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Abstract

This thesis consists of two parts, in each of which a quadratic regularization
is applied to an optimal transport problem and its effect on a prototypical
bilevel optimization problem is investigated.
In the first part, we use the mentioned quadratic regularization in combina-
tion with a smoothing of the marginals to improve certain properties of the
well-known Kantorovich problem, which is a linear optimization problem de-
fined on infinite-dimensional spaces. In this way we obtain, for example, the
uniqueness of the optimal solution and an associated optimality system con-
taining (non-unique) dual variables. We then use these improved properties
of the problem to regularize a bilevel optimization problem whose constraints
require to solve the Kantorovich problem. We then show that the regularized
bilevel problem has a solution and that we can, under certain conditions, ap-
proximate solutions of the non-regularized bilevel problem by solutions of the
regularized one. We conclude the first part with a brief overview of possible
applications of this regularization approach.

In the second part, we apply the same regularization approach to the also

well-known Hitchcock problem, which we introduce as a finite-dimensional

special case of the Kantorovich problem. Due to the structure of this problem,

however, we can dispense with the additional smoothing of the boundary

conditions. Similar to the first part, we regularize a bilevel problem whose

constraints require the solution of the Hitchcock problem. We again show

the existence of solutions to the regularized bilevel problem and that we can

use this to approximate solutions to the non-regularized bilevel problem, in

certain cases. By introducing a further regularization of the Lagrangian dual

problem, we enforce the uniqueness of the dual variables from the optimality

system. This enables us to calculate derivatives of the marginal-to-transport-

plan mapping and, in turn, to establish an implicit programming approach for

the solution of the regularized bilevel problem. To conclude the second part,

we test our findings numerically by means of an transportation identification

problem.
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Chapter 1

Introduction

Optimal transport, also known as transportation theory, is a mathematical the-
ory that models the transportation of masses (e.g. goods and resources, but
also any abstract objects) from one place to another and seeks to organize this
transportation in such a way that it minimizes the resulting transport costs. On
account of this general formulation of the problem, the theory finds widespread
application in various different fields, including economics (e.g. [47, 15, 39]),
computer graphics (e.g. [66, 78, 11]), statistics and in particular machine learn-
ing (e.g. [41, 65, 26]), or even fluid dynamics (e.g. [7, 40]).

For a detailed overview of possible applications and an in-depth discussions
of optimal transportation, we refer the interested reader to the books by Villani
[75, 76] and Santambrogio [68] as well as to the extensive review articles [3,
61]. In all of these, the authors show that optimal transportation can also be
linked to other mathematical disciplines such as (differential) geometry, partial
differential equations, and several others.

It is also due to the general formulation of the optimal transportation prob-
lem that there are several (seemingly) independent formulations of the trans-
portation problem. The oldest of them can be traced back to the French math-
ematician Monge, see [57], who in the late 18th century tried to find a transport
map, which is an injective mapping from the source domain to the target domain
and determines from where to where mass is transported. Another popular (and
more general) formulation is that of the Soviet mathematician and economist
Kantorovich from the early 1940s, see [49], who sought to find a transport plan
which is a joint distribution between (mass) distributions on the source domain
and the target domain and, unlike Monge’s transport map, allows for splitting
and merging of masses during transportation. Ten years later, the German
economist Beckmann presented a formulation that is based on the minimization
of gradient flows between sources and sinks, see [6]. It is worth noting that un-
der certain circumstances the formulations of Monge and Kantorovich coincide
and, moreover, that the solution of the Beckmann problem can be related to
the other problems via the well-known Monge-Kantorovich equations, see e.g.
[68].

In Part I of this thesis, we focus on Kantorovich’s formulation of optimal
transportation. As already indicated, the Kantorovich optimal transportation
problem tries to find a joint probability distribution for given mass distributions
(represented by regular Borel probability measures) on both a source and a

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Kantorovich optimal transportation. The distribution µ1 from the left picture is
transported to the distribution µ2 from the middle picture by means of the transport plan
π from the right picture. If the cost of transportation between the source domain and the
target domain is strictly convex and if the mass distributions have sufficient regularity, then
the optimal transport plan is concentrated on the graph of a strictly increasing function.

Figure 1.2: Hitchcock optimal transportation. The vector µ1 from the left picture is trans-
ported to the vector µ2 from the middle picture by means of the transportation matrix π
whose sparsity pattern is shown in the right picture. Again, strictly convex transportation
costs result in the optimal transport matrix being concentrated on the graph of a strictly
increasing function.

target domain that has the given distributions as its first and second marginals.
The fairly intuitive concept behind this rather unwieldy description is illustrated
in Figure 1.1.

In Part II of this thesis, we consider the finite dimensional equivalent of the
Kantorovich problem, the Hitchcock problem of optimal transport. It can be
seen as a discretization of the Kantorovich problem in which the mass distribu-
tions are replaced by vectors and the joint distribution by a matrix. Figure 1.2
shows the undeniable similarities between the two formulations.

We will investigate both of this problems, the Kantorovich problem and the
Hitchcock problem, in a bilevel context, i.e., we are considering the prototypical
bilevel problem

inf
π,µ1

J (π, µ1)

s.t. µ1 is a mass distribution on a source domain,

π is an optimal transport plan between µ1 and µd
2 w.r.t. cd,

where µd
2 is a (fixed) mass distribution on a target domain, cd is a fixed de-

scription of the transportation cost between the source domain and the target
domain, and J is a suitably chosen target function. Note that this is in fact a
bilevel problem, since its feasible set depends on the optimization variable µ1
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and one needs to solve an optimal transport problem (which we sometimes call
subordinate or lower-level problem) in order to obtain a feasible transport plan
π.

We call this bilevel optimization problem “prototypical” for the following
reason: depending on the formulation chosen for the subordinate optimal trans-
port problem and depending on the choice of the objective function J and the
assumptions made about the given data, the above bilevel problem can be used
to solve a variety of problems. For example, if we consider the Kantorovich
formulation as the subordinate problem and if we make certain assumptions on
the domains and the data, we can show that a special case of the prototypical
bilevel problem is given by the Wasserstein inverse problem

inf
µ

1
2∥Gµ− yd∥

2
Y + νWρ(µ, µd)

ρ

s.t. µ ∈ P(Ω∗),

see Subchapter 3.5. In the above, G can be an arbitrary compact operator
which maps the space of probability measures P(Ω∗) onto some Banach space
Y and Wρ denotes the Wasserstein ρ-distance on P(Ω∗). A popular choice for
this operator is, for example, the solution operator of an (elliptic) differential
equation. With this choice, the Wasserstein space problem turns into an optimal
control problem on measure spaces. In [17, 18, 19, 23, 62], the authors consider
the same kind of optimal control problem, but measure the distance between
the control µ and the data µd by means of the total variation norm instead of
the Wasserstein ρ-distance.

Another example would be to consider the tracking-type target functional

J = ∥π − πd∥ +
∥∥µ1 − µd

1

∥∥.
With this objective functional, the prototypical bilevel problem becomes the
problem of reconstructing the source distribution and transport plan based on
(possibly incomplete and noisy) observations πd and µd

1 , which is an inverse
problem on measure spaces. Problems of this form belong to a field of research
that allows for a wide range of different approaches, both with and without
connections to optimal transport. For the latter case, we only mention [13,
30] and the references therein. For the former case, we refer to [33, 32, 56],
where optimal transport (directly or indirectly) enters the formulation of the
inverse problem in form of a metric to measure the misfit of data, and [73],
where the authors assume that the forward operator is given as the solution
operator of the optimal transport problem and apply a Bayesian approach in
order to reconstruct the cost of transportation through (noisy) observations of
the transport plan.

Moreover, we want to mention the work of Mahler [55], which is closely
related to the topic of this thesis, where the author considers a similar bilevel
problem with Beckmann’s optimal transport problem taking the role of the
subordinate problem.

By their very nature, the Kantorovich problem and the Hitchcock problem
are linear problems. On the one hand, this has the advantage that (after dis-
cretization) efficient linear solvers can be applied to calculate their solutions.
On the other hand, this has the disadvantage that their solutions, depending on
the cost function, are generally nonunique and, since the transport plans live on
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the Cartesian product of the source and target distribution’s domains, subject
to a high dimensionality.

For this and other reasons, many authors prefer to apply a regularization
to these optimal transport problems. Probably the best known and most com-
monly used approach is the so-called entropic regularization. It is broadly ap-
plied in different fields like imaging and machine learning but is also of theo-
retical interest, see e.g. [24, 72, 38, 16]. This can at least to some extent be
attributed to the seminal work of Cuturi, who showed in [28] that entropic regu-
larization allows for the use of Sinkhorn’s algorithm [71] to (efficiently) solve the
Hitchcock problem and even the challenging Wasserstein barycenter problem,
see [29].

As the title of this thesis indicates, we will, however, follow a different regu-
larization approach and regularize both the Kantorovich problem and the Hitch-
cock problem by means of a quadratic regularization. In [52], the authors pro-
pose an L2-regularization of the Kantorovich problem, which serves not only to
improve the regularity of its solutions (compared to the Kantorovich problem,
the solutions of the regularized version are L2-functions instead of measures)
but also to guarantee their uniqueness and provide an optimality system in-
cluding (Lagrangian) dual variables. Similar to entropic regularization, solving
for the dual variables significantly reduces the dimension of the problem. The
L2-regularization (often referred to as Tikhonov regularization) has a rich tradi-
tion of being successfully used throughout different applications, see e.g. [79, 77,
8, 63] and the references therein. In [51], the authors show that the quadratic
L2-regularization, as a special case of a more general regularization approach,
Γ-converges to the non-regularized problem, as the regularization parameter
tends towards 0.

In direct comparison to the entropic regularization, the L2-regularization
preserves the sparsity of the transport plans (which is a unique feature of the
solutions of the Kantorovich problems) much better: solutions of the entrop-
ically regularized Kantorovich problem are strictly positive on their domains,
whereas solutions of the L2-regularized Kantorovich problem have a representa-
tion including the ( · )+-operator which promotes sparsity of the transport plan.
However, the sparsity of the regularized transport plan comes with a price:
the optimality system of the L2-regularized Kantorovich problem includes the
( · )+-operator and is therefore, in contrast to the optimality system of then
entropically regularized Kantorovich problem, nonsmooth and nonlinear, ruling
out the application of the Sinkhorn algorithm.

However, we may still apply standard nonsmooth optimization methods to
compute solutions of the L2-regularized Kantorovich problems, see e.g. [52, Sec-
tion 4]. Applying a further regularization of the corresponding dual problem,
we expect nonsmooth optimization methods in the spirit of [46, 43, 21] to be
applicable to the twice regularized bilevel problem.

The rest of this thesis is organized as follows:

In Chapter 2, we introduce the most important notation for our purposes
and state a number of basic properties of the spaces that are used in this thesis.

Chapter 3, which has in parts already been published in [45, 44], is the only
chapter of Part I. Therein, we first carefully define the Kantorovich problem



5

and the prototypical bilevel problem and prove existence of solutions. We then
introduce the quadratic regularization of both the Kantorovich problem and
the prototypical bilevel problem, again prove the existence of solutions to the
regularized problems, and subsequently address the approximability of solutions
of the non-regularized bilevel problem. We conclude the chapter by giving two
examples of possible applications.

Chapter 4, the first chapter of Part II, reproduces the results of the previous
chapter for the case of the Hitchcock problem and its associated bilevel formu-
lation. It does, however, provide added value in that we explicitly construct a
nontrivial recovery sequence for a slightly more general case than was discussed
at the end of Chapter 3.

In Chapter 5, we introduce an additional regularization to the dual problem
of the regularized Hitchcock problem. This allows us to define a marginal-to-
dual-variables mapping and to investigate its differentiability properties. Con-
sidering its concatenation with a mapping from the dual variables to a transport
plan allows us to adopt an implicit programming approach in the context of the
bilevel formulation of the Hitchcock problem.

Chapter 6 concludes the second part and also the main part of the thesis.
We propose a trust region algorithm for the solution of nonsmooth optimization
problems with convex constraints and implement the implicit programming ap-
proach we derived in the previous chapter. Finally, we test our implementation
on an example that fits exactly into the setting of the second part and discuss
the results.

The main part of the thesis is followed by a rather detailed appendix, which
takes a closer look at individual aspects from the areas of convolutions of
marginals with mollifiers (Appendix A), measure and integration theory (Ap-
pendix B), optimal transport (Appendix C), and functional analysis (Appendix
D), which would have been distracting in the main part of this thesis.
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Chapter 2

Notation

Finite Dimensional Spaces

On some finite-dimensional vector space X where each element x ∈ X (think
of matrices or vectors) takes the form x = (xi)i∈I with I being some finite set,
∥x∥1 and ∥x∥∞ denote the 1-norm and the ∞-norm, which sum the absolute
values of all entries of x and return the largest absolute value of all entries of x,
respectively, i.e.,

∥x∥1 :=
∑
i∈I

|xi| and ∥x∥∞ := max
i∈I
|xi|.

Given m,n ∈ N, we denote the Euclidean norm of a vector v = (v1, . . . , vn)
⊤ ∈

Rn by
∥v∥Rn :=

√
|v1|2 + · · ·+ |vn|2

and the spectral norm of some matrix M ∈ Rm×n by

∥M∥Rm×n := max
∥v∥Rn=1

∥Mv∥Rm

∥v∥Rn

=
√
σmax,

where σmax denotes the largest singular value of the matrix M . The Frobenius
norm of the matrix M is defined by

∥M∥F :=

√√√√ m∑
i=1

n∑
j=1

M2
i,j

and it is induced by the Frobenius scalar product

(M,N)F :=
m∑
i=1

n∑
j=1

Mi,jNi,j , for M,N ∈ Rm×n.

Consequently, if we equip the space of real valued matrices with the Frobenius
scalar product and its induced norm, this space becomes a Hilbert space.

Spaces of Continuous Functions

By C (X), Cb(X), and Cc(X), we denote the function spaces of continuous,

7
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continuous & bounded, continuous & compactly supported real valued functions
f : X → R on a locally compact Hausdorff space X, respectively. While C (X)
and Cb(X) are Banach spaces w.r.t. the uniform norm

∥f∥∞ := sup
x∈X
|f(x)|,

the linear space
(
Cc(X), ∥ · ∥∞

)
is in general not complete. We therefore con-

sider its norm closure

C0(X) := Cc(X)
∥ · ∥∞

which is the Banach space of functions that are vanishing towards the boundary
of X.

If X happens to be compact, then C (X) is also a Banach space w.r.t. the
uniform norm and coincides with all of the above Banach spaces of continuous
functions. Occasionally and in particular if we need to distinguish between
different domains, we denote the uniform norm by ∥f∥C (X).

Borel Sets & Spaces of Measures

By B(X), we denote the Borel σ-algebra on some arbitrary topological space
(X, τ). It is the smallest σ-algebra that contains all open sets of X, i.e., all
elements of τ . We call the elements of B(X) (Borel) measurable sets.

For d ∈ N, let X ⊂ Rd be a subset that we equip with the subspace topology
of Rd. We denote the Banach space of regular Borel measures on the measurable
space (X,B(X)) by M(X). It consists of all signed Borel measures µ : B(X)→
R whose variation measures |µ| are (inner and outer) regular. Its norm is the
total variation norm ∥µ∥M(X) := |µ|(X). We write µ ≥ 0 short for “µ(B) ≥ 0
for all measurable sets B.

If X happens to be compact, then the Riesz-Radon theorem (see e.g. [2,
Theorem 6.23]) ensures that M(X) ∼= C (X)

∗
, i.e., the topological dual space

of the Banach space of continuous functions can be identified with the Banach
space of regular Borel measures. We refer the interested reader to Appendix B
for further information on signed measures.

We denote the set of regular Borel probability measures on (X,B(X)), by
P(X). This is the subset of regular Borel measures µ ∈ M(X) that satisfy
µ ≥ 0 and ∥µ∥M(X) = 1.

Lebesgue- & Sobolev Spaces

For d ∈ N, letX ⊂ Rd be a domain in [1]’s sense, i.e., a non-empty open subset of
the d-dimensional real Euclidean space. Moreover, let λ : B(X)→ R+ ∪ {+∞}
denote the well-known Lebesgue measure on X. We say that a measurable set
B is a Lebesgue null set , if λ(B) = 0. We abbreviate the Lebesgue measure of
some measurable subset B ∈ B(X) by |B| := λ(B).

For p ∈ [1,∞), we denote by Lp(X), which is short for Lp(X,B(X), λ), the
Banach space of equivalence classes of Lebesgue-Borel measurable and to the
p-th power absolutely Lebesgue integrable functions u : X → R. Its norm is the
Lp norm, which is defined by

∥[u]∥Lp(X) := (
∫
X

|u|p dλ)
1
p

for any u ∈ [u].
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For p = ∞, we denote by L∞(X), which is short for L∞(X,B(X), λ), the Ba-
nach space of equivalence classes of B(X)-B(R)-measurable functions u : X →
R, whose absolute value is essentially bounded, i.e.,

∥[u]∥L∞(X) := inf
N⊂X is a

Lebesgue null set

sup
x∈X\N

|u(x)| < ∞ for any u ∈ [u].

Two functions u1 and u2 belong to the same equivalence class [u] (and are thus
considered equal), if they differ only on a Lebesgue null set. We follow the
usual convention of omitting the brackets of equivalence classes, i.e., we write
u ∈ Lp(X) instead of [u] ∈ Lp(X).

For p ∈ (1,∞), the topological dual space of Lp(X) is given by Lp′
(X) where

p′ = p/(p − 1) ∈ (1,∞). If the domain X is bounded, then Lp(X) ⊂ Lq(X) for
all q ∈ [1, p] and L∞(X) ∼= (L1(X))

∗
.

By W 1,p(X), where 1 ≤ p ≤ ∞, we denote the Sobolev space of functions
u ∈ Lp(X) on X whose first-order weak partial derivatives are elements of
Lp(X) again. It is a Banach space w.r.t. the Sobolev norm

∥u∥W 1,p(X) :=

(
∥u∥pLp(X) +

∑d
i=1∥Dxiu∥pLp(X))

1
p , if 1 ≤ p <∞,

max{∥u∥L∞(X),maxi∈{1,...,d}∥Dxiu∥L∞(X)}, if p =∞.

If p < ∞, then W 1,p(X) is separable. If additionally p > 1, then W 1,p(X) is
even uniform convex and reflexive, see e.g. [1, Theorem 3.6].

Moreover, if we close C∞
0 (X) w.r.t. the Sobolev norm, i.e., if we define

W 1,p
0 (X) := C∞

0 (X)
∥ · ∥W1,p(X) ,

then W 1,p
0 (X) is a Banach space (w.r.t. the Sobolev norm). For 1 < p < ∞,

we denote its topological dual space by W−1,p′
(X), see [1, Theorem 3.12 &

Theorem 3.13].
In the case thatX is closed, we write (slightly abusing the notation)W 1,p(X)

and W−1,p′
(X) instead of W 1,p(intX) and W−1,p′

(intX), respectively, for the
Sobolev spaces defined on its interior.

Miscellaneous

On some metric space (X, d), we denote the open ball with radius r > 0 around
some point x0 ∈ X by

BX(x0; r) := {x ∈ X : d(x0, x) < r}.

Analogously, we denote the closed ball with radius r > 0 around x0 ∈ X by

BX(x0; r) := {x ∈ X : d(x0, x) ≤ r}.

To simplify the notation, we frequently refrain from subscripting the space in
the notation of the ball.

On some Hilbert space H, we denote the scalar product (sometime called
“inner product”) between two elements h1, h2 ∈ H by (h1, h2)H . Conversely,
if X is a normed space and X∗ its topological dual space, the dual pairing of
x ∈ X and x∗ ∈ X∗ will be denoted by ⟨x∗, x⟩X∗,X := x∗(x).
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While the support of a function f : X → R is defined by

supp(f) := {x ∈ X : f(x) ̸= 0},

the support of a (nonnegative) regular Borel measure 0 ≤ µ ∈M(X) is defined
by

supp(µ) := {x ∈ X : µ(N) ≥ 0 for all open neighborhoods N ∈ B(X) of x}.

We note that the closedness of both of these supports follows directly from their
definitions.



Part I

The Infinite-Dimensional
Case

11





Chapter 3

Bilevel Optimization of the
Kantorovich Optimal
Transport Problem

We begin by deriving and investigating the bilevel optimal transport problem in
the infinite-dimensional case. While there are various formulations of optimal
transport problems, such as those of Monge, see [57], or Beckmann, see [6], we
will concern ourselves with the commonly known formulation that originated
from Kantorovich and is a generalization of Monge’s formulation.

First of all, however, we feel obliged to mention that parts of the present
chapter have, in slightly different form, already been published in [45, 44].

3.1 Problem Statement

The first step will be to carefully define the Kantorovich problem of optimal
transport, which will then take the role of the subordinate problem in the pro-
totypical bilevel optimization problem that we motivated in Chapter 1.

To this end, for d1, d2 ∈ N, let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be compact domains
(i.e., closures of bounded non-empty open sets, see Chapter 2) such that their
Cartesian product Ω := Ω1 × Ω2 has a locally Lipschitz boundary1 which is
negligible with respect to the Lebesgue measure.

Moreover, for the approximation results of Subchapter 3.4 we assume that
there exists some ∆ > 0, such that the extension domain Ω∆ := Ω∆

1 ×Ω∆
2 , where

Ω∆
i := Ωi+BRdi (0;∆) for i = 1, 2, also has a locally Lipschitz boundary which is

negligible with respect to the Lebesgue measure. This is, for example, satisfied
in (but not limited to) the case that Ω1 and Ω2 are closures of bounded non-
empty open convex sets, see e.g. [42, Corollary 1.2.2.3]. Note that the Cartesian
product Ω and its extension Ω∆ themselves are compact domains.

We denote the Lebesgue measure on the Borel σ-algebras B(Ω1), B(Ω2),
and B(Ω) by λ1, λ2, and λ, respectively. In the above setting where Ω is the

1A bounded set is said to have a locally Lipschitz boundary, if each point on its boundary has
a neighborhood whose intersection with said boundary is the graph of a Lipschitz continuous
function, see e.g. [1, p. 83].

13
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Cartesian product of Ω1 and Ω2, we find that λ is the uniquely determined
product measure of λ1 and λ2, i.e., λ = λ1 ⊗ λ2. Because all of the above sets
have non-empty interiors, we moreover find that |Ω1|, |Ω2|, |Ω| > 0.

Essential to the theory of optimal transportation are the terms “marginal”
and “transport plan”, the meanings of which are clarified in the following defi-
nition.

Definition 3.1. 1. Let µ1 ∈ M(Ω1) and µ2 ∈ M(Ω2) with µ1, µ2 ≥ 0 be
arbitrary nonnegative (signed) regular Borel measures. Throughout this
thesis, we will call µ1 and µ2 marginals . We say that the marginals are
compatible, if

∥µ1∥M(Ω1)
= µ1(Ω1) = µ2(Ω2) = ∥µ2∥M(Ω2)

.

2. A transport plan (sometimes also referred to as a coupling) between the
marginals µ1 and µ2 is a nonnegative regular Borel measure π ∈ M(Ω)
which satisfies

π(B1 × Ω2) = µ1(B1) and π(Ω1 ×B2) = µ2(B2) (3.1)

for all measurable sets B1 ∈ B(Ω1) and B2 ∈ B(Ω2). Using, for i = 1, 2,
the i-th projection map, Pi : Ω ∋ (x1, x2) 7→ xi ∈ Ωi, and the pushforward
measure of π via Pi,

Pi#π := π ◦ P−1
i : B(Ωi)→ R, Bi 7→ π

(
P−1
i (Bi)

)
,

we can write (3.1) equivalently as

P1#π = µ1 and P2#π = µ2. (3.2)

We denote the set of transport plans (or the set of couplings) between the
marginals µ1 and µ2 by

Π(µ1, µ2) := {π ∈M(Ω): P1#π = µ1 and P2#π = µ2}.

We immediately see that the compatibility of the marginals is both sufficient
and necessary for the set of transportation plans to be non-empty:

Lemma 3.2. Π(µ1, µ2) ̸= ∅ if and only if µ1 and µ2 are compatible.

Proof. For the forward implication, let π ∈ Π(µ1, µ2) be arbitrary. We immedi-
ately receive from the definition and the equivalence of (3.1) and (3.2) that

∥µ1∥M(Ω1)
= µ1(Ω1) = π(Ω1 × Ω2) = µ2(Ω2) = ∥µ2∥M(Ω2)

,

so that µ1 and µ2 are compatible.
For the backward implication, let µ1 and µ2 be compatible marginals and

abbreviate m := µ1(Ω1) = µ2(Ω2). The product measure µ1 ⊗ µ2 is a measure
on B(Ω) which satisfies (µ1 ⊗ µ2)(B1 ×B2) = µ1(B1)µ2(B2) for all measurable
sets B1 ∈ B(Ω1) and B2 ∈ B(Ω2), see e.g. [31, Satz V.1.5]. Because µ1 and µ2

are nonnegative and finite measures, µ1⊗µ2 is nonnegative and finite, too. Also,
because Ω is Polish, Ulam’s theorem (see e.g. [31, Satz VIII.1.16]) ensures the
regularity of µ1⊗µ2, i.e., µ1⊗µ2 ∈M(Ω). If we set π := m−1(µ1⊗µ2) ∈M(Ω),
then

π(B1 × Ω2) = µ1(B1)
µ2(Ω2)

m
= µ1(B1) for all B1 ∈ B(Ω1).

Analogously, π(Ω1×B2) = µ2(B2) for all B2 ∈ B(Ω2) so that π ∈ Π(µ1, µ2).
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Now, let µ1 and µ2 be compatible marginals and consider some measur-
able cost function c : Ω → R which is continuous and therefore bounded and
measurable. Then, the Kantorovich (optimal transport) problem is given by

inf
π
Kc(π) :=

∫
Ω

c dπ

s.t. π ∈ Π(µ1, µ2), π ≥ 0.

(K)

The first thing to note about the Kantorovich problem is that it admits a
(possibly nonunique) solution for every pair of compatible marginals and every
cost function as specified above.

Lemma 3.3 ([49]). Given the above assumptions on the domains, the marginals,
and the cost function, the Kantorovich problem (K) possesses at least one opti-
mal solution.

We will now let the Kantorovich problem (K) take the role of the subordinate
problem of the prototypical bilevel problem from Chapter 1, i.e., we will consider
a special instance of the prototypical bilevel problem.

To this end, let us fix a target marginal µd
2 ∈ P(Ω2) and choose, for some p >

d1+d2, a continuous representative
2 cd of the equivalence class [cd] ∈W 1,p(Ω) to

be the cost function of the Kantorovich problem. Given this data, we define the
bilevel Kantorovich (optimal transport) problem to be the optimization problem

inf
π,µ1

J (π, µ1)

s.t. µ1 ∈ P(Ω1),

π ∈ argmin

{∫
Ω

cd dθ : θ ∈ Π(µ1, µ
d
2), θ ≥ 0

}
,

(BK)

where J : M(Ω)×M(Ω1)→ R∪{+∞} is a target functional with the following
properties:

1. J is weak∗ lower semicontinuous , i.e., for all sequences (π,µ1,n)n∈N ⊂
M(Ω) ×M(Ω1) with (πn, µ1,n) ⇀

∗ (π, µ1) ∈ M(Ω) ×M(Ω1) as n → ∞,
it holds that

J (π, µ1) ≤ lim inf
n→∞

J (πn, µ1,n). (3.3)

2. J is bounded on bounded sets , i.e., for all M > 0 it holds that

sup
∥(π,µ1)∥M(Ω)×M(Ω1)≤M

|J (π, µ1)| <∞. (3.4)

3. There exists an extension of the target functional J∆ : M(Ω∆)×M(Ω∆
1 )→

R∪{+∞} which itself is weak∗ lower semicontinuous, bounded on bounded
sets, and satisfies

J∆(π, µ1) = J
(
π|M(Ω), µ1|M(Ω1)

)
(3.5)

for all (π, µ1) ∈M(Ω∆)×M(Ω∆
1 ) with supp(π) ⊂ Ω and supp(µ1) ⊂ Ω1.

Here, π|M(Ω) and µ1|M(Ω1) denote the restrictions of π : B(Ω∆) → R to
B(Ω) ⊂ B(Ω∆) and µ1 : B(Ω∆

1 )→ R to B(Ω1) ⊂ B(Ω∆
1 ), respectively.

2This continuous representative exists due to the Rellich-Kondrachov theorem, see e.g. [1,
Theorem 6.3].
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Remark 3.4. While we require the target functional J to be (weak∗) lower
semicontinuous to be able to prove the existence of solutions to the bilevel
Kantorovich problem (BK), see the proof of Theorem 3.5, we will need the other
two properties, i.e., the boundedness of J on bounded sets and the existence
of the extension J∆, for the approximation results of Subchapter 3.4. We will
present examples of target functionals that satisfy all of these three properties
in Subchapter 3.5. ◦

A beneficial feature of the bilevel Kantorovich problem (BK) is that, similar
to the Kantorovich problem (K), that it has a solution, guaranteeing its well-
posedness.

Theorem 3.5. Given the above assumptions on the domains, the target marginal,
the cost function, and the target functional, the bilevel Kantorovich problem
(BK) possesses at least one optimal solution.

Proof. We prove the result with the direct method of the calculus of variations.
For that purpose, we denote (BK)’s feasible set by F . To see that F is non-
empty, let µ̂1 = δx̂ ∈ P(Ω1) be the Dirac measure on Ω1 for some arbitrary
point x̂ ∈ Ω1. By construction, µ̂1 and µd

2 are compatible. Following Lemma
3.3, there exists an optimal transport plan π̂ between µ̂1 and µd

2 w.r.t. the cost
function cd so that (π̂, µ̂1) ∈ F .

Because F is non-empty, there exists a minimizing sequence (πn, µ1,n)n∈N ⊂
F so that

lim
n→∞

J (πn, µ1,n) = inf
(π,µ1)∈F

J (π, µ1) ∈ [−∞,∞).

The feasibility of the minimizing sequence implies

∥πn∥M(Ω) = πn(Ω) = µ1,n(Ω1) = ∥µ1,n∥M(Ω1)
= 1 for all n ∈ N,

so it is contained in the unit ball of the space M(Ω)×M(Ω1) with the latter being
isomorphic to the continuous dual space of C (Ω) × C (Ω1), see [2, 6.23 Riesz-
Radon theorem] and Lemma D.1. By virtue of [2, Theorem 8.5], a subsequence
(πnk

, µ1,nk
)k∈N of the minimizing sequence then converges weakly∗ to some point

(π̄, µ̄1) ∈M(Ω)×M(Ω1).
The stability result from [68, Theorem 1.50] ensures that the cluster point

(π̄, µ̄1) is contained in the feasible set F : it states that µ1,nk
⇀∗ P1#π̄ as well

as µd
2 ⇀∗ P2#π̄ and that π̄ must be an optimal transport plan between the

marginals P1#π̄ and P2#π̄ with respect to the cost function cd. Because of the
uniqueness of the weak∗ limit and because the sequence (µd

2)k∈N is constant,
we find that µ̄1 = P1#π̄ as well as µd

2 = P2#π̄ and that π̄ is thus an optimal
transport plan between µ̄1 and µd

2 with respect to cd. Additionally, because
of µ̄1 = P1#π̄ and π̄(Ω) = µd

2(Ω2) = 1, we observe that µ̄1 ∈ P(Ω1). To
summarize, we have shown that (π̄, µ̄1) ∈ F .

The optimality of (π̄, µ̄1) for (BK) now follows directly from the weak∗ lower
semicontinuity of the target functional:

−∞ < J (π̄, µ̄1) ≤ lim inf
k→∞

J (πnk
, µ1,nk

) = lim
n→∞

J (πn, µ1,n) = inf
(π,µ1)∈F

J (π, µ1),

see (3.3). Hence, the point (π̄, µ̄1) is optimal for (BK).
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Remark 3.6. Note that Theorem 3.5 is an existence-only result and that in
general we cannot assume that the solution to (BK) is unique. Furthermore,
the presupposed W 1,p regularity of the cost function cd is not needed in the
above proof but will be crucial for the existence proof of the regularized bilevel
problem (BKδ

γ) from Subchapter 3.2, see the proof of Theorem 3.26, and we
have therefore already assumed it for the formulation of (BK). ◦

Now that we have established the existence of minimizers, one could be
tempted to compute a solution to (BK) directly by applying a discretization to
the problem’s variables. After all, the discrete formulation of (K) is equivalent
to a linear program, see Subchapter 4.1, and could be solved with the simplex
method. However, there are a number of difficulties, for example,

– the solution of the lower level Kantorovich problem may not be unique;
this prevents us from using the so-called implicit programming approach,
which we describe in more detail at the beginning of Chapter 5;

– the analytical derivation of a solution to the Kantorovich problem is pos-
sible only in certain special cases, requiring the application of (possibly
error-prone) numerical methods to obtain solutions for the lower level
problem;

– computing the solutions to the Kantorovich (K) is numerically hard due
to the curse of dimensionality, i.e., if the marginals were each discretized
by, say, n variables, the solution of the Kantorovich problem would be a
n2-dimensional object (remember that it lives on the Cartesian product
Ω1 × Ω2).

Note that the second difficulty is linked to the third one, when using op-
timization algorithms in order to solve the bilevel problem in (BK). In each
iteration of that algorithm, one needs to solve a (discretized) linear problem on
a possibly huge space and this can become, of course, very costly!

In the following subchapter, we present an approach to the regularization of
the Kantorovich problem, with which we can regularize the bilevel Kantorovich
problem and make it easier computable.

3.2 Quadratic Regularization of the Kantorovich
Problem

To overcome at least some of the difficulties mentioned at the end of the previous
subchapter, the authors of [52] suggest to formulate the Kantorovich optimal
transport problem on L2 spaces instead of measure spaces and to add a quadratic
regularization term to its target functional. To be more precise, given arbitrary
compact domains X1 ⊂ Rd1 and X2 ⊂ Rd2 , their Cartesian product X :=
X1 × X2, the marginals µ1 ∈ L2(X1) and µ2 ∈ L2(X2), as well as a cost
function c ∈ L2(X) and some regularization parameter γ > 0, they consider the
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(quadratically L2) regularized Kantorovich (optimal transport) problem

inf
π
Kγ

c (π) := (c, π)L2(X) +
γ

2
∥π∥2L2(X)

s.t. π ∈ L2(X), π ≥ 0 λ-a.e. in X,∫
X2

π dλ2 = µ1 λ1-a.e. in X1,∫
X1

π dλ1 = µ2 λ2-a.e. in X2.

(Kγ)

Remark 3.7. 1. Even though we have reserved the terms “marginal” and
“transport plan” for elements of measure spaces, see Definition 3.1, we
use it in this case too, since every absolutely integrable function can be
interpreted as the density function of some measure, which becomes clear
when considering the embedding L1(X) ↪→ M(X) which is realized by
means of the operator

ι : L1(X)→M(X), ι(f)(B) :=

∫
B

f dλ, f ∈ L1(X), B ∈ B(X),

see Theorem B.16.

2. Figuratively speaking, in the case of (Kγ), the improved regularity of the
marginals results in improved regularity of the optimal transport plan,
and the quadratic regularization term in the objective function ensures
the uniqueness of the solution.

3. The linear integral constraints defining the feasible set of (Kγ) are nothing
else than the linear constraints of the Kantorovich problem (K), if we
interpret µ1, µ2, and π as measures, see the first point of this remark.
Using Fubini’s theorem, we see that

ι(π)(B1 ×X2) =

∫
B1×X2

π dλ

=

∫
B1

∫
X2

π dλ2 dλ1 =

∫
B1

µ1 dλ1 = ι(µ1)(B1)

for all measurable B1 ∈ B(X1) and analogously

ι(π)(X1 ×B2) = ι(µ2)(B2)

for all measurable B2 ∈ B(X2).
◦

We now collect some known results on the regularized Kantorovich problem
(Kγ) which will be essential for this thesis.

Lemma 3.8 ([52, Lemma 2.1]). Given the above assumptions on the domains,
the marginals, and the cost function, the regularized Kantorovich problem (Kγ)
admits a unique solution if and only if

µi ≥ 0 λi-a.e., i = 1, 2, and

∫
X1

µ1 dλ1 =

∫
X2

µ2 dλ2 .
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Theorem 3.9 ([52, Theorem 2.11]). Let c ∈ L2(X) be bounded from below by
some constant c > −∞ and µ1 ∈ L2(X1) and µ2 ∈ L2(X2) with µ1, µ2 ≥ δ > 0.
Then π ∈ L2(X) is a solution of (Kγ) if and only if there exist dual variables
α1 ∈ L2(X1) and α2 ∈ L2(X2) satisfying

π =
1

γ
(α1 ⊕ α2 − c)+ λ-a.e. in X, (3.6a)∫

X2

(α1 ⊕ α2 − c)+ dλ1 = γµ1 λ1-a.e. in X1, (3.6b)∫
X1

(α1 ⊕ α2 − c)+ dλ1 = γµ2 λ2-a.e. in X2. (3.6c)

Remark 3.10. In Theorem 3.9,

(α1 ⊕ α2)(x1, x2) := α1(x1) + α2(x2) λ-a.e. in X

refers to the outer sum of the functions α1 and α2, whereas,

u+(x) := max{u(x), 0} and u−(x) := −min{u(x), 0}

λ-a.e. in X, denote the nonnegative part and nonpositive part of u, respectively.
We know from Corollary B.3 that α1 ⊕ α2 is an element of L2(X). Therefore,

(α1 ⊕ α2 − c)+ = χ{α1⊕α2−c≥0}(α1 ⊕ α2 − c) ∈ L2(X),

so that the equations of system (3.6) make sense. ◦
Lemma 3.11 ([52, Section 2]). The (Lagrangian) dual problem to (Kγ) is given
by

sup
α1∈L2(X1),

α2∈L2(X2)

Dγ
c (α1, α2) := (α1, µ1)L2(X1)

+ (α2, µ2)L2(X2)

− 1
2γ ∥(α1 ⊕ α2 − c)+∥2L2(X).

(KDγ)

Moreover,

1. the equations (3.6b) and (3.6c) are the first-order sufficient and necessary
optimality condition of (KDγ).

2. there is no duality gap, i.e., if π solves (Kγ) and (α1, α2) solves (KDγ)
(w.r.t. the same marginals µ1 and µ2), then Kγ

c (π) = Dγ
c (α1, α2).

3. if (α1, α2) is a solution to (KDγ), then Dγ
c (α1 + a, α2 − a) = Dγ

c (α1, α2)
for any a ∈ R, i.e., the solution to (KDγ) is not unique.

The above results directly tackle two of the aforementioned difficulties and
replacing Kantorovich problem by its regularized counterpart opens up several
opportunities:

– In contrast to (K), the optimal solution to (Kγ) is unique, see Lemma 3.8.
This implicitly defines a solution operator which maps the given data (the
marginals and the cost function) to the unique solution (the transport
plan) of the problem, allowing us to replace the Kantorovich problem by
this solution operator, see the formulation of (BKδ

γ) below.
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– Theorem 3.9 allows us, to some extent, to avoid the curse of dimensionality.
Instead of solving a linear optimization problem, it suffices to solve the
nonlinear equations of (3.6) with respect to the dual variables α1 and α2.
After discretizing the problem, this significantly reduces the number of
variables required (m+ n instead of m · n variables!).

– Additionally, the structure of (3.6) allows for the application of a num-
ber of standard algorithms for the solution of a discretized version of the
nonlinear equations, e.g. nonlinear Gauß-Seidel algorithm or semismooth
Newton method, see e.g. [52, Section 3].

However, (Kγ) requires the marginals to no longer be measures, but to be
elements of the corresponding L2-spaces, which in general corresponds to an
increase in regularity. But rather than restricting our choice of marginals to
elements of L2(X1) and L2(X2), we preserve some generality and fit our data
to the above situation by means of convolution. To this end, we need two
definitions.

Definition 3.12 ([1, Definition 2.28]). For d ∈ N, define a nonnegative, com-
pactly supported smooth function φ ∈ C∞

c (Rd) with supp(φ) ⊂ BRd(0; 1) by

φ(x) :=

{
k exp

(
−1/(1− ∥x∥2)

)
, if ∥x∥ < 1,

0, if ∥x∥ ≥ 1,
for all x ∈ Rd.

In the above, let the scaling k > 0 be chosen in a way that
∫
Rd φ(x) dx = 1.

For δ > 0, we receive a mollifier φδ ∈ C∞
c (Rd) by defining

φδ(x) :=
φ(x/δ)

δd
for all x ∈ Rd.

By construction,

supp(φδ) = B(0; δ), φδ ≥ 0, and

∫
Rd

φδ(x) dx =

∫
B(0;δ)

φδ(x) dx = 1,

where the value of the integral follows from a substitution of variables.

Definition 3.13. Given some compact subset X ⊂ Rd, with d ∈ N, let µ ∈
M(X) be a nonnegative regular Borel measure and φδ ∈ C∞

c (Rd), for δ > 0,
be a mollifier. Then, the convolution of the measure µ with the mollifier φ is
defined by

(φδ ∗ µ)(x) :=
∫
X

φδ(x− y) dµ(y) for all x ∈ Rd.

We use the above definitions to fit the marginals µ1 ∈ M(Ω1) and µ2 ∈
M(Ω2) to the setting of the regularized Kantorovich problem (Kγ). To this
end, we choose a (the same for both marginals) smoothing parameter δ > 0 as
well as mollifiers φδ

1 ∈ C∞
c (Rd1) and φδ

2 ∈ C∞
c (Rd2). Then, for i = 1, 2, the

convoluted marginals(
φδ
i ∗ µi

)
(xi) =

∫
Ωi

φδ
i (xi − y) dµi(y) for all xi ∈ Rdi ,
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are no longer measures, but smooth and compactly supported and thus (quadrat-
ically) integrable nonnegative functions.

As is known, this approach will enlarge the domains of the marginals. In
order to avoid loss of information in the proximity of the boundary of the do-
mains, we therefore define the smoothed domains Ωδ

i := Ωi + B(0; δ), i = 1, 2,
to be the domains of the convoluted measures. As usual, we abbreviate their
Cartesian product by Ωδ := Ωδ

1 × Ωδ
2. Moreover, we set Bδ

i := B(0; δ) ⊂ Rdi ,
i = 1, 2, and note that the compactness of Ωi and Bδ

i is carried over to their
Minkowski sum Ωi + Bδ

i . For further information on the convolution of the
marginals and mollifiers we refer the interested reader to Appendix A.

Also, since we want to be able to use the dual representation of the optimal
transport plan from Theorem 3.9, we raise the convoluted marginals by a bit, i.e.,
for i = 1, 2 we define the convolution (& raising operator) T δ

i : M(Ωi)→ L2(Ωδ
i )

where
T δ
i (µi) := (φδ

i ∗ µi + δ|Ωδ
3−i|)|Ωδ

i
,

which turns a nonnegative measure into a smooth and strictly positive function,
see the following remark.

Remark 3.14. 1. By the above construction, T δ
i (µi) ∈ L∞(Ωδ

i ) ⊂ L2(Ωδ
i )

and T δ
i (µi) ≥ δmin{|Ωδ

1|, |Ωδ
2|} > 0 for i = 1, 2. Theorem A.3 and Lemma

A.4 combined with the assumption on the mass of the marginals and
mollifiers yield that

∥T δ
i (µi)∥L1(Ωδ

i )
= ∥φδ

i ∥L1(Bδ
i )
∥µi∥M(Ωi)

+ δ|Ωδ
1||Ωδ

2| = 1 + δ|Ωδ
1||Ωδ

2|

for i = 1, 2. Lemma 3.8 then implies the existence of a unique solution to
(Kγ) for each γ > 0 and δ > 0 and Theorem 3.9 yields the representation of
said solution by means of the dual variables α1 ∈ L2(Ωδ

1) and α2 ∈ L2(Ωδ
2).

2. Not only does the convolution of the marginals serve to fit our data to the
setting of the regularized Kantorovich problem, it is also essential for exis-
tence proof of the regularized bilevel problem (BKδ

γ) defined below. This
is because the solution operator of the regularized Kantorovich problem
(Kγ) is not weak

∗ continuous (see Example 3.18) but only Hölder contin-
uous. Hence, the compactness of the convolution operator is needed to
guarantee the admissibility of the limiting transport plan, see the proof of
Theorem 3.26.

◦
Another point we have to address before we can actually formulate the reg-

ularized version of the bilevel Kantorovich problem are the regularities of the
cost function and the solution of regularized Kantorovich problem. Just like the
marginals, the cost function of the regularized problem needs to be an element
of the corresponding L2 space. At the same time, its solution is an element of
the same L2 space, but the target functional of the bilevel Kantorovich problem
only operates on regular Borel measures. To solve this discrepancy, we have the
following definition:

Definition 3.15. Let Eδ : C(Ω)→ L2(Ωδ) be the extension (by zero) operator
that extends a continuous function f : Ω → R to a not necessarily continuous
but square integrable function Eδ(f) : Ωδ → R in a way that Eδ(f) ≡ f on Ω
and Eδ(f) ≡ 0 on Ωδ \ Ω.
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We denote its adjoint by E∗δ , which is the unique operator E∗δ : L2(Ωδ) →
M(Ω) given by E∗δ (u)(B) :=

∫
B
u dλ for all B ∈ B(Ω) and all u ∈ L2(Ωδ).

Remark 3.16. Even though the operator Eδ only allows for continuous func-
tions as input, we (ab-)use its symbol for elements of W 1,p(Ω) too. According
to the Rellich-Kondrachov theorem each of these Sobolev functions has a con-
tinuous representative which we then plug into the operator Eδ, which justifies
the ambiguous use of its symbol. ◦

After our preparatory considerations, we are now in a position to define for
fixed γ > 0 and δ > 0, the (quadratically L2-) regularized (& W 1,p-penalized)
bilevel Kantorovich problem. Given the domains Ω1, Ω2, and Ω from Subchap-
ter 3.1, µd

2 ∈ P(Ω2), and the continuous representative cd of [cd] ∈ W 1,p(Ω)
(remember that p > d1 + d2), we consider the problem

inf
π,µ1,c

Jγ(π, µ1, c) := J (π, µ1) +
1
γ ∥c− cd∥

p
W 1,p(Ω)

s.t. c ∈W 1,p(Ω), µ1 ∈ P(Ω1),

π = (E∗δ ◦ Sγ)
(
Eδ(c), T δ

1 (µ1), T δ
2 (µ

d
2)
)
.

(BKδ
γ)

Remark 3.17. In the context of the regularized bilevel Kantorovich problem
(BKδ

γ) we want to mention the following:

– As announced earlier, we replaced the lower-level Kantorovich problem
from the formulation of the non-regularized bilevel Kantorovich problem
(BK) by its solution operator Sγ , which is rigorously defined in Subchapter
3.3 below.

– In comparison to (BK), in (BKδ
γ) we use the cost function of the Kan-

torovich problem as an optimization variable as well. This is motivated
by the fact that we expect that the set of optimization variables is not rich
enough to obtain non-trivial recovery sequences for the approximation of
solutions of (BK). This is particularly evident in Chapter 4.5, where we
only succeeded in constructing a nontrivial recovery sequence with the aid
of the cost function being an optimization variable.

◦

Of course, the first question that arises is whether (BKδ
γ) is well-posed and

possesses an optimal solution. Furthermore, we wish to know whether solutions
to the non-regularized problem (BK) can be approximated by a sequence of
solutions to the regularized problems (BKδ

γ). We explore the answers to those
questions in the next two subchapters, beginning with the former.

3.3 Existence of Solutions to the Regularized
Bilevel Kantorovich Problem

Using this subchapter we show that the regularized bilevel Kantorovich problem
(BKδ

γ) possesses at least one optimal solution.
As was the case in the formulation of (Kγ), we again consider arbitrary

compact domains Xi ⊂ Rdi , i = 1, 2, and their Cartesian product X := X1×X2.
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Given the scalar lower bounds c > −∞ and µ > 0 as well as the mass m > 0,
we define the set of cost functions (bounded from below),

Cc(X) := {c ∈ L2(X) : c ≥ c λ-a.e. in X},

and the set of (strictly positive) compatible marginals ,

Mm
µ (X1, X2) :=

{
(µ1, µ2) ∈ L2(X1)× L2(X2) :∫

Xi

µi dλi = m, µi ≥ µ λi-a.e. in Xi, i = 1, 2,
}
.

A major difficulty in the existence proof of (BKδ
γ) is the fact that the solution

operator of the regularized Kantorovich problem,

Sγ : Cc(X)×Mm
µ (X1, X2)→ L2(X), (c, µ1, µ2) 7→ π,

with γ > 0 and π being the unique solution to (Kγ) with respect to c, µ1, and
µ2, is not continuous w.r.t. the weak∗ convergence as the following example
shows:

Example 3.18 (Sγ Not Weak Continuous). Consider the compact domains
X1 = X2 = [0, 1], the regularization parameter γ = 1 (this choice is only for
convenience), and the cost function

c(x1, x2) =
1

4
|x1 − x2|2.

Moreover, for n ∈ N, define

fn(x) := sgn
(
sin(2πnx)

)
for all x ∈ [0, 1],

as well as

α1,n := fn +
9

4
χ[0, 12 ]

+
5

4
χ( 1

2 ,1]
and α2,n := −1

2
χ( 1

2 ,1]
.

Based on this definitions, one can construct a sequence of transport plans
(πn)n∈N ⊂ L2([0, 1]2) via

πn(x1, x2) :=
(
α1,n(x1) + α2,n(x2)− c(x1, x2)

)
+

=


fn(x1) +

9
4 −

1
4 |x1 − x2|

2, if x1, x2 ∈ [0, 12 ],

fn(x1) +
5
4 −

1
4 |x1 − x2|

2, if x1 ∈ ( 12 , 1], x2 ∈ [0, 12 ],

fn(x1) +
7
4 −

1
4 |x1 − x2|

2, if x1 ∈ [0, 12 ], x2 ∈ ( 12 , 1],(
fn(x1) +

3
4 −

1
4 |x1 − x2|

2
)
+
, if x1, x2 ∈ ( 12 , 1].

If we set

µ1,n :=

∫ 1

0

πn dλ2 and µ2,n :=

∫ 1

0

πn dλ1,

then we find that, for i = 1, 2, µi ≥ 1
16 λi-almost everywhere. We can therefore

apply Theorem 3.9, to obtain that πn = S1(c, µ1,n, µ2,n) for all n ∈ N. Let us
take a close look at the last case in the definition of πn and abbreviate

Fn(x1, x2) :=
(
fn(x1) +

3

4
− 1

4
|x1 − x2|2

)
+
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=

{
7
4 −

1
4 |x1 − x2|

2, if x1 ∈
(
2k−2
2n , 2k−1

2n

)
, k = 1, . . . , n,

0, if x1 ∈
(
2k−1
2n , 2k2n

)
, k = 1, . . . , n.

If we set F (x1, x2) :=
1
2 ·
(
7
4 −

1
4 |x1 − x2|

2
)
+ 1

2 · 0 = 7
8 −

1
8 |x1 − x2|

2, then for
every ϕ ∈ C∞

c ([0, 1]2) we get that∣∣∣∣∫
[0,1]2

ϕ(Fn − F ) dx
∣∣∣∣

=

∣∣∣∣∫ 1

0

n∑
k=1

(∫ 2k−1
2n

2k−2
2n

(ϕF )(x1, x2) dx1−
∫ 2k

2n

2k−1
2n

(ϕF )(x1, x2) dx1

)
dx2

∣∣∣∣
≤
∫ 1

0

n∑
k=1

∫ 2k−1
2n

2k−2
2n

∣∣∣(ϕF )(x1, x2)− (ϕF )
(
x1 +

1

2n
, x2

)∣∣∣ dx1 dx2
≤
∫ 1

0

n∑
k=1

∫ 2k−1
2n

2k−2
2n

LϕF
1

2n
dx1 dx2 = LϕF

1

4n
−−−−→
n→∞

0,

where LϕF > 0 denotes the Lipschitz constant of ϕF . Because C∞
c ([0, 1]2) is

dense in L2([0, 1]2), see e.g. [1, Corollary 2.30], for any ϕ ∈ L2([0, 1]2) and every
ε > 0 there exists some ϕε ∈ C∞

c ([0, 1]2) with ∥ϕ− ϕε∥L2([0,1]2) < ε. Hence,∣∣∣∣∫
[0,1]2

ϕ(Fn − F ) dx
∣∣∣∣

≤
∫
[0,1]2

|ϕ− ϕε||Fn − F | dx+
∣∣∣∣∫

[0,1]2
ϕε(Fn − F ) dx

∣∣∣∣
≤ ∥Fn − F∥L2([0,1]2)∥ϕ− ϕε∥L2([0,1]2) +

∣∣∣∣∫
[0,1]2

ϕε(Fn − F ) dx
∣∣∣∣ < 2ε

for all n sufficiently large. Therefore, Fn ⇀ F in L2([0, 1]2). Together with
fn ⇀ 0, this shows that

πn ⇀ π̄ =


9
4 −

1
4 |x1 − x2|

2, if x1, x2 ∈ [0, 12 ],
5
4 −

1
4 |x1 − x2|

2, if x1 ∈ ( 12 , 1], x2 ∈ [0, 12 ],
7
4 −

1
4 |x1 − x2|

2, if x1 ∈ [0, 12 ], x2 ∈ ( 12 , 1],
7
8 −

1
8 |x1 − x2|

2, if x1, x2 ∈ ( 12 , 1],

as n→∞.

The weak convergence of the transport plans implies the convergences µ1,n ⇀

µ̄1 :=
∫ 1

0
π̄ dλ2 and µ2,n ⇀ µ̄2 :=

∫ 1

0
π̄ dλ1, because µ1,n and µ2,n are linear

and continuous images of the transport plan πn and this is preserved by weak
convergence. Now, assume that

π̄ = (ᾱ1 ⊕ ᾱ2 − c)+ (3.7)

for some ᾱ1, ᾱ2 ∈ L2([0, 1]). Because of π̄ > 0 a.e. in [0, 1]2, it must hold that
π̄ = ᾱ1 ⊕ ᾱ2 − c or equivalently

ᾱ1 ⊕ ᾱ2 =


9
4 , in

[
0, 12

]2
,

5
4 , in

(
1
2 , 1
]
×
[
0, 12

]
,

7
4 , in

[
0, 12

]
×
(
1
2 , 1
]
,

7
8 + 1

8 |x1 − x2|
2, in

(
1
2 , 1
]2
.
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Choosing an arbitrary representative of the equivalence class [ᾱ2] and fixing an
Lebesgue point x̃2 ∈ (0, 1/2), we obtain

ᾱ1(x1) =

{
9
4 − ᾱ2(x̃2), if 0 ≤ x1 ≤ 1

2 ,
5
4 − ᾱ2(x̃2), if 1

2 < x1 ≤ 1.
(3.8)

Similarly, fix x̂2 ∈ (1/2, 1) to obtain

ᾱ1(x1) =

{
7
4 − ᾱ2(x̂2), if 0 ≤ x1 ≤ 1

2 ,
7
8 + 1

8 |x1 − x̂2|
2 − ᾱ2(x̂2), if 1

2 < x1 ≤ 1.
(3.9)

Obviously, the functions in (3.8) and (3.9) cannot be the same, regardless the
choice of ᾱ2. Therefore, (3.7) cannot be true and by Theorem 3.9, π̄ is not the
optimal transport plan between µ̄1 and µ̄2. To summarize our findings,

(µ1,n, µ2,n)⇀ (µ̄1, µ̄2) ≠⇒ S1(c, µ1,n, µ2,n)⇀ S1(c, µ̄1, µ̄2),

i.e., the solution operator of the regularized Kantorovich problem (Kγ) is not
continuous w.r.t. the weak∗ convergence. Again, the choice γ = 1 in the above
example was only for convenience. The same example holds (up to scaling) for
arbitrary choices of γ > 0 so that none of the solution operators Sγ for γ > 0
are continuous w.r.t. the weak∗ convergence. ♢

Nevertheless, we can show that the solution operators are Hölder continuous,
by deriving L2-bounds for both the solution of the corresponding regularized
Kantorovich problem and the dual variables evolving from Theorem 3.9.

Lemma 3.19. Let γ > 0 and (c, µ1, µ2) ∈ Cc(X) × Mm
µ (X1, X2) be arbi-

trary. Then, the solution of the regularized Kantorovich problem (Kγ), π =
Sγ(c, µ1, µ2), is bounded by

∥π∥L2(X) ≤ C ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X)

)
,

where C = C(γ,m) > 0 is a constant solely depending of γ and m.

Proof. Because the cost function is bounded from below and the marginals
are strictly positive, Theorem 3.9 implies the existence of dual variables α1 ∈
L2(X1) and α2 ∈ L2(X2) such that the optimality in (3.6) is fulfilled. Multiply-
ing (3.6b) and (3.6c) with α1 and α2, respectively, integrating and adding the
resulting equations leads to

γ∥π∥2L2(X) =

∫
X

π(α1 ⊕ α2 − c) dλ

=

∫
X1

µ1α1 dλ1 +

∫
X2

µ2α2 dλ2−
∫
X

πc dλ,

(3.10)

where we used (3.6a) and that x+x = (x+)
2 for all x ∈ R. Exploiting the

equality of the mass of the marginals, i.e.,

∥µ1∥L1(X1)
=

∫
X1

µ1 dλ1 = m =

∫
X2

µ2 dλ2 = ∥µ2∥L1(X2)
,
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we obtain, for i = 1, 2, using Fubini’s theorem∫
Xi

µiαi dλi =
1

m

∫
Xi

µiαi

∫
X3−i

µ3−i dλ3−i dλi =
1

m

∫
X

(µ1 ⊗ µ2)αi dλ .

In the above, (µ1 ⊗ µ2)(x1, x2) := µ1(x1)µ2(x2) λ-a.e. in X refers to the tensor
product of the functions µ1 and µ2. Corollary B.3 guarantees that µ1 ⊗ µ2 ∈
L2(X). This allows us to estimate (3.10) by

γ∥π∥2L2(X)

=
1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2 − c) dλ+
1

m

∫
X

(µ1 ⊗ µ2)c dλ−
∫
X

πc dλ

≤ 1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2 − c)+ dλ+
1

m

∫
X

|(µ1 ⊗ µ2)c| dλ+
∫
X

|πc| dλ

≤ γ

m
∥π∥L2∥µ1 ⊗ µ2∥L2 +

1

m
∥µ1 ⊗ µ2∥L2∥c∥L2 + ∥π∥L2∥c∥L2 .

(3.11)

Next, we apply the scaled version of Young’s inequality from Lemma D.3 to
obtain

γ

m
∥π∥L2(X)∥µ1 ⊗ µ2∥L2(X) ≤

γ

3
∥π∥2L2(X) +

3γ

m2
∥µ1 ⊗ µ2∥2L2(X) (3.12)

and

∥π∥L2(X)∥c∥L2(X) ≤
γ

3
∥π∥2L2(X) +

3

γ
∥c∥2L2(X). (3.13)

Substituting (3.12) and (3.13) into (3.11), we receive

∥π∥2L2(X) ≤
9

m2
∥µ1 ⊗ µ2∥2L2(X) +

3

mγ
∥µ1 ⊗ µ2∥L2(X)∥c∥L2(X) +

9

γ2
∥c∥2L2(X)

≤
( 3

m
∥µ1 ⊗ µ2∥L2(X) +

3

γ
∥c∥L2(X)

)2
.

Consequently,

∥π∥L2(X) ≤
3

m
∥µ1 ⊗ µ2∥L2(X) +

3

γ
∥c∥L2(X)

≤ max
{ 3

m
,
3

γ

}
·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X)

)
,

which yields the claim.

Remark 3.20. Although C and all of the following constants may or may
not additionally depend on the domains X1, X2, and X, we are content with
emphasizing only the dependence on the parameters γ, c, µ, and m, since the
domains were fixed from the very beginning of this subchapter.

This means that whenever a constant named C appears, we know that it
depends directly or indirectly only on the given parameters and that there is no
further dependence on entities other than those mentioned above. ◦

To ease the subsequent argumentation, we make the following technical as-
sumption:
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Assumption 3.21. If (α1, α2) ∈ L2(X1) × L2(X2) is a given pair of dual
variables to a given optimal solution of (Kγ) as given in Theorem 3.9, then∫
X2
α2 dλ2 = 0, i.e., α2 is a zero-mean dual variable.

Remark 3.22. Although this assumption may seem restrictive at first glance,
it is actually not a limitation. If a given α2 were not a zero-mean dual variable,
we would abbreviate a := |X2|−1

∫
X2
α2 dλ2 and observe that

|a| ≤ |X2|−1

∫
X2

|α2| dλ2

≤ |X2|−1∥1∥L2(X2)
∥α2∥L2(X2)

= |X2|−
1
2 ∥α2∥L2(X2)

<∞.

We could then consider the pair

(α̃1, α̃2) := (α1 + a, α2 − a) ∈ L2(X1)× L2(X2),

which is according to Lemma 3.11 also a solution to (KDγ) and therefore satisfies
the conditions in (3.6). A quick calculation then shows that α̃2’s mean value
indeed vanishes:∫

X2

α̃2 dλ2 =

∫
X2

α2 dλ2− a
∫
X2

1 dλ2 =

∫
X2

α2 dλ2−
∫
X2

α2 dλ2 = 0.

Also, for i = 1, 2, ∥α̃i∥L1(Xi)
≤ C implies ∥αi∥L1(Xi)

≤ C + |a||Xi|, i.e., the
boundedness of the original solution. ◦

Next, we wish to determine L2-bounds for the dual variables. This is a
crucial task to show the Hölder continuity of Sγ . Prior to this, however, we
need the following lemma to establish L1-bounds for the dual variables.

Lemma 3.23. Let Assumption 3.21 hold and let γ > 0 and (c, µ1, µ2) ∈ Cc(X)×
Mm
µ (X1, X2) be arbitrary and consider the corresponding optimal solution of the

regularized Kantorovich problem (Kγ), namely π = Sγ(c, µ1, µ2). Then, the total
masses of the dual variables α1 ∈ L2(X1) and α2 ∈ L2(X2) from Theorem 3.9
are bounded by some constant C = C(γ, µ,m) > 0, i.e.,

∥α1∥L1(X1)
, ∥α2∥L1(X2)

≤ C ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)2
.

Proof. Following our Assumption 3.21, we assume that (α1, α2) is a zero-mean
dual solution. The target functional of the primal problem (Kγ) is bounded by

Kγ
c (π) = (c, π)L2(X) +

γ

2
∥π∥2L2(X) ≥ −∥c∥L2(X)∥π∥L2(X).

The strong duality of (Kγ) and (KDγ), see Lemma 3.11, implies that

Dγ
c (α1, α2) = Kγ

c (π) ≥ −∥c∥L2(X)∥π∥L2(X),

and therefore, similar to the proof of Lemma 3.19, we estimate that

∥c∥L2(X)∥π∥L2(X)

≥ 1

2γ
∥(α1 ⊕ α2 − c)+∥2L2(X) −

∫
X1

α1µ1 dλ1−
∫
X2

α2µ2 dλ2
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≥ − 1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2) dλ

≥ − 1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2 − c) dλ−
1

m
∥µ1 ⊗ µ2∥L2(X)∥c∥L2(X).

Using u(x) = u+(x)− u−(x) with u+(x), u−(x) ≥ 0 for almost all x ∈ X for all
u ∈ L2(X), see Remark 3.10, and the marginal’s lower bound µ > 0, we find
that

∥c∥L2(X)

(
∥π∥L2(X) +

1

m
∥µ1 ⊗ µ2∥L2(X)

)
≥ − 1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2 − c)+ dλ+
1

m

∫
X

(µ1 ⊗ µ2)(α1 ⊕ α2 − c)− dλ

≥ − γ
m
∥µ1 ⊗ µ2∥L2(X)∥π∥L2(X) +

µ2

m

∫
X

(α1 ⊕ α2 − c)− dλ .

Rearranging and using π’s L2-bound from Lemma 3.19, we obtain that

∥(α1 ⊕ α2 − c)−∥L1(X)

≤ m

µ2
∥c∥L2(X)

(
∥π∥L2(X) +

1

m
∥µ1 ⊗ µ2∥L2(X)

)
+

γ

µ2
∥µ1 ⊗ µ2∥L2(X)∥π∥L2(X)

≤ C ·
(
∥µ1 ⊗ µ2∥2L2(X) + ∥c∥

2
L2(X)

)
,

with some constant C = C(µ,m, γ). Because of

∥(α1 ⊕ α2 − c)+∥L1(X) ≤ γ|X|
1
2 ∥π∥L2(X) ≤ C

(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X)

)
,

for some constant C = C(γ,m) > 0, we find that the outer sum of the dual
variables is bounded by

∥α1 ⊕ α2∥L1(X)

≤ γ∥π∥L1(X) + ∥(α1 ⊕ α2 − c)−∥L1(X) + ∥c∥L1(X)

≤ C ·
( 2∑

k=1

∥µ1 ⊗ µ2∥kL2(X) + ∥c∥
k
L2(X)

)
,

with some constant C = C(γ, µ,m) > 0.
With the help of the dual representation of the norm on L1(X), namely

∥u∥L1(X) = sup
ϕ∈L∞(X),

∥ϕ∥L∞(X)≤1

∫
X

ϕu dλ for all u ∈ L1(X),

we find the following lower L1-bound for the outer sum of the dual variables:

∥α1 ⊕ α2∥L1(X) = sup
ϕ∈L∞(X),

∥ϕ∥L∞(X)≤1

∫
X

ϕ(α1 ⊕ α2) dλ

≥ sup
ϕ1∈L∞(X1),

∥ϕ1∥L∞(X1)≤1

∫
X

(ϕ1 ⊗ 1)(α1 ⊕ α2) dλ
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= sup
ϕ1∈L∞(X1),

∥ϕ1∥L∞(X1)≤1

|X2|
∫
X1

ϕ1α1 dλ1 +

∫
X1

ϕ1 dλ1

∫
X2

α2 dλ2

= |X2|∥α1∥L1(X1)
.

Note that the last of above’s equation holds because α2 is a zero-mean dual
variable. In a similar fashion, we receive that

∥α1 ⊕ α2∥L1(X) ≥ sup
ϕ2∈L∞(X2),

∥ϕ2∥L∞(X2)≤1

∫
X1

α1 dλ1

∫
X2

ϕ2 dλ2 +|X1|
∫
X2

ϕ2α2 dλ2

≥ −|X2|∥α1∥L1(X1)
+ |X1|∥α2∥L1(X2)

≥ −∥α1 ⊕ α2∥L1(X) + |X1|∥α2∥L1(X2)
.

Therefore, for i = 1, 2,

∥αi∥L1(Xi)
≤

2∥α1 ⊕ α2∥L1(X)

min{|X1|, |X2|}

≤ C ·
( 2∑

k=1

∥µ1 ⊗ µ2∥kL2(X) + ∥c∥
k
L2(X)

)
≤ C ·

(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)2
,

(3.14)

with C = C(γ, µ,m) > 0, as claimed.
Note that the additional “+1” on the right-hand side of (3.14) automatically

accounts for the assumption of a zero-mean dual solution, see Remark 3.22.

The last preparatory step before the final proof of the Hoelders continuity of
Sγ is to construct L2 bounds for the dual variables. This is done in the following
lemma.

Lemma 3.24. Let Assumption 3.21 hold and let γ > 0 and (c, µ1, µ2) ∈ Cc(X)×
Mm
µ (X1, X2) be arbitrary and consider the corresponding optimal solution of

the regularized Kantorovich problem (Kγ), π = Sγ(c, µ1, µ2). Then, the dual
variables α1 ∈ L2(X1) and α2 ∈ L2(X2) from Theorem 3.9 are bounded by

∥α1∥L2(X1)
, ∥α2∥L2(X2)

≤ C ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)6
,

with some constant C = C(γ, c, µ,m) > 0.

Proof. We again assume that µ2 is a zero-mean dual variable and proceed in
two steps: in the first step, we show the boundedness of the positive parts of the
dual solution (i); in the second step, we derive bounds for their negative parts
(ii).

Ad (i): We abbreviate

M := C1 ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)2
> 0, (3.15)

with C1 > 0 being the constant from the formulation of Lemma 3.23, and define,
up to sets of zero Lebesgue measure, the subset

X̃2 :=

{
x2 ∈ X2 : |α2(x2)| ≤

2M

|X2|

}
⊂ X2.
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It follows by construction that

M ≥
∫
X2

|α2(x2)| dx2 ≥
∫
X2\X̃2

|α2(x2)| dx2 ≥
2M

|X2|
|X2 \ X̃2|.

This implies

|X2|
2
≥ |X2 \ X̃2| = |X2| − |X̃2|

and, in turn,

|X̃2| ≥
|X2|
2

> 0. (3.16)

Now, we define, again up to sets of zero Lebesgue measure, the subsets

X+
1 := {x1 ∈ X1 : α1(x1) ≥ 0} ⊂ X1

as well as

X̃+ :=
{
(x1, x2) ∈ X+

1 × X̃2 : α1(x1) + α2(x2) ≥ 0
}
⊂ X+

1 × X̃2 ⊂ X.

In particular,

0 ≤ α1(x1) < −α2(x2) ≤
2M

|X2|
λ-a.e. in (X+

1 × X̃2) \ X̃+.

Therefore,

|X̃2|
∫
X1

(α1)
2
+ dλ1 =

∫
X̃2

∫
X+

1

|α1|2 dλ1 dλ2

=

∫
X̃+

|α1|2 dλ+
∫
(X+

1 ×X̃2)\X̃+

|α1|2 dλ

≤
∫
X̃+

|α1|2 dλ+
(
2M

|X2|

)2

|(X+
1 × X̃2) \ X̃+|.

Taking advantage of (3.16), this yields

∥(α1)+∥2L2(X1)
≤ 2

|X2|

∫
X̃+

|α1|2 dλ+8

(
M

|X2|

)2

|X1|. (3.17)

On the one hand, we observe that

∥(α1 ⊕ α2)+∥2L2(X) =

∫
X

(α1 ⊕ α2)
2
+ dλ

≤ 2

(∫
X

(α1 ⊕ α2 − c)2+ dλ+

∫
X

c2+ dλ

)
≤ 2
(
γ2∥π∥2L2(X) + ∥c∥

2
L2(X)

)
≤ C2

(
∥µ1 ⊗ µ2∥2L2(X) + ∥c∥

2
L2(X)

)
,

(3.18)
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for some C2 = C(γ,m), see Lemma 3.19. On the other hand,

∥(α1 ⊕ α2)+∥2L2(X) ≥
∫
X̃+

(α1 ⊕ α2)
2
+ dλ

=

∫
X̃+

(α1 ⊕ α2)
2 dλ

≥
∫
X̃+

|α1|2 dλ− 2

∫
X̃+

|α1||α2| dλ

≥
∫
X̃+

|α1|2 dλ− 2 ∥α1∥L1(X1)
∥α2∥L1(X2)

.

(3.19)

Combining (3.15) as well as (3.17) – (3.19) with Lemma 3.23, then results in

∥(α1)+∥L2(X1)

≤
(

2

|X2|
(
∥(α1 ⊕ α2)+∥2L2(X) + 2 ∥α1∥L1(X1)

∥α2∥L1(X2)

)
+ 8M2 |X1|

|X2|2

) 1
2

≤
(
2C2

|X2|
·
(
∥µ1 ⊗ µ2∥2L2(X) + ∥c∥

2
L2(X)

)
+

4|X2|+ 8|X1|
|X2|2

·M2

) 1
2

≤ C3 ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)2
for some constant C3 = C(γ, µ,m) > 0. A similar L2-bound for (α2)+ follows
by means of reversed roles.

Ad (ii): Given r ∈ R, we consider, up to sets of zero Lebesgue measure, the
set

X̂r
2 := {x2 ∈ X2 : (α2)+(x2) > r + c} ⊂ X2.

For any r > −c, the mass of this subset can be estimated by

|X̂r
2 | =

1

r + c

∫
X̂r

2

r + c dλ2 ≤
1

r + c

∫
X̂r

2

(α2)+ dλ2 ≤
∥α2∥L1(X2)

r + c
≤ M

r + c
.

Consequently, |X̂r
2 | → 0 as r →∞. For any r > −c, we find that∫

X2

(−r + α2(x2)− c)+ dx2

≤
∫
X2

(
−(r + c) + (α2)+(x2)

)
+
dx2

=

∫
X̂r

2

−(r + c) + (α2)+(x2) dx2

≤
∫
X̂r

2

(α2)+ dλ2 ≤ |X̂r
2 |

1
2 ∥(α2)+∥L2(X2)

≤
( M

r + c

) 1
2

K,

where K > 0 is short for the bound for ∥(α1)+∥L2(X1)
and ∥(α2)+∥L2(X2)

from

step (i). If we define

R :=
MK2

γ2µ2
+ 1− c > −c,

then ∫
X2

(−R+ α2(x2)− c)+ dx2 < γµ.



32 CHAPTER 3. THE BILEVEL KANTOROVICH PROBLEM

Now, let us assume that α1 ≤ −R λ1-a.e. on a set E ⊂ X1 with λ1(E) > 0.
Then,∫

X2

(α1 ⊕ α2 − c)+ dλ2 ≤
∫
X2

(−R+ α2(x2)− c)+ dx2 < γµ ≤ γµ1

λ1-a.e. on E. This, however, contradicts (3.6b). Hence, (α1)− must be bounded
essentially by R, i.e., ∥(α1)−∥L∞(X1)

< R. Therefore,

∥(α1)−∥L2(X1)

≤ R|X1|
1
2

=
|X1|

1
2

γ2µ2
C1C3 ·

(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)6
+ |X1|

1
2 (1− c)

≤ C4 ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)6
,

with some constant C4 = C(γ, c, µ,m) > 0 and, consequently,

∥α1∥L2(X1)
≤ ∥(α1)+∥L2(X1)

+ ∥(α1)−∥L2(X1)

≤ C ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥c∥L2(X) + 1

)6
,

with some constant C = C(γ, c, µ,m) > 0 as claimed. Again, the estimate for
(α2)− and thus for α2 follows by means of reversed roles.

We are now in a position to establish the Hölder continuity of the solution
operator associated with the regularized Kantorovich problem (Kγ). We shall
see in Theorem 3.26 that this is essential for proving the existence of solutions
to (BKδ

γ).
But first, for the sake of readability, we define the Hilbert space

H := L2(X)× L2(X1)× L2(X2)

which carries the norm

∥(u, v, w)∥H := (∥u∥2L2(X) + ∥v∥
2
L2(X1)

+ ∥w∥2L2(X2))
1
2

.

Proposition 3.25. Let the parameters γ, µ,m > 0 and c > −∞ be given.
Then, the solution operator of the regularized Kantorovich problem,

Sγ : Cc(X)×Mm
µ (X1, X2)→ L2(X), (c, µ1, µ2) 7→ π,

with π being the solution to (Kγ) w.r.t. the cost function c and the marginals µ1

and µ2, is Hölder continuous (on bounded sets) with exponent 1⁄2, i.e., for each
radius ρ > 0, we can find a constant C = C(c, µ,m, γ, ρ) > 0 such that

∥Sγ(cµ, µ1, µ2)− Sγ(cν , ν1, ν2)∥L2(X) ≤ C∥(cµ, µ1, µ2)− (cν , ν1, ν2)∥
1
2

H

for all (cµ, µ1, µ2), (cν , ν1, ν2) ∈ Cc(X)×Mm
µ (X1, X2) with

∥(cµ, µ1, µ2)∥H, ∥(cν , ν1, ν2)∥H < ρ.
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Proof. Given arbitrary points (cµ, µ1, µ2), (cν , ν1, ν2) ∈ Cc(X) ×Mm
µ (X1, X2)

with

∥(cµ, µ1, µ2)− (cν , ν1, ν2)∥H < ρ,

we set πµ := Sγ(cµ, µ1, µ2) and πν := Sγ(cν , ν1, ν2). By virtue of Theorem
3.9, there exist αµ

1 , α
ν
1 ∈ L2(X1) and αµ

2 , α
ν
2 ∈ L2(X2) such that πµ = 1

γ (α
µ
1 ⊕

αµ
2 − cµ)+ and πν = 1

γ (α
ν
1 ⊕ αν

2 − cν)+ satisfy the equations (3.6b) and (3.6c),
respectively. Hence,∫

X2

πµ − πν dλ2 = µ1 − ν1 and

∫
X1

πµ − πν dλ1 = µ2 − ν2. (3.20)

Testing the first and second equation in (3.20) with αµ
1 − αν

1 and αµ
2 − αν

2 ,
respectively, integrating and then adding the resulting equations, we arrive at∫

X

(πµ − πν)
(
(αµ

1 − αν
1)⊕ (αµ

2 − αν
2)
)
dλ

=

∫
X1

(µ1 − ν1)(αµ
1 − αν

1) dλ1 +

∫
X2

(µ2 − ν2)(αµ
2 − αν

2) dλ2,

which is equivalent to∫
X

(πµ − πν)
( 1
γ
(αµ

1 ⊕ α
µ
2 − cµ)−

1

γ
(αν

1 ⊕ αν
2 − cν)

)
dλ

+
1

γ

∫
X

(πµ − πν)(cµ − cν) dλ

=
1

γ

(∫
X1

(µ1 − ν1)(αµ
1 − αν

1) dλ1 +

∫
X2

(µ2 − ν2)(αµ
2 − αν

2) dλ2

)
.

Using (3.6a), the inequality (a+ − b+)2 ≤ (a+ − b+)(a − b) for all a, b ∈ R and
the Cauchy-Schwarz inequality, this implies

∥πµ − πν∥2L2(X) −
1

γ

∫
X

|(πµ − πν)(cµ − cν)| dλ

≤ 1

γ

(
∥αµ

1 − αν
1∥L2(X1)

∥µ1 − ν1∥L2(X1)
+ ∥αµ

2 − αν
2∥L2(X2)

∥µ2 − ν2∥L2(X2)

)
.

(3.21)

By Young’s inequality, see Lemma D.3,

1

γ

∫
X

|(πµ − πν)(cµ − cν)| dλ ≤
1

γ
∥πµ − πν∥L2(X)∥cµ − cν∥L2(X)

≤ 1

2
∥πµ − πν∥2L2(X) +

2

γ2
∥cµ − cν∥2L2(X)

Inserting this into (3.21), we arrive at

∥πµ − πν∥2L2(X)

≤ 4

γ2
∥cµ − cν∥2L2(X) +

2

γ

2∑
i=1

∥αµ
i − α

ν
i ∥L2(Xi)

∥µi − νi∥L2(Xi)
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≤ max
{ 4

γ2
,
2

γ

}(
∥cµ − cν∥2L2(X) +

2∑
i=1

∥αµ
i − α

ν
i ∥L2(Xi)

∥µi − νi∥L2(Xi)

)
or equivalently,

∥πµ − πν∥L2(X) ≤
(
Ĉmax

{4√3
γ2

,
2
√
3

γ

}) 1
2 ∥(cµ, µ1, µ2)− (cν , ν1, ν2)∥

1
2

H,

(3.22)
with

Ĉ := max
{
∥cµ − cν∥L2(X), ∥α

µ
1 − αν

1∥L2(X1)
, ∥αµ

2 − αν
2∥L2(X2)

}
> 0.

By assumption,

∥cµ − cν∥L2(X) ≤ ∥(cµ, µ1, µ2)∥H + ∥(cν , ν1, ν2)∥H < 2ρ.

Moreover, Lemma 3.24 provides a constant C = C(c, µ,m, γ) > 0 such that

∥αµ
1∥L2(Xi)

, ∥αµ
2∥L2(Xi)

≤ C ·
(
∥µ1 ⊗ µ2∥L2(X) + ∥cµ∥L2(X) + 1

)6
≤ C ·

(
∥µ1∥2L2(X1)

+ ∥µ2∥2L2(X2)
+ ∥cµ∥L2(X) + 1

)6
≤ C ·

(
ρ∥µ1∥L2(X1)

+ ρ∥µ2∥L2(X2)
+ ∥cµ∥L2(X) + 1

)6
≤ C ·

(
ρ+ 1

)6
,

Of course, we find the same bounds for αν
1 and αν

2 . Combining all of the above,
shows that Ĉ can be estimated by

Ĉ ≤ C · (ρ+ 1)6,

where C > 0 is a constant solely depending on the radius ρ as well as the fixed
parameters γ, c, µ, and m. This together with (3.22) shows that the solution
operator is (on bounded sets) Hölder continuous with exponent 1⁄2.

We now have everything together to prove the existence of an optimal so-
lution to the regularized bilevel Kantorovich problem. Therefore, we return to
the setting of Subchapter 3.2 and recall the problem statement:

inf
π,µ1,c

Jγ(π, µ1, c) := J (π, µ1) +
1
γ ∥c− cd∥

p
W 1,p(Ω)

s.t. c ∈W 1,p(Ω), µ1 ∈ P(Ω1),

π = (E∗δ ◦ Sγ)
(
Eδ(c), T δ

1 (µ1), T δ
2 (µ

d
2)
)
.

(BKδ
γ)

Theorem 3.26. Given the assumptions on the domains, the target marginal,
the cost function, and the target functional from Subchapter 3.1 and Subchapter
3.2, for every γ > 0 and δ > 0, there exists at least one optimal solution to
(BKδ

γ).

Proof. Again, this proof is based on standard arguments: We show that the
feasible set is non-empty and contains a sequence converging to the infimum
of (BKδ

γ) (i), verify the boundedness of that sequence (ii), argue that the limit
point of a convergent subsequence is still contained in the feasible set (iii), and
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apply the lower semi-continuity of the target functional, to show the optimality
of the limit point (iv).

Ad (i): We abbreviate the feasible set of (BKδ
γ) by

F :=
{
(π, µ1, c) ∈M(Ω)×M(Ω1)×W 1,p(Ω):

µ1 ∈ P(Ω1), π = E∗δ (π̃), π̃ = Sγ

(
Eδ(c), T δ

1 (µ1), T δ
2 (µ

d
2)
)}
.

Analogous to the proof of Theorem 3.5, we choose µ̂1 = δx̂, the Dirac measure
at some arbitrary point x̂ ∈ Ω1. By construction, µ̂1 ∈ P(Ω1). We choose ĉ ≡ 0
as a cost function on Ω. Trivially, its extension onto Ωδ is given by Eδ(ĉ) ≡ 0.
We know from Remark 3.14 that T δ

1 (µ̂1), T δ
2 (µ

d
2) ≥ δmin{|Ωδ

1|, |Ωδ
2|} > 0 and

that
∫
Ω1
T δ
1 (µ̂1) dλ1 =

∫
Ω2
T δ
2 (µ

d
2) dλ2. Lemma 3.8 therefore implies that π̃ =

Sγ
(
Eδ(ĉ), T δ

1 (µ̂1), T δ
2 (µ

d
2)
)
exists and by setting π̂ := E∗δ (π), the triple (π̂, µ̂1, ĉ)

is an element of F . This shows that the feasible set is non-empty. Consequently,
it must contain a minimizing sequence (πn, µ1,n, cn)n∈N with

lim
n→∞

Jγ(πn, µ1,n, cn) = inf
(π,µ1,c)∈F

Jγ(π, µ1, c) ∈ R ∪ {−∞}. (3.23)

Ad (ii): We now show that the minimizing sequence from step (i) is bounded.
First, we notice that ∥µ1,n∥M(Ω1)

= 1 for all n ∈ N.
Also, for each and every n ∈ N, we can find an optimal solution to the

regularized Kantorovich problem, namely π̃n = Sγ
(
Eδ(cn), T δ

1 (µ1,n), T δ
2 (µ

d
2)
)
,

such that πn = E∗δ (π̃n). Thus,

∥πn∥M(Ω) = E
∗
δ (π̃n)(Ω) =

∫
Ω1

∫
Ω2

π̃n dλ2 dλ1

≤
∫
Ωδ

1

∫
Ωδ

2

π̃n dλ2 dλ1

=

∫
Ωδ

1

φδ
1 ∗ µ1,n + δ|Ωδ

2| dλ1

=
∥∥φδ

1

∥∥
L1(Bδ

1)
∥µ1,n∥M(Ω1)

+ δ|Ωδ
1||Ωδ

2| = 1 + δ|Ωδ
1||Ωδ

2|,

where we used the feasibility and nonnegativity of π̃n, Lemma A.4, and that φδ
1

is a mollifier which supported on Bδ
1 .

Owing to the W 1,p-penalty term in the target functional Jγ and the lower
bound of J , there exists some constant C > 0 such that ∥cn∥W 1,p(Ω) ≤ C for

all n ∈ N (otherwise, (πn, µ1,n, cn)n∈N cannot be a minimizing sequence).

Ad (iii): The boundedness of the sequence (πn, µ1,n, cn)n∈N implies the ex-
istence of a subsequence (πnk

, µ1,nk
, cnk

)k∈N and a cluster point (π̄, µ̄1, c̄) ∈
M(Ω)×M(Ω1)×W 1,p(Ω) such that

(πnk
, µ1,nk

)
M(Ω)×M(Ω1)−−−−−−−−−⇀

k→∞
∗ (π̄, µ̄1) and cnk

W 1,p(Ω)−−−−−⇀
k→∞

c̄.

In particular, cnk
→ c̄ in C(Ω) as k →∞, where this convergence is understood

for a selection of continuous representatives of the equivalence classes cnk
and

c̄, see e.g. [1, Theorem 6.3 Part III].
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By Lemma B.17, there exists, for any B ∈ B(Ω1), a sequence of nonnega-
tive functions (vm)m∈N with

∫
Ω1
vm dµ̄1 → µ̄1(B) as m → ∞. Owing to the

nonnegativity of both vm and µ1,nk
for all m and all k, respectively, we find

that

µ̄1(B) = lim
m→∞

∫
Ω1

vm dµ̄1 = lim
m→∞

lim
k→∞

∫
Ω1

vm dµ1,nk
≥ 0,

i.e., µ̄1 is a nonnegative measure. Because of the weak∗ convergence µ1,nk
⇀∗ µ̄1

it must hold that

1 = ∥µ1,nk
∥M(Ω1)

= ⟨µ1,nk
, 1⟩C(Ω1)∗,C(Ω1)

→ ⟨µ̄1, 1⟩C(Ω1)∗,C(Ω1)
= ∥µ̄1∥M(Ω1)

as k →∞ so that ∥µ̄1∥M(Ω1)
= 1. This shows that µ1 ∈ P(Ω1).

We define π̃ := Sγ
(
Eδ(c̄), T δ

1 (µ̄1), T δ
2 (µ

d
2)
)
∈ L2(Ωδ), which exists by reason

of the same arguments as in (i), and show in the following that π̄ = E∗δ (π̃).
Applying Lemma B.12, we find that∥∥(φδ

1 ∗ µ1,nk
+ δ|Ωδ

2|)− (φδ
1 ∗ µ̄1 + δ|Ωδ

2|)
∥∥2
L2(Ωδ

1)

=

∫
Ωδ

1

∣∣∣∣∫
Ω1

φδ
1(y − x) d(µ1,nk

− µ̄1)(y)

∣∣∣∣2 dx
=

∫
Ωδ

1

∣∣∣〈µ1,nk
− µ̄1, φ

δ
1 ◦ Tx

〉
C(Ω1)∗,C(Ω1)

∣∣∣2 dx,
where Tx(y) := y − x. For any x ∈ Ωδ

1, the composition φδ
1 ◦ Tx is a continuous

function w.r.t. y and, owing to the weak∗ convergence µ1,nk
⇀∗ µ̄1, the inte-

grand (as a function of x) converges pointwisely to 0. Moreover, it is uniformly
bounded by∣∣〈µ1,nk

− µ̄1, φ
δ
1 ◦ Tx

〉
C(Ω1)∗,C(Ω1)

∣∣2
≤ ∥µ1,nk

− µ̄1∥2M(Ω1)

∥∥φδ
1 ◦ Tx

∥∥2
C(Ω1)

≤ 4
∥∥φδ

1

∥∥2
C(Rd1 )

<∞

for all x ∈ Ωδ
1 and k ∈ N. Therefore, Lebesgue’s dominated convergence theorem

implies the convergence of the convoluted marginals:

T δ
1 (µ1,nk

) = (φδ
1 ∗ µ1,nk

+ δ|Ωδ
2|)

L2(Ωδ
1)−−−−→

k→∞
(φδ

1 ∗ µ̄1 + δ|Ωδ
2|) = T δ

1 (µ̄1). (3.24)

Also, if we set m := δ|Ωδ
1||Ωδ

2|, then
(
T δ
1 (µ̄1), T δ

2 (µ
d
2)
)
∈ Mm

δ (Ωδ
1,Ω

δ
2) and(

T δ
1 (µ1,nk

), T δ
2 (µ

d
2)
)
∈ Mm

δ (Ωδ
1,Ω

δ
2) for all k ∈ N. Moreover, because Eδ is

the trivial extension to Ωδ, we see that

cnk

C(Ω)−−−−→
k→∞

c̄ =⇒ Eδ(cnk
)

L2(Ωδ)−−−−→
k→∞

Eδ(c̄) (3.25)

and, in particular, Eδ(cnk
) ∈ Cc(Ωδ) for all k ∈ N. Therefore, we are allowed

to apply Proposition 3.25 which, in conjunction with (3.24) and (3.25), ensures
that

π̃nk
= Sγ

(
Eδ(cnk

), T δ
1 (µ1,nk

), T δ
2 (µ

d
2)
)
→ Sγ

(
Eδ(c̄), T δ

1 (µ̄1), T δ
2 (µ

d
2)
)
= π̃
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in L2(Ωδ) as k →∞. Because of πnk
= E∗δ (π̃nk

), we find that

⟨πnk
, ϕ⟩C(Ω)∗,C(Ω) =

∫
Ω

ϕ dπnk

=

∫
Ωδ

Eδ(ϕ) π̃nk
dλ →

∫
Ωδ

Eδ(ϕ) π̃ dλ

=

∫
Ω

ϕ dE∗δ (π̃) = ⟨E∗δ (π̃), ϕ⟩C(Ω)∗,C(Ω)

for all ϕ ∈ C (Ω) as k →∞. The uniqueness of the weak∗ limit now implies that
π̄ = E∗δ (π̃), so that (π̄, µ̄1, c̄) is indeed feasible for (BKδ

γ).

Ad (iv): By assumption, J : M(Ω) ×M(Ω1) → R is weak∗ lower semicon-
tinuous. The norm on W 1,p(Ω) is a convex and continuous functional and thus
weakly lower semicontinuous. This is sufficient to conclude that

Jγ(π̄, µ̄1, c̄) = J (π̄, µ̄1) +
1

γ
∥c̄− cd∥pW 1,p(Ω)

≤ lim inf
k→∞

J (πnk
, µ1,nk

) + lim inf
k→∞

1

γ
∥cnk

− cd∥W 1,p(Ω)

≤ lim inf
k→∞

Jγ(πnk
, µ1,nk

, cnk
)

= lim
k→∞

Jγ(πnk
, µ1,nk

, cnk
) = inf

(π,µ1,c)∈F
Jγ(π, µ1, c),

where, for the latter two equations, we used (3.23). This shows that (π̄, µ̄1, c̄)
is not only feasible but also optimal for (BKδ

γ), concluding the proof.

Remark 3.27. The above proof, in particular step (iii), reveals that the con-
volution of a marginal with a fixed mollifier defines a compact operator from
M(Ω1) to L

2(Ωδ
1), or more general, a compact operator from M(X) to Lp(Rd)

for X ⊂ Rd compact and p ∈ (1,∞).
This is the crucial ingredient that allows us to ignore the missing weak∗

continuity of the solution operator of the regularized Kantorovich problem, see
Example 3.18, and still obtain the admissibility of the cluster point (π̄, µ̄1, c̄) for
the regularized bilevel problem. ◦

Now that we have found a positive answer to the well-posedness of the regu-
larized bilevel Kantorovich problem, we will investigate in the next subchapter
how we can approximate solutions of the non-regularized bilevel problem (BK)
by solutions of the regularized bilevel problem (BKδ

γ).

3.4 Approximation of Solutions to the Bilevel
Kantorovich Problem

In this subchapter we will show that, given suitably coupled vanishing sequences
of regularization and smoothing parameters, we can find cluster points of the
sequence of solutions to the corresponding regularized bilevel Kantorovich prob-
lems that are solutions to the non-regularized bilevel Kantorovich problem. In
other words, we can use optimal solutions of (BKδ

γ) to approximate optimal
solutions of (BK).
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To this end, assume that we are given sequences of nonnegative regulariza-
tion and smoothing parameters3 (γn)n∈N ⊂ R>0 and (δn)n∈N ⊂ R>0, respec-
tively, that satisfy γn, δn ↘ 0 as well as

0 < δn ≤ 1 for all n ∈ N and
γn
δdn
→ 0 as n→∞. (3.26)

For all n ∈ N, Theorem 3.26 ensures the existence of a solution (π̄n, µ̄1,n, c̄n)
to (BKδn

γn
). This defines a sequence (π̄n, µ̄1,n, c̄n)n∈N of regularized bilevel solu-

tions, which will be the subject of our upcoming analysis.

Remark 3.28. 1. The above defined sequence of regularized bilevel solu-
tions need not be unique as there may exist multiple solutions to each
regularized bilevel problem.

2. To simplify the notation, from now on we will equip all entities and vari-
ables that depend on either γn or δn (or both) only with the identifier n.
We write Sn instead of Sγn

, Ωn
1 instead of Ωδn

1 , (BKn) instead of (BKδn
γn
),

etc.
◦

On the one hand, owing to the feasibility of (π̄n, µ̄1,n) for (BKn), we find
that ∥µ̄1,n∥M(Ω1)

= 1 and

∥π̄n∥M(Ω) =

∫
Ω

π̃n dλ ≤
∫
Ωn

1

∫
Ωn

2

π̃n dλ2 dλ1 =

∫
Ωn

1

T n
1 (µ1,n) dλ1

= ∥φ1,n∥L1(Bn
1 )∥µ̄1,n∥M(Ω1)

+ δn|Ωn
1 ||Ωn

2 |

≤ 1 + |Ω1 +B(0; 1)| |Ω2 +B(0; 1)| <∞

(3.27)

for all n ∈ N, where π̃n again denotes the nonnegative solution to the regularized
Kantorovich problem (Kn) corresponding to π̄n via π̄n = E∗n(π̃n). We thus can
extract a subsequence (which we denote by the same symbol) and find a cluster
point (π̄, µ̄1) ∈M(Ω)×M(Ω1) such that

(π̄n, µ̄1,n) −−−−⇀
n→∞

∗ (π̄, µ̄1) in M(Ω)×M(Ω1).

On the other hand, for arbitrary but fixed µ1 ∈ P(Ω1), we consider, for
n ∈ N, the regularized optimal transport plans

πn =
(
En ◦ Sn

)(
En(cd), T n

1 (µ1), T n
2 (µd

2)
)
.

Then, the triple (πn, µ1, cd) is feasible for (BKn) and the sequence (πn, µ1)n∈N
is bounded in M(Ω)×M(Ω1), see (3.27). Due to the optimality of (π̄n, µ̄1,n, c̄n)
for (BKn),

J (π̄n, µ̄1,n) +
1

γn
∥c̄n − cd∥pW 1,p(Ω) = Jn(π̄n, µ̄1,n, c̄n)

≤ Jn(πn, µ1, cd) = J (πn, µ1)

3For instance, one could choose γn = n−2 and δn = n−1/d for all n ∈ N. These sequences
satisfy all of the requirements.
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and therefore after rearranging

∥c̄n − cd∥W 1,p(Ω) ≤ γn
1
p
(
J (πn, µ1)− J (π̄n, µ̄1,n)

) 1
p ≤ γ

1
p
n C

for all n ∈ N with some constant C > 0, because J is bounded on bounded
sets, see (3.4). Consequently, because γn → 0 as n→∞,

cn −−−−→
n→∞

cd in W 1,p(Ω).

Having found the cluster point (π̄, µ̄1, cd) of the sequence of regularized so-
lutions (π̄n, µ̄1,n, c̄n)n∈N, we are going to show that (π̄, µ̄1) is a solution the
non-regularized bilevel Kantorovich problem (BK). As one would expect, we
proceed in two steps:

1. Show that (π̄, µ̄1) is feasible for (BK). In particular, this requires to
show that π̄ is not only feasible but also optimal for the non-regularized
Kantorovich problem (K). This will be proven in Lemmas 3.30 – 3.33 and
requires the technical Assumption 3.29.

2. Show that (π̄, µ̄1) realizes the optimal value of (BK). This, however,
requires the existence of a so-called recovery sequence, see Theorem 3.34.

We begin with the first point and the already mentioned technical assumption.

Assumption 3.29. We assume that there is some ∆ > 0 such that supp(µ̄1,n)+
B(0;∆) ⊂ Ω1 for all n ∈ N and supp(µd

2) + B(0;∆) ⊂ Ω2, i.e., the marginals
that occur either as solutions of the regularized bilevel problems (BKn) or as the
fixed target marginal of (BK), are supported with a strictly positive distance
from the boundary of their corresponding domains.

That the above assumption is not very restrictive is discussed in Subchapter
3.4.1 below. We need it straight away for the proof of the next lemma, which
provides us with the feasibility of the cluster point (π̄, µ̄1) for the non-regularized
Kantorovich problem.

Lemma 3.30. Let (πn, µ1,n, cn)n∈N ⊂M(Ω)×M(Ω1)×W 1,p(Ω) be a sequence
of feasible points for the sequence of regularized bilevel problems (BKn)n∈N that
satisfies supp(µ1,n) + B(0;∆) ⊂ Ω1 for all n ∈ N. If (π, µ1) ∈M(Ω) ×M(Ω1)
is a weak∗ cluster point of the sequence (πn, µ1,n)n∈N, then π is a nonnegative
coupling between µ1 and µd

2 , i.e., π ≥ 0 and P1#π = µ1 as well as P2#π = µd
2 .

Proof. Recall that, for each n ∈ N, there is an optimal solution to (Kn) with
respect to T n

1 (µ1,n), T n
2 (µd

2), and E(cn), namely π̃, such that πn = E∗n(π̃n). The
nonnegativity of π can be shown with the same arguments as the nonnegativity
of µ̄1 in step (iii) of the proof of Theorem 3.26. We therefore consider this
proven and only verify the linear constraints of (K).

To this end, let ϕ1 ∈ C (Ω1) be arbitrary and consider an extension of ϕ1 to
Ω1 + B(0; 1), which we denote by E(ϕ1), that is continuous and is bounded by
the same constant C > 0 as ϕ1. This extension exists due to Tietze’s extension
theorem. Owing to (3.26),

Ωn
1 = Ω1 +B(0; δn) ⊂ Ω1 +B(0; 1)
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and therefore supx∈Ωn
1
|E(ϕ1)(x)| ≤ C for all n ∈ N. On the one hand, we find

that ∫
Ωn

E(ϕ1)π̃n dλ =

∫
Ω

ϕ1π̃n dλ+

∫
Ωn\Ω

E(ϕ1)π̃n dλ

= ⟨πn, ϕ1 ◦ P1⟩C (Ω)∗,C (Ω) + rn

with rn :=
∫
Ωn\Ω E(ϕ1)π̃n dλ. Because of (Ωn

1 ×Ωn
2 ) \ (Ω1×Ω2) =

(
(Ωn

1 \Ω1)×
Ωn

2

)
∪
(
Ωn

1 × (Ωn
2 \ Ω2)

)
4 and the feasibility of π̃n for (Kn) w.r.t. T n

1 (µ1,n) =
φ1,n ∗ µ1,n + δn|Ωn

2 | and T n
2 (µd

2) = φ2,n ∗ µd
2 + δn|Ωn

1 |,

|rn| ≤
∫
Ωn\Ω

|E(ϕ1)|π̃n dλ

≤
∫
(Ωn

1 \Ω1)×Ωn
2

|E(ϕ1)|π̃n dλ+
∫
Ωn

1 ×(Ωn
2 \Ω2)

|E(ϕ1)|π̃n dλ

≤ C
(∫

(Ωn
1 \Ω1)

∫
Ωn

2

π̃n dλ2 dλ1 +

∫
(Ωn

2 \Ω2)

∫
Ωn

1

π̃n dλ1 dλ2

)
= C

(∫
(Ωn

1 \Ω1)

(φ1,n ∗ µ1,n + δn|Ωn
2 |) dλ1

+

∫
(Ωn

2 \Ω2)

(φ2,n ∗ µd
2 + δn|Ωn

1 |) dλ2
)

for all n ∈ N. Assumption 3.29 together with Theorem A.3, guarantees that
supp(φ1,n ∗ µ1,n) ⊂ Ω1 and supp(φ2,n ∗ µd

2) ⊂ Ω2 for all n sufficiently large.
Hence, rn → 0 as n→∞. Taking advantage of the weak∗ convergence πn ⇀

∗ π
in M(Ω) and applying the transformation formula for push-forward measures,
see e.g. [9, Theorem 3.6.1.], we obtain that∫

Ωn

E(ϕ1)π̃n dλ → ⟨π, ϕ1 ◦ P1⟩C (Ω)∗,C (Ω) =
〈
P1#π, ϕ1

〉
C (Ω1)∗,C (Ω1)

(3.28)

as n→∞. On the other hand,∫
Ωn

E(ϕ1)π̃n dλ

=

∫
Ωn

1

E(ϕ1)(φ1,n ∗ µ1,n) dλ1 + δn|Ωn
2 |
∫
Ωn

1

E(ϕ1) dλ1 → ⟨µ1, ϕ⟩C (Ω1)∗,C (Ω1)
,

(3.29)

where we used Lemma A.5, the boundedness of E(ϕ1), and δn → 0 as n → ∞.
Comparing (3.28) with (3.29), we receive that〈

P1#π, ϕ1
〉
C (Ω1)∗,C (Ω1)

= ⟨µ1, ϕ1⟩C (Ω1)∗,C (Ω1)
for all ϕ1 ∈ C (Ω1),

i.e., P1#π = µ1. An analogous argument for arbitrary ϕ2 ∈ C (Ω2) yields that
P2#π = µd

2 .

4Caution: This decomposition is not disjoint!
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We now come to an important approximation result which eventually guar-
antees that the weak∗ cluster point π̄ is optimal for the Kantorovich problem
(K), which in combination with lemma 3.30 corresponds to its feasibility for the
bilevel problem (BK).

Its proof is based on the gluing lemma for measures and the equivalence of
convergence in the Wasserstein 1-metric and weak∗ convergence of measures on
compact sets.

Lemma 3.31. Let π ∈ Π(µ1, µ2) be a nonnegative coupling between the non-
negative marginals µ1 ∈M(Ω1) and µ2 ∈M(Ω2) and let (µ1,n)n∈N ⊂M(Ω1) be
a sequence of marginals such that µ1,n ⇀

∗ µ1 as n → ∞. Then there exists a
sequence of nonnegative couplings (πn)n∈N ⊂ Π(µ1,n, µ2) with πn ⇀

∗ π.

Proof. For each n ∈ N, there exists an optimal transport plan θn ∈ Π(µ1,n, µ1)
between µ1,n and µ1 with respect to the metric cost ∥x1 − y1∥ on Ω1. Following
[76, Lemma 7.6], there exists a nonnegative measure σn ∈ M(Ω1 × Ω1 × Ω2)
such that P12#σn = θn and P23#σn = π.

In the above and for the rest of the proof the mapping Pi : (x1, x2) 7→ xi,
i = 1, 2, refers to the projection of the tuple (x1, x2) to its i-th coordinate5 and

Pjk : Ω1 × Ω1 × Ω2 → Ω1 × Ωl, j, k = 1, 2, 3, j < k, l = k − 1,

refers to the projection onto the coordinates j and k.
Let us define

πn := P13#σn ∈ M(Ω1 × Ω2).

By construction, for all B1 ∈ B(Ω1),(
P1#πn

)
(B1) = σn

(
P−1
13

(
P−1
1 (B1)

))
= σn(B1 × Ω1 × Ω2)

= σn
(
P−1
12

(
P−1
1 (B1)

))
=
(
P1#θn

)
(B1) = µ1,n(B1)

and analogously, for all B2 ∈ B(Ω2),(
P2#πn

)
(B2) = σn(Ω1 × Ω1 ×B2) =

(
P2#π

)
(B2) = µ2(B2),

which yields that πn ∈ Π(µ1,n, µ2) as desired. The nonnegativity of πn directly
follows from the nonnegativity of σn.

The next argument, which we borrow from the proof of [10, Theorem 3.1],
shows the weak∗ convergence of the sequence (πn)n∈N towards π. We consider
the mapping

P1323 : Ω1 × Ω1 × Ω2 → Ω× Ω, (x1, y1, x2) 7→
(
(x1, x2), (y1, x2)

)
,

and define ζ := P1323#σn. We observe that ζ ∈M(Ω× Ω) and(
P1#ζ

)
(B) = ζ(B × Ω) = σn

(
P−1
1323(B × Ω)

)
= σn

(
P−1
13 (B)

)
= πn(B)

as well as(
P2#ζ

)
(B) = ζ(Ω×B) = σn

(
P−1
1323(Ω×B)

)
= σn

(
P−1
23 (B)

)
= π(B)

5Here and in contrast to the projection map from Definition 3.1, the projection Pi will
have the domains Ω1 × Ω1, Ω1 × Ω2, and Ω × Ω. To ease notation, we denote it in all three
cases by the same symbol.
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for all B ∈ B(Ω) so that ζ ∈ Π(πn, π). Again, the nonnegativity ζ directly
follows from the nonnegativity of σn. We then estimate that

0 ≤W1(πn, π) = inf
0≤θ∈Π(πn,π)

∫
Ω×Ω

∥x− y∥ dθ(x, y)

≤
∫
Ω×Ω

∥x− y∥ dζ(x, y)

≤ C
∫
Ω×Ω

∥x1 − y1∥ + ∥x2 − y2∥ d(P1323#σn)
(
(x1, x2), (y1, y2)

)
= C

∫
Ω1×Ω1×Ω2

∥x1 − y1∥ dσn(x1, y1, x2)

= C

∫
Ω1×Ω1

∥x1 − y1∥ d(P12#σn)(x1, y1)

= C

∫
Ω1×Ω1

∥x1 − y1∥ dθn = C ·W1(µ1,n, µ1),

with some C > 0 that only depends on d1 and d2. Because of the weak∗

convergence µ1,n ⇀
∗ µ1, we find that

0 ←−−−−
n→∞

W1(πn, π) ≤ C ·W1(µ1,n, µ1) −−−−→
n→∞

0

as n→∞ and therefore

πn −−−−⇀
n→∞

∗ π in M(Ω),

see e.g. [75, Theorem 6.9].

A quick calculation shows, that a suitably chosen smoothing of transport
plans preserves the linear constraints of (Kγ):

Lemma 3.32. Let µ1 ∈ M(Ω1), µ2 ∈ M(Ω2), and π ∈ M(Ω) be such that
Pi#π = µi for i = 1, 2. If we define, for δ > 0, the mollifier φδ := φδ

1⊗φδ
2, then∫

Ωδ
2

φδ ∗ π dλ2 = φδ
1 ∗ µ1 and

∫
Ωδ

1

φδ ∗ π dλ1 = φδ
2 ∗ µ2.

Proof. We will only check the first equation. The second equation then follows
analogously.

Let us begin by recalling that supp(φδ
2) ⊂ Bδ

2 , Ωδ
2 = Ω2 + Bδ

2 , and that∫
Bδ

2
φδ
2 dλ2 = 1. Hence, the definition of the convolution of φδ

1 ⊗ φδ
2 with π

together Fubini’s theorem yields that∫
Ωδ

2

(φδ ∗ π)(x1, x2) dx2 =

∫
Ωδ

2

∫
Ω

φδ
1(x1 − y1)φδ

2(x2 − y2) dπ(y1, y2) dx2

=

∫
Ω

φδ
1(x1 − y1)

∫
Ωδ

2

φδ
2(x2 − y2) dx2 dπ(y1, y2)

=

∫
Ω

φδ
1(x1 − y1) dπ(y1, y2)

∫
Bδ

2

φδ
2(x2) dx2

=

∫
Ω

φδ
1(x1 − P1(y1, y2)) dπ(y1, y2)
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=

∫
Ω1

φδ
1(x1 − y1) d(P1#π)(y1) = (φδ

1 ∗ µ1)(x1)

for all x1 ∈ Ωδ
1.

We are now able to prove the feasibility of the cluster point (π̄, µ̄1) of the
sequence of regularized solutions for the non-regularized bilevel problem.

Lemma 3.33. Let (πn, µ1,n, cn)n∈N ⊂M(Ω)×M(Ω1)×W 1,p(Ω) be a sequence
of feasible points for the sequence of regularized bilevel problems (BKn)n∈N which
satisfies supp(µ1,n) + B(0;∆) ⊂ Ω1 for all n ∈ N. If (π, µ1) ∈M(Ω) ×M(Ω1)
is a weak∗ cluster point of the sequence (πn, µ1,n)n∈N and cn → cd in W 1,p(Ω)
as n→∞, then (π, µ1) is feasible for (BK), i.e., µ1 ∈ P(Ω1) and π is optimal
for (K) with respect to the marginals µ1 and µd

2 as well as the cost function cd.

Proof. The properties of µ1 can be shown with the same arguments as in the
proof of Theorem 3.5. Therefore, we consider this done.

As we have already seen in Lemma 3.30, π is feasible for (K) with respect
to µ1 and µd

2 . Thus, it suffices to show its optimality w.r.t. cd. Let us recall the
target functionals of (K) and (Kn), namely

Kc(π) = ⟨π, c⟩C (Ω)∗,C (Ω) and Kn
c (π) = (c, π)L2(Ωn) +

γn
2
∥π∥2L2(Ωn),

respectively. We observe that

1. Kcn(πn)→ Kcd(π), since cn → cd in C (Ω) and πn ⇀
∗ π in M(Ω)6;

2. Kcn(πn) = (cn, π̃n)L2(Ω) for all n ∈ N, since πn has the density π̃n on Ω.

Given µ1, µ
d
2 , and cd, let π

∗ be an arbitrary optimal solution to (K), which
exists because of Lemma 3.3. Owing to Lemma 3.31, there exists a sequence
of nonnegative couplings (π∗

n)n∈N with π∗
n ∈ Π(µ1,n, µ

d
2) for all n ∈ N that

converges weakly∗ towards π∗. With the mollifier φn, which we introduced in
Lemma 3.32, we define

π̃∗
n := φn ∗ π∗

n + δn > 0

to receive that ∫
Ωn

2

π̃∗
n dλ2 = φ1,n ∗ µ1,n + δn|Ωn

2 | = T n
1 (µ1,n)

and ∫
Ωn

1

π̃∗
n dλ1 = φ2,n ∗ µd

2 + δn|Ωn
1 | = T n

2 (µd
2).

Hence, π̃∗
n is feasible for the regularized Kantorovich problem (Kn) with respect

to the marginals T n
1 (µ1,n) and T n

2 (µd
2).

Let us recall that En(cn) is the trivial extension of cn to Ωn. Consequently,

Kcn(πn) = (cn, π̃n)L2(Ω)

≤ (En(cn), π̃n)L2(Ωn) +
γn
2
∥π̃n∥2L2(Ωn) = K

n
En(cn)

(π̃n)

6This comes straight from the properties of the dual product, see the proof of Lemma A.5.



44 CHAPTER 3. THE BILEVEL KANTOROVICH PROBLEM

for all n ∈ N. Combining all of the above with the optimality of π∗ and π̃n for
(K) and (Kn), respectively, we receive that

Kcd(π
∗) ≤ Kcd(π) = lim

n→∞
Kcn(πn) ≤ lim inf

n→∞
Kn

En(cn)
(π̃n) ≤ lim inf

n→∞
Kn

En(cn)
(π̃∗

n).

(3.30)
It remains to show that

(i) limn→∞(En(cn), π̃∗
n)L2(Ωn) = ⟨π∗, cd⟩C (Ω)∗,C (Ω) = Kcd(π

∗),

(ii) limn→∞
γn

2 ∥π̃
∗
n∥

2
L2(Ωn) = 0.

Inserting (i) and (ii) into (3.30) reveals that

Kcd(π
∗) ≤ Kcd(π) ≤ lim inf

n→∞
Kn

En(cn)
(π̃∗

n)

= lim
n→∞

(
(En(cn), π̃∗

n)L2(Ωn) +
γn
2
∥π̃∗

n∥
2
L2(Ωn)

)
= Kcd(π

∗)

and therefore Kcd(π) = Kcd(π
∗), which yields the proposed optimality of π for

(K).

Ad (i): By assumption and Lemma C.1, for any n ∈ N, the support of the
coupling π∗

n (transporting µ1,n onto µd
2) has a strictly positive distance to the

boundary of Ω. Consequently, there exists a compact subset K ⊂ Ω with strictly
positive distance to the boundary of Ω and supp(π∗

n) ⊂ K. The definition of π̃∗
n

in conjunction with Fubini’s theorem then yields that

(En(cn), π̃∗
n)L2(Ωn) =

∫
Ωn

En(cn)(φn ∗ π∗
n) dλ+ δn

∫
Ωn

En(cn) dλ

=

∫
Ω

∫
Ωn

En(cn)(x)φn(x− y) dx dπ∗
n(y)+ rn

=

∫
K

∫
Ω∩B(y;δn)

cn(x)φn(x− y) dx dπ∗
n(y)+ rn,

(3.31)

with the remainder term

rn := δn

∫
Ωn

En(cn) dλ = δn

∫
Ω

cn dλ → 0 ·
∫
Ω

cd dλ = 0, (3.32)

owing to δn ↘ 0 and the uniform convergence cn → cd for n→∞. Choosing n
large enough, we find that

supp
(
φn( · − y)

)
⊂ B(y; δn) ⊂ Ω for all y ∈ K.

Using this and
∫
B(y;δn)

φn(x− y) dx = 1 yields that

sup
y∈K

∣∣∣∣∣
∫
Ω∩B(y;δn)

cn(x)φn(x− y) dx− cd(y)

∣∣∣∣∣
≤ sup

y∈K

∫
B(y;δn)

|cn(x)− cd(y)|φn(x− y) dx

≤ sup
y∈K

max
x∈B(y;δn)

|cn(x)− cd(y)|
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≤ max
x∈Ω
|cn(x)− cd(x)|+ sup

y∈K
max

x∈B(y;δn)
|cd(x)− cd(y)|.

As n→∞, the first summand in the last line of above’s estimate vanishes due
to the uniform convergence cn → cd in C (Ω). Likewise, the second summand
vanishes, because according to the Heine-Cantor theorem the continuous func-
tion cd is actually uniform continuous on the compact set Ω, i.e., for each ε > 0,
there exists some ρ > 0 so that

|cd(x)− cd(y)| < ε as long as ∥x− y∥ < ρ.

Consequently, for n large enough, ∥x− y∥ < ρ for all x ∈ B(y; δn) and all y ∈ K
and thus

sup
y∈K

max
x∈B(y;δn)

|cd(x)− cd(y)| < ε.

Altogether, this shows that∫
Ω∩B(y;δn)

cn(x)φn(x− · ) dx C (K)−−−−→
n→∞

cd,

which, in conjunction with the weak∗ convergence π∗
n ⇀

∗ π∗ inM(K) and (3.31)
as well as (3.32), implies that

(En(cn), π̃∗
n)L2(Ωn) −−−−→n→∞

⟨π∗, cd⟩C (K)∗,C (K) = ⟨π
∗, cd⟩C (Ω)∗,C (Ω)

as claimed.

Ad (ii): We first note that supp(φn) ⊂ Bn
1 ×Bn

2 =: Bn and that

Ωn = (Ω1 +Bn
1 )× (Ω2 +Bn

2 ) = (Ω1 × Ω2) + (Bn
1 ×Bn

2 ) = Ω +Bn,

where Bn
i = B(0; δn) ⊂ Rdi , for i = 1, 2. We then apply Theorem A.3 and

Lemma A.4 to estimate

γn
2
∥π̃∗

n∥
2
L2(Ωn) ≤ γn∥φn ∗ π∗

n∥
2
L2(Ωn) + rn

≤ γn∥φn∥2L2(Bn)
∥π∗

n∥
2
M(Ω) + rn

= γn∥φ1,n∥2L2(Bn
1 )∥φ2,n∥2L2(Bn

2 ) + rn.

Obviously, rn := γnδ
2
n|Ωn| → 0 as γn, δn ↘ 0. For i = 1, 2, we use Hölder’s

inequality to estimate that

∥φi,n∥2L2(Bn
i ) =

∫
Bn

i

(
φi,n

)2
dλi ≤ ∥φi,n∥L1(Bn

i )∥φi,n∥L∞(Bn
i ) = φi,n(0) =

Ci

δdi
n

,

where Ci := ki exp(−1) > 0, see Definition 3.12. Combining those estimates, we
observe that

γn
2
∥π̃∗

n∥L2(Ωn) ≤ γn
C1C2

δdn
+ rn → 0 as

γn
δdn
→ 0,

see (3.26). This concludes the proof.
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Now, if we presuppose the existence of a so-called recovery sequence, we
can show that the cluster point (π̄, µ̄1) of the sequence of regularized solutions
(π̄n, µ̄1,n)n∈N is optimal for the non-regularized bilevel Kantorovich problem:

Theorem 3.34. Let (π∗, µ∗
1) be a solution to the bilevel problem (BK) that is

accompanied by a recovery sequence, i.e., a sequence (π∗
n, µ

∗
1,n, c

∗
n)n∈N ⊂ P(Ω)×

P(Ω1)×W 1,p(Ω) such that

1. (π∗
n, µ

∗
1,n, c

∗
n) is feasible for (BKn) for all n ∈ N,

2. lim supn→∞ Jn(π∗
n, µ

∗
1,n, c

∗
n) ≤ J (π∗, µ∗

1).

Then the weak∗ cluster point (π̄, µ̄1) of the sequence of regularized solutions
(π̄n, µ̄1,n)n∈N is also a solution to (BK).

Proof. Thanks to our preparatory work and the properties of the recovery se-
quence, the proof is fairly short. With a slight abuse of notation, we denote by
(π̄n, µ̄1,n)n∈N the subsequence that converges weakly∗ towards (π̄, µ̄1). Because
of the presupposed weak∗ lower semicontinuity of the target functional, we have

J (π̄, µ̄1) ≤ lim inf
n→∞

J (π̄n, µ̄1,n)

≤ lim inf
n→∞

J (π̄n, µ̄1,n) +
1

γn
∥c̄n − cd∥pW 1,p(Ω) = lim inf

n→∞
Jn(π̄n, µ̄1,n, c̄n).

Because of the optimality of (π̄n, µ̄1,n, c̄n) for (BKn), we observe that

J (π̄, µ̄1) ≤ lim inf
n→∞

Jn(π̄n, µ̄1,n, c̄n) ≤ lim sup
n→∞

Jn(π∗
n, µ

∗
1,n, c

∗
n) ≤ J (π∗, µ∗

1).

Thanks to Lemma 3.33, (π̄, µ̄1) is feasible and because of (π∗, µ∗
1)’s optimality

also optimal for (BK).

Remark 3.35. In the context of the above result it is worth emphasizing that

1. the existence of a single recovery sequence implies the optimality of every
cluster point (according to the arguments given at the beginning of this
subchapter, several may exist) of the sequence of regularized solutions;

2. the notion of recovery sequences is closely related to the notion of Γ-
convergence of functionals, since the former is essentially just a special
case of the latter.

◦
The proof of Theorem 3.34 shows that the cluster point of the sequence

of regularized solutions must only provide feasibility for the non-regularized
bilevel problem; its optimality is almost completely (aside from the lower semi-
continuity of the objective function) ensured by the existence of the recovery
sequence. This indicates that requiring an optimum that is accompanied by a
recovery sequence is a strong assumption that may not be satisfied in general.

There are at least some cases where one can prove the existence of a recovery
sequence and, consequently, the optimality of cluster points of the sequence
of regularized solutions. A special case in which we can explicitly construct
a recovery sequence even in the infinite-dimensional case will be covered in
Subchapter 3.5.

First, however, we will convince ourselves in the following subchapter that
Assumption 3.29 on the support of the marginals is not very restrictive.
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3.4.1 Relaxation of the Assumption on the Support of the
Marginals

The purpose of this subchapter is to ensure that the conditions of Assumption
3.29 can always be satisfied and therefore are not a real constraint.

To recall, we assumed at the beginning of Subchapter 3.1 that there exists
some distance parameter ∆ > 0 such that the extension domain

Ω∆ = Ω∆
1 × Ω∆

2 , where Ω∆
i = Ωi +B(0;∆) for i = 1, 2,

has a locally Lipschitz boundary. Moreover, the target functional J has an
extension J∆ : M(Ω∆)×M(Ω∆

1 )→ R∪ {+∞} that is weak∗ lower semicontin-
uous, bounded ob bounded sets, and coincides with J for all measures π and
µ1 that are supported in Ω or Ω1, respectively, see (3.5).

We define the (trivial) extension of µd
2 to the domain Ω∆

2 by

µ∆
2 (B) := µd

2(B ∩ Ω2) for all B ∈ B(Ω∆
2 ).

Moreover, let [c∆] ∈ W 1,p(Ω∆) be an extension of [cd] to Ω∆ and denote by
c∆ the continuous representative of [c∆]. This extension and its continuous
representative exist, because Ω and Ω∆ have Lipschitz boundaries, see e.g. [1,
Theorems 5.24 & 6.3, Part IV], respectively.

Having defined the above auxiliary data, we now consider the regularized
relaxing bilevel Kantorovich problem

inf
π,µ1,c

J∆
γ (π, µ1, c) := J∆(π, µ1) +

1
γ ∥c− c

∆∥p
W 1,p(Ω∆)

s.t. c ∈W 1,p(Ω∆), µ1 ∈ P(Ω∆
1 ), supp(µ1) +B(0;∆) ⊂ Ω∆

1 ,

π =
(
E∗δ ◦ Sγ

)(
Eδ(c), T δ

1 (µ1), T δ
2 (µ

∆
2 )
)
.

(RBKδ
γ)

Remark 3.36. 1. Comparing (RBKδ
γ) with (BKδ

γ), we observe that (RBK
δ
γ)

is defined on the larger domains Ω∆
1 , Ω

∆
2 , and Ω∆ who have all the same

properties (i.e., non-emptiness, compactness, Lipschitz boundary of the
Cartesian product) as their counterparts from Subchapter 3.1. We there-
fore can and will use the results of Subchapters 3.1 – 3.4 in the upcoming
proofs.

2. Since Ω2 is closed, for any x ∈ Ω∆
2 \ Ω2 there exists an open (w.r.t. Ω∆

2 )
neighborhood N of x such that N ∩ Ω2 = ∅. Consequently, µ∆

2 (N) =
µd
2(∅) = 0 so that x /∈ supp(µ∆

2 ). Thus, supp(µ∆
2 ) ⊂ Ω2 and supp(µ∆

2 ) +
B(0;∆) ⊂ Ω∆

2 . Analogously, if µ1 ∈M(Ω∆
1 ) is feasible for (RBKδ

γ), then

supp(µ1)+B(0;∆) ⊂ Ω∆
1 . Hence, an analogous assumption to Assumption

3.29 would be satisfied in the context of (RBKδ
γ).

◦
We are going to show that the relaxing regularized bilevel problem (RBKδ

γ)
admits a solution. First, however, we need the following lemma.

Lemma 3.37. Consider a sequence of marginals (µ1,n)n∈N ⊂M(Ω∆
1 ) satisfying

both µ1,n ⇀
∗ µ1 ∈ M(Ω∆

1 ) as n → ∞ and supp(µ1,n) + B(0;∆) ⊂ Ω∆
1 for all

n ∈ N. Then µ1 is nonnegative and supp(µ1) +B(0;∆) ⊂ Ω∆
1 , i.e., the set

{ν ∈M(Ω∆
1 ) : ν ≥ 0, supp(ν) +B(0;∆) ⊂ Ω∆

1 }

is closed w.r.t. weak∗ convergence.



48 CHAPTER 3. THE BILEVEL KANTOROVICH PROBLEM

Proof. We first note that the nonnegativity of µ1 follows from the exact same
arguments as the nonnegativity of µ̄1 in the proof of Theorem 3.26. Therefore,
we consider this done.

Moreover, for arbitrary n ∈ N,

supp(µ1,n) ⊂ Ω∆
1 \

(
∂Ω∆

1 +B(0;∆)
)
=:M. (3.33)

If the inclusion in (3.33) were not true, we could find x ∈ supp(µ1,n) ⊂ Ω∆
1 as

well as a ∈ ∂Ω∆
1 and b ∈ B(0;∆) such that x = a+ b. In particular, b = x− a.

We would then define b̃ := −b + αn⃗ with α := (∆ − ∥b∥)/2 > 0 and n⃗ being
some normalized outward pointing vector at the point a, which exists because
∂Ω∆

1 locally takes the form of the graph of a Lipschitz continuous function.
Obviously7, ∥b̃∥ ≤ ∥b∥ + (∆ − ∥b∥)/2 < ∆ and x+ b̃ = a+ αn⃗ /∈ Ω∆

1 . Clearly, the
latter contradicts supp(µ1,n) +B(0;∆) ⊂ Ω∆

1 , so that (3.33) must be true.
We are now going to show that supp(µ1) ⊂ M . We argue by contradiction

and assume that there exists a point x ∈ supp(µ1) with x /∈ M . Being the
difference of a closed and an open set, M is closed. Hence, we can find a ρ > 0
such that B(x; ρ) ∩ M = ∅. By definition of supp(µ1), we find that

κ := µ1

(
B(x; ρ/2)

)
≥ µ1

(
B(x; ρ/2)

)
> 0.

Given m ∈ N, Urysohn’s lemma guarantees the existence of a continuous
function ϕm : Ω∆

1 → [0, 1] with

ϕm ≡

{
1, on Ω∆

1 ∩B(x; ρ/2),

0, on Ω∆
1 \B(x; ρ/2 + 1/m).

On the one hand, for all m ∈ N, we apply the weak convergence µ1,n ⇀
∗ µ1 to

find ∫
Ω∆

1

ϕm dµ1,n −−−−→
n→∞

∫
Ω∆

1

ϕm dµ1 ≥
∫
B(x;ρ/2)

ϕm dµ1 = κ

and therefore ∫
Ω∆

1

ϕm dµ1,n ≥
κ

2
for all n ∈ N sufficiently large. (3.34)

On the other hand, for all n ∈ N,∫
Ω∆

1

ϕm dµ1,n = 0 for all m ∈ N sufficiently large, (3.35)

because B(x; ρ/2+1/m)∩M = ∅, ifm > 2/ρ, and supp(µ1,n) ⊂M . Clearly, (3.34)
and (3.35) contradict each other. Therefore, it must hold that supp(µ1) ⊂ M
and

supp(µ1) +B(0;∆) ⊂ M +B(0;∆) ⊂ intΩ∆
1 ⊂ Ω∆

1

as claimed.

7Technically, x+ b̃ ∈ Ω∆
1 could be true, if Ω∆

1 is non-convex and has a notch. However, in
this case we can ensure the correctness of the argumentation by an additional scaling of the
direction n⃗.
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Theorem 3.38. Considering the above assumptions on the domains, the target
marginal, the cost function, and the target functional, for arbitrary γ > 0 and
δ > 0, there exists at least one optimal solution to (RBKδ

γ).

Proof. Analogous to the proof of Theorem 3.26, we choose a point x̂ ∈ Ω1 and
set µ̂1 := δx̂ ∈ P(Ω∆

1 ) to be the Dirac measure of x̂ in Ω∆
1 . By construction,

supp(µ̂1) +B(0;∆) = {x̂}+B(0;∆) ⊂ Ω∆
1 ,

i.e., feasibility of µ̂1 for (RBKδ
γ). We then again argue that the feasible set of

(RBKδ
γ) is non-empty and thus contains a minimizing sequence (πn, µ1,n, cn)n∈N.

Regardless of the additional constraint on µ1,n, this sequence is still bounded
and we can extract a subsequence (which we denote by the same symbol again)
such that

(πn, µ1,n) ⇀∗ (π̄, µ̄1) in M(Ω∆)×M(Ω∆
1 ) and cn ⇀ c̄ in W 1,p(Ω∆)

as n→∞. Lemma 3.37 then yields that µ̄1 ≥ 0 and supp(µ̄1) +B(0;∆) ⊂ Ω∆
1 .

With the usual arguments, we can then show that µ̄1 ∈ P(Ω∆
1 ) so that the

cluster point µ̄1 is feasible for (RBKδ
γ).

The rest of the proof of Theorem 3.26 then carries, independently of the
supports of µ̄1 or µ1,n for any n ∈ N, over to the case of (RBKδ

γ).

In the following, we are going to see that we can use the solutions of the
relaxing regularized bilevel Kantorovich problems (RBKδ

γ) to approximate so-
lutions to a bilevel problem that is very similar to (BK).

To this end, we once again choose sequences of regularization and smooth-
ing parameters (γn)n∈N and (δn)n∈N, respectively, which satisfy the relation in
(3.26). As was the case in Subchapter 3.4 we denote, for n ∈ N, the (possi-
bly nonunique) solution to (RBKδn

γn
) by (π̄n, µ̄1,n, c̄n). By repeating the same

arguments, we can find a cluster point (π̄, µ̄1) ∈M(Ω∆)×M(Ω∆
1 ) such that

(π̄n, µ̄1,n)⇀
∗ (π̄, µ̄1) in M(Ω∆)×M(Ω∆

1 )

and, moreover, that
c̄n → c∆ in W 1,p(Ω∆).

Theorem 3.39. The cluster point (π̄, µ̄1) is feasible for the relaxing bilevel
Kantorovich problem

inf
π,µ1

J∆(π, µ1)

s.t. µ1 ∈ P(Ω∆
1 ), supp(µ1) +B(0;∆) ⊂ Ω∆

1 ,

π ∈ argmin
{∫

Ω∆ c
∆ dθ : θ ∈ Π(µ1, µ

∆
2 ), θ ≥ 0

}
.

(RBK)

Moreover, if there exists a solution (π∗, µ∗
1) to the relaxing bilevel problem (RBK)

which is accompanied by a recovery sequence, i.e., a sequence (π∗
n, µ

∗
1,n, c

∗
n)n∈N ⊂

M(Ω∆)×M(Ω∆
1 )×W 1,p(Ω∆) such that

1. (π∗
n, µ

∗
1,n, c

∗
n) is feasible for (RBKδn

γn
) for all n ∈ N,

2. lim supn→∞ J∆
γn
(π∗

n, µ
∗
1,n, c

∗
n) ≤ J∆(π∗, µ∗

1),

then (π̄, µ̄1) is optimal for (RBK).
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Proof. As was the case in Subchapter 3.4, we denote all variables and entities
only by the identifier n, if they depend on γn and/or δn, see Remark 3.28.

The constraints of (RBKn) ensure that supp(µ̄1,n) + B(0;∆) ⊂ Ω∆
1 for all

n ∈ N, and, by the construction of µ∆
2 at the beginning of this subchapter,

supp(µ∆
2 ) +B(0;∆) ⊂ Ω∆

2 .
Because the sequence of relaxing regularized solutions (π̄n, µ̄1,n, c̄n)n∈N is

not only feasible for the sequence of problems (RBKn)n∈N but also for the
sequence of problems (BKn)n∈N w.r.t. the domains Ω∆

1 , Ω
∆
2 , and Ω∆ as well as

the data c∆ and µ∆
2 , Lemma 3.33 yields that (π̄, µ̄1) is feasible for (BK) w.r.t.

the extended domains and data, i.e., µ̄1 ∈ P(Ω∆
1 ) and π̄ is both feasible for (K)

w.r.t. µ̄1 and µ∆
2 and optimal w.r.t. c∆. Moreover, Lemma 3.37 implies that

supp(µ̄1) +B(0;∆) ⊂ Ω∆
1 so that (π̄, µ̄1) is a feasible point for (RBK).

The proof of Theorem 3.34 directly translates into the setting of (RBK):
because of the weak∗ lower semicontinuity of J∆, we find that

J∆(π̄, µ̄1) ≤ lim inf
n→∞

J∆(π̄n, µ̄1,n) +
1

γn
∥c̄n − c∆∥pW 1,p(Ω∆)

= lim inf
n→∞

J∆
n (π̄n, µ̄1,n, c̄n).

Because of the optimality of (π̄n, µ̄1,n, c̄n) for (RBKn) and the properties of the
recovery sequence,

J∆(π̄, µ̄1) ≤ lim inf
n→∞

J∆
n (π̄n, µ̄1,n, c̄n)

≤ lim sup
n→∞

J∆
n (π∗

n, µ
∗
1,n, c

∗
n) ≤ J∆(π∗, µ∗

1),

i.e., optimality of (π̄, µ̄1).

It remains to argue that the problems (BK) and (RBK) are not only similar
but also, in some sense, equivalent.

Lemma 3.40. The bilevel Kantorovich problem (BK) is equivalent to the re-
laxing bilevel Kantorovich problem (RBK) in the sense that

– if π and µ1 solve (BK), then their trivial extensions π∆ and µ∆
1 solve

(RBK) and

– if π̃ and µ̃1 solve (RBK), then their restrictions π̃|M(Ω) and µ̃1|M(Ω1) solve
(BK).

Proof. We first convince ourselves that there is a one-to-one correspondence
between the feasible sets of (BK) and (RBK). To this end, consider some
arbitrary µ1 ∈ M(Ω1) and its trivial extension which is defined by µ∆

1 (B1) :=
µ1(B1 ∩ Ω1) for all B1 ∈ B(Ω∆

1 ).
On the one hand, given some coupling θ ∈ Π(µ1, µ

d
2) with θ ≥ 0, we consider

its trivial extension θ∆(B) := θ(B ∩ Ω) for all B ∈ B(Ω∆). By construction,
θ∆ ≥ 0 and

θ∆(B1 × Ω∆
2 ) = θ

(
(B1 × Ω∆

2 ) ∩ (Ω1 × Ω2)
)

= θ
(
(B1 ∩ Ω1)× (Ω∆

2 ∩ Ω2)
)
= µ1(B1 ∩ Ω1) = µ∆

1 (B1)

for all B1 ∈ B(Ω∆
1 ). Analogously, we find that θ∆(Ω∆

1 × B2) = µ∆
2 (B2) for all

B2 ∈ B(Ω∆
2 ), so that θ∆ ∈ Π(µ∆

1 , µ
∆
2 ).
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On the other hand, given some coupling θ̃ ∈ Π(µ∆
1 , µ

∆
2 ) with θ̃ ≥ 0, we

consider its restriction θ̃|M(Ω) : B(Ω) ∋ B 7→ θ̃(B) ∈ R+. By construction, for
i = 1, 2, supp(µ∆

i ) ⊂ Ωi, see the arguments in the second part of Remark 3.36.
Lemma C.1 then ensures that

supp(θ̃) ⊂ supp(µ∆
1 )× supp(µ∆

2 ) ⊂ Ω1 × Ω2 = Ω.

Because, for arbitrary B1 ∈ B(Ω1),(
B1 × (Ω∆

2 \ Ω2)
)
∩ supp(θ̃) = ∅,

Lemma B.18 yields that θ̃
(
B1 × (Ω∆

2 \ Ω2)
)
= 0 and we find that

θ̃|M(Ω)(B1 × Ω2) = θ̃(B1 × Ω2) = θ̃(B1 × Ω∆
2 ) = µ∆

1 (B1) = µ1(B1).

Analogously, θ̃|M(Ω)(Ω1 × B2) = µd
2(B2) for all B2 ∈ B(Ω2), so that θ̃|M(Ω) ∈

Π(µ1, µ
d
2). This shows that there is a one-to-one correspondence between the

sets {θ ∈ Π(µ1, µ
d
2) : θ ≥ 0} and {θ̃ ∈ Π(µ∆

1 , µ
∆
2 ) : θ̃ ≥ 0} via the trivial extension

to Ω∆ and its inverse, the restriction to Ω.
Moreover, given θ ∈ Π(µ1, µ

d
2) and θ

∆ ∈ Π(µ∆
1 , µ

∆
2 ), we observe that∫

Ω∆

c∆ dθ∆ =

∫
Ω∆\Ω

c∆ dθ∆ +

∫
Ω

c∆ dθ∆ =

∫
Ω

cd dθ,

because supp(θ∆) ⊂ Ω and c∆ was defined to coincide with cd on Ω, see its def-
inition at the beginning of this subchapter. This shows that if (π, µ1) is feasible
for (BK), then (π∆, µ∆

1 ) is feasible for (RBK). Repeating the same argument for
(π̃, µ̃1) and its restriction (π̃|M(Ω), µ̃1|M(Ω1)) then proves the claimed one-to-one
correspondence from the beginning of this proof.

Realizing that the values of the upper-level target functionals J and J∆ co-
incide for each pair (π, µ1) and (π∆, µ∆

1 ) as well as (π̃, µ̃1) and (π̃|M(Ω), µ̃1|M(Ω1))
then establishes the assertion of the lemma.

To summarize, we have shown that Assumption 3.29 from Subchapter 3.4 is
by no means a limitation for the analysis performed there: we can always resort
to a similar problem on a larger domain that guarantees said assumption and
perform the approximation for that problem. In the end, we obtain a solution
to a problem that is actually equivalent to the non-regularized bilevel problem
and we even know how to convert the solutions into each other.

In the following subchapter, we will finally present a setting for which we
can guarantee the existence of a (trivial) recovery sequence and therefore the
approximation property we have seen in Theorem 3.34.

3.5 Existence of a Recovery Sequence for the
Bilevel Kantorovich Problem

As announced at the end of the previous subchapter, we now present a setting
in which we can guarantee the existence of an optimal solution for (BK) that is
accompanied by a recovery sequence, as has been assumed in Theorem 3.34.

We again consider the setting of Subchapter 3.4, i.e., we assume that we
are given suitably coupled vanishing sequences of regularization parameters and
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smoothing parameters, (γn)n∈N and (δn)n∈N, respectively, as well as a sequence
of regularized solutions (πn, µ1,n, cn)n∈N to the sequence of problems (BKδn

γn
)n∈N

which has the cluster point (π̄, µ̄1, cd) w.r.t. the right topologies.

Corollary 3.41. Assume that Ω1 = Ω2 and that µd
2 is absolutely continu-

ous w.r.t. λ2. Moreover, assume that (BK)’s cost function cd takes the form
cd(x1, x2) = ∥x1 − x2∥ρ, for some ρ > 1, and that the objective J : M(Ω) ×
M(Ω1) → R ∪ {+∞} is, in addition to its other properties, weak∗ continuous
w.r.t. π.

Then, the cluster point (π̄, µ̄1) is an optimum of the non-regularized bilevel
Kantorovich problem (BK).

Remark 3.42. There are a few points in the formulation of Corollary 3.41 that
need some additional notes.

– The assumption on the domains automatically implies that d1 = d2, λ1 =
λ2, as well as B(Ω1) = B(Ω2).

– A measure µ is said to be absolutely continuous w.r.t. some other measure
ν if it holds that µ(B) = 0 for every measurable set B with ν(B) = 0.

– The cost function cd is strictly convex, symmetric, and superlinear in the
sense of [76, p. 90].

– The weak∗ continuity of J w.r.t. π still allows the target functional to be
only (weak∗) semicontinuous w.r.t. to its second variable.

◦
Proof of Corollary 3.41. According to Theorem 3.5, there exists a solution of
(BK) which we denote by (π∗, µ∗

1). Following the argumentation in Subchapter
3.4.1, we may assume that supp(µ∗

1) + B(0;∆) ⊂ Ω1. [76, Theorem 2.44] in
combination with Lemma C.2 guarantees that π∗ must be the unique optimal
transport plan between µ∗

1 and µd
2 w.r.t. the cost cd. We define

(µ∗
1,n, c

∗
n) := (µ∗

1, cd) and π∗
n :=

(
E∗n ◦ Sn

)(
En(cd), T n

1 (µ∗
1), T n

2 (µd
2)
)

for all n ∈ N. By construction, the sequence (π∗
n, µ

∗
1,n, c

∗
n)n∈N is feasible for the

sequence of problems (BKδn
γn
)n∈N.

Applying Lemma 3.33 to the sequence (π∗
n, µ

∗
1,n, c

∗
n)n∈N, extracting a sub-

sequence (which we denote by the same symbol), and taking advantage of the
uniqueness of π∗, we obtain that π∗

n ⇀
∗ π∗ as n→∞. The weak∗ continuity of

J w.r.t. π is then sufficient to show that (π∗
n, µ

∗
1,n, c

∗
n)n∈N is an accompanying

recovery sequence for the optimum (π∗, µ∗
1). Theorem 3.34 then establishes the

statement of the corollary.

Remark 3.43. Inspecting the presented proofs of the lemmas and theorems
of the current chapter, we note that at no point there was a need to actually
choose a cost function other than the fixed cost cd. Even in the construction of
the recovery sequence in the above proof, it is sufficient to fix the cost function
to cd.

However, this will change in Part II of this thesis. In Subchapter 4.5 of the
finite-dimensional case, we will see an example of a comparable but slightly more
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general setting than the one presented in Corollary 3.41, where we will indeed
need the cost function to be an optimization variable to prove the existence of
a recovery sequence.

It is therefore not unreasonable to assume that the ability to use the cost
function as an optimization variable may prove to be handy in other infinite-
dimensional examples, apart from the (trivial) setting of Corollary 3.41. ◦

We conclude the present part of this thesis by presenting two examples of
relevant applications, where the assumptions of Corollary 3.41 and the assump-
tions on the target functional from (3.3) – (3.5) are fulfilled. The first example
is the infinite-dimensional analogon of the transportation identification prob-
lem (TIP) which we motivated in Chapter 1 and which we will consider as our
numerical test case in Chapter 6.

Example 3.44. Consider the setting described in Corollary 3.41. Given p >
d1 + d2, p

′ = p/p − 1, as well as some non-empty open set D ⊂ Ω that has a
locally Lipschitz boundary, an example for a weak∗ continuous (w.r.t. the first
variable) target functional is given by the tracking-type target functional

J (π, µ1) = ∥π − πd∥W−1,p′ (D) +
∥∥µ1 − µd

1

∥∥
M(Ω1)

,

where πd ∈M(D) and µd
1 ∈M(Ω1) are given data.

That J indeed is weak∗ continuous, can be seen as follows. We know from [1,
Theorem 6.3] thatW 1,p

0 (D) embeds compactly in C0(D). Conversely, Schauder’s
theorem for adjoint operators, see e.g. [50, Theorem 8.2-5], yields that

M(D) ∼=
(
C0(D)

)∗ c
↪→
(
W 1,p

0 (D)
)∗ ∼= W−1,p′

(D).

Therefore, if πn ⇀
∗ π in M(D), then πnk

→ π̃ in W−1,p(D) along some subse-
quence (nk)k∈N. At the same time, πnk

⇀∗ π in W−1,p(D). Because the weak∗

limit is unique, π̃ = π. If we apply this argument to an arbitrary subsequence
of (πn)n∈N, Lemma D.5 guarantees that πn → π in W−1,p∗

(D) and therefore
∥πn − πd∥W−1,p′ (D) → ∥π − πd∥W−1,p′ (D) as n→∞.

To see that this already yields the weak∗ continuity of J w.r.t. π, we observe
that restricting a sequence (πn)n∈N ⊂ M(Ω) to M(D) is a (weak∗) continuous
operation: if πn ⇀

∗ π in M(Ω), we find for arbitrary ϕ ∈ C0(D) that

⟨πn|M(D), ϕ⟩M(D),C0(D) =

∫
D

ϕ dπn|M(D)

=

∫
Ω

E(ϕ) dπn →
∫
Ω

E(ϕ) dπ = ⟨π|M(D), ϕ⟩M(D),C0(D)

as n → ∞, where E(ϕ) denotes the trivial (continuous) extension of ϕ to Ω.
Note that this argument fails, if D is closed. In this case, ϕ ∈ C0(D) = C (D)
does in general not have a continuous extension to Ω that leaves the value of
the integral unchanged when transitioning to the larger domain. The sequence
defined by πn := δxn

, where the sequence of points (xn)n∈N ⊂ Ω \D converges
to some x ∈ D, provides an easy counterexample.
J ’s boundedness on bounded sets and its weak∗ lower semicontinuity are

evident from the properties of the norms on M(Ω1) and W
−1,p′

(D), see Lemma
D.4, and the compactness of the embedding of M(D) into W−1,p′

(D).
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An extension of J to M(Ω∆) ×M(Ω∆
1 ) in the sense of Subchapter 3.1 is

given by

J∆(π, µ1) = ∥π − πd∥W−1,p′ (D) + ∥µ1 − µd,∆
1 ∥M(Ω∆

1 ),

where µd,∆
1 ∈ M(Ω∆

1 ) is the trivial extension of µd
1 ∈ M(Ω1) to Ω∆

1 , see Sub-
chapter 3.4.1. J∆ is bounded on bounded sets and weak∗ lower semicontinuous
by the same reasons as J . That J∆ indeed satisfies (3.5) can be seen by eval-
uating the (dual) norms on W−1,p′

(D) and M(Ω∆
1 ), see [44, Section 4.1] for a

representation of the former.

Consequently, in this setting Corollary 3.41 guarantees that any cluster point
of the sequence of solutions to the regularized bilevel problems (BKδ

γ) is a solu-
tion to the non-regularized bilevel problem (BK). ♢

The second example represents a class of optimization problems for which
the assumptions of Corollary 3.41 are already fulfilled by the very definition
of the problem and which at the same time represents a relevant example of
possible applications of (BK).

Example 3.45. Let Ω∗ ⊂ Rd∗ , for d∗ ∈ N, be a given compact domain such that
both Ω := Ω∗×Ω∗ as well as, for some ∆ > 0, its extension Ω+B(0;∆)×B(0;∆)
have locally Lipschitz boundaries that are negligible w.r.t. to the Lebesgue mea-
sure on Rd∗×Rd∗ . Moreover, assume that we are given a compact linear operator
G which maps M(Ω∗) to some Banach space Y and assume that G has an ex-
tension G∆ : M(Ω∆

∗ )→ Y , where Ω∆
∗ := Ω∗ +B(0;∆) denotes the extension of

the domain Ω∗, that is a linear compact operator and satisfies G∆µ = Gµ|M(Ω∗)

for all µ ∈ M(Ω∆
∗ ) with supp(µ) ⊂ Ω∗. Let ρ > 1 as well as ν > 0 be given

parameters and consider the prior µd ∈ P(Ω∗), which is absolutely continuous
w.r.t. the Lebesgue measure on Rd, as well as the target data yd ∈ Y . We then
consider the Wasserstein inverse problem

inf
µ

1
2∥Gµ− yd∥

2
Y + νWρ(µ, µd)

ρ

s.t. µ ∈ P(Ω∗),
(WIP)

where the distance between the variable µ and the data µd is measured by the
Wasserstein ρ-distance.

To see that (WIP) exactly fits into the setting of (BK), we need to reformu-
late it a bit. For any µ ∈ P(Ω∗), we find that∫

Ω∗

∥x∥ρ dµ ≤ C∥µ∥M(Ω∗)
= C,

where the constant C > 0 arises from the boundedness of the domain Ω∗.
Therefore, µ ∈ Pρ(Ω∗), where the latter denotes the set of probability measures
with finite ρ-th moment . Using the definition of the Wasserstein ρ-distance, i.e.,

Wρ(µ1, µ2) := min

{∫
Ω∗×Ω∗

∥x− y∥ρRd∗×Rd∗ dθ : θ ∈ Π(µ1, µ2), θ ≥ 0

} 1
ρ

for all µ1, µ2 ∈ Pρ(Ω∗), see e.g. [68, Chapter 5], we see that (WIP) is equivalent
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to

inf
µ

1

2
∥Gµ− yd∥2Y + ν

∫
Ω

∥x− y∥ρ dπ

s.t. µ1 ∈ P(Ω∗),

π ∈ argmin

{∫
Ω

∥x− y∥ρ dθ : θ ∈ Π(µ, µd), θ ≥ 0

}
,

which is a problem of the form (BK) with µ1 = µ, µd
2 = µd, the cost function

cd(x− y) = ∥x− y∥ρ, and the target functional

J (π, µ) = ν⟨π, cd⟩C (Ω)∗,C (Ω) +
1

2
∥Gµ− yd∥2Y .

The continuity of both the compact operator G and the norm on Y ensure that
J is weakly∗ continuous w.r.t. µ. J is weak∗ continuous w.r.t. π, because by
definition the weak∗ convergence of the transport plans implies the convergence
of the dual pairing. The boundedness of J on bounded sets is due to the
boundedness of the dual pairing ⟨π, cd⟩ and the compactness of the operator G.
Again, an (obvious) extension of J to M(Ω∆)×M(Ω∆

1 ) is given by

J∆(π, µ) = ν⟨π, cd⟩C (Ω∆)∗,C (Ω∆) +
1

2

∥∥G∆µ− yd
∥∥2
Y
.

The boundedness of J∆ on bounded sets and its weak∗ lower semicontinuity
follow from the same arguments as in the case of J . That J∆ satisfies the
property in (3.5) follows from the properties of both the dual pairing and the
operator G∆.

Consequently, we can apply Corollary 3.41 to the above setting: if we con-
sider the regularized bilevel Kantorovich problem (BKδ

γ) with J , cd, and µd
2

from above, we know that the sequence of regularized solutions has a (weak∗)
cluster point that is a solution to the Wasserstein inverse problem (WIP).

Natural choices for the operator G include, for instance:

– Convolutions with a fixed mollifier φ ∈ C∞
c (Rd∗), i.e.,

G : M(Ω∗)→ Lp(Rd∗), µ 7→ φ ∗ µ.

The linearity of the (signed) integration, see Lemma B.12, shows that
it is a linear operator while we can prove its compactness analogously
to the proof of Theorem 3.26. An extension of G that satisfies all of the
presupposed properties is given by the (natural) extension G∆ : M(Ω∆

∗ )→
Lp(Rd∗), µ 7→ φ ∗ µ, see Definition A.1.

– Solution operators of (elliptic) partial differential equations. With this
choice, (WIP) becomes an optimal control problem, where the control
µ “lives” on the measure space P(Ω∗). This particular case is, in more
detail, discussed in [44, Section 4].

♢

In the next part of this thesis we will first derive the same results we found in
the present part but in a finite-dimensional setting. Furthermore, we will deal
with the differentiability of a regularized version of the dual of the regularized
transport problem and derive an implicit programming approach which we will
then implement and test numerically.
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Part II

The Finite-Dimensional
Case

57





Chapter 4

Bilevel Optimization of the
Hitchcock Optimal
Transport Problem

We now leave the infinite-dimensional setting and enter finite-dimensional ter-
rain, which is of more application-oriented than theoretical interest. In partic-
ular, if we want to reproduce and solve the bilevel problem (BK) numerically
on a computer, we inevitably end up in the finite-dimensional case after a dis-
cretization of the variables.

The present chapter is organized analogously to Chapter 3. This should sim-
plify the comparison of the two scenarios and also show the (subtle) differences.

4.1 Problem Statement

Again, we start with a rigorous definition of the bilevel optimization problem
we are interested in. First, we define the lower-level Hitchcock problem and
then, based on this, formulate the bilevel optimization problem. We achieve the
former by deriving the Hitchcock problem from the Kantorovich problem from
Chapter 3.

To this end, we choose, for n1, n2 ∈ N, the non-empty finite sets Ω1 =
{1, . . . , n1} and Ω2 = {1, . . . , n2} and again abbreviate their Cartesian product
by Ω := Ω1 × Ω2. If we equip these sets with the discrete topology, then Ω1

and Ω2 are compact in R, Ω is compact in R2, as well as the Borel sigma
algebras B(Ω1), B(Ω2), and B(Ω) are just the power sets of Ω1, Ω2, as well as
Ω, respectively.

According to Lemma B.15, we find that M(Ω1) ∼= Rn1 , M(Ω2) ∼= Rn2 , and
M(Ω) ∼= Rn1×n2 . Moreover, because every subset of Ω (and as a consequence
the preimage of every function f : Ω → R) is open w.r.t. the discrete topology,
we have that C (Ω) ∼= Rn1×n2 .

Because of the above choice of the domains Ω1 and Ω2 and the resulting iso-
morphisms between the measure spaces and the finite-dimensional vector spaces,
we can always uniquely replace the marginals µ1 ∈M(Ω1) and µ2 ∈M(Ω2) by
vectors µ1 ∈ Rn1 and µ2 ∈ Rn2 , respectively, which we denote identically for

59
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simplicity. This has several consequences:

– Since, by Lemma B.15, ∥µi∥M(Ωi)
= ∥µi∥1 for i = 1, 2, the marginals µ1

and µ2 are compatible if and only if the vectors µ1 and µ2 are elementwise
nonnegative and

∥µ1∥1 = 1⊤µ1 = 1⊤µ2 = ∥µ2∥1,

where 1 denotes the vector in Rn1 or Rn2 (we use the same symbol for
both) whose components are all equal to 1. In the following, we will use
the term marginals indistinguishable for both the elements of the measure
spaces as well as their vector representations.

– The set of transport plans (couplings) between µ1 and µ2 takes the form

Π(µ1, µ2) = {π ∈ Rn1×n2 : π1 = µ1, π
⊤1 = µ2},

where the equality of the sets on the left-hand side and the right-hand side
of the equation is understood w.r.t. the isometric isomorphism between
M(Ω) and Rn1×n2 . Again, we will use the term transport plan (coupling)
for both the measure on Ω as well as its matrix representation.

– Consider some arbitrary cost function c : Ω→ R. Because we equipped Ω
with the discrete topology, the function c is at the same time continuous,
B(Ω)-B(R)-measurable, and a simple function. Hence, we can express the
total cost of transportation realized by some transport plan π ∈M(Ω) by∫

Ω

c dπ =
∑

(i1,i2)∈Ω

ci1,i2πi1,i2 = (c, π)F ,

where c ∈ Rn1×n2 and π ∈ Rn1×n2 denote the matrix representations of
the cost function c, which we will call cost matrix , and the transport plan
π, respectively.

Consequently, in the above setting, given the marginals µ1 and µ2 as well as
the cost matrix c the Kantorovich problem (K) is equivalent to the problem

inf
π

(π, c)F

s.t. π ∈ Rn1×n2 , π1 = µ1, π
⊤1 = µ2, π ≥ 0,

(H)

which is also known as the Hitchcock problem (of optimal transportation), see
e.g. [47] or [37], and plays a significant role in many fields including economics,
logistics, integrated circuit design, and image processing, see the references in
the introduction of this thesis.

Remark 4.1. In the situation of (H), we note the following:

– Contrary to the widely spread convention of denoting real matrices with
capital letters, we stick to the notation of Part I and denote the cost
matrices and (discrete) transport plans by the lowercase letters c and π,
respectively.
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– As is the case with any other norm defined on an finite-dimensional vector
space, the Frobenius norm is equivalent to the 1-norm. Because of the
subadditivity of the square root,

∥A∥F =

√ ∑
(i1,i2)∈Ω

A2
i1,i2
≤

∑
(i1,i2)∈Ω

√
A2

i1,i2
=

∑
(i1,i2)∈Ω

|Ai1,i2 | = ∥A∥1

and, because of the Cauchy-Schwarz inequality,

∥A∥1 =
(
(sgnAi1,i2)(i1,i2)∈Ω, A

)
F

≤
∥∥(sgnAi1,i2)(i1,i2)∈Ω

∥∥
F
∥A∥F =

√
n1n2∥A∥F

for all A = (Ai1,i2)(i1,i2)∈Ω ∈ Rn1×n2 .

◦
We could content ourselves at this point with citing the existence result of the

Kantorovich problem (K) from Chapter 3 to show the existence of solutions to
the Hitchcock problem (H). However, this is not necessary since the Hitchcock
problem (H) is an optimization problem with a compact feasible set and a
continuous objective function and therefore takes its minimum and maximum.
This immediately gives us the following lemma:

Lemma 4.2. For every choice of compatible marginals µ1 and µ2 and every cost
matrix c, the Hitchcock problem (H) possesses at least one optimal solution.

Similar to the infinite-dimensional case of Chapter 3, we will now formulate
the bilevel problem that will be of interest for the rest of this chapter.

To this end and for the rest of this chapter, we fix a target marginal µd
2 ∈ Rn2

with µd
2 ≥ 0 and 1⊤µd

2 = 1 as well as some matrix cd ∈ Rn1×n2 , the cost matrix
of the Kantorovich problem. Given this data, the bilevel Hitchcock (optimal
transport) problem reads

inf
π,µ1

J (π, µ1)

s.t. µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1,

π ∈ argmin
{
(θ, cd)F : θ ∈ Rn1×n2 , θ ≥ 0, θ1 = µ1, θ

⊤1 = µd
2

} (BH)

where J : Rn1×n2 × Rn1 → R is a lower semi-continuous target function which
is bounded on bounded sets , i.e., for all M > 0 it holds that

sup
∥(π,µ1)∥<M

J (π, µ1) <∞.

Remark 4.3. We could state the bilevel Hitchcock problem (BH) without ex-
plicitly specifying the constraints for µ1, i.e., µ1 ≥ 0 and 1⊤µ1 = 1, as these
are implicitly implied by the constraints of (H). However, we prefer to specify
them anyway to rule out the possibility that the feasible set of (H) becomes
empty. ◦

Before we proceed to prove the existence of solutions to (BH), we first prove
the following lemma, which can be seen as the finite-dimensional counterpart of
Lemma 3.31 and will be useful throughout the entire subchapter.
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Lemma 4.4. Consider the marginals µ ∈ Rn1 and ν ∈ Rn2 with µ, ν ≥ 0 and
1⊤µ = 1⊤ν = 1 as well as the coupling π ∈ Π(µ, ν) ⊂ Rn1×n2 . If (µk)k∈N is
a given sequence of nonnegative marginals with 1⊤µk = 1 for all k ∈ N and
µk → µ for k → ∞, then there exists a sequence of couplings (πk)k∈N with
πk ∈ Π(µk, ν) for all k ∈ N and πk → π for k →∞.

Proof. Although at this point we could simply refer to the proof of Lemma 3.31,
here we give a slightly simpler proof.

For every k ∈ N, there exists a nonnegative optimal transport plan θk ∈
Π(µk, µ) ⊂ Rn1×n1 between µk and µ with respect to the cost function

c(i, j) := |i− j| for all i, j ∈ {1, . . . , n1}.

Let us, for k ∈ N, define the coupling

πi1,i2
k :=

n1∑
l=1

θi1,lk πl,i2

µl
for all (i1, i2) ∈ Ω.

Its nonnegativity comes straight from the nonnegativity of π, θ, and µ. Also,

(πk1)
i1 =

n2∑
i2=1

πi1,i2
k =

n1∑
l=1

θi1,lk

µl

n2∑
i2=1

πl,i2 =

n1∑
l=1

θki1,l = µi1
k

and

(π⊤
k 1)i2 =

n1∑
i1=1

πi1,i2
k =

n1∑
l=1

πl,i2

µl

n1∑
i1=1

θi1,lk =

n1∑
l=1

πl,i2 = νi2

for all (i1, i2) ∈ Ω, i.e., πk indeed is a coupling between µk and ν.
One easily verifies that

θ̄ := diag(µ) ∈ Π(µ, µ) with

n1∑
i,j=1

c(i, j) θ̄ = 0

is the unique optimal transport plan between µ and itself. Because of ∥θk∥1 = 1
for all k ∈ N, there exists a convergent subsequence (which we denote by the
same symbol) such that θk → θ̃ ∈ Rn1×n1 as k → ∞. The stability theorem
from [68, Theorem 1.50] then ensures that θ̃ = θ̄ so that the whole sequence
converges to θ̄, see Lemma D.5.

Hence, it follows from the definition of πk and the convergence θk → θ̄ that

lim
k→∞

πi1,i2
k =

n1∑
l=1

limk→∞ θi1,lk πl,i2

µl
=

n1∑
l=1

θ̄i1,lπl,i2

µl
=
θ̄i1,i1πi1,i2

µi1
= πi1,i2 ,

for all (i1, i2) ∈ Ω, as claimed.

The following proof is quite short and manages to use, besides above’s
lemma, only standard arguments.

Theorem 4.5. With the target marginal and the cost function given as above,
the bilevel Hitchcock problem (BH) possesses at least one optimal solution.
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Proof. As usual, we denote the feasible set of (BH) by F . The marginal µ̂1 :=
(1, 0, . . . , 0)⊤ ∈ Rn1 is feasible for (BH). The feasible set of (H) w.r.t. µ̂1 and
µd
2 consists solely of the matrix π̂ whose first row equals µd

2 and who is zero
otherwise. Thereby, π̂ is the unique solution to (H) and hence (π̂, µ̂1) ∈ F ̸= ∅.

We are going to show that F is compact. Its boundedness comes straight
from the linear constraints of (H). To show that it is closed, consider a sequence
(πk, µ1,k) ⊂ F with (πk, µ1,k) → (π, µ1) as k → ∞. Passing to the limit in the
linear constraints on µ1,k immediately yields that µ1 ≥ 0 and 1⊤µ1 = 1. We
similarly obtain that π ≥ 0, π1 = µ1, and π

⊤1 = µd
2 , i.e., feasibility of π for (H)

w.r.t. to the marginals µ1 and µd
2 . To show its optimality w.r.t. cd, let π

∗ be
an arbitrary solution to (H) w.r.t. µ1, µ

d
2 , and cd, which exists due to Lemma

4.2. Then, by Lemma 4.4, there exists a sequence of couplings (π∗
k)k∈N with

πk ∈ Π(µ1,k, µ
d
2) and π∗

k → π∗. The continuity of (H)’s target function then
yields that

(π, cd)F = lim
k→∞

(πk, cd)F ≤ lim
k→∞

(π∗
k, cd)F = (π∗, cd)F ,

i.e., the optimality of π for (H) w.r.t. µ1, µ
d
2 , and cd. Consequently, (π, µ1) ∈ F ,

which proves the closedness and in turn the compactness of F .
The statement of the theorem then follows because (BH)’s target function

J is lower semicontinuous.

If we compare (BH) with (BK), we are facing the exact same difficulties:

– (H) is a linear program (short: LP) and can therefore have more than one
optimal solution for a given pair of marginals µ1 and µ2; this prevents us
from using the implicit programming approach which we will introduce in
Chapter 5.

– To compute the solution to the subproblems, one in general needs to use an
appropriate LP solver like, for example, the simplex method; the solution
is directly determinable only in a handful of special cases (e.g. one marginal
is a unit vector).

– Because of the curse of dimensionality, the number of unknowns for π is
roughly quadratic to the number of unknowns of µ1 and µ2.

4.2 Quadratic Regularization of the Hitchcock
Problem

To overcome the mentioned difficulties, we sneak a peek at (Kγ) and copy the
idea of adding a quadratic regularization term to (H)’s target function. How-
ever, unlike in the infinite-dimensional case in Subchapter 3.2, there no need
to improve the regularity of the marginals and transport plans in the finite-
dimensional setting.

This approach then results in the (quadratically) regularized Hitchcock prob-
lem:

inf
π

(π, c)F + γ
2 ∥π∥

2
F

s.t. π ∈ Rn1×n2 , π1 = µ1, π
⊤1 = µ2, π ≥ 0.

(Hγ)
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In the above, µ1 and µ2 are arbitrary but compatible marginals, c is an arbitrary
cost matrix, and γ > 0 is an arbitrary regularization parameter .

The goal of this subchapter is to derive results for the regularized Hitchcock
problem (Hγ) similar to those we quoted in Subchapter 3.2. Even though we
have seen that, by the choice of domains Ω1 and Ω2, the Hitchcock problem is
just a special case of the Kantorovich problem (this is also true for the corre-
sponding bilevel problems), we do not simply quote the results but prove the
desired properties directly, because

1. the corresponding proofs in the finite-dimensional case are typically shorter
and less involved compared to the infinite-dimensional case;

2. the proof of the dual representation of the optimal transport plan in The-
orem 3.9 heavily relies on the properties of the integral w.r.t. the Lebesgue
measure; this becomes evident when comparing its results with Theorem
4.9 below: while the former requires the marginals to have a strictly pos-
itive lower bound for the dual representation to hold, the latter can be
stated without such an assumption.

Again, (Hγ)’s feasible set is compact and its target function is continuous
(and strictly convex). We therefore immediately have the following lemma:

Lemma 4.6. For each γ > 0 and for every choice of compatible marginals µ1

and µ2 and every cost matrix c, the quadratically regularized Hitchcock problem
(Hγ) possesses a unique solution.

We now aim to obtain a dual representation of the solution to (Hγ), which
will later be an essential ingredient for the construction of recovery sequences.
To achieve this, however, we must first set up (Hγ)’s optimality system.

Lemma 4.7. π ∈ Rn1×n2 is the unique solution to (Hγ) if and only if there
exist dual variables α1 ∈ Rn1 and α2 ∈ Rn2 such that

π1 = µ1, π
⊤1 = µ2, π ≥ 0, (4.1a)

c+ γπ − α1 ⊕ α2 ≥ 0, (4.1b)

(c+ γπ − α1 ⊕ α2, π)F = 0. (4.1c)

Remark 4.8. The operator ⊕ : Rn1 × Rn2 → Rn1×n from Lemma 4.7 which is
defined by

u⊕ v := (ui1 + vi2)(i1,i2)∈Ω =

 u1 + v1 . . . u1 + vn2

...
. . .

...
un1 + v1 . . . um + vn2


for all (u, v) ∈ Rn1 × Rn2 , refers to the outer sum of the vectors u and v.
A straightforward calculation shows that its adjoint operator ⊕∗ : Rn1×n2 →
Rn1 × Rn2 is given by ⊕∗(θ) := (θ1, θ⊤1): for all (u, v) ∈ Rn1 × Rn2 and
θ ∈ Rn1×n2 it holds that(

(u, v),⊕∗(θ)
)
Rn1×Rn2

=
(
⊕(u, v), θ

)
F

=
∑

(i1,i2)∈Ω

(ui1 + vi2)θi1,i2
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=
∑

i1∈Ω1

(
ui1

∑
i2∈Ω2

θi1,i2

)
+
∑

i2∈Ω2

(
vi2

∑
i1∈Ω1

θi1,i2

)
= (u, θ1)Rn1

+
(
v, θ⊤1

)
Rn2

=
(
(u, v), (θ1, θ⊤1)

)
Rn1×Rn2

and therefore the claimed representation of ⊕∗.
Moreover, the nonnegative part and the nonpositive part of a matrix θ, which

we will need in Theorem 4.9, are defined by

θ+ :=
(
max{0, θi1,i2}

)
(i1,i2)∈Ω

=

max{0, θ1,1} . . . max{0, θ1,n2}
...

. . .
...

max{0, θn1,1} . . . max{0, θn1,n2
}


and

θ− :=
(
−min{0, θi1,i2}

)
(i1,i2)∈Ω

=

 −min{0, θ1,1} . . . −min{0, θ1,n2
}

...
. . .

...
−min{0, θn1,1} . . . −min{0, θn1,n2

}

 ,

respectively. Note that θ = θ+ − θ− and |θ| = θ+ + θ− for all θ ∈ Rn1×n2 . ◦

Proof of Lemma 4.7. By reshaping the matrices π ∈ Rn1×n2 and c ∈ Rn1×n2

into vectors π⃗ ∈ Rn1n2 and c⃗ ∈ Rn1n2 (stacking π’s and c’s columns on top of
each other in order), respectively, (Hγ) is equivalent to the problem

inf
π⃗

π⃗⊤c⃗+ γ
2 ∥π⃗∥

2
Rn1n2

s.t. π⃗ ∈ Rn1n2 ,

(
A1

A2

)
π⃗ =

(
µ1

µ2

)
, π⃗ ≥ 0,

(Hvec
γ )

where

A1 :=

1 . . . 0
...

. . .
...

0 . . . 1

1 . . . 0
...

. . .
...

0 . . . 1

. . .

1 . . . 0
...

. . .
...

0 . . . 1

 ∈ Rn1×n1n2

and

A2 :=


1 . . . 1
0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
1 . . . 1
...

. . .
...

0 . . . 0

. . .

0 . . . 0
...

. . .
...

0 . . . 0
1 . . . 1

 ∈ Rn2×n1n2 .

The vectorized problem (Hvec
γ ) is a convex optimization problem in Rn1n2 .

Therefore, according to [53, pp. 382 – 384], π⃗ solves (Hvec
γ ) if and only if there

exist λ ∈ Rn1n2 and ν ∈ Rn1+n2 such that(
A1

A2

)
π⃗ =

(
µ1

µ2

)
, π⃗ ≥ 0,

c⃗+ γπ⃗ − λ+
(
A⊤

1 A⊤
2

)
ν = 0,
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λ ≥ 0, λ⊤π⃗ = 0,

which is, after redefining ν := (−α1,−α2)
⊤ with α1 ∈ Rn1 and α2 ∈ Rn2 ,

equivalent to (
A1

A2

)
π⃗ =

(
µ1

µ2

)
, π⃗ ≥ 0,

c⃗+ γπ⃗ −
(
A⊤

1 A⊤
2

)(α1

α2

)
≥ 0,(

c⃗+ γπ⃗ −
(
A⊤

1 A⊤
2

)(α1

α2

))⊤

π⃗ = 0.

If we convert the above system back to matrix notation, we obtain the system
from (4.1).

Using the optimality system from (4.1), we can now derive a similar dual
representation of the solution of (Hγ) to the one that we have already seen for
the regularized Kantorovich problem (Kγ) in the infinite-dimensional case.

Theorem 4.9. π solves (Hγ) w.r.t. µ1, µ2, and c if and only if there exist dual
variables α1 ∈ Rn1 and α2 ∈ Rn2 such that

π =
1

γ
(α1 ⊕ α2 − c)+, (4.2a)

n2∑
i2=1

πi1,i2 = µi1
1 for all i1 = 1, . . . , n1, (4.2b)

n1∑
i1=1

πi1,i2 = µi2
2 for all i2 = 1, . . . , n2. (4.2c)

Proof. If π solves (Hγ), then by Lemma 4.7 there exist α1 ∈ Rn1 and α2 ∈ Rn2

such that the system in (4.1) is satisfied. The complementary slackness condition
in (4.1c) together with the nonnegativity of π and c+ γπ−α1⊕α2 from (4.1a)
and (4.1b), respectively, implies the following: On the one hand, if πi1,i2 > 0,
then

ci1,i2 +γπi1,i2 − (α1⊕α2)i1,i2 = 0 ⇐⇒ πi1,i2 =
1

γ

(
(α1⊕α2)i1,i2 − ci1,i2

)
+
.

On the other hand, if πi1,i2 = 0, then

ci1,i2 − (α1 ⊕ α2)i1,i2 ≥ 0 ⇐⇒ (α1 ⊕ α2)i1,i2 − ci1,i2 ≤ 0

and thus γπi1,i2 = 0 =
(
(α1 ⊕ α2)i1,i2 − ci1,i2

)
+
. Because i1 ∈ Ω1 and i2 ∈ Ω2

were arbitrary, all of the above implies (4.2a). (4.2b) and (4.2b) are just the
rephrased feasibility constraints from (4.1a).

Now, assume that π ∈ Rn1×n2 , α1 ∈ Rn1 , and α2 ∈ Rn2 satisfy the system
in (4.2). Because of (4.2b), (4.2c), and the ( · )+-operator, π is feasible for

(Hγ). We abbreviate (Hγ)’s target function by f(π) := (π, c)F + γ
2 ∥π∥

2
F and

consider an arbitrary feasible point π̃. Because f : Rn1×n2 → R is convex and
differentiable with derivative f ′(π) = c+ γπ, we find that

f(π̃)− f(π) ≥ f ′(π; π̃ − π) = (c+ γπ, π̃ − π)F , (4.3)
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see e.g. [58, Theorem 3.8.1]. Taking advantage of π̃’s feasibility and (α1 ⊕ α2 −
c)− ≥ 0, we estimate that

(c+ γπ, π̃)F ≥
(
c+ (α1 ⊕ α2 − c)+, π̃

)
F
−
(
(α1 ⊕ α2 − c)−, π̃

)
F

= (c+ α1 ⊕ α2 − c, π̃)F
= (α1, π̃1)Rn1 + (α2, 1

⊤π̃)Rn2 = (α1, µ1)Rn1 + (α2, µ2)Rn2 ,

(4.4)

Also, for all A ∈ Rn1×n2 we find that (A+, A+)F = (A+, A)F . Hence,

(c+ γπ, π)F =
(
c+ (α1 ⊕ α2 − c)+, π

)
F

= (c+ α1 ⊕ α2 − c, π)F
= (α1, π1)Rn1 + (α2, 1

⊤π)Rn2 = (α1, µ1)Rn1
+ (α2, µ2)Rn2

.

(4.5)

Plugging (4.4) and (4.5) into (4.3) then yields that f(π̃) ≥ f(π) for all feasible
π̃, i.e., optimality of π for (Hγ).

We can also characterize, similarly to the authors of [52], the dual problem
to (Hγ):

Lemma 4.10. The (Lagrangian) dual problem to (Hγ) is equivalent to

sup
α1,α2

(α1, µ1)Rn1
+ (α2, µ2)Rn2

− 1
2γ ∥(α1 ⊕ α2 − c)+∥2F ,

s.t. α1 ∈ Rn1 , α2 ∈ Rn2 .
(HDγ)

For each γ > 0, (HDγ) admits an optimal solution. If (α1, α2) is a solution to
(HDγ), then (α1+a, α2−a), for arbitrary a ∈ R, is also a solution with the same
optimal value. Moreover, there is no duality gap, i.e., inf (Hγ) = sup (HDγ).

Proof. The Lagrangian function L : Rn1×n2 × Rn1×n2 × Rn1 × Rn2 → R corre-
sponding to (Hγ) is given by

L(π, λ, ρ1, ρ2) := (π, c)F +
γ

2
∥π∥2F

− (λ, π)F + (ρ1, π1− µ1)Rn1
+ (ρ2, π

⊤1− µ2)Rn2 ,

see e.g. [53, p. 383]. The Lagrangian dual problem is then defined to be

sup
0≤λ∈Rn1×n2 ,

ρ1∈Rn1 , ρ2∈Rn2

inf
π∈Rn1×n2

L(π, λ, ρ1, ρ2).

Setting (α1, α2) := (−ρ1,−ρ2), this can be equivalently written as

sup
α1∈Rn1 ,
α2∈Rn2

(
(α1, µ1)Rn1

+ (α2, µ2)Rn2
+ sup

λ≥0
inf
π

(c+ γ/2π − λ− α1 ⊕ α2, π)F

)
.

The inner unconstrained minimization problem is quadratic w.r.t. π and there-
fore solved by π∗ = 1

γ (λ + α1 ⊕ α2 − c). Consequently, the Lagrangian dual
problem is equivalent to

sup
α1∈Rn1 ,
α2∈Rn2

(
(α1, µ1)Rn1

+ (α2, µ2)Rn2
− inf

λ≥0

1

2γ
∥λ+ α1 ⊕ α2 − c∥2F

)
.
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Again, the inner problem is solved by λ∗ = (α1 ⊕ α2 − c)− ≥ 0 and takes

the optimal value 1
2γ ∥(α1 ⊕ α2 − c)+∥2F , which shows the equivalence of the

Lagrangian dual problem to (HDγ).

The remaining statements in the formulation of the lemma are either trivial
or well-known results of finite-dimensional optimization, see e.g. [53, Strong
Duality Theorem, p. 393].

The property that the regularized Hitchcock problem (Hγ) admits a unique
solution, see Lemma 4.6, implicitly defines the solution operator

Sγ : Rn1×n2 ×M0 → Rn1×n2 , (c, µ1, µ2) 7→ π, (4.6)

where π is unique the solution to (Hγ) w.r.t. the marginals µ1 and µ2 as well as
the cost matrix c and whereM0 is the set of compatible marginals , i.e.,

M0 := {(µ1, µ2) ∈ Rn1 × Rn2 : µ1, µ2 ≥ 0, 1⊤µ1 = 1⊤µ2}.

Similarly to the infinite-dimensional case, we can now replace the lower-level
Hitchcock problem in (BH) by the solution operator of its regularized counter-
part to receive, for a given regularization parameter γ > 0, the regularized (&
penalized) bilevel Hitchcock problem :

inf
π,µ1,c

Jγ(π, µ1, c) := J (π, µ1) +
1
2γ ∥c− cd∥

2
F

s.t. c ∈ Rn1×n2 , µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1,

π = Sγ(c, µ1, µ
d
2).

(BHγ)

In the above, µd
2 and cd are given as in (BH). We will show in the remainder of

this chapter that

– this problem admits a solution for any given regularization parameter
γ > 0, see Subchapter 4.3.

– solutions to (BHγ) can be used to approximate certain solutions of the
non-regularized bilevel problem (BH), given that there exists a solution
of the non-regularized bilevel problem that is accompanied by a recovery
sequence, see Subchapter 4.4.

– there exist at least some cases in which we can construct a recovery se-
quence directly, see Subchapter 4.5.

4.3 Existence of Solutions to the Regularized
Bilevel Hitchcock Problem

In contrast to the infinite-dimensional case, the existence proof of the regularized
bilevel problem is much simpler and almost identical to the non-regularized case.

Theorem 4.11. With the target marginal and the cost function given as in
(BH), for arbitrary γ > 0, there exists at least one optimal solution to (BHγ).
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Proof. Let us again denote the feasible set of (BHγ) by F . It is straightforward
to see that F is non-empty: choose µ̂1 = (1, 0, . . . , 0)⊤ ∈ Rn1 and ĉ ∈ Rn1×n2

arbitrarily, then Lemma 4.6 yields the existence of a unique π̂ = Sγ(ĉ, µ̂1, µ
d
2)

and hence (π̂, µ̂1, ĉ) ∈ F .
With the same arguments as in the proof of Theorem 4.5, we can then show

that F is compact. The assertion of the theorem then follows directly from Jγ ’s
lower semicontinuity.

Remark 4.12. Comparing the proofs of Theorem 3.26 and Theorem 4.11, we
note that the latter is entirely based on standard arguments and also does not
require any preliminaries, as was the case in Subchapter 3.3.

This is essentially because we have shown in the above proof (more pre-
cisely, in the proof of Theorem 4.5) that the solution operator of the regularized
Hitchcock problem is continuous w.r.t. the first marginal and the cost function.

In contrast, the solution operator of the regularized Kantorovich problem is
not continuous with respect to the proper topology, see Example 3.18. We there-
fore had to rely on the compactness of the smoothing operators Ti : M(Ωi) →
L2(Ωδ

i ), i = 1, 2, and had to prove that the solution operator Sγ : Cc(X) ×
Mm
µ (X1, X2)→ L2(X) is Hölder continuous, which led to the lengthy prelimi-

nary work. ◦

4.4 Approximation of Solutions to the Bilevel
Hitchcock Problem

This subchapter is devoted to showing that, under certain conditions, we can
find sequences of solutions to the regularized bilevel problems (BHγ) that con-
verge against solutions to the non-regularized bilevel problem (BH).

To that end, we consider an arbitrary vanishing sequence of regularization
parameters (γk)k∈N ↘ 0. Thanks to Theorem 4.11, we can find a sequence of
regularized solutions (π̄k, µ̄1,k, c̄k)k∈N to the sequence of problems (BHγk

)k∈N.
Note that this sequence need not be unique as the solution to the regularized
bilevel problems may not be unique. Nevertheless, each such sequence has at
least one cluster point:

For all k ∈ N, the linear constraints of (BHγk
) yield that

∥µ̄1,k∥Rn1
≤ ∥µ̄1,k∥1 = 1 and ∥π̄k∥F ≤ ∥π̄k∥1 = 1⊤µ̄1,k = 1,

i.e., the boundedness of the sequence (π̄k, µ̄1,k)k∈N. Consequently, (π̄k, µ̄1,k)→
(π̄, µ̄1) ∈ Rn1×n2 × Rn1 after possibly extracting a subsequence.

Furthermore, given an arbitrary µ̃1 ∈ Rn1 with µ̃1 ≥ 0 and 1⊤µ̃1 = 1, we
consider the sequence of optimal transport plans defined via π̃k := Sγk

(cd, µ̃1, µ
d
2)

for k ∈ N. By construction, the triple (π̃k, µ̃1, cd) is feasible for (BHγk
) for all

k ∈ N and, owing to (π̄k, µ̄1,k, c̄k)’s optimality,

J (π̄k, µ̄1,k) +
1

γk
∥c̄k − cd∥2F = Jγk

(π̄k, µ̄1,k, c̄k) ≤ Jγk
(π̃k, µ̃1, cd) = J (π̃k, µ̃1).

Thus and because J is bounded on both of the bounded sets {(π̃k, µ̃1)}k∈N and
{(π̄k, µ̄1,k)}k∈N,

∥c̄k − cd∥F ≤ γk
1
2

(
J (π̃k, µ̃1)− J (π̄k, µ̄1,k)

) 1
2 ≤ γk

1
2C,
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for some constant C > 0. This shows that c̄k → cd as k → ∞. To summarize,
we have found a cluster point (π̄, µ̄1, cd) ∈ Rn1×n2 × Rn1 × Rn1×n2 so that

(π̄k, µ̄1,k, c̄k) −−−−→
k→∞

(π̄, µ̄1, cd),

after possibly extracting a subsequence that we denote by the same symbol.

Compared to the infinite-dimensional setting from Chapter 3, it takes much
less effort in the finite-dimensional setting to show the feasibility of the cluster
point (π̄, µ̄1) for (BH). The proof follows the same reasoning as the proof of
Lemma 3.33, but is at the same time much less technical since we do not have to
deal with smoothed marginals and their properties. Besides, the main difficulty
has already been provided by the proof of Lemma 4.4.

Lemma 4.13. The cluster point (π̄, µ̄1) of the sequence of regularized solutions
(π̄k, µ̄1,k)k∈N is feasible for the non-regularized bilevel problem (BH), i.e., µ̄1 ≥ 0
and 1⊤µ̄1 = 1 and π̄ is an optimal coupling between µ̄1 and µd

2 w.r.t. cd.

Proof. As before, the feasibility of µ̄1 for (BH) is clear due to the linearity of
the corresponding constraints. That π̄ is feasible for (H) w.r.t. to the marginals
µ̄1 and µd

2 follows directly from passing to the limit in the linear equations

π̄k1 = µ̄1,k and π̄⊤
k 1 = µd

2 for all k ∈ N.

Let π∗ once again be an optimal solution to (H) w.r.t. µ̄1, µ
d
2 , and cd.

By Lemma 4.4, there exists a sequence (π∗
k)k∈N where, for all k ∈ N, π∗

k is a
nonnegative coupling between µ̄1,k and µd

2 as well as π∗
k → π∗ as k → ∞. In

particular, π∗
k is feasible for (Hγk

) w.r.t. the right marginals. The optimality of
π̄k for (Hγ) w.r.t. µ̄1,k, µ

d
2 , and c̄k then implies that

(cd, π
∗)F ≤ (cd, π̄)F = lim

k→∞

(
(c̄k, π̄k)F +

γk
2
∥π̄k∥2F

)
≤ lim

k→∞

(
(c̄k, π

∗
k)F +

γk
2
∥π∗

k∥
2
F

)
= (cd, π

∗)F ,

i.e., (cd, π
∗)F = (cd, π̄)F . Consequently, π̄ is optimal for (H) w.r.t. µ̄1, µ

d
2 , and

cd and the cluster point (π̄, µ̄1) therefore feasible for (BH).

If we presuppose the existence of a recovery sequence, we can show that
the cluster point (π̄, µ̄1) of the sequence of regularized solutions (π̄k, µ̄1,k)k∈N is
optimal for the non-regularized bilevel problem.

Theorem 4.14. Let (π∗, µ∗
1) be a solution to the bilevel problem (BH) that

is accompanied by a recovery sequence, i.e., a sequence (π∗
k, µ

∗
1,k, c

∗
k)k∈N ⊂

Rn1×n2 × Rn1 × Rn1×n2 such that

1. (π∗
k, µ

∗
1,k, c

∗
k) is feasible for (BHγk

) for all k ∈ N,

2. lim supk→∞ Jγk
(π∗

k, µ
∗
1,k, c

∗
k) ≤ J (π∗, µ∗

1).

Then, the cluster point (π̄, µ̄1) of the sequence of regularized solutions (π̄k, µ̄1,k)k∈N
is also a solution to (BH).
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Proof. This proof is just a brazen copy of the proof of Theorem 3.34 in the
infinite-dimensional case:

With a slight abuse of notation, we denote by (π̄k, µ̄1,k)k∈N the subsequence
that converges towards (π̄, µ̄1). Because of the presupposed lower semicontinuity
of the target function,

J (π̄, µ̄1) ≤ lim inf
k→∞

J (π̄k, µ̄1,k)

≤ lim inf
k→∞

J (π̄k, µ̄1,k) +
1

γk
∥c̄k − cd∥2F = lim inf

k→∞
Jγk

(π̄k, µ̄1,k, c̄k).

Because of the optimality of (π̄k, µ̄1,k, c̄k) for (BHγk
),

J (π̄, µ̄1) ≤ lim inf
k→∞

Jγk
(π̄k, µ̄1,k, c̄k) ≤ lim sup

k→∞
Jγk

(π∗
k, µ

∗
1,k, c

∗
k) ≤ J (π∗, µ∗

1).

Thanks to Lemma 4.13, (π̄, µ̄1) is feasible for (BH) and, because of (π∗, µ∗
1)’s

optimality, also optimal.

Similar to the infinite-dimensional case, we want to emphasize that

1. the existence of a recovery sequence implies the optimality of every cluster
point of the sequence (π̄k, µ̄1,k, c̄k)k∈N (since there may be more than one);

2. the assumption of finding an optimum that is accompanied by a recovery
sequence is relatively strong and may be not satisfied in the general case.
Nevertheless, we are able to explicitly construct a recovery sequence in a
setting that is slightly more general than what was described in Corollary
3.41. This will be the topic of the following subchapter.

4.5 Existence of a Recovery Sequence for the
Bilevel Hitchcock Problem

As already indicated in the previous subchapter, the purpose of the present
subchapter is to explicitly construct a recovery sequence in the following setting:

Assumption 4.15. For the entire subchapter, we assume that n2 ≥ n1 ≥ 2
and that (BH)’s cost matrix cd ∈ Rn1×n2 takes the form (cd)i1,i2 = |i1 − i2|ρ
with ρ ≥ 1 for all (i1, i2) ∈ Ω = {1, . . . , n1}× {1, . . . , n2}. Moreover, we assume
that there exists a solution to (BH), namely (π∗, µ∗

1), in a way that there exists
a monotone assignment function j∗ : Ω1 → Ω2 with j∗(1) = 1 and

π∗
i1,i2

{
≥ 0, if i2 = j∗(i1),

= 0, if i2 ̸= j∗(i1),
(4.7)

for all (i1, i2) ∈ Ω.

Remark 4.16. 1. If n1 = 1 or n2 = 1, then the Hitchcock problem (H)
would possess only trivial solutions. Consequently, the regularization ap-
proach would be pointless and the bilevel problem (BH) would also be of
no interest. Further, the assumption n2 ≥ n1 serves to avoid additional
case distinctions in the subsequent analysis. One can always consider the
reverse case by exploiting the symmetry of the optimal transport problem,
see Lemma C.2.
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2. In particular the case ρ = 1 often leads to nonunique solutions of the
Hitchcock problem1, making the arguments from the proof of Corollary
3.41, which relies heavily on the uniqueness of the optimal transport plan,
invalid.

3. Illustratively, the condition in (4.7) states that π∗ shall be a sparse matrix
whose nonzero entries are subject to a monotonic ordering. This is related
to Brenier’s theorem in the infinite-dimensional case, see e.g. [76, Theorem
2.12 (ii)], which states that (under certain conditions on the data) there
exists an optimal transport plan which is supported on the graph of a
monotone function.

4. The assumption that j∗(1) = 1 is only for convenience. The arguments in
this subchapter apply even without this normalization, but additional case
distinctions would then have to be made, which would make the following
(already nontrivial) calculations even more opaque.

◦
In contrast to the infinite-dimensional case, we will now exploit the fact that

the cost variable is an optimization variable of (BHγ). The main advantage
is that this allows us to construct a recovery sequence where the transporta-
tion plans and first marginals are constant. We do so by simply hiding the
γ-dependent parts in the cost variable, as the proof of the following lemma
shows.

Lemma 4.17. If there exists a vector b ∈ Rn2 satisfying the system

bi2 − bj∗(i1) ≤ (cd)i1,i2 − (cd)i1,j∗(i1) (4.8)

for all i1 ∈ Ω1 and i2 ∈ Ω2 \ {j∗(i1)}, then there exists a recovery sequence
(π∗

k, µ
∗
1,k, c

∗
k)k∈N accompanying the solution (π∗, µ∗

1) in the sense of Theorem
4.14.

Proof. Given the vanishing sequence of regularization parameters (γk)k∈N from
Subchapter 4.4 as well as cd and π∗ from Assumption 4.15, we define c∗k :=
cd − γkπ∗ ∈ Rn1×n2 . Moreover, we set α2 := b and define α1 ∈ Rn1 by

αi1
1 := −αj∗(i1)

2 + (cd)i1,j∗(i1) for all i1 ∈ Ω1.

By construction, α1 and α2 satisfy

αi1
1 + α

j∗(i1)
2 = (cd)i1,j∗(i1) = (c∗k)i1,j∗(i1) + γkπ

∗
i1,j∗(i1)

αi1
1 + αi2

2 = bi2 − bj∗(i1) + (cd)i1,j∗(i1) ≤ (c∗k)i1,i2

for all i1 ∈ Ω1 and i2 ∈ Ω2 \ {j∗(i1)}, where we used (4.8) for the inequalities.
We then define

π∗
k :=

1

γk
(α1 ⊕ α2 − c∗k)+.

1Imagine having a bookshelf with four compartments, where the first three compartments
are each occupied by a book, and wanting to free the first compartment. If we measure
the effort in metric costs, i.e., we are solely interested in the total distance covered when
rearranging the books, then it makes no difference whether we move each book one position
to the right or whether we place the first book directly in the last shelf and leave the others
untouched.
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By construction, π∗
k = π∗ for all k ∈ N. In light of Theorem 4.9, π∗

k is the unique
optimal solution of (Hγk

) w.r.t. the marginals µ∗
1 and µd

2 and the cost c∗k. Thus,
(π∗

k, µ
∗
1,k, c

∗
k) with µ

∗
1,k = µ∗

1 is feasible for (BHγk
) for all k ∈ N.

Because the sequence (π∗
k, µ

∗
1,k) is constant and because of c∗k → cd, it holds

that

lim sup
k→∞

Jγk
(π∗

k, µ
∗
1,k, c

∗
k) = lim

k→∞
J (π∗, µ∗

1) +
1

2γk
∥c∗k − cd∥

2
F = J (π∗, µ∗

1).

Hence, (π∗
k, µ

∗
1,k, c

∗
k) is a recovery sequence in the sense of Theorem 4.14.

We now aim to reformulate the system from (4.8) to make it more handable.
To this end, we need the following definitions.

Definition 4.18. For m,n ∈ N with n ≥ m ≥ 2, consider a monotone assign-
ment function j : {1, . . . ,m} → {1, . . . , n} with j(1) = 1 and some cost matrix
c̄ ∈ Rm×n. We define the corresponding reduced system matrix by

A :=

Ej(1)

...
Ej(m)

 ∈ R(m(n−1))×n,

where, for l ∈ {1, . . . , n},

El :=

e1 . . . el−1

−1...
−1

 el . . . en−1

 ∈ R(n−1)×n.

In the above, e1, . . . , en−1 denote the unit vectors of Rn−1. Moreover, we define
the reduced cost vector corresponding to j and c̄ by

c :=


(
c̄1,l11 − c̄1,j(1), . . . , c̄1,ln−1

1
− c̄1,j(1)

)⊤
...(

c̄m,l1m
− c̄m,j(m), . . . , c̄m,ln−1

m
− c̄m,j(m)

)⊤
 ∈ Rm(n−1),

where for l1i1 , . . . , l
n−1
i1

∈ {1, . . . , n} \ {j(i1)}, i1 ∈ {1, . . . ,m}, it holds that

l1i1 < · · · < ln−1
i1

.

Remark 4.19. By construction, the reduced cost vector c associated with some
assignment function j and cost matrix c̄ satisfies

c(i1−1)(n−1)+i2 =

{
c̄i1,i2 − c̄i,j(i1), if i2 < j(i1),

c̄i1,i2+1 − c̄i1,j(i1), if i2 ≥ j(i1),
(4.9)

for all i1 ∈ {1, . . . ,m} and i2 ∈ {1, . . . , n− 1}. ◦
Let A∗ and c∗ be the reduced system matrix and the reduced cost vector

corresponding to j∗ and cd, respectively. We then find that the system from (4.8)
is equivalent to A∗b ≤ c∗. Our strategy for proving the existence of a vector
b∗ ∈ Rn2 that satisfies A∗b∗ ≤ c∗ and therefore (4.8) includes the following
induction argument:
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We start from the (simplest possible) assignment function j0 (with A0 and
c0 being the associated reduced system matrix and reduced cost function, re-
spectively), show that the system A0b ≤ c0 has a solution b0, see Example 4.22,
and then prove that small (but significant) changes in the assignment function
do not affect the solvability of the corresponding linear inequality system, see
Lemma 4.23 and Lemma 4.24. This is then sufficient to show that, after multiple
applications of the aforementioned lemmas, the system A∗b ≤ c∗ also admits a
solution b∗, see Theorem 4.25.

For the outlined chain of arguments, the following version of Farka’s lemma
will be useful, as it provides the lever with which we can prove the existence of
solutions for a system Ab ≤ c.

Lemma 4.20 ([53, p. 34]). For m,n ∈ N, some matrix A ∈ Rm×n, as well as
a vector c ∈ Rm, there exists a solution b ∈ Rn to the linear inequality system
Ab ≤ c if and only if for all d ≥ 0 with A⊤d = 0 it holds that d⊤c ≥ 0.

Shortly, we will give an example to illustrate the inductive argument that
we mentioned above. First, however, we will prove the following lemma, which
will be used several times in the remainder of this subchapter.

Lemma 4.21. For m,n ∈ N and ρ ≥ 1, consider the cost matrix defined by
c̄i1,i2 := |i1 − i2|ρ for all i1 ∈ {1, . . . ,m} and i2 ∈ {1, . . . , n}. Further, fix some
N ∈ {1, . . . , n}. Then it holds that

c̄1,i2 − c̄1,N ≤ c̄2,i2 − c̄2,N ≤ · · · ≤ c̄m,i2 − c̄m,N (4.10)

for all i2 ∈ {1, . . . , N − 1} and

c̄1,i2 − c̄1,N ≥ c̄2,i2 − c̄2,N ≥ · · · ≥ c̄m,i2 − c̄m,N (4.11)

for all i2 ∈ {N + 1, . . . , n}.

Proof. Let ρ > 1 and abbreviate f(x) := |x − i2|ρ − |x − N |ρ. Then, f is
differentiable with f ′(x) = ρ

(
sgn(x − i2)|x − i2|ρ−1 − sgn(x − N)|x − N |ρ−1

)
and, by the mean value theorem, f(x)− f(a) = f ′(ξ)(x−a) for all x, a ∈ R and
some ξ ∈ (a, x).

Now, let i2 ∈ {1, . . . , N − 1} and i1 ∈ {1, . . . ,m − 1} be arbitrary. Then
there exists some ξ ∈ (i1, i1 + 1) such that

c̄i1+1,i2 − c̄i1+1,N −
(
c̄i1,i2 − c̄i1,N

)
= f(i1 + 1)− f(i1)
= f ′(ξ) = ρ

(
sgn(ξ − i2)|ξ − i2|ρ−1 − sgn(ξ −N)|ξ −N |ρ−1

)
.

If i1 ∈ {1, . . . , i2 − 1}, then ξ < i1 + 1 ≤ i2 < N and consequently

c̄i1+1,i2 − c̄i1+1,N −
(
c̄i1,i2 − c̄i1,N

)
= ρ
(
(N − ξ)ρ−1 − (i2 − ξ)ρ−1

)
> 0,

where the estimate holds because the mapping x 7→ xρ−1 is increasing for non-
negative values of x and 0 < i2 − ξ < N − ξ. If i2 ∈ {i2, . . . , N − 1}, then
i2 ≤ i1 < ξ as well as ξ < i1 + 1 ≤ N and consequently

c̄i1+1,i2 − c̄i1+1,N −
(
c̄i1,i2 − c̄i1,N

)
= ρ
(
|ξ − i2|ρ−1 + |ξ −N |ρ−1

)
> 0.
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If i1 ∈ {N, . . . ,m− 1}, then ξ > i1 ≥ N > i2 and consequently

c̄i1+1,i2 − c̄i1+1,N −
(
c̄i1,i2 − c̄i1,N

)
= ρ
(
(ξ − i2)ρ−1 − (ξ −N)ρ−1

)
> 0,

again because of monotonicity and ξ− i2 > ξ−N > 0. This proves (4.10). The
proof of (4.11) is analogous.

The case of ρ = 1 can be proven with the same distinction of cases w.r.t. i1,
but without using the mean value theorem.

Example 4.22. For m,n ∈ N with n ≥ m ≥ 2 and ρ ≥ 1, we consider the cost
matrix given by c̄i1,i2 = |i1 − i2|ρ, for all i1 ∈ {1, . . . ,m} and i2 ∈ {1, . . . , n} as
well as the monotone assignment function j0(1) = · · · = j0(m) = 1, the latter
of which corresponds to a matrix of the form

π0 =

 p1 0 . . . 0
...

...
. . .

...
pm 0 . . . 0

 ∈ Rm×n,

with p1, . . . , pm ≥ 0. The definition of the reduced system matrix A0 from
Definition 4.18 implies that d0 ∈ Rm(n−1) solves A⊤

0 d0 = 0 if and only if
−1 . . . −1
1 . . . 0
...

. . .
...

0 . . . 1

−1 . . . −1
1 . . . 0
...

. . .
...

0 . . . 1

. . .

−1 . . . −1
1 . . . 0
...

. . .
...

0 . . . 1

 d0 = 0

⇐⇒

1 . . . 0
...

. . .
...

0 . . . 1

1 . . . 0
...

. . .
...

0 . . . 1

. . .

1 . . . 0
...

. . .
...

0 . . . 1

 d0 = 0.

Consequently, A⊤
0 d0 = 0 if and only if

m∑
i1=1

d
(i1−1)(n−1)+i2
0 = 0 for all i2 ∈ {1, . . . , n− 1}.

Now, if d0 ≥ 0, then the above implies that d0 = 0 and thus d⊤0 c0 = 0, with c0
being the reduced cost vector corresponding to j0 and c̄. Lemma 4.20 therefore
ensures that there exists a solution b0 ∈ Rn to the system A0b ≤ c0.

We now want to prove the same property for the system A1b ≤ c1, where
A1 and c1 are associated to the assignment function j1 (and to the cost matrix
c̄) with

j1(1) = · · · = j1(m− 1) = 1 and j1(m) = 2,

i.e., j1 corresponds to a matrix π1 ∈ Rm×n which looks very similar to π0:

π1 =


p1 0 0 . . . 0
...

...
...

. . .
...

pm−1 0 0 . . . 0
0 pm 0 . . . 0

 .
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Obviously, π1 results from π0 by shifting the nonzero element in π0’s last row
one column to the right.

We observe that d1 ∈ Rm(n−1) solves A⊤
1 d1 = 0 if and only if

−1 . . . . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

. . .

−1 . . . . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

1 0 . . . 0
−1 . . . . . . −1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 d1 = 0

⇐⇒


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

. . .

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−1 . . . . . . −1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 d1 = 0.

Consequently, A⊤
1 d1 = 0 if and only if

d11 =

m−1∑
i1=2

−d(i1−1)(n−1)+1
1 +

n−1∑
i2=1

d
(m−1)(n−1)+i2
1

and
m∑

i1=1

d
(i1−1)(n−1)+i2
1 = 0 for all i2 ∈ {2, . . . , n− 1}.

Now, if d1 ≥ 0, then the above implies that

d
(i1−1)(n−1)+i2
1 = 0 for all i1 ∈ {1, . . . ,m} and i2 ∈ {2, . . . , n− 1}. (4.12)

Thus,

d11 =
m−1∑
i1=2

−d(i1−1)(n−1)+1
1 + d

(m−1)(n−1)+1
1 . (4.13)

Using (4.12), (4.13), and c11 = c̄1,2 − c̄1,1 = 1 > 0, we are able to estimate the
scalar product of d1 and c1 by

d⊤1 c1 = d11c
1
1 +

m−1∑
i1=2

d
(i1−1)(n−1)+1
1 c

(i1−1)(n−1)+1
1

+ d
(m−1)(n−1)+1
1 c

(m−1)(n−1)+1
1

≥ min
i1∈{2,...,m−1}

c
(i1−1)(n−1)+1
1 ·

m−1∑
i1=2

d
(i1−1)(n−1)+1
1

+ d
(m−1)(n−1)+1
1 c

(m−1)(n−1)+1
1

≥
(

min
i1∈{2,...,m−1}

c
(i1−1)(n−1)+1
1 + c

(m−1)(n−1)+1
1

)
·
m−1∑
i1=2

d
(i1−1)(n−1)+1
1 .
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We use Remark 4.19 and Lemma 4.21 (with N = 1 and i2 = 2) to see that

c
(i1−1)(n−1)+1
1 + c

(m−1)(n−1)+1
1 = c̄i1,2 − c̄i1,1 −

(
c̄m,2 − c̄m,1

)
≥ 0

for all i1 ∈ {2, . . . ,m−1}. Consequently, d⊤1 c1 ≥ 0. Again, Lemma 4.20 ensures
the existence of some vector b1 ∈ Rn with A1b1 ≤ c1. ♢

The above example demonstrates two properties that are important for the
analysis of this subchapter:

1. the solvability of the system Ab ≤ c does not depend on the actual value of
the nonzero entries of the matrix π, but only on their positions (encoded
by j) within the matrix;

2. if we are given a monotone assignment function j whose corresponding
linear system Ab ≤ c admits a solution, we can increase j(m) and the
resulting system will still admit a solution. This observation is made
rigorous in the following lemma.

Lemma 4.23. Let m,n ∈ N with n ≥ m ≥ 2 be given and consider the cost
matrix c̄ from Example 4.22. For p ∈ {0, 1}, consider the monotone assign-
ment functions jp : {1, . . . ,m} → {1, . . . , n} and denote their associated reduced
system matrices and reduced cost vectors by Ap and cp, respectively.

Assume that j0(1) = 1 as well as N := j0(m) < n and, moreover, that
j1|{1,...,m−1} ≡ j0|{1,...,m−1} as well as j1(m) = j0(m) + 1.

Then, if the system A0b ≤ c0 has a solution, so does the system A1b ≤ c1.

Proof. We have already examined the case N = 1 in the previous example.
Therefore, we assume that N ≥ 2. Given d1 ∈ Rm(n−1), an arbitrary non-
negative solution of A⊤

1 d = 0, we then define the vector d0 ∈ Rm(n−1) via

d
(i1−1)(n−1)+i2
0

:=


d
(i1−1)(n−1)+N−1
1 + d

(i1−1)(n−1)+N
1 , if i1 /∈ j−1

0 (N), i2 = N − 1,

0, if i2 = N,

d
(i1−1)(n−1)+i2
1 , else,

(4.14)

for all i1 ∈ {1, . . . ,m} and i2 ∈ {1, . . . , n − 1}. We will show in the following
that A⊤

0 d0 = 0.
By construction, d0 ≥ 0 and

n−1∑
i2=1

d
(i1−1)(n−1)+i2
0 =

n−1∑
i2=1

d
(i1−1)(n−1)+i2
1 for all i1 /∈ j−1

0 (N). (4.15)

The structure of the reduced system matrices Ap, p ∈ {0, 1}, yields that(
A⊤

p dp
)
l
=

∑
i1 : jp(i1)<l

d(i1−1)(n−1)+l−1
p

+
∑

i1 : jp(i1)=l

n−1∑
i2=1

−d(i1−1)(n−1)+i2
p

+
∑

i1 : jp(i1)>l

d(i1−1)(n−1)+l
p

(4.16)
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for all l ∈ {1, . . . , n}. Using the definition of j1, we observe that

{i1 : j0(i1) < l} = {i1 : j1(i1) < l},
{i1 : j0(i1) = l} = {i1 : j1(i1) = l}, for all l ∈ {1, . . . , N − 1}.
{i1 : j0(i1) > l} = {i1 : j1(i1) > l},

(4.17)

If l ∈ {1, . . . , N − 2}, then j−1
0 (l) ∩ j−1

0 (N) = ∅. Hence, we use (4.14) – (4.17)
to find that

(A⊤
0 d0)l =

∑
i1 : j1(i1)<l

d
(i1−1)(n−1)+l−1
1

+
∑

i1 : j1(i1)=l

n−1∑
i2=1

−d(i1−1)(n−1)+i2
1

+
∑

i1 : j1(i1)>l

d
(i1−1)(n−1)+l
1 = (A⊤

1 d1)l = 0,

where the last equality follows from the assumption on d1. Moreover, we find
that

(
{i1 : j0(i1) < N−1}∪{i1 : j0(i1) = N−1}

)
∩ j−1

0 (N) = ∅ and {i1 : j0(i1) >
N − 1} = {i1 : j0(i1) ≥ N} = j−1

0 (N), because j0 is monotone and N = j0(m).
Similarly to before, we use (4.16) and (4.17) for l = N − 1 together with the
definition of d0 to obtain that

(A⊤
0 d0)N−1 =

∑
i1 : j1(i1)<N−1

d
(i1−1)(n−1)+N−2
1

+
∑

i1 : j1(i1)=N−1

n−1∑
i2=1

−d(i1−1)(n−1)+i2
1

+
∑

i1 : j1(i1)>N−1

d
(i1−1)(n−1)+N−1
1 = (A⊤

1 d1)N−1 = 0.

By the properties of j0, it holds that {1, . . . ,m} = {i1 : j0(i1) < N} ∪ j−1
0 (N)

and therefore {i1 : j0(i1) > N} = ∅. Thus, for l = N , we calculate that

(A⊤
0 d0)N

=
∑

i1 /∈j−1
0 (N)

(
d
(i1−1)(n−1)+N−1
1 + d

(i1−1)(n−1)+N
1

)

+
∑

i1∈j−1
0 (N)

n−1∑
i2=1

−d(i1−1)(n−1)+i2
1

= dN−1
1 + dN1 +

∑
i1∈{2,...,m}\{j−1

0 (N)}

(
d
(i1−1)(n−1)+N−1
1 + d

(i1−1)(n−1)+N
1

)
+

∑
i1∈j−1

0 (N)

d
(i1−1)(n−1)+N
1 +

∑
i1∈j−1

0 (N)

−d(i1−1)(n−1)+N
1

+
∑

i1∈j−1
0 (N)

∑
i2∈{1,...,n−1}\{N}

−d(i1−1)(n−1)+i2
1
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= dN−1
1 + dN1 +

∑
i1∈{2,...,m}\{j−1

0 (N)}

d
(i1−1)(n−1)+N−1
1 + u+ v,

where

u :=
∑

i1∈{2,...,m}\{j−1
0 (N)}

d
(i1−1)(n−1)+N
1 +

∑
i1∈j−1

0 (N)

d
(i1−1)(n−1)+N
1

=
m∑

i1=2

d
(i1−1)(n−1)+N
1 + d

(m−1)(n−1)+N
1

and

v :=
∑

i1∈j−1
0 (N)

−d(i1−1)(n−1)+N
1 +

∑
i1∈j−1

0 (N)

∑
i2∈{1,...,n−1}\{N}

−d(i1−1)(n−1)+i2
1

=
∑

i1∈j−1
0 (N)\{m}

n−1∑
i2=1

−d(i1−1)(n−1)+i2
1 +

n−1∑
i2=1

−d(m−1)(n−1)+i2
1 .

Further, we take a close look at the system A⊤
1 d1 = 0 to find that∑

i1∈{2,...,m}\{j−1
0 (N)}

d
(i1−1)(n−1)+N−1
1 + u+ v

= −
( ∑

i1∈{2,...,m}\{j−1
0 (N)}

−d(i1−1)(n−1)+N−1
1

− d(m−1)(n−1)+N
1 +

∑
i1∈j−1

0 (N)\{m}

n−1∑
i2=1

d
(i1−1)(n−1)+i2
1

)

−
( m∑

i1=2

−d(i1−1)(n−1)+N
1 +

n−1∑
i2=1

d
(m−1)(n−1)+i2
1

)
= −dN−1

1 − dN1 .

Consequently, (A⊤
0 d0)N = 0. Moreover, because of {i1 : j0(i1) < N + 1} =

{1, . . . ,m}, we immediately receive that (choosing l = N + 1 in (4.16))

(A⊤
0 d0)N+1 =

m∑
i1=1

d
(i1−1)(n−1)+N
0 = 0

and, for l ∈ {N + 2, . . . , n},

(A⊤
0 d0)l =

m∑
i1=1

d
(i1−1)(n−1)+l−1
0 =

m∑
i1=1

d
(i1−1)(n−1)+l−1
1 = 0,

which again can be justified by a close look at the system A⊤
1 d1 = 0. To

summarize all of the above, we have shown that A⊤
0 d0 = 0.

Let us now assume that the system A0b ≤ c0 has a solution. Then, by
Lemma 4.20, d⊤0 c0 ≥ 0. A comparison of c0 with c1, see their representations
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from (4.9), yields that

c
(i1−1)(n−1)+i2
1

= c
(i1−1)(n−1)+i2
0 +


0, if i1 ∈ {1, . . . ,m− 1},
2
(
c̄m,N − c̄m,N+1

)
, if i1 = m, i2 = N,

c̄m,N − c̄m,N+1, else.

(4.18)

For all i1 ∈ {1, . . . ,m− 1} and i2 = N , this yields that

c
(i1−1)(n−1)+N
1 = c̄i1,N+1 − c̄i1,j0(i1),

whereas
c
(m−1)(n−1)+N
1 = c̄m,N − c̄m,N+1.

Moreover, for i1 /∈ j−1
0 (N) and i2 = N − 1,

c
(i1−1)(n−1)+N−1
1 = c̄i1,N − c̄i1,j0(i1).

This, together with the definition of d0, see (4.14), and (4.18) leads to

d⊤1 c1 − d⊤0 c0
=

∑
i1 /∈j−1

0 (N)

d
(i1−1)(n−1)+N
1

(
c
(i1−1)(n−1)+N
1 − c(i1−1)(n−1)+N−1

1

)
+

∑
i1∈j−1

0 (N)\{m}

d
(i1−1)(n−1)+N
1 c

(i1−1)(n−1)+N
1

+
∑

i2∈{1,...,n−1}\{N}

d
(m−1)(n−1)+i2
1

(
c
(m−1)(n−1)+i2
1 − c(m−1)(n−1)+i2

0

)
+ d

(m−1)(n−1)+N
1 c

(m−1)(n−1)+N
1

= dN1
(
c̄1,N+1 − c̄1,N

)
+

∑
i1∈{2,...,m−1}

d
(i1−1)(n−1)+N
1

(
c̄i1,N+1 − c̄i1,N

)
+

n−1∑
i2=1

d
(m−1)(n−1)+i2
1

(
c̄m,N − c̄m,N+1

)
.

(4.19)

The equation
(
A⊤

1 d1
)
N+1

= 0 reveals that

dN1 =
m−1∑
i1=2

−d(i1−1)(n−1)+N
1 +

n−1∑
i2=1

d
(m−1)(n−1)+i2
1 ≥ 0. (4.20)

Adding dN1
(
c̄m,N − c̄m,N+1

)
− dN1

(
c̄m,N − c̄m,N+1

)
to the right-hand side of the

equation in (4.19) and using the relation in (4.20), one finds that

d⊤1 c1 − d⊤0 c0 = dN1
(
c̄1,N+1 − c̄1,N + c̄m,N − c̄m,N+1

)
+

m−1∑
i1=2

d
(i1−1)(n−1)+N
1

(
c̄i1,N+1 − c̄i1,N + c̄m,N − c̄m,N+1

)
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≥
m−1∑
i1=2

d
(i1−1)(n−1)+N
1

(
c̄i1,N+1 − c̄i1,N − (c̄m,N+1 − c̄m,N )

)
≥ 0,

where the last estimate stems from the nonnegativity of d1 and an application
of Lemma 4.21 (for i2 = N + 1). Consequently, d⊤1 c1 ≥ d⊤0 c0 ≥ 0 which, owing
to Lemma 4.20, completes the proof.

The just proven lemma states that, for a given matrix, we can always “ad-
vance” the nonzero entry of its last row by one column without sacrificing the
solvability of the associated linear inequality system. We will see in the next
lemma that we can, in the same sense, “move up” nonzero entries of the rows
above.

Lemma 4.24. Let m,n ∈ N with n ≥ m ≥ 3 be given and consider the cost
matrix c̄ from Example 4.22. For p ∈ {0, 1}, consider the monotone assign-
ment functions jp : {1, . . . ,m} → {1, . . . , n} and denote their associated reduced
system matrices and reduced cost vectors by Ap and cp, respectively.

Assume that j0(1) = 1 as well as N := j0(m) ≥ 2. Abbreviate I :=
max{i1 : i1 /∈ j−1

0 (N)} and assume that I > 1 as well as j0(I) = N − 1 and,
moreover, that j1|{1,...,m}\{I} ≡ j0|{1,...,m}\{I} and j1(I) = N = j0(I) + 1.

Then, if the system A0b ≤ c0 has a solution, so does the system A1b ≤ c1.

Proof. Assume that the system A0b ≤ c0,

bi2 − bj0(i1) ≤ c̄i1,i2 − c̄i1,j0(i1), i1 ∈ {1, . . . ,m}, i2 ∈ {1, . . . , n} \ {j0(i1)},

has a solution. Then the subsystem

bi2 − bj0(i1) ≤ c̄i1,i2 − c̄i1,j0(i1), i1 ∈ {1, . . . , I}, i2 ∈ {1, . . . , n} \ {j0(i1)},

has the same solution. Applying Lemma 4.23 to the restriction j0|{1,...,I}, we
obtain that the system

bi2−bj1(i1) ≤ c̄i1,i2− c̄i1,j1(i1) i1 ∈ {1, . . . , I}, i2 ∈ {1, . . . , n}\{j1(i1)}, (4.21)

with j1|{1,...,I−1} ≡ j0|{1,...,I−1} and j1(I) = j0(I) + 1 = N , admits at least one
solution b′ ∈ Rn. We then define the vector b1 ∈ Rn by

bi21 :=

{
b′i2 , if i2 ≤ N,
b′i2 −

(
c̄I,i2 − c̄I,N − (c̄m,i2 − c̄m,N )

)
, if i2 > N,

(4.22)

for all i2 ∈ {1, . . . , n}.
On the one hand, let i1 ∈ {1, . . . , I − 1} and i2 ∈ {1, . . . , n} \ {j1(i1)} be

arbitrary. By construction of j1, we find that j1(i1) < N . If i2 ≤ N , because of
(4.21) and (4.22),

bi21 − b
j1(i1)
1 = b′i2 − b

′
j1(i1)

≤ c̄i1,i2 − c̄i1,j1(i1).

If i2 > N , we additionally apply (4.11) to receive

bi21 − b
j1(i1)
1 = b′i2 −

(
c̄I,i2 − c̄I,N − (c̄m,i2 − c̄m,N )

)
− b′j1(i1)

≤ b′i2 − b
′
j1(i1)

≤ c̄i1,i2 − c̄i1,j1(i1).
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On the other hand, let i1 ∈ {I, . . . ,m} be arbitrary. Then, j1(i1) = j1(I) = N .
For i2 ∈ {1, . . . , N − 1},

bi21 − b
j1(i1)
1 = b′i2 − b

′
j1(I)

≤ c̄I,i2 − c̄I,N
≤ c̄i1,i2 − c̄i1,N = c̄i1,i2 − c̄i1,j1(i1),

where the second estimate holds because of (4.10). If i2 > N , we use (4.11) to
find that

bi21 − b
j1(i1)
1 = b′i2 − b

′
j1(I)

−
(
c̄I,i2 − c̄I,N − (c̄m,i2 − c̄m,N )

)
≤ c̄I,i2 − c̄I,N −

(
c̄I,i2 − c̄I,N − (c̄m,i2 − c̄m,N )

)
= c̄m,i2 − c̄m,N ≤ c̄i1,i2 − c̄i1,N = c̄i1,i2 − c̄i1,j1(i1).

Thus, we have shown that for all i1 ∈ {1, . . . ,m} and all i2 ∈ {1, . . . , n}\{j1(i1)},

bi21 − b
j1(i1)
1 ≤ c̄i1,i2 − c̄i1,j1(i1),

or equivalently, A1b1 ≤ c1 as claimed.

The following result elaborates on the inductive argument we mentioned
earlier and which allows us to prove the existence of solutions to systems Ab ≤ c
that correspond to (almost) arbitrary monotone assignment functions j.

Theorem 4.25. Let m,n ∈ N with n ≥ m ≥ 2 be given and consider the
cost matrix c̄ from Example 4.22. Consider the monotone assignment function
j : {1, . . . ,m} → {1, . . . , n} with j(1) = 1 and denote its associated reduced
system matrix and reduced cost vector by A and c, respectively.

Then, there exists a solution b ∈ Rn to the system Ab ≤ c.

Proof. In Example 4.22, we have shown that the system A0b ≤ c0 belonging
to the monotone assignment function j0 : {1, . . . ,m} → {1, . . . , n} defined by
j0(1) = · · · = j0(m) = 1 admits a solution.

If m = 2, applying Lemma 4.23 a total of j(2) − 1 times, starting from the
system A0b ≤ c0, yields the claim.

If m = 3, we alternately apply Lemma 4.23 and Lemma 4.24 a total of
j(3)− 1 and j(2)− 1 times, respectively, starting with the former at the system
A0b ≤ c0. This yields the claim.

The procedure for the case m = 3 describes a method by which we can
prove the assertion for all other cases where m > 3: beginning with the system
A0b ≤ c0, we apply Lemma 4.23 and then, if necessary, Lemma 4.24 up to m−2
times to the resulting system. We repeat this process a total of j(m)− 2 times
to prove the claim.

Applying Theorem 4.25 to the solution from Assumption 4.15 finally yields
the desired approximation result.

Corollary 4.26. Consider the solution (π∗, µ∗
1) from Assumption 4.15 and the

vanishing sequence of regularization parameters (γk)k∈N ↘ 0 and the sequence
of solutions (π̄k, µ̄

k
1 , c̄k)k∈N to the regularized bilevel problems from Subchapter

4.4. Then, every cluster point (π̄, µ̄1) of that sequence is a solution to (BH).
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Proof. The existence of a cluster point (π̄, µ̄1) was discussed at the beginning
of Subchapter 4.4. By Theorem 4.25, there exists a solution b∗ ∈ Rn2 to the
system A∗b ≤ c∗, where A∗ and c∗ denote the reduced system matrix and
the reduced cost vector associated with the monotone assignment function j∗,
respectively. By definition of A∗ and c∗, this shows that b∗ satisfies the system
from (4.8), which in turn yields the existence of a recovery sequence (π∗

k, µ
∗
1,k, c

∗
k)

accompanying the solution (π∗, µ∗
1), see Lemma 4.17. The claim of the corollary

then follows from Theorem 4.14.

We conclude this chapter with a comparison of the approximation results of
the infinite-dimensional case of Part I and the finite-dimensional case of Part
II.

– In both cases, if we presuppose the existence of a solution of the non-
regularized bilevel problem that is accompanied by a recovery sequence, we
can show that solutions of the regularized bilevel problems converge (w.r.t.
the proper topology) towards solutions of the non-regularized bilevel prob-
lems. In other words, we can approximate certain solutions of the non-
regularized problems arbitrarily accurately. However, since we do not need
to smooth the marginals in the finite-dimensional case of Part II, a single
regularization parameter is sufficient in this case.

– If we compare the scenarios for which we can prove the existence of a
recovery sequence, we find that the scenario described in Corollary 3.41 is
slightly less general than the one from Assumption 4.15:

– In Corollary 3.41, we assume that the domains of the marginals coin-
cide, while in Assumption 4.15 both of the domains can be sets with
an arbitrary (finite) number of points.

– The parameter ρ defining the cost function in Corollary 3.41 is re-
stricted to ρ > 1, while in Assumption 4.15 we also include the case
ρ = 1.

– In contrast to the infinite-dimensional case, there are no additional
assumptions on the objective function in the finite-dimensional case,
other than its lower semi-continuity and boundedness on bounded
sets, which is required anyway for the approximation results of both
cases.

– The proof of the existence of a recovery sequence in Corollary 3.41 re-
lies heavily on the uniqueness of the optimal transport plan, whereas
the recovery sequence in Assumption 4.15 can be constructed without
this property. This, however, goes along with the fact that the latter
proof is considerably more complex than in the infinite-dimensional
case.
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Chapter 5

Towards Implicit
Programming

Implicit programming (IP) is an approach to the numerical treatment of op-
timization problems whose constraints include some sort of defining relation
between some input variable (often called “control”) and some output vari-
able (often called “state”), such as solution operators of variational inequalities,
complementarity systems, or, like in the case of the bilevel Hitchcock problem,
(non-)linear optimization problems. Evolving from the implicit programming
problem, an optimization problem whose constraints are implicitly defined by
the problem’s solution itself, see e.g. [36] or [35], the IP approach is frequently
applied in the context of (but not limited to) mathematical programming with
equilibrium constraints (MPECs), see e.g. [54], [60], [46], or [59].

The IP approach typically consists of replacing the control-to-state relation
from the problems constraints by the corresponding solution mapping (often
called “control-to-state mapping”), which then can be plugged directly into the
upper-level target functional, leading to a (possibly unconstrained) optimiza-
tion problem with fewer optimization variables. Given sufficient smoothness of
the target functional, one can then employ (typically nonsmooth) optimization
methods to solve the original optimization problem. This, however, generally
requires that

1. the solution operator is single-valued (i.e., in particular not set-valued),
since the higher-order objective functional typically operates only on single
elements and not on sets;

2. the solution mapping itself must satisfy some notion of differentiability.

We already tried to indicate in Subchapter 4.1 that both of the above re-
quirements are not satisfied in the context of the bilevel Hitchcock problem: In
general, the solution of the Hitchcock problem is not unique. Therefore, we can
neither find a single-valued solution operator nor differentiate it in a sense that
would be useful for our purposes.

How we can still put the IP approach into practice in the context of the
bilevel Hitchcock problem will be the topic of the present chapter.

85
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5.1 Regularization of the Dual Problem of the
Regularized Hitchcock Problem

We have mentioned at several points in this thesis that we would like to use the
implicit programming approach to solve the bilevel Hitchcock problem (BH).
As noted in the introduction of this chapter, the Hitchcock problem itself is not
necessarily uniquely solvable, ruling out the existence of a single-valued solution
operator.

For this and other reasons, we have introduced the quadratic regularization
of the Hitchcock problem in Chapter 4, which guarantees the uniqueness of the
optimal solution and therefore implicitly defines a solution operator. However,
as can be seen in Theorem 4.9, the dual variables α1 and α2 corresponding to
a solution π of (Hγ) are not unique for two reasons: First, because of the outer
sum of the dual variables, namely α1 ⊕ α2, one can constantly shift the dual
variables in the opposite direction, i.e., consider (α1 + a, α2 − a) for a ∈ R, and
this will not affect the system in (4.2), and second, the ( · )+-operator provides
the potential for arbitrary deviations of the expression α1 ⊕ α2 − c where it is
negative.

We therefore consider an additional regularization of the dual problem (HDγ)
corresponding to the solution of (Hγ). Given γ, ε > 0, some cost matrix
c ∈ Rn1×n2 , as well as the (arbitrary) marginals µ1 and µ2, we consider the
regularized dual problem of the regularized Hitchcock problem:

sup
α1,α2

(α1, µ1)Rn1
+ (α2, µ2)Rn2

− 1
2γ ∥(α1 ⊕ α2 − c)+∥2F −

ε
2

(
∥α1∥2Rn1

+ ∥α2∥2Rn2

)
s.t. α1 ∈ Rn1 , α2 ∈ Rn2 .

(HDε
γ)

Without having to do extensive preliminary work, we immediately arrive at the
following result.

Lemma 5.1. For any γ, ε > 0, the regularized dual problem (HDε
γ) admits a

unique solution. Moreover, its first-order necessary and sufficient condition is
given by

(α1 ⊕ α2 − c)+1 + γεα1 = γµ1,

(α1 ⊕ α2 − c)⊤+1 + γεα2 = γµ2.
(5.1)

Proof. It is straightforward to show that the negative of (HDε
γ)’s target function

is strongly convex. According to [58, Proposition 3.10.8], it therefore has a
unique global minimizer, which is at the same time the unique global maximizer
of (HDε

γ).
Because the mapping f : R ∋ x 7→ max{0, x}2 ∈ R is differentiable and has

the derivative f ′(x) = 2max{0, x}, the term

− 1

2γ
∥(α1 ⊕ α2 − c)+∥2F = − 1

2γ

n1∑
i1=1

n2∑
i2=1

max
{
0, αi1

1 + αi2
2 − ci1,i2

}2
is differentiable and has the partial derivatives

− 1

γ

n2∑
i2=1

max
{
0, αi1

1 + αi2
2 − ci1,i2

}
(w.r.t. αi1

1 )
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and

− 1

γ

n1∑
i1=1

max
{
0, αi1

1 + αi2
2 − ci1,i2

}
. (w.r.t. αi2

2 )

This in turn shows that (HDε
γ)’s objective function is differentiable w.r.t. α1 and

α2. Thus, its unique maximizer can be equally characterized by the first-order
conditions

µi1
1 −

1

γ

n2∑
i2=1

(
αi1
1 + αi2

2 − ci1,i2
)
+
− εαi1

1 = 0 for all i1 = 1, . . . , n1

and

µi2
2 −

1

γ

n1∑
i1=1

(
αi1
1 + αi2

2 − ci1,i2
)
+
− εαi2

2 = 0 for all i2 = 1, . . . , n2,

which are equivalent to (5.1).

Remark 5.2. Note that the marginals µ1 and µ2 need not be compatible for
the regularized dual problem to admit a unique solution. In fact, µ1 and µ2

do not even need to be marginals, since the regularized dual problem allows
for vectors of arbitrary sign. Lemma 5.1 therefore implies the existence of the
solution operator of (HDε

γ),

Fγ,ε : Rn1 × Rn2 → Rn1 × Rn2 , (µ1, µ2) 7→ (α1, α2)

with (α1, α2) being the unique solution to the system in (5.1) w.r.t. µ1 and µ2.
In particular, the solutions of (5.1) are in general no longer the dual variables
to the marginals µ1 and µ2, which is why we will define a regularized marginal-
to-transport-plan mapping in Subchapter 5.2.

We immediately observe that the operator Fγ,ε is bijective: injectivity fol-
lows from the unique solvability of the system in (5.1); surjectivity holds since
one can simply evaluate the left-hand side of the equations in (5.1) to com-
pute the corresponding marginals. As a consequence, there exists the inverse
operator

F−1
γ,ε(α1, α2) =

( 1
γ
(α1 ⊕ α2 − c)+1 + εα1,

1

γ
(α1 ⊕ α2 − c)⊤+1 + εα2

)
(5.2)

and this inverse operator is continuous. ◦
Remark 5.3. In the context of (HDε

γ), we further would like to mention the
following:

– As was the case with the solution operator Sγ from Subchapter 4.2, one
could also include the cost matrix in the formulation of the solution oper-
ator from Remark 5.2, i.e., one could consider the operator

F̃γ,ε : Rn1×n2 × Rn1 × Rn2 → Rn1 × Rn2 , (c, µ1, µ2) 7→ (α1, α2)

with being (α1, α2) the unique solution of (HDε
γ) w.r.t. µ1, µ2, and c in

order to account for the cost matrix being an optimization variable as well.
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However, the focus of this chapter lies on realizing the IP approach for the
(regularized) bilevel Hitchcock problem. The cost function served mainly
as a tool for the approximation result of Subchapter 4.4 and had (from our
viewpoint) no other significant effect on the analysis. Thus, for simplicity,
we refrain from including it in the analysis of the present chapter.

– While the regularization approach in (HDε
γ) corresponds to a standard

Tikhonov regularization of the dual problem (HDγ), another approach to
promote uniqueness of the dual variables would be to consider approxi-
mations of the mapping x 7→ max{0, x} by means of the smooth, strictly
increasing, and strictly convex functions

fε : R→ R>0, fε(x) :=
x

2
+

1

2

√
x2 + ε2

or

LSEε : R→ R>0, LSEε(x) := ε log
(
1 + exp(x/ε)

)
,

where log refers to the natural logarithm and LSE is short for “log-sum-
exp”, see e.g. [12, Example 3.1.5], or any other approximation of x 7→
max{0, x} having the same properties.

Substituting the ( · )+ operator in the objective function of (HDγ) by the
element-wise application of one of the above functions would then lead to
regularized problems with similar properties as (HDε

γ) but smooth first-
order optimality systems. The resulting optimality systems would, just
like (5.1), contain nonlinear terms but would not, in contrast to (5.1),
benefit from the sparsity induced by the ( · )+ operator.

We will see below that the induced sparsity is indeed very useful to calcu-
late derivatives of the regularized dual problem.

◦

In the remainder of this subchapter, we will analyze the differentiability
properties of the solution operator of the regularized dual problem. We start
by showing that the operator is Lipschitz continuous and therefore, according
to Rademacher’s theorem, differentiable almost everywhere on its domain.

Lemma 5.4. The solution operator Fγ,ε is globally Lipschitz continuous.

Proof. The inverse operator F−1
γ,ε from (5.2) is continuous and piecewise linear

with n1 · n2 segments, where the slopes are bounded (from below) by a single
constant. This implies that its inverse, Fγ,ε, is also continuous and piecewise
linear and that the slope of each of its segments is bounded (from above) by the
inverse of this constant. Thus, Fγ,ε must be Lipschitz continuous.

Consequently, according to Rademacher’s theorem, Fγ,ε is differentiable al-
most everywhere in Rn1×Rn2 . To be able to make qualitative statements about
the points where Fγ,ε is differentiable and moreover to be able to characterize
its derivative in these points, we start with the characterization of its directional
derivative.
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Proposition 5.5. Let (µ1, µ2) ∈ Rn1×Rn2 be an arbitrary point and abbreviate
(α1, α2) := Fγ,ε(µ1, µ2). Then, the solution operator Fγ,ε is directionally dif-
ferentiable in each direction (h1, h2) ∈ Rn1 ×Rn2 and the directional derivative
F ′

γ,ε

(
(µ1, µ2); (h1, h2)

)
is given by the unique point (η1, η2) ∈ Rn1 × Rn2 that

solves the system

max′(α1 ⊕ α2 − c; η1 ⊕ η2) 1 + γεη1 = γh1,

max′(α1 ⊕ α2 − c; η1 ⊕ η2)⊤1 + γεη2 = γh2,
(5.3)

where

max′(x; y) =


0, if x < 0,

max{0, y}, if x = 0,

y, if x > 0,

(5.4)

is the directional derivative of the mapping R ∋ x 7→ max{0, x} ∈ R+ at some
point x ∈ R in the direction y ∈ R. In (5.3), this directional derivative is
understood to be applied entry-wise to the matrices α1⊕α2− c and η1⊕η2, i.e.,
max′(α1 ⊕ α2 − c; η1 ⊕ η2) ∈ Rn1×n2 .

Proof. Given t > 0, we consider the point (α1,t, α2,t) := Fγ,ε

(
(µ1, µ2)+t(h1, h2)

)
.

Then, the difference quotient

(η1,t, η2,t) :=
(α1,t − α1

t
,
α2,t − α2

t

)
=
Fγ,ε

(
(µ1, µ2) + t(h1, h2)

)
−Fγ,ε(µ1, µ2)

t

is bounded, since

∥(η1,t, η2,t)∥Rn1×Rn2

≤
LFγ,ε

∥(µ1, µ2) + t(h1, h2)− (µ1, µ2)∥Rn1×Rn2

t
= LFγ,ε∥(h1, h2)∥Rn1×Rn2

by Lemma 5.4. Consequently, if we consider an arbitrary vanishing sequence
tk ↘ 0, the sequence (η1,tk , η2,tk)k∈N is bounded and therefore contains some
convergent subsequence which we denote by (η1,l, η2,l)l∈N and which converges
to some point (η̄1, η̄2).

Subtracting the system (5.1) w.r.t. (α1, α2) from the system (5.1) w.r.t.
(α1,l, α2,l) := (α1,tl , α2,tl), we observe that the difference quotient satisfies the
equations (

(α1,l ⊕ α2,l − c)+ − (α1 ⊕ α2 − c)+
)

1

tl
+ γεη1,l = γh1,(

(α1,l ⊕ α2,l − c)+ − (α1 ⊕ α2 − c)+
)⊤

1

tl
+ γεη2,l = γh2,

(5.5)

for all l ∈ N.
Owing to the continuity of the solution operator, see Lemma 5.4, it holds that

(α1,l, α2,l)→ (α1, α2) and in particular (α1,l, α2,l) = (α1, α2)+ tl(η̄1, η̄2)+ o(tl).
Thus, the Hadamard differentiability of the mapping x 7→ max{0, x}, see Lemma
D.7, implies that

(αi1
1,l + αi2

2,l − ci1,i2)+ − (αi1
1 + αi2

2 − ci1,i2)+
tl

→ max′(αi1
1 +αi2

2 −ci1,i2 ; η̄
i1
1 +η̄i22 )
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for each (i1, i2) ∈ Ω as l → ∞. We can therefore pass to the limit in (5.5) to
arrive at

max′(α1 ⊕ α2 − c; η̄1 ⊕ η̄2) 1 + γεη̄1 = γh1,

max′(α1 ⊕ α2 − c; η̄1 ⊕ η̄2)⊤1 + γεη̄2 = γh2.
(5.6)

In the following, we are going to convince ourselves that (η̄1, η̄2) is the only
possible solution of the above system. If this is the case, then Lemma D.5 en-
sures the convergence of the whole sequence (η1,tk , η2,tk)→ (η̄1, η̄2). Moreover,
because the sequence (tk)k∈N was arbitrary, we then find that

lim
t↘0

Fγ,ε

(
(µ1, µ2) + t(h1, h2)

)
−Fγ,ε(µ1, µ2)

t
= lim

t↘0
(η1,t, η2,t) = (η̄1, η̄2),

which proves the claim.
In order to show that the system in (5.6) admits a unique solution, we

abbreviate X := Rn1 × Rn2 and define the operator F : X → X by

(u1, u2) 7→
(
max′(α1 ⊕ α2 − c;u1 ⊕ u2) 1 + γεu1,

max′(α1 ⊕ α2 − c;u1 ⊕ u2)⊤1 + γεu2

)
.

We are going to prove that F is

(i) strongly monotone, i.e., there exists some c > 0 such that

(Fu− Fv, u− v)X ≥ c∥u− v∥
2
X for all u, v ∈ X;

(ii) coercive, i.e.,

lim
∥u∥X→∞

(Fu, u)X
∥u∥X

=∞;

(iii) hemicontinuous, i.e., the function

t 7→ (F (u+ tv), w)X

is continuous on [0, 1] for all u, v, w ∈ X.

If (i) – (iii) are established, then the Minty-Browder theorem, see e.g. [67, Satz
1.5], ensures that the equation Fu = b admits a unique solution for any right-
hand side b ∈ Rn1 × Rn2 . Choosing b = γ(h1, h2) then yields the claim.

Ad (i): A paper-and-pencil aided calculation shows that

(Fu− Fv, u− v)X
=
(
max′(α1⊕ α2 − c;u1⊕ u2)−max′(α1⊕ α2 − c; v1⊕ v2), u1⊕ u2 − v1⊕ v2

)
F

+ γε
(
∥u1 − v1∥2Rn1

+ ∥u2 − v2∥2Rn2

)
≥ γε∥u− v∥2X ,

where the estimate follows from a distinction of cases w.r.t. the sign of α1⊕α2−c
and (a+ − b+)(a− b) ≥ 0 for all a, b ∈ R.

Ad (ii): Similar to (i), we find that

(Fu, u)X =
(
max′(α1 ⊕ α2 − c;u1 ⊕ u2), u1 ⊕ u2

)
F
+ γε∥u∥2X
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≥ γε∥u∥2X

and therefore

lim
∥u∥X→∞

(Fu, u)X
∥u∥X

≥ lim
∥u∥X→∞

γε∥u∥X =∞.

Ad (iii): The mapping : x 7→ max{0, x} is Lipschitz continuous with Lips-
chitz constant equal to 1 and is directionally differentiable at every point and
in every direction. Thus,

|max′(x; z)−max′(x; y)|

= lim
t↘0

1

t
|max{0, x+ tz} −max{0, x+ ty}| ≤ |z − y|

for all y, z ∈ R, i.e., the mapping y 7→ max′(x; y) is Lipschitz continuous with
the same Lipschitz constant. Consequently, the mapping t 7→ F (u + tv) is
continuous on all of R.

Remark 5.6. With the same arguments as in Remark 5.2, we see that the
mapping

(h1, h2) 7→ F ′
γ,ε

(
(µ1, µ2); (h1, h2)

)
is bijective: it is injective, because the solution to (5.3) is unique; it is surjec-
tive, because any given directional derivative (η1, η2) can be realized by some
direction (h1, h2) that can be computed by simply evaluating the left-hand side
of (5.3). ◦

In order to characterize the points where Fγ,ε is not only directionally but
(totally) differentiable, we need the following definition.

Definition 5.7. Given some point µ = (µ1, µ2) ∈ Rn1 × Rn2 with (α1, α2) =
Fγ,ε(µ1, µ2), we define the sets

Ω+(µ) :=
{
(i1, i2) ∈ Ω: αi1

1 + αi2
2 − ci1,i2 > 0

}
,

Ω0 (µ) :=
{
(i1, i2) ∈ Ω: αi1

1 + αi2
2 − ci1,i2 = 0

}
,

Ω−(µ) :=
{
(i1, i2) ∈ Ω: αi1

1 + αi2
2 − ci1,i2 < 0

}
.

We call the sets Ω+(µ), Ω0(µ), and Ω−(µ) active set , biactive set , and inactive
set , respectively. Note that Ω = Ω+(µ) ∪̇ Ω0(µ) ∪̇ Ω−(µ).

The following result characterizes the points at which Fγ,ε is (totally) dif-
ferentiable.

Proposition 5.8. The solution operator of the regularized dual problem, Fγ,ε,
is (totally) differentiable at the point µ = (µ1, µ2) ∈ Rn1 × Rn2 if and only if
Ω0(µ) = ∅.

Proof. Following [22, p. 30], Fγ,ε’s Lipschitz continuity is sufficient for the
equivalence of Fγ,ε being differentiable in µ and the mapping F ′

γ,ε(µ; · ) be-
ing linear. It therefore suffices to show that F ′

γ,ε(µ; · ) is linear if and only if
Ω0 := Ω0(µ) = ∅.

To this end, assume that Ω0 = ∅. We consider arbitrary directions g, h ∈
Rn1 × Rn2 and denote their corresponding directional derivatives by (θ1, θ2) :=
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F ′
γ,ε(µ; g) and (η1, η2) := F ′

γ,ε(µ;h). According to Proposition 5.5, (θ1, θ2) and
(η1, η2) satisfy the systems

max′(α1 ⊕ α2 − c; θ1 ⊕ θ2) 1 + γεθ1 = γg1,

max′(α1 ⊕ α2 − c; θ1 ⊕ θ2)⊤1 + γεθ2 = γg2,

and

max′(α1 ⊕ α2 − c; η1 ⊕ η2) 1 + γεη1 = γh1,

max′(α1 ⊕ α2 − c; η1 ⊕ η2)⊤1 + γεη2 = γh2,

respectively. Adding those two systems of equations while multiplying the first
system with some λ ∈ R, we arrive at(
λmax′(α1 ⊕ α2 − c; θ1 ⊕ θ2) + max′(α1 ⊕ α2 − c; η1 ⊕ η2)

)
1

+γε(λθ1 + η1) = γ(λg1 + h1),(
λmax′(α1 ⊕ α2 − c; θ1 ⊕ θ2) + max′(α1 ⊕ α2 − c; η1 ⊕ η2)

)⊤
1

+γε(λθ2 + η2) = γ(λg2 + h2).

(5.7)

Because Ω is a disjoint union of Ω+(µ), Ω0, and Ω−(µ) and because by assump-
tion Ω0 = ∅, it holds that

max′(αi1
1 + αi2

2 − ci1,i2 ;x) =

{
x, if (i1, i2) ∈ Ω+(µ),

0, if (i1, i2) ∈ Ω−(µ),

i.e., the mapping max′(αi1
1 + αi2

2 − ci1,i2 ; · ) is linear for all (i1, i2) ∈ Ω. Thus,
we may rewrite the system in (5.7) as

max′
(
α1 ⊕ α2 − c; (λθ1 + η1)⊕ (λθ2 + η2)

)
1 + γε(λθ1 + η1) = γ(λg1 + h1),

max′
(
α1 ⊕ α2 − c; (λθ1 + η1)⊕ (λθ2 + η2)

)⊤
1 + γε(λθ2 + η2) = γ(λg2 + h2).

Proposition 5.5 then implies that

F ′
γ,ε(µ;λg + h) = (λθ1 + η1, λθ2 + η2) = λF ′

γ,ε(µ; g) + F ′
γ,ε(µ;h),

i.e., linearity of F ′
γ,ε(µ; · ).

To show the opposite implication, let us assume that there exists some
(I1, I2) ∈ Ω0. Let us further assume that F ′

γ,ε(µ; · ) is linear. In this case,

max′
(
α1 ⊕ α2 − c; (θ1 + η1)⊕ (θ2 + η2)

)
1

=
(
max′(α1 ⊕ α2 − c; θ1 ⊕ θ2) + max′(α1 ⊕ α2 − c; η1 ⊕ η2)

)
1

(5.8)

for all (θ1, θ2), (η1, η2) ∈ Rg
(
F ′

γ,ε(µ; · )
)
. To derive a contradiction, we choose

(θ̂1, θ̂2), (η̂1, η̂2) ∈ Rg
(
F ′

γ,ε(µ; · )
)
in a way that

1. θ̂I11 + θ̂I22 = 1 and θ̂I11 + θ̂i22 = 0 for all i2 ∈ Ω2 with i2 ̸= I2,

2. η̂I11 + η̂I22 = −1 and η̂I11 + η̂i22 = 0 for all i2 ∈ Ω2 with i2 ̸= I2.
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The two linear systems 1. and 2. consist of n2 linearly independent equations
with n1 + n2 unknowns each. Thus both systems have at least one solution in
Rn1 ×Rn2 . In Remark 5.6, we already noted that Fγ,ε(µ; · ) is bijective. There-
fore, we can indeed find directions g and h that realize the claimed directional
derivatives (θ̂1, θ̂2) and (η̂1, η̂2).

By construction and because of (I1, I2) ∈ Ω0, the left-hand side of the I1-th
equation of the system (5.8) evaluates to

n2∑
i2=1

max′
(
αI1
1 + αi2

2 − cI1,i2 ; (θ̂
I1
1 + θ̂i22 ) + (η̂I11 + η̂i22 )

)
= max

{
0, (θ̂I11 + θ̂I22 ) + (η̂I11 + η̂I22 )} = 0

whereas the right-hand side of the same equation evaluates to

n2∑
i2=1

max′
(
αI1
1 + αi2

2 − cI1,i2 ; θ̂
I1
1 + θ̂i22

)
+max′

(
αI1
1 + αi2

2 − cI1,i2 ; η̂
I1
1 + η̂i22

)
= max

{
0, θ̂I11 + θ̂I22 }+max

{
0, η̂I11 + η̂I22 } = −1,

contradicting (5.8) and therefore the linearity of the mapping F ′
γ,ε(µ; · ). It

follows that F ′
γ,ε(µ; · ) cannot be linear and hence the assertion of the proposi-

tion.

Remark 5.9. One can prove an analogous result in the infinite-dimensional
case, i.e., one can show that the regularization of the dual problem of the regu-
larized Kantorovich problem given in [52, Section 2.3] is directionally differen-
tiable at any point and in any direction and we can characterize the points at
which the solution operator is Gâteaux differentiable.

However, due to the lack of compactness, the proofs in this case are (unsur-
prisingly) more complicated, and the analysis of further differentiability prop-
erties is beyond the scope of this thesis and is the subject of future research. ◦

Now that we have characterized the points at which the solution operator
is differentiable, we are now able to calculate the derivative at those points. To
this end, we need the following definition:

Definition 5.10. Let A ⊂ Ω be some arbitrary index set. We then define

– the characteristic matrix χ(A) ∈ Rn1×n2 of the index set A by

χ(A)i1,i2 :=

{
1, if (i1, i2) ∈ A,
0, else;

(5.9)

– the matrix N (A) ∈ N(n1+n2)×(n1+n2)
0 corresponding to A by

N (A) :=
(
diag

(
χ(A) 1

)
χ(A)

χ(A)⊤ diag
(
χ(A)⊤1

)) . (5.10)

Proposition 5.11. If Fγ,ε is (totally) differentiable at the point µ = (µ1, µ2) ∈
Rn1 × Rn2 , then its (total) derivative is given by

F ′
γ,ε(µ) = γ

(
N
(
Ω+(µ)

)
+ γεE

)−1
.

Herein, E denotes the identity matrix of R(n1+n2)×(n1+n2).



94 CHAPTER 5. TOWARDS IMPLICIT PROGRAMMING

Remark 5.12. Note that, in the formulation of the above proposition, we have
tacitly identified the space Rn1 ×Rn2 with the space Rn1+n2 . Formally correct,
the derivative would be

F ′
γ,ε(µ) = ψ−1 ◦ γ

(
N
(
Ω+(µ)

)
+ γεE

)−1 ◦ ψ,

where

ψ : Rn1 × Rn2 → Rn1+n2 , (u, v) 7→
(
u
v

)
,

is a linear isometric isomorphism between Rn1 ×Rn2 and Rn1+n2 and where the

matrix γ
(
N
(
Ω+(µ)

)
+ γεE

)−1
is identified with an automorphism on Rn1+n2 .

However, here and in the following, we refrain from explicitly including ψ and
ψ−1 for the sake of simplicity. ◦
Proof of Proposition 5.11. We begin with abbreviating Ω+ := Ω+(µ). Let h =
(h1, h2) ∈ Rn1 × Rn2 be an arbitrary direction and consider the corresponding
directional derivative (η1, η2) = F ′

γ,ε(µ;h). By Proposition 5.5, the directional
derivative satisfies

max′(α1 ⊕ α2 − c; η1 ⊕ η2) 1 + γεη1 = γh1,

max′(α1 ⊕ α2 − c; η1 ⊕ η2)⊤1 + γεη2 = γh2,

where again (α1, α2) = Fγ,ε(µ). Applying Proposition 5.8, the above system is
equivalent to ∑

i2 : (i1,i2)∈Ω+

(ηi11 + ηi22 ) + γεηi11 = γhi11 for all i1 ∈ Ω1,

∑
i1 : (i1,i2)∈Ω+

(ηi11 + ηi22 ) + γεηi22 = γhi22 for all i2 ∈ Ω2.

Comparing this with the definition of the matrix χ(Ω+) from (5.9), we can
rewrite this equivalently as

diag
(
χ(Ω+) 1

)
η1 + χ(Ω+) η2 + γεη1 = γh1

diag
(
χ(Ω+)

⊤1
)
η2 + χ(Ω+)

⊤η1 + γεη2 = γh2.

Plugging in the definition from (5.10) then yields that(
N (Ω+) + γεE

)(η1
η2

)
= γ

(
h1
h2

)
. (5.11)

The matrix N (Ω+) is by construction nonnegative, symmetric, and diago-
nally dominant, i.e., it satisfies

N (Ω+)l,l ≥
∑

k∈{1,...,n1+n2},
k ̸=l

N (Ω+)l,k =
∑

k∈{1,...,n1+n2},
k ̸=l

N (Ω+)k,l

for all l = 1, . . . , n1 + n2. Such matrices are known to be positive semidefinite,
see e.g. Gershgorin’s circle theorem. Consequently, the matrix N (Ω+) + γεE is
positive definite, thus invertible, and we can solve equation (5.11) via(

η1
η2

)
= γ

(
N (Ω+) + γεE

)−1
(
h1
h2

)
.
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In light of Remark 5.12, this shows that Fγ,ε is Gâteaux differentiable at µ

and that its Gâteaux derivative is γ
(
N (Ω+) + γεE

)−1
. However, since Fγ,ε

was assumed to be (totally) differentiable, the Gâteaux derivative and (total)
derivative coincide.

Now that we have precisely characterized the points in which the solution
operator is differentiable and have a representation of its derivative we concern
ourselves, in a next step, with the points of non-differentiability.

Because Fγ,ε is globally Lipschitz continuous, at each of those points we can
find at least a generalized Jacobian in Clarke’s sense, see [22, Proposition 2.6.2].
For this reason, we have the following definition.

Definition 5.13 ([74, Definition 2.1] and [22, Definition 2.6.1]). Given m,n ∈
N, let f : Rm → Rn be a locally Lipschitz continuous function. By Rademacher’s
theorem, f is differentiable almost everywhere on Rm. We denote the set of
points at which f is differentiable by Df ⊂ Rm.

We call the set

∂Bf(x) :=
{
lim
k→∞

f ′(x) : (xk)k∈N ⊂ Df , xk → x as k →∞
}

(5.12)

the Bouligand subdifferential of f at the point x ∈ Rm. It relates to Clarke’s
generalized Jacobian of f at x via the definition

∂f(x) := co
(
∂Bf(x)

)
,

where co(M) denotes the convex hull of some setM . For every point x ∈ Rm, the
Bouligand subdifferential ∂Bf(x) is a nonempty and compact subset of Rn×m,
see e.g. [27, Proposition 4.3.1].

In the following, we aim to characterize the Bouligand subdifferential of Fγ,ε,
the solution operator of the regularized dual problem (HDε

γ). First, however,
we need the following lemma which provides a useful property of convergent
sequences of Fγ,ε’s derivatives.

Lemma 5.14. Let µ = (µ1, µ2) ∈ Rn1 ×Rn2 be an arbitrary point and consider
a sequence of points (µ1,k, µ2,k)k∈N ⊂ DFγ,ε

with µk := (µ1,k, µ2,k) → µ as

k → ∞. Then F ′
γ,ε(µk) → G ∈ R(n1+n2)×(n1+n2) if and only if there exists

some K ∈ N such that

1. Ω+(µk) = Ω+(µK) and

2. F ′
γ,ε(µk) = G = γ

(
N
(
Ω+(µK)

)
+ γεE

)−1

for all k ≥ K.

Proof. For all k ∈ N, we abbreviate Ωk
+ := Ω+(µk). In order to show the forward

implication, let F ′
γ,ε(µk) → G as k → ∞. By Proposition 5.11, F ′

γ,ε(µk) =

γ
(
N (Ωk

+) + γεE
)−1

for each k ∈ N. By definition, the entries of each of the

matrices N (Ωk
+) ∈ N(n1+n2)×(n1+n2)

0 are bounded by

0 ≤
(
N (Ωk

+)
)
i1,i2
≤ max{n1, n2} for all (i1, i2) ∈ Ω.
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We can therefore find a convergent subsequence
(
N (Ωkl

+ )
)
l∈N ⊂

(
N (Ωk

+)
)
k∈N

and some matrix H ∈ N(n1+n2)×(n1+n2)
0 so that N (Ωkl

+ ) → H as l → ∞. Since
this is a convergence of integer matrices, there must exist some L ∈ N such that
N (Ωkl

+ ) = H for all l ≥ L.
The definitions in (5.10) and (5.9) then imply that χ(Ωkl

+ ) = χ(ΩkL
+ ) and in

turn Ωkl
+ = ΩkL

+ , respectively, for all l ≥ L.
This already yields the desired representation of the limit G, since

G = lim
k→∞

F ′
γ,ε(µk) = lim

l→∞
F ′

γ,ε(µkl
) = γ

(
N (ΩkL

+ ) + γεE
)−1

.

The convergence of the entire sequence
(
N (Ωk

+)
)
k∈N and followingly the claim

of the lemma then follows from the uniqueness of the limit

H = N (ΩkL
+ ) = γG−1 − γεE

and Lemma D.5.
The reverse implication is trivial and therefore omitted.

In the following theorem we derive a more convenient description of the
Bouligand subdifferential at the points where Fγ,ε is not differentiable. However,
we first need the following definition that greatly simplifies the notation of that
description.

Definition 5.15. Let A,B ⊂ Ω be given index sets. We say that A has an
outer structure w.r.t. B, if

– A ⊂ B and

– there exist vectors v1 ∈ Rn1 and v2 ∈ Rn2 in a way that vi11 + vi22 > 0 for
all (i1, i2) ∈ A and vi11 + vi22 < 0 for all (i1, i2) ∈ B \ A.

We will often shorten the above notation by simply writing (v1 ⊕ v2)A > 0 and
(v1 ⊕ v2)B\A.

Remark 5.16. The number and geometry of sets that have an outer structure
w.r.t. some set B critically depends on the structure of B itself. Even if A has
an outer structure w.r.t. B ⊂ B′, A generally does not need to have an outer
structure w.r.t. B′ because introducing a larger set also imposes more constraints
on the set A.

It is indeed nontrivial to determine whether a given set has an outer structure
w.r.t. some other set. However, independently of the B, both the empty set and
B itself have an outer structure w.r.t. B (simply choose (v1, v2) to be (−1, 0)
and (1, 0), respectively). Moreover, if A has an outer structure w.r.t. B, then
also B \ A has an outer structure w.r.t. B. ◦
Theorem 5.17. Let µ = (µ1, µ2) /∈ DFγ,ε be a point at which Fγ,ε is not dif-
ferentiable and abbreviate Ω+ := Ω+(µ) and Ω0 := Ω0(µ). Then, the Bouligand
subdifferential of Fγ,ε at µ is given by

∂BFγ,ε(µ)

=
{
γ
(
N (Ω+ ∪ A) + γεE

)−1
: A has an outer structure w.r.t. Ω0

}
.
(5.13)
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Proof. On the one hand, let G ∈ ∂BFγ,ε(µ) be arbitrary. Then, there exists a
sequence of points (µk)k∈N ⊂ DFγ,ε

such that µk → µ and F ′
γ,ε(µk) → G as

k →∞. We abbreviate Ωk
+ := Ω+(µk), Ω

k
− := Ω−(µk) and Ωk

0 := Ω0(µk) for all
k ∈ N. By Lemma 5.14, there exists an index K1 ∈ N for which

G = γ
(
N
(
ΩK1

+

)
+ γεE

)−1
and Ωk

+ = ΩK1
+

for all k ≥ K1. Moreover, we have seen in Lemma 5.4 that Fγ,ε is (Lipschitz-)
continuous. Hence,

(α1,k, α2,k) := Fγ,ε(µk) −−−−→
k→∞

Fγ,ε(µ) =: (α1, α2)

and, owing to the continuity of the ⊕-operator,

(α1,k ⊕ α2,k − c)i1,i2 −−−−→
k→∞

(α1 ⊕ α2 − c)i1,i2 for all (i1, i2) ∈ Ω.

Since (α1 ⊕ α2 − c)i1,i2 > 0 for all (i1, i2) ∈ Ω+ and (α1 ⊕ α2 − c)i1,i2 < 0 for
all (i1, i2) ∈ Ω−, one can find another index K2 ∈ N such that Ω+ ⊂ Ωk

+ and
Ω− ⊂ Ωk

− for all k ≥ K2. In particular, if we set K := max{K1,K2}, then

Ω+ ⊂ ΩK
+ , Ω− ⊂ ΩK

− , and G = γ
(
N (ΩK

+ ) + γεE
)−1

. (5.14)

Let us abbreviate A := ΩK
+ \ Ω+. Because of (5.14) and

Ω+ ∪̇ Ω0 ∪̇ Ω− = Ω = ΩK
+ ∪̇ ΩK

−

(remember that µK is a point of differentiability and therefore ΩK
0 = ∅), we find

that A ⊂ Ω0. This together with Ω0 \ A = Ω0 \ ΩK
+ ⊂ ΩK

− yields that(
(α1,K − α1)⊕ (α2,K − α2)

)
i1,i2

=
(
(α1,K ⊕ α2,K − c)− (α1 ⊕ α2 − c)

)
i1,i2{

> 0 if (i1, i2) ∈ A,
< 0 if (i1, i2) ∈ Ω0 \ A,

which shows that

G = γ
(
N (ΩK

+ ) + γεE
)−1

= γ
(
N (Ω+ ∪ A) + γεE

)−1

is an element of the set on the right-hand side of (5.13) for A ⊂ Ω0 and (v1, v2) =
(α1,K − α1, α2,K − α2).

On the other hand, let A have an outer structure w.r.t. Ω0. Then there exist
(v1, v2) ∈ Rn1 × Rn2 with (v1 ⊕ v2)A > 0 as well as (v1 ⊕ v2)Ω0\A < 0. We
abbreviate G := γ(N (Ω+ ∪A) + γεE)−1 and show that there exists a sequence
of points (µk)k∈N ⊂ DFγ,ε

that satisfies µk → µ and F ′
γ,ε(µk) → G as k → ∞,

i.e., G ∈ ∂BFγ,ε(µ). To this end, we define

δ :=
1

2∥v1 ⊕ v2∥∞
· min
(I1,I2)∈Ω+∪Ω−

∣∣(α1 ⊕ α2 − c)I1,I2
∣∣ ∈ (0,∞)

and consider the sequence of points (α1,k, α2,k)k∈N ⊂ Rn1 × Rn2 defined by

(α1,k, α2,k) := (α1, α2) +
δ

k
(v1, v2) for all k ∈ N. (5.15)
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Obviously,

(α1,k, α2,k) → (α1, α2) = Fγ,ε(µ)

as k → ∞ and, following Remark 5.2, this is also true for the sequence of
corresponding marginals:

µk := F−1
γ,ε(α1,k, α2,k) → F−1

γ,ε(α1, α2) = µ

as k →∞.
The construction in (5.15) yields that

(α1,k ⊕ α2,k − c)i1,i2 = (αi1
1 + αi2

2 − ci1,i2) +
δ

k
(vi11 + vi22 )

> (αi1
1 + αi2

2 − ci1,i2)
− 1

2k min(I1,I2)∈Ω+
(α1 ⊕ α2 − c)I1,I2 > 0,

if (i1, i2) ∈ Ω+,

= δ
k (v

i1
1 + vi22 ) > 0, if (i1, i2) ∈ A,

= δ
k (v

i1
1 + vi22 ) < 0, if (i1, i2) ∈ Ω0 \ A,

< (αi1
1 + αi2

2 − ci1,i2)
+ 1

2k min(I1,I2)∈Ω− −(α1 ⊕ α2 − c)I1,I2 < 0,
if (i1, i2) ∈ Ω−,

i.e.,

(α1,k ⊕ α2,k − c)i1,i2

{
> 0, if (i1, i2) ∈ Ω+ ∪ A,
< 0, if (i1, i2) ∈ Ω− ∪ (Ω0 \ A),

(5.16)

for all k ∈ N.
Because of (5.16), we find that Ωk

+ := Ω+(µk) = Ω+∪A and Ωk
− := Ω−(µk) =

Ω− ∪ (Ω0 \ A) independently of k. Also,

Ωk
+ ∪ Ωk

− = Ω+ ∪ Ω0 ∪ Ω− = Ω,

i.e., Ω0(µk) = ∅. Thus, Proposition 5.8 and Proposition 5.11 imply that

lim
k→∞

Fγ,ε(µk)

= lim
k→∞

γ
(
N (Ωk

+) + γεE
)−1

= γ
(
N (Ω+ ∪ A) + γεE

)−1
= G.

Comparing this with the definition of the Bouligand subdifferential shows that
G ∈ ∂BFγ,ε(µ) as claimed.

Remark 5.18. In light of Theorem 5.17, we want to mention the following:

– We can always obtain at least two elements of ∂BFγ,ε by choosing the sets
A1 = Ω0 and A2 = ∅, see Remark 5.16.

– The theorem does not provide a description of ∂BFγ,ε(µ) for µ ∈ DFγ,ε
,

i.e., for points at which Fγ,ε is differentiable. Even though, in this case,
Ω0 = ∅ (by Proposition 5.8) implies that A = ∅ is the only subset of Ω0

and therefore that the right-hand side of (5.13) reduces to{
γ
(
N (Ω+) + γεE

)−1}
= {F ′

γ,ε(µ)},
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we only find that
{F ′

γ,ε(µ)} ⊂ ∂B(µ), (5.17)

since, in general, a stronger notion of differentiability, e.g. strict differen-
tiability or continuous differentiability, see [27, Proposition 4.3.4] or [74,
Proposition 2.2], respectively, is required for the Bouligand subdifferential
to be a singleton.

In fact, in [27, Exercise 4.3.3], the authors give an example of a one-
dimensional function that is differentiable but not strictly (and there-
fore not continuously) differentiable at the point 0, and which has a non-
singleton Bouligand subdifferential at this point.

Nevertheless, the inclusion from (5.17) guarantees that we can even at
differentiable points find an element of the Bouligand subdifferential by
computing the corresponding derivative. This will prove useful in Chapter
6, where a nonsmooth optimization algorithm based on the Bouligand
subdifferential will be applied.

◦
In the following subchapter, we take the IP approach one step further by con-

catenating the solution operator of the regularized dual problem with a map that
is motivated by the first-order system (4.2). This way we obtain a regularized
marginal-to-transport-plan mapping for which we can compute subgradients in
a convenient way.

5.2 The Regularized Marginal-to-Transport-Plan
Mapping

To progress with the IP approach, we are going to use the results from the
previous subchapter to obtain a mapping from the marginals to a unique optimal
transport plan that entails certain differentiability properties.

For this purpose, given γ > 0 and some cost matrix c ∈ Rn1×n2 , let us
consider the dual-variable-to-transport-plan mapping

Pγ : Rn1 × Rn2 → Rn1×n2 , (v1, v2) 7→
1

γ
(v1 ⊕ v2 − c)+.

For any given point (v1, v2) ∈ Rn1×Rn2 , Theorem 4.9 guarantees that the trans-
port plan defined by π := Pγ(v1, v2) uniquely solves the regularized Hitchcock
problem (Hγ) w.r.t. the marginals π1 and π⊤1 as well as the cost c. This, in
turn, implies that v1 and v2 indeed are the dual variables to π, justifying the
name of the above mapping.

Given the mapping Pγ , we now define the regularized marginal-to-transport-
plan mapping by Sγ,ε := Pγ ◦ Fγ,ε, i.e.,

Sγ,ε : Rn1 × Rn2 → Rn1×n2 , (µ1, µ2) 7→
1

γ
(α1 ⊕ α2 − c)+,

where (α1, α2) ∈ Rn1×Rn2 denotes the solution to the regularized dual problem
in (HDε

γ). The symbol we have chosen for the regularized marginal-to-transport-
plan mapping already hints at the fact that we want to treat this mapping as the
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solution operator we need to realize the IP approach for the bilevel Hitchcock
problem. The principal idea of this construction is the following:

As we indicated at the beginning of Chapter 5, we would like to replace the
Hitchcock problem in the constraints of (BH) by a solution operator with certain
differentiability properties. Unfortunately, the explicit description of the opti-
mal regularized transport plan from Theorem 4.9 depends on the (nonunique)
dual variables, which can lead to problems when trying to compute derivatives.

For this reason, we make a detour via the regularization of the dual problem
given in Subchapter 5.1. We have studied its differentiability properties to the
extent that we can deduce the same differentiability properties of the regularized
marginal-to-transport plan mapping in the present subchapter.

Moreover, the authors of [52] proved that a standard Tikhonov regularization
approach can be used to approximate solutions of the regularized Kantorovich
problem sufficiently well. Since we adopted the same approach for the regu-
larization of the finite-dimensional dual problem in Subchapter (5.1), we can
assume that when the regularization vanishes, the regularized transport plans
can also be approximated to an arbitrary precision.

We therefore expect that, owing to the Tikhonov regularization, the regular-
ized marginal-to-transport-plan mapping not only behaves well numerically, but
also allows the use of standard nonsmooth optimization techniques to compute
the regularized transport plans. More on this topic can be found in Chapter 6.

The next theorem shows that the regularized marginals-on-transport-plan
mapping inherits all relevant properties of the solution operator of the regular-
ized dual problem from Subchapter 5.1. First, however, we need the following
definition.

Definition 5.19. Let some subset A ⊂ Ω be given. We then define the mask
by

H(A) : Rn1×n2 → Rn1×n2 , M 7→

({
Mi1,i2 , if (i1, i2) ∈ A,
0, else.

)
(i1,i2)∈Ω

Simply put, H(A) manipulates a matrix by setting those entries whose indices
belong to Ω \ A to 0. It corresponds to entrywise multiplication with the char-
acteristic matrix χ(A) from (5.9), i.e.,

H(A)(M) =
(
χ(A)i1,i2Mi1,i2

)
(i1,i2)∈Ω

.

Theorem 5.20. The regularized marginal-to-transport-plan mapping has the
following properties:

1. Sγ,ε is (globally) Lipschitz continuous.

2. Sγ,ε is differentiable almost everywhere on Rn1 × Rn2 . We denote the
corresponding set of differentiable points by DSγ,ε .

3. Sγ,ε is Hadamard differentiable and its directional derivative at some point
µ = (µ1, µ2) ∈ Rn1×Rn2 in the direction h = (h1, h2) ∈ Rm×Rn2 is given
by

S ′γ,ε(µ;h) =
1

γ
max′(α1 ⊕ α2 − c; η1 ⊕ η2) ∈ Rn1×n2 ,

where (α1, α2) = Fγ,ε(µ) and (η1, η2) = F ′
γ,ε(µ;h).
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4. Sγ,ε is differentiable at the point µ ∈ Rn1 × Rn2 if and only if Ω0(µ) = ∅,
in particular, DSγ,ε

= DFγ,ε
.

5. If Sγ,ε is (totally) differentiable at some point µ ∈ Rn1 × Rn2 , then its
(total) derivative is given by

S ′γ,ε(µ) = H
(
Ω+(µ)

)
◦ ⊕ ◦

(
N
(
Ω+(µ)

)
+ γεE

)−1
,

where the matrix
(
N
(
Ω+(µ)

)
+ γεE

)−1
again is understood as a linear

automorphism on Rn1 × Rn2 , see Remark 5.12.

6. The Bouligand subdifferential of Sγ,ε at some point µ /∈ DSγ,ε with Ω+ :=
Ω+(µ) and Ω0 := Ω0(µ) is given by

∂BSγ,ε(µ)

=

{
H(Ω+ ∪ A) ◦ ⊕ ◦

(
N (Ω+ ∪ A) + γεE

)−1
:
A has an outer

structure w.r.t. Ω0

}
.

In particular, if G ∈ ∂BSγ,ε(µ) then there exists some G̃ = γ
(
N (Ω+ ∪

A) + γεE
)−1 ∈ ∂BFγ,ε(µ) such that

G =
1

γ
H(Ω+ ∪ A) ◦ ⊕ ◦ G̃,

where A is the subset of Ω0 that realizes G̃.

Proof. Ad 1.: Let (v1, v2), (w1, w2) ∈ Rn1 × Rn2 be arbitrary. Because the
mapping ( · )+ : R ∋ x 7→ max{0, x} ∈ R+ is (globally) Lipschitz continuous
with Lipschitz constant equal to 1, it holds that

|(vi11 + vi22 − ci1,i2)+ − (wi1
1 + wi2

2 − ci1,i2)+| ≤ |v
i1
1 − w

i1
1 + vi22 − w

i2
2 |

for all (i1, i2) ∈ Ω. Therefore and because (a+− b+)2 ≤ (a− b)2 for all a, b ∈ R,

∥Pγ(v1, v2)− Pγ(w1, w2)∥2F =
1

γ2
∥(v1 ⊕ v2 − c)+ − (w1 ⊕ w2 − c)+∥2F

≤ 1

γ2
∥(v1 − w1)⊕ (v2 − w2)∥2F

≤ 2max{n1, n2}
γ2

(
∥v1 − w1∥2Rn1

+ ∥v2 − w2∥2Rn2

)
= L2

Pγ
∥(v1, v2)− (w1, w2)∥2Rn1×Rn2

,

see Remark 4.1. Thus, Pγ is (globally) Lipschitz continuous with Lipschitz

constant LPγ
= γ−1

√
2max{n1, n2} > 0. Being the composition of (globally)

Lipschitz continuous mappings, see Lemma 5.4, the mapping Sγ,ε itself is (glob-
ally) Lipschitz continuous.

Ad 2.: Follows from 1. and Rademacher’s theorem.

Ad 3.: Given arbitrary points v = (v1, v2) and directions h = (h1, h2), we
compute Pγ ’s directional derivative by(

P ′
γ(v;h)

)
i1,i2
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=
1

γ
lim
t↘0

(
(vi11 + thi11 ) + (vi22 + thi22 )− ci1,i2

)
+
− (vi11 + vi22 − ci1,i2)+

t

=
1

γ
max′

(
vi11 + vi22 − ci1,i2 ;h

i1
1 + hi22

)
for all (i1, i2) ∈ Ω, i.e.,

P ′
γ(v;h) =

1

γ
max′(v1 ⊕ v2 − c;h1 ⊕ h2).

Both Pγ and Fγ,ε are (globally) Lipschitz continuous and directionally differen-
tiable everywhere and in every direction. Thus, according to Lemma D.7, both
Pγ and Fγ,ε are Hadamard differentiable. We can therefore use the chain rule
for Hadamard differentiable mappings from [70, Proposition 3.6] to conclude
that Sγ,ε itself is Hadamard differentiable and has the directional derivative

S ′γ,ε(µ;h) = P ′
γ

(
Fγ,ε(µ);F ′

γ,ε(µ;h)
)

=
1

γ
max′(α1 ⊕ α2 − c; η1 ⊕ η2),

as claimed.

Ad 4.: Following the same rationale as in the proof of Proposition 5.8, it is
sufficient to show the equivalence

Ω0(µ) = ∅ ⇐⇒ h 7→ S ′γ,ε(µ;h) is linear.

On the one hand, if Ω0(µ) = ∅, then (5.4) implies that

S ′γ,ε(µ;h) =
1

γ
max′(α1 ⊕ α2 − c; η1 ⊕ η2)

=
1

γ

({
ηi11 + ηi22 if (i1, i2) ∈ Ω+,

0 if (i1, i2) ∈ Ω−,

)
(i1,i2)∈Ω

for all directions h ∈ Rn1×Rn2 with (η1, η2) = F ′
γ,ε(µ;h). Because the mapping

h 7→ F ′
γ,ε(µ;h) is linear, see the proof of Proposition 5.8, the mapping h 7→

S ′γ,ε(µ;h) is linear w.r.t. to h.
On the other hand, assume that h 7→ S ′γ,ε(µ;h) is linear and let h ∈ Rn1×Rn2

be arbitrary. By linearity,

0 = S ′γ,ε(µ;h) + S ′γ,ε(µ;−h)

=
1

γ


(ηi11 + ηi22 ) + (θi11 + θi22 ) if (i1, i2) ∈ Ω+(µ),

max{0, ηi11 + ηi22 }+max{0, θi11 + θi22 } if (i1, i2) ∈ Ω0 (µ),

0 if (i1, i2) ∈ Ω−(µ),

where (η1, η2) = F ′
γ,ε(µ;h) and (θ1, θ2) = F ′

γ,ε(µ;−h). This implies that

ηi11 + ηi22 ≤ 0 and θi11 + θi22 ≤ 0 (5.18)

for all (i1, i2) ∈ Ω0(µ). However, it is easy to construct a direction h̃ whose cor-
responding directional derivative (η̃1, η̃2) = F ′

γ,ε(µ;h) satisfies η̃
i1
1 + η̃i22 = 1, see
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e.g. the proof of Proposition 5.8. This directly contradicts (5.18). Consequently,
there can be no (i1, i2) ∈ Ω0(µ) and therefore Ω0(µ) = ∅.

Ad 5.: This property is more or less just a corollary to Proposition 5.11.
Because of 4. and Proposition 5.8, Sγ,ε is differentiable in µ if and only if
Fγ,ε is differentiable in µ. Therefore, given some arbitrary h ∈ Rn1×n2 and
(η1, η2) = F ′

γ,ε(µ;h), we rewrite

η1 ⊕ η2 = ⊕
(
F ′

γ,ε(µ;h)
)
=
(
⊕ ◦ F ′

γ,ε(µ)
)
(h).

Taking into account that Ω0(µ) = ∅, we derive from (5.4) and Definition 5.19
that

S ′γ,ε(µ;h) =
1

γ

(
H
(
Ω+(µ)

)
◦ ⊕ ◦ F ′

γ,ε(µ)
)
(h),

which is linear and bounded w.r.t. h. Repeating the same reasoning as in the
end of the proof of Proposition 5.11, this shows that

S ′γ,ε(µ) =
1

γ
H
(
Ω+(µ)

)
◦ ⊕ ◦ F ′

γ,ε(µ)

= H
(
Ω+(µ)

)
◦ ⊕ ◦

(
N
(
Ω+(µ)

)
+ γεE

)−1
.

Ad 6.: “⊂”: Let G ∈ ∂BSγ,ε(µ) be given. By definition, there exists a
sequence of differentiable points (µk)k∈N with µk → µ and S ′γ,ε(µk) → G as
k →∞.

Analogous to the proof of Lemma 5.14, one can find both a subsequence
(kl)l∈N and an index L ∈ N such that Ω+(µkl

) = Ω+(µkL
) for all l ≥ L. Hence,

G = lim
k→∞

S ′γ,ε(µk) = lim
l→∞

S ′γ,ε(µkl
)

= lim
l→∞

H
(
Ω+(µkl

)
)
◦ ⊕ ◦

(
N
(
Ω+(µkl

)
)
+ γε

)−1

= H
(
Ω+(µkL

)
)
◦ ⊕ ◦

(
N
(
Ω+(µkL

)
)
+ γε

)−1

The rest of the proof can be taken almost word for word from the first part of
the proof of Theorem 5.17.

“⊃”: Conversely, if A has an outer structure w.r.t. Ω0, then the second part
of the proof of Theorem 5.17 reveals the existence of a sequence of differentiable
points (µk)k∈N which satisfy Ω+(µk) = Ω+ ∪ A for all k ∈ N and µk → µ as
k →∞. Thus,

∂BSγ,ε(µ) ∋ lim
k→∞

S ′γ,ε(µk)

= lim
k→∞

H
(
Ω+(µk)

)
◦ ⊕ ◦

(
N
(
Ω+(µk)

)
+ γε

)−1

= H
(
Ω+ ∪ A

)
◦ ⊕ ◦

(
N
(
Ω+ ∪ A

)
+ γε

)−1
.

Remark 5.21. As in the case of the solution operator of the regularized dual
problem (see Remark 5.18), we note the following:

– We can always find at least two elements of ∂BSγ,ε by choosing the sets
A1 = ∅ and A2 = Ω0.
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– Theorem 5.20 does not yield a description of Sγ,ε’s Bouligand subdifferen-
tial at points where it is differentiable. However, the derivative is always
contained in the Bouligand subdifferential.

◦
To summarize the findings of the current subchapter, Theorem 5.20 ensures

that the marginal-to-transport-plan mapping is suitable for the IP approach in
the sense of the beginning of Chapter 5. In particular,

– Sγ,ε is single-valued by construction;

– Sγ,ε satisfies a (fairly distinct) notion of differentiability: at almost every
point it allows to compute a (total) derivative, and where it does not, we
have at least a manageable characterization of its Bouligand subdifferential
at hand.

Consequently, all that remains is to replace the lower-level problem of (BH)
with the regularized marginal-to-transport-plan mapping we have just analyzed,
i.e., apply the IP approach to the bilevel Hitchcock problem. This will be the
topic of the next subchapter.

5.3 Application of the Implicit Programming
Approach to the Regularized Bilevel Hitch-
cock Problem

In this last subchapter of Chapter 5, we finally want to apply the implicit
programming approach, which we discussed at the beginning of Chapter 5, to
the case of the bilevel Hitchcock problem.

To this end, let us recall the bilevel Hitchcock problem

inf
π,µ1

J (π, µ1)

s.t. µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1,

π ∈ argmin
{
(θ, cd)F : θ ∈ Rn1×n2 , θ ≥ 0, θ1 = µ1, θ

⊤1 = µd
2

}
.
(BH)

In the above, as usual, J : Rn1×n2 × Rn1 → R is a given lower-semicontinuous
and bounded target function, µd

2 ∈ Rn2 , with µd
2 ≥ 0 and 1⊤µd

2 = 1, is some
fixed target marginal, and cd ∈ Rn1,n2 is a cost matrix describing the cost of
transportation, see Subchapter 4.1.

We then apply the IP approach to the bilevel problem (BH) by consider-
ing, for given regularization parameters γ, ε > 0, the twice regularized bilevel
Hitchcock problem

inf
π,µ1

J (π, µ1)

s.t. µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1,

π = Sγ,ε(µ1, µ
d
2).

(BHε
γ)

This problem is similar to (BHγ), the quadratic regularization of (BH) from
Chapter 4, but differs in two major aspects:
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1. The operator replacing the lower-level Hitchcock problem is no longer the
solution operator of (Hγ) but the regularized marginal-to-transport-plan
mapping w.r.t. the cost matrix cd from Subchapter 5.2.

2. We no longer consider the cost function as an optimization variable. We
have already briefly commented on this in Subchapter 4.2, but we repeat
the arguments once again and, on this occasion, add an additional one:

– The only purpose for which we introduced the cost matrix as an
optimization variable in the first place was that it allowed for the
explicit construction of a recovery sequence in Subchapter 4.5. Now
that we are, in this chapter, mainly interested in the implementation
of the IP Approach, there is no use for it anymore.

– Omitting the cost function greatly simplifies the notation not only in
this section but also in Chapter 6.

– Especially with respect to the implementation of the IP approach
in Chapter 6, we benefit from neglecting the cost function, since this
means that none of the optimization variables are subject to the curse
of dimensionality anymore. Assuming a certain structure of the cost
matrix cd, e.g. (cd)i1,i2 = |i1 − i2|ρ for some ρ ≥ 1, the entries of
the matrix 1

γ (α1 ⊕ α2 − c)+ can be computed and stored efficiently,
allowing the algorithm to potentially handle large problems without
much effort.

If we replace the optimization variable π in (BHε
γ) with the regularized

marginal-to-transport-plan mapping Sγ,ε, we obtain the reduced bilevel prob-
lem

inf
µ1

fγ,ε(µ1) := J
(
Sγ,ε(µ1, µ

d
2), µ1

)
s.t. µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1.

(RBε
γ)

The above problem is no longer a bilevel problem, but instead a nonsmooth
optimization problem with linear constraints. Depending on the properties of
J , we can then attempt to solve this problem using nonsmooth optimization
techniques such as subgradient descent, bundle methods, or gradient sampling
methods, see e.g. [5], [4], [14] and the references therein.

In the next chapter, we propose a nonsmooth trust region method for the
solution of (RBε

γ) that is based on the Clarke subdifferential. To this end, we
must first convince ourselves that, assuming that J is sufficient smooth, fγ,ε is
indeed Lipschitz continuous and that we can compute Clarke subgradients at
each point.

Proposition 5.22. Let J ∈ C1(Rn1×n2 × Rn1) be continuously differentiable
and denote its derivatives w.r.t. the first variable by ∇πJ and its derivative
w.r.t. the second variable by ∇µ1J , i.e.,

J ′(π, µ1) =
(
∇πJ (π, µ1),∇µ1J (π, µ1)

)
.

Then, fγ,ε is locally Lipschitz continuous and differentiable almost everywhere
on Rn1 . Moreover, for any µ1 ∈ Rn1 and any A that has an outer structure
w.r.t. Ω0(µ1, µ

d
2), an element of the Clarke subdifferential of fγ,ε at µ1 is given

by
g1 := p1 +∇µ1J

(
Sγ,ε(µ1, µ

d
2), µ1

)
∈ ∂fγ,ε(µ1),
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where (p1, p2) ∈ Rn1 × Rn2 is the unique solution of the linear system

(
N
(
Ω+(µ1, µ

d
2) ∪ A

)
+ γεE

)(u
v

)
=

(
M1
M⊤1

)
with

M := H
(
Ω+(µ1, µ

d
2) ∪ A

)
∇πJ

(
Sγ,ε(µ1, µ

d
2), µ1

)
.

Proof. According to [22, Corollary 2.2.1], J is strictly differentiable as well as
locally Lipschitz continuous at every point and its strict derivative and total
derivative coincide. This, together with Sγ,ε’s Lipschitz continuity from Sub-
chapter 5.2 and Rademacher’s theorem yields the first claim.

To prove the second claim, we consider the operator

Gγ,ε : Rn1 × Rn2 → Rn1×n2 × Rn1 , (µ1, µ2) 7→
(
Sγ,ε(µ1, µ2), µ1

)
.

J ’s (Clarke) subdifferential satisfies

∂J (π, µ1) =
{
J ′(π, µ1)

}
=
{(
∇πJ (π, µ1),∇µ1

J (π, µ1)
)}
,

see e.g. [22, Proposition 2.2.4], and Gγ,ε’s (Clarke) subdifferential is given by

∂Gγ,ε(µ1, µ2) =
(
∂Sγ,ε(µ1, µ2), (En1×n1 , 0n1×n2)

)
,

where En1×n1
denotes the identity matrix of Rn1×n1 and 0n1×n2

denotes the
zero matrix of Rn1×n2 . Therefore, for all µ = (µ1, µ2) ∈ Rn1×Rn2 , the chain rule
for subdifferentials, see e.g. [22, Theorem 2.6.6], implies the set-valued equation

∂
(
J ◦Gγ,ε

)
(µ)

= ∂J
(
Gγ,ε(µ)

)
◦ ∂Gγ,ε(µ)

=
(
∇πJ

(
Gγ,ε(µ)

)
, ∇µ1J

(
Gγ,ε(µ)

))
◦
(
∂Sγ,ε(µ), (En1×n1 , 0n1×n2)

)
= ∇πJ

(
Gγ,ε(µ)

)
∂Sγ,ε(µ) +

(
∇µ1J

(
Gγ,ε(µ)

)⊤
, 0⊤).

(5.19)

Now, consider some arbitrary G ∈ ∂BSγ,ε(µ) ⊂ ∂Sγ,ε(µ). If we interpret
∇πJ

(
Gγ,ε(µ)

)
to be a linear operator from Rn1×n2 to R and G to be a lin-

ear operator from Rn1 × Rn2 to Rn1×n2 , their composition is a linear operator
from Rn1 ×Rn2 to R and we can test it with some (u, v) ∈ Rn1 ×Rn2 to obtain
that

∇πJ
(
Gγ,ε(µ)

)
G(u, v) = (∇πJ

(
Gγ,ε(µ)

)
, G(u, v))

F

= (G∗∇πJ
(
Gγ,ε(µ)

)
, (u, v))Rn1×Rn2

,

where G∗ is the adjoint to G, which takes a linear operator from Rn1×n2 to R
(i.e., a matrix) and turns it into a linear operator on Rn1 × Rn2 (i.e., a pair
of column vectors). Therefore, (5.19) implies that for each G ∈ ∂BSγ,ε(µ) an
element of ∂(J ◦Gγ,ε)(µ) is given

g := G∗∇πJ
(
Gγ,ε(µ)

)
+ (∇µ1

J
(
Gγ,ε(µ)

)⊤
, 0⊤) (5.20)
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Let G from above be fixed and abbreviate Ω+ := Ω+(µ). Furthermore, let
A ⊂ Ω0(µ) be the set that realizes G, i.e.,

G = H(Ω+ ∪ A) ◦ ⊕ ◦
(
N (Ω+ ∪ A) + γεE

)−1
,

see Theorem 5.20. For the computation of the subgradient g we shall now find
a representation of the adjoint of G.

If A ∈ L(Y,Z) and B ∈ L(X,Y ) are arbitrary linear operators between the
Banach spaces X, Y , and Z, then

⟨(A ◦B)∗z∗, x⟩X∗,X = ⟨z∗, (A ◦B)x⟩Z∗,Z

= ⟨A∗z∗, Bx⟩Y ∗,Y = ⟨(B∗ ◦A∗)z∗, x⟩X∗,X

for all x ∈ X and z∗ ∈ Z∗ and therefore (A ◦ B)∗ = B∗ ◦ A∗. Applying this to
G, yields that

G∗ = ((N
(
Ω+(µ) ∪ A

)
+ γεE)

−1
)
∗
◦ ⊕∗ ◦ H

(
Ω+(µ) ∪ A

)∗
.

Taking a look at the definition of N in (5.10), we observe that the matrix
N (Ω+(µ) ∪A) + γεE is symmetric. Consequently, its inverse is symmetric and
we obtain that

((N
(
Ω+(µ) ∪ A

)
+ γεE)

−1
)
∗

= ((N
(
Ω+(µ) ∪ A

)
+ γεE)

−1
)
⊤
= (N

(
Ω+(µ) ∪ A

)
+ γεE)

−1
.

The adjoint of the ⊕-operator, which we already identified in Remark 4.8, is
given by ⊕∗(θ) = (θ1, θ⊤) ∈ Rn1 × Rn2 for all θ ∈ Rn1×n2 . Moreover, it is
easy to see that the mask H(Ω+ ∪ A) from Definition 5.19 is self-adjoint (as a
operator on matrices): for any two matrices θ, ζ ∈ Rn1×n2 , it holds that(

H(Ω+ ∪ A)θ, ζ
)
F
=

∑
(i1,i2)∈Ω+∪A

θi1,i2ζi1,i2 =
(
θ,H(Ω+ ∪ A)ζ

)
F
.

Altogether, this implies that we can compute the subgradient from (5.20) by

g = (N
(
Ω+(µ) ∪ A

)
+ γεE)

−1
(M1,M⊤1) + (∇µ1

J
(
Gγ,ε(µ)

)⊤
, 0⊤),

where
M := H

(
Ω+(µ) ∪ A

)
∇πJ

(
Gγ,ε(µ)

)
∈ Rn1×n2

and the inverse of N
(
Ω+(µ) ∪ A

)
+ γεE is again understood to be a linear

automorphism on Rn1 × Rn2 , see Remark 5.12.
The assertion then follows from the restriction of J ◦Gγ,ε to the set Rn1 ×

{µd
2} so that g1 corresponds to the first component of the subgradient g ∈

Rn1 × Rn2 .

In the next and last chapter of this thesis, we will first set up a non-smooth
trust region method for solving the reduced bilevel problem and then apply it
to the transportation identification problem, which is a special case of (BH).
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Chapter 6

Implementation of the
Implicit Programming
Approach for the
Regularized Bilevel
Problem

In the last chapter of this thesis, we propose an algorithm for the solution of
the reduced bilevel problems (RBε

γ). Having found a description of a subset
of the Clarke subdifferential of the reduced target function fγ,ε in the previous
chapter, we can use this to apply a nonsmooth optimization algorithm.

6.1 A Nonsmooth Trust Region Method for the
Solution of Constrained Problems

In [21], the authors propose a nonsmooth trust region method for the solution
of general nonsmooth optimization problems ,

inf
x∈Rn

f(x), (NP)

where f : Rn → R, for n ∈ N, is a nonsmooth but locally Lipschitz continuous
target function. Being locally Lipschitz continuous, f bears (Clarke) subgradi-
ents at every point x ∈ Rn, see e.g. [22, Proposition 2.1.2], which can be used
in conjunction with an approximation of f ’s Hessian to set up an ordinary trust
region method with quadratic subproblems.

However, to avoid convergence to nonsmooth nonstationary points, the trust
region method relies on the construction of a model function ϕ : Rn ×R+ ×Rn.
In some sense, this model function is designed to provide first-order information
in a neighborhood of the current iterate and also to ensure stationarity of cluster
points of the algorithm, see [21, Assumption 2.4]. If the ordinary trust region
method converges to a nonsmooth point and if the trust region radius degen-
erates, the authors use the model function ϕ to define a modified trust region

109



110 CHAPTER 6. IMPLEM. OF THE IMPL. PROG. APPROACH

subproblem that includes the neighborhood information of the model function
to show either that the current iterate is stationary or to escape the sphere of
influence of the current iterate.

Although there are various strategies to construct such a function ϕ, and the
construction also may depend on the differentiability properties of the objective
function f , constructions of ϕ at some given point typically involve (subsets
of) the Clarke subdifferential at that point or an approximation of the Clarke
subdifferential in a neighborhood of that point, see e.g. [21, Section 3] and the
references therein.

Details on the implementation and other important aspects that would be
too technical at this point can be found in the referenced paper. We only provide
the proposed method for reference:

Algorithm 6.1 (Nonsmooth Trust Region Algorithm).

1: Initialization: Choose constants

∆min > 0, 0 < η1 < η2 < 1, 0 < β1 < 1 < β2, 0 < ν ≤ 1,

an initial value x0 ∈ Rn, and an initial trust region radius ∆0 > ∆min. Set
k ← 0.

2: for k = 0, 1, 2, ... do
3: hoose a subgradient gk ∈ ∂f(xk) and a symmetric matrix Hk ∈ Rn×n

sym .
4: if ∥gk∥Rn = 0 then
5: Stop: xk is (Clarke) stationary, i.e., 0 ∈ ∂f(xk).
6: else
7: if ∆k ≥ ∆min then
8: Compute an (inexact) solution dk of the trust region subproblem

inf
d

qk(d) := f(xk) + (gk, d)Rn + 1
2 d

⊤Hkd

s.t. ∥d∥Rn ≤ ∆k,
(6.1)

that satisfies the generalized Cauchy decrease condition

f(xk)− qk(dk) ≥
ν

2
∥gk∥Rn min

{
∆k,

∥gk∥Rn

∥Hk∥Rn×n

}
. (6.2)

9: Compute the quality indicator

ρk :=
f(xk)− f(xk + dk)

f(xk)− qk(dk)
.

10: else
11: Compute an (inexact) solution dk of the modified trust region sub-

problem

inf
d

q̃k(d) := f(xk) + ϕ(xk,∆k; d) +
1
2 d

⊤Hkd

s.t. ∥d∥Rn ≤ ∆k,
(6.3)

that satisfies the modified generalized Cauchy decrease condition

f(xk)− q̃k(dk) ≥
ν

2
ψ(xk,∆k)min

{
∆k,

ψ(xk,∆k)

∥Hk∥Rn×n

}
, (6.4)

where
ψ(xk,∆k) := − min

∥d∥Rn≤1
ϕ(x,∆; d) ≥ 0.
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12: Compute the modified quality indicator

ρk :=


f(xk)− f(xk + dk)

f(xk)− q̃k(dk)
, if ψ(xk,∆k) > ∥gk∥Rn∆k,

0, if ψ(xk,∆k) ≤ ∥gk∥Rn∆k.

13: end if
14: Update: Set

xk+1 :=

{
xk, if ρk ≤ η1
xk + dk, otherwise,

and

∆k+1 :=


β1∆k, if ρk ≤ η1,
max{∆min,∆k}, if η1 < ρk ≤ η2,
max{∆min, β2∆k}, if ρk > η2.

Set k ← k + 1.
15: end if
16: end for

Essentially, there are two reasons that prevent us from applying Algorithm
6.1 unchanged to the reduced bilevel problem (RBε

γ):

1. Unlike the reduced bilevel problem (RBε
γ), the nonsmooth problem (NP)

is unconstrained and Algorithm 6.1 does not consider (linear) constraints.
We therefore need to make sure that the nonsmooth trust region method
respects the given constraints. This will not only affect the formulations
of the trust region subproblems in Step 8 and Step 11 of the algorithm
but also on the Cauchy decrease conditions in (6.2) and (6.4).

Another approach would be to turn the regularized bilevel problem into a
nonsmooth unconstrained problem by adding a penalization term to the
target functional, which ensures that in the limit the marginal µ1 satisfies
the linear constraints. This, however, would require the introduction of
another regularization term and regularization parameter, so we rather
choose to modify the algorithm as described above.

2. Being an unconstrained optimization problem, a local minimum of (NP)
must satisfy 0 ∈ ∂f(x), see e.g. [22, Proposition 2.3.2]. Therefore, it
makes sense to choose this as a stationarity criterion in Step 5 of the
above algorithm.

In the case of (RBε
γ), however, this stationarity must not be satisfied.

We therefore have to find and incorporate a notion of stationarity that
respects the constraints of the problem in (RBε

γ). This will not only affect
the termination criterion in Step 4 of the algorithm but also the Cauchy
decrease conditions in (6.2) and (6.4).

In the following, we will be intentionally sparing with details on the changes
we make to the algorithm and will only explain the most necessary points. This
is mainly because the convergence analysis with the changes we make is pretty
much along the lines of the convergence analysis from the original paper and,
moreover, providing detailed proofs is beyond the scope of this thesis and subject
to future research.
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We begin with the discussion of the second of above’s points and consider a
different notion of stationarity.

Definition 6.2. Consider the constrained nonsmooth optimization problem

inf
x

f(x)

s.t. x ∈ C,
(CNP)

where f : Rn → R, for n ∈ N, is a locally Lipschitz continuous target function
and C ⊂ Rn is a closed convex set.

We call a point x̄ ∈ Rn first-order stationary for the constrained optimization
problem (CNP), if it satisfies the (generalized) variational inequality

f◦(x̄; z − x̄) ≥ 0 for all z ∈ C.

In the above variational inequality, f◦(u; v) denotes the generalized directional
derivative of f at u ∈ Rn in the direction v ∈ Rn, see e.g. [22, Section 2.1].

That the stationarity condition from the above definition is a natural choice
for our purposes, is shown in the following lemma.

Lemma 6.3. Let x∗ ∈ C be a local minimum of (CNP). Then, x∗ is first-order
stationary in the sense of Definition 6.2.

Proof. Let z ∈ C be arbitrary. Then, for t ∈ (0, 1) sufficiently small, the point
x∗ + t(z − x∗) ∈ C is included in the neighborhood of local optimality of x∗.
Consequently,

0 ≤ lim inf
t↘0

f
(
x∗ + t(z − x∗)

)
− f(x∗)

t

≤ lim sup
y→x∗

t↘0

f
(
y + t(z − x∗)

)
− f(y)

t
= f◦(x∗; z − x∗),

where the last equality is just the definition of the generalized directional deriva-
tive.

Remark 6.4. 1. That the above notion of stationarity is a reasonable gen-
eralization of the first-order stationarity considered in [21], can be seen
as follows. Being locally Lipschitz continuous, f is differentiable almost
everywhere on Rn. If we assume that x̄ is a point of strict differentiability,
see [22, p. 30], then the gradient of f at x̄ exists and

∇f(x̄)⊤(z − x̄) = f◦(x̄; z − x̄) ≥ 0 for all z ∈ C,

which is just the well-known variational inequality of nonlinear optimiza-
tion, see e.g. [34, p. 13]. Moreover, if 0 ∈ ∂f(x̄), then by the very definition
of the Clarke subdifferential it holds that

f◦(x̄; z − x̄) ≥ (0, z − x̄)Rn = 0 for all z ∈ C,

i.e., vanishing subgradients are sufficient for first-order stationarity in the
sense of Definition 6.2.
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2. The reduced bilevel problem (RBε
γ) from Subchapter 5.3 is a problem of

the form (CNP): its target function fγ,ε is locally Lipschitz continuous,
see Proposition 5.22, and (RBε

γ)’s feasible set

CRB :=
{
ξ ∈ Rn1 : ξ ≥ 0, 1⊤ξ = 1

}
is a closed and convex subset of Rn1 . Note that CRB is just the standard
simplex of Rn1 .

◦

Along with the new notion of stationarity, we also need to define measures
with which we can measure the degree of stationarity at a given point.

Definition 6.5. In the setting of (CNP), let x̄ ∈ C, ḡ ∈ ∂f(x̄), and R > 0 be
given. We define a stationarity measure by

θR(x̄, ḡ) := − min
x̄+d∈C, ∥d∥≤R

(ḡ, d) ≥ 0. (6.5)

Moreover, if we are given a model function ϕ : Rn × R+ × Rn in the sense of
[21, Assumption 2.4] and some trust region radius ∆̄ > 0, we define a modified
stationarity measure by

ψR(x̄, ∆̄) := − min
x̄+d∈C, ∥d∥≤R

ϕ(x̄, ∆̄; d) ≥ 0. (6.6)

Remark 6.6. Definition 6.5 gives rise to several remarks:

1. The stationarity measures from (6.5) and (6.6) are (obvious) generaliza-
tions of the stationarity measures that were used in [21] to the setting of
(CNP). If we consider R = 1 and C = Rn, we obtain that

θR(x̄, ḡ) = −
(
ḡ,
−ḡ
∥ḡ∥

)
= ∥ḡ∥ and ψR(x̄, ∆̄) = − min

∥d∥≤1
ϕ(x̄, ∆̄; d),

which are just the stationarity measures used in [21].

2. The reason we included the radius R in the definition of the stationarity
measures lies in the structure of the feasible set of (RBε

γ). Consider some
arbitrary point µ̄1 in the standard simplex. If d ∈ Rn1 is given such that
µ̄1 + d ∈ CRB, then

1 = 1⊤(µ̄1 + d) = 1⊤µ̄1 + 1⊤d and µ̄1 + d ∈ [0, 1]

or equivalently

1⊤d = 0 and d ∈ [−µ̄1, 1− µ̄1] ⊂ [−1, 1],

where we understand the inclusions d ∈ [a, b] for a, b ∈ Rn1 elementwise,
i.e., di ∈ [ai, bi] for all i = 1, . . . , n1. This shows that the linear constraints
of (RBε

γ) already imply that ∥d∥∞ ≤ 1 and therefore ∥d∥Rn1 ≤
√
n1∥d∥∞,

with the constant on the right-hand side arising from the equality of norms
on Rn1 . Consequently, if we set R̄ :=

√
n1, then the (nonlinear) norm
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constraints in the definition of (6.5) and (6.6) are superfluous and we
obtain that

θR̄(µ̄1, ḡ) = − min
µ̄1+d∈CRB

(ḡ, d) and ψR̄(µ̄1, ∆̄) = − min
µ̄1+d∈CRB

ϕ(µ̄1, ∆̄; d).

Thus, the calculation of the stationarity measure (which is necessary after
each successful iteration and for every modified iteration) reduces to solv-
ing a linear problem, which benefits both the numerical implementation
and the performance of the trust region method.

However, we must be careful to take the radius R into account in the
further implementation of the algorithm, see e.g. the modified Cauchy
decrease conditions below.

3. Obviously,

θR(x̄, ḡ) = − min
x̄+d∈C, ∥d∥≤R

(ḡ, d) ≥ −(ḡ, 0) = 0

and the same estimate for the modified stationarity measure follows from
the presupposed positive homogeneity of the model function ϕ, see [21,
Assumption 2.4].

4. Assume that the stationarity measure from (6.5) vanishes, i.e., θR(x̄, ḡ) =
0. Then, by the definition of the Clarke subdifferential it holds that

0 = min
x̄+d∈C, ∥d∥≤R

(ḡ, d) ≤ inf
x̄+d∈C, ∥d∥≤R

f◦(x̄; d).

Now, for arbitrary z ∈ C, we find that zt := (1 − t)x̄ + tz ∈ C and that
∥zt − x̄∥ = t∥z − x̄∥ ≤ R for all t ∈ (0, 1) small enough. Consequently,

0 ≤ 1

t
f◦(x̄; zt − x̄) = f◦(x̄; z − x̄)

because of the positive homogeneity of the generalized directional deriva-
tive, see e.g. [22, Proposition 2.1.1]. This shows that θR(x̄, ḡ) = 0 indeed
implies that x̄ is first-order stationary in the sense of Definition 6.2, pro-
viding another rationale for the usefulness of the stationarity measure from
(6.5).

However, we cannot as easily show the same property for the modified
stationarity measure from (6.6) as it critically depends on the construction
of ϕ. We therefore assume the corresponding property to be given, see [21,
Assumption 2.4].

◦
To ensure that, during the iteration, we do not violate the feasibility of the

sequence of iterates (xk)k∈N0
⊂ C, it must hold in each iteration k ∈ N0 that

xk+1 := xk + dk ∈ C, which effectively imposes a constraint on the descent
direction dk.

We have already seen this constraint in the definition of the stationarity
measures and we also include it in the quadratic subproblems, i.e., we consider
the constrained trust region subproblem

inf
d

qk(d)

s.t. xk + d ∈ C, ∥d∥Rn ≤ ∆k,
(Qk)
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with qk being defined as in (6.1), and the modified constrained trust region
subproblem

inf
d

q̃k(d)

s.t. xk + d ∈ C, ∥d∥Rn ≤ ∆k,
(Q̃k)

with q̃k being defined as in (6.3). By construction any (inexact) solution dk of
(Qk) or (Q̃k) guarantees that the feasibility of xk+1 is retained.

Since we have, compared to (6.1) and (6.3), restricted the feasible set of the
trust region subproblems in (Qk) and (Q̃k), this of course affects the descent
directions dk and d̃k, respectively, and in turn the expected reduction of the
target value at the next iterate. As a consequence, we might not be able to
find an (inexact) solution of (Qk) or (Q̃k) that satisfies the Cauchy decrease
conditions from (6.2) or (6.4), respectively.

For this reason we apply the following changes in the spirit of [25, Part III]
to the generalized Cauchy decrease conditions used in Algorithm 6.1:

– In the case (Qk), we consider the constrained Cauchy decrease condition

f(xk)− qk(dk) ≥
ν

2R
θR(xk, gk)min

{
R,∆k,

θR(xk, gk)

R∥Hk∥Rn×n

}
. (6.7)

– In the case of (Q̃k), we consider the modified constrained Cauchy decrease
condition

f(xk)− q̃k(d̃k) ≥
ν

2R
ψR(xk,∆k)min

{
R,∆k,

ψR(xk,∆k)

R∥Hk∥Rn×n

}
. (6.8)

In the context of the constrained Cauchy decrease conditions from (6.7) and
(6.8), we can prove a result similar to that from [21, Lemma 2.8] which, like the
latter, forms the basis for the convergence analysis of the trust region method:

Lemma 6.7. Let xk ∈ C, gk ∈ ∂f(xk), Hk ∈ Rn×n, and ∆k > 0 be given.
Denote the global minimizers of (Qk) and (Q̃k) by d∗k and d̃∗k, respectively.

Then, d∗k and d̃∗k satisfy (6.7) and (6.8), respectively, for every ν ≤ 1.

Proof. The following proof is an adaption of the proof of [64, Lemma 3.2] to our
setting. We only present the proof for d̃∗k and (6.8), since the proof for d∗k and
(6.7) is completely analogous.

To begin with, we consider the minimization problem associated with the
stationarity measure, i.e.,

min
xk+d∈C, ∥d∥≤R

ϕ(xk,∆k; d) = −ψR(xk,∆k).

Owing to the presupposed lower semicontinuity of ϕ w.r.t. d, see Assumption
6.9 below, and the compactness of the feasible set, this problem admits at least
one global minimizer which we denote by d̃k. The optimality of d̃∗k for (Q̃k)
implies that

f(xk)− q̃k(d̃∗k) ≥ f(xk)− q̃k(d) ≥ −ϕ(xk,∆k; d)−
1

2
∥Hk∥Rn×n∥d∥2Rn (6.9)

for all d ∈ Rn with xk + d ∈ C and ∥d∥Rn ≤ ∆k. On the one hand, if

ψR(xk,∆k) = −ϕ(xk,∆k; d̃k) ≥ ∥d̃k∥2Rn∥Hk∥Rn×n min{1,∆kR
−1},
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then we set d := min{1,∆kR
−1}d̃k ∈ (C − xk)∩B(0;∆k), insert this into (6.9),

and use the positive homogeneity of d 7→ ϕ(xk,∆k; d) to obtain that

f(xk)− q̃k(d̃∗k)

≥ −min{1,∆kR
−1}ϕ(xk,∆k; d̃k)−

1

2

(
min{1,∆kR

−1}
)2∥Hk∥Rn×n∥d̃k∥2

≥ 1

2
ψR(xk,∆k)min{1,∆kR

−1} = 1

2R
ψR(xk,∆k)min{R,∆k}.

On the other hand, if

ψR(xk,∆k) = −ϕ(xk,∆k; d̄
∗
k) < ∥d̃k∥2Rn∥Hk∥Rn×n min{1,∆kR

−1},

we insert d := −ϕ(xk,∆k; d̄
∗
k)∥d̃k∥

−2
Rn∥Hk∥−1

Rn×n d̃k ∈ (C − xk) ∩ B(0;∆k) into
(6.9), which yields that

f(xk)− q̃k(d̃∗k) ≥
ϕ(xk,∆k; d̃k)

2

∥d̃k∥2Rn∥Hk∥Rn×n

− 1

2
∥Hk∥Rn×n

ϕ(xk,∆k; d̃k)
2

∥d̃k∥4Rn∥Hk∥2Rn×n

∥d̃k∥2Rn

=
1

2

ψR(xk,∆k)
2

∥d̃k∥2Rn∥Hk∥Rn×n

≥ 1

2

ψR(xk,∆k)
2

R2∥Hk∥Rn×n

.

To summarize,

f(xk)− q̃k(d̃∗k) ≥
1

2R
ψR(xk,∆k)min

{
R,∆k,

ψR(xk,∆k)

R∥Hk∥

}
,

which is exactly the modified constrained Cauchy-decrease condition from (6.8)
with ν = 1. Because the right-hand side is nonnegative, the estimate holds for
every other value of ν ≤ 1.

Remark 6.8. Lemma 6.7 is meaningful for three reasons. First, it shows that
the constrained Cauchy decrease conditions that we defined in (6.7) and (6.8)
are compatible with the constrained trust region subproblems (Qk) and (Q̃k),
respectively, in the sense that the former give reasonable estimates of the descent
of the objective function that we can achieve with the directions we get from
the latter.

Second, it lays the foundation for the convergence analysis of the trust region
algorithm from Algorithm 6.10. As mentioned earlier, this convergence analysis
is in large part parallel to the convergence analysis in [21] and is therefore
omitted.

Third, the proof provides us with a descent direction that satisfies the mod-
ified constrained Cauchy decrease condition. Thus, instead of solving the mod-
ified trust region subproblem directly (which, depending on the choice of the
model function ϕ, may not be possible at all, see subsection 6.2), we can resort
to the vector d from the proof as an inexact solution. ◦

One last change we need to make to Algorithm 6.1 in order to apply it
to the constrained nonsmooth problem (CNP) concerns the calculation of the
modified quality indicator ρk. In Step 12 of Algorithm 6.1, we observe that
ρk is computed in dependence of the ratio of the subgradient’s norm and the
starionarity measure of the modified subproblem. As we have already seen in
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Remark 6.6, θR is the obvious generalization of ∥gk∥Rn to the case of (CNP). If
this is taken into account when calculating the modified quality indicator, one
obtains the definition

ρk :=


f(xk)− f(xk + dk)

f(xk)− q̃k(dk)
, if ψR(xk,∆k) > θR(xk, gk)∆k,

0, if ψR(xk,∆k) ≤ θR(xk, gk)∆k.

We conclude this subchapter by presenting the method that arises when
introducing all of the previously mentioned modifications to the method from
Algorithm 6.1. First, however, we need to specify the assumptions on the model
function ϕ, which

– are the obvious generalizations of the assumptions on the model function
made in [21, Assumption 2.4];

– form the basis for the convergence analysis (the latter of which we do not
present in this thesis, as already announced).

Assumption 6.9. We assume that we are given a model function ϕ : Rn×R+×
Rn with the following properties

1. for every (x,∆) ∈ Rn × R+, the mapping d 7→ ϕ(x,∆; d) is positively
homogeneous and lower semicontinuous;

2. given x ∈ C, ∆ > 0, and R > 0, the stationarity measure ψR has the
following property: if there is a sequence (xk,∆k)k∈N ⊂ C ×R+ such that

xk → x, ∆k → 0, and ψR(xk,∆k)→ 0,

then x is first-order stationary for the problem (CNP);

3. if there is a sequence (xk,∆k)k∈N ⊂ C × R+ such that

xk → x, ∆k → 0, and lim
k→∞

ψR(xk,∆k) > 0,

then

lim sup
k→∞

sup
x+d∈C,

d∈B(0;∆k)

f(xk + d)− f(xk)− ϕ(xk,∆k; d)

∆k
≤ 0.

Given the above properties of the model function, we consider the following
nonsmooth trust region method for the solution of problems of the type (CNP):

Algorithm 6.10 (Constrained Nonsmooth Trust Region Algorithm).

1: Initialization: Choose constants

R,∆min > 0, 0 < η1 < η2 < 1, 0 < β1 < 1 < β2, 0 < ν ≤ 1,

an initial value x0 ∈ Rn, and an initial trust region radius ∆0 > ∆min. Set
k ← 0.

2: for k = 0, 1, 2, . . . do
3: Choose a subgradient gk ∈ ∂f(xk) and a symmetric matrix Hk ∈ Rn×n

sym .
4: if θR(xk, gk) = 0 then



118 CHAPTER 6. IMPLEM. OF THE IMPL. PROG. APPROACH

5: Stop: xk is first-order stationary in the sense of Definition 6.2.
6: else
7: if ∆k ≥ ∆min then
8: Compute an (inexact) solution dk of the constrained trust region

subproblem

inf
d

qk(d) = f(xk) + (gk, d)Rn + 1
2d

⊤Hkd

s.t. xk + d ∈ C, ∥d∥Rn ≤ ∆k

(Qk)

that satisfies the constrained Cauchy decrease condition

f(xk)− qk(dk) ≥
ν

2R
θR(xk, gk)min

{
R,∆k,

θR(xk, gk)

R∥Hk∥Rn×n

}
.

9: Compute the quality indicator

ρk :=
f(xk)− f(xk + dk)

f(xk)− qk(dk)
.

10: else
11: Compute an (inexact) solution d̃k of the modified constrained trust

region subproblem

inf
d

q̃k(d) = f(xk) + ϕ(xk,∆k; d) +
1
2 d

⊤Hkd

s.t. xk + d ∈ C, ∥d∥Rn ≤ ∆k,
(Q̃k)

that satisfies the modified constrained Cauchy decrease condition

f(xk)− q̃k(d̃k) ≥
ν

2R
ψR(xk,∆k)min

{
R,∆k,

ψR(xk,∆k)

R∥Hk∥Rn×n

}
.

12: Compute the modified quality indicator

ρk :=


f(xk)− f(xk + dk)

f(xk)− q̃k(dk)
, if ψR(xk,∆k) > θR(xk, gk)∆k,

0, if ψR(xk,∆k) ≤ θR(xk, gk)∆k.

13: end if
14: Update: Set

xk+1 :=

{
xk, if ρk ≤ η1
xk + dk, if ρk > η1,

and

∆k+1 :=


β1∆k, if ρk ≤ η1,
max{∆min,∆k}, if η1 < ρk ≤ η2,
max{∆min, β2∆k}, if ρk > η2.

Set k ← k + 1.
15: end if
16: end for

Now that we have defined a method for solving constrained nonsmooth prob-
lems, we of course want to apply it (successfully) to the reduced bilevel problem.
This will be the topic of the next subchapter and includes, in particular, the
choice of a model function which serves as the basis for the modified trust region
subproblems.
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6.2 Construction of a Model Function for the
Reduced Bilevel Problem

Before we can actually present the results of the application of the constrained
nonsmooth trust region method from Algorithm 6.10 to the reduced bilevel
problem (RBε

γ), we must first contemplate the choice of a model function in
this particular case.

If we look closely at the method described in Algorithm 6.10, we observe
that the modified trust region subproblem, and hence the (in advance) chosen
model function, come into play after the trust region radius degenerates because
the method makes no (significant) progress. This can, among other reasons, be
caused by

– a bad choice of the current subgradient: if the current iterate’s subd-
ifferential contains the zero element, then the current iterate is already
first-order stationary, see Remark 6.4. However, if the subdifferential ad-
ditionally contains other elements, it is in general not guaranteed that
in Step 3 of Algorithm 6.10 the zero element is chosen to be the current
iterate’s subgradient which would then terminate the iteration in Step 5.
This would then lead to the stationarity of the current iteration not being
detected, leading to a degeneration of the trust region radius.

– insufficient neighborhood information: in [21, Lemma 3.4], the authors
show that an unfavorable combination of parameters can cause the trust
region method from Algorithm 6.1 to converge to a nonstationary and
nonoptimal point, even in the case of a piecewise affine and convex ob-
jective function and having information about the entire Clarke subdif-
ferential at each point. The authors attribute this behavior to a lack
of information about the subgradients in a neighborhood of each current
iterate.

A possible solution to both of the above (and potentially other) problems is
to include information about the (Clarke) subdifferential of adjacent points of
the current iterate in the calculation of both the descent direction and the
stationarity measure.

For this very reason, in the case of the reduced bilevel problem (RBε
γ), we

define the collective Bouligand subdifferential that unifies all Bouligand subdif-
ferentials of the regularized marginal-to-transport-plan mapping in a ball around
a given point.

Definition 6.11. Given γ, ε > 0, some point µ ∈ Rn1 × Rn2 , and some radius
∆ > 0, we define the collective Bouligand subdifferential of the regularized
marginal-to-transport-plan mapping Sγ,ε by

G(µ,∆) :=
⋃

ξ∈B(µ;∆)

∂BSγ,ε(ξ).

By construction, ∂BSγ,ε(µ) ⊂ G(µ,∆).

The collective Bouligand subdifferential can easily become huge if not un-
countable and it is currently unclear whether it is possible to obtain a com-
putable description of its elements. We can, however, show the following ap-
proximation result:
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Lemma 6.12. Let µ ∈ Rn1 × Rn2 be arbitrary. If (µk,∆k)→ (µ, 0), then

sup
G∈G(µk,∆k)

inf
H∈∂BSγ,ε(µ)

∥G−H∥L(Rn1×Rn2 ,Rn1×n2 ) → 0

as k →∞.

Proof. To begin with, we abbreviate (α1, α2) := Sγ,ε(µ). For all ϵ > 0, if we
choose k ∈ N large enough, then

∥ξ − µ∥Rn1×Rn2
≤ ∆k + ∥µk − µ∥Rn1×Rn2

< ϵ

for all ξ ∈ B(µk; ∆k). The solution operator of the regularized dual problem,
Fγ,ε, is (Lipschitz) continuous, see Lemma 5.4. Thus, if (i1, i2) ∈ Ω+(µ) or
(i1, i2) ∈ Ω−(µ), then choosing k large enough always yields that

(α̃1 ⊕ α̃2 − c)i1,i2 > 0 or (α̃1 ⊕ α̃2 − c)i1,i2 < 0,

respectively, for all (α̃1, α̃2) = Sγ,ε(ξ) with ξ ∈ B(µk; ∆k). Consequently, we
can find some K ∈ N such that, for all k ≥ K,

Ω+(µ) ⊂ Ω+(ξ), Ω−(µ) ⊂ Ω−(ξ), and Ω0(ξ) ⊂ Ω0(µ) (6.10)

for all ξ ∈ B(µk; ∆k). Note that the last inclusion in (6.10) directly follows
from the former ones and the disjointness of the sets Ω+(ξ), Ω0(ξ), and Ω−(ξ).
Similarly,

Ω+(ξ) \ Ω+(µ) ⊂ Ω0(µ), Ω−(ξ) \ Ω−(µ) ⊂ Ω0(µ) (6.11)

for each such k and ξ.
Now, let k ≥ K be fixed and consider an arbitrary point ξ ∈ B(µk; ∆k) with

(α̃1, α̃2) = Sγ,ε(ξ) and an arbitrary subgradient G̃ ∈ ∂BSγ,ε(ξ). If we manage

to show that G̃ ∈ ∂BSγ,ε(µ), then the definition of G(µk,∆k) would yield that
G(µk,∆k) ⊂ ∂BSγ,ε(µ) and thus

sup
G∈G(µk,∆k)

inf
H∈∂BSγ,ε(µ)

∥G−H∥L(Rn1×Rn2 ,Rn1×n2 ) = 0

for all k ≥ K, which would prove the claim.
In order to show that indeed G̃ ∈ ∂BSγ,ε(µ), we first note that, by Theorem

5.20, there exist Ã ⊂ Ω0(ξ) and (ṽ1, ṽ2) ∈ Rn1 × Rn2 with

(ṽ1 ⊕ ṽ2)Ã > 0 and (ṽ1 ⊕ ṽ2)Ω0(ξ)\Ã < 0

such that

G̃ = H
(
Ω+(ξ) ∪ Ã

)
◦ ⊕ ◦ (N

(
Ω+(ξ) ∪ Ã

)
+ γεE)

−1
.

Because of (6.10) and (6.11), we may rewrite

Ω+(ξ) ∪ Ã = Ω+(µ) ∪ A,

with

A :=
(
Ω+(ξ) \ Ω+(µ)

)
∪ Ã ⊂ Ω0(µ).
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We now set

λ :=
1

2
·

min(I1,I2)∈Ω+(ξ)∪Ω−(ξ) |(α̃1 ⊕ α̃2 − c)I1,I2 |
max

{
1,max(I1,I2)∈Ω+(ξ)∪Ω−(ξ) |(ṽ1 ⊕ ṽ2)I1,I2 |

} ∈ (0,∞)

to define (v1, v2) := (α̃1−α1+λṽ1, α̃2−α2+λṽ2) ∈ Rn1×Rn2 . By construction,

v1 ⊕ v2 = (α̃1 ⊕ α̃2 − c)− (α1 ⊕ α2 − c) + λ(ṽ1 ⊕ ṽ2).

From this reformulation, we can deduce on the one hand, again applying (6.11),
that

(v1 ⊕ v2)Ω+(ξ)\Ω+(µ) = (α̃1 ⊕ α̃2 − c)Ω+(ξ)\Ω+(µ) + λ(ṽ1 ⊕ ṽ2)Ω+(ξ)\Ω+(µ)

≥ (α̃1 ⊕ α̃2 − c)Ω+(ξ)\Ω+(µ)

− 1

2
min

(I1,I2)∈Ω+(ξ)∪Ω−(ξ)
|(α̃1 ⊕ α̃2 − c)I1,I2 | > 0

and on the other hand (remember that Ã ⊂ Ω0(ξ) ⊂ Ω0(µ)) that

(v1 ⊕ v2)Ã = λ(v̄1 ⊕ ṽ2)Ã > 0.

Hence, to summarize, (v1 ⊕ v2)A > 0. Analogously,

(v1 ⊕ v2)Ω0(µ)∩Ω−(ξ) < 0 and (v1 ⊕ v2)Ω0(ξ)\Ã < 0.

Because of Ω+(µ) ∩ Ω0(µ) = ∅, one finds that

Ω0(µ) \ A = Ω0(µ) \ (
(
Ω+(ξ) \ Ω+(µ)

)
∪ Ã)

= Ω0(µ) \
(
Ω+(ξ) ∪ Ã

)
=
(
Ω0(µ) ∩ Ω−(ξ)

)
∪
(
Ω0(ξ) \ Ã

)
Hence,

(v1 ⊕ v2)Ω0(µ)\A = (v1 ⊕ v2)(Ω0(µ)∩Ω−(ξ))∪(Ω0(ξ)\Ã) < 0

and consequently

G̃ = H
(
Ω+(µ) ∪ A

)
◦ ⊕ ◦ (N

(
Ω+(µ) ∪ A

)
+ γεE)

−1 ∈ ∂BSγ,ε(µ),

see Theorem 5.20. Given our previous considerations, this concludes the proof.

We have thus shown that the collective Bouligand subdifferential G(µ,∆)
satisfies the assumption on the approximation of the Bouligand subdifferential
from [21, Assumption 4.1]. For this reason, it seems reasonable to adopt the
construction of the model function in the cited paper, and we therefore define
the model function we are going to utilize in the case of the reduced bilevel
problem (RBε

γ) by

ϕ(µ1,∆; d) := sup
G∈G((µ1,µd

2),∆)
(pG +∇µ1

J (π, µ1), d)Rn1
, (6.12)
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where π := Sγ,ε(µ1, µ
d
2) and, for any G ∈ G(µ,∆), the vector pG (which we oc-

casionally call adjoint state) is given by the first component of G∗∇πJ (π, µ1) ∈
Rn1 × Rn2 , see Proposition 5.22.

Attention. Whether our particular choice of the model function in (6.12)
satisfies the properties from Assumption 6.9 is the subject of ongoing re-
search. Therefore, from this point on, we cannot make any qualified pre-
dictions about the convergence of the sequence of iterates (or subsequences
thereof) generated by the method from Algorithm 6.1.
Nevertheless, since the authors of [21] have demonstrated the convergence
of their method for a very similar model function in a comparable scenario
and since the numerical results we present in the upcoming subchapter tend
to point in the right direction, we nevertheless use the model function from
(6.12) to be finally able to numerically test the results of this thesis.

Finally, we have everything at hand to implement the constrained nons-
mooth trust region method from Algorithm 6.10 and to apply it to the reduced
bilevel problem (RBε

γ). Details of the implementation and the discussion of
the numerical results are the subject of the next and at the same time last
subchapter.

6.3 A Transportation Identification Problem to
Test the Constrained Nonsmooth Trust Re-
gion Method

In the last subchapter of this thesis, we present a certain instance of the bilevel
Hitchcock problem (BH), which is intended to serve as a test problem for the
constrained nonsmooth trust region method from Algorithm 6.10.

Suppose there is an (unknown) source marginal µ∗
1 ∈ Rn1 and a (known)

target marginal µd
2 ∈ Rn2 , both of which satisfy µ∗

1, µ
d
2 ≥ 0 as well as 1⊤µ∗

1 =
1⊤µd

2 = 1, and that the cost of transportation between the domains Ω1 and Ω2

is given by a cost matrix cd ∈ Rn1×n2 . By Lemma 4.2, there exists (at least
one) optimal transport plan π∗ which describes the transportation between µ∗

1

and µd
2 . Let us assume that we can (possibly inaccurately) observe both the

source marginal µ∗
1 and the optimal transportation plan π∗, however, restricted

to subdomains D1 ⊂ Ω1 and D ⊂ Ω, respectively. Denote the observations
made on the subdomains by µd

1 and πd.
Then, the tracking-type target function , which is given by the function

J : Rn1×n2 × Rn1 → R+, J (π, µ1) :=
1

2
∥π − πd∥2D +

λ

2

∥∥µ1 − µd
1

∥∥2
D1
,

with weighting parameter λ ≥ 0 and

∥M∥D :=

√ ∑
(i1,i2)∈D

M2
i1,i2

as well as ∥v∥D1
:=

√ ∑
i1∈D1

v2i1

for all matricesM ∈ Rn1×n2 as well as all vectors v ∈ Rn1 , respectively, measures
the distance between a point (π, µ1) and the observed point (πd, µ

d
1). Obviously,
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J is continuous w.r.t. π and µ1 and thus satisfies the assumptions on the ob-
jective function of the bilevel Hitchcock problem (BH). Inserting this target
function into the bilevel problem then yields the transportation identification
problem

inf
π,µ1

1
2∥π − πd∥

2
D + λ

2

∥∥µ1 − µd
1

∥∥2
D1

s.t. µ1 ∈ Rn1 , µ1 ≥ 0, 1⊤µ1 = 1,

π ∈ argmin
{
(θ, cd)F : θ ∈ Rn1×n2 , θ ≥ 0, θ1 = µ1, θ

⊤1 = µd
2

}
,
(TIP)

which seeks to find a source marginal µ1 and an optimal transport plan π,
transporting µ1 onto µd

2 , in a way that the distance between (µ1, π) and the
observed variables (πd, µ

d
1) is minimized. In other words, by solving (TIP), we

try to reconstruct a transportation process where we know the target marginal
and the cost function, but can only partially observe the source marginal and
the transport plan.

The benefits of this type of problem are obvious: if we consider a weighting
parameter λ > 0, the observation domains D1 = Ω1 and D = Ω, as well as the
observations µd

1 = µ∗
1 and πd = π∗, then the unique solution of (TIP) is given

by the point (π∗, µ∗
1) which realizes the target value J (π∗, µ∗

1) = 0. By choosing
µ∗
1 and π∗ in advance, this allows us to evaluate the performance of the method

from Algorithm 6.10 by means of a nontrivial bilevel problem whose solution is
already known.

If we, however, choose proper subsets D1 ⊊ Ω1 and D ⊊ Ω or add an error ϵ
to the observation, i.e., if we consider µd

1 = µ∗
1 + ϵ and πd = π∗ + ϵ, this allows

us to introduce incomplete information or uncertainty to the transportation
identification problem (TIP).

More advanced problems for testing both the constrained nonsmooth trust
region method from Algorithm 6.10 and the results of Part II will be the subject
of future research and publications.

A quick calculation shows that the tracking-type target function J is con-
tinuously differentiable as has the derivatives

∇πJ (π, µ1) = H(D)(π − πd) and ∇µ1
J (π, µ1) = λ H⃗(D1)(µ1 − µd

1).

In the above,H(D) is the mask from Definition 5.19 and H⃗(D1) is an analogously
defined operator operating on vectors instead of matrices, i.e.,

H⃗(D1) : Rn1 → Rn1 , v 7→

({
vi1 , if i1 ∈ D1,

0, else,

)
i1∈Ω1

for any subset D1 ⊂ Ω1.

We follow the approach from Subchapter 5.3 and replace, given a pair of
regularization parameters γ, ε > 0, the lower-level Hitchcock problem in the
formulation of (TIP) by the regularized marginal-to-transport-plan mapping
from Subchapter 5.2 to arrive at the problem

inf
µ1

fγ,ε(µ1)

s.t. µ1 ∈ CRB =
{
ξ ∈ Rn1 : ξ ≥ 0, 1⊤ξ = 1

}
,

(TIPε
γ)
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which is a problem of the form (RBε
γ) with target function

fγ,ε(µ1) =
1

2

∥∥Sγ,ε(µ1, µ
d
2)− πd

∥∥2
D
+
λ

2

∥∥µ1 − µd
1

∥∥2
D1

and thus treatable with the constrained nonsmooth trust region method which
we described in Algorithm 6.10.

In the following, we will first briefly discuss important details of the imple-
mentation of the trust region method and then present the results of a number
of different tests that we carried out in the setting of the transportation identi-
fication problem (TIPε

γ).

6.3.1 Details on the Implementation of the Constrained
Nonsmooth Trust Region Method

We implement the constrained nonsmooth trust region method from Algorithm
6.10 in MATLAB® R2023a1. In the following, we explain details of the im-
plementation that are not immediately apparent from the description of the
algorithm or that require further explanation.

Attention. Since it was, within the scope of this thesis, our primary goal to
obtain first numerical results to validate the proposed trust region method
and the results obtained in the previous parts, the implementation strategies
presented here should be taken with a grain of salt.
It still subject of ongoing research how to optimally choose the subgradients
in the modified and nonmodified case and how to reliably find solutions to the
constrained trust region subproblems that not only satisfy the constrained
Cauchy decrease conditions but also realize a substantial reduction of the
target function and the stationarity measures.
Therefore, our implementation approaches should not be considered as so-
phisticated and reliable strategies, but merely as heuristics.

Step 3: Choice of the subgradient and the symmetric matrix.

Proposition 5.22 provides instructions on how to compute (Clarke) subgradients
for a given iterate µ1,k. For a fixed pair of regularization parameters γ, ε > 0,
we first apply a standard semismooth Newton method, see e.g. [52, Section 3.2],
to compute the associated transport plan πk = Sγ,ε(µ1,k, µ

d
2) w.r.t. the cost

matrix cd.

In every iteration k, we choose the set Ak = ∅, which has an outer structure
w.r.t. the biactive set Ω0(µ1,k, µ

d
2), see Remark 5.16. With this choice, we

construct the matrix

Mk = H
(
Ω+(µ1,k, µ

d
2) ∪ Ak

)
∇πJ (πk, µ1,k)

= H
(
Ω+(µ1,k, µ

d
2)
)
∇πJ (πk, µ1,k) = H

(
Ω+(µ1,k, µ

d
2) ∩D

)
(πk − πd),

then use the MATLAB® function “mldivide” to compute the unique solution

1MATLAB is a registered trademark of The MathWorks, Inc. See mathworks.com/

trademarks for a list of additional trademarks.

mathworks.com/trademarks
mathworks.com/trademarks
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(p1,k, p2,k) ∈ Rn1 × Rn2 to the linear system(
N
(
Ω+(µ1,k, µ

d
2)
)
+ γεE

)(p1
p2

)
=

(
1Mk

1⊤Mk

)
and receive a subgradient for the current iteration by setting

gk = p1,k +∇µ1
J (πk, µ1) = p1,k + λH⃗(D1)(µ1,k − µd

1). (6.13)

We feel the urge to note that there may be a more sophisticated way to select
the set Ak. However, this is subject to future research and will not be discussed
in the scope of this thesis.

In each iteration k, we choose the matrix Hk to be an approximation of the
Hessian of fγ,ε, which we compute via a BFGS update using the subgradient
gk and the initial matrix H0 = En1×n1

, the identity matrix of Rn1×n1 . Even
though we have no theoretical evidence that this approach increases the numer-
ical performance, we reset the BFGS update to the identity matrix in every
10th successful iteration or when the norm of the matrix outgrows a certain
threshold.

Step 4: Calculation of the stationarity measure.

We fix the parameter R =
√
n1. This way, the calculation of the stationarity

measure θR reduces to finding a solution d̄k to the linear program

min
d

(gk, d)Rn1

s.t. d ∈ Rn1 , µ1,k + d ∈ CRB,

which we efficiently solve by employing the MATLAB® function “linprog”.
Of course, after computing the stationarity measure, we do not test whether

it is exactly zero, but whether it is close to zero, i.e., we choose a tolerance
0 < TOL ≪ 1 and evaluate the expression θR(µ1,k, gk) ≤ TOL in order to
obtain a numerically meaningful termination criterion.

Step 8: Computation of an inexact solution to (Qk).

The strategy we describe below for finding an inexact solution to the constrained
trust region subproblem (Qk) was inspired by the projected gradient methods
that are discussed in [25, Chapter 12].

We consider both the linearized subproblem

inf
d

f(µ1,k) + (gk, d)Rn1

s.t. d ∈ Rn1 , µ1,k + d ∈ CRB,

whose solution is given by d̄k from Step 4 above, and the “classical” trust region
subproblem

inf
d

qk(d) = f(µ1,k) + (gk, d)Rn1
+ 1

2d
⊤Hkd

s.t. d ∈ Rn1 , ∥d∥Rn1
≤ ∆k,

which does not include the linear constraints of (Qk) and for which we compute

an (inexact) solution d̂k via the well-known dogleg method.
We then compute the convex combination between d̄k and the metric pro-

jection2 of d̂k onto the shifted standard simplex CRB − µ1,k that minimizes qk.

2To calculate the metric projection onto the linear constraints, we use the method described
in [20] and the MATLAB® function “projsplx” provided by the authors of that paper.
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By construction, this convex combination is feasible for (Qk) and finding it is a
quadratic problem, which can be solved with a simple case-by-case analysis.

Even though, at the current time, we have no theoretical evidence to support
this claim, the descent direction we obtain from this approach seems to always
satisfy the constrained Cauchy decrease condition (6.7) with ν = 1.

Step 11: Calculation of the modified stationarity measure.

With the choice of the parameter R from above, the computation of the modified
stationarity measure reduces to solving the problem

min
d

ϕ(µ1,k,∆k; d)

s.t. d ∈ Rn1 , µ1,k + d ∈ CRB,

which is, because of

ϕ(µ1,k,∆k; d) = sup
G∈G((µ1,k,µd

2),∆k)

(
pG + λH⃗(D1)(µ1,k − µd

1), d
)
Rn1

,

see its definition in (6.12), equivalent to the problem

min
ξ,d

ξ

s.t. ξ ∈ R, d ∈ Rn1 , µ1,k + d ∈ CRB,(
pG + λH⃗(D1)(µ1,k − µd

1), d
)
Rn1
≤ ξ for all G ∈ G

(
(µ1,k, µ

d
2),∆k

)
,

which is a problem with linear objective function and (possibly uncountably
many) linear inequality constraints. Instead of solving the above problem ex-
actly (which, depending on the structure of G, might not even be possible), we
compute a solution of the linear approximating problem

min
ξ,d

ξ

s.t. ξ ∈ R, d ∈ Rn1 , µ1,k + d ∈ CRB,(
pG + λH⃗(D1)(µ1,k − µd

1), d
)
Rn1
≤ ξ for all G ∈ Ĝ,

(6.14)

where Ĝ ⊂ G
(
(µ1,k, µ

d
2),∆k

)
is an approximation that contains up to 10(n1+n2)

different subgradients of the collective Bouligand subdifferential.
To construct the approximation Ĝ, we explore the n1 + n2 sphere around

the center point (µ1,k, µ
d
2) with radius ∆k in every (positive and negative) unit

direction of Rn1+n2 . For each of these 2(n1 + n2) points on the sphere around
(µ1,k, µ

d
2), we calculate (if possible) multiple unique subgradients, see the in-

structions given in Proposition 5.22.
Although there are many more points on the sphere and inside the ball that

could be generated in a similar way, we limit ourselves to the points generated as
described above, since each point requires the calculation of the corresponding
regularized transport plan, i.e., in particular the application of the semismooth
Newton method from Step 3. The effort to estimate the modified stationar-
ity measure with the approximation of the collective Bouligand subdifferential
described above is already a multiple of that of the unmodified one and each
additional point contributes to extending the runtime of the method.

Again, we efficiently solve the approximating linear problem from (6.14) by
using the MATLAB® function “linprog” and we denote the solution by d̃k.
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Even though this is not obvious from the description of the method in Algo-
rithm 6.10, just as in [21, Remark 2.13], we implement a modified termination
criterion by evaluating ψR(µ1,k,∆k) ≤ TOL.

Step 11: Computation of an inexact solution to (Q̃k).

Similar to step 4, we do not attempt to solve the modified subproblem exactly
(which may not be possible due to the structure of G), but instead use the
direction d̃k from the approximation of the stationarity measure ψR above and
scale it to obtain an admissible descent direction. To do this, we stick to the
proof of Lemma 6.7 and construct the inexact solution of (Q̃k) the same way as
the direction d in the mentioned proof.

Despite the fact that latter is based on the exact solution of the modified
stationarity measure and we only rely on an approximate solution, in our numer-
ical tests, we virtually always obtain descent directions that satisfy the modified
Cauchy descent condition with ν = 1.

Step 14: Update of the variables.

If the trust region method from Algorithm 6.10 consecutively generates a large
number of successful steps, the trust region radius can, according to the update
rule in Step 14, grow dramatically. Therefore, if the iteration approaches a first-
order stationary point, it usually requires a large number of null steps until the
trust region radius adjusts to the neighborhood of local stationarity and until
the solution of the constrained subproblem (Qk) realizes a sufficient reduction
of the objective function again.

To limit the number of (unnecessary) null steps, we therefore define an upper
bound for the trust region radius by setting ∆max =

√
n1 and considering the

modified update rule

∆k+1 :=


β1∆k, if ρk ≤ η1,
max{∆min,∆k}, if η1 < ρk ≤ η2,
min

{
max{∆min, β2∆k},∆max

}
, if ρk > η2.

(6.15)

Since the structure of the linear constraints in (Qk) and (Q̃k) implies an upper
bound on the norm of the search direction anyway, this modified update rule
also makes sense from a theoretical point of view.

6.3.2 Presentation & Discussion of the Numerical Results

We now present the results of two different numerical examples with which we
test our implementation of the constrained nonsmooth trust region method from
Algorithm 6.10.

For both of the numerical examples, we set R = ∆max =
√
n1 to simplify

the calculation of the stationarity measures and to reduce the number of unsuc-
cessful iterations, see Section 6.3.1. We choose the remaining parameters of the
trust region method according to Table 6.1. For the initial values, we always
choose

µ1,0 = n−1
1 1, ∆0 = 1, and H0 = En1×n1 ,

the latter of which being the identity matrix of Rn1×n1 .

Transportation identification on the entire domain
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∆min η1 η2 β1 β2 ν

10−6 0.1 0.9 0.5 1.5 1

Table 6.1: Choice of the parameters for our test of the constrained nonsmooth trust region
method from Algorithm 6.10.

For our first example, we set n1 = n2 = 20 and consider the cost matrix that is
given by (cd)i1,i2 = |i1 − i2|2 for all (i1, i2) ∈ Ω. Using the MATLAB® function
“sprand”, we (pseudo-)randomly generate a source marginal µ∗

1 ∈ R20 and a
target marginal µd

2 ∈ R20, both of which are to a large extent sparse (roughly
75% of their entries are equal to 0). Applying the MATLAB® function “linprog”,
we then calculate the (unique) optimal transport plan π∗ between the marginals
µ∗
1 and µd

2 w.r.t. the cost cd.

We moreover set the weight λ = 1 and consider the observation domains
D1 = Ω1 and D = Ω as well as the observations µd

1 = µ∗
1 and πd = π∗.

This setup corresponds to the attempt of reconstructing the source marginal
µ∗
1 and the optimal transport plan π∗ from exact observations on the entire

domain. Although this optimization problem is a (from an analytical point of
view) trivial exercise, it is well suited as a first test for the trust region method.
We generate eight independent instances of this problem, i.e., eight different
tuples (µ∗

1, µ
d
2 , π

∗), and combine them with different choices of regularization
parameters γ = ε, ranging between 100 and 10−9.

To begin with, we would like to point out that graphs that have the same
color across the pictures below correspond to the same instance. Therefore, if
we, for example, refer to the “red instance”, we actually refer to the instance
that corresponds to the red graphs in the pictures.

Figure 6.1 shows the history of the stationarity measure for these eight in-
stances for different choices of regularization parameters γ = ε. We observe
that, for the majority of instances, after about 30 to 70 iterations (including
successful steps as well as null steps), stationarity is achieved within a tolerance
of less than 10−6. It is noteworthy that the method failed to achieve this toler-
ance in four cases (black instance for γ = ε = 10−3; red and dark blue instance
for γ = ε = 10−4; purple instance for γ = ε = 10−7). Plateaus with con-
stant values of the stationarity measures correspond to periods of unsuccessful
iterations.

Figure 6.2 shows the history of target function values, i.e., the sum of the
squared residuals of the method’s output µ̄1 and the corresponding transport
plan π̄ = Sγ,ε(µ̄1, µ

d
2). The target function is bounded from below by 0 and its

optimal value of 0 can only be realized by the unique point µ∗
1. With a conser-

vative choice of regularization parameters, see Figure 6.2a–c, the reduction of
the objective function and thereby the quality of the approximation of µ∗

1 and
π∗ is rather poor. However, for smaller choices of regularization parameters,
see Figure 6.2d–f, we observe that (after a few globalization steps) the method
achieves a significant reduction of the stationarity measure in a few steps before
taking a large number of iterations to drive the stationarity measure towards
zero. For γ = ε = 10−6, Figure 6.2f shows that each instance is solved after
at most 30 iterations with a (squared) residual of less than 10−6. For several
instances, this accuracy is even below 10−7 if not close to 10−8.

A comparison of the final iteration number of the eight instances across all
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(a) γ = ε = 100 (b) γ = ε = 10−1

(c) γ = ε = 10−2 (d) γ = ε = 10−3

(e) γ = ε = 10−4 (f) γ = ε = 10−5

Figure 6.1: Stationarity plots of the eight instances of the transport identification problem with
exact observations on the entire domain, given different values of regularization parameters.
Graphs that touch the “Iteration”-axis, see picture (a), correspond to a final stationarity
measure of exactly 0.
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(a) γ = ε = 10−1 (b) γ = ε = 10−2

(c) γ = ε = 10−3 (d) γ = ε = 10−4

(e) γ = ε = 10−5 (f) γ = ε = 10−6

Figure 6.2: Target function plots of the eight instances from Figure 6.1 for different values of
the regularization parameters.
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Figure 6.3: Comparison of the final iteration number of the eight instances for different values
of the regularization parameters. The termination tolerance was chosen to be 10−6. A value
of 150 indicates that the method failed to converge in that particular test. The dotted line
corresponds to the average iteration number with the non-convergent cases excluded.

choices of the regularization parameters γ = ε is shown in Figure 6.3. We
observe that the average iteration number (dotted line) initially rises when de-
creasing the regularization parameters γ = ε from 100 to 10−2, but subsequently
falls when decreasing the regularization parameters further beyond 10−2. For
values smaller than 10−7, the method terminates in the very first iteration, as
the matrices used during the semismooth Newton method become singular and
the method returns infeasible solutions. It can be seen that the number of iter-
ation steps is subject to a large variance and that some instances (e.g. the dark
blue and the purple one) tend to require more iterations than other instances
(e.g. the light blue one) across the majority of the tests.

Figure 6.4 shows, for a single instance, the evolution of the sparsity pattern
of the transport plan π̄ associated to the output µ̄1 of the method. The pictures
show that the sparsity pattern of π̄, which is induced by the ( · )+-operator in the
definition of the regularized marginal-to-transport-plan mapping, see Subchap-
ter 5.2, in a sense “converges” to the sparsity pattern of the optimal transport
plan π∗. This approximation of the sparsity pattern is, however, only an outer
approximation, meaning that the sparsity pattern of the approximation π̄ always
contains points that do not belong to the sparsity pattern of π∗.

To conclude this numerical example, we would like to briefly discuss the us-
age of the modified trust region subproblem and the corresponding stationarity
measure. Table 6.2 shows the cases (in parenthesis) in which the modified sta-
tionarity measure or the modified subproblem was used. Excluding the cases,
where the method failed to converge, we count a total of 29 of modified itera-
tions. Among all of the executed tests, we essentially observed four distinctive
behaviors. The following list is sorted according to the frequency of occurrence
of those cases.

1. The modified subproblem is not used during the iteration: this case ac-
counts for the majority of tests carried out.

2. The modified subproblem and the modified stationarity measure were only
used a few times during the iteration and each time led to a significant
reduction of the stationarity measure: we observed this behavior, for ex-
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(a) γ = ε = 100 (b) γ = ε = 10−1 (c) γ = ε = 10−2

(d) γ = ε = 10−3 (e) γ = ε = 10−4 (f) γ = ε = 10−5

Figure 6.4: Comparison of the sparsity pattern of the optimal transport plan π∗ (red points)
with the sparsity pattern of the transport plan π̄ = Sγ,ε(µ̄1, µd

2) (light blue points) correspond-
ing to the method’s output µ̄1 of the trust region method for different values of regularization
parameters. The data presented in this figure corresponds to the purple instance. For regu-
larization parameters smaller than 10−5, the sparsity pattern remains unchanged.

instance\γ=ε
100 10−1 10−2 10−3 10−4 10−5 10−6 10−7

black 14 65 61(1) ∞ 91(2) 55 41 30
orange 3 70 51 40 62 42 33(1) 35(1)
yellow 3 36 70 91 59(1) 54 45 23
purple 4 42 56 47 40 61 58 ∞(∞)
green 3 30 82 62 59 52 32 38(1)

light blue 12 40 65 32 48 37 30 15
red 4 40 64 71 ∞(∞) 31 38(1) 55(14)

dark blue 12 67 52 86(4) ∞ 83(3) 34 33

Table 6.2: Summary of the final iteration numbers as presented in Figure 6.3. Values in paren-
thesis show the number of iterations in which either the modified stationarity measure was
computed (and the iteration stopped subsequently) or the modified subproblem was solved.
A value of ∞ indicates that the method failed to converge in this particular case.
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ample, in the test of the black instance for γ = ε = 10−2 or γ = ε = 10−4.

3. Once the trust region radius falls below the threshold value ∆min, the
modified subproblem exclusively generates null steps and the trust region
radius degenerates: this case occurred twice in the executed tests (red
instance for γ = ε = 10−4 and purple instance for γ = ε = 10−7, the
former of which can be inspected in Figure 6.1e).

The behavior described in the first two cases is very favorable. Each nonmod-
ified iteration is inexpensive and requires, besides a number of matrix-vector
multiplications and distinctions of cases, only the solution of one nonlinear and
two linear systems of equations as well as the solution of a linear program. In
contrast, each iteration of the modified subproblem requires a multiple of the
effort of a nonmodified iteration, because

– for every point ξ ∈ B(µ1,k; ∆k) that we choose from the ball around
the current iterate, we need to compute the corresponding transport plan
πξ = Sγ,ε(ξ, µd

2), which requires the application of the semismooth Newton
method; depending on the size of the biactive set, i.e., the number of
elements in Ω0(ξ, µ

d
2), this occurs up to 2(n1 + n2) times per modified

iterate;

– the computation of each subgradient requires to solve a (sparse but high-
dimensional) linear system.

In particular, the behavior of the second case is exactly what we had hoped to
achieve with the choice of the model function ϕ in Subsection 6.2: if possible,
the modified model should not be used, but if it cannot be avoided due to the
problem structure, then it should only contribute a few iterations (being, in
some sense, a “safeguard”).

The behavior described in the last case is obviously not ideal. However, it is
at this stage not clear whether it is provoked by an inadequate approximation
of the collective Bouligand subdifferential in Step 11, by a too inaccurate solu-
tion of the modified subproblem (Q̃k), or by an unfavorable choice of the model
function ϕ. It could also be attributed to an impractical choice of the termina-
tion tolerance, because the graphs in Figure 6.2 show that there is usually no
significant reduction of the target function after the 30th iteration, even if the
iteration is continued. It is the subject of future research, how this particular
behavior of the method can be avoided.

Transportation identification on a part of the domain

For our second example, we set n1 = n2 = 50 and consider the same cost matrix
as before, i.e., (cd)i1,i2 = |i1 − i2|2 for all (i1, i2) ∈ Ω. Just as in the previous
test, we generate a test instance by pseudorandomly drawing a source marginal
µ∗
1 as well as a target marginal µd

2 and by calculating the corresponding (unique)
optimal transport plan π∗ afterwards. Using this instance, we now investigate
the effect of different choices of observation domains on the result of the trust
region method. In all of the subsequent tests, we choose the regularization
parameters γ = ε = 10−6 in order to achieve a close approximation of the
optimal solution. We set the stationarity tolerance to 10−4 and, initially, fix the
weighting parameter λ = 1.
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Figure 6.5: Left-hand picture: Comparison of the source marginal µ∗
1 (red bars) with the trust

region method’s output µ̄1 (blue bars). Right-hand picture: Comparison of the sparsity pat-
tern of the optimal transport plan π∗ (red squares) with the sparsity pattern of the calculated
transport plan π̄ = Sγ,ε(µ̄1, µd

2) (blue squares).
Note that while the value of the 38th entry of µ∗

1 is in the order of 10−5 and therefore barely
visible in the left-hand picture, one can see the corresponding nonzero entry in the right-hand
picture.

As a reference, we first solve the transportation identification on the entire
domain, i.e., we consider the observation domains D1 = Ω1 and D = Ω. The
trust region method terminated after 58 iterations (of which 33 were success-
ful) with an objective value (sum of squared residuals) of about 5 · 10−8. A
comparison of the method’s output µ̄1 with the source marginal µ∗

1 as well as a
comparison of the sparsity patterns of π̄ = Sγ,ε(µ̄1, µ

d
2) and π

∗ can be found in
Figure 6.5. The left-hand picture shows that the source marginal µ∗

1 was indeed
approximated very well with the element-wise deviation of µ̄1 from µ∗

1 being
less than 2 · 10−3. The right-hand picture shows that the sparsity pattern of π∗

was recovered to a large extend.
To test the trust region method on proper subsets of the domains, we consider

observation domains that result from gradually “punching” certain points out
of the domains Ω1 and Ω. To be more precise, we define the observation domain
D1

1 ⊂ Ω1 to be the equal to Ω1, but with every fifth index removed, i.e.,

D1
1 := Ω1 \ {5, 10, . . . , 50}.

We construct the observation domain D1 ⊂ Ω similarly, but instead of removing
single indices, we remove every fifth row and every fifth column, i.e.,

D1 := Ω \
{
{5} × Ω2,Ω1 × {5}, {10} × Ω2,Ω1 × {10}, . . .

}
.

We then construct D2
1 by removing every fifth index of D1

1 and construct D2

by removing every fifth row and every fifth column from D1. Repeating this
construction over and over again, we obtain sequences of observation domains

Ω1 ⊃ D1
1 ⊃ D2

1 ⊃ . . . and Ω ⊃ D1 ⊃ D2 ⊃ . . . .

With each repetition, the observation domains become more sparse while a
certain number of points is retained. For each repetition k = 1, 2, . . . , we define
the observations to be µd

1 := µ∗
1|Dk

1
and πd := π∗|Dk .
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(a) D1
1 . (b) D2

1 . (c) D3
1 .

(d) D1
1 . (e) D2

1 . (f) D3
1 .

Figure 6.6: (a) – (c): Comparison of µ∗
1 (red bars) with µ̄1 (blue bars) for different instances

of the observation domains Dk
1 (gray bars). (d) – (f): Comparison of the sparsity pattern of

π∗ (red squares) with the sparsity pattern of π̄ (blue squares) for different instances of the
observation domain Dk (gray squares).

In Figure 6.6, we see both the shape of the resulting observation domains for
the first three repetitions as well as the results of the trust region method when
applying it to the given data. We observe, and this is exactly what we would
have expected, that the method’s output µ̄1 approximates the source marginal
µ∗
1 still very well, but only for the indices that lie in the observation domain.

On the complement of the observation domain, the difference between µ∗
1 and

µ̄1 can be quite large, see e.g. i1 = 30 in Figure 6.6a or i1 = 22 in Figure
6.6b and Figure 6.6c. Although most of the nonzero entries of π̄ lie in the
complement of D1, D2 and D3, see figures 6.6d – 6.6f, yet the transport plan π̄
cannot completely avoid the observation domains, since some points of µ∗

1 lie in
all shown observation domains and µ̄1 closely approximates µ∗

1 at these points
(remember that the mapping of the marginals onto the regularized transport
plan is continuous).

Table 6.3 shows some relevant data that we collected after the trust re-
gion method terminated. As expected, the realized target function value falls
as the observation domains become more sparse whereas the residual, i.e.,
1
2∥π̄ − π

∗∥Ω + λ
2 ∥µ̄1 − µ∗

1∥Ω1
, rises due to the loss of information about the

source marginal µ∗
1 and the optimal transport plan π∗. At the transition from

D4
1 & D4 to D5

1 & D5, the target function value increases again. We attribute
this to the subgradients becoming increasingly sparse and the stationarity tol-
erance therefore being reached earlier, in this case after only 6 iterations.

To conclude this experiment, we choose the observation domain D1 to be
the last third of Ω1 and the observation domain D to be a diagonal strip shifted
to the higher end of Ω1. Figure 6.7 shows the effect of different choices of the
weighting parameter λ on the reconstruction of µ∗

1 and π∗ and Table 6.4 shows
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Observ. dom. Stat. measure Target val. Iter. count Resid.

D1
1 & D1 7.4710 · 10−5 5.2670 · 10−4 65 2.0537 · 10−2

D2
1 & D2 6.1495 · 10−5 5.2617 · 10−4 45 2.3373 · 10−2

D3
1 & D3 7.0698 · 10−5 5.9076 · 10−6 16 2.9190 · 10−2

D4
1 & D4 5.6165 · 10−5 5.9499 · 10−8 24 3.8291 · 10−2

D5
1 & D5 1.5872 · 10−5 4.3354 · 10−3 6 6.8572 · 10−2

Table 6.3: End of iteration data for the first pairs of observation domains. Residual refers
to the sum of the squared residual of µ̄1 to µ∗

1 and π̄ to π∗, i.e., J (π̄, µ̄1) for D = Ω and
D1 = Ω1.

the corresponding output data.

While for λ = 1 (see Figure 6.7a) the reconstruction of µ∗
1 (on D1) is very

accurate, this changes when the influence of the weighting parameter on the
objective function is reduced, see Figure 6.7b & Figure 6.7c. In the complement
of the observation domain D1, we observe little to no reconstruction of the
source marginal.

As the weighting parameter that controls the influence of µ1 on the target
function decreases, the influence of π on the target function increases. We would
therefore expect the accuracy with which µ∗

1 is approximated to decrease and
the accuracy of the approximation of π∗ to increase. However, we make the
following, rather counterintuitive observation: For λ = 1, the approximation
of both µ∗

1 and π∗ appears to be very good, but as the weighting parameter λ
decreases, the quality of both approximations decreases.

A possible explanation for this behavior would be that, for λ = 1, the prox-
imity of µ̄1 to µ∗

1 (see Figure 6.7d) together with the (Lipschitz) continuity of
the marginal-to-transport-plan mapping Sγ,ε force the corresponding transport
plan π̄ to be close to π∗, leading to good approximations and small target values.
Reducing the weighting parameter λ, however, significantly reduces the quality
of the approximation of µ∗

1 on the observation domain, thus (again by continuity
of the marginal-to-transport-plan mapping) leading to a poor approximation of
π∗.

Further, reducing the weighting parameter λ significantly reduces the num-
ber of iterations required to achieve a certain stationarity tolerance, see Table
6.4. This is, however, not a surprise given the construction of the subgradients
from (6.13): in the calculation of gk, the derivative of J w.r.t. µ1 is weighted
with lambda and this weighting is directly transferred to the calculation of
the (positively homogeneous) stationarity measure, which results in reaching
stationarity after fewer iterations. This certainly contributes to the poor ap-
proximation of both π∗ and µ∗

1 as discussed above.

Moreover, when performing tests with instances other than the one we have
just discussed or with observation domains other than those shown in the figures,
we encountered another type of behavior of the trust region method that we did
not encounter in the previous numerical example: during the iteration, the trust
region method periodically switches between the nonmodified and the modified
subproblems and stationarity measures, while realizing only an insignificant
decrease of both the target function and the stationarity measures. Although
this behavior is not inconsistent with a possible convergence result (a small
decrease of the objective function was achieved in each step), it is, similar to
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(a) λ = 100 (b) λ = 10−2 (c) λ = 10−4

(d) λ = 100 (e) λ = 10−2 (f) λ = 10−4

Figure 6.7: Top row: Comparison of µ∗
1 (red bars) with µ̄1 (blue bars) for different values of

the weighting parameter. Bottom row: Comparison of the sparsity pattern of π∗ (red squares)
with the sparsity pattern of π̄ (blue squares) for different values of the weighting parameter.
The gray areas represent the domains D1 ⊂ Ω1 and D ⊂ Ω.

λ Stat. measure Target val. Iter. count Resid.

100 7.0115 · 10−5 5.2670 · 10−6 68 2.2509 · 10−2

10−1 4.7459 · 10−5 1.3738 · 10−2 54 5.9141 · 10−2

10−2 8.0479 · 10−5 1.3291 · 10−2 60 5.8373 · 10−2

10−3 9.4643 · 10−5 1.3772 · 10−2 4 6.8351 · 10−2

10−4 1.0745 · 10−5 1.3760 · 10−2 4 6.8500 · 10−2

10−5 1.0181 · 10−5 1.3759 · 10−2 4 6.8516 · 10−2

Table 6.4: End of iteration data for different values of the weighting parameter λ. Residual
refers to the sum of the squared residual of µ̄1 to µ∗

1 and π̄ to π∗, i.e., J (π̄, µ̄1) for D = Ω
and D1 = Ω1.

the third case mentioned in the previous experiment, far from ideal.

Discussion & final remarks

The two numerical experiments show that the constrained nonsmooth trust
region method from Algorithm 6.10 produces accurate and reasonable results
when it is applied in the context of the transportation identification problem
(TIP). In most tests, the modified subproblem and the modified stationarity
measure are not needed to obtain results with high accuracy (in terms of squared
residuals or stationarity). In many cases, the modified subproblem was only
invoked a handful of times to achieve a stationarity of below than 10−6.

However, we cannot deny that the presence of test cases where the modified
subproblem and the modified stationarity measure were heavily used and where
the trust region method did not converge within our limit of 200 iterations (and
probably never would have done). Up to this point of time, we cannot say what
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exactly triggers these cases and how we can circumvent them to make the trust
region method more robust.

What we can say with certainty, however, is that our implementation leaves
room for improvement and further research:

– The descent directions that we obtained in our experiments virtually al-
ways satisfied the corresponding constrained Cauchy decrease conditions
in (6.7) and (6.8). While this may be sufficient to prove convergence re-
sults, this is not enough to guarantee a certain rate of convergence. We
do not know how we can (ideally with little effort) obtain solutions to
the subproblems that guarantee to realize a substantial reduction of the
objective function and the stationarity measure.

– In our implementation, we have not accounted for mass matrices, i.e., we
have not considered the effect of different mesh sizes on the individual
steps of the iteration, so that the performance of our implementation of
the trust region method strongly depends on the size of the marginals. In
particular, the value of the stationarity measure tends to increase as the
number of variables increases, and it becomes less likely that the method
converges if the stationarity tolerance is fixed to e.g. 10−6. For this reason,
we had to significantly increase the stationarity tolerance in the second
experiment to ensure convergence of the method.

– A more sophisticated description of the Bouligand subdifferential could
pave the way for a computable approximation of the subdifferential around
the current iterate, see e.g. [21, Section 5.2], where this was realized for an
optimal control problem which is constrained by a variational inequality.
A better description would yield the advantage to not be dependent of a
(possibly bad) heuristic to compute a large enough set of subgradients. If
this, however, proves to be impossible, a way to improve the approximation
of the collective Bouligand subdifferential nevertheless would be to replace
the rather static choice of points around the current iterate by a more
sophisticated heuristic that would, for example, choose the next point
depending on how close the subgradients of different points were together.

– In all our numerical tests, we have never observed a case in which any
combination of the regularization parameters γ and ε would not have
converged, i.e., by slightly changing the regularization parameters, the
method always provided a result within the specified tolerances. This ob-
servation leaves room for the implementation of a path-following heuristic,
i.e., an automatic control and adjustment of the regularization parameters
during the runtime of the trust region method.

– During the numerical test, we observed that the semismooth Newton
method repeatedly failed to converge, when choosing both regularization
parameters below 10−4, and thus leading to inaccurate transport plans.
However, since small regularization parameters provided the most accu-
rate results, see Figure 6.2, it would certainly be worth investing more
work to improve this point and, for example, choose a different regulariza-
tion parameter ε̃ = Φ(γ) that is a function of γ and tuned in a way that
the product γε̃ does not go towards 0 too quickly.
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Appendix A

On the Convolution of
Marginals With Mollifiers

We use the first chapter of the appendix, to investigate the properties of the
convolution of a measure with a mollifier. Let d ∈ N and some compact subset
X ⊂ Rd be given. We start by recalling the definition of the convolution of a
regular Borel measure with a mollifier.

Definition A.1. Let µ ∈ M(X) with µ ≥ 0 be a nonnegative regular Borel
measure and let φδ, given some δ > 0, be a mollifier in the sense of Definition
3.12, i.e., φδ ∈ C∞

c (Rd) such that supp(φδ) = B(0; δ), φδ ≥ 0, and
∫
Rd φδ dx =

1. Then, the convolution (of µ with φδ) is defined by

(φδ ∗ µ)(x) :=
∫
X

φδ(x− y) dµ(y) for all x ∈ Rd.

Remark A.2. One could generalize the above definition by allowing arbitrary
measures on Rd and arbitrary measurable functions, see e.g. [69, Definition 14.4].

However, as we are about to see, the convolution of a regular Borel measure
with a mollifier has some advantageous properties. Hence, we restrict ourselves
to the setting given in Definition A.1. ◦
Theorem A.3. Let µ be a nonnegative regular Borel measure and φδ be a
mollifier. Then, the convolution φδ ∗ µ : Rd → R+ is a smooth, measurable,
nonnegative, bounded, and compactly supported function whose support satisfies

supp(φδ ∗ µ) ⊂ B(0; δ) +X.

Proof. To begin with, the nonnegativity and the boundedness of the mollifier
as well as the nonnegativity of the measure directly yield that

0 ≤ (φδ ∗ µ) (x) ≤ ∥φδ∥∞∥µ∥M(X) <∞

for all x ∈ Rd, so that φδ ∗ µ indeed is a finite, nonnegative, and bounded
function on Rd.

To see that the convolution is continuous, let x0 ∈ Rd and ε > 0 be arbitrary.
Since µ is (inner) regular, there is a compact subset K ⊂ X with

µ(X \K) <
ε

4∥φδ∥∞
.

xiii
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We then calculate

|(φδ ∗ µ) (x)− (φδ ∗ µ) (x0)| ≤
∫
X

|φδ(x− y)− φδ(x0 − y)| dµ(y)

≤
∫
X\K

|φδ(x− y)|+ |φδ(x0 − y)| dµ(y)

+

∫
K

|φδ(x− y)− φδ(x0 − y)| dµ(y)

<
ε

2
+

∫
K

|φδ(x− y)− φδ(x0 − y)| dµ(y) .

Because the mapping (x, y) 7→ φδ(x − y) is continuous on the compact set
B(x0; 1) × K, the Heine-Cantor theorem ensures its uniform continuity. That
is, there exists some ρ ∈ (0, 1) such that

|φδ(x− y)− φδ(x̃− ỹ)| <
ε

2µ(K)

as long as (x, y), (x̃, ỹ) ∈ B(x0; 1) × K and ∥(x, y)− (x̃, ỹ)∥ < ρ. For any
x ∈ B(x0; ρ), we find that ∥(x, y)− (x0, y)∥ = ∥x− x0∥ < ρ and thus

|φδ(x− y)− φδ(x0 − y)| <
ε

2µ(K)
for all y ∈ K.

Together with the above, we conclude that

|(φδ ∗ µ) (x)− (φδ ∗ µ) (x0)| <
ε

2
+
ε

2
= ε

for all x ∈ B(x0; ρ). Since ε > 0 and x0 ∈ Rd were arbitrary, the convolution
φδ ∗ µ is a continuous (and hence measurable) function.

Next, we are going to convince ourselves that φδ ∗ µ is a smooth function
on all of Rd. To this end, let x0 ∈ Rd be an arbitrary point and j ∈ {1, ..., d}
an arbitrary index. We denote the j-th standard unit vector of Rd by ej and
compute the j-th partial derivative of the convolution to be equal to

∂

∂xj
(φδ ∗ µ)(x0) = lim

h→0

(φδ ∗ µ)(x0 + hej)− (φδ ∗ µ)(x0)
h

= lim
h→0

∫
X

φδ(x0 + hej − y)− φδ(x0 − y)
h

dµ(y) .

(A.1)

For arbitrary y ∈ X, the differentiability of φδ implies that

lim
h→0

φδ(x0 + hej − y)− φδ(x0 − y)
h

=
∂

∂xj
φδ(x0 − y).

Thus, the integrand in (A.1) converges pointwisely to ∂
∂xj

φδ(x0 − · ) and is,

independently of x0, y and h, bounded by∣∣∣∣φδ(x0 + hej − y)− φδ(x0 − y)
h

∣∣∣∣ ≤ Lφδ

∥(x0 + hej − y)− (x0 − y)∥
h

= Lφδ
,
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where Lφδ
> 0 denotes the Lipschitz constant of φδ. Consequently, we apply

Lebesgue’s dominated convergence theorem to receive

∂

∂xj
(φδ ∗ µ)(x0) =

∫
X

∂

∂xj
φδ(x0 − y) dµ(y) =

(
∂φδ

∂xj
∗ µ
)
(x0)

for all x0 ∈ Rd. Thanks to our former considerations, we know that ∂φδ

∂xj
∗ µ is

a continuous function on Rd and so is ∂
∂xj

(φδ ∗ µ). Since j was arbitrary, the

convolution is (totally) differentiable with derivative

D(φδ ∗ µ) =
(

∂φδ

∂x1
∗ µ . . . ∂φδ

∂xd
∗ µ
)

(A.2)

and thus φδ ∗ µ ∈ C1(Rd). Using the relation in (A.2), an induction argument
can be applied to arrive at φδ ∗ µ ∈ C∞(Rd).

It remains to show the statement concerning the support of φδ ∗ µ. To
this end, choose an arbitrary point z ∈ Rd with z /∈ supp(φδ) + supp(µ). Be-
cause supp(φδ) and supp(µ) are both closed and bounded sets and because the
Minkowski addition preserves closedness1, we can find an open neighborhood
Uz ⊂ Rd of z that is disjoint to supp(φδ) + supp(µ). Hence, for any z̃ ∈ Uz,

z̃ ̸= x+ y for all x ∈ supp(φδ), y ∈ supp(µ),

or equivalently,
z̃ − y /∈ supp(φδ) for all y ∈ supp(µ).

Thereby,

(φδ ∗ µ)(z̃) =
∫
X

φδ(z̃ − y) dµ(y) =
∫
supp(µ)

φδ(z̃ − y) dµ(y) = 0

for all z̃ ∈ Uz. This implies z /∈ supp(φδ ∗ µ) and, therefore,

supp(φδ ∗ µ) ⊂ supp(φδ) + supp(µ) ⊂ B(x; δ) +X

as claimed.
In particular, since supp(φδ) ⊂ B(0; δ) and supp(µ) ⊂ X are compact sets

and the Minkowski addition preserves compactness, we receive that φδ ∗ µ ∈
C∞

c (Rd).

A quick calculation shows that we can bound the Lp norm of the convolution:

Lemma A.4. For p ∈ [1,∞) as well as µ and φδ as in Definition A.1,

∥φδ ∗ µ∥Lp(Rd) ≤ ∥φδ∥Lp(B(0;δ))
∥µ∥M(X)

and equation holds for p = 1.

Proof. For p > 1, we apply Minkowski’s integral inequality to estimate

∥φδ ∗ µ∥Lp(Rd) =

(∫
Rd

∣∣∣∣∫
X

φδ(x− y) dµ(y)
∣∣∣∣p dx)

1
p

1In fact, even if one of these sets were unbounded, the closedness is still preserved.
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≤
∫
X

(∫
Rd

|φδ(x− y)|p dx
) 1

p

dµ(y)

=

∫
X

(∫
B(0;δ)

|φδ(x)|p dx

) 1
p

dµ(y) = ∥φδ∥Lp(B(0;δ))
∥µ∥M(X).

In the case p = 1, the equation is due to Fubini’s theorem.

We now consider a monotonously vanishing sequence of radii δn ↘ 0 and the
corresponding sequence of scaled mollifiers (φn)n∈N ⊂ C∞

c (Rd) with φn ≥ 0,
supp(φn) ⊂ B(0; δn), and

∫
Rd φn dx = 1 for all n ∈ N. Abbreviate Xn :=

X +B(0; δn).
In the following, we convince ourselves that the sequence of convolutions

(φn∗µ)n∈N converges weakly∗ towards µ, if we interpret the former as a sequence
of density functions of measures.

Lemma A.5. Let 0 ≤ µ ∈ M(X) be a nonnegative regular Borel measure.
Then, ∫

Xn

v(φn ∗ µ) dλ −−−−→
n→∞

⟨µ, v|X⟩C(X)∗,C(X) for all v ∈ C (Rd).

Moreover, if (µn)n∈N ⊂ M(X), with µn ≥ 0 for all n ∈ N, is a sequence of
nonnegative regular Borel measures that converges weakly∗ towards some µ ∈
M(X), then∫

Xn

v(φn ∗ µn) dλ −−−−→
n→∞

⟨µ, v|X⟩C(X)∗,C(X) for all v ∈ C (Rd).

Proof. To prove the first part, we once again apply Fubini’s theorem to obtain
that ∫

Xn

v(φn ∗ µ) dλ =

∫
Xn

v(x)

∫
X

φn(x− y) dµ(y) dx

=

∫
X

∫
Xn

v(x)φn(x− y) dx dµ(y)

=

∫
X

∫
Rd

v(x)φ̃n(y − x) dx dµ(y)

= ⟨µ, (v ∗ φ̃n)|X⟩C(X)∗,C(X).

In the above, φ̃n(x) := φn(−x) denotes the reflection of φn, which inherits the
same properties. It is broadly known that the convolution (of functions) satisfies
v ∗ φ̃n → v in C (Rd) as n → ∞, see e.g. [48, Theorem 1.3.2]. In particular,
(v ∗ φ̃n)|X → v|X in C (X). Since, according to the Riesz-Markov theorem,
µ ∈M(X) can be identified2 with a continuous functional on C (X), we obtain
that ∫

Xn

v(φn ∗ µ) dλ −−−−→
n→∞

⟨µ, v|X⟩C (X)∗,C (X).

2To ease notation, we refrain from explicitly stating the isometric isomorphism that maps
M(X) onto C (X)∗. A reference on this topic can be found in, e.g. [31].
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The proof to the second part is analogous. Again by Fubini’s theorem,∫
Xn

v(φn ∗ µn) dλ = ⟨µn, (v ∗ φ̃n)|X⟩C (X)∗,C (X)

and because of∣∣⟨µn, (v ∗ φ̃n)|X⟩C (X)∗,C (X) − ⟨µ, v|X⟩C (X)∗,C (X)

∣∣
≤ ∥µn∥M(X)∥(v ∗ φ̃n)|X − v|X∥C (X) +

∣∣⟨µ− µn, v⟩C (X)∗,C (X)

∣∣
and the boundedness of the sequence (µn)n∈N, this directly shows that∫

Xn

v(φn ∗ µn) dλ −−−−→
n→∞

⟨µ, v|X⟩C (X)∗,C (X).
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Appendix B

On the Theory of Measure
& Integration

Definition B.1. Given measurable spaces (X1,A1) and (X2,A2), we define the
product σ-algebra of A1 and A2 on X1 ×X2 by

A1 ⊗ A2 := σ
(
{P−1

i (Ai) : Ai ∈ Ai, i = 1, 2}
)
.

Here, σ denotes the σ-operator (which generates the smallest σ-algebra that
contains the set M) and Pi : X1 × X2 → Xi as usual denotes the projection
map (x1, x2) 7→ xi.

Lemma B.2. Consider arbitrary measurable spaces (X1,A1) and (X2,A2) and
A1-B(R)- and A2-B(R)-measurable functions f1 : X1 → R and f2 : X2 → R,
respectively. Then, for any continuous function g : R × R → R, the function
g ◦ (f1, f2) : X1 ×X2 → R is an (A1 ⊗ A2)-B(R)-measurable function.

Proof. The function g is continuous on R×R. Hence, it is
(
B(R)⊗B(R)

)
-B(R)-

measurable. It suffices to show the (A1 ⊗ A2)-
(
B(R) ⊗ B(R)

)
-measurability of

the mapping (f1 × f2)(x, y) := (f1(x), f2(x)). For this purpose, we choose some
element B of the generator of B(R) ⊗ B(R), i.e., B ∈ {π−1

i (A) : A ∈ B(R), i =
1, 2}, where πi is the projection from R×R onto the i-th component. Without
loss of generality, we assume that B ∈ {π−1

1 (A) : A ∈ B(R)}. Then, B = A× R
with some A ∈ B(R) and we calculate

(f1 × f2)−1(B) = {(x1, x2) : (f1(x1), f2(x2)) ∈ A× R}
= f−1

1 (A)×X2 = P−1
X1

(f−1
1 (A)).

Since f1 is A1-B(R)-measurable, this is some element of the generator of A1⊗A2

and thus an element of the latter, which implies the desired measurability.

Corollary B.3. Given non-empty and compact Euclidean sets X1 and X2 as
well as functions f1 ∈ L2(X1) and f2 ∈ L2(X2), the functions (f1⊕f2)(x1, x2) :=
f1(x1) + f2(x2) and (f1 ⊗ f2)(x1, x2) := f1(x1)f2(x2) (both defined λ-a.e. on
X1 ×X2) are elements of L2(X1 ×X2).

Proof. By definition of L2(Xi), the function fi is B(Xi)-B(R)-measurable.
Both mappings (r1, r2) 7→ r1 + r2 and (s1, s2) 7→ s1s2 are continuous on R×R.

xix
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Hence, by Lemma B.2, f1⊕f2 and f1⊗f2 are measurable. We set X := X1×X2

and λ := λ1 ⊗ λ2. Due to Fubini’s theorem,

∥f1 ⊗ f2∥2L2(X) =

∫
X

|f1 ⊗ f2|2 dλ

=

∫
X1

|f1|2
∫
X2

|f2|2 dλ2 dλ1 = ∥f1∥2L2(X1)
∥f2∥2L2(X2)

<∞,

and, additionally using the Cauchy-Schwarz inequality,

∥f1 ⊕ f2∥2L2(X)

=

∫
X

|f1 ⊕ f2|2 dλ

=

∫
X

|f1|2 ⊕ |f2|2 dλ+2

∫
X

f1 ⊗ f2 dλ

≤ |X2|
∫
X1

|f1|2 dλ1 +|X1|
∫
X2

|f2|2 dλ2 +2∥1∥L2(X)∥f1 ⊗ f2∥L2(X)

= |X2|∥f1∥2L2(X1)
+ |X1|∥f2∥2L2(X2)

+ 2|X1||X2|∥f1 ⊗ f2∥L2(X) <∞,

since X1 and X2 are bounded.

Remark B.4. For the rest of this chapter, (X,A) will be an arbitrary measur-
able space. ◦
Definition B.5. A signed measure on (X,A) is a set function µ : A → R that
satisfies

1. µ(∅) = 0,

2. µ (
⋃∞

n=1An) =
∑∞

n=1 µ(An) for all sequences of pairwise disjoint sets
{An}n∈N ⊂ A.

Remark B.6. According to the above definition, a signed measure µ is a func-
tion which maps elements of A to the real numbers and never takes the values
±∞. However, there are authors who allow the extended real or complex num-
bers as choices for a signed measure’s codomain. As this is not required for our
purposes, we will not follow this approach. ◦
Definition B.7. We define the variation measure of a signed measure µ by

|µ|(A) := sup

{∑
i∈N
|µ(Ai)| : Ai ∈ A disjoint, A =

⋃̇
i∈N

Ai

}

= sup

{
n∑

i=1

|µ(Ai)| : A ⊃ A1, . . . , An ∈ A disjoint, n ∈ N

}

for all A ∈ A.

Lemma B.8. The variation measure |µ| of a finite signed measure µ is indeed
a measure on (X,A), i.e.,

1. |µ| : A→ [0,∞],
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2. |µ|(∅) = 0, and for countably many disjoint Ai ∈ A we have

|µ|

(⋃̇
i∈N

Ai

)
=
∑
i∈N
|µ|(Ai).

Furthermore, it holds that

3. |µ| is a finite measure,

4. if µ ≥ 0, then |µ| = µ.

Proof. Ad 1.: This property is clear from the definition of the variation measure.

Ad 2.: |µ|(∅) = 0 follows from µ(∅) = 0. To show the σ-additivity, let
(Ai)i∈N ⊂ A be an arbitrary sequence of disjoint sets.

Ad “≤”: Let B1, . . . , Bm ∈ A be disjoint with B1, . . . , Bm ⊂
⋃

i∈NAi. Then,
because of Bj = Bj ∩

⋃
i∈NAi =

⋃
i∈NBj ∩Ai and the σ additivity of µ,

m∑
j=1

|µ(Bj)| =
m∑
j=1

∣∣∣∣µ(⋃
i∈N

Bj ∩Ai

)∣∣∣∣ = m∑
j=1

∣∣∣∣∑
i∈N

µ(Bj ∩Ai)

∣∣∣∣
≤

m∑
j=1

∑
i∈N
|µ(Bj ∩Ai)|

=
∑
i∈N

m∑
j=1

|µ(Bj ∩Ai)| ≤
∑
i∈N
|µ|(Ai),

since (B1 ∩Ai), . . . , (Bm ∩Ai) ⊂ Ai are disjoint. Taking the supremum over all
disjoint partitions B1, . . . , Bm ⊂

⋃
i∈NAi yields the claim.

Ad “≥”: We first show that, for arbitrary M ∈ N,

sM :=
M∑
i=1

|µ|(Ai) ≤ |µ|
(⋃

i∈N
Ai

)
. (B.1)

Given i ∈ {1, . . . ,M}, choose arbitrary disjoint sets Bi
1, . . . , B

i
mi
⊂ Ai. Then,

the sets

B1
1 , . . . , B

1
m1
, . . . . . . , BM

1 , . . . , BM
mM
⊂

M⋃
i=1

Ai ⊂
⋃
i∈N

Ai

are disjoint and therefore

M∑
i=1

mi∑
j=1

|µ(Bi
j)| ≤ |µ|

(⋃
i∈N

Ai

)
.

If we take, for each i = 1, . . . ,M , the supremum over all disjoint partitions, we
arrive at (B.1). The claim then follows by passing to the limit M →∞ (sM is
monotonically increasing and bounded, thus convergent).

Ad 3.: If the sigma algebra A contains only finitely many elements, then
the finiteness of |µ| follows trivially from the finiteness of µ. Otherwise, assume
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that |µ|(X) =∞. The definition of the variation measure and the finiteness of
µ imply the existence of a disjoint partition A1 ∪̇ . . . ∪̇An = X with

n∑
i=1

|µ(Ai)| > 2(|µ(X)|+ 1). (B.2)

At least two of the sets A1, . . . , An are non-empty, otherwise (B.2) would be
violated. We choose one of the non-empty sets Ai. If |µ(Ai)| > |µ(X)|+ 1, we
set A := Ai and A := X \Ai otherwise. By construction,

|µ(A)| > |µ(X)|+ 1 ≥ 1.

If we set B := X \A, we find that

|µ(B)| = |µ(X)− µ(A)| ≥ |µ(A)| − |µ(X)| > 1.

The additivity of |µ| then implies that

∞ = |µ|(X) = |µ|(A) + |µ|(B),

i.e., either |µ|(A) = ∞ or |µ|(B) = ∞. If |µ|(A) = ∞, then we set E1 := B
(otherwise E1 := B) and repeat the above argument for the set A (otherwise B)
to receive a set E2. This approach yields a sequence of disjoint sets (Ei)i∈N with
|µ(Ei)| > 1 for all i ∈ N. In particular, the series

∑∞
i=1 µ(Ei) cannot converge,

which is a contradiction to

∞∑
i=1

µ(Ei) = µ

( ∞⋃
i=1

Ei

)
∈ R.

Consequently, it must hold that |µ|(X) <∞.

Ad 4.: Let A ∈ A be an arbitrary measurable set. By assumption, µ is a
positive measure. Together with µ’s σ-additivity, we immediately obtain that

n∑
i=1

|µ(Ai)| =
n∑

i=1

µ(Ai) = µ

( n⋃
i=1

Ai

)
= µ(A),

for any disjoint partition A1, A2, . . . of A. Thus,

|µ|(A) = sup

{
µ(A) : A1, . . . , An, A =

n⋃
i=1

Ai, n ∈ N
}

= µ(A).

The following lemma summarizes a number of general results in measure
theory that revolve around the so-called Jordan decomposition of signed mea-
sures.

Lemma B.9 ([31, Kapitel VII]). For a signed measure µ there are finite mea-
sures µ+ and µ− on (X,A), which together we call the Jordan decomposition
of µ, such that

1. µ+, µ− ≥ 0,
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2. µ = µ+ − µ−,

3. |µ| = µ+ + µ−,

4. µ+ ⊥ µ−, i.e., there is a disjoint decomposition of X = A ∪̇B with A,B ∈
A and µ+(A) = 0 = µ−(B),

5. the Jordan decomposition is unique (except for µ null sets).

We sometimes call µ+ the nonnegative part and µ− the nonpositive part of µ.

Definition B.10. Let µ be a signed measure with Jordan decomposition µ =
µ+−µ−. For an A-B(R)-measurable function f : X → R, we define the (signed)
integral of f with respect to the signed measure µ by∫

X

f dµ =

∫
X

f dµ+−
∫
X

f
−
dµ,

whenever at least one of the Lebesgue integrals on the right hand side is finite.
We say an A-B(R)-measurable function f is µ-integrable if

∣∣∫
X
f dµ

∣∣ < ∞,

or equivalently
∣∣∫

X
f dµ±

∣∣ <∞.

Lemma B.11. Given a signed measure µ : A→ R and a µ-integrable function
f : X → R. It holds that

1.
∫
X
χA dµ = µ(A), for all A ∈ A,

2. f is µ±-integrable.

If g : X → R is another µ-integrable function and α, β ∈ R, it also holds that

3.
∫
X
αf + βg dµ = α

∫
X
f dµ+β

∫
X
g dµ.

Proof. These properties follow immediately from the definition of the (signed)
integral and the respective properties of the Lebesgue integral.

Lemma B.12. The (signed) integration of a function is linear w.r.t. the mea-
sure, i.e., for any two signed measures µ1, µ2 : A → R as well as any µ1- and
µ2-integrable function f : X → R, it holds that∫

X

f d(α1µ1 + α2µ2) = α1

∫
X

f dµ1 +α2

∫
X

f dµ2

for all α1, α2 ∈ R. Moreover, this directly implies that f is (α1µ1 + α2µ2)-
integrable.

Proof. First, it is easy to verify that every linear combination of signed measures
is a signed measure again. Second, for all A ∈ A, we find that∫

X

χA d(α1µ1 + α2µ2) = (α1µ1 + α2µ2)(A)

= α1µ1(A) + α2µ2(A) = α1

∫
X

χA dµ1 +α2

∫
X

χA dµ2,
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i.e., the claim is valid for characteristic functions. We now consider an arbitrary
nonnegative simple function u =

∑n
i=1 aiχAi

with ai ∈ R and Ai ∈ A for
i = 1, . . . , n. Then, by linearity of the integrand, see Lemma B.11,∫

X

u d(α1µ1 + α2µ2) =
n∑

i=1

ai

∫
X

χAi
d(α1µ1 + α2µ2)

= α1

n∑
i=1

ai

∫
X

χAi
dµ1 +α2

n∑
i=1

ai

∫
X

χAi
dµ2

= α1

∫
X

u dµ1 +α2

∫
X

u dµ2,

i.e., the claim is valid for simple functions. We note that the above equation
also implies that∫

X

u d(α1µ1 + α2µ2)
+−

∫
X

u d(α1µ1 + α2µ2)
−

= α1

(∫
X

u dµ+
1 −

∫
X

u dµ−
1

)
+ α1

(∫
X

u dµ+
2 −

∫
X

u dµ−
2

)
.

(B.3)

Now, let f : X → R be a µ1- and µ2-integrable function. Set f+(x) :=
max(f(x), 0) and f−(x) := −min(f(x), 0) for all x ∈ X. Then f+ and f− are
nonnegative and µ1- and µ2-integrable functions on (X,A) with f = f+ − f−.
There exists a sequence of nonnegative simple functions (un)n∈N with un → f+

pointwisely and 0 ≤ un ≤ un+1 for all n ∈ N. Applying Beppo Levi’s lemma
and (B.3), we obtain that∫

X

f+ d(α1µ1 + α2µ2)

=

∫
X

f+ d(α1µ1 + α2µ2)
+−

∫
X

f+ d(α1µ1 + α2µ2)
−

= lim
n→∞

∫
X

un d(α1µ1 + α2µ2)
+− lim

n→∞

∫
X

un d(α1µ1 + α2µ2)
−

= lim
n→∞

(
α1

∫
X

un dµ
+
1 +α2

∫
X

un dµ
+
2

)
− lim

n→∞

(
α1

∫
X

un dµ
−
1 +α2

∫
X

un dµ
−
2

)
= α1

∫
X

f+ dµ+
1 +α2

∫
X

f+ dµ+
2 −α1

∫
X

f+ dµ+
1 −α2

∫
X

f+ dµ+
2

= α1

∫
X

f+ dµ1 +α2

∫
X

f+ dµ2 .

Due to (α1µ1 + α2µ2)
+ ⊥ (α1µ1 + α2µ2)

−, there exists a partition X = P ∪N
with (α1µ1+α2µ2)

+(N) = 0 and (α1µ1+α2µ2)
−(P ) = 0, see Lemma B.9. Then

χP f
+ is µ1- and µ2-integrable and it holds that χPun ↗ χP f

+ pointwisely.
Therefore,

α1

∫
X

χP f
+ dµ1 +α2

∫
X

χP f
+ dµ2
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= α1

(∫
X

χP f
+ dµ+

1 −
∫
X

χP f
+ dµ−

1

)
+ α2

(∫
X

χP f
+ dµ+

2 −
∫
X

χP f
+ dµ−

2

)
= lim

n→∞
α1

(∫
X

χPun dµ
+
1 −

∫
X

χPun dµ
−
1

)
+ lim

n→∞
α2

(∫
X

χPun dµ
+
2 −

∫
X

χPun dµ
−
2

)
= lim

n→∞

(∫
X

χPun d(α1µ1 + α2µ2)
+−

∫
X

χPun d(α1µ1 + α2µ2)
−
)

=

∫
X

χP f
+ d(α1µ1 + α2µ2)

+−
∫
X

χP f
+ d(α1µ1 + α2µ2)

−

=

∫
X

χP f
+ d(α1µ1 + α2µ2),

where the convergence follows from Beppo Levi’s lemma again. Analogously,
we obtain the same relation for χNf

+ and hence∫
X

f+ d(α1µ1 + α2µ2) = α1

∫
X

f+ dµ1 +α2

∫
X

f+ dµ2 .

We use the same argumentation for the negative part f− to ultimately arrive
at ∫

X

f d(α1µ1 + α2µ2)

=

∫
X

f+ d(α1µ1 + α2µ2)−
∫
X

f− d(α1µ1 + α2µ2)

= α1

(∫
X

f+ dµ1−
∫
X

f− dµ1

)
+ α2

(∫
X

f+ dµ2−
∫
X

f− dµ2

)
= α1

∫
X

f dµ1 +α2

∫
X

f dµ2 .

Lemma B.13. Let µ : A → R be a finite signed measure and f : X → R be an
µ-integrable function. Denote the total variation of µ by |µ|. Then it holds that∣∣∣∣∫

X

f dµ

∣∣∣∣ ≤ ∫
X

|f | d|µ| .

Proof. Given the Jordan decomposition of µ, namely µ+, µ− : A→ R, we know
that µ+, µ− ≥ 0 and |µ| = µ+ + µ−. Then,∣∣∣∣∫

X

f dµ

∣∣∣∣ = ∣∣∣∣∫
X

f+ dµ+−
∫
X

f− dµ+−
∫
X

f+ dµ− +

∫
X

f− dµ−
∣∣∣∣

≤
∫
X

f+ dµ+ +

∫
X

f− dµ+ +

∫
X

f+ dµ− +

∫
X

f− dµ− =

∫
X

|f | d|µ|,

because all of the integrals
∫
X
f± dµ+,

∫
X
f± dµ− are nonnegative and Lemma

B.12.
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We recall the definition of the space M(X) from Chapter 2:

Definition B.14. We denote the set of signed measures µ : B(X) → R whose
total variation measure |µ| is an (inner and outer) regular measure by M(X).
We call those measures (signed) regular Borel measures . M(X) is a Banach
space w.r.t. the total variation norm

∥µ∥M(X) := |µ|(X),

see e.g. [2, Theorem 6.21].

Lemma B.15. Let X = {x1, . . . , xn}, n ∈ N, be an arbitrary finite set and let
A be the discrete σ-algebra on X (i.e., A is defined to be the power set of X).
Then,

(
M(X), ∥ · ∥M(X)) is isometric isomorphic to

(
Rn, ∥ · ∥1

)
.

Proof. Let µ ∈ M(X) and A ∋ A =
⋃

i∈I xi with I ⊂ {1, . . . , n} be arbitrary.
Then µ’s additivity implies that

µ

(⋃
i∈I

xi

)
=
∑
i∈I

µ(xi), (B.4)

i.e., µ(A) is uniquely determined by {µ(xi)}i∈I . Hence, the mapping ϕ : Rn →
M(X) defined via

ϕ(a1, . . . , an) := µ with µ(∅) = 0 and µ(xi) = ai for all i = 1, . . . , n,

is one-to-one and a homomorphism. Moreover, (B.4) shows that ϕ is an isometry,
since

∥ϕ(a)∥M(X) = |µ|(X) =
n∑

i=1

|µ(xi)| =
n∑

i=1

|ai| = ∥a∥1,

for all a = (a1, . . . , an)
⊤ ∈ Rm.

Theorem B.16. Let X ⊂ Rd be compact. Then, it holds that L1(X) ↪→M(X).

Proof. Consider the operator

ι : L1(X)→M(X), ι(f)(B) :=

∫
B

f dλ, f ∈ L1(X), B ∈ B(X),

with λ being the Lebesgue measure on the measurable space
(
X,B(X)

)
. Note

that λ is finite on X, because X is bounded. We first convince ourselves that ι
is well-defined.

Let f ∈ L1(X) be fixed but arbitrary. By construction, ι(f)(∅) = 0. For
every B ∈ B(X), we find that

|ι(f)(B)| =
∣∣∣∫

X

χBf dλ
∣∣∣≤ ∫

X

|χB ||f | dλ ≤
∫
X

|f | dλ = ∥f∥L1(X) <∞,

where we used Lemma B.13, the monotonicity of integration, and the nonnega-
tivity of the Lebesgue measure. Hence, ι(f) : B(X)→ R is a finite set function.

To see that ι(f) is σ-additive, we first assume w.l.o.g. that f is nonnegative
almost everywhere. Otherwise, the following argument can be made separately
for its positive and negative parts. We then consider a sequence (Bi)i∈N of
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disjoint measurable sets Bi ∈ B(X). Because B(X) is a σ-algebra,
⋃

i∈NBi ∈
B(X).

ι(f)
(⋃
i∈N

Bi

)
=

∫
⋃

i∈N Bi

f dλ =

∫
X

χ⋃
i∈N Bi

f dλ
(1)
=

∫
X

∑
i∈N

(
χBif

)
dλ

(2)
=
∑
i∈N

∫
X

χBi
f dλ =

∑
i∈N

∫
Bi

f dλ =
∑
i∈N

ι(f)(Bi),

where we used the disjointness of the sets B1, B2, . . . for (1) and the monotone
convergence theorem together with the nonnegativity and measurability of the
functions χB1

f, χB2
f, . . . for (2). Altogether, this shows that ι(f) is a finite

(signed) Borel measure on
(
X,B(X)

)
.

Because X is a compact subset of Rd, it is Polish. Ulam’s theorem, see
e.g. [31, Satz VIII.1.16], then ensures that ι(f) ∈ M(X) so that ι indeed is
well-defined.

The linearity of ι follows trivially from the linearity of the Lebesgue integral.
Moreover, we observe that

ι(f)(B) =

∫
B

f+ dλ −
∫
B

f− dλ for all B ∈ B(X).

Both integrals on the right-hand side are nonnegative. Therefore, the uniqueness
of the Jordan decomposition, see Lemma B.9 5., implies that(

ι(f)
)+

(B) =

∫
B

f+ dλ and
(
ι(f)

)−
(B) =

∫
B

f− dλ

for all B ∈ B(X). Using this and Lemma B.9 3.,

∥ι(f)∥M(X) = |ι(f)|(X) =

∫
X

f+ dλ+

∫
X

f+ dλ =

∫
X

|f | dλ = ∥ι(f)∥L1(X)

shows that the linear operator ι is bounded and therefore continuous.
To convince ourselves that ι is injective, let f1, f2 ∈ L1(X) with f1 ̸= f2 be

given. Then, there exists a subset E ⊂ X with λ(E) > 0 such that (f1−f2)(x) >
0 for all x ∈ E or (f1 − f2)(x) < 0 for all x ∈ E. The subset E is measurable,
because it is the preimage of (0,∞) ∈ B(R) or (−∞, 0) ∈ B(R) w.r.t. the
B(X)-B(R)-measurable function f1 − f2. Therefore, E ∈ B(X) and

ι(f1)(E)− ι(f2)(E) = ι(f1 − f2)(E) =

∫
E

f1 − f2 dλ ≷ 0

so that ι(f1)(E) ≷ ι(f2)(E), in particular ι(f1) ̸= ι(f2).
To finally establish that ι is an embedding, it remains to show that ι is an

open map between L1(X) and its image ι
(
L1(X)

)
⊂ M(X). Let O ⊂ L1(X)

be open and µ ∈ ι(O) be arbitrary. Then, there must exist some f ∈ O with
µ = ι(f) and, because of O’s openness, a radius δ > 0 such that B(f ; δ) ⊂ O.
For every ν ∈ B(µ; δ) ⊂ ι

(
L1(X)

)
there exists some g ∈ L1(X) such that

ν = ι(g) and ∥µ− ν∥M(X) < δ. We immediately receive that

∥f − g∥L1(X) =

∫
X

|f − g| dλ = |ι(f − g)|(X) = ∥µ− ν∥M(X) < δ,
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i.e., g ∈ B(f ; δ) ⊂ O and thus ν = ι(g) ∈ ι(O). Because ν was arbitrary, this
shows that B(µ; δ) ⊂ ι(O) and, because µ was arbitrary, that ι(O) is an open
set in L1(X). Therefore, ι maps open sets onto open sets, i.e., ι is an open map.
This concludes the proof.

Lemma B.17. For X ⊂ Rd compact, some regular Borel measure µ ∈M(X),
and some measurable set B ∈ B(X), there exists a sequence of nonnegative
continuous (and thus measurable) functions (vε)ε↘0 on X such that∫

X

vε dµ → µ(B) as ε↘ 0.

Proof. Denote by µ+ and µ− the Jordan decomposition of µ ∈ M(X), see
Lemma B.9. By Ulam’s theorem, µ+ and µ− are regular Borel measures (see,
e.g. [31, Folgerung VIII.2.22]). Hence, for ε > 0 arbitrary, there exist both a
compact set K+ ⊂ X and an open set U+ ⊂ X such that K+ ⊂ B ⊂ U+ and

µ+(B)− ε ≤ µ+(K+) ≤ µ+(B) ≤ µ+(U+) ≤ µ+(B) + ε.

Analogously, there exist both a compact set K− ⊂ X and an open set U− ⊂ X
such that the above estimates hold for µ−. We define K := K+ ∪ K− ⊂ B
and U := U+ ∩ U− ⊃ B and notice, by Urysohn’s lemma, that there exists a
continuous (and bounded) function vε : X → [0, 1] with vε(x) = 1 for all x ∈ K
and vε(x) = 0 for all x ∈ X \ U . Hence,

µ+(B)− ε ≤ µ+(K) =

∫
X

χK dµ+

≤
∫
X

vε dµ
+

≤
∫
X

χU dµ+ = µ+(U) ≤ µ+(B) + ε,

and we find a similar estimate for µ−. By definition of the (signed) integral,∣∣∣∣∫
X

vε dµ−µ(B)

∣∣∣∣ ≤ ∣∣∣∣∫
X

vε dµ
+−µ+(B)

∣∣∣∣+ ∣∣∣∣∫
X

vε dµ
−−µ−(B)

∣∣∣∣ ≤ 2ε → 0,

as ε↘ 0, which gives the desired result.

Lemma B.18. Let X ⊂ Rd be compact and µ ∈ M(X) be a nonnegative
(signed) regular Borel measure. For any B ∈ B(X) with B ∩ supp(µ) = ∅, it
holds that µ(B) = 0.

Proof. Let B ∈ B(X) be such that B ∩ supp(µ) = ∅. Because µ is nonnegative
and (inner) regular, for every ε > 0 there exists a compact set K ⊂ B such that
µ(K) ≥ µ(B)− ε. Since K is a subset of B, we have that K ∩ supp(µ) = ∅ and
thus for any x ∈ K, by definition of supp(µ), there exists an open neighborhood
Nx ∈ B(X) of x such that µ(Nx) = 0. Because K is compact, the open cover⋃

x∈K Nx ⊃ K admits a finite (possibly non-disjoint) subcover Nx1∪· · ·∪NxN
⊃

K, where N ∈ N and x1, . . . , xN ∈ K. Consequently,

0 = µ(Nx1
) + · · ·+ µ(Nxn

) ≥ µ(Nx1
∪ · · · ∪NxN

) ≥ µ(K) ≥ µ(B)− ε

i.e., µ(B) ∈ [0, ε]. Because ε > 0 was arbitrary, this yields that µ(B) = 0.



Appendix C

On the Theory of Optimal
Transport

Lemma C.1. Given the measurable spaces (X1,A1) and (X2,A2) as well as
a nonnegative coupling π ∈ Π(µ1, µ2) between the nonnegative marginals µ1 ∈
M(X1) and µ2 ∈M(X2). Then, it holds that

supp(π) ⊂ supp(µ1)× supp(µ2).

Proof. We argue by contradiction and assume the contrary, i.e., we assume that
there exists some x ∈ supp(π)\(supp(µ1)×supp(µ2)). Since both supp(µ1) and
supp(µ2) are closed, so is their product supp(µ1) × supp(µ2) and hence there
exists a radius ρ > 0 such that B(x; ρ) ∩ (supp(µ1)× supp(µ2)) = ∅.

Then, there must exist a radius ρ > 0 such that

B(x; ρ) ∩
(
supp(µ1)×X2

)
= ∅ and/or B(x; ρ) ∩

(
X1 × supp(µ2)

)
= ∅.

If this were not the case, then we would find the points yn ∈ B
(
x; 1

n

)
∩(

supp(µ1) × X2

)
as well as zn ∈ B

(
x; 1

n

)
∩
(
X1 × supp(µ2)

)
for every n ∈ N.

As n approaches infinity, yn → x as well as zn → x and the closedness of both
supp(µ1)×X2 and X1 × supp(µ2) would imply that

x ∈ (supp(µ1)×X2) ∩ (X1 × supp(µ2)) = supp(µ1)× supp(µ2),

contrary to our initial assumption.
Now, if B(x; ρ) ∩ (supp(µ1) × X2) = ∅, then because π is a nonnegative

coupling between µ1 and µ2,

µ1(X1) = π(X1 ×X2) ≥ π
(
(supp(µ1)×X2) ∪B(x; ρ)

)
= π

(
(supp(µ1)×X2)

)
+ π

(
B(x; ρ)

)
= µ1

(
supp(µ1)

)
+ π

(
B(x; ρ)

)
= µ1(X1) + π

(
B(x; ρ)

)
and consequently π

(
B(x; ρ)

)
= 0, which contradicts x ∈ supp(π). If B(x; ρ) ∩(

X1×supp(µ2)
)
= ∅, we argue analogously to derive the same contradiction.

Lemma C.2. Consider some measurable space
(
X,B(X)

)
. If π ∈ Π(µ1, µ2) is

an optimal transport plan between the marginals µ1 ∈ M(X) and µ2 ∈ M(X)

xxix
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w.r.t. the B(X)-B(R)-measurable and symmetric cost function c : X ×X → R,
then there exists an optimal transport plan π′ ∈ Π(µ2, µ1) between µ2 and µ1

w.r.t. c which satisfies

π′(B2 ×B1) = π(B1 ×B2) for all B1, B2 ∈ B(X). (C.1)

Proof. Because the system B(X) ×B(X) is a generator of the sigma algebra
B(X×X) that is closed under finite intersections and because π is a finite mea-
sure, the relation in (C.1) is actually the definition of the measure π′, see e.g. [31,
Theorem II.5.6]. Furthermore, we directly obtain that π′ ∈ Π(µ2, µ1). Conse-
quently, there is a one-to-one correspondence between Π(µ1, µ2) and Π(µ2, µ1).

For each n ∈ N, we choose a disjoint partition B1, . . . , Bkn
∈ B(X) \ {∅} of

X1 and symmetric simple functions

cn =

kn∑
i,j=1

cijn χBi×Bj
with cijn = cjin ∈ R for all i, j = 1, . . . , kn, (C.2)

in a way that the sequence (cn)n∈N approximates the symmetric function c
uniformly. With this choice, the definition of the Lebesgue integral together
with (C.1) and (C.2) yields that∫

X

c(x1, x2) dπ(x1, x2)

= lim
n→∞

∫
X

cn(x1, x2) dπ(x1, x2)

= lim
n→∞

n∑
i,j=1

cijn π(Bi ×Bj) = lim
n→∞

n∑
i,j=1

cjin π
′(Bj ×Bi)

= lim
n→∞

∫
X2×X1

cn(x2, x1) dπ
′(x2, x1) =

∫
X

c(x2, x1) dπ
′(x2, x1),

i.e., π and π′ have the same target values in their respective Kantorovich prob-
lems. This is sufficient to conclude that uniqueness of the optimal transport
plan between µ2 and µ1 implies the uniqueness of the optimal transport plan
between µ1 and µ2 with respect to the cost c.

1Note that {B1, . . . , Bkn} × {B1, . . . , Bkn} is a disjoint partition of X ×X.



Appendix D

On Functional Analysis

Lemma D.1. Suppose that (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) are normed vector spaces
over R (or C). Denote their (topological) dual spaces by (X∗, ∥ · ∥X∗) and
(Y ∗, ∥ · ∥Y ∗) with the usual definitions

∥f∥X∗ := sup
x∈X,

∥x∥X≤1

|f(x)| = sup
x∈X,
x ̸=0

|f(x)|
∥x∥X

and

∥g∥Y ∗ := sup
y∈Y,

∥y∥Y ≤1

|g(y)| = sup
y∈Y,
y ̸=0

|g(y)|
∥y∥Y

.

On X × Y and X∗ × Y ∗, we define the norms

∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y and ∥(f, g)∥X∗×Y ∗ := max{∥f∥X∗ , ∥g∥Y ∗},

respectively. With the above definitions, the spaces (X×Y, ∥ · ∥X×Y ) and (X∗×
Y ∗, ∥ · ∥X∗×Y ∗) become Banach spaces (the proof is left to the reader).

Then, the mapping

J : X∗ × Y ∗ → (X × Y )∗,
(
J(f, g)

)
(x, y) := f(x) + g(y)

is an isometric isomorphism. Hence, (X × Y )∗ ∼= X∗ × Y ∗.

Remark D.2. Note that the above result only provides an isometric isomor-
phism between the spaces

(
(X × Y )∗, ∥ · ∥(X×Y )∗

)
and

(
X∗ × Y ∗, ∥ · ∥X∗×Y ∗

)
,

where
∥h∥(X×Y )∗ = sup

(x,y)∈X×Y,
∥(x,y)∥X×Y ≤1

|h(x, y)|

and
∥(f, g)∥X∗×Y ∗ = max{∥f∥X∗ , ∥g∥Y ∗}.

If we equip the latter space with any of the norms

∥(f, g)∥p :=
(
∥f∥pX∗ + ∥g∥pY ∗

) 1
p , p ∈ [1,∞),

there cannot exist an isometric isomorphism between the above spaces. This is
due to the fact that the norms on R2 are equivalent but not equal. Nevertheless,
the spaces are still isomorphic. ◦
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Proof of Lemma D.1. We first convince ourselves that J is well defined. For
arbitrary f ∈ X∗ and g ∈ Y ∗, the mapping J(f, g) is obviously linear w.r.t. x
and y. Furthermore,

|
(
J(f, g)

)
(x, y)| ≤ |f(x)|+ |g(y)|

≤ ∥f∥X∗∥x∥X + ∥g∥Y ∗∥y∥Y
≤ max{∥f∥X∗ , ∥g∥Y ∗}∥(x, y)∥X×Y .

Thus J(f, g) is a bounded linear operator and therefore continuous so that J is
well defined.

Clearly, J is linear w.r.t. f and g and

∥J(f, g)∥(X×Y )∗ = sup
∥(x,y)∥X×Y ≤1

|f(x) + g(y)|

≤ sup
∥(x,y)∥X×Y ≤1

|f(x)|+ |g(y)|

≤ sup
∥(x,y)∥X×Y ≤1

∥f∥X∗∥x∥X + ∥g∥Y ∗∥y∥Y

≤ max{∥f∥X∗ , ∥g∥Y ∗} · sup
∥(x,y)∥X×Y ≤1

∥x∥X + ∥y∥Y

= ∥(f, g)∥X∗×Y ∗ ,

so that J is bounded and thus continuous on X∗×Y ∗. To show the converse es-
timate, we assume without loss of generality that ∥f∥X∗ = max{∥f∥X∗ , ∥g∥Y ∗}.
Then, because of g(0) = 0,

∥J(f, g)∥(X×Y )∗ = sup
∥(x,y)∥X×Y ≤1

|f(x) + g(y)|

≥ sup
∥(x,0)∥X×Y ≤1

|f(x) + g(0)|

= sup
∥x∥X≤1

|f(x)| = ∥f∥X∗ = ∥(f, g)∥X∗×Y ∗ ,

which, together with the previous estimate, implies that ∥J(f, g)∥(X×Y )∗ =

∥(f, g)∥X∗×Y ∗ , i.e., J is an isometry. Furthermore, this means that J must also
be injective, because J(f1, g1) = J(f2, g2) implies

0 = ∥J(f1, g1)− J(f2, g2)∥(X×Y )∗ = ∥J(f1 − f2, g1 − g2)∥(X×Y )∗

= ∥(f1 − f2, g1 − g2)∥X∗×Y ∗

= ∥f1 − f2∥X∗ + ∥g1 − g2∥Y ∗ ,

that is, f1 = f2 and g1 = g2 for all (f1, g1), (f2, g2) ∈ X∗ × Y ∗. It remains to
show the surjectivity of J . However, we see this immediately because

J−1 : (X × Y )∗ → X∗ × Y ∗,
(
J−1(h)

)
(x, y) := (h(x, 0), h(0, y))

is the inverse function to J .

Lemma D.3 (A Scaled Young’s inequality). For any two real numbers a, b ∈ R
and any positive scalar ρ > 0 it holds that

ab ≤ ρ

2
a2 +

1

2ρ
b2 ≤ ρa2 + b2

ρ
.
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Proof. By binomial expansion,

0 ≤
(
√
ρa− b

√
ρ

)2

= ρa2 − 2ab+
b2

ρ
.

Hence,

ab ≤ ρ

2
a2 +

1

2ρ
b2 ≤ ρa2 + b2

ρ
.

Lemma D.4. Let (X, ∥ · ∥X) be a Banach space and denote by X∗ its topological
dual space. Then the norm on X∗ is weak∗ lower semi-continuous.

Proof. The norm on X∗ is defined by

∥x∗∥X∗ := sup
0 ̸=x∈X

∣∣⟨x∗, x⟩X∗,X

∣∣
∥x∥X

.

Accordingly,

∥x∗∥X∗∥x∥X ≥
∣∣⟨x∗, x⟩X∗,X

∣∣ for all x ∈ X, x∗ ∈ X∗. (D.1)

Now, consider a sequence (x∗n)n∈N in X∗ that is weakly∗ convergent to some
element x̄∗ ∈ X∗, i.e., ⟨x∗n, x⟩X∗,X → ⟨x̄∗, x⟩X∗,X as n→∞. By (D.1),∣∣⟨x̄∗, x⟩X∗,X

∣∣ = lim inf
n→∞

∣∣⟨x∗n, x⟩X∗,X

∣∣ ≤ ∥x∥X lim inf
n→∞

∥x∗n∥X∗ for all x ∈ X,

which implies ∣∣⟨x̄∗, x⟩X∗,X

∣∣
∥x∥X

≤ lim inf
n→∞

∥x∗n∥X∗ for all x ∈ X

and therefore
∥x̄∗∥X∗ ≤ lim inf

n→∞
∥x∗n∥X∗ ,

which corresponds to the lower semi-continuity of the dual norm.

Lemma D.5 (Lemma ohne Namen). Let (X, d) be a metric space. If (xn)n∈N
and x ∈ X are a sequence and a point, respectively, such that any subsequence
(xnk

)k∈N possesses another subsequence (xnkl
)l∈N with xnkl

−−−→
l→∞

x in X, then

xn −−−−→
n→∞

x in X.

Proof. We argue by contradiction and assume that xn ̸→ x as n → ∞. This,
however, provides us with some ϵ > 0 and some subsequence (nk)k∈N such that
d(xnk

, x) > ϵ for all k ∈ N. This subsequence cannot possess a subsequence
convergent to x which is a contradiction to the assumptions. Therefore, it must
hold that xn → x in X as n→∞.

Definition D.6. We say that a mapping f : X → Y between the Banach spaces
X and Y is Hadamard differentiable at a point x ∈ X, if

f ′(x;h) = lim
h̃→h,
t→0

f(x+ th̃)− f(x)
t

,
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for each direction h ∈ X, see e.g. [70, Definition 2.2]. Note that, in the above,
f ′(x;h) denotes the usual directional derivative

f ′(x;h) := lim
t→0

f(x+ th)− f(x)
t

∈ Y.

Lemma D.7. Let f : X → Y be a mapping between the Banach spaces X
and Y that is directionally differentiable at a point x ∈ X in each direction
h ∈ X. If, in addition, f is (locally) Lipschitz continuous, then f is Hadamard
differentiable at x.

Proof. Consider arbitrary sequences (hn)n∈N ⊂ X and (tn)n∈N ⊂ R with hn →
h and tn → 0 as n → ∞. We denote f ’s Lipschitz constant at x by Lf,x > 0.
Then, for n ∈ N large enough, it holds that∥∥∥∥f(x+ tnhn)− f(x)

tn
− f ′(x;h)

∥∥∥∥
Y

≤
∥∥∥∥f(x+ tnhn)− f(x+ tnh)

tn

∥∥∥∥
Y

+

∥∥∥∥f(x+ tnh)− f(x)
tn

− f ′(x;h)
∥∥∥∥
Y

≤ Lf,x∥hn − h∥X +

∥∥∥∥f(x+ tnh)− f(x)
tn

− f ′(x;h)
∥∥∥∥
Y

−−−−→
n→∞

0.

Thus, f is Hadamard differentiable at x.



Bibliography

[1] Robert A. Adams and John J.F. Fournier, eds. Sobolev Spaces. Second
Edition. Vol. 140. Pure and Applied Mathematics. Elsevier, 2003. isbn:
978-0-12-044143-3. doi: https://doi.org/10.1016/S0079-8169(03)
80012-0. url: https://www.sciencedirect.com/science/article/
pii/S0079816903800120.

[2] Hans Wilhelm Alt. Linear Functional Analysis. An Application-Oriented
Introduction. Universitext. Springer, London, 2016. isbn: 978-1-4471-7280-
2. doi: https://doi.org/10.1007/978-1-4471-7280-2.

[3] Luigi Ambrosio and Nicola Gigli. “A user’s guide to optimal transport”.
In: Modelling and Optimisation of Flows on Networks (2013), pp. 1–155.

[4] Adil Bagirov, Napsu Karmitsa, and Marko M. Mäkelä. Introduction to
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Mem. Math. Phys. Acad. Royale Sci. (1781), pp. 666–704.

[58] Constantin P. Niculescu and Lars-Erik Persson. Convex Functions and
Their Applications: A Contemporary Approach. CMS Books in Mathemat-
ics. Springer International Publishing, 2018. isbn: 9783319783376. url:
https://books.google.de/books?id=SnZfDwAAQBAJ.
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