32 are shown for reference, they are not constructed by Alg. 8.

7.7.1 Impact of Custom FP Formats on FPU Efficiency

For effective use of the custom FP formats Qb,c,p, the gradients gt and subsequently
the momentum values mt+1 should be computed using the custom FP formats. To
investigate the effects of reduced FP formats in terms of area, energy, latency on the
resource efficiency of floating point units (FPUs), we use the open-source transpecision
FPU design called FPnew from [Mac+21]. For FPU evaluations, we generate instances
of the FPUs with the FP formats FP32, FP16b, FP12, and FP10 (the last two formats

114 efficient training of bnns

FP32 FP16b FP12 FP10
0

100
200
300
400
500
600
700
800

A
re

a
U

sa
ge

(L
U

Ts
)

FP32 FP16b FP12 FP10
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
·10−2

En
er

gy
(W

)

DSP Logic Signals

FP32 FP16b FP12 FP10
0
2
4
6
8
10
12
14
16
18
20
22
24
26

La
te

nc
y

(n
s)

Figure 7.4: Area, energy, and latency evaluations of the transprecision FPU from [Mac+21].
The FPUs are configured with the custom FP formats derived from Alg. 8.

are derived by Alg. 8). We use Vivado to synthesize the FPU for the Zynq UltraScale+
ZCU104 Evaluation Board FPGA and show the results for area, energy, and latency
in Fig. 7.4. The results are summarized in the following.

Area: We use Lookup Tables (LUTs) to estimate the area usage, as they are the
most important elements to build computing units in FPGAs. The results show that
FPUs configured with FP formats with a smaller number of bits use significantly less
LUTs than FPUs that realize formats with a higher number of bits. For example, the
FPU with format FP16b uses 57% of the LUTs that a FP32 FPU uses. Furthermore,
the FPUs with FP12 or FP10 use only 19% and 15% respectively of the LUTs that a
FP32 FPU uses. Power: For the energy usage we rely on the power report of Vivado
to evaluate the amount of power used by the FPGA for one FPU. As the FPGA board
uses a static 0.592 W of power, we subtracted this amount from all results to get
the dynamic power used by the FPU. The dynamic power is separated into Signals,
Logic, and Digital Signal Processing (DSP). The energy measurements show a large
difference between the power usage of FPUs using FP32 and FP16b with 0.013 W
compared to 0.006 W. Between FP16b and FP12, the difference is less significant with
0.006W compared to 0.004W, while there is no measurable difference between FP12

and FP10. Latency: For measuring the latency, we use the delay of the longest path in
the timing report of Vivado, which can be used to set the clock cycle. In general, the
latency improvements are small, in the scale of a few percentage points, and not as
significant as in area and power.

7.7.2 Discussion: Using Custom FP Formats for Gradient Calculations

We have not yet discussed the impact on the result quality in backward pass com-
putations when calculating with reduced FP formats. To assess the impact, we first
define some useful notation. Assuming that the biases of the FP formats are the same,
QFP16 ⊂ QFP32 holds, since QFP16 has elements from QFP32, but not all of them. In
general, Qb,c′,p′ ⊂ Qb,c,p holds when c′ < c and p′ < p.

Based on this, an intuitive approximation is

Qb,c,p((mt+1)FP32) ≈ (mt+1)b,c,p, (7.6)

7.8 conclusion 115

where the right side (.)enc states that the encoding enc is used to represent the values
and also perform the computations. The left side is the same as in the experiments
in Sec. 7.6.2, where mt+1 is calculated using a 32 bits FP format, and then the
resulting mt+1 is quantized using Qb,c,p. The intuitive idea behind Eq. (7.6) is that the
results of multiplications and additions using Qb,c,p (computing with the encoding,
i.e. the FPU that realizes Qb,c,p) is approximately the same compared to the case of
calculating using 32-bit FP formats and then quantizing using Qb,c,p. Additions and
multiplications here serve as a model for operations in the backward pass.

Specifically, in future work we plan to show that for the operation between two val-
ues v1 and v2 that MULTb,c′,p′(v1, v2) ≈ (MULTb,c,p(v1, v2))b,c′,p′ and ADDb,c′,p′(v1, v2) ≈
(ADDb,c,p(v1, v2))b,c′,p′ , with c < c′ and p < p′. However, since many additions and
especially multiplications are performed in the backward pass due to the chain rule,
these statements also need to be extended to cover chains of operations.

7.8 conclusion

We proposed a method to obtain memory-efficient floating point (FP) encodings for
the momentum values in the BNN training using Bop. Our method is based on the
hyperparameters of Bop and a metric, for which we prove that it tracks the number of
unchanged values due to reduced FP encodings. Our result show that FP encodings
with less number of bits can be obtained than the encodings in the state-of-the-art,
leading to a significant reduction in memory usage for BNN training. This enables
BNN training on the edge with significantly lower memory requirements, which
inevitably leads to lower energy, latency, and area consumption, since the memory
subsystem is the most critical bottleneck in NN training.

8
C O N C L U S I O N A N D O U T L O O K

In the following, we provide a summary of this dissertation in Sec. 8.1 and discuss
the future work in Sec. 8.2.

8.1 summary

This dissertation has proposed a vision for efficient future intelligent systems that are
comprised of robust BNNs operating with approximate memory and approximate
computing units, while being able to be trained on the edge. We have explored this
vision in four chapters of this dissertation.

In Ch. 4, we proposed bit error tolerance metrics for the hidden-layer-neuron
level and the output-layer level. We formally proved that our metrics measure the
maximum number of any bit flips that can be tolerated without a change of the
BNN prediction. Based on these metrics and the hinge loss for maximum margin
classification in SVMs, we proposed the modified hinge loss (MHL) for optimizing
the bit error tolerance of BNNs. Our experimental results show that the BNNs trained
with the MHL achieve higher bit error tolerance and accuracy compared to BNNs
trained with the classical bit flip injection method.

In Ch. 5, we explored two scenarios that assume approximate FeFET memory
for the BNNs. In Sec. 5.2, we first analyzed the effects of variable temperature
on FeFET memory and proposed an asymmetric bit error model that exhibits the
relation between temperature and bit error rates. We then evaluated the impact
of the asymmetric temperature bit errors of FeFET on BNN accuracy when no
countermeasures are used and showed that the accuracy can drop can be unacceptable.
To deploy BNNs with high accuracy using FeFET memory despite the temperature
effects, we proposed two countermeasures to the bit errors: (1) Bit flip training while
taking the asymmetry into account and (2) a bit error rate assignment algorithm
(BERA). With these methods, the BNNs achieve bit error tolerance for the entire range
of operating temperature. In Sec. 5.3, we proposed to use FeFET-based LiM in the
form of XNOR gates for BNN inference. To alleviate the latency bottleneck from the
FeFET-based LiM, we investigated the impact from FeFET-based LiM errors on the
inference accuracy of BNNs. We demonstrated how the inherent latency tradeoff of
FeFET-based LiM can increase the overall latency of BNNs significantly. We showed
that a significant decrease in latency is achieved when applying design-time methods
through training with errors or when using the run-time methods.

In Ch. 6, we explored two approximate computing approaches for analog comput-
ing BNN accelerators. In Sec. 6.1, we proposed the BNN inference scheme coined
Local Thresholding Approximation (LTA), which approximates the global thresh-

117

118 conclusion and outlook

oldings in BNNs by local thresholdings. In BNN crossbar accelerators, this enables
the use of only analog comparators for most of the execution, which significantly
increases the interface circuit efficiency compared to the state of the art. Our results
for two BNN models showed that using the LTA reduces the area, energy, latency
by large factors when compared to state-of-the-art crossbar-based BNN accelerators.
In Sec. 6.2, we considered another analog computing based processing scheme for
BNNs, the IF-SNNs, which use large capacitors. We therefore proposed CapMin, a
method for capacitor size minimization IF-SNNs. CapMin achieves the capacitor size
minimization by reducing the number of spike times needed in the HW based on
MAC level occurrences in the SW. Additionally, we proposed CapMin-V, a method
which increases the tolerance to current variation. CapMin achieves a significant re-
duction in capacitor size over the state of the art, while CapMin-V achieves variation
tolerance at small cost.

In Ch. 7, we proposed a method to obtain memory-efficient floating point (FP)
encodings for the momentum values in the BNN training using Bop. Our method is
based on the hyperparameters of Bop and a metric, for which we prove that it tracks
the number of unchanged values due to reduced FP encodings. Our results show that
FP encodings with less number of bits can be obtained than the encodings in the state
of the art, leading to a significant reduction in memory usage for BNN training. This
enables BNN training on the edge with significantly lower memory requirements,
inevitably leading to lower energy, latency, and area consumption, since the memory
subsystem is the most critical bottleneck in NN training.

8.2 future work

In the following we discuss the possible directions for how the work presented in this
dissertation could be extended in the future.

Error Tolerance Optimization of BNNs: In Ch. 4, we believe that we have devel-
oped a fundamental understanding of the bit error tolerance for BNNs and that it
provides a cornerstone for the exploration of other NN models. Despite the limitation
of using only binary values, the concept of margins of individual neurons and the
margins of the output layer can be potentially extended to any NN model with higher
precision weights. In these evaluations, alternative ways of margin maximization
in the output layer should be investigated, since some NN models do not rely on
classifications but on direct return values such as coordinates (e.g. when predicting
bounding boxes for objects). Specifically, instead of the last layer, the hidden-layer
metric should be explored in more detail, for which still a consistent and provable
metric does not exit in the literature. This may be possible by combining the error
tolerance of NNs with explainability methods (XAI).

Approximate FeFET Memory for BNNs: For FeFET, in Sec. 5.2, we have considered
temperature behavior and latency for reads. However, the energy and latency of the
cell programming is also important, especially if the FeFET-based memory cannot
hold all the weight data and needs to be rewritten, which will be considered in

8.2 future work 119

the future. Furthermore, temperature issues due to temperature cycling are also
interesting to explore in the future.

Approximate Computing Units for BNNs: For analog-based computing, which
we explored in Ch. 6, it is important to also explore the maximum number of XNOR
gates that can fit into one column, since it plays a key role in the efficiency of
analog-based computing. Specifically, the tradeoff between the number of analog
states in a computing column and the noise level in the column is an interesting
future work, especially considering the interplay with the ADC. Furthermore, one
limitation is that only BNNs are considered. We plan to extend the two methods
to multi-bit NNs, however, analog computing for higher precision is a challenge
due to the larger number of required analog states. For the work in Sec. 6.1, one
possible future direction to improve the LTA accuracy is to explore methods that
attempt to automatically find local thresholds and majority vote shifts in the LTA.
This can be done in a fine-grained manner, i.e. window or neuron based, or in a
more coarse-grained manner, i.e. on the layer level. However, automatically finding
or training the local thresholds and majority vote shifts introduces many additional
parameters, as there can be many thousands or more neurons in a BNN, while the
number of local thresholds is approximately one order of magnitude larger than the
total number of neurons in the BNN. Furthermore, the optimization of thresholds
also competes with the function of the batch norm layer, as the traditional (global)
thresholds are derived from the batch norm parameters, without which BNNs are
reported to achieve poor training performance [SBN19]. For the work in Sec. 6.2, an
interesting extension would be to simulate an entire system, i.e. connecting the buffer
memories for the inputs and weights, control circuits, and adders to accumulate
subcomputations. Then, the impact of the capacitor reduction could be evaluated on
the system level instead of the circuit level.

Training BNNs on the Edge: For enabling the training of BNNs on the edge,
in Ch. 7, we have explored the reduction of the FP format of the momentum values.
We have not yet discussed the impact on the result’s quality of the backward pass
when calculating with reduced FP formats. Furthermore, to increase the efficiency of
the backward pass, some computations in the backward pass may be redundant or
without much impact (e.g. updates are always too small). A suitable extension would
be to selectively drop computations of the backward pass, either randomly or in a
structured manner.

Note on the BNN Architectures Used: For the proof-of-concept experiments of the
contributions in this dissertation, four types of BNNs were used, as presented in Ch. 3.
The BNNs perform image classification and have fully connected, convolutional, and
skip connections, which are typical building blocks used in resource-constrained NNs.
Image classification is also a typical BNN use case in which high-performing models
tailored for resource-constrained inference are used. Although the BNNs and the
datasets used here are resonable choices for proof-of-concept research, they are limited
to image classification. Further evaluations on other use cases, such as language and
audio processing, would strengthen the research contributions. To the best of our

120 conclusion and outlook

knowledge, BNNs or multi-bit NNs trained for these use cases also exhibit bit error
tolerance, which can be exploited on the hardware or software level for efficiency.
However, complex tasks such as language processing may require more bits than in
the binary case, as their binarization leads to significant accuracy costs (at the time of
writing the dissertation, this may change for the better in the future). Still, with theory
on our side, we know that BNNs can approximate any function that multi-bit NNs
can. The challenge is to find BNN architectures that achieve high accuracy, while at
the same time being more efficient than multi-bit NNs. After high-performing BNN
architectures are built, then they can be optimized for error tolerance, which can then
in turn be exploited for efficiency.

B I B L I O G R A P H Y

[Agr+18] Amogh Agrawal, Akhilesh Jaiswal, Chankyu Lee, and Kaushik Roy.
“X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static
Random Access Memories.” In: IEEE Transactions on Circuits and Systems
I: Regular Papers (2018).

[Ali+18] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane, and Yarin
Gal. “An Empirical study of Binary Neural Networks’ Optimisation.” In:
International Conference on Learning Representations (ICLR). 2018.

[And+18a] Kota Ando et al. “BRein Memory: A Single-Chip Binary/Ternary Recon-
figurable in-Memory Deep Neural Network Accelerator Achieving 1.4
TOPS at 0.6 W.” In: IEEE Journal of Solid-State Circuits (2018).

[And+18b] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. “YodaNN:
An Architecture for Ultralow Power Binary-Weight CNN Acceleration.”
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2018).

[Arm+22] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg
Henkel. “Hardware Approximate Techniques for Deep Neural Network
Accelerators: A Survey.” In: arXiv:2203.08737 (2022).

[Ban+18] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. “Scalable
Methods for 8-Bit Training of Neural Networks.” In: Neural Information
Processing Systems (NIPS). 2018.

[Ban+21] Tom Bannink, Arash Bakhtiari, Adam Hillier, Lukas Geiger, Tim de
Bruin, Leon Overweel, Jelmer Neeven, and Koen Helwegen. “Larq Com-
pute Engine: Design, Benchmark, and Deploy State-of-the-Art Binarized
Neural Networks.” In: arXiv:2011.09398 (2021).

[BLC13] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. “Estimating
or Propagating Gradients Through Stochastic Neurons for Conditional
Computation.” In: arXiv:1308.3432 (2013).

[Bet+18] Joseph Bethge, Marvin Bornstein, Adrian Loy, Haojin Yang, and Christoph
Meinel. “Training Competitive Binary Neural Networks from Scratch.”
In: arXiv:1812.01965 (2018).

[Bet+19] Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel.
“Back to Simplicity: How to Train Accurate BNNs from Scratch?” In:
arXiv:1906.08637 (2019).

[Bou+17] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. “Emerg-
ing NVM: A Survey on Architectural Integration and Research Chal-
lenges.” In: ACM Trans. Des. Autom. Electron. Syst. (2017).

121

122 bibliography

[Bou+22] Wadii Boulila, Maha Driss, Eman Alshanqiti, Mohamed Al-Sarem, Faisal
Saeed, and Moez Krichen. “Weight Initialization Techniques for Deep
Learning Algorithms in Remote Sensing: Recent Trends and Future
Perspectives.” In: Advances in Intelligent Systems and Computing. 2022.

[BMT20] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. “BATS: Bi-
nary ArchitecTure Search.” In: arXiv:2003.01711 (2020).

[BT19] Adrian Bulat and Georgios Tzimiropoulos. “XNOR-Net++: Improved
Binary Neural Networks.” In: arXiv:1909.13863 (2019).

[Bus+18] S. Buschjager, K. Chen, J. Chen, and K. Morik. “Realization of Random
Forest for Real-Time Evaluation through Tree Framing.” In: International
Conference on Data Mining (ICDM). 2018.

[BJBP20] Sebastian Buschjäger, Katharina Morik Jens Buß, and Lukas Pfahler.
“On-Site Gamma-Hadron Separation with Deep Learning on FPGAs.”
In: Machine Learning and Knowledge Discovery in Databases (ECML PKDD).
2020.

[Bus+20] Sebastian Buschjäger, Jian-Jia Chen, Kuan-Hsun Chen, Mario Günzel,
Christian Hakert, Katharina Morik, Rodion Novkin, Lukas Pfahler, and
Mikail Yayla. “Towards Explainable Bit Error Tolerance of Resistive
RAM-Based Binarized Neural Networks.” In: arXiv:2002.00909 (2020).

[Bus+21] Sebastian Buschjäger, Jian-Jia Chen, Kuan-Hsun Chen, Mario Günzel,
Christian Hakert, Katharina Morik, Rodion Novkin, Lukas Pfahler, and
Mikail Yayla. “Margin-Maximization in Binarized Neural Networks for
Optimizing Bit Error Tolerance.” In: Design, Automation and Test in Europe
Conference and Exhibition (DATE). 2021.

[C+22] Srinivasan C, Sridhar P, Hari Priya V, and Swathi S. “A TinyML based
Residual Binarized Neural Network for real-time Image Classification.”
In: International Conference on Electronics, Communication and Aerospace
Technology. 2022.

[Cif] CIFAR10 Dataset, https://www.cs.toronto.edu/ kriz/cifar.html. Accessed 2023-
09-01. url: https://www.cs.toronto.edu/~kriz/cifar.html.

[CP23] Ahmet Enis Cetin and Hongyi Pan. “Hybrid Binary Neural Networks:
A Tutorial Review.” In: VLSI Test Symposium (VTS). 2023.

[Che+20a] Gang Chen, Shengyu He, Haitao Meng, and Kai Huang. “PhoneBit:
Efficient GPU-Accelerated Binary Neural Network Inference Engine
for Mobile Phones.” In: Design, Automation Test in Europe Conference
Exhibition (DATE). 2020.

[Che+20b] Jia Chen, Jiancong Li, Yi Li, Xiangshui Miao, J Chen, J Li, Y Li, and X. S.
Miao. “Multiply accumulate operations in memristor crossbar arrays for
analog computing.” In: Journal of Semiconductors (2020).

https://www.cs.toronto.edu/~kriz/cifar.html

bibliography 123

[Che+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. “MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems.” In: arXiv:1512.01274 (2015).

[Che+18] X. Chen, X. Yin, M. Niemier, and X. S. Hu. “Design and optimization
of FeFET-based crossbars for binary convolution neural networks.” In:
Design, Automation and Test in Europe Conference and Exhibition (DATE).
2018.

[CES16] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. “Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks.”
In: International Symposium on Computer Architecture (ISCA). 2016.

[Chi+16] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. “PRIME: A Novel Processing-in-Memory
Architecture for Neural Network Computation in ReRAM-Based Main
Memory.” In: International Symposium on Computer Architecture (ISCA).
2016.

[CGC21] Jeong Hwan Choi, Young-Ho Gong, and Sung Woo Chung. “A System-
Level Exploration of Binary Neural Network Accelerators with Mono-
lithic 3D Based Compute-in-Memory SRAM.” In: MDPI Electronics
(2021).

[CBD15a] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Bina-
ryConnect: Training Deep Neural Networks with binary weights during
propagations.” In: Neural Information Processing Systems (NIPS). 2015.

[CBD15b] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Training
deep neural networks with low precision multiplications.” In: arXiv:
1412.7024 (2015).

[Cyb89] G Cybenko. “Approximation by superposition of sigmoidal functions.”
In: Mathematics of Control, Signals, and Systems (1989).

[Dav+23] Abhilasha Dave, Fabio Frustaci, Fanny Spagnolo, Mikail Yayla, Jian-Jia
Chen, and Hussam Amrouch. “HW/SW Codesign for Approximation-
Aware Binary Neural Networks.” In: IEEE Journal on Emerging and Selected
Topics in Circuits and Systems (2023).

[DSM20] Joydeep Kumar Devnath, Neelam Surana, and Joycee Mekie. “A Low-
Voltage Split Memory Architecture for Binary Neural Networks.” In:
International Symposium on Circuits and Systems (ISCAS). 2020.

[Din+19] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. “Regu-
larizing Activation Distribution for Training Binarized Deep Networks.”
In: Computer Vision and Pattern Recognition (CVPR). 2019.

124 bibliography

[DLS18] Yukun Ding, Jinglan Liu, and Yiyu Shi. “On the Universal Approx-
imability of Quantized ReLU Neural Networks.” In: arXiv:1802.03646
(2018).

[Don+18] Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, David
Brooks, and Gu-Yeon Wei. “On-Chip Deep Neural Network Storage with
Multi-Level ENVM.” In: Design Automation Conference (DAC). 2018.

[DSS20] Yuxuan Du, Xinchao Shang, and Weiwei Shan. “An Energy-Efficient
Time-Domain Binary Neural Network Accelerator with Error-Detection
in 28nm CMOS.” In: Asia Pacific Conference on Circuits and Systems (APC-
CAS). 2020.

[Dut+20] Sourav Dutta, Clemens Schafer, Jorge Gomez, Kai Ni, Siddharth Joshi,
and Suman Datta. “Supervised Learning in All FeFET-Based Spiking
Neural Network: Opportunities and Challenges.” In: Frontiers in Neuro-
science (2020).

[Dü+17] S. Dünkel et al. “A FeFET based super-low-power ultra-fast embedded
NVM technology for 22nm FDSOI and beyond.” In: International Electron
Devices Meeting (IEDM). 2017.

[Fas] FashionMNIST Dataset, https://github.com/zalandoresearch/fashion-mnist. Ac-
cessed 2023-09-01. url: https://github.com/zalandoresearch/fashion-
mnist.

[GNA18] Mehdi Ghasemzadeh, Saeid Najafibisfar, and Abdollah Amini. “Ultra
Low-power, High-speed Digital Comparator.” In: International Conference
"Mixed Design of Integrated Circuits and System" (MIXDES). 2018.

[Gho+21] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Ma-
honey, and Kurt Keutzer. “A Survey of Quantization Methods for Effi-
cient Neural Network Inference.” In: arXiv:2103.13630 (2021).

[Goe+06] S. Goel, M.A. Elgamel, M.A. Bayoumi, and Y. Hanafy. “Design method-
ologies for high-performance noise-tolerant XOR-XNOR circuits.” In:
IEEE Transactions on Circuits and Systems I: Regular Papers (2006).

[GDM83] N.F. Goncalves and H. De Man. “NORA: a racefree dynamic CMOS
technique for pipelined logic structures.” In: IEEE Journal of Solid-State
Circuits (1983).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. 2016.

[Gou+21] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao.
“Knowledge Distillation: A Survey.” In: International Journal of Computer
Vision (2021).

[HWC17] C. Ha, Y. Wang, and C. Chang. “Dynamic Power Management for wear-
able devices with Non-Volatile Memory.” In: International Conference on
Applied System Innovation (ICASI). 2017.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://www.deeplearningbook.org

bibliography 125

[Ha+21] Minho Ha, Younghoon Byun, Seungsik Moon, Youngjoo Lee, and Sunggu
Lee. “Layerwise Buffer Voltage Scaling for Energy-Efficient Convolu-
tional Neural Network.” In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2021).

[Hak+19] Christian Hakert et al. “Stack Usage Analysis for Efficient Wear Level-
ing in Non-Volatile Main Memory Systems.” In: Workshop on Machine
Learning for CAD (MLCAD). 2019.

[HH15] Sarah Harris and David Harris. Digital Design and Computer Architecture:
ARM Edition. 2015.

[HTY17] Raqibul Hasan, Tarek M. Taha, and Chris Yakopcic. “On-chip training of
memristor based deep neural networks.” In: International Joint Conference
on Neural Networks (IJCNN). 2017.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Resid-
ual Learning for Image Recognition.” In: Computer Vision and Pattern
Recognition Conference (CVPR). 2016.

[He+20] Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong
Wang, Qingshan Liu, and Jian Cheng. “ProxyBNN: Learning Binarized
Neural Networks via Proxy Matrices.” In: European Conference on Com-
puter Vision (ECCV). 2020.

[Hel+19] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-
Ting Cheng, and Roeland Nusselder. “Latent Weights Do Not Exist:
Rethinking Binarized Neural Network Optimization.” In: Neural Informa-
tion Processing Systems (NIPS). 2019.

[HLPS20] Sébastien Henwood, François Leduc-Primeau, and Yvon Savaria. “Layer-
wise Noise Maximisation to Train Low-Energy Deep Neural Networks.”
In: International Conference on Artificial Intelligence Circuits and Systems
(AICAS). 2020.

[Hir+19a] Tifenn Hirtzlin, Bogdan Penkovsky, Jacques-Olivier Klein, Nicolas Lo-
catelli, Adrien F. Vincent, Marc Bocquet, Jean Michel Portal, and Damien
Querlioz. “Implementing Binarized Neural Networks with Magnetore-
sistive RAM without Error Correction.” In: arXiv:1908.04085 (2019).

[Hir+19b] Tifenn Hirtzlin, Marc Bocquet, Jacques-Olivier Klein, Etienne Nowak,
Elisa Vianello, Jean Michel Portal, and Damien Querlioz. “Outstanding
Bit Error Tolerance of Resistive RAM-Based Binarized Networks.” In: In-
ternational Conference on Artificial Intelligence Circuits and Systems (AICAS).
2019.

[Hir+19c] Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein,
Jean-Michel Portal, and Damien Querlioz. “Stochastic Computing for
Hardware Implementation of Binarized Neural Networks.” In: IEEE
Access (2019).

126 bibliography

[How+17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications.” In: arXiv:1704.04861 (2017).

[Hu+18] Yuwei Hu, Jidong Zhai, Dinghua Li, Yifan Gong, Yuhao Zhu, Wei Liu,
Lei Su, and Jiangming Jin. “BitFlow: Exploiting Vector Parallelism for
Binary Neural Networks on CPU.” In: International Parallel and Distributed
Processing Symposium (IPDPS). 2018.

[Hua21] Chun-Hsian Huang. “An FPGA-Based Hardware/Software Design Us-
ing Binarized Neural Networks for Agricultural Applications: A Case
Study.” In: IEEE Access (2021).

[Hub+16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. “Binarized neural networks.” In: Neural Information Pro-
cessing Systems (NIPS). 2016.

[Ima] Imagenette Dataset, https://github.com/fastai/imagenette. Accessed 2023-09-
01. url: https://github.com/fastai/imagenette.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift.” In:
arXiv:1502.03167 (2015).

[Jac+] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantiza-
tion and Training of Neural Networks for Efficient Integer-Arithmetic-
Only Inference.” In: Computer Vision and Pattern Recognition (CVPR).

[Jaf+18] Ali Jafari, Morteza Hosseini, Adwaya Kulkarni, Chintan Patel, and
Tinoosh Mohsenin. “BiNMAC: Binarized Neural Network Manycore
ACcelerator.” In: GLSVLSI. 2018.

[Jeb+21] F. Jebali, A. Majumdar, A. Laborieux, T. Hirtzlin, E. Vianello, J.P. Walder,
M. Bocquet, D. Querlioz, and J. M. Portal. “CAPC: A Configurable
Analog Pop-Count Circuit for Near-Memory Binary Neural Networks.”
In: International Midwest Symposium on Circuits and Systems (MWSCAS).
2021.

[Kal+19] Dhiraj Kalamkar et al. “A Study of BFLOAT16 for Deep Learning Train-
ing.” In: arXiv:1905.12322 (2019).

[KBB20] Navid Khoshavi, Connor Broyles, and Yu Bi. “A Survey on Impact of
Transient Faults on BNN Inference Accelerators.” In: arXiv:2004.05915
(2020).

[KSC20] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. “Learning Ar-
chitectures for Binary Networks.” In: European Conference on Computer
Vision (ECCV). 2020.

https://github.com/fastai/imagenette

bibliography 127

[KLC18] Jaehyun Kim, Chaeun Lee, and Kiyoung Choi. “Energy Efficient Analog
Synapse/Neuron Circuit for Binarized Neural Networks.” In: Interna-
tional SoC Design Conference (ISOCC). 2018.

[Kim+19] Jaehyun Kim, Chaeun Lee, Jihun Kim, Yumin Kim, Cheol Seong Hwang,
and Kiyoung Choi. “VCAM: Variation Compensation through Activa-
tion Matching for Analog Binarized Neural Networks.” In: International
Symposium on Low Power Electronics and Design (ISLPED). 2019.

[KS16] Minje Kim and Paris Smaragdis. “Bitwise Neural Networks.” In: arXiv:
1601.06071 (2016).

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” In: arXiv:1412.6980 (2014).

[Kop+19] Skanda Koppula, Lois Orosa, A. Giray Yağlikçi, Roknoddin Azizi, Taha
Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu. “EDEN: En-
abling Energy-Efficient, High-Performance Deep Neural Network In-
ference Using Approximate DRAM.” In: International Symposium on
Microarchitecture (MICRO). 2019.

[KB20] Anastasis Kratsios and Ievgen Bilokopytov. “Non-Euclidean Universal
Approximation.” In: Neural Information Processing Systems (NIPS). 2020.

[Kuk+19] Navjot Kukreja, Alena Shilova, Olivier Beaumont, Jan Huckelheim,
Nicola Ferrier, Paul Hovland, and Gerard Gorman. “Training on the
Edge: The why and the how.” In: International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2019.

[Kul+22] Uday Kulkarni, Abhishek S Hosamani, Abhishek S Masur, Shashank
Hegde, Ganesh R Vernekar, and K Siri Chandana. “A Survey on Quan-
tization Methods for Optimization of Deep Neural Networks.” In: In-
ternational Conference on Automation, Computing and Renewable Systems
(ICACRS). 2022.

[Kun82] Kung. “Why systolic architectures?” In: Computer (1982).

[Kwo+20] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna,
Michael Pellauer, and Angshuman Parashar. “MAESTRO: A Data-Centric
Approach to Understand Reuse, Performance, and Hardware Cost of
DNN Mappings.” In: IEEE Micro (2020).

[Lab+21] Axel Laborieux, Maxence Ernoult, Tifenn Hirtzlin, and Damien Quer-
lioz. “Synaptic metaplasticity in binarized neural networks.” In: Nature
Communications (2021).

[LS21] Ang Li and Simon Su. “Accelerating Binarized Neural Networks via
Bit-Tensor-Cores in Turing GPUs.” In: IEEE Transactions on Parallel and
Distributed Systems (2021).

[Lia+18] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. “FP-
BNN: Binarized neural network on FPGA.” In: Neurocomputing (2018).

128 bibliography

[Lia+21] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
“Pruning and Quantization for Deep Neural Network Acceleration: A
Survey.” In: arXiv:2101.09671 (2021).

[Lin+20] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang,
Yongjian Wu, Feiyue Huang, and Chia-Wen Lin. “Rotated Binary Neural
Network.” In: arXiv:2009.13055 (2020).

[Liu+13] Q. Liu, M. Vinet, J. Gimbert, N. Loubet, R. Wacquez, L. Grenouillet, Y.
Le Tiec, et al. “High performance UTBB FDSOI devices featuring 20nm
gate length for 14nm node and beyond.” In: International Electron Devices
Meeting (IEDM). 2013.

[Lon+18] Y. Long, T. Na, P. Rastogi, K. Rao, A. I. Khan, S. Yalamanchili, and S.
Mukhopadhyay. “A Ferroelectric FET based Power-efficient Architecture
for Data-intensive Computing.” In: International Conference on Computer-
Aided Design (ICCAD). 2018.

[Luo+19] Cheng Luo, Man-Kit Sit, Hongxiang Fan, Shuanglong Liu, Wayne Luk,
and Ce Guo. “Towards Efficient Deep Neural Network Training by
FPGA-Based Batch-Level Parallelism.” In: Field-Programmable Custom
Computing Machines (FCCM). 2019.

[Luo+23] Fei Luo, Salabat Khan, Yandao Huang, and Kaishun Wu. “Binarized
Neural Network for Edge Intelligence of Sensor-Based Human Activity
Recognition.” In: IEEE Transactions on Mobile Computing (2023).

[Mac+21] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. “FP-
new: An Open-Source Multiformat Floating-Point Unit Architecture for
Energy-Proportional Transprecision Computing.” In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (2021).

[Mar+20] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos.
“Training Binary Neural Networks with Real-to-Binary Convolutions.”
In: arXiv:2003.11535 (2020).

[MGD20] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. “A Survey on
Deep Neural Network Compression: Challenges, Overview, and Solu-
tions.” In: arXiv:2010.03954 (2020).

[Mit16] Sparsh Mittal. “A Survey of Techniques for Approximate Computing.”
In: ACM Comput. Surv. (2016).

[Moh+23] Vahidreza Mohaghaddas, Hammam Kattan, Tim Buecher, Mikail Yayla,
Jian-Jia Chen, and Hussam Amrouch. “Temperature-Aware Memory
Mapping and Active Cooling of Neural Processing Units.” In: Interna-
tional Symposium on Low Power Electronics and Design (ISLPED). 2023.

bibliography 129

[Mra+19] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique. “AL-
WANN: Automatic Layer-Wise Approximation of Deep Neural Network
Accelerators without Retraining.” In: International Conference on Computer-
Aided Design (ICCAD). 2019.

[Mur] Boris Murmann. ADC Performance Survey 1997-2021 [Online]. Accessed
2023-09-01. url: Available:http://web.stanford.edu/~murmann/
adcsurvey.html..

[MN+21] Mirembe Musisi-Nkambwe, Sahra Afshari, Hugh J. Barnaby, Michael
N. Kozicki, and Ivan Sanchez Esqueda. “The viability of analog-based
accelerators for neuromorphic computing: a survey.” In: Neuromorph.
Comput. Eng. (2021).

[Nat+14] S Natarajan, M Agostinelli, S Akbar, M Bost, A Bowonder, V Chikar-
mane, S Chouksey, A Dasgupta, K Fischer, Q Fu, et al. “A 14nm logic
technology featuring 2 nd-generation finfet, air-gapped interconnects,
self-aligned double patterning and a 0.0588 µm 2 sram cell size.” In:
International Electron Devices Meeting (IEDM). 2014.

[Ni+18] Kai Ni, Pankaj Sharma, Jianchi Zhang, Matthew Jerry, Jeffery A Smith,
Kandabara Tapily, Robert Clark, Souvik Mahapatra, and Suman Datta.
“Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile
memory performance.” In: IEEE Transactions on Electron Devices (2018).

[Ni+19] Kai Ni et al. “Ferroelectric ternary content-addressable memory for
one-shot learning.” In: Nature Electronics (2019).

[Nie15] Michael Nielsen. Neural Networks and Deep Learning. 2015.

[Nur+16] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh
Venkatesh, and Debbie Marr. “Accelerating Binarized Neural Networks:
Comparison of FPGA, CPU, GPU, and ASIC.” In: International Conference
on Field-Programmable Technology (FPT). 2016.

[Oh+20] Dong-Ryeol Oh, Kyoung-Jun Moon, Won-Mook Lim, Ye-Dam Kim, Eun-
Ji An, and Seung-Tak Ryu. “An 8b 1GS/s 2.55mW SAR-Flash ADC with
Complementary Dynamic Amplifiers.” In: 2020 IEEE Symposium on VLSI
Circuits. 2020.

[OS89] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Process-
ing. 1989.

[Pan+18] Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S.
Wei. “A Multilevel Cell STT-MRAM-Based Computing In-Memory Accel-
erator for Binary Convolutional Neural Network.” In: IEEE Transactions
on Magnetics (2018).

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: Neural Information Processing Systems (NIPS).
2019.

Available: http://web.stanford.edu/~murmann/adcsurvey.html.
Available: http://web.stanford.edu/~murmann/adcsurvey.html.

130 bibliography

[PE23] Andreea Postovan and Mădălina Eraşcu. “Architecturing Binarized Neu-
ral Networks for Traffic Sign Recognition.” In: arXiv:2303.15005 (2023).

[RCN03] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. Digital
Integrated Circuits: A Design Perspective. 2003.

[RST19] Athanasios T. Ramkaj, Michiel S. J. Steyaert, and Filip Tavernier. “A
13.5-Gb/s 5-mV-Sensitivity 26.8-ps-CLK–OUT Delay Triple-Latch Feed-
forward Dynamic Comparator in 28-nm CMOS.” In: IEEE Solid-State
Circuits Letters (2019).

[Ras+16] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
“XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks.” In: arXiv:1603.05279 (2016).

[Red+15] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. “You Only Look Once: Unified, Real-Time Object Detection.”
In: arXiv:1506.02640 (2015).

[Rei+19] Dayane Reis, Kai Ni, Wriddhi Chakraborty, Xunzhao Yin, Martin Trentzsch,
Stefan Dünkel Dünkel, Thomas Melde, Johannes Müller, Sven Beyer,
Suman Datta, et al. “Design and Analysis of an Ultra-Dense, Low-
Leakage, and Fast FeFET-Based Random Access Memory Array.” In:
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
(2019).

[Ros+03] L. Rosasco, E. De, Vito A. Caponnetto, M. Piana, and A. Verri. “Are loss
functions all the same.” In: Neural Computation (2003).

[RCB18] Manuele Rusci, Lukas Cavigelli, and Luca Benini. “Design Automation
for Binarized Neural Networks: A Quantum Leap Opportunity?” In:
International Symposium on Circuits and Systems (ISCAS). 2018.

[Svh] SVHN Dataset, http://ufldl.stanford.edu/housenumbers/. Accessed 2023-09-01.
url: http://ufldl.stanford.edu/housenumbers/.

[Sab+23] Muhammad Sabih, Mikail Yayla, Frank Hannig, Jürgen Teich, and Jian-Jia
Chen. “Robust and Tiny Binary Neural Networks using Gradient-based
Explainability Methods.” In: Workshop on Machine Learning and Systems
(EuroMLSys). 2023.

[SBN19] Eyyüb Sari, Mouloud Belbahri, and Vahid Partovi Nia. “How Does Batch
Normalization Help Binary Training?” In: arXiv:1909.09139 (2019).

[Say+23] Ratshih Sayed, Haytham Azmi, Heba Shawkey, A. H. Khalil, and Mo-
hamed Refky. “A Systematic Literature Review on Binary Neural Net-
works.” In: IEEE Access (2023).

[Sch+17] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas
Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. “A Survey
of Neuromorphic Computing and Neural Networks in Hardware.” In:
arXiv:1705.06963 (2017).

http://ufldl.stanford.edu/housenumbers/

bibliography 131

[Sha+16a] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek
Srikumar. “ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars.” In: International Symposium on
Computer Architecture (ISCA). 2016.

[Sha+16b] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek
Srikumar. “ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars.” In: ACM SIGARCH Computer
Architecture News (2016).

[Shr+20] Kumar Shridhar, Harshil Jain, Akshat Agarwal, and Denis Kleyko. “End
to End Binarized Neural Networks for Text Classification.” In: Proceedings
of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing.
2020.

[SL19] Taylor Simons and Dah-Jye Lee. “A Review of Binarized Neural Net-
works.” In: MDPI Electronics (2019).

[SZ14] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” In: International Conference
on Learning Representations (ICLR). 2014.

[Soh+19] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczyn-
ski, Jian Zhang, and Christopher Ré. “Low-Memory Neural Network
Training: A Technical Report.” In: arXiv:1904.10631 (2019).

[Sol+20a] T. Soliman et al. “Ultra-Low Power Flexible Precision FeFET Based
Analog In-Memory Computing.” In: IEEE International Electron Devices
Meeting (IEDM). 2020.

[Sol+20b] Taha Soliman, Ricardo Olivo, Tobias Kirchner, Cecilia De la Parra, Max-
imilian Lederer, Thomas Kämpfe, Andre Guntoro, and Norbert Wehn.
“Efficient FeFET Crossbar Accelerator for Binary Neural Networks.” In:
International Conference on Application-specific Systems, Architectures and
Processors (ASAP). 2020.

[Spa+19] Matteo Spallanzani, Lukas Cavigelli, Gian Paolo Leonardi, Marko Bertogna,
and Luca Benini. “ Additive Noise Annealing and Approximation Prop-
erties of Quantized Neural Networks.” In: arXiv:1905.10452 (2019).

[SGM20] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and
Policy Considerations for Modern Deep Learning Research.” In: AAAI
(2020).

[Stu+23] David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt
Schiele. “Random and Adversarial Bit Error Robustness: Energy-Efficient
and Secure DNN Accelerators.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2023).

132 bibliography

[Sun+17] X. Sun, R. Liu, Y. Chen, H. Chiu, W. Chen, M. Chang, and S. Yu. “Low-
VDD Operation of SRAM Synaptic Array for Implementing Ternary
Neural Network.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (2017).

[Sun+18] X. Sun, X. Peng, P. Chen, R. Liu, J. Seo, and S. Yu. “Binary neural network
with 16 Mb RRAM macro chip for classification and online training.” In:
Asia and South Pacific Design Automation Conference (ASP-DAC). 2018.

[Sun+20] Xiao Sun, Naigang Wang, Chia-yu Chen, Jia-min Ni, Ankur Agrawal,
Xiaodong Cui, Swagath Venkataramani, Kaoutar El Maghraoui, Vijay-
alakshmi Srinivasan, and Kailash Gopalakrishnan. “Ultra-Low Precision
4-Bit Training of Deep Neural Networks.” In: Neural Information Process-
ing Systems (NIPS). 2020.

[Sun+18] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo, and Shi-
meng Yu. “XNOR-RRAM: A scalable and parallel resistive synaptic
architecture for binary neural networks.” In: Design, Automation Test in
Europe Conference Exhibition (DATE). 2018.

[Sze+17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. “Efficient
Processing of Deep Neural Networks: A Tutorial and Survey.” In: Pro-
ceedings of the IEEE (2017).

[TM00] Kazukiyo Takahashi and Mitsuru Mizunuma. “Adiabatic dynamic CMOS
logic circuit.” In: Electronics and Communications in Japan (Part II: Electron-
ics) (2000).

[TG17] C. Torres-Huitzil and B. Girau. “Fault and Error Tolerance in Neural
Networks: A Review.” In: IEEE Access (2017).

[Tre+16] M. Trentzsch et al. “A 28nm HKMG super low power embedded NVM
technology based on ferroelectric FETs.” In: International Electron Devices
Meeting (IEDM). 2016.

[Tu+22] Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. “AdaBin:
Improving Binary Neural Networks with Adaptive Binary Sets.” In:
European Conference on Computer Vision (ECCV). 2022.

[TGW19] Michail Tzoufras, Marcin Gajek, and Andrew Walker. “Magnetoresistive
RAM for error resilient XNOR-Nets.” In: arXiv:1905.10927 (2019).

[Umu+17] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. “FINN.” In: International
Symposium on Field-Programmable Gate Arrays (FPGA). 2017.

[Vin+15] A. F. Vincent, J. Larroque, N. Locatelli, N. Ben Romdhane, O. Bichler, C.
Gamrat, W. S. Zhao, J. Klein, S. Galdin-Retailleau, and D. Querlioz. “Spin-
Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse
for Neuromorphic Systems.” In: Transactions on Biomedical Circuits and
Systems (2015).

bibliography 133

[Wan+21] Erwei Wang, James J. Davis, Daniele Moro, Piotr Zielinski, Jia Jie Lim,
Claudionor Coelho, Satrajit Chatterjee, Peter Y. K. Cheung, and George
A. Constantinides. “Enabling Binary Neural Network Training on the
Edge.” In: International Workshop on Embedded and Mobile Deep Learning
(EDML). 2021.

[Wan+11] Jinhui Wang, Na Gong, Ligang Hou, Xiaohong Peng, Shuqin Geng,
and Wuchen Wu. “Low power and high performance dynamic CMOS
XOR/XNOR gate design.” In: Microelectronic Engineering (2011).

[Wan+18] Yanzhi Wang, Zheng Zhan, Jiayu Li, Jian Tang, Bo Yuan, Liang Zhao,
Wujie Wen, Siyue Wang, and Xue Lin. “Universal Approximation Prop-
erty and Equivalence of Stochastic Computing-based Neural Networks
and Binary Neural Networks.” In: arXiv:1803.05391 (2018).

[WHA18] Kaijie Wei, Koki Honda, and Hideharu Amano. “FPGA Design for
Autonomous Vehicle Driving Using Binarized Neural Networks.” In:
International Conference on Field-Programmable Technology (FPT). 2018.

[Wei+21a] Ming-Liang Wei, Mikail Yayla, Shu-Yin Ho, Jian-Jia Chen, Chia-Lin Yang,
and Hussam Amrouch. “Binarized SNNs: Efficient and Error-Resilient
Spiking Neural Networks through Binarization.” In: International Confer-
ence On Computer Aided Design (ICCAD). 2021.

[Wei+21b] Ming-Liang Wei, Hussam Amrouch, Cheng-Lin Sung, Hang-Ting Lue,
Chia-Lin Yang, Keh-Chung Wang, and Chih-Yuan Lu. “Robust Brain-
Inspired Computing: On the Reliability of Spiking Neural Network Us-
ing Emerging Non-Volatile Synapses.” In: International Reliability Physics
Symposium (IRPS). 2021.

[Wei+23] Ming-Liang Wei, Mikail Yayla, Shu-Yin Ho, Jian-Jia Chen, Hussam Am-
rouch, and Chia-Lin Yang. “Impact of Non-volatile Memory Cells on
Spiking Neural Network Annealing Machine with In-situ Synapse Pro-
cessing.” In: IEEE Transactions on Circuits and Systems I: Regular Papers
(2023).

[Wen21] Olivia Weng. “Neural Network Quantization for Efficient Inference: A
Survey.” In: arXiv:2112.06126 (2021).

[WH10] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. 2010.

[Wu+20] Qing Wu, Xiaojin Lu, Shan Xue, Chao Wang, Xundong Wu, and Jin Fan.
“SBNN: Slimming binarized neural network.” In: Neurocomputing (2020).

[Xia+20] Yachen Xiang, Peng Huang, Runze Han, Chu Li, Kunliang Wang, Xi-
aoyan Liu, and Jinfeng Kang. “Efficient and Robust Spike-Driven Deep
Convolutional Neural Networks Based on NOR Flash Computing Ar-
ray.” In: IEEE Transactions on Electron Devices (2020).

134 bibliography

[Xu+21] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao,
Yonghong Tian, and Rongrong Ji. “ReCU: Reviving the Dead Weights in
Binary Neural Networks.” In: International Conference on Computer Vision
(ICCV). 2021.

[Yan+18] Lita Yang, Daniel Bankman, Bert Moons, Marian Verhelst, and Boris
Murmann. “Bit Error Tolerance of a CIFAR-10 Binarized Convolutional
Neural Network Processor.” In: International Symposium on Circuits and
Systems (ISCAS). 2018.

[Yan+17] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. “A method to
estimate the energy consumption of deep neural networks.” In: Asilomar
Conference on Signals, Systems, and Computers. 2017.

[YC22] Mikail Yayla and Jian-Jia Chen. “Memory-Efficient Training of Binarized
Neural Networks on the Edge.” In: Design Automation Conference (DAC).
2022.

[Yay+21] Mikail Yayla, Mario Günzel, Burim Ramosaj, and Jian-Jia Chen. “Uni-
versal Approximation Theorems of Fully Connected Binarized Neural
Networks.” In: arXiv:2102.02631 (2021).

[Yay+22a] Mikail Yayla, Sebastian Buschjäger, Aniket Gupta, Jian-Jia Chen, Jörg
Henkel, Katharina Morik, Kuan-Hsun Chen, and Hussam Amrouch.
“FeFET-Based Binarized Neural Networks Under Temperature-Dependent
Bit Errors.” In: IEEE Transactions on Computers (2022).

[Yay+22b] Mikail Yayla, Simon Thomann, Sebastian Buschjäger, Katharina Morik,
Jian-Jia Chen, and Hussam Amrouch. “Reliable Binarized Neural Net-
works on Unreliable Beyond Von-Neumann Architecture.” In: IEEE
Transactions on Circuits and Systems I: Regular Papers (2022).

[Yay+22c] Mikail Yayla, Zahra Valipour Dehnoo, Mojtaba Masoudinejad, and Jian-
Jia Chen. “TREAM: A Tool for Evaluating Error Resilience of Tree-Based
Models Using Approximate Memory.” In: Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). 2022.

[Yay+23a] Mikail Yayla, Cecilia Latotzke, Robert Huber, Somar Iskif, Tobias Gem-
meke, and Jian-Jia Chen. “DAEBI: A Tool for Data Flow and Architecture
Explorations of Binary Neural Network Accelerators.” In: Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS). 2023.

[Yay+23b] Mikail Yayla, Simon Thomann, Ming-Liang Wei, Chia-Lin Yang, Jian-Jia
Chen, and Hussam Amrouch. “HW/SW Codesign for Robust and Effi-
cient Binarized SNNs by Capacitor Minimization.” In: arXiv:2309.02111
(2023).

bibliography 135

[Yay+23c] Mikail Yayla, Fabio Frustaci, Fanny Spagnolo, Jian-Jia Chen, and Hussam
Amrouch. “Unlocking Efficiency in BNNs: Global by Local Thresholding
for Analog-based HW Accelerators.” In: IEEE Journal on Emerging and
Selected Topics in Circuits and Systems (2023).

[Yin+20] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. “XNOR-SRAM:
In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural
Networks.” In: IEEE Journal of Solid-State Circuits (2020).

[Yoo+19] Insik Yoon, Matthew Jerry, Suman Datta, and Arijit Raychowdhury.
“Design space exploration of Ferroelectric FET based Processing-in-
Memory DNN Accelerator.” In: arXiv:1908.07942 (2019).

[Yu+16] S. Yu, Z. Li, P. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian.
“Binary neural network with 16 Mb RRAM macro chip for classification
and online training.” In: International Electron Devices Meeting (IEDM).
2016.

[Yu+21] Shimeng Yu, Hongwu Jiang, Shanshi Huang, Xiaochen Peng, and Anni
Lu. “Compute-in-Memory Chips for Deep Learning: Recent Trends and
Prospects.” In: IEEE Circuits and Systems Magazine (2021).

[YA23] C. Yuan and S.S. Agaian. “A comprehensive review of Binary Neural
Network.” In: Artif Intell Rev (2023).

[Zha+19a] Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao Mei. “daBNN:
A Super Fast Inference Framework for Binary Neural Networks on ARM
devices.” In: arXiv:1908.05858 (2019).

[Zha04] Tong Zhang. “Solving Large Scale Linear Prediction Problems Using
Stochastic Gradient Descent Algorithms.” In: International Conference on
Machine Learning (ICML). 2004.

[ZCH19] X. Zhang, X. Chen, and Y. Han. “FeMAT: Exploring In-Memory Process-
ing in Multifunctional FeFET-Based Memory Array.” In: International
Conference on Computer Design (ICCD). 2019.

[Zha+20] Yizhou Zhang et al. “An Improved RRAM-Based Binarized Neural
Network With High Variation-Tolerated Forward/Backward Propagation
Module.” In: IEEE Transactions on Electron Devices (2020).

[Zha+23a] Yu Zhang, Gang Chen, Tao He, Qian Huang, and Kai Huang. “Vira-
Eye: An Energy-Efficient Stereo Vision Accelerator with Binary Neural
Network in 55 nm CMOS.” In: Asia and South Pacific Design Automation
Conference (ASP-DAC). 2023.

[Zha+23b] Junwei Zhao, Shiliang Zhang, Zhaofei Yu, and Tiejun Huang. “SpiReco:
Fast and Efficient Recognition of High-Speed Moving Objects with Spike
Cameras.” In: IEEE Transactions on Circuits and Systems for Video Technology
(2023).

136 bibliography

[Zha+17] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau
Lin, Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. “Accelerating
Binarized Convolutional Neural Networks with Software-Programmable
FPGAs.” In: FPGA. 2017.

[Zha+19b] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhang
Zhiru. “Improving Neural Network Quantization without Retraining
using Outlier Channel Splitting.” In: International Conference on Machine
Learning (ICML). 2019.

[Zha+18] Tianli Zhao, Xiangyu He, Jian Cheng, and Jing Hu. “BitStream: Efficient
Computing Architecture for Real-Time Low-Power Inference of Binary
Neural Networks on CPUs.” In: International Conference On Multimedia.
2018.

[Zha+16] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng,
Yuchun Ma, and Guangwen Yang. “F-CNN: An FPGA-based framework
for training Convolutional Neural Networks.” In: International Conference
on Application-specific Systems, Architectures and Processors (ASAP). 2016.

[Zha+21] Wenyu Zhao, Teli Ma, Xuan Gong, Baochang Zhang, and David Doer-
mann. “A Review of Recent Advances of Binary Neural Networks for
Edge Computing.” In: IEEE Journal on Miniaturization for Air and Space
Systems (2021).

[Syn] https://www.synopsys.com/silicon/tcad.html.

L I S T O F F I G U R E S

Figure 1.1 Comparison of error tolerance between BNNs and QNNs.
No method for improvement is applied for BNNs or QNNs,
that is why QNNs with 2 bit may be less robust than with
more precision (the study in [Stu+23] proposes methods which
makes lower-precision QNNs more error tolerant than higher-
precision QNNs). See Ch. 3 for the experiment settings. 3

Figure 2.1 Illustration of the forward (blue) and backward (red) passes in
NNs. 12

Figure 2.2 Overview of BNN inference and training in one neuron with
binarized weights (wi) and inputs (xi). On the left is the table
for performing the logical XNOR. After the XNOR (gates) and
popcount operation (sum of products), the popcount result (s)
is compared against a threshold (t) to produce a binary output
(a). The blue arrows indicate the backward pass operations
in training, where the chain rule is applied to compute the
gradient gi, which is processed in the function R to acquire the
weight update ∆wi. 17

Figure 2.3 Comparison of BNN execution on different hardware: CPU,
GPU, FPGA, ASIC. The data is based on the study in [Nur+16]. 25

Figure 2.4 Overview of a BNN computing unit. 25

Figure 2.5 (a): Crossbar with interface circuit. A possible realization of an
interface circuit is shown in (c). The voltages V1

L , . . . , Vm
L or the

currents are passed to the interface circuits. (b): Realization of
an XNOR gate from FeFET transistors. (c) Interface circuit with
an analog path (AP) and a digital path (DP) in [Che+18]. Reg:
Registers, Bin: Digital comparator. 27

Figure 4.1 The relationship between accuracy over BER and Mb with
b = {2, 4, 8, 16, 32, 64}. Top row: accuracy over BER, bottom
row: Mb values plotted over b. FC means fully connected BNN,
CNN means convolutional BNN. 43

Figure 4.2 The experiment results for the direct regularization. 43

Figure 4.3 Accuracy over bit error rate for BNNs trained with CEL under
a given bit flip injection rate (specified in the legend, 0%,
5%, 10%, etc.) and BNNs trained with MHL without bit flip
injections for a specified b in Eq. (4.10). 44

137

138 list of figures

Figure 4.4 Accuracy over bit error rate for BNNs trained with MHL and
bit flip injections (denoted as flip 0%, 1%, etc). The number
after the b is the value to which the parameter b in the MHL is
set during training (see Eq. (4.10)). 44

Figure 5.1 FeFET-based NVM device calibration. 48

Figure 5.2 FeFET reliability experiments. 50

Figure 5.3 System model with unreliable on-chip FeFET memory and
reliable off-chip DRAM. 52

Figure 5.4 Accuracy over temperature-dependent error rates. Top row:
No bit flips during training, and in the orange plot (Greedy-
A) the result for applying BERA after training. Bottom row:
Bit flip training with all bit error rate configurations and in
orange (Greedy-A) the retraining with BERA. T∗step = 1

16 Tstep

and Tstep ∈ {0, 1, . . . , 16}. BER = T∗step · (p01, p10) yields the
temperature dependent bit error rate setting. Greedy-A is the
accuracy optimal assignment acquired after executing BERA.
In the other four settings, every layer of the BNN is configured
with the same bit error rate. E.g., when we write (2.198, 1.090),
then every layer of the BNN is configured with these bit error
rates. 58

Figure 5.5 The implementation of FeFET-based XNOR that consists of
two FeFinFETs storing the logic value A in a complementary
manner. 60

Figure 5.6 (a) Impact of process variation on FeFET-based LiM for XNOR(0,1).
(b) The resulting distribution of XNOR output voltage subject
to the XNOR latency (speed). (c) The probability of error (Perror)
of FeFET-based XNOR as function of latency. (d) The tradeoff
in FeFET-based XNOR between speed and reliability (Perror).
62

Figure 5.7 The considered system model used for BNN computations.
The FeFET-based XNOR gates, which store the binary weights,
are organized as rows, operate in parallel, and are connected
to Popcount and activation circuits. Note that the XNOR gates
are implemented as dynamic logic. Hence, depending on the
clock speed, internal XNOR latency, and process variation the
an erroneous computation might be latched and passed to the
Popcount. The shown system configuration is just an example
and it should be considered without loss of generality. 63

list of figures 139

Figure 5.8 Experiment results for the FeFET-based XNOR LiM speedup
with the datasets Fashion and CIFAR10. Left column ((a) and
(d)): Accuracy over probability of error. Middle column ((b)
and (e)): Accuracy drop (AD) over probability of error. Right
column ((c) and (f)): XNOR LiM speedup values over accuracy
budgets. 68

Figure 6.1 Precise and LTA execution in BNNs for β = 8, n = 4. 74

Figure 6.2 Comparison of input data flow between the (a) baseline and
(b) the LTA execution. iFIFO: FIFO for input data. C1, . . . Cm:
Crossbar columns. IF: Interface circuit. 76

Figure 6.3 Our interface circuit design for our proposed LTA method. The
voltages V1

L and Vm
L in are input voltages from Fig. 2.5(a). 77

Figure 6.4 Mapping schemes. (a): SOTA [Che+18]. (b): LTA. 79

Figure 6.5 Accuracy over number of XNOR gates for different datasets.
In the baseline case, the BNN is executed with the LTA for
varying numbers of XNOR gates, called “baseline” (the training
employs only standard methods). In the “LTA-train” case,
the BNN is trained with a specified number of XNOR gates.
The original test accuracy is shown with the dashed line. The
accuracy tradeoff is explained in Sec. 6.1.5.2. Since there can
be different types of noise in the analog circuit, we show the
baseline BNN accuracy with a general type of noise injected
alongside applying the LTA (the evaluations regarding noise
are explained in Sec. 6.1.5.4). 82

Figure 6.6 Area, energy, and latency comparison for the crossbar and
interface circuits between the state of the art (SOTA), and
our proposed method (LTA). Note that the y-axes are in log
scale. For the BNN models, VGG3 and VGG7 are used (Ta-
ble 3.2). 83

Figure 6.7 Examples of using combinational circuits consisting of wires to
connect the BNN crossbar to memories (e.g between the FIFOs
in Fig. 6.2 and the BNN crossbar). (a) SOTA and (b) the LTA
connections using combinational circuits. The wi are the weight
vectors that are composed of n bits. The weight wires transfer
the weights to the ith column of the crossbar. In the SOTA, the
input vector (composed of n bits) is the same for each crossbar
column (it is replicated). In the LTA, each crossbar column i
receives a different input xi. 88

Figure 6.8 Abs. frequencies of MAC value occurrences (summed over
layers) for training sets. Details of the BNN models are in
Table 3.2. 91

Figure 6.9 IF-SNN circuit. Top: Computing array with inputs x1 to xa and
multipliers M1 to Ma. Bottom: Neuron circuit with the membrane
capacitor Cmem, analog comparator A and the FF. 92

Figure 6.10 Equivalent representation of IF-SNN circuit in Fig. 6.9. V0: Supply
voltage. Req: Equivalent resistance of computing array. Voltage V(t)
across capacitor C is measured over time. I(t) is the current over
time flowing into the capacitor. 92

Figure 6.11 Voltage across capacitor over time, based on different ini-
tial currents. t1, t2, t3 are spike times recorded by clock of
the FF. Rectangle signal: Clock. Circled points: Ideal spike
times. 93

Figure 6.12 Role of inclusion parameter k in histogram of MAC values. All MAC
values within borders get a unique spike time value assigned. The
larger k, the more values within the borders. 94

Figure 6.13 Effect of current variation on capacitor charging. Charging is
shown in black for Ii and Ii+1. Depending on the sign of the
variation (εi or εi+1), the capacitor may charge faster (brown)
or slower (red). Variations can cause any deviation in the pur-
ple (for Ii) or the blue area (for Ii+1). Charging curves under
variation may overlap (striped area). 95

Figure 6.14 Accuracy over k. The higher k, the larger capacitor size. Capac-
itor size range: From 135.2 pF (k = 32) to 1 pF (k = 5). 99

Figure 6.15 Capacitor size and latency comparison of the neuron cir-
cuit (based on max. capacitor size over the four datasets) for
the baseline and our two proposed methods at 1% accuracy
cost. 100

Figure 7.1 Histograms of all momentum values (after 10 epochs, 100 bins
for values in FP32) for the three BNN models FC, VGG3, VGG7.
The y-axis is in log scale. 104

Figure 7.2 Visual presentation of the intuition behind Theorem 2. Only
momentum updates that are large enough (pass the dashed
line) lead to a change in the quantization level. If the updates
are to small (arrow too short), then they are lost. 107

Figure 7.3 Achieved accuracy (top row, the higher the better) and the
U-values (bottom row, the lower the better) of the FP encod-
ings in Alg. 8. FP16b is shown here for reference. It is not
constructed by Alg. 8. 113

Figure 7.4 Area, energy, and latency evaluations of the transprecision FPU
from [Mac+21]. The FPUs are configured with the custom FP
formats derived from Alg. 8. 114

140

list of tables 141

L I S T O F TA B L E S

Table 3.1 Datasets used for experiments. 32

Table 3.2 BNNs with fully connected (FC), convolutional (C), and maxpool
(MP) layers. SCB: Skip-connection block. Convolutional layers are
followed by batch normalization layers, except output layers. 33

Table 5.1 The regular BNN execution with many buffer writes to mem-
ory and the less-buffer-writes (LBW) execution. Another layer
configuration that we use is C→ BN, in which case the thresh-
olding of the BN is applied directly to the C result. 54

Table 5.2 Average execution times evaluation for the regular and LBW
BNNs on different platforms and datasets. The values are in
ms per one BNN evaluation. Each BNN was evaluated 104

times as compiled C++ code. 57

Table 5.3 The basic operation and the realization of XNOR boolean
function by the FeFET-based XNOR gates in Fig. 5.5. The
XNOR’s output is ‘0’ if and only if A 6= B. Otherwise, the
XNOR’s output is ‘1’. 60

Table 6.1 Crossbar interface circuit comparison between LTA (this work)
and the state of the art (SOTA) in [Che+18], for a crossbar size
of m columns and n XNOR gates per column. The notations are
described in Table 6.2. The formulas for the SOTA in [Che+18]
can acquired by the following substitutions: α = Cout, β =

WF HFCin, δ = WOHO, S =
⌈

β
n

⌉
, m = N, and n = M. 79

Table 6.2 Notation for Table 6.1. 80

Table 6.3 Matrix dimensions of the weight matrix W and input X. 85

Table 6.4 Energy, area, and latency configurations of the interface cir-
cuit’s subcomponents, based on the literature and own evalu-
ations (i.e. in Cadence Genus using commercial 28nm FDSOI
technology). For the digital components, β = 3136 for VGG3,
and β = 8192 for VGG7. Note that for VGG3 under LTA, digital
components are not used. The total energy, area, and latency
of the BNN crossbar and interface circuit are calculated based
on the values in this table, which are substituted in the area,
energy, and latency formulas in Table 6.1. 85

Table 6.5 Comparison of test accuracy (%) for the assumed cases in
our with crossbar size 64× 64. The LTA approximation is ap-
plied in each column unless specified otherwise. In cases of “no
noise"/“no LTA", we train without noise/without LTA. “Noise"
followed by a percentage means that noise with this percent-
age is injected, while in “Noise train", we train with the noise.
“Noise+LTAtr" refers to the case in which we inject noise dur-
ing the training while simultaneously applying Alg. 5. 86

Table 7.1 Memory usage of BNN training with Bop, based on the catego-
rization in [Soh+19]. Binarized model: 1 bit for each weight and
bias, 32 bits for each batch normalization parameter. Activa-
tions: One bit per activation value (batch size 256). Optimizer:
32 bits for each BNN model parameter. See Table 3.2 for details
of BNN models. 106

Table 7.2 FP encodings evaluated in Alg. 8. For easy reference, the fol-
lowing encodings are included: FP16b and FP32. +: High, o:
Mid, -: Low. 111

Table 7.3 Avg. and (avg.-min., max.-avg.) accuracy (with observed min.
and max.) for the different FP encodings in Alg. 8 on the test
sets at the end of the training procedure. We also report the
total memory saving factors. The cases with minimal (approx.
0-1%) accuracy degradation compared to the 32-bit case are
in bold. FP16b and FP32 are shown for reference, they are not
constructed by Alg. 8. 113

A C R O N Y M S

AD Accuracy Drop. 66, 68, 69, 139

Adam Adaptive Moment Estimation. 14, 20, 105, 111

ADC Analog-to-Digital Converter. 8, 28, 29, 71–73, 77–80,
83–87, 89, 90, 119

AFO Absolute Frequency of Occurrences. 94, 95

ALU Arithmetic Logic Unit. 54

AP Analog Path. 8, 27, 71–73, 77–79, 84, 137

ASIC Application-Specific Integrated Circuit. iii, 5, 22,
24–27, 103, 137

142

Acronyms 143

BER Bit Error Rate. 3, 41, 42, 44

BERA Bit Error Rate Assignment. 54–56, 58, 59, 117, 138

BET Bit Error Tolerance. 53–56

BN Batch Normalization. 17–19, 32, 53, 54, 141

BNN Binarized Neural Network. iii, iv, 1–9, 11, 15–29,
32, 33, 35, 36, 38, 40–42, 44, 45, 47, 50–62, 64–75, 81,
86–90, 98–100, 103–106, 108, 110, 117–119, 137, 139,
141

Bop Binary Optimizer. iv, 20, 103–106, 108–111, 115, 118,
142

BOX buried oxide. 99

C Convolution. 32, 33, 53, 54, 141

CEL Cross Entropy Loss. 33, 35, 36, 41, 42, 44, 45, 55

CMOS Complementary Metal–Oxide–Semiconductor. 24,
28, 29, 47, 48, 59, 60, 64

CPU Central Processing Unit. 2, 22, 24, 25, 34, 52, 56, 137

CTF Charge Trap Flash. 23, 47

DP Digital Path. 8, 27, 71–73, 77–79, 84, 137

DRAM Dynamic Random Access Memory. 23, 24, 52, 138

ECC Error Correction Code. 54

EDA Electronic Design Automation. 26

FC Fully Connected. 31–33, 141

FD-SOI Fully Depleted Silicon-On-Insulator. 84, 87, 99

FeFET Ferroelectric FET. iv, 7, 8, 23, 24, 26, 27, 29, 47–57,
59–64, 68, 70, 83, 85, 117, 118, 137–139, 141

FeFinFET Ferroelectric FinFET. 60–62, 138

FeRAM Ferroelectric RAM. 47

FET Field Effect Transistor. 47, 48, 143

FF Flip Flop. 91–94, 99, 140

FIFO First In First Out. 76, 88, 139

FinFET Fin Field Effect Transistor. 48, 49, 143

FP Floating Point. iv, 7, 9, 103–115, 118, 119, 140, 142

144 Acronyms

FPGA Field-Programmable Gate Array. iii, 2, 5, 16, 22,
24–26, 103, 114, 137

FPU Floating Point Unit. 112–115, 140

GPU Graphics Processing Unit. 2, 5, 22, 24, 25, 34, 52, 137

HDL Hardware Description Language. 26

HLS High-Level Synthesis. 26

HW hardware. iv, 6, 8, 26, 28, 71, 90, 91, 101, 118

IF Integrate-and-Fire. iv, 90

IF-SNN Integrate-and-Fire Spiking Neural Network. iv, 8,
71, 90–95, 97, 98, 101, 118, 140

iFIFO Input FIFO. 76, 77, 139

LBW Less Buffer Writes. 50, 53–57, 141

LiM Logic in Memory. iv, 8, 47, 59, 60, 62, 63, 67, 68, 70,
117, 138, 139

LTA Local Thresholding Approximation. iv, 8, 72–89,
117–119, 139, 141

LTA-MU LTA Maximum Utilization. 80, 83, 84

LUT Lookup Table. 114

MAC Multiply–accumulate. 1, 2, 4, 11, 16, 17, 22, 28, 33,
34, 65, 67, 81, 90–92, 94, 95, 98–101, 118, 139, 140

MC Monte Carlo. 50, 51, 62

MHL Modified Hinge Loss. iv, 7, 35, 36, 40–42, 44, 45, 65,
66, 81, 98, 117

ML Match Line. 61, 99

MP Maxpool. 32, 33, 53, 54, 141

MRAM Magnetoresistive RAM. 23, 24, 47

NAS Neural Architecture Search. 4, 20

NN Neural Network. iii, iv, 1–7, 11–16, 18–24, 26–28, 35,
41, 47, 49, 50, 59, 66, 90, 103, 104, 119, 137

NVM Non-Volatile Memory. 23, 47, 48, 50–52, 59, 78, 138

Acronyms 145

OS Output Stationary. 26

PE Processing Element. 52

PV Process Variation. 49, 51, 60

QNN Quantized Neural Network. 3, 137

ReLU Rectified Linear Unit. 20, 21

RRAM Resistive Random Access Memory. 23, 29, 47, 69

SGD Stochastic Gradient Descent. 14, 40, 41

SNN Spiking Neural Network. iv, 90, 91

SOTA State Of The Art. 73, 78–81, 83–88, 139, 141

SPICE Simulation with Integrated Circuit Emphasis. 27,
62, 98, 99

SRAM Static Random Access Memory. 23, 24, 29, 48, 59,
60, 99

STE straight-through-estimator. 18

STT-RAM Spin-Transfer Torque RAM. 23, 47

SVM Support Vector Machine. 7, 35, 36, 45, 117

SW software. iv, 6, 8, 71, 90, 101, 118

TCAD Technology CAD. 49, 50

WS Weight Stationary. 26

WSAD Weighted Speed Accuracy Drop. 67, 69

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of March 22, 2024 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Context, Challenges, and Goals
	1.3 Contributions of this Work
	1.4 Author's Contribution to this Dissertation

	2 Background
	2.1 Neural Networks
	2.1.1 Notations and Matrix Dimensions
	2.1.2 Inference and Training of NNs
	2.1.3 Efficient Neural Networks

	2.2 Binarized Neural Networks
	2.2.1 BNN Inference
	2.2.2 Training BNNs
	2.2.3 Stochastic Input Binarization in BNNs
	2.2.4 How to Obtain BNNs
	2.2.5 Error Tolerance of BNNs

	2.3 Hardware Systems for BNNs
	2.3.1 BNNs with Emerging Approximate Memory: Technologies and Techniques
	2.3.2 BNN Acceleration

	3 Experiment Setup
	3.1 Datasets
	3.2 BNN Models
	3.2.1 BNN Layer Types
	3.2.2 Training BNNs
	3.2.3 Experiment Platform

	4 Error Tolerance Optimization of Binarized Neural Networks
	4.1 Problem Definition
	4.2 Bit Error Tolerance Metrics
	4.2.1 Neuron-Level Bit Error Tolerance
	4.2.2 Output-Layer Bit Error Tolerance

	4.3 Margin-Maximization for Bit Error Tolerance Optimization
	4.4 Experiments
	4.4.1 Experiment Setup
	4.4.2 Neuron level metric
	4.4.3 MHL Only vs. FR
	4.4.4 MHL Combined with FR

	4.5 Conclusion

	5 BNNs with FeFET
	5.1 FeFET
	5.1.1 Overview of FeFET Technology
	5.1.2 Our Calibrated 14nm FeFinFET Device and Measurements

	5.2 FeFET-based BNNs and Under Temperature-dependent Bit Errors
	5.2.1 Temperature-dependent Bit Error Model of FeFET
	5.2.2 System Model
	5.2.3 Problem Definition
	5.2.4 BNN Execution with Less Buffer Writes
	5.2.5 Methods for Achieving Bit Error Tolerance against FeFET Bit Errors
	5.2.6 Experiments for FeFET Temperature Bit Error Tolerance

	5.3 FeFET-based LiM for BNNs
	5.3.1 FeFET-based XNOR LiM Model
	5.3.2 Variability and Error Modeling in FeFET-based XNOR-LiM
	5.3.3 System Model and Design Objective
	5.3.4 Trading-off Reliability and Speed: Error Tolerant BNNs under XNOR Errors
	5.3.5 Experiment Results

	5.4 Conclusion

	6 HW/SW Codesign for Efficient BNN Inference
	6.1 Global by Local Thresholding in BNNs for Efficient Crossbar Accelerator Design
	6.1.1 Problem Definition
	6.1.2 LTA Execution
	6.1.3 Training with LTA
	6.1.4 Dataflow, Interface Circuit, Workload mapping
	6.1.5 Experiments

	6.2 CapMin
	6.2.1 System Model of IF-SNNs
	6.2.2 Problem Definition
	6.2.3 Our Proposed Methods: CapMin and CapMin-V
	6.2.4 Experiments

	6.3 Conclusion

	7 Efficient Training of BNNs
	7.1 Binary Optimizer (Bop) in BNN Training
	7.2 Recap of Floating Point Encoding
	7.3 Problem Definition
	7.4 Impact of Floating Point Encoding in Bop
	7.5 Memory-Efficient Encoding of Momentum
	7.6 Experiments
	7.6.1 Experiment Setup
	7.6.2 Experiment Results

	7.7 Discussion: Gradient Computations with Custom FP Formats
	7.7.1 Impact of Custom FP Formats on FPU Efficiency
	7.7.2 Discussion: Using Custom FP Formats for Gradient Calculations

	7.8 Conclusion

	8 Conclusion and Outlook
	8.1 Summary
	8.2 Future Work

	 Bibliography
	List of Figures
	List of Tables
	Acronyms

	Colophon

