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Abstract

Nowadays, web applications are ubiquitous. Entire business models revolve around making
their services available over the Internet, anytime, anywhere in the world. Due to today’s
rapid development practices, software changes are released faster than ever before, creating
the risk of losing control over the quality of the delivered products. To counter this,
appropriate testing methodologies must be deeply integrated into each phase of the
development cycle to identify potential defects as early as possible and to ensure that
the product operates as expected in production. The use of low- and no-code tools and
code generation technologies can drastically reduce the implementation effort by using
well-tailored (graphical) Domain-Specific Languages (DSLs) to focus on what is important:
the product. DSLs and corresponding Integrated Modeling Environments (IMEs) are a key
enabler for quality control because many system properties can already be verified at a
pre-product level. However, to verify that the product fulfills given functional requirements
at runtime, end-to-end testing is still a necessity.

This dissertation describes the implementation of a lifelong learning framework for the
continuous quality control of web applications. In this framework, models representing
user-level behavior are mined from running systems using active automata learning, and
system properties are verified using model checking. All this is achieved in a continuous and
fully automated manner. Code changes trigger testing, learning, and verification processes
which generate feedback that can be used for model refinement or product improvement.
The main focus of this framework is simplicity. On the one hand, it allows Quality
Assurance (QA) engineers to apply learning-based testing techniques to web applications
with minimal effort, even without writing code; on the other hand, it allows automation
engineers to easily implement these techniques in modern development workflows driven
by Continuous Integration and Continuous Deployment (CI/CD).

The effectiveness of this framework is leveraged by the Language-Driven Engineer-
ing (LDE) approach to web development. Key to this is the text-based DSL iHTML, which
enables the instrumentation of user interfaces to make web applications learnable by design,
i.e., they adhere to practices that allow fully automated inference of behavioral models
without prior specification of an input alphabet. By designing code generators to generate
instrumented web-based products, the effort for quality control in the LDE ecosystem is
minimized and reduced to formulating runtime properties in temporal logic and verifying
them against learned models.
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Chapter 1

Introduction

Web applications have become an indispensable part of our daily lives. Organizations whose
business models depend on their online services must ensure that these services perform
as expected from the user’s perspective. End-to-end testing is a method of verifying the
user-level behavior of web applications by posing tests against a running instance through
its browser interface. In doing so, much of an application’s business logic can be covered,
as interactions with the web interface trigger the execution of server-side code that may
interact with a database or even other web-based services, and ultimately send data back to
the web browser. This testing approach becomes particularly effective in the context of test
automation, as much of the manual testing effort can be reduced or even eliminated. As
more development teams adopt agile practices and systems are deployed more frequently,
even multiple times a day, test automation enables organizations to respond quickly to
changing business needs and customer demands while maintaining control over system
quality.

To ensure product quality in such fast-paced environments, test automation is essential.
However, the effort required to develop and maintain automated tests is often underesti-
mated due to their complexity [27, 85]. An approach where tests are not only executed but
also generated automatically is Active Automata Learning [67, 88, 95], which has proven
to be a suitable method for end-to-end testing of web applications, as several examples
have already demonstrated [12, 67, 80, 88, 89]. In active automata learning, behavioral
models are inferred from running systems by executing carefully constructed test queries
over some input alphabet. The inferred models are then used to verify system properties
using model checking via temporal logic [86]. Several publications [16, 78, 108] have
already proposed automata learning for the continuous quality control of web applications
in modern development workflows. Central to these lifelong learning, sometimes also called
never-stop learning, approaches is the automated model inference, the verification of system
properties via model checking, and the observation of the running system for runtime
verification. Frohme et al. already demonstrated a lifelong learning scenario for context-free
systems in [37] and illustrated the implementation of a corresponding runtime monitor for
Systems of Procedural Automata (SPA) [36] in [35]. However, these practices have been
evaluated on abstract models and have not yet been applied to real systems.

To apply these continuous automata learning practices to real-world applications,
code-centric frameworks such as LearnLib [47, 58, 69], libalf [17, 60] and Tomte [3, 101],
of which LearnLib is the only one actively maintained, have been developed. While these
frameworks mostly target code-affine developers, tools such as LearnLib Studio [15, 67],
LBTest [66], and Webtest [87] aim to lower the entry barrier for a non-expert audience
by providing visual guidance for modeling learning setups via dedicated graphical user
interfaces. However, these tools are either too general and require extensions depending on
the target system, are difficult to integrate with existing development stacks and therefore
make it difficult to automate processes, or suffer from both. This motivated the development
of our tool ALEX [6, 11], which takes a simplicity-oriented approach to learning web

1



Chapter 1. Introduction

Meta-Modeling Level Modeling Level Product Level

CINCO 
(meta IME) IME Product

Generate Generate
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Figure 1.1: The continuous improvement cycle in the LDE ecosystem.

applications by allowing users to model learning setups in a low-code manner in the web
browser.

With regard to low-code tool development, Steffen et al. present the Language-Driven
Engineering (LDE) approach [94], which includes product stakeholders in the development
process by using (graphical) Domain-Specific Languages (DSLs) [33]. Central to LDE is
the CINCO SCCE Meta Tooling Framework [74], also referred to as CINCO, which has
already been used in several research and industrial contexts [22, 74, 75, 99, 109] and which
enables language engineers to develop graph-based DSLs and to generate corresponding
Integrated Modeling Environments (IMEs) from them. In this work, the landscape around
CINCO, its IMEs and generated products is called the LDE ecosystem [18]. As illustrated
in Figure 1.1, applications in the ecosystem form a meta-level hierarchy, with CINCO at
the meta-modeling level, CINCO-based IMEs at the modeling level, and IME products at
the product level. Development in the LDE ecosystem follows a continuous improvement
cycle: Feedback received at any level is propagated up the meta-level hierarchy, where the
issue is addressed and the tool is improved. From there, changes are propagated down the
hierarchy, followed by migration and testing processes at each level until the product is
reached. Although low-code tools and DSLs are generally said to improve software quality
[53], quality control of web-based products developed using the LDE approach still poses
challenges to language designers, modelers and quality assurance experts. The main reason
for this is the generative approach of LDE. Code generators, both for IMEs and IME
products, are written manually and are therefore susceptible to human error, which can
result in code that cannot be compiled in the first place or in application behavior that
deviates from the semantics of the underlying language. As a consequence, the testing of
generated applications is still necessary.

This dissertation aims to simplify the quality assurance of web applications by combining
the benefits of the LDE approach with the capabilities of active automata learning. Key
to this is a framework for learning-based continuous quality control of web applications,
which is designed for

• Simplicity – Lifelong learning of web applications is made accessible to non-expert
audiences by providing web-based low-code tools designed for ease of use.

• Control – Improved control over the evolution of web applications developed with
the LDE approach by exploiting the benefits of DSLs and the generative approach to
generate applications that are learnable by design.

2
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Figure 1.2: Contributions of this dissertation.

• Automation – Lifelong learning practices are integrated into Continuous Integration
and Continuous Deployment (CI/CD) providers. As a result, learning and verification
processes can be fully automated, which allows developers to easily adopt this
technology in their development processes.

1.1 My Contributions

The motivation to simplify the quality assurance of web applications via automated testing
arose from my experience as a student in the lecture “Webtechnologies 2” at the TU
Dortmund University. There, students are taught modern web technologies and tasked
to develop their own web application during the semester. Part of this process is the
verification of runtime system properties by means of analyzing inferred automaton models
obtained from active automata learning, which a majority of peers struggled with. The
main reason for this was that existing tools and frameworks were not accessible enough
for a non-expert audience, as they were designed to be general purpose which increased
complexity and therefore hindered their adaptation. As a consequence, Alexander Schieweck
and I developed ALEX [6, 11], an open-source, web-based tool that allows users to apply
practices from automata learning to the domain of web applications in a low-code manner.
Since then, I have gained experience in this field from being a recurring guest lecturer in
“Webtechnologien 2” where ALEX has gradually improved the students’ results over the
past five years, but also from being a supervisor of student project groups in the context of
web development and from my participation in industrial cooperations. I could further apply
this knowledge to the LDE ecosystem which includes the meta-modeling tool CINCO and
especially the CINCO product DIME [19], our IME for the model-driven development
of full-stack web applications. In this context, I focused on ensuring the quality of the
DIME code generator as well as of web applications generated from DIME by applying
traditional end-to-end tests and learning-based testing practices on DIME products.

Figure 1.2 provides a diagram with my main contributions to the field of active automata
learning and to the LDE ecosystem. All in all, I consider my contributions to be threefold,
covering the following topics.

3



Chapter 1. Introduction

A simplicity-oriented approach to lifelong learning of web applications The first
contribution deals with the development of a framework for the continuous quality control
of web applications using active automata learning. This lifelong learning framework has
been designed with a focus on simplicity [64]. It allows non-experts to infer and then verify
formal models of web applications and provides all means to control their evolution in a
low-code fashion. To be precise, this dissertation concentrates on the extensions of the
ALEX tool beyond its capabilities presented in previous work [11, 12]. These extensions
allow users

• to generate redundancy free test-suites via model-based test generation from discrim-
ination trees [52] used by the TTT algorithm [48],

• to use predefined system tests for a targeted counterexample search which guarantees
a certain quality of learned models by establishing a common level of abstraction for
modeling system tests and input alphabets, and

• to visualize and analyze changes between software versions by means of difference
trees, i.e., tree-based representations of the differences between generated regression
test suites and difference automata, i.e., automaton models that include all sequences
indicating behavioral differences between two systems.

Moreover, I provided the means to allow the tool to be deeply integrated in modern
development stacks that are driven by CI/CD technologies to fully automate learning,
verification and refinement processes.

The concept of learnability-by-design in the context of web applications The sec-
ond contribution addresses one of the major pain points when creating learning setups,
namely the assembly of an adequate input alphabet and the manual implementation of
system-specific execution logic for system inputs. However, the challenge is not only the
implementation of execution logic, but also its continuous manual adaption to system
changes. In the domain of web applications, changes to test execution logic can only be
verified after the updated system has been deployed, e.g., to a test environment. This
can cause delays in the development workflow in fast-paced environments, or result in
insufficient testing as the application and its tests diverge more and more with each change.
To mitigate these issues, this dissertation illustrates the concept of learnability-by-design,
which consists of the following aspects:

• The DSL iHTML that developers can adapt to instrument Hypertext Markup Lan-
guage (HTML) code with information relevant for testing and learning. First, this
includes instructions for user-level interactions with specific elements on a website,
such as clicks and form submissions. Second, this concerns data handling, i.e., by
providing a notation to load test data from external resources during a learning pro-
cess, e.g., for filling forms with test data, and by extracting data from the Document
Object Model (DOM) of the website. Third and finally, this includes the explicit
identification of quiescent states [102], i.e., states in which the system is at rest and
waits for external input to identify when subsequent actions can be performed during
testing.

• A learning setup where, starting with an initially empty input alphabet, symbols
are mined on-thy-fly just by interacting with the target website through a learning
algorithm. When the algorithm visits the website, instrumented parts of the DOM

4



1.2. Context of Attached Publications

are interpreted and translated into concrete input symbols. Consequently, web
applications can be learned fully automatically, without explicit specification of an
input alphabet.

• The tool Malwa, which gives users access to such a learning setup via a web-based
user interface that only requests users to enter the Uniform Resource Locator (URL)
to an instrumented application. Learned models reflect interactions with the user
interface of the target application, presented in a way that simplifies visual analysis.

Practices for learning-based quality control in language-driven engineering The third
and final contribution focuses on my developments towards a holistic approach to quality
control in the LDE ecosystem. Keys to this are automation and the integration of learning-
based testing as a measure to ensure behavioral correctness of generated applications.
By lifting LDE to the web with CINCO Cloud, the provision of the meta IME and the
generation and delivery of IMEs is completely automated. This does not only eliminate any
system-specific dependencies, which are required when working with an Eclipse-based stack,
but also simplifies the propagation of changes from the meta-level to the modeling level:
domain experts always have an up-to-date IME. With CINCO Cloud [10], we control the
language development, with the DSL Rig [98], we control build and delivery processes of
products and with the tooling around ALEX [11] and Malwa, we ensure that the web-based
products fulfill given functional requirements. I demonstrate how the learnability-by-design
approach can be integrated in a web-centric LDE ecosystem, where code generators can be
designed so that generated products become automatically learnable. This allows language
engineers to verify code generators by generating a battery of test applications that are
learnable by design and simplifies the quality assurance effort for domain experts that
model web applications.

1.2 Context of Attached Publications

As a part of this dissertation, several concepts, tools, frameworks and practices have been
developed and demonstrated that aim to simplify the quality control of web applications via
learning-based testing by exploiting domain-specificity. A demonstration of the simplicity
of using ALEX for learning web applications is presented in [12] and [13] illustrates the
lifelong learning framework. Then, publication [98] focuses on the benefits of domain-
specificity on the example of visual CI/CD pipeline modeling. Publication [9] discusses the
benefits of the LDE ecosystem for quality control as a whole, outlines the relevance of the
lifelong learning framework in this context and sketches the idea of learnability-by-design.
This is followed by the publication [10] which talks about lifting the LDE toolchain to a
fully web-based, holistic development environment with CINCO Cloud. Finally, the last
publication [21] highlights the benefits of learnability-by-design in LDE for the verification
of web applications generated by combining graphical DSLs and large language models.

Model-Based Testing Without Models: The TodoMVC Case Study

This paper [12] demonstrates a case study highlighting the simplicity of ALEX [6, 11]
regarding its ability to create and compare learning experiments. For this purpose, the
behavioral conformance of a web application implemented with different technology stacks
was verified. Subject of the study was the TodoMVC project [5], which includes over
70 implementations of the same web-based and client-side task management system,

5



Chapter 1. Introduction

each developed with a different JavaScript framework. Key to the comparison was the
establishment of a common behavioral language based on a given textual specification.
During the study, input alphabets for 27 TodoMVC variants have been implemented
systematically in ALEX with a focus on reuse of execution logic. By manually analyzing
the DOM of the HTML documents of each implementation, structural similarities could be
extracted and translated into reusable execution logic, which benefited the adaptation of
the input alphabet to other implementations. Finally, the selected implementations have
been learned and compared on a behavioral level to detect discrepancies.

My contribution: The presented concepts were discussed among all authors. I co-authored
all sections. The planing and the execution of the case study were conducted by Alexander
Schieweck and myself in equal parts.

Lifelong Learning of Reactive Systems in Practice

This paper [13] presents our work resulting from the DFG project “Constraint-Based
Operational Consistency of Evolving Software Systems (COCoS)” whose initial results
were documented by Reiner Hähnle in [41]. In the paper, a framework for controlling the
evolution of software via learning-based testing is presented. Key to this lifelong learning
framework is a continuous improvement cycle where behavioral models of black-box systems
are inferred via model learning, semantic system properties are verified via model checking,
and the system is observed at runtime. In addition, this cycle emphasizes the processes
that occur between software iterations for controlling the evolution. Minimal regression test
suites generated from internal data structures of the TTT algorithm [48] are used to learn
new models more efficiently in successive iterations. Moreover, changes can be controlled
more easily by automatically generating difference trees and difference automata, which
allow the visualization of behavioral changes as well the appliance of formal verification
techniques. At last, the publication demonstrates the capabilities of the cycle on the
example of a simulation software for an adaptive cruise control system that has been
implemented by students in yearlong group project. As a part of this paper, the simulator
has been extended to allow its control via an HTTP-based interface in order to learn it
with the ALEX tool.

My contribution: The presented concepts were discussed among all authors. I co-authored
all sections, planned and executed the case study and I am main author of sections 3 –
6. Further, I also implemented the HTTP interface for the simulator and the necessary
extensions for the ALEX tool that enable users to apply lifelong learning practices.

An Introduction to Graphical Modeling of CI/CD Workflows with Rig

The paper [98] uses the example of authoring CI/CD pipelines to show how typical software
development tasks can be controlled and simplified by exploiting domain specificity. Focus
of the publication is Rig [100], a CINCO-based IME that allows users to model CI/CD
pipelines in a graphical modeling environment. The tool is presented as a prime example
illustrating the benefits for the quality control of software artifacts through the integration
of graphical DSLs and appropriate tool support into software development processes.
Visualization bridges the communication gap between domain experts and non-professionals,
language constraints, both syntactic and semantic, make it impossible to create invalid
models and full code generation ensures that generated code is always executable. For
demonstration purposes, a CI/CD pipeline is created for an implementation of TodoMVC
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that builds, tests, packages and deploys the application to a static file hosting provider.

My contribution: The presented concepts were discussed among all authors. I am main
author of section 3. The implementation of Rig was primary performed by Sebastian
Teumert under the supervision of Tim Tegeler.

Towards Continuous Quality Control in the Context of Language-Driven Engineering

This paper [9] discusses the impact of domain-specificity on quality assurance in the LDE
ecosystem around CINCO, DIME and DIME products, where static and dynamic vali-
dation methods form the cornerstone to ensure quality. While static validation concerns
language constraints and their implementation in modeling environments, dynamic vali-
dation aims to verify system properties by testing the product. The paper demonstrates
these measures on the development of EquninOCS, an editorial system that has been
implemented in DIME. In terms of dynamic validation, the publication describes the
integration of lifelong learning practices introduced in [13] in the LDE context. Key to
this is automation: It is described how ALEX integrates with common CI/CD vendors so
that properties of generated products are verified automatically via learning-based testing
each time code is changed. Moreover, the publication illustrates a continuous feedback
and improvement loop in the LDE ecosystem consisting of path-up and tree-down effects:
On each level, feedback can occur that triggers changes on the same level or on a level
above which then needs to be propagated down the meta-level hierarchy. Finally, the
paper sketches learnability-by-design practices which leverage the LDE toolchain to further
reduce manual quality assurance effort. This includes the generation of appropriate test
artifacts from graphical models and the instrumentation of generated application code to
enable simpler or even automated testing, learning, and runtime verification.

My contribution: The presented concepts were discussed among all authors. I co-authored
all sections and I am main author of section 2, 3 and 5. Further, I implemented the CI/CD
pipeline using Rig and developed the necessary extensions for ALEX with the help of Marco
Krumrey.

CINCO Cloud: A Holistic Approach for Web-Based Language-Driven Engineering

Paper [10] is about the demonstration of CINCO Cloud, a web-based development platform
which fully lifts the LDE toolchain, i.e., modeling as well as meta-modeling environments
to the web. The tool is an implementation of the concepts presented in [113] and a further
development of the prototype from the subsequent PhD thesis [111]. CINCO Cloud pursues
the same objectives as Web-GME [65, 106], Sirius Web [29, 103], and emf.cloud [28], but
focuses on a coordinated and purely web-based approach to LDE. This covers the design
of graph-based languages, the generation and provision of corresponding IMEs and the
deployment of products generated from graphical models. The paper therefore focuses on
the presentation of a scalable and service-oriented system architecture that enables a highly
automated development workflow for LDE. CINCO Cloud is demonstrated on the example
of WebStory, a DSL for building web-based Point-and-Click adventures introduced in
previous research [40, 56], from language design to the deployment of a modeled adventure
to the web.

My contribution: The presented concepts and technologies were discussed among all
authors. I co-authored all sections except section 2 and section 6.1 and I am main author
of section 3. I also implemented the system architecture of CINCO Cloud with the help
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of Marco Krumrey, while Daniel Sami Mitwalli and Joel Tagoukeng Dongmo worked on
web-based (meta-)modeling environments under my supervision.

ChatGPT in the Loop – A Natural Language Extension for Domain-Specific Modeling
Languages

This paper [21] is about exploring the benefits of large language models for code generation
in the context of LDE. It introduces the idea of a two-step generation process where
code generated from DSLs contains intersection points for code generated from natural
language. The approach is illustrated using the WebStory language: While users model a
basic application frame using the DSL, the game logic is expressed using natural language.
Due to the nature of generative artificial intelligence, generated applications must be tested
to verify that they exhibit the desired runtime behavior. For this purpose, learnability-
by-design practices are applied by implementing code generators in such a way that they
generate instrumented web applications. As a result, behavioral models can be inferred fully
automatically for each WebStory product using active automata learning and validated
using model checking.

My contribution: The presented concepts and technologies were discussed among all
authors. I am main author of section 2.3, section 3.4 and section 4.5 and co-authored
section 1 and section 6. I provided a code frame for instrumenting arbitrary WebStory
products, while Daniel Busch and Gerrit Nolte embedded this knowledge in the DSL-based
code generator.

Towards LLM-based System Migration in Language-Driven Engineering

This paper [20], which won the Best Short Paper Award at the 8th International Conference
on the Engineering of Computer Based Systems ECBS 2023, deals with semi-automated
system migration from a source language to a target language using Large-Language
Models (LLM). It builds on the ideas presented in the previous paper [21] and discusses
a divide-and-conquer approach that decomposes a given problem domain, in this case
code migration, into tasks that are just small enough for an LLM to handle reliably.
The approach is demonstrated in the context of language-driven engineering using the
WebStory DSL, where the code generator and the prompt frame, which translates natural
language descriptions into game logic (see [21]), are migrated using an LLM to eventually
generate TypeScript code instead of JavaScript code. To verify that the runtime behavior
of generated applications after the system migration remains unchanged, the practices
for learning-based testing and evolution control described in [13] are applied. In order to
further simplify this process, code generators are designed to generate instrumented web
applications that are learnable by design due to the instrumentation language presented in
this dissertation. The paper shows that system properties can be verified on learned models
using model checking, and that potential differences can be inferred and analyzed using
difference automata, see Section 3.5.1. Finally, traces of divergent behavior are passed to
the domain expert, who refines the LLM-based system migrator.

My contribution: The presented concepts and technologies were discussed among all
authors. I am main author of section 2.2 and co-authored section 1, section 3 and section 4.
I provided the instrumentation language for instrumenting WebStory products and performed
the verification of the system migration using a setup to infer and visualize differences
between learned models, while Daniel Busch engineered the prompts to automatically migrate
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code generators and prompt frames.

1.3 Organization of this Dissertation

This cumulative dissertation is organized as follows: After introducing my contributions and
the context of the attached publications in this chapter, Chapter 2 provides the necessary
preliminaries related to black-box testing of web applications using active automated
learning, the principles of language-driven engineering, and existing tools relevant to this
work. Chapter 3 then illustrates the different facets of the framework for lifelong learning
of web applications. After that, the concept of learnability-by-design is outlined and
demonstrated on a practical example in Chapter 4. The measures for product-level quality
control in a web-centric LDE ecosystem using active automata learning are the subject
of Chapter 5. Finally, this dissertation ends with a conclusion and an outlook on future
research in Chapter 6.

9



10



Chapter 2

Background

This chapter covers the foundations and tools used to implement the proposed Language-
Driven Engineering (LDE) supported lifelong learning cycle. Therefore, an introduction
to the structure of web applications and common end-to-end testing methods is given,
followed by a presentation of the principles of automata learning and an overview of the
LDE approach. In this context, the tools of relevance in this work, namely ALEX and
CINCO are briefly introduced.

2.1 Web Applications

Web applications follow the client-server model [97] and can be divided into three logical
layers, sometimes called tiers. The first is the presentation layer, which represents the user
interface rendered in a web browser. The second layer is called the business layer, which
contains the business logic of the application responsible for processing data. Finally, the
data layer takes care of the persistence and management of the data, e.g. on the basis
of a database system. In the further course of this work, the presentation layer will be
referred to as the frontend and the last two layers will be combined as the backend of a
web application.

In “traditional” web applications, Hypertext Markup Language (HTML) documents
are pre-rendered in the backend and sent to the client. For each request, the website is
completely reloaded and rebuilt in the browser. This stands in contrast to single-page
applications, where all necessary static resources are loaded with an initial request, and
additional data is requested asynchronously. With this method, only partial updates
are made dynamically using JavaScript instead of a full-page reload. Typically, full-page
reloads are also triggered when the Uniform Resource Locator (URL) changes. However,
single-page applications employ client-side scripts that can manipulate the URL without
full-page reloads and react to URL changes by updating parts of the document. The process
is illustrated in Figure 2.1: First, the client sends an Hypertext Transfer Protocol (HTTP)
request to the backend through a public Application Programming Interface (API) 1 , which
can be designed according to the Representational State Transfer (REST) principles [30].
The request is then processed, which may involve creating, loading, modifying, or deleting
data in a database 2 . The server then responds to the request 3 , and if data is transferred,
it is done using a data exchange format, which in modern web applications is typically
JSON. Finally, upon receiving the response, the HTML document is dynamically updated
using JavaScript to represent the changes 4 . In single-page applications, the HTML
document often reflects the state of the application, which is anchored in the underlying
database. Nonetheless, nuances such as client-only states imply that this reflection is not
always a direct representation of the persisted data.

In this dissertation, the emphasis is put on frontends which are typically developed
with HTML, Cascading Style Sheets (CSS) and JavaScript or other higher level languages
that compile to these technologies. Web browsers display HTML documents that define a
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Figure 2.1: Three tier architecture of single-page applications.

website’s structure. HTML is a language similar to XML in which elements are identified
using tags. These tags can have attributes and can be nested to create a parent-child
relationship. In the following example

<div class="bordered">Hello!</div>

<div></div> is the tag and class="bordered" is a key-value pair where the attribute
class is assigned the value bordered. Each browser allows developers to modify the
HTML document using the Document Object Model (DOM) [104] API with JavaScript.
The DOM represents the document as a rooted tree containing element nodes which refer
to the tags and attribute and text nodes that are children of element nodes. Using this
API, new elements can be created programmatically and existing elements can be removed
or rearranged within the tree. For example, single-page applications make extensive use
of the DOM by composing the HTML document directly in the browser using JavaScript,
rather than pre-computing it on the server and delivering it to the client.

CSS is a Domain-Specific Language (DSL) for defining the appearance of element nodes
in the DOM. The means to do this is by specifying CSS rules, which consist of a set of
styling properties and a selector that indicates to which elements the properties are applied
to. For example, in the rule

.bordered { border: 2px solid red; }

.bordered denotes the selector and it tells the browser to draw a red border with a width
of two pixels around each element node that has the value bordered in the class attribute,
such as the node from the example above. In addition, CSS selectors can also be used to
access element nodes in the DOM with JavaScript. The expression

document.querySelectorAll(".bordered");

returns a list of all element nodes that have the value bordered in their class attribute.
However, this only poses a small example for how elements can be accessed and a complete
listing of all selectors can be found in [105]. Choosing selectors for elements becomes
particularly relevant in the context of frontend testing, as the following section explains.

2.2 End-to-End Testing

Software testing methods can be represented as what is commonly called the testing pyramid.
At the bottom are tests that are close to the application code, such as unit tests. As one
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moves from the bottom to the top of the pyramid, there are fewer references to actual
code, but also more expensive tests to implement and maintain, and the longer it takes to
get feedback from those tests. At the top of the pyramid are typically end-to-end tests,
which fall into the category of black-box testing, since tests are executed against a running
instance of the system without making any assumptions about its inner workings. In the
context of web applications, tests are posed either against the provided HTTP-based APIs
or, as considered in this work, against the browser interface to test user-level behavior.
Fundamental to the implementation of such tests are browser automation frameworks such
as Selenium [92], which can be used to programmatically simulate user input by interacting
with the browser through the DOM API. Developers implementing automated end-to-end
tests typically face the following challenges:

Test flakiness Test flakiness describes the non-determinism of test executions, which is
especially prevalent in highly dynamic frontends. The reason for this is that when
writing tests one typically has to wait for certain conditions, such as changes in the
DOM to be completed, in order to continue executing the test logic. However, it can
be difficult to determine when these conditions are met, i.e., when a quiescent state
is reached, leading to the use of timeouts as a workaround. If a condition is not met
within a predefined amount of time, the test is considered to have failed. Setting
the correct timeout value is a balancing act. If timeout limits are set too low, they
may not account for fluctuations in server response times or client computing power,
which may lead to an unresponsive user interface. On the other hand, if timeout
limits are set too high, tests may take longer than necessary to terminate, preventing
fast feedback loops.

Unstable selectors Another challenge in end-to-end testing web applications through the
browser is finding stable selectors that are resilient to structural changes in HTML
documents. During software evolution, a site’s markup may change and elements
may be moved to different locations in the DOM while still exhibiting the same
behavior as before. If there exist tests that use selectors that involve the position of
the element in the DOM or that are too general, those tests will likely fail at some
point and need to be adjusted. Several approaches address this issue either by using
heuristics based on a set of combinatorial rules that define how selectors for specific
element are composed [59, 72] or by using constraint solving techniques [14]. These
approaches are suitable when mining data from third party websites or in scenarios
where testers cannot influence the HTML code directly. This may be the case when
testing and development teams are separated, or when using the Record & Replay
approach, provided for example by tools such as Selenium IDE [93] and WaRR [7],
although it has been shown that even recorded tests also tend to break easily [42].

The design for testing approach to web application development aims to avoid the above
problems by designing and implementing systems in a way that facilitates testing right
from the start. A common practice that falls under this paradigm is the instrumentation of
HTML elements with data-* attributes, as the Cypress testing framework [25] describes
in its best practices for writing stable selectors. These isolate element nodes in the DOM,
allowing the implementation of tests that are likely to be resilient to system changes. Thus,
elements can be tagged for testing, allowing testers to create selectors that are not tied to
visual properties, the element’s position in the DOM, its behavior, or its textual content. In
this work, the idea of instrumenting HTML code with special data-* attributes is taken up
in Chapter 4 in order to simplify the creation of system inputs used by learning algorithms
and to reduce flakiness in long-running learning processes.
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2.3 Automata Learning

Since test creation can be a time-consuming process, one way to reduce the effort is
through the use of model-based testing. This involves generating tests from formal system
specifications, such as Unified Modeling Language (UML) diagrams [62]. However, this
requires the existence of these specifications. Automata learning, also known as model-based
testing without models, aims to solve this problem by inferring the formal specifications
of a System Under Learning (SUL) in the form of automaton models. There are two
variations of this approach. On the one hand, passive (automata) learning refers to the
inference of automaton models by analyzing examples of system output, such as system
logs, as described in [63]. The drawback of this is that the state space of learned models is
limited to what is encoded in the recorded examples, which may only expose partial system
behavior. In active (automata) learning, on the other hand, a learner interacts directly
with a SUL via provided interfaces and is therefore able to generate required traces of the
system behavior itself. For the rest of this work, the term “learning” will refer specifically
to the active learning variant.

Active learning was introduced in the context of learning Deterministic Finite Au-
tomaton (DFA) from regular languages by Angluin in [8] with the development of the L*
algorithm. This algorithm as well as more recent alternatives such as DHC [68] and TTT
[48] follow the Minimal Adequate Teacher (MAT) principle where a teacher is asked two
types of queries. Given a language L and an input alphabet Σ = {σi, . . . , σn}, membership
queries answer the question whether a particular word w ∈ Σ∗ is part of L. Based on the
teacher’s answers to these queries, an automaton model M representing L can be inferred.
The second type of query are equivalence queries, which answer if M ≡ L. If this relation
is found to be false, the teacher provides a counterexample – a word w where the output
functions L(w) and M(w) produce a different output. Counterexamples are then used
to refine M by posing additional membership queries in a subsequent learning iteration.
The learning process terminates when no more counterexamples can be found through
equivalence queries.

2.3.1 Learning Web Applications

Over the years, active learning algorithms have been developed to support a wider range of
automaton types, such as Mealy machines [4, 95], System of Procedural Automata (SPA)
[36], and even register automata [2]. Frameworks like LearnLib [69] provide implementations
of active learning algorithms and abstractions for querying real-world systems in order
to learn them. A key concept in this process is the mapper [49], which translates the
abstract symbols used by learning algorithms into concrete actions for a specific target SUL.
Figure 2.2 provides an illustration of the learning process implemented with LearnLib.
The membership oracle and the equivalence oracle provide abstractions for processing
membership and equivalence queries, respectively. The membership oracle passes abstract
queries to the mapper, which translates them into concrete queries and processes the output
from the SUL. Once a model is inferred, it is passed to the equivalence oracle. Due to the
black-box nature of active learning, equivalence queries must be approximated through
testing in practice. The oracle therefore generates queries using a specific strategy (e.g.
random or conformance testing methods such as the (partial) W-Method [23, 34]) and
returns a counterexample if divergent output behavior is observed between the model and
the SUL. Finally, the counterexample is used to refine the model.

This dissertation focuses on learning web applications, which can be considered reactive
systems because they typically do not terminate on their own and respond to interactions,
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Figure 2.2: Active learning of black-box systems with LearnLib.

such as by updating the user interface. In the past, Mealy machines have proven to be an
adequate representation for verifying user-level specific system properties in these types of
systems [12, 67, 80, 88, 89]. Browser automation libraries such as Selenium [92] are key to
implementing the necessary mappings for web applications. For example, given the string
representation of the symbol “login as admin”, a script could be written to open a web
browser, navigate to the login page, enter the admin’s credentials, submit the form, and
assert that the login has been performed successfully.

In terms of controlling the quality of a web application during its evolution, Neubauer
et al. have shown the importance of design for verifiability [77]: By choosing an abstraction
for the input alphabet that relates to domain-specific user-level features, the verification
of functional properties through model checking is simplified. For example, if the input
alphabet for a web application includes symbols for user-level actions like “create account”
and “login” it becomes easier to verify that the application is behaving correctly when
these actions are performed. In this context, Neubauer et al. conclude in [80] that a stable
alphabet abstraction, i.e., an abstraction where the alphabet has to be adapted only when
features are added or deleted, is essential to controlling the system evolution. The reason
for this is that a stable alphabet makes it easier to verify that a system is changing in a
desired way and ensures comparability between learned models.

2.3.2 State-Local Alphabets

State-local alphabets have been first described by Isberner et al. in [46] and evaluated in
the context of learning mobile applications through their user interface as Mealy machines
in [38]. The motivation for state-local alphabets arises from the specific trait of systems
such as web and mobile applications, that not all inputs are possible to execute at all
times. Using this knowledge, the total amount of posed membership queries can be greatly
reduced as queries which include sequences that are known to not be fully executable are
not posed in the first place. The global input alphabet Σ can therefore be expressed as the
union of all state-local alphabets, i.e., Σ =

⋃︁n
i=1Σi, where Σi represents the local alphabet

of state si.
In practice, obtaining state-local alphabets requires an interface from the SUL that
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Figure 2.3: Web-based user interface of ALEX: input symbol management (left) and model
visualization (right).

can be accessed at any time to retrieve a set of currently available inputs. If at some point
during the execution of a membership query, an input symbol σ is not within the set of
enabled inputs, the execution is halted and the suffix of the query is answered with the
output symbol ωundef which reflects undefined system behavior. As a result, the final
model will include a sink state where from each state and for each symbol that is not
within the local alphabet, a transition is drawn with the corresponding input and ωundef

as the output.

2.4 ALEX

Automata Learning EXperience (ALEX) [6, 11] is a web-based tool that allows users to test
web applications via learning-based testing in a simplicity-oriented, low-code fashion. The
tool therefore provides a framework for defining and running active learning experiments
with different algorithms for learning Mealy machines, and allows users to analyze and
compare the results of these experiments in a variety of ways. At first, users define input
symbols on an abstract level and implement their mapping as a sequence of browser
specific user actions, see Figure 2.3. For most of these actions, users can specify XPath
or CSS selectors to indicate which elements to interact with in the web browser via the
DOM. With these implemented symbols, traditional end-to-end tests can be modeled as
a sequence of input symbols, or learning setups can be configured. In a learning setup,
users select a set of symbols as the input alphabet, choose from a set of learning algorithms
offered by the LearnLib library, select an appropriate equivalence testing strategy, and
select a target web browser. The user is then guided through the learning process in the
web interface of ALEX. This includes live updates of the model when new states are
detected, an exploratory approach to counterexample search through interaction with the
visualized model, and the verification of system properties formulated in linear temporal
logic [86] using an integrated model checker. In this work, ALEX is extended to be
deeply integrated into modern development workflows by providing collaboration support
and APIs to automate the execution and analysis of testing and learning processes from
third-party tooling. These extensions are the topic of Chapter 3.
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2.5 Language-Driven Engineering

LDE is a software development approach that focuses on the use of DSLs to facilitate
communication and collaboration among all stakeholders involved in the development
process [94]. This includes domain experts as well as system architects and programmers
equally. As DSLs are specialized languages designed to represent and solve problems in
a specific domain, they are typically more concise and expressive than general-purpose
programming languages, making them easier to use for domain experts. Core ideas of LDE
are horizontal composition and vertical refinement.

Horizontal composition allows separation of concerns by creating distinct DSLs for differ-
ent purposes in a domain, enabling different experts to work on specific areas. For
example, in the context of web applications, horizontal composition could consist of
languages for modeling business processes, domain data, and the user interface, as
seen in DIME [19], a low-code tool for the model-driven development of full stack
web applications.

Vertical refinement involves the creation of a hierarchy of DSLs, each one more specialized
and therefore more powerful and user-friendly for the corresponding stakeholder. To
take advantage of this, development environments must provide compatibility and
interoperability between DSLs.

This design principle allows for improved quality control and change management with
respect to the Archimedean points in system development [96]: The more purpose-specific
DSLs are designed, the better they can be controlled during development and evolution.

In LDE, the focus is on graphical DSLs as they bridge the semantic gap [76] between
domain experts and developers. The semantic gap in software engineering refers to
the difficulty in accurately and effectively communicating the meaning and intent of
software requirements and designs between domain experts and developers. By allowing all
stakeholders to participate in the development process, LDE aims to narrow the semantic
gap and to improve the alignment between requirements and resulting software. As a result,
the risks and costs associated with software development and its evolution are reduced and
development efficiency and product quality are improved.

Moreover, LDE revolves around the use of Integrated Modeling Environments (IMEs)
which are Integrated Development Environments (IDEs) that support graphical DSLs in
the development process. IMEs are optimized for horizontal composition and vertical
refinement and provide features known from IDEs for general-purpose languages such
as the enforcement of language constraints via syntax checking. Further, they include
support for full code generation from (graphical) models, which automates the process of
writing boilerplate code and allows stakeholders to focus on more important tasks, such as
implementing business logic.

2.6 CINCO

The CINCO SCCE Meta Tooling Framework, also known as CINCO [73, 74], is a language
workbench [32] that enables LDE by providing the means to develop low-code IMEs. The
tool is designed for language designers who want to create domain-specific editors by
defining the syntax of graph-based languages and the behavior of generated IMEs at the
meta-level (see Figure 1.1). Central to this are three textual DSLs:

• The Meta Graph Language (MGL) is used to describe different types of nodes,
containers, and edges, as well as their relationships: Nodes and containers can be
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connected by edges, and containers can contain nodes and other containers. The
MGL also allows for the specification of constraints on the typed graph system, such
as the types of nodes that a container type can contain and the number and types of
edges that can connect nodes and containers. Moreover, each MGL can be linked to
a code generator that generates code from models created in the corresponding IME.

• The Meta Style Language (MSL) is used to describe the appearance of elements
defined in the MGL. This includes properties such as the shape and color of nodes
and containers and the line style of edges.

• The CINCO Product Definition (CPD) language is the entry point for any CINCO-
based project. It specifies a set of MGL files for which the generated IMEs provides
modeling support, as well as meta-information about the product, such as its name
and its version number.

Based on these languages, CINCO generates an Eclipse-based IME application that provides
the tools necessary to create graphical models that adhere to the language constraints
defined in the MGLs.

In an attempt to lift CINCO products to the web, Zweihoff et al. introduced Pyro [112]
as an alternative generation target for CINCO products. Instead of an Eclipse-based
IME, Pyro-based IMEs can be deployed to the web and offer a multi-tenant capable web
application with a focus on real-time collaboration. As a further development of this,
CINCO Cloud [10, 111] is the next step in the evolution of LDE, lifting the language
workbench as well as generated IMEs to the web as a single application.
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Lifelong Learning of Web Applications

The role and the impact of active automata learning for the Quality Assurance (QA) of
web applications has already been demonstrated in previous research [12, 67, 80, 88, 89].
Code-centric frameworks such as LearnLib [69], Tomte [1], and libalf [17], are targeted at
programming experts, allowing them to tailor the learning setup to their specific needs
and adapt their setups to a wide range of target applications. However, this flexibility is
paired with a steep learning curve, tying QA engineers to the framework’s language and
requiring them to create and maintain learning setups, input alphabets and appropriate
mappers in code. With the development of LearnLib Studio [15], a first step in the
direction of making automata learning practically available for a non-expert crowd has
been made using a graphical Domain-Specific Language (DSL) to model learning in a
dedicated Integrated Modeling Environment (IME). Implemented using the jABC [79],
the predecessor of CINCO [74], developers can model learning setups in a process-driven
fashion using a graphical modeling environment. Drawbacks of this approach include the
lack of collaboration support, the inability to integrate with modern development stacks
and the requirement to develop system-specific mappers manually.

This chapter presents the essence of the attached publications [9, 12, 13, 98] with a
focus on domain-specificity and its benefits for the framework built around ALEX [6, 11].
ALEX is a web-based, low-code tool for active automata learning of web applications,
tailored to address the pain points of related tools and focused on ease of use and integrability.
The tool is the backbone of the simplicity-oriented lifelong learning framework that enables
fully automated continuous quality control of web applications via learning-based testing.
It compromises on flexibility in favor of simplicity [64] that the previously mentioned tools
lack, and in doing so it leverages

Domain-Specificity By narrowing down the domain, tools can be tailored to the specific
needs and challenges of that domain, and the focus can be put on making relevant
tasks as simple as possible for users to perform. For example, ALEX eliminates
the need for users to create the infrastructure to run automated tests in a web
browser and provides an all-in-one solution for common tasks related to learning-
based testing of web applications without the need for third-party tools. All aspects
such as alphabet definition, learning process configuration and model verification are
seamlessly integrated and designed to work together and to support each other in a
low-code manner, only requiring users to have knowledge of their domain: Hypertext
Markup Language (HTML) and Cascading Style Sheets (CSS).

Integrability An integral part of modern software development is the automation of repeti-
tive processes using Continuous Integration and Continuous Deployment (CI/CD).
Leveraging CI/CD, learning-based testing can be fully automated to ensure soft-
ware quality during development. As a central management and execution engine,
ALEX is designed to integrate well with CI/CD vendors by offering public Application
Programming Interfaces (APIs) that can be used, for example, to trigger learning
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Figure 3.1: Illustration of the lifelong learning cycle, see [13].

processes from within CI/CD pipelines. Additionally, an event-driven notification
system allows external services to listen for application-specific events and respond to
those events in a desired manner. In combination, these interfaces allow developers to
control ALEX programmatically and to extend its functionality in a service-oriented
way.

Collaboration Unlike local-first software solutions, web applications can provide a better
collaboration experience through real-time updates, accessibility regardless of physical
location, and centralized data management (single source of truth). Thus, ALEX as
a web application itself encapsulates all data relevant to learning target systems
in projects that can be shared with team members, allowing different people with
different responsibilities to work on different quality control aspects. For example,
this makes it possible to distribute the definition of input symbols and tests, their
concrete implementations and the formulation of Linear Temporal Logic (LTL) [86]
properties among multiple individuals.

Lifelong learning has already been introduced as an abstract concept in [16] and has
been implemented, extended and demonstrated on an adaptive cruise control system in the
automotive context in [13]. The process can be illustrated as a cycle, shown in Figure 3.1.
In this cycle,

• active automata learning is used to learn formal models, i.e., Mealy machines from
web applications that represent their user-level behavior,

• system properties are formulated in temporal logic and verified automatically on
inferred models using model checking,

• runtime monitors use learned models as “sensors” to observe the behavior of a web
application to detect potential behavioral defects over longer periods of time,

• mismatches found by model checkers or runtime monitors lead to automated model
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refinements in case the model is not accurate enough or to system refinements in case
actual system errors are revealed,

• regression test suites are generated using model-based testing, enabling faster re-
learning processes in subsequent software iterations, and

• the evolution of the system is controlled by comparing models of two subsequent
iterations, thereby verifying that the underlying system changes in a desired way.

The framework only requires users to define alphabets, model their mappings, formulate
system properties in LTL, and configure learning setups through a web-based interface.
Everything else can be fully automated. Human intervention is only required when
mismatches occur that are not suitable for model refinements and for adapting the input
alphabet and its mapping to system changes. The following sections provide a brief
overview of how ALEX aims to make the phases of the lifelong learning cycle accessible for
a non-expert crowd and how it eases the integration with third party tooling for automation
purposes. Please note that user-level monitoring of web applications is an open research
topic. It is not supported by ALEX and will be addressed in future work, see Section 6.3.

3.1 Alphabet Modeling

Learning real systems typically requires users to define alphabets at an abstract level
that is used by learning algorithms, and at a concrete level so that the target system
can be interacted with. In ALEX, the concrete level is implemented as a sequence of
user-level actions performed on the user interface through the web browser, as depicted in
Figure 2.3. There, the abstract input symbol login is mapped to a sequence of actions that
fills two input fields with predefined credentials, triggers the submission of the corresponding
form, and then verifies that the string “You have logged in” is present on the website. To
model such sequences, users can choose from a wide range of configurable actions that
represent common user-level interactions, such as clicking elements, filling in input fields,
and submitting forms. Most of these actions require only the specification of a CSS or
an XPath locator pointing to elements in the Document Object Model (DOM) of the
website. This benefits users by eliminating the need to familiarize with any specific browser
automation tools and even requires no knowledge of other programming languages. During
a learning process, the mapper interprets the configurations for all input symbols of a
membership query and executes the corresponding code on the target web application.

Regarding the output alphabet, a default but configurable abstraction is provided where
the response of a web application, which is tightly coupled to the modeling of the system
inputs, is interpreted and mapped to a string for use by the learner. If the sequence to which
an input symbol is mapped can be executed successfully, which means that a user could
perform this sequence without any issues as well, the output of the system is interpreted
as OK(<MESSAGE>), where <MESSAGE> is a possibly empty, user-defined string that allows
to add more semantics to the learned models. On the other hand, if the execution fails
at any point, the system output is interpreted as FAILED(<MESSAGE>). Again, a custom
message can be specified for the action that failed to provide a more semantic output for
the automaton model.

3.2 Model Learning

To keep the hurdle to learning models as low as possible, ALEX relieves users of the task
of instantiating a custom learning setup. Instead, users can configure a predefined setup
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Figure 3.2: Configuration of a learning setup in ALEX.

with sensible defaults in a single view, as shown in Figure 3.2. Users only need to assemble
the input alphabet from a set of previously modeled input symbols and configure aspects
such as the system reset, the learning algorithm, the equivalence testing strategy, a web
browser to access the target application, and optionally, a set of LTL properties that are
automatically verified on the learned models. A validation view provides additional visual
feedback on the completeness and correctness of the configuration.

Once started, the progress of a learning process is displayed in real time: In addition
to intermediate models, various statistics such as the number of membership queries and
executed symbols and the duration of the process are collected and displayed. Because
statistics and learned models are persisted automatically, the tool simplifies the design and
execution of case studies and benchmarks, such as performed in [12].

Moreover, users can manually search for counterexamples in an exploratory fashion
by interacting with learned models within the tool. This has proven to be particularly
useful feature in teaching automata learning theory, allowing users to act as teachers in
the Minimal Adequate Teacher (MAT) principle, see Section 2.3. For this purpose, learned
models are visualized and users can assemble words to test against the target system by
clicking on the edge labels of the model. After the output of a potential counterexample
has been validated against the actual system output, visual feedback is provided indicating
whether the assembled word is suitable for model refinement.

3.3 Model Verification

Inferred automaton models by themselves are a mere aggregation of observations and
have no inherited understanding of correct or incorrect system behavior. For this reason,
ALEX integrates the LTSmin toolset [50], which includes a model checker for LTL formulas
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Figure 3.3: Verification of LTL properties in ALEX.

and a corresponding textual DSL in which these formulas can be described. On top of
this, AutomataLib [39] provides the necessary parser for LTL formulas and a wrapper that
allows it to verify Mealy machines using formulas that include input and output labels in
propositions separately. For example, the following formula translates to “Users should be
able to logout after a login”:

[]((input=="login as user" && output=="Ok") ->
X(input=="logout" -> output=="Ok"))

In the tool, these formulas can be created, managed, and later verified on learned
models in a dedicated view illustrated in Figure 3.3. Note that to improve usability, only
syntactically correct formulas can be persisted and used for validation, and users will be
notified if syntactic correctness is violated. The upper left part shows the management
overview, while the other part shows the result of a manually triggered model checking
execution on a learned model. When a system property is verified, the corresponding
formula is highlighted in green, otherwise it is highlighted in red, and a counterexample is
provided at the same time.

Users benefit from the model checking capabilities of ALEX in two ways. First, as
indicated in Section 3.2, predefined LTL formulas can be specified during the configuration
of a learning process. These are automatically verified on the final model and the results are
presented visually. Second, user-created formulas can be used to perform black-box checking
[84], an approach that uses model checking to perform equivalence tests on intermediate
hypotheses. If some properties are violated, the model checker provides counterexamples
that are first tested against the actual system under learning and then used for model
refinement if the output of the model and the output of the target system differ. This
approach is particularly useful in the first few iterations of the learning loop, as it saves
expensive membership queries before exhaustive counterexample searches are performed.
As a result, the overall runtime of the learning process can be reduced, providing faster
feedback to developers and QA engineers.
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(a) The widget for generating tests. (b) The configuration form for selecting a test suite
as an equivalence oracle.

Figure 3.4: Generation of regression test suites in ALEX.

3.4 Test Generation

Model-based testing is a research area that aims to generate system tests from formal
models, e.g., with respect to a certain coverage criterion. In the lifelong learning cycle,
model-based testing is leveraged in two ways:

• Generated tests can optimize equivalence tests in subsequent development iterations.
As long as the behavior of the target system under does not change inherently,
generated tests encode information that can be used for a more guided counterexample
search. This way, ideally, a few core tests can help a learner build a hypothesis more
quickly, thereby reducing the overall learning time.

• By running generated and manually created end-to-end tests before performing time-
intensive learning processes, a fail-fast mechanism can be implemented to provide
fast feedback in case of regressions.

Key to the effectiveness of this is that the generated test suites must be relatively compact
compared to other strategies, such as the W-Method or the Wp-Method, while maintain-
ing enough information about the system behavior. As presented in [13], ALEX uses
discrimination trees provided by the TTT algorithm [48] to generate these test suites in
an efficient manner. Discrimination trees have already been introduced in the context of
automata learning by Kearns and Vazirani [52] to store observations more efficiently than
in observation tables used by Angluin [8]. They have shown to represent the behavioral
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Figure 3.5: Evolution control in lifelong learning, see [13].

essence of the system and allow to reconstruct the model with only a few additional
membership queries. An example of a discrimination tree for a seven-state automaton
is displayed in Figure 3.7. Test suites that guarantee at least state coverage are built as
follows: For each leaf representing a system state, a set of tests can be generated by using
the access sequence of the state as a prefix and each discriminator from the leaf to the root
independently as a suffix. In the case of the discrimination tree shown in Figure 3.7, this
accumulates to 21 tests. This compares to 336 tests using the W-Method and 190 tests
using the Wp-Method, clearly demonstrating the advantages of this approach. To generate
a test suite from an existing model, users are presented with a form that allows them to
choose between different test generation strategies, see Figure 3.4. In addition, the same
test suite can be selected to be used by the equivalence oracle for re-learning purposes
when configuring a learning setup, see Figure 3.4b.

Generated test suites are optimized for model reconstruction. However, they tend to
appear arbitrarily assembled to end users, as they may not cover intuitive user-level paths
that may be useful for verifying specific acceptance criteria. Because in ALEX allows tests
to be modeled as a sequence of input symbols, where for each input the expected output can
be specified, users can enrich test suites with manually created tests that make more sense
to them. This also provides a better on-boarding experience for people unfamiliar with
automata learning. Initially, users model input symbols and compose tests, and eventually
use the same symbols to learn their target application and use the created tests to improve
the learning process.

3.5 Evolution Control

A challenge in software development is to ensure that systems evolve in a controlled manner.
Typically, regression testing is performed to ensure that changes to the software do not
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break existing functionality. However, this typically focuses only on specific areas of the
software that are likely to be affected by the changes. This can create a false sense of
security, as there is no guarantee that the changes will not have side effects on other areas
or on the overall user-level behavior of the application. Learning-based evolution control
provides a holistic view of changed user-level behavior by comparing learned models from
two successive software releases. This can be used not only to detect that something
has changed, but also to generate traces of divergent behavior, and even to verify that
the system has changed in the intended way using model checking. The approach is
illustrated in Figure 3.5. Means of comparing two systems introduced in [13] are difference
automata, which represent differences as a graph and difference trees, which are tree-based
representations of differences computed from generated regression test suites. Both are
discussed in the following sections, where a difference between two Mealy automata is
defined as an input sequence that, when executed by both models, produces a different
output sequence. A prerequisite for this approach is a stable alphabet abstraction over
multiple software iterations, which is manifested in the fact that the models in question
must use the same input alphabet. Otherwise, if there is an input symbol σ that is included
in one alphabet but not in the other, the shortest trace of divergent behavior would be σ
itself.

3.5.1 Difference Automata

Difference automata, in the context of this thesis, are Mealy machines that capture the
difference in the input-output behavior of two systems. They can be built using standard
learning algorithms where membership queries are posed to both target systems or their
respective models simultaneously. Given two Mealy machines M1 and M2 and their
respective output alphabets Ω1 and Ω2, queries are processed step by step and the outputs
are analyzed. If, for a given symbol σi, the outputs of M1(. . . ◦ σi) = . . . ◦ ωiM1

and
M2(. . . ◦σi) = . . . ◦ωiM2

differ, the output at position i will be answered with ωiM2
↔ ωiM2

.
Moreover, the remaining inputs of the query are not processed further and are instead
answered with a special output symbol undefined /∈ Ω1 ∪ Ω2. The idea is that if the
models produce a different output for the same input, what comes after the first occurrence
of divergent output is not relevant from the QA engineer’s point of view. Due to the
filter, difference automata will have a sink state if M1 and M2 differ, where all transitions
showing divergent input output behavior point to. All paths from the initial state that end
in this sink state are traces of divergent behavior. In the other case, if no occurrence of
divergent input-output behavior is observed, the models of the two systems are behaviorally
equivalent and the difference automaton converges to M1 and M2. For usability reasons,
ALEX displays an empty automaton in the latter case, since it better represents the
absence of behavioral differences.

An example of a difference automaton can be seen in Figure 3.6, which resulted from
learning two versions of a sample web application for publishing news articles used to teach
students about authentication and authorization mechanisms. State 4, which is highlighted
in red, denotes the sink state, where all reflexive transitions have been removed for clarity.
As it can be seen, differences in user-level behavior have been observed, represented by
the highlighted transitions (3, 4) and (6, 4) leading to the sink state 4. In the first case,
administrators cannot log out of the application after creating a news article, although this
was possible in a previous version, as indicated by the transition label “Ok ↔ Failed(1)”.
In the second case, users can create news articles, even though they were not allowed to do
so in the previous version, as indicated by the label “Failed(5) ↔ Ok”. Analyzing whether
these paths represent desired changes remains a task for application experts and can be
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Figure 3.6: A difference automaton for a sample web application in ALEX.

verified manually or using model checking by writing appropriate formulas that respect the
output alphabet of the difference automaton.

Like other learning methods, this approach does not claim that inferred difference
automata are correct or complete. Due to the black-box nature of end-to-end testing,
there is no guarantee that all differences will be found, as there may always be an input
sequence that was not posed during the learning process and where the two systems in
question produce a different output. Furthermore, interacting directly with the instances
of the systems to obtain the difference automaton can be a time-consuming process and
therefore unreasonably expensive to execute. If instead models of the systems already
exist, e.g., because they have been learned as part of an automated quality control process,
obtaining the difference automaton is a matter of performing a learning process against
the models instead of the real systems. In this case, conformance testing strategies such as
the W-method of the Wp-method can be used as equivalence oracles to ensure that the
observed behavior of both systems is respected when creating the difference automaton.

3.5.2 Difference Trees

While difference automata provide an overview of all paths leading to divergent observations,
they are not very intuitive for non-experts. Thus, the core idea of difference trees is to have
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Figure 3.7: A difference tree for a sample web application in ALEX. The difference tree
on the left and an underlying discrimination tree on the right.

a compact representation of differences that is easy to understand. In fact, all paths of
the difference tree can also be found on the difference automaton [13]. Difference trees are
Directed Acyclic Graphs (DAGs) with a root and a leaf node, where each path from the
root to the leaf represents a trace of divergent input-output behavior. In this graph, the
root represents the initial state of the system, and transitions between nodes are labeled
with the input and output of the system using the same notation borrowed from Mealy
machines. An example of a difference tree for the application introduced in Section 3.5.1
is illustrated in Figure 3.7 on the left. From the initial state, two paths lead to the leaf
labeled with 0, where divergent behavior is visible at the transitions (3, 0) and (4, 0). In
the example of (3, 0), the label “logout / Failed (1) ↔ Ok” indicates that in one version
of the system, a user cannot perform a logout after the previous steps, while in the other
system, the logout succeeded. Similar to the difference automata in Section 3.5.1, the DAG
has to be analyzed by manual or automated means to verify that the system has evolved
in the desired way.

Difference trees are constructed from two test suites generated from two given models
M1 and M2, which have to share a common input alphabet Σ. First, the DAG is initialized
with a single root node indicating the initial system state. Each test corresponding to an
input sequence w ∈ Σ∗ from both test suites is posed to the query filter used for learning
the difference automata. If w produces a different output sequence for both models, the
suffix with undefined outputs is removed, and w is inserted into the tree. During the
insertion, two nodes are merged if the input and output labels of their prefixes are the
same to obtain the DAG structure. As a result, all paths from the root to the leaf in the
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Figure 3.8: System architecture for the automation of the lifelong learning cycle.

DAG are traces of divergent system behavior.
The number of traces found depends mainly on the size of the test suites used to build

a difference tree. Smaller test suites are likely to result in DAGs with fewer branches,
as fewer paths of the opposite model are covered, possibly resulting in fewer differences
being detected even though they may exist. For the difference tree in Figure 3.7, the
discrimination tree provided by the TTT algorithm has been used for test generation,
resulting in two paths of divergent observations. In contrast, using the Wp-Method for test
generation instead results in a DAG with seven paths, and using the W-Method results in
nine paths where divergent input-output behavior has been found. Although the latter two
strategies seem to be more suitable since more traces are found, in this particular case they
show the same error in different forms. This means that multiple paths in the application
lead to the same misbehavior, i.e., users cannot perform a logout although they should be
able to. It remains to be seen, through future work and further case studies, how well this
can be generalized to other applications as well.

3.6 Automation

Automation is an indispensable part of modern software development. It gains particular
relevance in the context of DevOps, where a special emphasis is placed on close collaboration
between software development (Dev) and system administration (Ops) teams [26]. The
means to automation in DevOps are continuous integration and continuous deployment
(CI/CD), which refer to a set of practices that ensure that code is automatically tested
with every change and that tested code is continuously deployed. Typically, such processes
are described in so-called pipelines, which can be either textual, usually using YAML or
JSON, or graphical, such as the Rig DSL [98], and which are executed by CI/CD providers
such as GitLab. Software testing is an integral part of such automated pipelines, because
the earlier errors are detected in the development process, the sooner they can be fixed by
the responsible teams.

To exploit the full potential of the lifelong learning cycle, and to make it compatible
with DevOps practices, the cycle has been implemented in a CI/CD pipeline authored
using Rig, where the ALEX tool acts as a central environment for the execution of testing
and learning processes. The tool stores all application-related resources such as symbols,
mapper implementations, tests and temporal logic formulas. In addition, the framework
relies on GitLab as a project management tool, code repository, and coordinator of the
lifelong learning cycle using its CI/CD capabilities. A schematic representation of the
automation architecture is shown in Figure 3.8. The process is as follows:
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Figure 3.9: A model for a CI/CD pipeline for lifelong learning with ALEX in Rig.

1 Developers commit changes to the application code and the CI/CD configuration file
to the repository provided by GitLab.

2 Internally, GitLab recognizes the presence of the CI/CD configuration file and starts
a runner, i.e., an isolated environment which interprets the configuration file and
builds and deploys the application to a test environment.

3 As a part of the process, the runner uses a command line tool that has been developed
for ALEX, which provides access to its main features and triggers testing and learning
processes through the Representational State Transfer (REST) API of an actively
running instance of ALEX.

4 Once initiated, ALEX performs testing, learning and verification processes on the
system and its learned model respectively, and finally notifies the internal event
manager about the outcome of the process.

5 As a result, feedback on the success of the operation is propagated from the event
manager back to the user. So, the event manager calls the runner, which in turn
interacts with GitLab which marks the pipeline as successful or failed, which then
triggers the notification to the user. If a previous run exists, the models learned in
those processes are compared by using the approaches described in Section 3.5.

Figure 3.9 depicts a graphical model of a CI/CD pipeline that implements the lifelong
learning cycle for GitLab CI/CD. It is general purpose enough to be adapted to various
web applications with only minor modifications to the requested Uniform Resource Locators
(URLs) of the REST interface of ALEX. Once a software project includes the CI/CD
configuration file generated from the Rig model in its code repository, all QA measures are
completely automated.

In total, the pipeline consists of ten sequentially executed steps, starting with building
the application, deploying it to a test environment, running testing and learning processes
against that environment, and finally deploying the application to a production environment.
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In this pipeline, the execution of end-to-end (regression) tests acts as a filter for long-
running learning processes: If core tests are already failing, learning processes are skipped
to provide fast feedback to stakeholders. On the other hand, if all tests pass, learning and
verification processes, as well as evolution control mechanisms described in Figure 3.5, are
performed. Note that, due to possible time constraints for pipeline execution, long-running
processes are executed in a non-blocking fashion to free up resources used by the CI/CD
provider. Since test suites can become quite large over time, and since learning processes
can take up to several hours or even days to run, the event manager in ALEX notifies
GitLab when these processes are finished so that pipeline execution can continue.

In addition, the pipeline implementation leverages GitLab’s project management
capabilities. If a problem occurs during the execution of the pipeline, for example if tests
cannot be executed, ALEX reports this back to GitLab, whereupon the developers who
committed the changes to the repository are notified and issues are created in the project
management system. Issues include traces of observations where properties could not be
verified, or traces of divergent behavior related to the last iteration in the form of difference
automata. This way, all stakeholders are involved in the development process without
having to actively use the ALEX tool.
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Chapter 4

Learnability-by-Design

Establishing a stable alphabet abstraction, i.e., an abstraction that rarely needs to be
adjusted during system evolution, and implementing appropriate mappers to interact with a
System Under Learning (SUL) are the main challenges in learning real systems and have to
be considered for each application individually. ALEX eliminates this pain by providing a
unified, low-code environment for creating setups to learn web applications, which includes
the definition of the alphabet, the implementation of mappers, the configuration of learning
processes, and the analysis of inferred models. In practice, however, keeping these resources
in a separate tool, figuratively speaking, far away from the source code of the target
application, introduces certain drawbacks. Typically, application code is managed using
version control systems such as Git or SVN, which include features such as branching
and merging that cannot easily be reflected in the tool. As development teams and the
complexity of a project grow, managing learning artifacts in a separate tool becomes an
infeasible practice. Moreover, adjustments to the alphabet and corresponding mapper
implementations can usually only be made and tested after changes to the SUL have been
deployed, e.g., to a test environment. If changes are not properly communicated, this
puts quality assurance teams on spot to determine how the system has evolved and to
update learning artifacts accordingly. In development environments where applications
are deployed multiple times a day, this can also lead to frustration as developers may be
forced to deploy untested code to production due to time constraints. As a result, learning
artifacts and the system state can diverge over time, making it difficult to keep up with
system evolution and introducing risks to application security.

Learnability-by-design describes a framework that addresses these issues by embedding
alphabet definition and mapper implementations directly into the application source code.
It therefore provides a standardized solution that can be applied to a wide range of web
applications by exploiting their specific traits. Key aspects of the framework include:

• The instrumented HTML (iHTML) Domain-Specific Language (DSL), which extends
Hypertext Markup Language (HTML) with a set of data-lbd-* attributes. These
attributes do not change user-level behavior, the appearance of the application in
the browser, or the semantics of annotated elements. Instead, they specify input
symbol definitions and mapper implementations that enable fully automated learning
of deterministic approximations of the application behavior.

• A setup where a learner interacts with a web application without prior knowledge
of system inputs by interpreting instrumented HTML code. This approach takes
advantage of state-locality [46] in automata learning: In each system state, only
a limited set of actions is available given by the Document Object Model (DOM),
thereby reducing the number of queries posed to the system. Because system states
depend on the DOM with respect to the interaction history, learned models reflect
interactions with the user interface of a web application.

• The tool Malwa, which facilitates the learning of instrumented web applications
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through a minimal, web-based user interface that, in an ideal scenario, only requires
users to specify the Uniform Resource Locator (URL) of the target application. If
the tool’s presets are not sufficient, users can configure aspects such as browser
dimensions, the equivalence testing strategy, form and input test data, and the
system reset mechanism.

The remainder of this chapter is structured as follows: Section 4.1 discusses the relevance
and the implications of using the DOM for automated active learning of web applications,
Section 4.2 highlights the benefits of the instrumentation language, Section 4.3 describes
the conceptual means to learn instrumented web applications, Section 4.4 gives a technical
overview of the iHTML language, Section 4.5 introduces the Malwa tool, and finally,
Section 4.6 demonstrates the approach with a practical example.

4.1 Overview

A prerequisite for applying active automata learning is that the systems are reactive,
i.e., they take some form of input and produce an observable output in response. Web
applications are highly reactive systems that users can interact with directly through the
web browser, often triggering an immediate response such as loading a new page by clicking
a link or changing only parts of the DOM dynamically on the same page. Due to their
reactive nature, Mealy machines are commonly used to represent their behavior [12, 67, 80,
88, 89], which by their definition are regular, finite and deterministic automata.

Web applications have the characteristic property that users always have only a limited
set of actions available to them via the browser-based user interface. This can be exemplified
by the behavioral models depicted in Figure 4.7 and Figure 5.3, where for each state there
are only outgoing transitions for the possible actions a user can perform in that state.
Typically, web applications consist of different pages that display different content and
thus offer different functionality. Pages can be understood as actually distinct HTML
documents, or in the case of single-page applications, pages can also result from dynamic
changes to a single document and can therefore also be referred to as view or state. The
set of possible actions on a page is given by its DOM.

Learning web applications via the web browser requires programmatic interactions
with the DOM of a page to simulate user events on visible elements. For this reason,
instrumentation is also applied at the HTML level to specify which elements can be
interacted with and how they can be interacted with. iHTML as a textual DSL therefore
standardizes the way how learning algorithms interact with elements on a page in an
automated way. In this context, the key concepts of iHTML are the following:

• Abstraction – iHTML reduces the total interaction space on a page to a few instru-
mented elements of interest within its DOM, see Figure 4.2. This gives developers
control over which interactions are performed on which parts of a page, thereby
affecting derived input alphabets: Each action performed on a page corresponds to
an input symbol.

• Aggregation – To reduce the state space of learned models, iHTML allows the
aggregation of multiple user interactions executed in sequence, as long as the DOM
remains unchanged in the meantime. This is particularly useful for form submissions
where users have to fill in multiple input fields with data in an arbitrary order.

In this work, Mealy automata are the target automaton type, which by their definition
are regular and deterministic systems for representing application behavior. For systems
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with non-regular behavior, we can always learn regular approximations by stopping other-
wise potentially never-ending learning processes, either by force or by using appropriate
abstractions over the alphabet, thereby losing the precision of the learned models. When
automatically interacting with a web application, chances are that the possible interaction
space will grow over time, possibly even infinitely, which could lead to continuously growing
alphabets and never-ending learning processes. iHTML provides a constraint system to
exclude elements from the interaction space via user-defined conditions that are dynamically
evaluated to keep the size of input alphabets finite.

Automata learning further assumes that the target systems behave deterministically.
Typically, however, web applications are not necessarily expected to exhibit deterministic
behavior because they often deal with dynamic data, such as randomly generated unique
identifiers for database records, unpredictable user input, concurrent state modifications,
and external systems whose states and responses may change over time, resulting in
unpredictable outputs. In these scenarios, it is necessary to use more sophisticated
techniques such as automated alphabet abstraction refinement (AAR) [44] to automatically
refine the abstraction of the input alphabet when non-deterministic events occur, or to
use learning algorithms that target more powerful and expressive automaton types, such
as register automata [43] that can deal with data. However, these approaches have not
yet been studied in the domain of web applications, and their implementation is beyond
the scope of this work. Consequently, the approach presented in this work requires that
instrumented web applications behave deterministically.

The approach to learning instrumented web applications uses the DOM as a sensor to
observe and interpret the output of a system. Even if the application behaves deterministi-
cally, the DOM, as a projection of the application state (see Section 2.1), may still contain
dynamic data that changes frequently, such as timestamps and real-time counters. For this
reason, the unfiltered DOM is of limited use as a sensor for system output, since conflicting
observations will cause classical automata learning algorithms to fail. iHTML itself cannot
guarantee deterministic observations, but it provides a framework that allows developers
to control how system output is interpreted, and it is ultimately their own responsibility to
provide an appropriate abstraction over the DOM. Means to this are:

• Projection – Because the DOM is used for state identification, the learning setup
implemented in Malwa creates an abstraction of the DOM as the system output that
contains only instrumented elements. DOMs can contain information that is either
irrelevant for state identification, such as developer comments, purely structural
constructs for layouting, and inline JavaScript, or even parts that change randomly.
Thus, iHTML lets developers control which parts of the DOM are relevant to reflect
system state, and which parts of a page should be ignored, e.g., because they expose
non-deterministic behavior. By further projecting observations to instrumented parts
of the DOM, changes in non-instrumented parts will not lead to divergent outputs,
making it easier to deal with system evolution as models remain comparable.

• Visibility Control – iHTML gives developers the ability to include data in the DOM
for state identification purposes that is invisible to users, but visible to the learner
as part of the DOM projection. For example, session data that is persisted only in
client-side storage, or even data from a database that the developers deem necessary
to characterize the state of the application, can be included. As a consequence,
developers have greater control over how states are split in the learning process so
that inferred models better reflect the semantics of the application.

Note that there exist approaches for dealing with non-deterministic behavior in the

35



Chapter 4. Learnability-by-Design

context of automata learning, most notably the approach to AAR presented by Howar et
al. in [44]. Starting with a finite abstraction over an input alphabet, once a conflicting
observation is made, AAR finds the corresponding location within the query, splits the
input symbol in question into two (refining the abstraction), and expands the input
alphabet with the new symbol. Thus, instead of letting developers control what is and
is not part of the system output via instrumentation, as proposed in this work, AAR
could be used to automatically refine mined inputs when a DOM looks different than
previously observed. While this method can potentially be used entirely without the need
for instrumentation, there are scenarios where it would complicate matters. For example,
assuming that randomly generated unique identifiers of database records are embedded
in the DOM, the output alphabet could also grow infinitely, thus potentially leading
to non-deterministic observations for each membership query, resulting in an equivalent
number of input refinements. Although models learned in this way would be more accurate
in terms of the actual system behavior, they would also grow infinitely in size, making
formal verification of system properties difficult. However, an in-depth evaluation of the
feasibility of AAR for learning (instrumented) web applications remains future work.

Please note that automata learning allows to infer models of web applications that
are significantly more expressive than simple sitemaps, which are graph-based structures
created by following links on a website, where states are identified by the URL. There
are two reasons for this. On the one hand, iHTML allows a learner to interact with more
elements than just with links, perform more actions on elements than just clicks, and even
enter custom test data into input fields. On the other hand, sitemaps provide only a static
view of the existence of pages and how they are linked, while learning captures the dynamic
behavior of web applications and makes history-related dependencies between internal
states visible. As a result, application states are deeply explored and inferred models
represent interactions with the application from a user-level perspective, see Figure 4.7.

4.2 Benefits of Instrumentation

The use of heuristics, e.g., for finding stable XPath selectors [59, 81], is an indispensable
practice in the field of black-box testing of web applications, because pages of a website
can look and behave the same, even though they are structurally different, and can change
quickly. In certain areas, such as crawling and data mining, the lack of control over the
application’s source code makes it necessary to use these heuristics to write scripts that
are more likely to be invariant to system changes. Automated learning of web applications
faces similar problems. However, if the source code is accessible, instrumentation can be
leveraged to reliably interact with web applications without the need for heuristics. The
following points provide an overview of common challenges and how instrumentation can
be used to overcome them.

Finding a suitable state abstraction Identifying system states of web applications is a
common challenge in process mining, and existing research also focuses on heuristics that
exploit the DOM. This includes, but is not limited to, performing a similarity analysis
based on the tree edit distance [54, 110], projecting the DOM onto a set of elements
of interest [90], or comparing extracted semantic information [61]. Because they use a
pure black-box approach, these techniques are automatically applicable in many scenarios
and will probably be good enough in many cases, depending on the objective pursued.
However, these approaches quickly reach their limits and cannot adequately identify states
when applications are implemented in ways not covered by these heuristics. Learnability-
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by-design and the presented instrumentation language shift the Quality Assurance (QA)
measures to the source code level and allow developers to expose and thereby control which
information of the DOM is relevant for state identification. As a result, the approach aligns
application development with the objectives of QA engineers and allows to reliably infer
behavioral models.

Finding the interaction space To build state-local alphabets, the task at hand is, given a
page and its DOM, to find all interaction points, i.e., elements that can be interacted with,
and provide all actions that can be performed on them. Indeed, most HTML elements have
certain semantics associated to them stated in the HTML specification [107]. For example,
links (<a>) and buttons (<button>) are destined to be clicked on to navigate to other
pages and to trigger application-specific actions, respectively. However, developers can
overwrite the default behavior using JavaScript at runtime, invalidating assumptions about
the behavior of these elements. Furthermore, any other, typically non-interactable element
can be made interactable and even be designed to mimic the look and feel of interactable
elements. As a consequence, application states may stay undetected because a learner that
only acts on the specification will not interact with other elements and models are likely to
miss information relevant to quality assurance teams. Testing all possible user-level actions
on all visible elements is impractical and only dramatically increases the state-local input
alphabet associated to a system state. Instrumentation helps to infer behavioral models in
a more targeted fashion by allowing developers to make the interaction space explicit and
easy to interpret in automated testing processes.

Finding quiescent states A crucial aspect of web application testing is the determination
of the application state in which user input can be processed in order to proceed with
test execution. Before the advent of single page applications, this was almost trivial to
determine, as fully rendered HTML documents were sent to the client with each interaction,
so that waiting for quiescence was a matter of waiting for requests to finish and the page to
be rendered. Web applications are becoming increasingly dynamic, and a large part of the
business logic is implemented purely as client-side JavaScript. This means that DOMs can
change dynamically at any time, and it requires heuristics to recognize that the application
is ready to accept new input. However, heuristics always carry the risk that they may not
work as expected, and thus are not applicable to every web application in every scenario.
In the case of testing, this can mean that tests can become flaky, i.e., sometimes they
produce the desired result and sometimes they do not. This is a particular problem in
automata learning because systems are assumed to behave deterministically, meaning that
non-deterministic observations will cause learning processes to fail or to not end with the
expected result. Making quiescent states visible through instrumentation eliminates these
problems, which guarantees a reliable deterministic test execution, see Section 4.4.5.

4.3 Learning Instrumented Web Applications

As stated in Section 4.1, web applications have the property that the possible interaction
space is bounded by the DOM of the currently displayed page. This property can be
exploited by learning algorithms to reduce the number of queries posed to the system,
since symbols discovered during the learning process do not trigger queries for one-letter
extensions of previous system states. An overview of the process is illustrated in Figure 4.1.
Prerequisite for web applications to be learnable is that their HTML code is instrumented
with data-lbd-* attributes (highlighted in red). These attributes encode
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Model Model 

<!DOCTYPE html>
<html>
<body>
  <button
    data-lbd-name="btn"
    data-lbd-action="click"
  >
    Click me
  </button>
</body>
</html>

 interacts 

 mines 

 infers 

<!DOCTYPE html>
<html>
<body>
  <input
    type="text"
    data-lbd-name="input"
    data-lbd-action="SendKeys"
    data-lbd-value="Hello"
  >
</body>
</html>

Learner

Figure 4.1: Illustration of the learnability-by-design approach.

a) input symbol definitions at an abstract level, which allows the learner to infer
state-local alphabets by analyzing the DOM and

b) concrete instructions that are interpreted by the mapper to interact with the applica-
tion through the browser.

By continuously interacting with an application, the DOM eventually changes and more
instrumented code is uncovered, leading to more input symbols being included in the
process, which results in the iterative refinement of the learned model. The learner
interprets the instrumented code and navigates through the web application without any
prior application-specific knowledge in an exploratory fashion.

For this approach to automated learning to work in practice, quiescent states of an
application, i.e., states in which the application rests and waits for external inputs [102],
must be defined and there must be an interface to query whether the system reached such
a state. Because the learner is basically stepping from DOM to DOM, this is required for
the learner to know when the DOM can be considered stable to perform subsequent actions.
Furthermore, there needs to be an interface to reset the system to its initial state to keep
membership queries independent. If these conditions are met, alphabet and automata
inference can be fully automated. This approach targets learning partial Mealy machines
[38], which are define as follows:

Definition 4.3.1 (Partial Mealy Machine) Partial Mealy machines can be represented
by a tuple M = (S,Σ,Ω, s0, δ

∗, γ∗) where

• S is a finite set of states.

• s0 ∈ S is the initial state.

• Σ is a finite input alphabet.
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Figure 4.2: DOM-based state identification.

• Ω is a finite output alphabet.

• δ∗ : S × Σi → S is the state transition function.

• γ∗ : S × Σi → Ω is the transition output function.

For each state si ∈ S, let Σi ⊆ Σ denote the state-local alphabet of state si. Furthermore,
δ∗(si, σ) and γ∗(si, σ) are not defined for all σ /∈ Σi .

4.3.1 DOM-Based Model Inference

Most web applications can architecturally be divided into three tiers: the frontend is
displayed in the browser, the backend handles server-side business logic, and a data source
such as a database stores application data. The state of an application can therefore be
thought of as the combination of frontend state, backend state and application data. By
interacting with the application through the browser, users modify the state, which in
turn leads to structural changes in the DOM that affect what is displayed to the user.
Consequently, analyzing the DOM allows to draw conclusions about the application state,
but the accuracy depends on the amount of information within the DOM used for state
identification. Figure 4.2 illustrates different projections of the DOM for a given state.
The inner circle represents the visible DOM (VD), which projects the DOM onto a list of
elements that the user can see and interact with, such as buttons, links, and input fields.
Then, the instrumented DOM (ID) extends the VD by explicitly marking elements that
are relevant for building state-local alphabets, as well as elements that are visually hidden,
but are present in the DOM. By using the iHTML, these elements are made visible to
a learner by annotating them with data-lbd-* attributes. Finally, the complete DOM
(CD) considers all elements in the DOM. The space of possible interactions that constitute
state-local alphabets may increase with each layer, which also holds for the accuracy of
learned models in terms of their ability to reflect the application state.

Considering a one-to-one relationship between a state in a model and a specific DOM,
or a projection of it, one might assume that automata learning is not the appropriate
approach to building state machines representing web application behavior. Indeed, this
assumption is true for systems where states are independent of previous actions, such as
navigation graphs spanned by links of a static website. In these cases, one can build a
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labeled transition system where two states are considered the same if their DOMs are
structurally equivalent and where actions that change the DOM represent the transitions.
However, web applications are considered black-box systems from an end user perspective,
and as such, no assumptions can be made about the history independence of actions. There
may always exist backend or frontend logic that alters the application state in such a
way that the effects are not immediately visible in the DOM, but only as the interaction
progresses. For example, consider an application with role-based access management, a user
user1 with the role user, and a second user user2 with the role admin that grants access
to the admin interface. When user1 logs in to the application via a login form on the home
page, he or she is redirected to a personal page. However, once user2 assigns the admin
role to user1, a subsequent login of user1 would take him or her to the admin interface.
In both situations, the DOMs containing the login form are equal, but the result of the
login is a different. Such behavior cannot be represented by a state machine that uses the
equivalence relation on DOMs to determine system states, because previous interactions
with the system are not taken into account.

Figure 4.2 illustrates that automata learning makes these history-related dependen-
cies, which are typically not encoded in the DOM, visible. When learning instrumented
applications, the output function γ∗ of the Mealy machine is defined to return a projection
of the page’s DOM after the input has been processed. In the figure one can see that at
some place in the Mealy machine, there exists a transition (si, sj) where the input is an
action from the projected DOM of si and the output of the system, separated by a “/”,
is the projected DOM of the following state sj . Because the learner can only interact
with visible parts of the DOM, state-local alphabets can also only contain symbols that
represent actions on visible elements. For the output however, instrumentation allows to
also include invisible parts in the projected DOM, enabling developers to have more control
over state splits. As a result, on the one hand, states can be associated with a non-empty
set of DOMs by looking at the outputs of incoming transitions, and on the other hand,
learning can lead to multiple states being associated with the same DOM. Considering
the authentication example from above, the learned model would have two states that can
be associated with the DOM containing the login form for user1, depending on whether
user2 had previously been assigned the admin role.

Another aspect of interest is the effect of the selected DOM projection on the size of
learned models. The more parts of the DOM are covered, the more states models can have,
because state-local alphabets can grow in size, e.g., due to instrumentation, and because
even small structural DOM differences can lead to state splits, especially when considering
CD. Also, the likelihood of non-deterministic observations may increase if more parts of the
DOM are included for the output during learning, since parts of it may change randomly,
such as product recommendations in a web shop. Note that using iHTML does not prevent
non-deterministic observations, as the language itself only provides a framework for code
instrumentation, and developers are still responsible for not annotating parts of the DOM
that are determined to show such behavior at runtime.

4.3.2 Mining System Inputs

To infer state-local alphabets, the Minimal Adequate Teacher (MAT) model needs to be
extended by an interface that allows the learner to query the system for currently enabled
inputs. In the case of learning web applications through the browser, this interface already
exists in the form of the DOM. There, all elements a user can interact with are present,
and the task is to find an adequate abstraction that maps the DOM to a set of input
symbols. Such an abstraction is given by iHTML, which annotates elements that can be
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interacted with, and which also defines how they can be interacted with. Because the
DOM contains both symbol definitions and information that the mapper uses to interact
with the system, there exists a projection function p that maps a DOM to a set of tuples
(σi, element, action, arguments). The tuple contains the name of an enabled input symbol
σi, the associated element in the DOM to interact with, the action to perform on the
element and a set of arguments such as input values for input fields, respectively. Each
time p is evaluated, the learner computes the state-local alphabet Σi given by the enabled
inputs, and the mapper is updated accordingly.

4.3.3 Interpreting System Outputs

In the context of learning web applications, a commonly used abstraction over the output
alphabet is Ω = {⊤,⊥} to indicate whether an input could be executed successfully or
not. When inferring alphabets automatically, there is no straightforward approach to
determining the success of an input, as this is an application-specific interpretation and
requires users to define appropriate assertion logic in the mapper implementation. Thus,
in this work, the output of the system is considered to be a projection of the DOM after
the system has reached a quiescent state in response to an interaction. In the projection,
only annotated parts of the DOM are considered. Implementation-wise, the projection
collects annotated elements in a preorder traversal of the tree spanned by the DOM. Once
an annotated element is found, it is appended to a list that is eventually returned to the
learner as the system output.

iHTML is designed to learn a deterministic view of the application behavior. Including
unannotated parts of the DOM in the projection could lead to non-deterministic obser-
vations, e.g., when dynamic values such as the current time are displayed on the page.
Consequently, this may cause consistency issues in internal data structures used by learning
algorithms, or result in infinitely large automaton models. Thus, limiting the system output
to annotated elements allows to keep more control over the learned behavior. This also
makes the approach more robust to system evolution. Code changes that do not modify
annotated parts have no impact on the projected view, meaning that state-local alphabets
remain the same, thus ensuring comparability between models. Eventually, this results in
the output alphabet of the learned partial Mealy machine to be

Ω = D ∪ {constraint violation}

where D is a set of projected DOMs, or rather their string representations. The symbol
constraint violation is returned by the mapper if at a some point an element is visible and
therefore is part to the state-local alphabet, but must not be interacted with in order to
stay within the regular bounds of the automaton model, see Section 4.4.7.

4.3.4 Testing for Equivalence

Equivalence testing describes the practice of searching for differences between learned
and actual system behavior. In the context of learning black-box systems, equivalence
queries are often approximated using model-based testing methods [51]. Strategies such
as the W-method [23] or the Wp-method [34], which are commonly used for conformance
testing, try to prove equivalence (assuming an upper bound for additional states) via an
exhaustive search that grows exponentially with the number of system states. In practice,
this introduces an immense overhead when system response times are high and membership
queries are expensive to execute, as it is the case for web applications. This motivates
using heuristics that find counterexamples fast with a minimal amount of membership
queries, which also was the main motivation for the ZULU challenge [45].
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Figure 4.3: Relations of data-lbd-* attributes in iHTML.

In this work, a strategy is employed that combines both conformance and randomized
testing to accommodate continuously growing models while keeping the number of mem-
bership queries low. The method, which exploits the properties of partial Mealy machines
by posing only queries that respect state-local alphabets, works as follows:

1. Calculate a state coverage, which results in an access sequence for each state in
the automaton. This guarantees that each least each state is visited once during
equivalence testing.

2. For each state, execute the corresponding access sequence on the system and perform
a random walk of a fixed, but user-defined length along the transitions spanned by
the state-local alphabets.

3. Repeat step two for a number of m times to ensure that model boundaries are
examined to a certain extend.

Let n denote the number of model states and m the number of repetitions, then a total of
n ·m membership queries is executed on the SUL during equivalence testing.

Furthermore, a heuristic is employed that takes the order of the access sequences into
account. As mentioned earlier, each state in the model can be associated with a non-empty
set of DOMs that are characteristic for the state by considering the outputs of incoming
transitions. In practice, having multiple different DOMs represent a state is unlikely, but
not impossible. This assumption is exploited by the equivalence testing strategy by sorting
access sequences in descending order according to the number of different DOMs that are
associated with the state the access sequence leads to in the learned model. Consequently,
random walks start with those states that have a high probability of being split, which
aims to reduce unnecessary test queries. This is particularly useful when using algorithms
such as the TTT [48] algorithm that produce many intermediate models and are optimized
for processing long counterexamples.

4.4 The iHTML Instrumentation DSL

The instrumentation of HTML code with data attributes is the foundation of the learnabi-
lity-by-design framework. It is a common practice among JavaScript libraries and frame-
works to define custom semantics for standard HTML tags in order to manipulate the
behavior of the user interface. However, the intention of code instrumentation in the
context of this work is not the client-side manipulation of the visible page, but to enable
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third-party tools, such as Malwa, to interact with the application through a stable and
standardized programmatic interface. Further, most of these libraries rely on a set of
conventions, such as the naming of custom data attributes and the context in which they
are used, and developers have to follow these conventions in order for the libraries to work
as expected. Because these extensions are not part of HTML, Integrated Development
Environments (IDEs) are not able to offer features such as syntax validation and autocom-
pletion for them out-of-the-box. Therefore, the potential for misuse of these extensions and
thus for incorrect or unexpected behavior of the corresponding libraries at runtime is high.

For this reason, this work introduces iHTML as a standalone DSL that extends HTML
by a set of 12 custom attributes with the naming pattern data-lbd-* integrated into the
grammar of the language. The use of iHTML, and especially the introduced attributes,
guarantees that web applications are designed to be automatically learnable. The context-
free grammar for iHTML is implemented in the Langium framework [57], which allows
grammars to be expressed in an Extended Backus-Naur Form (EBNF) [91]. Langium
generates extensions for the Visual Studio Code IDE [71] that enforce the syntax constraints
of the language defined in the EBNF using the language server protocol [82]. The grammar
is listed in Listing A.1 and a structural diagram that visualizes the relationships of the
data-lbd-* attributes is illustrated in Figure 4.3. In this diagram, unique refers to the
constraint that only a single element in the code base may have the attribute, whereas
unbounded indicates that there are no limit restrictions. iHTML is designed with simplicity
and browser compatibility in mind. It has the same syntax as HTML, which means that
any iHTML document is a valid HTML document. However, this does not apply to the
reverse direction, since the ordering and the position of data-lbd-* attributes is enforced
by the grammar. Instrumentation attributes are always grouped together and placed after
all other standard HTML attributes.

Because these attributes are part of the language, desired properties become rigid in
the sense of Archimedean points in Language-Driven Engineering (LDE) [96]: IDEs enforce
syntax constraints and make it impossible to create invalid code, thereby preventing misuse
of language features. Moreover, since iHTML does not introduce new syntactic elements to
HTML, there exists a one-to-one projection from iHTML to HTML. This eliminates the
need for code generation and makes the language easier to integrate into existing projects,
since switching between the two languages is a matter of switching between views within
the IDE.

The grammar only takes into account the different ways in which data-lbd-* attributes
can be combined on individual elements. However, some language properties related to the
attribute usage cannot be expressed by a context-free grammar and need to be enforced
by programmatic checks over the abstract syntax tree of a document instance in the IDE.
This especially concerns the constraint that the values of the data-lbd-group-container
and the data-lbd-group attribute must match when used in combination. In terms of
Archimedean points, these properties are not rigid, but verifiable since the grammar is not
expressive enough and they can be verified by the IDE. Arguably, alternative grammar
types such as macro grammars [31], which allow parameterized non-terminals, or attribute
grammars [55], which integrate language semantics directly into the grammar, might prove
more suitable for expressing such constraints. The decision to use a context-free grammar
was made because of its simplicity and more mature tool support. The following sections
demonstrate the use of iHTML and the data-lbd-* attributes by examples and explain
their semantics, related checks for static validation and their implications for learned
models.
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4.4.1 Stable Selectors

Stable selectors make it easier to maintain the testability of an application as it evolves,
since elements can be located using the same selector as long as they exist in the DOM.
Ideally, selectors are chosen that are still valid after the tag of an element changes, e.g.
from an unordered list <ul> to an ordered list <ol>. HTML already allows elements to be
annotated with a unique id attribute for this very purpose, e.g. to apply Cascading Style
Sheets (CSS) rules to a specific element on the page.

iHTML introduces an additional attribute data-lbd-name, which should also contain
a value that is unique across the application. The introduction of another unique property
is for separation of concerns: data-lbd-name is used only for learning purposes to derive
the name of the input symbol created for interacting with the instrumented element. This
way, code that relies on the id attribute, e.g., to apply CSS rules or to manipulate the
DOM with JavaScript, will not interfere with learning-related annotations. An example of
such an annotation is the following code

1 <button data-lbd-name =" the-button">
2 Click Me
3 </button >

where the button element is annotated with the attribute data-lbd-name containing the
value the-button, which should be unique across the application. The attribute can be
used to create the CSS selector

[data-lbd-name="the-button"]

, which is short, expressive and independent from visual or other semantic properties and
uniquely identifies the element on the page. Because the uniqueness constraint cannot be
expressed by the grammar, there exists a check that verifies the uniqueness of used names
across all files in the code base, making it also a verifiable property of the language.

4.4.2 User Interactions

There are several ways to interact with a web application through the browser, such as
using a mouse and keyboard, or using the screen of the target device through touch gestures.
In this work, the available interactions are limited to support actions performed with mice
and keyboards. These interactions can be represented by the action set {Hover, Click,
SendKeys, Submit}, whose values indicate that the cursor should point to an element, that
an element should be clicked, that a specific text should be entered into an input field and
that a form should be submitted, respectively. Elements that should be interacted with
during a learning process can be annotated with the data-lbd-action attribute, where
its value corresponds to one of the values within the action set. Once annotated, the
DOM projection function p will output an abstract input symbol according to the pattern
<action> <name> that represents the action to execute and the name of the target element.
For example, by extending the button element from Section 4.4.1 in the following way

1 <button data-lbd-action ="Click"
2 data-lbd-name =" the-button">
3 Click Me
4 </button >

, p will output the input symbol click the-button and a click action on the element is
associated with it within the mapper. An excerpt of an automaton with the corresponding
input symbol will then have a transition
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s0 s1 . . .
click the-button / DOMi

if the action can be performed on the element, resulting in the symbol being added to the
state-local alphabet. The output of the system is the projected DOM of the page after the
action has been executed.

4.4.3 Data Management

Most web applications offer interfaces for processing user-defined data using forms and
inputs fields. For the learner to interact with these elements, test data has to be provided,
which can be specified in two ways. The first alternative is by annotating corresponding
input elements with the data-lbd-value attribute and by specifying a hard-coded string
as value that is entered in the input element during learning. In the example

1 <input data-lbd-action =" SendKeys"
2 data-lbd-value =" hello"
3 data-lbd-name =" some-input">

the string “hello” is automatically written into the input field with the name some-input.
The resulting abstract input symbol is created according to the pattern write <value>
in <name>, which means that, for this concrete example, an automaton will have the
transition:

s0 s1 . . .
write "hello" in some-input / DOMi

While providing raw values is a suitable approach in simple use cases, it can lead to
critical test data being leaked to clients. Consequently, the framework also provides a way
to specify test data that is loaded from an external source. In the following example, one
can see a form used to authenticate users to the application extended with corresponding
annotations to load data from an external dataset.

1 <form data-lbd-dataset =" loginData">
2 <input type=" email"
3 data-lbd-action =" SendKeys"
4 data-lbd-dataset-key ="email"
5 data-lbd-name =" login-input-email">
6 <input type=" password"
7 data-lbd-action =" SendKeys"
8 data-lbd-dataset-key =" password"
9 data-lbd-name =" login-input-password">

10 <button data-lbd-action ="Click"
11 data-lbd-name =" login-button">
12 Login
13 </button >
14 </form >

Here, data-lbd-dataset specifies the name of the dataset in line 1. The approach assumes
that datasets consist of a list of n-tuples, where each element within the tuple can be
accessed with a named key. As such, data-lbd-dataset-key allows to specify the named
key as a representative for the value in the tuple. For each tuple in the dataset, a new input
symbol is created, allowing developers to define positive and negative examples for test
inputs. Regarding the authentication example, this can be used to specify data containing

45



Chapter 4. Learnability-by-Design

credentials for users with different roles, but also invalid credentials to learn how the system
reacts to unexpected inputs. Note that in Malwa, the name of the dataset refers to a JSON
file containing the data tuples that is part of the initial process configuration. During the
learning process, test data is read from the JSON file and a new input symbol is created
for each tuple. Each element that is annotated with data-lbd-dataset-key must have an
element with the data-lbd-dataset attribute as its ancestor.

4.4.4 Grouped Actions

In the authentication example from Section 4.4.3, there are three input symbols created
from the annotations. One issue that arises from this is that in the context of testing,
the order of execution of the individual steps is often irrelevant. Moreover, the larger the
forms become, and the more input fields there are in total, the larger the mined state-local
input alphabets become. As a result, models will inevitably grow in size, learning time
increases, and certain semantics may be lost or get harder to verify. To prevent a state
explosion, developers can group a set of actions and define an order in which they are
executed. Instead of having multiple input symbols, this ensures that only a single symbol
is added to the state-local alphabet. This also allows to add more semantic context to
models, which simplifies the verification of properties later. The following example extends
the iHTML code of the authentication form from Section 4.4.3 with grouping attributes:

1 <form data-lbd-group-container =" login">
2 <input type=" email"
3 data-lbd-group =" login"
4 data-lbd-order ="1" ... />
5 <input type=" password"
6 data-lbd-group =" login"
7 data-lbd-order ="2" ... />
8 <button data-lbd-group ="login"
9 data-lbd-order ="3" ... >

10 Login
11 </button >
12 </form >

Note that attributes from the previous example have been stripped for clarity. In the
updated code, the data-lbd-group-container attribute has been added to the form
element in line 1, which marks the parent element. Child elements are then assigned
to the group using the data-lbd-group attribute, which is called login in this case.
Additionally, the value of data-lbd-order defines the execution order within the learning
process. Grouping annotations results in the creation of a single input symbol with the
name of the group and the mapper executes associated actions in the specified order. In
combination with the notion of datasets that is appended to the group element, a new
symbol is created for each tuple according the pattern <group> <<tuple>>. Thus, for a
given dataset {(peter,pwd)}, the previous example will result in a model like the following:

s0 s1 . . .
login <peter,pwd> / DOMi

In terms of static validation, the following checks are applied. Elements annotated with
the data-lbd-group-container attribute must have at least one element annotated with
the data-lbd-group attribute in their subtree. Conversely, group elements cannot stand
alone and must have a group-container element as an ancestor. In addition, the values
of the attributes must match to uniquely associate elements with their containers, which
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is necessary because the language allows nesting of group-container elements. Further,
values for the data-lbd-order attribute may not contain duplicate values when multiple
elements are in the same group container. Finally, group names must be unique throughout
the codebase and distinct from any name associated with a data-lbd-name attribute, so
that names of projected input symbols do not conflict.

4.4.5 Quiescent States

Vandraager describes the quiescent states of a system as the states in which the system is
at rest and waits for external inputs [102]. During testing, determining when such a state is
reached in order to continue with the test execution poses a challenge. Browser automation
frameworks typically implement polling mechanisms to check whether certain conditions,
such as the presence or absence of elements in the DOM, are met before executing further
steps. The complexity of such a condition evaluation depends on the application and can
increase the complexity of testing code. To make applications learnable with the proposed
approach, an element node can be annotated with the data-lbd-stable attribute, which
contains a boolean value that is updated client-side when a quiescent state is reached. It
suffices that one element has this attribute, as demonstrated in the following example:

1 <body data-lbd-stable ="true">
2 <!-- ... -- >
3 </body >

Application developers are responsible for implementing logic to update that attribute
correspondingly. The explicit notion of quiescent states

a) facilitates testers work, as condition evaluation is reduced to checking the value of
the attribute, and

b) minimizes flakiness of executed queries, which reduces the chance of non-deterministic
observations. In practice, the system still only waits for a predefined amount of time
for the attribute to change before an action is considered to have failed.

4.4.6 Repeated Elements

Repeating similar elements, such as a list where each element has the same structure
but different data, is a common pattern found in web applications. Frontend frameworks
typically provide a mechanism to repeat elements based on a dataset using a template that
is rendered as often as necessary. Dynamic rendering makes it difficult to add appropriate
annotations that respect the unique naming constraints given by Section 4.4.1. Therefore,
the instrumentation DSL allows developers to annotate these kinds of repeated elements
with the data-lbd-repeated attribute. Considering te following list

1 <ul>
2 <!-- li elements are generated at runtime -- >
3 <li> Apples
4 <button data-lbd-action ="Click"
5 data-lbd-name =" delete-button"
6 data-lbd-repeated > Delete </button >
7 </li>
8 <li> Pears
9 <button data-lbd-action ="Click"

10 data-lbd-name =" delete-button"
11 data-lbd-repeated > Delete </button >
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12 </li>
13 </ul>

where list entries are generated at runtime based on the set {"Apples","Pears"}. Because
these elements are repeatedly rendered, they have the same data-lbd-name attribute,
which violates the uniqueness constraint of the annotation. In these cases, adding the
data-lbd-repeated attribute to each element that is repeated results in the creation of a
symbol for each element with respect to the index of the element in the list. The pattern
for the input symbol given by p therefore is <action> <name>-<index>.

4.4.7 Conditional Execution

In this work, partial Mealy machines are the target automaton type for representing the
behavior of web applications. However, some properties are not regular and cannot be
mapped adequately to this automaton type. A basic example of this is list management,
where create, read, update, and delete operations can be performed on list entries. Since
lists can become potentially infinitely long, learning such a behavior results in learning
processes to never terminate, because there can always be found a new state where the list
is expanded by one item. Consequently, learning processes need to be constrained to learn
a regular approximation of the system behavior that is sufficient enough to verify desired
system properties. By adding the data-lbd-condition attribute to an element that has
an action associated with it, the action will only be executed if the condition, provided
as a JavaScript expression, evaluates to true. Note that the condition can only operate
on the visible DOM and cannot access information collected in past states, unless it was
recorded by the application itself. In the following example

1 <button data-lbd-condition =" canExecute ()"
2 data-lbd-action ="Click"
3 data-lbd-name =" the-button">
4 Click me
5 </button >

the button is only clicked if the function canExecute() returns true. Considering the list
handling example, the function could check if the size of the list is below a predefined value.
In case the condition evaluates to false, the execution is skipped and the system output is
interpreted as constraint violation in the automaton model. This way, the observed system
behavior is guaranteed to stay within the bounds of a Mealy machine. For the example
from Section 4.4.6 a check could verify that the size of the list is less than two, resulting in
the following automata:

s0 s1

create <Apples> / DOMi

click "delete-button-1" / DOMj

create <Apples> / constraint violation

As it can be seen, the execution of the symbol create <Apples> is prevented in s1. However,
once the existing item is deleted, see transition (s0, s1), the execution of the condition
function returns true again.
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Figure 4.4: The user interface of Malwa.

4.4.8 Non-Interactive Elements

The system output function as described in Section 4.3.3 projects the DOM to a list of
elements annotated with data-lbd-* attributes, most of which can be interacted with by
the learner. However, this can lead to states in the model not being split in a desired
way, e.g., when non-interactive but visible parts of the page, such as dynamic text fields
or even hidden parts of the DOM, are characteristic for the identification of a state. For
this purpose, the instrumentation DSL allows annotating elements with the value-less
data-lbd-keep attribute, so that corresponding elements and their contents are respected
in the output function, but are not included in state-local alphabets. Thus, in the example

1 <span data-lbd-keep >
2 Keep me, please.
3 </span >

the <span> element would be a part of the projected DOM and contribute to state
identification. It allows developers to trigger state splitting with elements that are present
in the DOM, but hidden to users.

4.5 Malwa

This work introduces the prototypical tool Malwa (Mostly Automated Learning of Web
Applications) for learning instrumented web applications. Malwa itself is a web application
with a minimal user interface illustrated in Figure 4.4 that uses LearnLib [58, 69] internally.
In terms of configurations, the tool is designed to offer simplicity by default and complexity
by choice, which is reflected in the following points:

• Instrumented, purely client-side applications can be learned out-of-the-box, requiring
only the specification of the target URL and optionally predefined test data for
forms and input fields. The system reset is performed automatically by clearing all
client-side memory and reloading the specified URL.

• For applications that manage state in a database and where client state depends
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on it, the tool allows to specify an additional reset URL that is called to perform
the system reset. In this case, developers must provide such a URL as part of their
public Application Programming Interface (API) where the system reset logic is
implemented in code.

• The employed equivalence testing strategy is designed to adapt to the size of learned
models. However, due to the black-box nature of web application testing, there may
be scenarios where the generated test queries are not explorative enough to find
counterexamples. For these cases, the default parameters of the equivalence testing
strategy can be configured to explore hypotheses more deeply by generating more
and longer test queries.

Once the Learn button is clicked, the target application is learned and after some time
the user is presented with an inferred model similar to the one shown in Figure 4.7. For
each unique projected DOM found during the learning process, a screenshot is created,
which allows to associate states of a model with a set of screenshots for a more visual,
interactive model analysis.

For learning automata with state-local alphabets, Malwa does not implement its own
algorithm, but uses a prefix-closure filter [24] provided by LearnLib, which allows the use
of “classic” learning algorithms targeting Mealy machines for this purpose. If at any point
during a membership query a transition is not possible with respect to the state-local
alphabet, the filter returns ⊥ as the system output to indicate an invalid transition, and the
rest of the query is not processed further. As a result, learned Mealy machines are complete
by their original definition, and they contain a sink state in the learned model, where for
every state and every input symbol that is not in the state-local alphabet, there exists a
transition with ⊥ as output label that leads to that sink state. In the following, transitions
leading to the sink state are called to as ⊥-transitions. For visualization purposes, however,
only the partial Mealy machine is shown, i.e. the automaton without the sink state and
without ⊥-transitions.

4.6 Case Study: Learning TodoMVC

In the tradition of the attached publications [12] and [98], the learnability-by-design
approach is demonstrated on an implementation of the TodoMVC collection [5]. As outlined
in Section 1.2, the collection consists of a set of visually and behaviorally equivalent client-
side single-page applications for task management, where each application is implemented
using a different frontend framework. The user interface of each TodoMVC implementation
is presented in Figure 4.5. Users can create tasks, mark them as completed, and remove
them from the list. Additionally, the list can be filtered by the tasks’ completion status, all
completed tasks can be removed at once, and the completion status of all visible tasks can
be toggled simultaneously.

4.6.1 Instrumentation

For demonstration purposes, the code of the React [70] implementation is extended using
iHTML and learned with Malwa. An excerpt of the iHTML code is illustrated in Figure 4.6,
where added data-lbd-* attributes are highlighted in colored boxes that correspond to
user interface elements seen in Figure 4.5. Blue boxes demonstrate an example of grouped
actions (see Section 4.4.4). They instruct the learner to group the actions required to create
a new task by typing the string “Apples” into the input field and then submitting the form.
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Figure 4.5: The user interface of the TodoMVC React implementation – Highlighted areas
correspond to the iHTML code shown in Figure 4.6.

Figure 4.6: Excerpt of the instrumented TodoMVC code: The task creation form (left),
the switch to toggle the completion state of all tasks (top right) and the button
to remove all completed tasks (bottom right).

The green box highlights the attribute for conditional form submission (see Section 4.4.7):
Only if the function lbd.canCreateTodo() returns true, the actions of the group are
executed. Finally, the red boxes show examples of click actions on the button to toggle
the completion state of all tasks (top right) and the button to delete all completed tasks
(bottom right). In order to learn the TodoMVC implementation, the following additional
application-specific configurations have to be considered:

System Reset Because the system is a purely client-based application, internal state is
only persisted in the browser using the localstorage API. Therefore, before each
membership query, client-side storage is cleared and the browser is refreshed, which
is the default behavior in Malwa.
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Constraints TodoMVC implementations handle tasks in a mutable, potentially infinitely
long list to which tasks can be added and removed. Since this is an non-regular
behavior, a constraint enforces that only a fixed number n of tasks can be present at
a time. The constraint has been implemented as the function lbd.canCreateTodo
as part of the application’s JavaScript code that checks the number of tasks stored
in the localstorage. Consequently, no new tasks will be created if n tasks already
exist in the list independently from their visibility.

Quiescence Following an interaction via the browser, a quiescent state of the system
is considered reached as soon as the DOM has been manipulated and the browser
finished rendering changes. In this example, the data-lbd-stable attribute on the
<body> element is set to false when a user interaction is detected. Once no changes
to the DOM have been observed for 100 milliseconds, the attribute is reset to true,
indicating that the learner can take further steps. The time interval was chosen based
on the experimental evaluation that user inputs have been processed, business logic
has been executed, and the DOM has been updated within that timespan on the test
machine.

Non-Determinism The learning process is configured to ignore the data-reactid attribute
of all elements during the DOM projection. React, the library used to build the
implementation of TodoMVC examined in this study, attaches this attribute to
elements in the DOM to uniquely address them. They look similar to the following
example of a list entry:

<li data-reactid=".0.1.2.$191000a8-47b3-47a9-a65f-8f8155927bd5">

Since its value is randomly generated by the library, keeping it would lead to non-
deterministic observations during the learning process, so it is ignored.

4.6.2 Configuration

The experiments have been executed on a test machine which has 32 GB of RAM and
a CPU with eight cores and 16 threads, each clocked between 1.9 GHz and 4.4 GHz. In
addition, the TTT algorithm [48] has been selected due to the overall lower number of
membership queries posed compared to related algorithms such as L∗ [8] or DHC [68]. All
in all, the experiment consists of a series of setups. TodoMVC has been learned with the
constraints that a maximum of one task (n = 1) and a maximum of two tasks (n = 2) can
exist at the same time. For both scenarios, different equivalence oracles have been evaluated.
This also includes the State-Local Random Walk (SLRW) equivalence testing strategy
presented in Section 4.3.4, with and without access sequence ordering. The strategy has
been configured to perform six random walks of length six for each access sequence in
both configurations. In comparison, the W-Method and the Wp-Method have also been
evaluated. The experiments have been executed against the real system for two reference
runs of the learner to obtain models of TodoMVC for n = 1 and n = 2 and the SLRW oracle
with the ordering heuristic (SLRW ord.) enabled. Further experiments have been executed
against the already learned models loaded into memory of the test machine instead of the
real system to obtain their metrics.

4.6.3 Results

Table 4.1 displays the results of the experimental evaluation, where the reference runs
are highlighted in gray. One can see that for n = 1, a model with 13 states has been
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/

#/

#/active #/completed

create / /; #/; e0ffcb65e34b8e3135170652468cbdb8 delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc 
click toggle-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / constraint error 
click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60

click toggle-1 / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/; e25e90abd6c480173d38737b908001cb

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

create / constraint error 
click show-all / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc 
delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-2 / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-1 / /; #/; e25e90abd6c480173d38737b908001cb

click show-completed / /; #/completed; f83388634a13995e0030e50f88bdb20e

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click toggle-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc

create / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-1 / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60 
click toggle-2 / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

create / constraint error 
click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click clear-completed / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

create / constraint error 
click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click clear-completed / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-1 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

create / constraint error 
click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

delete-1 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802 
delete-2 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3ddelete-1 / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click clear-completed / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

create / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9click toggle-all / /; #/; 56015fac8db009f34d518be43974a5ba 
click toggle-1 / /; #/; 56015fac8db009f34d518be43974a5ba

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

create / constraint error 
click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf 
click toggle-2 / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-1 / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click toggle-2 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

create / constraint error 
click show-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

click toggle-1 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-1 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

create / constraint error 
click show-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-active / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-2 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-1 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

create / constraint error 
click show-active / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-2 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

create / constraint error 
click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

create / constraint error 
click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

delete-1 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9 
delete-2 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click toggle-2 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-1 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

create / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click toggle-all / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click toggle-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

create / constraint error 
click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

create / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / constraint error 
click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

create / constraint error 
click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53 
click toggle-1 / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-2 / /; #/; 9a60a744758b4934adfa9fe0c21fd212

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click toggle-1 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

create / constraint error 
click show-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

click toggle-2 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-completed / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

create / constraint error 
click show-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-1 / /; #/; 78643e600bb178ca5f3d8d68157ad45aclick show-active / /; #/active; 9edac0322a600f18b36301619244d559

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; 915b38b0f08797880e60bc014521dcf7 
click toggle-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

create / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

create / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; aeee4c3cb601fb684b871f3cf20973af

delete-1 / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53 
click toggle-2 / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-1 / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

create / constraint error 
click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1click clear-completed / /; #/active; aeee4c3cb601fb684b871f3cf20973af

create / constraint error 
click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6 
click toggle-2 / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-1 / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7 
delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click toggle-2 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

create / constraint error 
click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click toggle-1 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-1 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

create / constraint error 
click show-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click show-active / /; #/active; 1f76c400906fd415432fb576237faf3d

click toggle-2 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/active; aeee4c3cb601fb684b871f3cf20973af 
delete-2 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-1 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

create / constraint error 
click show-active / /; #/active; 1f76c400906fd415432fb576237faf3d

click toggle-2 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click clear-completed / /; #/active; aeee4c3cb601fb684b871f3cf20973af

create / constraint error 
click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6 
click toggle-1 / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-2 / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / constraint error 
click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-1 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-2 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

delete-2 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click show-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click toggle-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click show-completed / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-2 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click show-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-1 / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-active / /; #/active; 9edac0322a600f18b36301619244d559

click toggle-2 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click clear-completed / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

create / constraint error 
click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf 
click toggle-1 / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-2 / /; #/; 7a21906fcdef73a0fe2372f484af3320

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

create / constraint error 
click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click toggle-2 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1 click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-1 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-2 / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60 
click toggle-1 / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-all / /; #/; 2cc52757125a1d74cf949785811a4b60

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-2 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

delete-1 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9 
delete-2 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-1 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; f83388634a13995e0030e50f88bdb20e
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Figure 4.7: Learned model of the TodoMVC React implementation, where a maximum of
two simultaneously tasks are allowed. An enlarged version of the part inside
the red rectangle is shown in Figure 4.8.

learned and for n = 2, the processes resulted in a 48-state model. Figure 4.7 displays the
48-state model, which shows the partial Mealy machine, i.e., the automaton without the
sink state and without ⊥-transitions, representing the behavior of the TodoMVC React
implementation where two tasks can be created. In Figure 4.8, a slice of the model is
displayed, showing parts of the application behavior given that one of two tasks has already
been created, see the state in the upper left corner.

To make the semantics of the model easier to comprehend and to simplify visual
analysis, screenshots of the application associated with the corresponding DOMs taken
during the learning process are displayed for each state. Because in Malwa, the system
output function can be configured to also return the URL associated with a DOM, states
in the model can be clustered by the path fragment of the URL. As a result, the model
contains three clusters for the three list filter views and shows view-internal states as well
as interactions between them: The red cluster represents the URL under which all tasks
are displayed, the yellow cluster shows only active tasks, and the blue cluster shows only
completed tasks. By unifying all discovered state-local alphabets, one can conclude that
a total of eight input symbols in the case of n = 1 and ten input symbols in the case of
n = 2 have been mined by interacting with the instrumented application. For learning
TodoMVC with one task, this constitutes the input alphabet of the Mealy machine:

Σ = {create, delete-1, click toggle-1, click show-all, click show-active,
click show-completed, click toggle-all, click clear-completed}
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/

#/

#/active #/completed

create / /; #/; e0ffcb65e34b8e3135170652468cbdb8 delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc 
click toggle-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / constraint error 
click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60

click toggle-1 / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/; e25e90abd6c480173d38737b908001cb

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

create / constraint error 
click show-all / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc 
delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-2 / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-1 / /; #/; e25e90abd6c480173d38737b908001cb

click show-completed / /; #/completed; f83388634a13995e0030e50f88bdb20e

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click toggle-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc

create / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-1 / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60 
click toggle-2 / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

create / constraint error 
click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click clear-completed / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

create / constraint error 
click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click clear-completed / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-1 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

create / constraint error 
click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

delete-1 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802 
delete-2 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

create / /; #/active; 506509f9ce71b0bc238f9df36d184e26

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3ddelete-1 / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click clear-completed / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

create / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9click toggle-all / /; #/; 56015fac8db009f34d518be43974a5ba 
click toggle-1 / /; #/; 56015fac8db009f34d518be43974a5ba

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

create / constraint error 
click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf 
click toggle-2 / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-1 / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click toggle-2 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

create / constraint error 
click show-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

click toggle-1 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

delete-1 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-1 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

create / constraint error 
click show-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-active / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-2 / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-1 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-all / /; #/; 7a21906fcdef73a0fe2372f484af3320

create / constraint error 
click show-active / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-2 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click show-active / /; #/active; 506509f9ce71b0bc238f9df36d184e26

create / constraint error 
click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

create / constraint error 
click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

delete-1 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9 
delete-2 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click toggle-2 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-1 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

create / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click toggle-all / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click toggle-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

create / constraint error 
click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-active / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

create / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-all / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / constraint error 
click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

create / constraint error 
click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53 
click toggle-1 / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-2 / /; #/; 9a60a744758b4934adfa9fe0c21fd212

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click toggle-1 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

create / constraint error 
click show-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

click toggle-2 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-completed / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click toggle-2 / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

create / constraint error 
click show-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-1 / /; #/; 78643e600bb178ca5f3d8d68157ad45aclick show-active / /; #/active; 9edac0322a600f18b36301619244d559

delete-1 / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-all / /; #/; 915b38b0f08797880e60bc014521dcf7 
click toggle-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

create / /; #/; 7a21906fcdef73a0fe2372f484af3320

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

create / /; #/active; f3dc830e32fe0eced4f5eea09ed6e4a5

click show-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-all / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; aeee4c3cb601fb684b871f3cf20973af

delete-1 / /; #/active; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-2 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53 
click toggle-2 / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-1 / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

create / constraint error 
click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1click clear-completed / /; #/active; aeee4c3cb601fb684b871f3cf20973af

create / constraint error 
click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6 
click toggle-2 / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-1 / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click clear-completed / /; #/; 7ff9089721bfb6ef9f7615fe85d147a2

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7 
delete-2 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; b8c3154658e1b7b5f863899ea39e1c0e

click toggle-2 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

create / constraint error 
click show-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click toggle-1 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/; 56015fac8db009f34d518be43974a5ba 
delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-1 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

create / constraint error 
click show-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click show-active / /; #/active; 1f76c400906fd415432fb576237faf3d

click toggle-2 / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/active; aeee4c3cb601fb684b871f3cf20973af 
delete-2 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-1 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 2df4d516cb9cc0858d76d77a9518954d

create / constraint error 
click show-active / /; #/active; 1f76c400906fd415432fb576237faf3d

click toggle-2 / /; #/active; 230ec29664b190ae83d58ae2cca96362

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click clear-completed / /; #/active; aeee4c3cb601fb684b871f3cf20973af

create / constraint error 
click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

delete-1 / /; #/; 915b38b0f08797880e60bc014521dcf7

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click toggle-all / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6 
click toggle-1 / /; #/; 8407fe64e03d3ba05240a40ff33a3ce6

click toggle-2 / /; #/; 2df4d516cb9cc0858d76d77a9518954d

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 5ead9dd4964b5510dea694c2aafab4a6

click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

create / constraint error 
click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-1 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 536d22fa4e52f938ac37f4c092c23f53

click toggle-2 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; 1e9e46935aded27bd3cb84b252b52fcf

delete-2 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click show-all / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click toggle-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

delete-1 / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2 
click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

create / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click show-completed / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

delete-2 / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

click show-completed / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click show-all / /; #/; 9a60a744758b4934adfa9fe0c21fd212

delete-1 / /; #/active; aeee4c3cb601fb684b871f3cf20973af

click toggle-1 / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-active / /; #/active; 9edac0322a600f18b36301619244d559

click toggle-2 / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click toggle-all / /; #/active; e2a080b697f6e8a939b26e98b24e49ed 
click toggle-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click clear-completed / /; #/active; 36a3f5c06eb4724fcc49c9b8d2924802

delete-1 / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-completed / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1

click show-all / /; #/; 78643e600bb178ca5f3d8d68157ad45a

create / constraint error 
click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click toggle-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf 
click toggle-1 / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-2 / /; #/; 7a21906fcdef73a0fe2372f484af3320

delete-2 / /; #/; 56015fac8db009f34d518be43974a5ba 
click clear-completed / /; #/; 56015fac8db009f34d518be43974a5ba

click show-active / /; #/active; 230ec29664b190ae83d58ae2cca96362

create / constraint error 
click show-all / /; #/; 2dd3ca5d705d3af39a983195b71baa64

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-1 / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-1 / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d 
click clear-completed / /; #/completed; 9236af70ce3fbd590f815d1ca29e5a3d

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

create / constraint error 
click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

click toggle-all / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click show-all / /; #/; c5df306137d2fa4e072b93b2a16fcedf

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

delete-2 / /; #/completed; 55b06cf434a160a41f1bed8f704b78a9

click toggle-2 / /; #/completed; dad1cb2f8cb3454c8fa301a40c9d24d1 click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

delete-1 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-1 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; 000f5dcc2249fcbd48baa5d64a535de9

delete-2 / /; #/; e0ffcb65e34b8e3135170652468cbdb8 
click clear-completed / /; #/; e0ffcb65e34b8e3135170652468cbdb8

click toggle-2 / /; #/; 3f7f590e9a167a1fa1b2e2adc86ab970

click toggle-all / /; #/; 2cc52757125a1d74cf949785811a4b60 
click toggle-1 / /; #/; 2cc52757125a1d74cf949785811a4b60

delete-1 / /; #/; 8e4312096c064ae0afef47f4f702ecfc

click show-active / /; #/active; 5da11e1fbe461e489b411a61d709c05b

click show-completed / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-all / /; #/; e25e90abd6c480173d38737b908001cb

click show-all / /; #/; 2cc52757125a1d74cf949785811a4b60

click show-active / /; #/active; e2a080b697f6e8a939b26e98b24e49ed

click toggle-all / /; #/completed; 04b7f8bb0d20cc5c37ebfcbb70fa479a

click clear-completed / /; #/completed; 7ff9089721bfb6ef9f7615fe85d147a2

click toggle-2 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

delete-1 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9 
delete-2 / /; #/completed; d84f5d720cdeb5220e334729cc1a8dc9

click toggle-1 / /; #/completed; 769f8db008bc2d11a6d30ab98ed517cb

create / constraint error 
click show-completed / /; #/completed; f83388634a13995e0030e50f88bdb20e

Start

Malwa

 Learner Results

 Stop

Figure 4.8: Excerpt of the learned model from Figure 4.7. The state on the upper left
represents the state where one task has been created.

For n = 2, the alphabet is extended by {delete-2, click-toggle-2}. These cover all possible
interactions with the application, where delete-1, delete-2, click toggle-1 and click toggle-2
refer to actions on the first two items in the task list. The output alphabet of the 13-state
Mealy machine amounts to a total of 14 output symbols, 13 of which refer to the states to
which only one DOM is associated, and the last one is the default output symbol constraint
violation. Similarly, the 48-state model contains 49 output symbols where 48 refer to the
states and one is the default output.

For reference, running the same learning setups with an output function that only
includes the projected DOM instead of the combination of URL and DOM eventually also
results in the same 13, respectively 48-state automaton. There are two reasons for this.
First, the DOM alone already contains enough information to separate states because of
the filter buttons at the bottom of the task list, see Figure 4.5. When a filter is active,
the value of the class attribute of the corresponding button is set to selected, which is
reflected in the projected DOM. At the same time, the URL is also appended with a suffix
that uniquely characterizes the active filter view. Second, TodoMVC has only three static
URLs, one for each filter view.

In addition, LearnLib’s cache implementation answers a large number of queries in both
configurations. About 43% – 45% of all queries could be answered for n = 1 and SLRW,
and more than half of all queries, i.e., 54% – 61% for the W-Method and the Wp-Method.
In comparison to this, the number of answered queries is reduced to 21% – 30% for n = 2
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4.6. Case Study: Learning TodoMVC

n EQ Oracle
Membership Queries

Ref. |Σ| |Ω| States
Total Learner EQ Oracle Cache SUL

1 SLRW (ord.) 556 465 91 239 317 3 8 14 13

1 SLRW 584 490 94 263 321 3 8 14 13

1 W-Method 3257 582 2675 1986 1271 3 8 14 13

1 Wp-Method 2730 590 2140 1476 1254 3 8 14 13

2 SLRW (ord.) 2782 1971 811 829 1953 17 10 49 48

2 SLRW 3664 1873 1791 769 2895 17 10 49 48

2 W-Method 69624 2214 67410 55094 14530 21 10 49 48

2 Wp-Method 38664 2218 36446 30476 8188 21 10 49 48

Table 4.1: Statistics for learning the instrumented TodoMVC implementation.

and SLRW, and increases to 79% for both, the W-Method and the Wp-Method. These
high numbers for the conformance testing methods are expected as a lot of queries are
generated where there are likely a lot of redundant queries due to ⊥-transitions.

Regarding the SLRW equivalence testing strategy, it can be concluded that it needs
significantly fewer queries to find counterexamples compared to the W-Method and the
Wp-Method. In this example, the SLRW (ordered) variant poses 96.6% fewer queries
compared to the W-Method and 95.7% fewer queries compared the Wp-Method for n = 1.
For n = 2, similar values are achieved, with 98.8% and 97.8% fewer queries compared
to the W-Method and the Wp-Method, respectively. This is because, in contrast to the
conformance testing methods, SLRW leverages state-locality and follows a more targeted
approach to finding counterexamples, which seems to work quite well for web applications.
For partial Mealy machines, W-Method and Wp-Method generate many test queries that
also follow ⊥-transitions, and thus are not as suitable for finding counterexamples quickly.
Another point to mention is that the access sequence ordering heuristic reduces the amount
of queries by 3.2% and 54,7% for n = 1 and n = 2, respectively. This supports the
assumption that states that can be associated with multiple DOMs are more likely to split.
Although the effects are not quite as visible for smaller models, the numbers indicate that
the larger models get, the more impact the access sequence ordering heuristic has on the
reduction of posed queries.

As a side note, learning the TodoMVC React implementation took about 26 minutes for
n = 1 and 197 minutes for n = 2 on the test machine using the SLRW (ord.) equivalence
testing strategy, which have been executed against the running system. As shown in
Table 4.1, these are also the configurations where the least amount of membership queries
have been posed to the system in both categories. In practice, the time it would take to
complete the learning processes for the other configurations listed in the table is expected
to correlate with the number of queries posed to the system. Especially when using the
W-Method in the case of n = 2, the number of queries increases by an order of magnitude
of 7.4, making this standard conformance testing strategy infeasible for use cases where
fast feedback is desired.
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Chapter 5

Learning-Based Quality Assurance in LDE

Manual instrumentation of application code can introduce a non-negligible overhead to
traditional, code-centric software development. Not only can instrumentation make it
more difficult to maintain large code bases, but it also shifts responsibilities from Quality
Assurance (QA) engineers to frontend developers, or vice versa, by mixing test code with
application code. Language-Driven Engineering (LDE) aims to align and simplify software
development by allowing different stakeholders to work on separate concerns based on
(graphical) Domain-Specific Languages (DSLs) using low-code and no-code tools tailored to
a specific domain. However, this requires a rethinking of what QA measures are necessary,
how they are integrated into the development workflow, and to what extent DSLs and code
generators can be used to simplify the work of QA engineers.

Learning-based QA aims to answer the following two questions in LDE: Language
engineers need to answer the question “Does the Integrated Modeling Environment (IME)
generate products correctly?”, and application modelers want to answer the question “Does
the generated product satisfy the given functional requirements?”. While the main concern of
language engineers is to provide IMEs that reliably generate products for each imaginable
model within the bounds of the language and its static semantics, application modelers
focus on shipping products that adhere to given functional requirements. For both of
these concerns, learnability-by-design aims to reduce the QA effort by designing languages
and code generators in a way that all generated web applications on the product-level
are instrumented with iHTML by default, making them automatically learnable. Because
QA engineers are relieved of the manual definition of the input alphabet and the mapper
implementation, all that remains to be done manually is the formulation of system properties
using temporal logic to verify generated products.

Beside the instrumentation, quality control also benefits from the shift of LDE to the
holistic cloud-based environment CINCO Cloud [10, 111], where meta IME as well as IMEs
generated from language specifications are running in the web. By further focusing solely
on web-based products, a seamless transition is achieved between all meta levels, from
the initial specification of graphical DSLs to the deployment of generated products. This
chapter deals with the verification of functional properties of instrumented web applications
generated from graphical models using learning-based testing. Future work then discusses
how iHTML can also be used to instrument web-based IMEs within CINCO Cloud to
automatically verify, using learning-based testing, that language constraints are properly
implemented in the modeling environment, see Section 6.4.

5.1 Controlling the Evolution

LDE is characterized by the meta-level hierarchy as described by Boßelmann in [18] which
spans a tree of tools and products. At its root, a meta-modeling environment is used to
generate domain-specific IMEs and each IME branches to different products. Figure 5.1
shows LDE for one particular path within the meta-level hierarchy, where so-called path-up
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Meta-Modeling Level Modeling Level Code Level

IME Source Code

Generate

Improve

CINCO Cloud

Generator

Generator
CI/CD
Model

Product Code
(instrumented)

CI/CD Configuration

meta IME

Generator

Language Spec.

Server

Product Level

Product
(instrumented)

GitLab

Improve

 Build & Deploy 

Product
Models

 Generate &  Commit

ImproveImprove

Figure 5.1: Learnability-by-Design in cloud-based LDE.

and tree-down effects [18] can be observed. Issues at one level, such as reported bugs, feature
requests, or change requests, move up the tree in a path-up fashion to the point where the
issue can be resolved. Changes propagate down the hierarchy, requiring a full re-generation
of IMEs and all corresponding products. For this work, the “classic” meta-level hierarchy is
extended to include a code level that is placed between the modeling level and the product
level to accurately highlight the benefits of CINCO Cloud and to illustrate the effects of
instrumentation. Tree-down effects can cause the following issues:

Meta IME → IME The meta IME allows to generate IMEs from textual language specifica-
tions and the main task is to verify if the IME corresponds to the textual specification.
Generators are written manually and are therefore prone to human errors. Developers
of the meta-modeling environment, i.e., the developers of CINCO Cloud, need to
ensure that language constructs are correctly translated and represented in the mod-
eling environment. Errors during this translation process allow IME users to create
models that are outside of the bounds of the language specification. In this case, this
can lead to issues during product generation because generators are designed to work
within these bounds.

IME → Product Similar to the previous case, language engineers manually implement
code generators along with the language specification at the meta-modeling level.
The generator will be embedded into the target IME and it will generate the source
code of the products. Again, the point of failure is the code generator, which has to
translate graphical models into compileable and executable source code. Language
engineers need to ensure that the generator accommodates all possible use cases.
Otherwise, this could lead to application modelers to model syntactically correct
models, which however translate to products that behave differently or in expected
ways at runtime.

Product At the product level, QA engineers need to ensure that what application modelers
modeled corresponds to given function requirements. Otherwise, end users may
receive products with behavioral flaws. While model checking at the modeling level
can verify system properties to some extent, it can be difficult to extract runtime
properties from graphical models alone.

In this tree-down process, regression testing is an essential strategy to ensure that
products still show the desired behavior after the migration. Therefore, as a part of the
QA strategy in LDE,
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a) code generators can be tested implicitly using black-box testing by testing generated
products, which allows to verify that they have been adapted correctly to changes at
the meta-modeling level, and

b) existing products need to be re-generated, re-deployed and re-learned to verify that
they still adhere to given product-specific functional requirements.

In this work, the focus is latter two items of the above list by integrating learnability-by-
design practices into code generators to generate instrumented web applications that can
be tested automatically.

5.2 The Role of Instrumentation

The key idea of learnability-by-design in LDE is the generation of already instrumented
applications, which requires the extension of DSLs and code generators to properly translate
graphical models into instrumented code. By moving the responsibility for instrumenting
application code from the code level to the meta-modeling level, especially as part of the
code generator, instrumentation becomes a native part of the development workflow, ideally
to the point where domain experts do not need to deal with it at all. Figure 5.1 illustrates
where the instrumentation measures are applied and how they affect and propagate through
the meta-levels:

1. Instrumentation measures can already start with the design of the language specifica-
tion, which may incorporate model elements or element properties that are required
for properly instrumented code, but may not have a direct impact on the behavior of
the generated product.

2. Code generators at the meta-modeling level need to be designed to translate models
and possibly instrumentation-specific information into valid iHTML, which requires
close collaboration between language and QA engineers.

3. From the language specification, a web-based IME containing the code generator can
be automatically generated and provided in CINCO Cloud. Along with the product-
specific models, a model representing the Continuous Integration and Continuous
Deployment (CI/CD) configuration can be specified.

4. The code generation can be triggered from within CINCO Cloud, which allows to
automatically commit generated instrumented source files to a remote repository,
which is, in this case, provided by GitLab.

5. With the generation, a GitLab compatible CI/CD configuration file is also generated
and commited, which triggers the execution of a pipeline in which the source code is
built and deployed to a remote server automatically. As a result, an instrumented
application instance of the modeled product is available via the web.

6. The application instance is learned and feedback, i.e., provided by a model checker
or as a result from visual model analysis can lead to refinements of product-related
models, the generator on the meta-modeling level, or the language specification.

This semi-automated workflow provides an aligned approach that a) shortens feedback
loops by leveraging CINCO Cloud and its built-in automation mechanisms, and b) allows
both language engineers and domain experts to use the same quality control measures
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Figure 5.2: A Point-and-Click adventure using the WebStory language in CINCO Cloud.
Images have been generated using Stable Diffusion [83].

by making use of instrumentation. Because instrumentation is deeply integrated into the
language and the code generators, product verification can be reduced to the formulation
of desired properties in temporal logic.

In particular, this allows language engineers to provide reliable IMEs to domain experts
via traditional end-to-end testing, since instrumentation greatly simplifies the quality
control of code generators. For that, language engineers model a range of atomic test
applications which each encapsulate specific scenarios of the underlying language. Each
of these applications can be generated and learned through the user interface to ensure
that modeled and runtime behavior match. In case errors are detected in a generated web
application, it is possible to trace what part of the code generator caused the issue while
models of test applications stay small and manageable. Consequently, with enough test
applications, the confidence in the correctness of the code generator increases.

5.3 Demonstration: WebStory

In Section 4.6, the code instrumentation approach has already been demonstrated on a
single web application where Hypertext Markup Language (HTML) was instrumented by
hand for that specific application. The manual approach requires expertise in iHTML and
customization for other applications, which involves repeated manual effort. LDE can
be used by incorporating aspects of iHTML into DSLs as language extensions and by
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integrating them into code generators. This reduces the complexity for domain experts who
graphically model web applications, and makes generated products automatically learnable:
If instrumentation works for one product, it works for all.

The benefits of learnability-by-design in web-based LDE are demonstrated on WebStory,
a graphical, CINCO-based DSL used for modeling interactive Point-and-Click adventures
(in the following called stories), which has been used for demonstration purposes in previous
publications [10, 21, 56] and which has been migrated to CINCO Cloud in [10]. In particular,
the approach to instrumenting, learning, and verifying stories used in the following has
already been demonstrated in one of the attached publications [21] in the context of code
generation on the basis of natural language descriptions using large language models.

An exemplary story is displayed in Figure 5.2 that resembles a treasure hunt, similar
to the one modeled in [56]. In this story, players start in front of a cabin in the woods and
their goal is to find a golden key which is hidden in the forest. With that key, players can
open a chest full of golden coins located within the cabin.

To model such adventures, WebStory comprises the following language elements: Each
story is composed of screens that are associated with an image. On each screen, modelers
can drag-and-drop click areas (pink overlays) that define clickable rectangular or circular
areas within the image to indicate transitions to other screens. In addition, variables (blue
circles) represent boolean values that can be set to true and false using modify variable
nodes (gray buttons) at runtime. Conditions (yellow diamonds) allow to access screens
conditionally based on the value of a variable and finally, a start node (green triangle)
defines the initial screen. Control flow is modeled with pink edges that point from click
areas to other screens, conditions or modify variable nodes. Given a graphical model, the
generator generates static HTML, Cascading Style Sheets (CSS) and JavaScript files that
can be opened in a web browser.

The following sections illustrate how the WebStory language and its code generator
are designed so that generated stories are instrumented using iHTML to make them
automatically learnable. Note that, because each DSL and code generator is designed
differently, designing them to produce instrumented applications requires careful engineering
which is difficult, if not impossible, to generalize.

5.3.1 Meta-Level Extensions

Generated stories only require a few language features because players can only click on
specific areas of the visible images. Thus, the inferred state-local alphabets will only consist
of inputs representing clicks on click areas. In order to make models easier to understand
and to ease the formulation of runtime properties, the transition labels of inferred automata
should express on what part of the image the player clicked. In the following, the different
extensions are explained.

Language extensions The language specification for WebStory is extended to allow
modelers to assign a name to each click area in the corresponding IME, representing
on which part of the image the user clicks. The name property has no direct impact
on the functionality of the generated stories, but it adds semantic information to the
graphical models required for instrumentation. More specifically, the name is needed
for the data-lbd-name attribute associated with click areas, which ensures that input
symbols of the state-local alphabets also represent their semantics. An additional, manually
implemented constraint enforces that click area names are unique per screen. Without
this constraint, there could be multiple instrumented elements in the Document Object
Model (DOM) with the same data-lbd-name attribute used to create the state-local
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alphabet. In this case, only one input symbol would be created instead of one input symbol
for each click area, which could result in states not being detected because the learner
would only be interacting with one of the click areas.

Generator extensions The extensions of the generator focus on the mapping of click area
nodes to their counterparts in the running application. Implementation-wise, click areas
are generated to SVG elements placed over the currently displayed image. Considering the
instrumentation, rectangular click areas are generated to

1 <rect onclick ="next (...)"
2 data-lbd-action ="Click"
3 data-lbd-name ="<NAME >">
4 </rect >

indicating that these elements can be clicked on by the learner and where <NAME> refers to
the name property of the corresponding click area node. The code for circular click areas
is similar, using the <ellipse> element instead of <rect>.

Static code extensions The static parts of the generator have been extended by eleven
lines code which handle the detection of quiescence in JavaScript. Each story is ready to
accept new inputs if the image for the current screen has been loaded and is displayed.
In this case, the data-lbd-stable attribute on the body element is set to true. When a
player clicks on a click area, its value is set to false until the next screen is displayed.

During the learning process, the DOM is constantly projected onto a list of annotated
elements to obtain the system output. The set of visible click areas alone, however, is
not sufficient to accurately represent the system state. If multiple screens have the same
number of click areas and the names associated with the click areas are also identical, the
learner will not be able to differentiate between those screens. As a result, the learned
model is likely to misrepresent the actual system behavior from a user-level perspective.
Consequently, to better represent the system state using iHTML annotations, the currently
displayed image is included in the projection using the data-lbd-keep attribute:

1 <div id=" imageContainer"
2 style=" background-image:url (...)"
3 data-lbd-keep >
4 </div >

It tells the interpreter to include the element in the DOM projection, even though users
cannot interact with it directly. Since the Uniform Resource Locator (URL) of the currently
displayed image is dynamically updated by the WebStory framework, the value of the
style property will also change after each transition in the game. This way, different
screens, even if they have identical click areas, produce different system outputs and the
learner can better identify system states..

5.3.2 Learning WebStories

The story depicted in Figure 5.2 has been learned with Malwa in six minutes, and the
inferred model can be seen in Figure 5.3. Note that although the learning algorithm used
infers Mealy automata, the model is converted to a Moore automaton. On the one hand,
this makes the model easier to visualize, because the DOM hashes are not displayed on the
transition labels. On the other hand, it makes the model more intuitive for visual analysis
because each state refers to a single DOM, which better represents user-level interactions
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5.3. Demonstration: WebStory

Figure 5.3: Learned runtime behavior of the WebStory shown in Figure 5.2 using Malwa.
Manually layouted for compact presentation.

with the system. In contrast, Mealy machines could have states that can be associated
with multiple DOMs and application screenshots because they are behaviorally equivalent.
However, this could be confusing to users examining the model.

Intuitively, the model in Figure 5.3 can be interpreted as follows: Initially, users have
not yet found the key, so they can navigate between the cabin and the forest, but they
cannot open the chest inside the cabin (red rectangle). Once the key has been found (blue
rectangle), clicking on the chest will take the user to a screen with a pile of gold. After
that, users can still navigate between the cabin, the forest, and the clearing, but reopening
the chest will result in the screen with the message that the gold has already been found
(green rectangle). As a result, the application behavior at runtime appears to correctly
represent the graphical model created in CINCO Cloud, indicating that the generator is
producing the correct product for that particular model.

5.3.3 Verifying WebStories

Manual visual verification of learned models works well as long as they are sufficiently small.
However, as they become large, model checking is required to automatically verify system
properties. In the Moore automaton, each state can be associated with a DOM hash,
which acts as its state property. To simplify the formulation of temporal logic formulas, a
visual mapping can be generated that indicates which screenshot belongs to which hash,
see Figure 5.4. Because QA engineers should be aware of the semantics of the individual
screens, this should help them formulate temporal logic formulas that include the DOM
hashes as state properties. For example, considering the learned model in Figure 5.3, the
property “gold can only be found once” can be expressed as

[]((13d12f3389a322ec2c550fc02c8faf0e) ->
X([]!(13d12f3389a322ec2c550fc02c8faf0e))).
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Figure 5.4: Legend of states from Figure 5.3 mapped to their properties.

Feedback gathered from the model checker can then be used to refine the model, the
meta-level or the language itself and the established formula aids in finding regressions in
subsequent iterations.

From a usability perspective, this example highlights a major problem with the current
approach. State properties are not known in advance, as they are computed dynamically
during the learning process by computing the hash of the DOM. This complicates the
formulation of properties in temporal logic that remain stable over multiple software
iterations, since even small changes in the application can make existing formulas no longer
verifiable. Furthermore, by using “cryptic” looking hashes for atomic propositions, the
semantics of the properties are not reflected in the formulas, making it difficult to reason
with other stakeholders. Future work will address this, for example by embedding more
semantic information in instrumented application code, see Section 6.2.
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Chapter 6

Conclusion and Future Work

This dissertation presented the implementation of a lifelong learning framework focused
on simplicity and integrability to provide a solution for the continuous quality control of
web applications. It combines the results of previous research [12, 13] and highlights the
synergies of the Language-Driven Engineering (LDE) ecosystem and the lifelong learning
framework, building on ideas outlined in [9, 10, 98] and demonstrated in [20, 21].

First, the lifelong learning framework around the low-code tool ALEX, an all-in-
one solution that lowers the entry barrier to automated learning-based testing, has been
presented. From the definition of an input alphabet to the configuration of learning processes
and the verification of inferred automaton models via model checking, everything takes place
in a collaborative web-based environment. To take advantage of the framework’s potential
for web development, it has been designed to easily integrate with modern technology
and development stacks by providing a set of Application Programming Interfaces (APIs)
that enable the automation of lifelong learning processes in Continuous Integration and
Continuous Deployments (CI/CDs) pipelines.

In addition, with learnability-by-design, a novel concept has been introduced that allows
learning web applications via their web interface without explicit specification of an input
alphabet. The key to this approach is iHTML, a textual Domain-Specific Language (DSL)
that extends Hypertext Markup Language (HTML) by a set of data-* attributes for
instrumenting web applications in a way that allows learning algorithms to incrementally
mine system inputs based on information encoded in the Document Object Model (DOM)
of the website. In this context, Malwa has been developed as a prototypical, web-based
tool that implements a setup for learning instrumented web applications. Users only
need to specify a target Uniform Resource Locator (URL) and can, if needed, configure
aspects related to the learning process, such as the target browser, the parameters for the
equivalence testing strategy, and the URL to call to reset the system, all of which come
with sensible defaults.

Finally, this work illustrated how Quality Assurance (QA) in cloud-based LDE can
be simplified by using the learnability-by-design framework. By designing DSLs and code
generators for web-based products in a way that they produce instrumented HTML code,
each generated application becomes instantly learnable. It has been demonstrated that
this, on the one hand, enables language engineers to test their generators by learning and
verifying carefully designed test applications. On the other hand, the QA effort for testing
web-based products can be reduced to the verification of functional requirements through
model-checking.

By working on the concepts, frameworks and tools presented in this thesis, new research
topics have emerged that have the potential to further improve lifelong learning as a practice
for the continuous quality control of web applications, some of which are described in the
sections below. Moreover, we are aware of the technical limitations and potential challenges
of using iHTML in practice, such as the implications of its use for application security, its
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Figure 6.1: The current system architecture of ALEX and Malwa (a) and the vision for
a unified, service-oriented architecture (b).

impact on code maintainability, and its role in Dev(Sec)Ops teams for the development of
continuously evolving systems. However, this dissertation focuses on demonstrating the
feasibility and potential of the approach to instrumenting web applications for learnability,
and thus, we refrain from discussing these aspects because they are beyond the scope of
this work.

6.1 A Service-Oriented Lifelong Learning Framework

With Malwa, a tool has been implemented that allows learning instrumented web applica-
tions. From a technical perspective, however, the tool is not integrated into the existing
lifelong learning framework established around ALEX. Thus, users currently do not benefit
from its existing features such as the integrated model checker, measures for evolution
control and its integrability with CI/CD providers. As seen in Figure 6.1a, both tools
currently run completely separately in their own environments, although they share similar
functionality and are architecturally alike.

Future work should focus on modularizing the framework so that the monolithic
architectures of ALEX and Malwa are split and merged into an extensible landscape of
microservices, as illustrated in Figure 6.1b. In this landscape

• learning processes are implemented as independent and horizontally scalable services
to adapt to the current workload and user demand. There are services for learning web
applications using manually implemented alphabets, as supported by ALEX (ALEX
Learner), and services for learning instrumented web applications in the manner
described in Chapter 4 (Malwa Learner).
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• services access the same system to retrieve browser instances (Selenium Hub) required
for executing learning processes and access shared resources from a central controller
(ALEX Backend).

• the controller also provides the necessary public APIs that can be called in CI/CD
pipelines to fully automate the phases of the lifelong learning cycle, regardless of
whether the target web application is instrumented or not.

• a single web-based interface (ALEX frontend) that gives users the choice of either
learning instrumented web applications using the minimalist configuration approach
of Malwa, see Figure 4.4, or learning web applications with user-specified input
alphabets, as seen in Figure 3.2.

6.2 Extensions to the Learnability-by-Design Framework

One issue with the current state of the instrumentation DSL and the corresponding DOM
interpreter in Malwa is that input symbols represent atomic interactions with the user
interface. As a consequence, application states are deeply explored and models tend to get
large, depending on the amount of instrumented code and the complexity of the target
application. In the worst case, learning processes may take too long to be feasible to
execute in CI/CD pipelines, so that it is no longer worth waiting for the result because
it could delay the development progress. Moreover, functional requirements are typically
formulated at the level of the application’s business logic, rather than at the level of atomic
user interactions, such as button clicks. The latter also makes it more complicated to
specify corresponding temporal logic formulas and to argue about the acceptance of certain
criteria at the business logic level. To counteract these issues, iHTML would benefit from
the following extensions:

Slicing would allow the learner to consider only those elements that belong to a certain
aspect. By slicing application logic into multiple aspects, which is already a common
practice when dealing with web applications, models become smaller and easier
to analyze. Therefore, new attributes could be introduced that assign intractable
elements one or more aspects that they belong to. Users then specify the names of
aspects to be considered when configuring a learning process. As a consequence, the
DOM projection function, see Section 4.3.2, which maps the DOM to a state-local
alphabet, includes only elements annotated with the previously specified aspects.
This way, models become smaller and faster to infer, making this approach more
attractive for automated QA.

Grouping has already been introduced in Section 4.4.4 which allows grouping and ordering
the execution of atomic interactions, e.g., for filling out forms in a specific order,
to reduce the complexity of the learning process by shrinking the input alphabet.
Currently, this functionality is limited to elements that are present in the DOM at the
same time, making it impossible to combine more complex interactions that require
changes to the DOM into a single input symbol. By removing this limitation, even
allowing nested grouping, the abstraction level of learned models becomes a matter
of configuration, which would allow to initially learn web applications on a higher
behavioral abstraction level and iteratively refine models to be atomic eventually.
This would result in learning hierarchical structures where states in the learned
model represent entrypoints to other, more fine-granular models, comparable to the
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procedural systems introduced by Frohme in [36], where multiple procedures are
called by each other.

State Classifiers could provide more information about the application state in the DOM
to ease the formulation of verifiable properties in temporal logic. Future work should
investigate how more state-specific semantic information can be included in the model
during the learning process. One possible approach to this is adding invisible, ade-
quately instrumented elements to the DOM that can hold serialized state properties
that can be modified at runtime, or generated from graphical models. This would
allow to post-process learned models so that for each state, these properties could be
extracted from the associated DOM and added to the set of state properties. Con-
sidering the WebStory example in Section 5.3, using these semantic state properties
could simplify the specified formula to [](gold -> X([]!gold)). In contrast to
using DOM hashes, this would

• simplify the creation of temporal logic formulas in advance, which would also
allow to establish a fully automated learning and verification process,

• make it easier to reason about and discuss these formulas, especially in the
context of acceptance testing, and

• make formulas more robust to system changes, because properties would not be
affected by changes of the DOM.

However, further evaluation is needed in terms of how much of the application state
can and needs to be exposed in the DOM in general, and what the implications of
this are for automated learning processes.

Additionally, DSLs could be leveraged even further by transferring the idea of Design
for Verifiability [77] to the context of LDE. The more application-specific semantics
are encoded in graphical models, the easier it will be to incorporate this information
into instrumented parts of generated web applications, resulting in learned models
that can be verified easily. Not only that, but this also allows to generate model-
checkable formulas from these models, aiming to establish a fully automated feedback
loop for users in web-based LDE.

Eventually, this could even lead to a point where “traditional” active learning algo-
rithms are no longer needed for state classification in order to build state machines of
application behavior. If a projection of the application’s internal state is embedded in
the DOM at all times, state machines could be built on-the-fly simply by interacting
with the application. As for the WebStory example in Section 5.3, all that would
need to be included in the DOM is an identifier for current screen and two indicators
of whether the gold and the key have been found.

6.3 Generation of Runtime Monitors

The lifelong learning framework illustrated in Chapter 3 includes the idea of generating
runtime monitors from learned models that observe the System Under Learning (SUL)
at runtime to detect discrepancies between learned and actual behavior. One challenge
is to find a suitable abstraction for system traces that allows them to be matched to the
abstract level of the input alphabet to identify the current and target state in the model.
The instrumentation of HTML code, see Chapter 4, might be a step in the right direction,
as abstract symbols and their mappings are not created manually, but inferred from the
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website on-the-fly. As a result, there is no need to analyze system logs to find matching
symbols because a monitor could leverage the same information as the learner.

For web applications, such a monitor could be implemented as a JavaScript library
delivered to the browser and a server-side backend responsible for tracking user state in a
given model and handling observed differences between learned and actual system behavior.
On the client, the library could analyze the DOM of the website, filter instrumented
elements and listen for corresponding events that the elements are annotated with. As soon
as these events are triggered, the library would send the recorded action to the backend
of the monitor, where the event is processed and traced on the most recent model. It
still has to be evaluated if the presented learnability-by-design framework poses a suitable
abstraction for this matter.

6.4 Learning-Based IME Validation

With learnability-by-design, this work has demonstrated how code generators and web
applications in general can be designed to simplify learning models from the end user
perspective. In LDE, it narrows the quality assurance gap between the modeling level and
the product level by writing product generators that generate instrumented HTML code.
However, similar challenges arise between the meta-modeling level and the modeling level
that have not yet been addressed. Because Integrated Modeling Environments (IMEs) are
also fully generated, they can be subject to bugs that cause modeling environments to
fail to properly enforce language constraints. In this case, products may not be generated
at all, or they may exhibit unforeseen behavior that is difficult to debug. Consequently,
testing IMEs is a necessity to verify that language constraints are properly implemented in
the modeling environment.

With the shift to CINCO Cloud, IMEs and its modeling canvases are also accessible
via the web, paving the way for IMEs to become learnable as well by leveraging information
encoded in the language specification. Each CINCO language contains constraints on
node, container, and edge types, which elements can be nested, and which elements can be
connected via drag-and-drop actions. Generating instrumented IMEs would allow a learner
to incrementally explore the capabilities of the modeling canvas by creating, deleting and
connecting different model elements on the canvas. Based on inferred automaton models,
it would be possible to uncover whether the language constraints are correctly translated
by the CINCO generator. To verify this automatically, temporal logic formulas can be
generated that are compatible with the constraints specified in the language specification
and the level of abstraction of the learned model. Consequently, every generated IMEs
can be tested automatically without manual interference, thereby further automating and
improving the quality control mechanisms in the LDE ecosystem.
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List of Abbreviations

API Application Programming Interface

CI/CD Continuous Integration and Continuous Deployment

CSS Cascading Style Sheets

DAG Directed Acyclic Graph

DFA Deterministic Finite Automaton

DSL Domain-Specific Language

DOM Document Object Model

EBNF Extended Backus-Naur Form

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IME Integrated Modeling Environment

REST Representational State Transfer

LDE Language-Driven Engineering

LTL Linear Temporal Logic

MAT Minimal Adequate Teacher
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QA Quality Assurance

SPA System of Procedural Automata

SUL System Under Learning

UML Unified Modeling Language

URL Uniform Resource Locator
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Appendix A. Large Figures

1 grammar IHTML
2
3 entry Model:
4 document=Document;
5
6 Document:
7 ’<!DOCTYPE ’ ’html >’ html=HTML;
8
9 HTML:

10 ’<html ’ attributes += Attribute* ’>’ head=Head body=Body ’</html >’;
11
12 Head:
13 ’<head ’ attributes += Attribute* ’>’ content += Content* ’</head >’;
14
15 Body:
16 ’<body ’ attributes += Attribute* lbdStable=LbdStable ’>’
17 content += Content*
18 ’</body >’;
19
20 Content:
21 start=StartTag content += Content* end=EndTag
22 | empty=EmptyTag
23 | text=ID
24 | comment=Comment;
25
26 StartTag:
27 ’<’ name=ID attributes += Attribute*
28 lbdAttributes=LbdAttribute? ’>’;
29
30 EndTag:
31 ’</’ name=[ StartTag:ID] ’>’;
32
33 EmptyTag:
34 ’<’ name=ID attributes += Attribute*
35 lbdAttributes=EmptyLbdAttribute? ’/>’;
36
37 Attribute:
38 name=ID ’="’ value=ID ’"’;
39
40 Comment:
41 ’<!--’ text=ID ’-- >’;
42
43 fragment BaseLbdAttribute:
44 name=LbdName
45 | action=LbdAction
46 | value=LbdValue
47 | keep=LbdKeep
48 | group=LbdGroup
49 | datasetKey=LbdDatasetKey;
50
51 EmptyLbdAttribute:
52 BaseLbdAttribute;
53
54 LbdAttribute:
55 BaseLbdAttribute
56 | groupContainer=LbdGroupContainer
57 | dataset=LbdDataset;
58
59 LbdName:
60 ’data-lbd-name ="’ value=ID ’"’ LbdRepeated ?;
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61
62 LbdAction:
63 ’data-lbd-action ="’ value=(’Click ’ | ’Hover ’ | ’Submit ’) ’"’

nameAttr=LbdName conditionAttr=LbdCondition ?;
64
65 LbdValue:
66 ’data-lbd-action =" SendKeys"’ ’data-lbd-value ="’ value=ID ’"’

nameAttr=LbdName conditionAttr=LbdCondition ?;
67
68 LbdRepeated:
69 ’data-lbd-repeated ’ nameAttr=LbdName;
70
71 LbdCondition:
72 ’data-lbd-condition ="’ value=ID ’"’ (actionAttr=LbdAction |

valueAttr=LbdValue | datasetKeyAttr=LbdDatasetKey);
73
74 LbdDataset:
75 ’data-lbd-dataset ="’ value=ID ’"’;
76
77 LbdDatasetKey:
78 ’data-lbd-action =" SendKeys"’ ’data-lbd-dataset-key ="’ value=ID ’"’

nameAttr=LbdName conditionAttr=LbdCondition ?;
79
80 LbdGroupContainer:
81 ’data-lbd-group-container ="’ value=ID ’"’ actionAttr=LbdAction ?;
82
83 LbdGroup:
84 ’data-lbd-group ="’ value=ID ’"’ orderAttr=LbdOrder (actionAttr=

LbdAction | valueAttr=LbdValue | datasetKeyAttr=LbdDatasetKey);
85
86 LbdOrder:
87 ’data-lbd-order ="’ value=INT ’"’;
88
89 LbdStable:
90 ’data-lbd-stable ="’ value=(’true ’ | ’false ’) ’"’;
91
92 LbdKeep returns string:
93 ’data-lbd-keep ’;
94
95 terminal ID: /[ _a-zA-Z- ][\w_]*/;
96 terminal INT: /[0-9]+/;
97
98 // skip whitespace and newlines
99 hidden terminal WS: /\s+/;

100 hidden terminal ML_COMMENT: /\/\*[\s\S]*?\*\//;
101 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing A.1: EBNF for the iHTML language based on Langium.
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