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Emerging reconfigurable data centers introduce unprecedented flexibility in how the physical layer can be
programmed to adapt to current traffic demands. These reconfigurable topologies are commonly hybrid, con-
sisting of static and reconfigurable links, enabled by e.g., an Optical Circuit Switch (OCS) connected to top-
of-rack switches in Clos networks. Even though prior work has showcased the practical benefits of hybrid
networks, several crucial performance aspects are not well understood. For example, many systems enforce
artificial segregation of the hybrid network parts, leaving money on the table.

In this article, we study the algorithmic problem of how to jointly optimize topology and routing in recon-
figurable data centers, in order to optimize a most fundamental metric, maximum link load. The complexity
of reconfiguration mechanisms in this space is unexplored at large, especially for the following cross-layer
network-design problem: given a hybrid network and a traffic matrix, jointly design the physical layer and
the flow routing in order to minimize the maximum link load.

We chart the corresponding algorithmic landscape in our work, investigating both un-/splittable flows and
(non-)segregated routing policies. A topological complexity classification of the problem reveals NP-hardness
in general for network topologies that are trees of depth at least two, in contrast to the tractability on trees
of depth one. We moreover prove that the problem is not submodular for all these routing policies, even in
multi-layer trees.

However, networks that can be abstracted by a single packet switch (e.g., nonblocking Fat-Tree topologies)
can be optimized efficiently, and we present optimal polynomial-time algorithms accordingly. We complement
our theoretical results with trace-driven simulation studies, where our algorithms can significantly improve
the network load in comparison to the state-of-the-art.
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1 INTRODUCTION

Data centers nowadays empower everyday life in aspects such as business, health, and industry,
but also science and social interactions. With the rise of related data-intensive workloads as gen-
erated by machine learning, artificial intelligence, and the distributed processing of big data in
general, data center traffic is growing very fast [63, 73]. Much of this traffic is internal to data
centers, evoking considerable interest in data center design problems [64, 84].

Herein the emergence of a programmable physical layer, enabled by optical circuit switches [29,
50, 82], free-space optics [12, 37], or beamformed wireless connections [44, 45], leads to intrigu-
ing new possibilities, as leveraging fully electrically packet switched networks “is increasingly cost
prohibitive and likely soon infeasible” [60, 62], see also the recent report by Microsoft [27]. In other
words, electrical chips are unlikely to deliver sufficient performance for next-generation networks,
and in turn, we must rely on programmable optical topologies for increased bandwidth, connec-
tivity, and power-efficiency [5].

Extensive past work has already shown significant benefits of such reconfigurable data center
networks [34, 43], but the underlying complexity is not well understood [11]. For example, many
works artificially restrict their flow routing policies to be segregated between programmable and
static network parts, aiming to place elephant flows on reconfigurable links [33].

Whereas some general algorithmic results exist w.r.t. latency [32, 37] or specific traffic pat-
terns [10, 80], complexity questions of network-design for the objective of load-optimization are
mostly uncharted. The exceptions are the work by Yang et al. [87], which focuses on the hard-
ness induced by wireless interference, the work by Zheng et al. [91], who provide intractability
results on general non-data-center topologies, and the results by Dai et al. [20], which uncover
the approximation hardness for special settings. However, tree-induced topologies, as commonly
employed in data centers, e.g., Fat-Tree, have yet not been exposed to a fine-grained complexity
analysis, which can reveal a complexity dichotomy between network designs, as we will show in
this article.

At the same time, link load is a most central performance metric [15, 44, 46, 76], and flow routing
in traditional networks has been investigated for decades already [3]. We are thus motivated by the
desire to take the first steps towards fundamentally understanding the network-design problem for
load-optimization in data center networks, jointly considering flow routing and (interference-free)
physical layer programmability enabled by, e.g., optical circuit switches.

1.1 Contributions

This article initiates the network-design study of load-optimization in reconfigurable networks
with optical circuit switches, leveraging the flexibility of emerging programmable physical lay-
ers for flow routing. We investigate multiple problem dimensions, from splittable to unsplittable
flows, to fully flexible (non-segregated) versus segregated routing policies. Our results not only
include efficient algorithms and complexity characterizations but also simulations on real-world
workloads:

(1) Complexity: We prove strong NP-hardness for non-segregated and segregated routing on
tree networks of height greater or equal than two, for un-/splittable flow models, excluding
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Table 1. Network-design Complexity for Load-optimization in Reconfigurable Networks
for Un-/splittable and Non-/segregated Routings when the Topologies are Trees of Height
h=1andh > 2

Time Complexity Splittable Segregated Height of Tree 2 References

Strongly NP-hard Yes Yes h>2 Theorem 3.2
Strongly NP-hard Yes No h>2 Theorem 3.6
Strongly NP-hard No Yes h>2 Theorem 3.2
Strongly NP-hard No No h>2 Theorem 3.5
Polynomial-time Yes Yes h=1 Theorem 4.6
Polynomial-time Yes No h=1 Theorem 4.6
Polynomial-time No Yes h=1 Theorem 4.6
Weakly NP-hard No Yes h=1 Theorem 3.4

star networks, which are summarized in Table 1. Moreover, all four problem settings are not
submodular w.r.t. load-optimization, preventing common approximation techniques.

(2) Algorithms:In turn, we give polynomial-time optimal algorithms for the hybrid switch model
of Venkatakrishnan et al. [79], which applies to non-blocking data center interconnects
as, e.g., Fat-Trees. To this end, we leverage a combination of subset matching results and
topology-specific insights.

(3) Evaluations: Our workload-driven simulations (using Facebook, pFabric, and high-
performance computing traces) show that our algorithms significantly improve on state-
of-the-art methods, decreasing the maximum load by 1.6X to 2.0x.

As a contribution to the research community and in order to ensure the reproducibility of our
results, we will make the source code of our algorithms as well as experimental artifacts publicly
available at https://gitlab.cs.univie.ac.at/ct-papers/2021-tompecs-load-optimization.

Overview. We start with a formal model and preliminaries in Section 2, followed by complexity
(Section 3) results for trees and algorithms for the hybrid switch model (Section 4). We then in-
vestigate the performance of our algorithms with trace-driven evaluations in Section 5. Lastly, we
discuss related work in Section 6 and conclude in Section 7.

2 MODEL AND PRELIMINARIES

Network model. Let N = (V,E, &, C) be a hybrid network [56, 79] connecting the n nodes V =
{v1,...,0n} (e.g., top-of-the-rack switches), using static links E (usually connected by electrical
packet switches). The network N also contains a set of reconfigurable (usually optical) links &. The
graph (V,EU&)isa bidirected! graph such that two directions of each bidirected link {v;, v;} € E
(respectively, {v;,v;} € &), where v;,v; € V, work as two (anti-parallel) directed links (v;, v;) and

(v}, vi), respectively. We use the symbol F (respectively, <—3)) to denote the set of corresponding

N
directed links of E (respectively, &). Moreover, a function C : F UE > R* defines capacities for
both directions of each bidirected link in E U &. Note that (V,E U &) can be a multi-graph, e.g.,
when a reconfigurable link in & also connects two endpoints of a static link in E.

Reconfigured network. We say that a hybrid network N is reconfigured by a reconfigurable
switch S if some reconfigurable links M C &, which must induce a matching,2 are configured

ISymmetrical connectivity is the standard industry assumption for static cabling, however for reconfigurable links as well.
Outside highly experimental hardware, e.g., [37], off-the-shelf products use full-duplex connections [14, 66] and this model
assumption is hence prevalent, even in Free-Space Optics [12] proposals.

2In other words, no two links in M are adjacent or share an endpoint, enforced by hardware constraints in practice (exclu-
sive connections between ports). We refer to Hecht [47] for an introduction to the technological background.
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(implemented) by S to enhance the static network (V, E). The set of configured (bidirected) links M,
i.e., amatching, is called a reconfiguration of N. The enhanced network obtained by integrating the
configured links M with the static links E of the hybrid network N is called a reconfigured network,
ie, N(M) = (V,E U M). The static network (V, E) of the hybrid network N before reconfiguration
can also be thought as a reconfigured network denoted by N(0).

Hardware. Our results also apply to non-optical switches and links, as long as they match the
theoretical properties described in the model. As such, we will only talk about reconfigurable
switches and reconfigurable links, implying any appropriate technology that matches our model.

Topologies. Our network model does not place a restriction on the underlying static topology and
hence can be applied generally. Notwithstanding, for our hardness results in Section 3, already tree
topologies suffice, whereas our positive algorithmic results cover many data center topologies, as
we elaborate from Section 4 onwards.

Traffic demands. The resulting network should serve a certain communication pattern, repre-
sented as a |V| X |V| communication matrix D := (d;;)v|x|v| (demands) with non-negative real-
valued entries. An entry d;; € R* represents the traffic load (frequency) or a demand from the
node v; to the node v;. With a slight abuse of notation, let D(v;, v;) also denote a demand from v;
to v; hereafter.

Routing models. For networking, unsplittable routing requires that all flows of a demand must
be sent along a single (directed) path, while splittable routing does not restrict the number of paths
used for the traffic of each demand; For a reconfigured network, segregated routing requires flows
being transmitted on either static links or configured links, but non-segregated routing admits
configured links to be used as shortcuts for flows along static links [29, 82]. Hence, there are four
different routing models: Unsplittable and Segregated (US), Unsplittable and Non-segregated
(UN), Splittable and Segregated (SS), and Splittable and Non-segregated (SN).

2.1 Load Preliminaries

“As minimizing the maximum congestion level of all links is a desirable feature of DCNs [44, 46],
the objective of our work is to minimize the maximum link utilization of the entire network.”

Yang et al. [87], presented at ACM SIGMETRICS 2020 [88]

Load optimization. Given a reconfigured network N(M) and demands D, let f : FUM R
be a feasible flow serving demands D in N(M) under a routing model 7 € {US,UN,SS, SN}. The

load of each directed link e € F UM induced by the flow f is defined as L(f (e)) := f (e) /C (e).
Then, for a feasible flow f in N(M), the maximum load is defined as Lyax(f) := max{L(f(e)) :

ecEU X)/I}, and there must be an optimal flow fo, to serve D such that its maximum load is
minimized for all feasible flows in N(M). Such an optimal flow is called a load-optimization flow
in N(M).® For a reconfigured network N (M), with a slight abuse of notation, let Oﬁ denote an
arbitrary load-optimization flow in N (M), then we define a function Luin-max (N(M)) := Liax( Ojgt).
Load-optimization reconfiguration problem. Given a hybrid network N, a routing model 7 €
{US, UN, SS, SN}, and demands D, the r-load-optimization reconfiguration problem is to find an
optimal reconfiguration M C & to generate an optimally reconfigured network N(M) such that
Linin-max (N (M)) is minimized for all valid reconfigurations M; C & of N. The r-load-optimization

3We note that in other works with analogous definitions, load might also be denoted by utilization, and load-optimization
by load-balancing.
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(a) A hybrid network N without (b) Reconfiguration (matching): (c) Reconfiguration (matching):
reconfiguration My = {{a, b}, {d,e}} My = {{d,b},{a,e}}

Fig. 1. Illustration of a hybrid network N with five nodes {a, b, ¢, d, e} and four static links (drawn solid). A
reconfigurable link (dashed) can be created between every pair of nodes, except c, as long as the set of recon-
figurable links forms a matching. In this example, the capacity of each link is 20, and the task is to route the
five demands D(a, b) = 8, D (a,c) = 6, D (c,b) = 6, D (d,b) = 6 and D (a, e) = 6, s.t. the maximum link load
L is minimized. We utilize the splittable non-segregated (SN) model, which allows arbitrary routing on the
(reconfigured) network, and we indicate the flow size on each link except for zero flow. In Figure 1(a), we just
consider the static topology, which induces a maximum link load of 20/20 = 1. A first improvement strategy
would be to greedily choose the biggest demand (D (a, b) = 8) and create the corresponding reconfigurable
link, as in Figure 1(b). Then only a further reconfigurable link between d and e can be created, resulting in
a maximum load of 12/20 = 0.6. In contrast, an optimal solution has a maximum link load of 10/20 = 0.5,
shown in Figure 1(c).

reconfiguration problem is also abbreviated as the 7-reconfiguration problem henceforth. We lastly
need to find a load-optimization flow for the optimally reconfigured network.

Example. To illustrate the 7-load-optimization reconfiguration problem, we give a small exam-
ple in Figure 1. Figure 1(a) depicts the hybrid network before adding any reconfiguration, with
five nodes V = {a, b, c,d, e}, four static (bidirected) links E: {d, c}, {b, c}, {a, c}, and {e, ¢} and six
reconfigurable (bidirected) links &: {a, d}, {d, b}, {b, e}, {a, e}, {a, b}, and {d, e}.

We consider the routing model 7 = SN and a capacity function Ye € F UE‘) : C(e) = 20, with the
six demands D (a,b) = 8, D (a,c) = 6,D (c,b) = 6,D (d,b) = 6 and D (a, e) = 6. In Figure 1(a), each
flow can only be routed along static links, creating a link load of 20/20 = 1 on, e.g., (a, ¢) with three
demands of size 8, 6, 6 from a. In order to improve the maximum link load, one could, e.g., greedily
add reconfigurable links in order to reduce the maximum load, such as {a, b} in Figure 1(b). Now,
the demand D (a,b) = 8 is routed directly, reducing the maximum load to just 0.6. Yet, only one
further reconfigurable link can be chosen, {d, e}, without violating the matching constraints. In
this situation, any further rerouting does not decrease the maximum link load. For example, when
attempting to alleviate the load of 0.6 on (c, b), the load on (a, ¢) will increase, and vice versa, in
the best case canceling each other’s load increase.

Notwithstanding, we can improve the maximum load further. To this end, we select {a, e} and
{d, b} as reconfigurable links, as shown in Figure 1(c). At first, this might seem counter-intuitive,
as D (a,e) and D (d, b) are only of size 6 each, leaving a load of 0.7 on the links (a,c) and (c, ).
However, the demand D (a,b) = 8 can be routed indirectly, via the path {a, e, c, d, e}, yielding an
optimal maximum link load of 0.5.

3 COMPLEXITY

In this section, we consider the underlying complexity of the load-optimization problem in recon-
figurable networks. We begin with the investigation of NP-hardness, where we study segregated
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routing (Section 3.1) and non-segregated routing (Section 3.2). For all four routing models, we
prove NP-hardness for trees of any height of two or greater.

Yang et al. [87] considered the case of unsplittable segregated routing on trees and weak NP-
hardness, i.e., for large demand sizes. Our NP-hardness results also hold for small demand sizes
and we moreover extend the previous result [87] to trees of height one. To show hardness, we can
consider special cases, where all directed links have the same capacity of y € R*. In particular, we
set y = 1 1in all our NP-hard proofs s.t. the load of each link equals the flow size on itself, but our
proofs work for arbitrary y.

We then prove in Section 3.3 that all four routing models are not submodular, i.e., resist com-
mon approximation schemes. Venkatakrishnan et al. [79] considered different objective functions
and showed submodularity for the hybrid switching model, resulting in approximation algorithms
which therefore cannot be applied here.

3.1 Segregated Routing

We start with the case of segregated routing w.r.t. NP-hardness. The following and some later
proofs will make use of the strongly NP-hard 3-PArTITION problem, which we define first:

Definition 3.1 (3-Partition [36]). Given a finite set A of 3m elements, a bound B € Z*, and a size
function: s(a) € Z* for each a € A such that each s(a) satisfies B/4 < s(a) < B/2 and such that
Y aeas(a) = mB, can we partition A into m disjoint sets Ay, ..., Ay, such that for 1 < i < m,
Y.aea, S(a) = B, where |A;| = 3?

THEOREM 3.2. The t-load-optimization reconfiguration problem, where v € {US, SS}, are strongly
NP-hard when the given hybrid network N, before reconfiguration, is a tree of height h > 2.

Proor. We first consider the US-load-optimization reconfiguration problem. Given an instance
of 3-PARTITION (A, B, s), we construct an instance of the US-reconfiguration problem as follows:
the constructed tree T has the node r as its root, and for each element a; € A, r has a direct child
s; € S. The root r also has m subtrees T; for 1 < i < m. For each subtree Tj, its root is the node r;,
which is a direct child of r, and the root r; has 3m direct child nodes F* = {f],..., f] }. The tree
T represents the static (bidirected) links E and nodes V of the hybrid network N. For the set of all
reconfigurable links &, if two nodes u € V and v € V are not connected by a static link in T, then
there is a reconfigurable (bidirected) link {u,v} € &. Regarding demands D, for each a; € A, we
define D( fl.k ,s;) = s(a;) for each 1 < k < m. Note that the constructed tree only has a height of

two. For each e € E U <_9> the capacity C(e) = 1. We claim that after N being reconfigured, there

is no directed link e € E U(_S’> that has load higher than (m — 1)B if and only if there exists a valid
3-Partition for the set A. -

Before reconfiguration, each static link (r;,7) € E has a flow size of mB. Assume A has a 3-
partition Ay, ..., Ay, where X ,c4,5(a) = Bfor 1 < i < m. For each A; = {aj, ax, ar}, where
1 <i < m, we connect s, sg,sf € S to the corresponding nodes fj’, fk’,ff’ in the subtree T, by the

configured links. Thus, the flow size on each static link (r;,r) € 73) is decreased by Bfor 1 <i < m,
ie, (m—-1)B.

On the other hand, we assume that we could find a set of configured (bidirected) links M € &
such that each static (directed) link (r;,r) € E for 1 < i < m does not have a flow size more than
(m — 1)B. Note that each element a; € A has B/4 < s(a;) < B/2. Due to D(fl.k,sl-) = s(a;) for
1 < k < m, for any two configured links in M, they cannot convey flows more than B. Moreover,
if more than three (bidirected) links are configured between nodes S and the children nodes F’
in the subtree T;, then there must be another subtree T;, where j # i, whose children F/ have at
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most two configured links connecting to S, since the set of configured links must be a matching
M. Thus, for each subtree T;, where 1 < i < m, there must be exactly three configured (bidirected)
links between three nodes in F’ and three nodes in S. It is known that the direction from F to S
in each of these three configured links should have a flow of size B. Let s;, si, sp€S be these three
nodes in S connected to F? by M, which exactly correspond to a partition A; C A. Therefore, a
valid 3-partition can be obtained.

To prove the hardness of the SS-reconfiguration problem, we use the same construction and
claim as for the US-reconfiguration problem above. If A has a 3-partition A;,...,A,,, where
Yiaea,; $(a) = Bfor1 < i < m, then we have proven a valid solution M exists for the US-
reconfiguration problem, which is also a solution for SS-reconfiguration since routing for unsplit-
table flows is a special case of the splittable flow variant. Recall that in the segregated model, a
configured (directed) link (u,v) € E‘») (respectively, (v,u) € g) can only carry flows for D(u,v)
(respectively, D(v, u)). By this setting, we know configured links can only be between leaf nodes
of T. If a reconfigurable (bidirected) link {s;, fik}, where k € {1,...,m}, is configured, then all

flows of the demand D( fik ,si) can go through ( fik ,Si) € & even under a splittable model due to
D( l.k ,8;) < (m — 1)B. On the other hand, if we can find a set of configured links M C & such that

N
each link (r;,r) € E, where 1 < i < m, does not have a flow size more than (m — 1)B, then we

know each configured (directed) link ( l.k ,Si) € M must carry all flows of its demand D( l.k , ;). This

—
corresponds to an unsplittable model, otherwise, there must be a static (directed) link (r;,r) € E,
where i € {1, ..., m}, which has a flow size more than (m—1)B. The same conclusion can be drawn
for the SS-reconfiguration problem. O

3.2 Non-segregated Routing

For the non-segregated routing model, we obtain

— weak NP-hardness for trees of height h = 1 in the UN model,
— strong NP-hardness for trees of height 2 > 2 in the UN model,
— strong NP-hardness for trees of height h > 2 in the SN model.

For the UN model, we start with the weakly NP-hard case of h = 1 in Theorem 3.4, followed by
the strongly NP-hard case of h = 2 in Theorem 3.5. To show the weakly NP-hardness, we will give
a reduction from the weakly NP-hard 2-PARTITION problem, which is defined as follows:

Definition 3.3 (2-Partition [36]). Given a set of n integers S = {s1,...,s,} where B = }; <5 si,
can we divide S into two disjoint subsets S; and S, such that 35, cs, si = Xg;es, 57

THEOREM 3.4. The UN-load-optimization reconfiguration problem is weakly NP-hard when the
given hybrid network is a hybrid switch network, i.e., a tree of height h = 1.

ProOOF. We give a reduction from the 2-pPARTITION problem, which is weakly NP-hard [36]. Our
proof is conceptually similar to the one by Yang et al. [87, Theorem 1], but also applies to the
hybrid switch model. For the UN-load-optimization reconfiguration problem, we consider a tree
of the height one that has the root node c; for each s; € S, there is a node a; € A connected
to ¢ by a static (bidirected) link in E, while ¢ has two additional adjacent nodes r and b. This
construction constitutes a hybrid switch network since all nodes only connect to ¢, where we only
allow reconfigurable links between leaf nodes (but not with ¢). For each a; € A, we set D(r, a;) = s;.
Without loss of generality, let n be an even number. For each odd number i, where 1 < i < n, we

define D(a;, a;+1) = B/2. For capacity, it has Ye € E UE) :C(e) = 1.
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After construction, we claim that after N being reconfigured, there is no directed link e € E} UE‘)
having its load > B/2 if and only if there exists a valid 2-Partition for the set A.

Now, the question is how to make links having a load value no more than B/2. According to our
demands, only one direction in each bidirected link needs to carry traffics. For each odd number
i, we need to configure {a;, a;11} € &, which gives a matching of n/2 bidirected links, otherwise
there must be a directed link (c, a;) that carries flows for demands D(r, a;) = B/2 and D(r, a;) = s;
for i € {2,...,n}. We have to reconfigure the (bidirected) link {r,b} € &, otherwise the load on

the link (r,c) is B = } 5, es si- Now, for these two directed paths from r to c: (r, b, c) € 3 and (r, c),

we have to decide which nodes in A have their flows going through the (directed) link (r,b) € <_9>
s.t. no (directed) link has load more than B/2 in the UN model, which implies a solution to the
2-PARTITION problem and vice versa. O

THEOREM 3.5. The UN-load-optimization reconfiguration problem is strongly NP-hard when the
given hybrid network, before reconfiguration, is a tree of the height h > 2.

Proor. We give a reduction from the 3-PARTITION problem. Given an instance of 3-PARTITION
(A, B, s), we construct an instance of the UN-load-optimization reconfiguration problem as follows:
the constructed tree T has the node r as its root, and for each element a; € A, r has a direct child
s; € S. The root r also has m subtrees T; for 1 < i < m. For each subtree T;, its root is the node
r;, which is a direct child of r, and the root r; has 3m direct child nodes F' = {fli, ... ,f;m}. The
tree T represents the static (bidirected) links E and nodes V of the hybrid network N. Clearly, the
constructed tree only has a height of two. For reconfigurable links &, if twonodesu € Vandv € V
are not connected by a static link in T, then there is a reconfigurable (bidirected) link {u, v} € &.

For each e € Tz") U E’) the capacity C(e) = 1. Regarding demands D, for each a; € A, we define
D(fik, s;) = s(a;) for each 1 < k < m. Moreover, for each node s; € S, which is a direct child of the
root r connected by {r,s;} € E, we define a demand D(r,s;) = (m — 1)B — (m — 1) * s(a;).

We claim that after N being reconfigured, there is no directed link e € F U'E that has load
higher than (m — 1)B if and only if there exists a valid 3-Partition for the set A. Note that, in our
setting, only one direction of each bidirected link needs to carry flow.

Assume A has a valid 3-Partition Ay, ..., Ap,. For each A; = {aj, ax, ar}, where 1 < i < m, we
connect sj, S, sy € Sto the corresponding nodes ff, fk’, ]3} in the subtree T;, respectively, by adding
configured links. Thus, for each r;, where 1 < i < m, the flow size conveyed by the static link (r;, r)
is decreased by B, which is (m — 1)B. For each static (directed) link (r, s;), where 1 < j < 3m, it has
the load value exactly (m — 1)B.

On the other hand, we assume that a set of configured links M exists such that no static link, e.g.,
(r,s;) for 1 < i < m, can have a load more than (m — 1) B. Clearly, each node s; must be included in
a configured link s.t., at least a flow of size s(a;) arrives at s; via a configured link, otherwise (r, s;)
is overflowed. Each configured (directed) link ( l.k, si), where 1 <i <3mand 1 < k < m can only
carry flow for the demand D( fik ,si); otherwise there must be some flows using static links (r, s;)
to arrive at destination s; € S, where i # g and 1 < g < 3m; this causes the load on (r,s;) more
than (m — 1)B. Thus, a similar argument like the segregated model can be given, and it implies a
valid 3-Partition Ay, ..., Ap,. O

Now, it remains to cover intractability for the fourth and remaining routing model:

THEOREM 3.6. The SN-load-optimization reconfiguration problem is strongly NP-hard when the
given hybrid network N, before reconfiguration, is a tree of height h > 2.
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ProoF. Given an instance of 3-PARTITION (A, B,s), we construct an instance of the SN-load-
optimization reconfiguration problem as follows: the constructed tree T has the node r as its root,
and r has a directed child node ry. For each element a; € A, ry has a direct child s; € S. The
root r also has m subtrees T; for 1 < i < m. For each subtree T;, its root is the node r;, which
is the direct child of r; and the root r; has 3 child nodes Q' = {g!, ¢}, g%}. The tree T constitutes
the static (bidirected) links E and nodes V of the hybrid network N. To construct the set of all

reconfigurable (bidirected) links &, for each 1 < i < m, there is a reconfigurable (bidirected) link

{qjc, sj} € & wherek € {1,2,3} and s; € S. Without loss of generality, we set Ve € ?Ug :Cle) = 1.
Regarding demands D, for each 0 < i < m, we have D(r;,r) = B, and for each a; € A, we have
D(si,r9) = B—s(a;). Foreach 1 <i < m, D(r;,ry) = Band D(r,-,q;'c) = B/2 + €, where k € {1, 2, 3}
and € < B/2—max{a : a € A}. Clearly, the constructed tree only has a height of two. We claim that
after N being reconfigured, there is no (directed) link that has the load more than B if and only if
there exists a valid 3-Partition for the set A.

We note that, by our setting, each bidirected link in E U & only needs to carry flow in one
direction.

If A has a valid 3-Partition Ay, ..., Ap, for each A; = {a;, ax, ar}, where 1 < i < m, we connect
$j, Sk, S € S to the corresponding nodes q'.¢5. g} in the subtree T;, respectively, by adding three
configured (bidirected) links, and then we send three flows of sizes s(a;), s(ax), and s(ay) from r;
to ro through the configured (directed) links (qi, sj), (qé, ar), and (qé, s¢), respectively. For other
demands, we send them on their own static links, respectively. Clearly, all demands are served but

1o link in E U M has a load more than B.

Conversely, assume that we have an optimal reconfiguration M C & for the SN-reconfiguration
problem and a load-optimization flow f for N (M). Without loss of generality, for each D(r;,r),
where i € {0,...,m}, we assume that the corresponding flow is only sent on the static (directed)
link (r;,7) in f.If not, some flows for D(r;, r) = B must also go through (r;, r), where j € {0,..., m}
and r; # r;. Since D(rj,r) = B, to make L(f(rj,r)) < B, we know flows serving D(rj,r) = B must
go through (r;, r) too. Therefore, we can cancel the alternative path for each D(r;,r), where i €
{0, ..., m}, toforce each demand D(r;, r) only being sent on (r;, r) without increasing the load value
of any (directed) link. For each subtree T;, where i € {1, ..., m}, we know flows serving D(r;, q;),
where j € {1, 2,3}, must be only sent on (r;, qu) due to our assumption. Thus, for each T;, there
must be three configured (directed) links from its three leaf nodes to three nodes in S, otherwise,
one static (directed) link (r;, q;), where j € {1, 2,3}, must overflow after serving D(r;,ry) = B. To
serve each D(s;,r9) = B — s(a;), where s; € S and a; € A, the link (s;, ry) already carries a flow of
size B—s(a;), and then each (s;, ry) can only convey a flow of size s(a;) for some demands D(r}, ry),
where j € {1,...,m}. Therefore, for each subtree T;, we need to make three configured links to
generate three (directed) paths: (r;, qi,sj, r0), (rl-,qé,sk, ro) and (r;, qg,sf, ro), where s, s;, sy € S,
to convey B flows for D(r;,r), which implies s(a;) + s(ax) + s(ag) = B. Finally, each subtree
T; has three configured (bidirected) links connecting three nodes in S, which indicates a valid
3-Partition Ay, ..., A.,. O

3.3 Non-submodularity

The submodularity of objective functions plays an important role in approximating optimization
problems [78], as by Venkatakrishnan et al. [79] for hybrid switch networks. However, their ob-
jective function does not consider load-balancing and hence does not apply in our setting, as we
show next.

Definition of submodularity. We recall the definition of submodularity [38]: A function f :
2B s R, where 28 is a power set of a finite set B, is submodular if it satisfies that for every
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X,Y CBwith X C Y andeveryx € B\Y,
fFXU)-fX) = fYUlxh)—f(Y).

Overview. In this subsection, we investigate the submodularity of the objective function ® of a
r-reconfiguration problem, which minimizes the maximum load of reconfigured networks N (M),
i.e., Lin-max (N (M)), for all valid reconfigurations M of a given hybrid network N. Moreover, we
are also interested in the submodularity of the objective function Q that maximizes the gap of
the minimized maximum load between the given hybrid network N before reconfiguration and
reconfigured networks N (M) for reconfigurations M of N. We will show that both functions ®
and Q are not submodular functions. To prove the functions to be not submodular, we present
special instances as counter-examples.

THEOREM 3.7. For t-load-optimization reconfiguration problems, where © € {US, UN, SS, SN},
the objective function ® that minimizes Lpip-max (N (M)) for all reconfigurations M of N is not
submodular.

Proor. For a hybrid network N = (V,E, &, C), we define the set of nodes V = U U Q, where
U={u;:i=1,2,3}and Q = {q; : i = 1,2,3}. For static (bidirected) links E, we have six options:
{ui,up} € E, {ug,us} € E, {q1,q2} € E, {q1,q3} € E, and {us,q2} € E, {us,q3} € E. For each
i € {1,2,3}, there is a reconfigurable (bidirected) link {u;, q;} € & W.lo.g., each (directed) link in
E U has the same capacity y € R*. Let our objective function ® : 2€ - R* be a function defined
by an equation ®(M) = Luyin-max (N(M)), where M € 2€ is a reconfiguration (matching). Recall
the definition of submodularity. We define X = {{uz,¢2}} € &, Y = {{u1, g1}, {u2,q2}} € E and
x = {us,q3} € & When ¢ = SS, SN, we define demands as follows: D(us, q3) = 3, D(uz2,q2) = 3,
D(qz,uz) = 3and D(uy,q;) = 3. When t =SS, we have ®(XU{x}) = %,CD(X) = %,(D(Yu{x}) > %,
and ®(Y) < %. Thus, the Inequality (1) shows that the function ® is not submodular.

-3 -3
OXU{x})-D2X)=—<dYU{x})-D(Y)>—. (1)
4y 4y
When 7 = SN, we have ® (X U {x}) = %, o (X) = %, P (YU ({x}) = %, and @ (Y) = %. Thus, the
Inequality (2) shows that the function @ is not submodular.
-3 -1.8
OPXU{x})-P2X)=—<d(YU{x})-D())=——. ()
4y 4y

When 7 = US, we modify our above constructed network N by adding one more node d and one
more static link {d, g2} € E, while reconfigurable links & are unchanged. We define new demands
as follows: D(us, q3) = 3, D(uz,d) = 3, and D(uy,q1) = 3. Now, we have Lyin-max (N(0)) = 6. When
7 = US, we know ®(XU{x}) =3,®(X) = 6,9 (Y U {x}) = 3,and @ (Y) = 3. Thus, the Inequality (3)
shows that the function ® is not submodular.

P(XU(x})) =D (X)=-3/y <d(YU{x})—®(Y)=0. 3)

When 7 = UN, we extend the above constructed network N for US by adding one more static link
{d,q1} € E and removing the static link {g;, g2} € E, while reconfigurable links & are unchanged.
We define new demands as follows: D(us, q3) = 3, D(uz,d) = 3, and D(u1,d) = 3. Now, we know
O (XU{x}) =3/y, ®(X) = 6/y, ®(YU{x}) = 3/y, and ®(Y) = 3/y. Thus, the function ® is
not submodular. o

THEOREM 3.8. For t-load-optimization reconfiguration problems, where v € {US, UN, SS, SN}, the
objective function Q that maximizes Lmin-max (N (0)) — Lmin-max (N (M)) for all reconfigurations M
of N, is not submodular.
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Proor. For a hybrid network N = (V,E, &,C), we define nodes V. = U U Q U P, where U =
{u; :i=1,23L,P={p;:i=1230={q :i=1273}; Foreachi € {1,2,3}, we set two
static links {u;, q;} € E and {p;,u;} € E, and a reconfigurable link {u;,q;} € &, and two demands
D(ui, q;) = 3 and D(p;, ;) = 3. Let our objective function Q : 2€ » R* be defined by an equation
Q (M) = ©—Lmin-max (N(M)), where a reconfiguration (matching) M € 2 and © = Liin max (N(0)).
With the loss of generality, for each (directed) link in F U ?S) it has the capacity y. Recall the
definition of submodularity. We set X = {{u1,q1}}, Y = {{u1, q1}, {2, q2}} and x = {us, gs5}. For
each routing model 7 € {US, UN, SS, SN}, we always have Q(X U {x}) = w — 6/y, Q(X) = v —6/y,
QYU {x}) =w-3/y,and Q(Y) = w — 6/y. Hence, Q is not submodular. O

4 HYBRID SWITCH NETWORKS

As we saw before, already tree networks of height > 2 are NP-hard to optimize, and optimizations
leveraging submodularity are not possible. Yet it is worth noting that the NP-hardness for stars, i.e.,
trees of depth one, is still open since the NP-hardness established for trees of height > 2 collapses
on simple structures of star topologies. In fact, many NP-hard problems can become tractable after
restricting the input graphs, e.g., the minimum vertex cover becomes polynomially solvable on
trees by using dynamic programming [19]. This raises the interesting question if we can obtain
optimal and polynomial-time algorithms for a data center network that can be abstracted as a star

topology.

4.1 Non-blocking Data Center Topologies

Common data center topologies have trees of height 2 as subgraphs or minors and hence seem like
bad candidates for efficient algorithms at first glance. However, already early designs adapted from
telecommunications such as Clos [18] topologies have a so-called non-blocking property, which
we can use to our advantage. An interconnecting topology C is non-blocking, if the servability of
a flow from v; to v, via C only depends on the utilization of the links (v1, C) and (C, v;) : “such
an interconnect behaves like a crossbar switch” [89]. In other words, from a load-utilization
perspective, the maximum load inside C will not be higher than on the egress/ingress links of C.
Non-blocking interconnects have hence become popular data center topologies [4] in particular
in the form of folded Clos networks or Fat-Trees [54], depicted in Figure 2(a): the actual topology
inside the interconnect (marked in a blue rectangle) is immaterial and we only need to consider
the links incident to the nodes*—a fact commonly used, e.g., for bandwidth guarantees of the hose
model [25] in Clos topologies [40, Section 4.1].

Thus, for our purposes, we can abstract the data center interconnect C (which can be understood
as a packet switch) by a single center node c, leaving our previous intractability considerations
behind. We hence turn our attention to hybrid switch networks as considered by of Venkatakrishnan
et al. [79], which are represented by a packet and a circuit switch connected to all nodes, see
Figure 2(b).

Routing in hybrid switch networks is straightforward (only one path exists for each node pair in
the packet switched network), but the addition of a circuit switch adds a large degree of freedom:
First, the number of possible matchings grows exponentially, and second, we have to decide for
each flow which path to take as well. Notwithstanding, the special structure of hybrid switch
networks allows us to solve reconfiguration and routing efficiently.

“We note that the non-blocking property can also be restricted to keep distributed routing schemes in mind, we refer to
Yuan [89] for an in-depth discussion.
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Fig. 2. lllustration of a Fat-Tree network in 2(a) and a hybrid switch network in 2(b), as in [79, Figure 1]. Due
to the non-blocking property of network in 2(a), we can abstract the interconnect enclosed by the blue box
as a packet switch, as depicted in 2(b). Additionally, a hybrid switch network also contains a reconfigurable
circuit switch (e.g., an OCS) that provides a matching of the nodes, to be optimized for the demands D.
Hence, the augmentation of a Fat-Tree by an OCS can also be investigated from the viewpoint of hybrid
switch networks.

© ©
@ @
© ©
(a) Classic Matching Setting (b) Red-Target Matching Setting

Fig. 3. In 3(a), we can find a maximal matching M by setting either M = {{a,c}} or M = {{a, e}}. However,
in 3(b), we need to find a matching such that all red nodes are included, and hence we cannot find any RTM
to cover the red nodes ¢ and e: as a may only be part of one matching edge, we only cover either ¢ or e, but
not both.

We structure our approach as follows. We first introduce an auxiliary problem in Section 4.2 and
a constant-time triangle graph algorithm in Section 4.3, which we then leverage for our optimal
algorithm in Section 4.4. We lastly discuss performance bounds and extensions in Section 4.5.

4.2 Red-target Matching

As each configuration of an OCS must be a matching, we cannot simultaneously create a reconfig-
urable connection for each demand. Still, intuitively, it is desirable to relieve the nodes, respectively,
node-pairs with higher communication intensities by reconfigurable links. Later in our algorithms,
we will mark some nodes (in red) which must be connected to the OCS in order to satisfy a given
load threshold. However, not all reconfigurations, i.e., matchings, are suitable for such a task. Given
such red-colored nodes, the question is if all such red nodes can be matched accordingly, which is
formalized in Definition 4.1:

Definition 4.1 (Red-Target Matching (RTM)). Given a graph G = (V,E), where a subset of
nodes V' C V are colored as “red”, the question is to find a matching M of G such that each
colored node v € V' is covered by an edge of M.
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To illustrate Definition 4.1, we introduce an example shown in Figure 3. The RTM problem
looks for a restricted matching, which not only satisfies the degree-bound of a matching but also
contains the set of all colored nodes V' C V.

LEMMA 4.2. The RTM problem (Definition 4.1) can be solved by a maximum-weight matching al-
gorithm in polynomial time.

Proor. For a given graph G = (V,E), if an edge e € E does not contain a red node in its
endpoints, then it can be removed directly. For each edge e € E having both endpoints of the color
red, we set the weight w(e) = 2, and for each edge e € E that has only one endpoint of the color
red, we set w(e) = 1. Let the number of red-colored nodes V’ in G be n. If we can find a matching
M of the weight n, then all of these n red nodes are contained in M. There is no matching that can
have a weight more than n, otherwise the number of red-colored nodes V’ in G is more than n.
Therefore, if the RTM problem has a solution then a maximum-weight algorithm can always find
a valid matching M for RTM. If the maximum-weight matching has a weight of less than n, then
RTM has no solution. Lastly, a maximum-weight matching is solvable in polynomial time, e.g., by
the Blossom algorithm [26], which has a running time O(|E||V|?). O

4.3 Selection of Suitable Reconfigurable Links

In the studied hybrid switch networks, reconfigurable links can be created between any pair of
nodes connected to the packet switch, e.g., via an OCS. While we will select the (matching) subset
of reconfigurable (bidirected) links in the next subsection, we herein identify the benefit of adding
specific reconfigurable links.

LEmMA 4.3. Given a reconfigured network N (M), which is a triangle on three nodes V = {a, b, c}
with the only configured (bidirected) link {a, b} € & and two static (bidirected) links {c, a}, {c, b} € E,
then for demands D, a load-optimization flow in N(M) can be computed in a constant time under
routing models T € {US, SS, SN}.

Proor. In the triangle N(M), there are at most six demands in D and six directed links Fu ?‘3}
For each demand, e.g., D(a, b), the directed link (a, b) is called the shortcut of D(a, b), and the
directed path (g, ¢, b) from a to b is called the indirect path of D(a, b).

For the segregated routing model, demands D(c, a), D(a, ¢), D(c, b), and D(b, ¢) can be only sent

on their shortcuts (c, a) (a,c), (c,b), and (b, ¢), respectively, which are static links in 75> and then
we only need to consider D(a, b) and D(b, a). Moreover, for the unsplittale routing model, each
demand, e.g., D(a, b), can only be sent on a single path: either its shortcut (a, b) or its indirect path
(a,c,b).

When 7 = US, D(a, b) can only be sent through either (a, b) or (a, c, b), and the similar argument
can be applied to D(b, a). In terms of the given capacity function C, a load-optimization flow can
be decided by searching these four different routing possibilities for D(a, b) and D(b, a), which is
in a constant time.

When 7 =SS, the respective load values for directed links (g, ¢), (¢, b), and (a, b) only depends on
how the demand D(a, b) divides its traffic between the indirect path (a, c, b) and its shortcut (a, b),
while an analogous argument can be applied to the demand D(b, a). Thus, a load-optimization flow
can be decided in a constant time.

When 7 = SN, a load-optimization flow in the triangle N(M) can be computed in constant
time as well. The details are given in Lemma A.1, deferred to the Appendix in order to improve
readability. O

It remains to utilize the single triangle algorithms in a larger context: Lemma 4.4 shows that the
optimal flow computed locally in each triangle {v;, ¢, v;} provides a lower bound for the subflow
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ALGORITHM 1: Preprocess Triangles

Input :Hybrid switch network N = (V,E, &,C), demands D and a routing model 7 € {US, SS, SN};
Output:A set SA = (pU flj) {vi,vj} € E}, sk, Y( ,ul] f € 52 has ,uiAj < Lin-max (N (M)) for an
optimal reconfiguration M C & and D;

1 SA =,
2 for each reconfigurable (bidirected) link {v;,v;} € &, wherev;,v; € V are leaf nodes in N do
3 define the triangle on nodes {v;, v}, ¢}, where c is the center node, and the new demands

D’ on {vr.vj.c;
4 let D’(vi,vj) = D(U,’,UJ') and D/(Z)j,v,') = D(Uj,vj);

5 for each nodeu € {v;,v;} do

6 L let D’ (u,c) = ZveV\{vi,vj] D(u,v);

7 let D’(c,u) = ZUEV\[vi,Uj] D(’U, u);

8 for 7 € {US, SS, SN}, by Lemma 4.3, a load-optimization flow fs in the triangle {v;, vj, c} to serve

demands D’ can be computed in constant time;
9 SA=sAy {(,uiAj,fi?)} where yu = Lmax(fﬁ)

10 return SA;

of a globally optimal flow of the hybrid switch network N and demands D in the same triangle,
and Lemma 4.5 further indicates that a globally optimal flow can be obtained by combining these
locally optimal flows in triangles.

LEMMA 4.4. Given a hybrid switch network N on leaves V' = {vy,...,v,}, where we denote the
central packet switch by a node ¢, demands D, and a routing model © € {US, SS, SN}, for any re-
configuration M’ of N, let f be an arbitrary flow serving D in the reconfigured network N(M’). Let
{vi,vj} € M be any configured (bidirected) link in M’, wherev;,v; € V. For the triangle on {v;, vj, c},

let EiAj denote the six (directed) links of this triangle, i.e., EiAj C f U T/I and let ,uiAj be the minimized
maximum load computed by Algorithm 1 for the triangle {v;, v;, c}. We then obtain:

max {L (f () : e € Efy} > pify . (4)
Proor. Let the given hybrid switch network N have nodes V' =V’ U {c}, where c is the central
packet switch node and V' = {vy, ..., v,} are leaf nodes (leaves). Recall that a reconfiguration M’

must be a matching. Thus, in the reconfigured network N(M’), for each configured (bidirected)
link {v;,v;} € M’, where v;,v; € V', the node v; (respectively, v;) only connects to nodes ¢ and v;
(respectively, v;). Let f be an arbitrary flow serving D in N(M’). Any partial flow of f that start
from the node u € {v;,v;} and end at a node v € V \ {v;,v;} must go through the center c to
leave the triangle {v;, ¢, v;}, and the size of these flows must be D’(u, c) defined in Algorithm 1;
on the other hand, any partial flow (sub-flow) of f that starts from a node v € V' \ {v;,v;} and
ends at the node u € {v;,v;} must go through the center c to enter the triangle {v;, ¢, v;} and the
size of these sub-flows must be D’(c, u) defined in Algorithm 1. Therefore, the local sub-flows of f
inside the triangle {v;, v}, ¢} satisfy the demands D’ defined in Algorithm 1. Since ,uiAj denotes the
maximum load of a local load-optimization flow serving D’ in {v;, v}, c}, then by the correctness
of Lemma 4.3, In Equation (4) holds directly. O

LEMMA 4.5. In Algorithm 2, a load-optimization flow fsna serving D in a reconfigured network

N(M) under a routing model T € {US, SS, SN} can be constructed in a runtime of O(n?), where the
number of demands D is at most n®.
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ALGORITHM 2: Reconfiguration for Hybrid Switch Networks

Input :A hybrid switch network N = (V,E, &, C), with nodes V = {v1, ..., vy, ¢}, where c is the
center node having leaves {v;, ..., vy}, static links E = {{v;,c} : v; € V' \ {c}}, demands D, and
a routing model 7 € {US, SS, SN};

Output: A reconfiguration M C & and a load-optimization flow fg,, of N(M) for D;

1 find an original (optimal) flow f51q E R serving D on N before reconfiguration;
2 run Algorithm 1 on (N, D, 7) to obtain s,

3 run Algorithm 3 on the input (N, D, fy14, SA) ;

4 if Algorithm 3 returns “null” then

5 ‘ return “null”;

¢ else

7 let M C & be a reconfiguration returned by Algorithm 3;

8 construct a load-optimization flow fgnas for N(M), D and 7, based on S* (Lemma 4.5);
9 return a reconfiguration M and fg);

14
{vi,v;} € &, has been computed in Algorithm 1 according to 7 and D’.

Let M be an optimal reconfiguration for the hybrid switch network N and demands D. For
each configured (bidirected) link {v;, v;} € M, the set SA returned by Algorithm 1 contains a load-
optimization flow fl? for the triangle {v;,v;,c} and D’. We first construct the related sub-flow
serving an arbitrary demand D(v;, v;) in ffnal, Where v; and v; are leaf nodes. First, if {v;, v;} € M,
then the flow for D(v;, v;) (respectively, D(v;, v;)) is already given in flf contained in S”. Second,
if there are two configured links {v;, v} and {v;, v;} in M, then the flow of D(v;, v;) obtained by
merging the sub-flow of size D(v;, v;) in fﬁc serving D’(v;, ¢) and the sub-flow of size D(v;, v;) in
fj? serving D’(c, v;) on the joint center c. If only v; is contained in a configured link {v;, v;} € M,
then the sub-flow serving D(v;, v;) in fiinal is obtained by extending the sub-flow of size D(v;, v;)
in fl% serving D’(v;, ¢) from the destination c to the node v;. Moreover, for the demand D(v;, c)
(respectively, D(c, v;)), if v; is contained in a configured link {v;, vk} € M, then the sub-flow serving
D(v;, ¢) (respectively, D(c, v;)) in fanal can be found in the local flow fl% in S2 directly; otherwise,
we send its flow directly on the static (directed) link (v;, ¢) (respectively, (c,v;)) in fanal.

Lastly, for each demand, its flow can be constructed in constant time in Algorithm 2. Thus, the
running time to construct fina relies on the number of demands D, which is O(n?). O

Proor. We note that a local load-optimization flow f? for each triangle {v;,v;,c} where

4.4 Solving Hybrid Switch Networks Optimally

We now combine our previous results to optimally solve the reconfiguration problem on hybrid
switch networks.’

THEOREM 4.6. If each reconfigurable link in & is only between two leaf nodes, then the
T-reconfiguration problem on hybrid switch networks is solved optimally by Algorithm 2 when
T € {US, SS, SN}.

Proor. For a hybrid switch network N, let M be an optimal reconfiguration for N, and let
Hmin = Lmin-max (N (M)) denote the minimized maximum load of the reconfigured network N(M).
Note that such an optimal reconfiguration M always exists for hybrid switch networks N, when
N has at least two leaf nodes. Thus, we prove that Algorithm 2 can find such an optimal solution
M.

SRecall that the UN model is NP-hard on hybrid switch networks (Section 3.2).
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ALGORITHM 3: Determine Reconfiguration

Input :A hybrid switch network N, demands D, the original flow f}4, and a set SA.
Output: A RTM matching (reconfiguration) M C & or “null”;
1 let V/ := V' \ {c} be all leaf nodes in N;

2 let T := max pl] pl] fA) € SMYULL(fora(e)) s e € 75)} be sorted in an ascending order;
3 for each value p € T do

4 create an extra graph (clique) G on leaf nodes V’, s.t., E (G) = {{vi, vj} : vj,vj € V')
5 for each leaf node v; € V' do

6 if the load L(fo1q(vi, ¢)) > p V L(foa(c, vi)) > p then
L color the corresponding node v; € V’ by “red”;

8 if a RTM matching (Def. 4.1) M can be computed on G to cover all “red” nodes then
9 L return M;

10 return “null”;

For a load-optimization flow f,,c of N(M), there must be at least a directed link e* in N (M)
such that L(fopt(e*)) = pimin. First, if there is e* contained in a triangle {v;+, ¢, v+ } in N (M), where
v, v+ € V are leaf nodes, then it implies that pimi, = ,ulA] by Lemma 4.3-4.4, where ,ulA]

Linax (f}- a ;+) and A denotes a load- optlmlzatlon flow f;; A serving D’ computed by Algorithm 1. We
can further 1mply that pmin = ,ul.* j+ = max yij : (yij, ij) € SA}, otherwise there must be another
triangle {vy, ¢, vy } that has ,ul?‘,j, > [imin, contradicting that iy, is the maximum load on fo,. On the
other hand, if e* is a static link and no configured link in M is incident with e¢* on a leaf node, then
Hmin must be already in {L(foa(e)) : e € 75)}, which also has ppi, > max{,uiAj : (,uiAj, i?) € SA). Thus,
Hmin Mmust be included in T in Algorithm 3. Since the binary search goes through T exhaustively,
then pimin can be always detected and used as a threshold for Algorithm 3 to search for a matching.

Now, we prove that, when each reconfigurable link in & is between two leaf nodes in V, given
a threshold pimin, Algorithm 2 can find an optimal reconfiguration M for a hybrid switch network
N and a flow f serving D in N(M) such that Ly (f) < pimin-

Before reconfiguration, on the original flow fyq4, for each static (bidirected) link {v;,c} € E,
where v; € V \ {c}, if it has L(f (v, ¢)) > pmin or L(f(c, vi)) > fimin, then its leaf node v; must be
contained in a configured link in M, otherwise, the loads on (v;, ¢) and (c, v;) are unchanged after
reconfiguration. Thus, in Algorithm 3, we color such nodes by “red” and try to find a matching
to cover all “red” nodes. Lemma 4.1 ensures that a matching M covering all “red” nodes in G
must be detected if it exists. Due to the way of constructing G, for each {v;,v;} € M, Lemma 4.3
implies that the local load-optimization flow f A'in {v;, vj, ¢} serving D’ has the maximum load

max(flj) < max{pU (,ul], U) € S} < fimin. Lemma 4.5 guarantees that a load-optimization flow
fanal serving D in the N(M) can be constructed such that Lima(ffinal) < fimin. Note that for any
static link {vg,c} € E, if vy is not contained in any configured link of M, then L(fanal(vk,c)) =

L(fola(vk, €)) < pimin and L(fanai(c, vk)) = L(fola (¢, vk)) < fmin. o

We now briefly show that our algorithms also extend to the case where we can create a recon-
figurable link to the central packet switch and also bound the runtime:

THEOREM 4.7. The t-reconfiguration problem on hybrid switch networks is solved optimally by
Algorithm 2 in a polynomial time O(p - logn), where n is the number of nodes and f denotes the
running time of a maximum matching algorithm, when t € {US, SS, SN}.
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Proor. Theorem 4.6 has shown the correctness under the restriction, where each reconfigurable
link in & must be between two leaf nodes. Now, we will show that a r-reconfiguration problem
can still be solved by Algorithm 2 without the restriction.

If & contains a reconfigurable link {v;, c}, where v; is a leaf node and c is the center, we could
create an additional leaf node v, in V. To introduce additional demands, for each u € V' \ {v,,41},
we define D(v,41,u) = 0 and D(u,v,41) = 0. Then for each reconfigurable link {v;,c} € &,
we remove it from & and add a new reconfigurable link {v;,v,:1} into &. For the matching M
and a load-optimization flow fgn, returned by Algorithm 2, if {v;, v,41} € M, then remove it and
add {v;, ¢} into M, and update fzna by moving flow on the directed path (v;, v,41, ¢) (respectively,
(¢, vn+1,v;)) to the existing configured link (v;, ¢) (respectively, (c,v;) ). If no link in & contains
the center c, then Theorem 4.6 has proved the correctness.

Now, we assume that there must be at least one reconfigurable link in &€ containing c. Note that
the original ppi, can be still stored in T after the above processing. Thus, the r-reconfiguration
problem on hybrid switch networks is solved optimally by Algorithm 2.

Runtime analysis. Algorithm 1 computes local demands D’ and the corresponding optimal flow
locally in each triangle {v;, ¢, v;} of {v;, v;} € &, leading to the runtime of O(|V|-|&E]). The analysis
of Algorithm 3 reveals that its runtime is dominated by (1) the binary search over values of T,
and (2) finding a maximum matching for each value of T. Hence, given the overhead of binary
search O(log|T|) € O(logn), where |T| = |V| + 1, the time cost of Algorithm 3 is O(f - log |T]),
where 8 denotes the time of computing a maximum matching, e.g., § = O(|E||V|?) by Blossom
algorithm [26]. Finally, by using Algorithms 1 and 3 as subroutines, Algorithm 2 has its runtime
bounded by O(|V| - |E] + f - log |T|), dominated by O(f - log n). O

For example the original Blossom algorithm [26] can be used compute a maximum weight match-
ing in B = O(|E||V|?), but faster maximum weight matching algorithms exist, for which we refer
to the comprehensive overview by Duan and Pettie [24, Tbl. III].

4.5 Bounds and Extensions

Given that we provided optimal algorithms for hybrid switch networks above, we now investigate
theoretical performance bounds and extensions. As such, we provide bounds on the improvement
of the load after reconfiguration, prove that maximum matching algorithms do not perform well
in terms of competitive analysis, and show how our algorithms can be extended to multiple small
reconfigurable switches.

Improvement bounds. If the capacities of reconfigurable links are arbitrarily large, in compari-
son to the static links, then the maximum load after applying reconfiguration can become arbitrar-
ily small, under selected scenarios. Thus, to understand the intrinsic lower bounds of the reconfig-
uration problem on hybrid switch networks N = (V,E, &,C), we investigate the case where the
capacity function C is uniform, denoted by (V, E, &, 1).

For a hybrid network N with uniform capacities, the improvement of the load on an arbitrary
static link {u,v} € E relies on the incremental edge-connectivity imposed by the reconfigured
links in M between u and v in N (M). If a node u has only one static link {u,v} € E, then the
edge-connectivity from u to v can be at most two in N (M) for any reconfiguration M, which
further implies that the load on edges outgoing from u can at best be split along both edges after
performing reconfiguration.

LeEmMA 4.8. Given a hybrid switch network N = (V,E, &,1), demands D and a routing model
T € {US, UN, SS, SN}, for any reconfiguration M of N, we have Lin-max (N (M)) > Lin-max(N(0))/2.

Proor. Given a hybrid switch network N = (V,E, &, 1), demands D and a routing model 7 €
{US, UN, SS, SN}, let M* € & be an optimal reconfiguration of N and let fojgt be an arbitrary
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load-optimization flow for the reconfigured network N(M*). Let fy1q4 be the original flow serving
D in N. There must be a leaf node v; € V such that a static (directed) link, w.l.o.g., denoted by
(vi, ¢), has L(fo1d(vi, €)) = Liin-max(N(0)). We know that v; must be included in a configured link,
denoted by {v;,v;} € M*, otherwise we still have that Lyin-max(N(M*)) = Lin-max(N(0)) holds.
In the triangle {v;, v}, ¢}, there are at most two link-disjoint directed paths from another node in
{vj, ¢} to the node v;. We know the size of the flow on the static link (v;, ¢) can be at most decreased
by half to obtain optimality, which implies Lyin-max(N(M*)) > L( 0’;1: (vi,¢)) = L(foud(vi,c))/2

Thus, for any reconfiguration M of N, we know Lpin-max (N (M)) > Lin-max(N(0))/2. |

Competitivity of matching algorithms. We next investigate the theoretical performance of a
maximum matching algorithm, as e.g., utilized in [82]. The idea based on a maximum matching
is that for each reconfigurable link {u, v} € &, we send all flows of demands D(u, v) and D(v, u)
on links (u,v) and (v, 1), respectively, then to find a maximum matching to maximize total size
of flows on a set of configured links M. As it turns out, such an optimization might yield nearly
no benefit, even though an optimal algorithm could hit the theoretical lower bound provided in
Lemma 4.8.

LEMMA 4.9. For a t-load-optimization reconfiguration problem on a hybrid switch network N,
where © € {US, SS}, a maximum matching algorithm can find a reconfiguration M of N, s.t.,

Lin-max(N(0)) — Lmin-max (N(M)) < €, for an arbitrarily small e > 0,
but where an optimal reconfiguration M* implies L yin-max(N(M*)) = Lin-max(N (0)) /2.

Proor. Recall the definition of segregated routing. Given a small value € > 0, we construct a
hybrid switch network N = (V, E, &,C), where V = {vy, ..., v,, a, b, c,d}, ¢ is the center, and other
nodes are leaves. For any two nodes u,v € V \ {c}, we construct a reconfigurable link {u, v} € &.

Here, Ve € Fu E’) : C(e) = 1. Regarding demands D, for each v; € {vy,...,v,}, we define
D(v;,a) = € and D(b,a) = ne, D(b,d) = ne. Clearly, Liyin-max(N(0)) = 2ne. For the maximum
matching algorithm, two reconfigurable links {b,d} € & and {v;,a} € &, wherei € {1,...,n},
must be included in a reconfiguration M, which gives Lyin-max(N(M)) = (2n — 1)e. However, by
selecting {a, b} into M*, we can have Lpip-max(N(M*)) = ne = Liin-max(IN(0))/2. Please note that
for the above example, the splittable and unsplittable models show the same results. ]

Extension to smaller reconfigurable circuit switches. In case the number of ports of a single
reconfigurable switch does not suffice for all nodes in the network, our algorithms also extend
to the case of multiple smaller reconfigurable switches. We can connect subsets of the nodes to a
reconfigurable switch each, e.g., grouped by historical data w.r.t. the traffic demands. Our hybrid
switch algorithms in Section 4 then take this subset of possible reconfigurable links to work with
and proceed as usual, e.g., by assigning non-allowed links a weight (benefit) of 0 in matchings.

4.6 Practical Considerations

For non-blocking® data-center topologies, where the load-balancing is usually dominated by the
last hop, e.g., for incast [69], we can abstract the static topology as a star (tree of depth one) as
shown in Figure 2, such that our algorithm can minimize the loads by, e.g., taking away elephant
flow from the original static network to high-capacity reconfigurable links. Our solution provides

®If the DC topology is blocking, such as, e.g., DCell, Jellyfish, MDCube etc. [53], i.e., in particular in server-centric proposals,
we cannot directly apply our algorithms, unless the topologies are augmented to be non-blocking. An extension of our
optimal polynomial-time algorithms to general server-centric topologies is unlikely, as we have shown that already simple
topologies beyond stars induce intractability.
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an efficient and optimal way to design reconfigurable networks for existing DCNs to optimize load-
balancing, which significantly outperforms conventional methods of implementing reconfigurable
links by a maximum weighted matching, e.g., [29, 82], and by a greedy approach, e.g., [44, 91], as
we will show in the next section in practical evaluations, beyond the previous theoretical results.

Our solution can be implemented directly and is generally compatible with pre-installed rout-
ing configurations of existing data-centers, as it relies on analyzing the matrix of traffic demands
to determine which pairs of intensive-communication nodes to be transferred to reconfigurable
links. More specifically, after preprocessing on demands, elephant flows can be separately sent on
reconfigurable links, and other remaining demands will be still routed through the static network
as before, e.g., ECMP, packet-based routing, flowlet-based routing, and so on can be applied in
these settings for the remaining flows.

For real-time applications, the reconfiguration delay (time) that reconfigurable links cannot
transfer data during their establishing phase might degenerate the performance when traffic pat-
tern changes very significantly in a short interval. However, in general, data-center traffic patterns
feature significant temporal locality,” and most transmitted bytes belong to big and more long-
lasting elephant flows, which have a large transmission time compared to the reconfiguration
time. For example, Roy et al. [70] observed 90% bytes flow in elephant flows, and Griner et al. [41]
give examples where a 500 MB flow, whose transmission time is 100 ms, with the reconfiguration
time being 15 ms, while many other empirical studies show similar results, e.g., Mellette et al. [61],
Venkatakrishnan et al. [80]. Based on these practical observations, we introduce a factor 6 € [0, 1]
to indicate the ratio of reconfiguration time to the interval of a demand in our evaluations and
we broadly discuss the results for = 0 and § = 0.05 respectively in Section 5, which reveals the
robustness of our algorithm under the interference of reconfiguration time.

Notwithstanding, in general, the problem of how to deal with the non-availability of optical
links during reconfiguration is still an open research problem, as discussed by Nance Hall et al.
[43, Section 6]: “Ideally, we want a reconfigurable link to exist before the traffic appears”, with the
additional challenge of these changes being consistent [35, 49].

5 EVALUATIONS

In order to study the performance of our algorithms under realistic workloads, we conducted ex-
tensive experiments with a simulator, which we will release together with this article (as open
source code). In particular, we benchmark our hybrid switch algorithms against several state-of-
the-art maximum matching and greedy baselines, considering a spectrum of packet traces on
hybrid switch topologies as in Figure 2. We first describe our methodology in Section 5.1 and
then discuss our results in Section 5.2. To facilitate reproducibility, our source code is available at
https://gitlab.cs.univie.ac.at/ct-papers/2021-tompecs-load-optimization.

5.1 Methodology

Comparison with related work. We consider the following approaches from related work, used
in multiple state-of-the-art articles [43], as described next, and implemented the corresponding
algorithms for comparison.

— First, we compare our hybrid switch network algorithms (denoted by HSN-US/SN) with a
Maximum Weight Matching algorithm as a baseline, where routing occurs either on direct
reconfigurable links or via the central packet switch. The matching algorithm is employed
by many state-of-the-art systems [61, Table 1], also recently e.g., in Chopin [71]. Its use was

7This is not always the case for wide-area networks [30].
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spearheaded by Helios and c-Through [29, 82] and it is also optimal w.r.t. the average weighted
path length [33] in such a routing model.®

— Second, we also compare to a Greedy approach used by, e.g., Halperin et al. [44] and Zheng
etal. [91]. For the link e that currently has the highest load, we check for the largest flow that
can be rerouted on a direct connection, and offload it from the electrically switched network
parts. This process is iterated until the load cannot be reduced further, where different links
e can be chosen in each iteration.

Hence, in the following plots, the approaches that correspond to related work are labeled as Max
Weight Matching and Greedy, respectively. Lastly, we additionally plot the maximum load on the
network before any reconfiguration was applied (labeled as Oblivious).

Traffic workloads. It is known that traffic traces in different networks and running different ap-
plications can differ significantly [7, 13, 37, 51, 70]. Thus, we collected a number of real-world and
synthetic datasets from which we generate traffic matrices to evaluate and compare the perfor-
mance of our algorithms. In particular:

— Data center traces: We consider two data center workloads, based on traces made avail-
able by Facebook [28, 70, 90]. The first workload features traces from a cluster running the
batch-processing application Hadoop. The second one consists of traces from a cluster run-
ning SQL databases. Both workloads differ heavily in their communication patterns and the
overall network load. Hence, the structural and temporal patterns of the workloads are quite
different [7].

— HPC traces: We further consider a high performance computing workload, obtained from
the CESAR backbone [2] The workload consists of a collection of MPI traffic, which was
collected while running the application Nekbone. The application solves poison equations
using the conjugate gradient method.

— Synthetic traces: The synthetic pFabric traces are frequently considered as benchmarks in
scientific evaluations [6]. In a nutshell, workloads arrive according to a Poisson process, are
embedded in a data center context, and follow a random communication pattern between
subsets of nodes. In order to generate traffic traces and produce demand matrices, we use
the NS2 simulation script we obtained from the authors, using the parameter p = 0.5.

In more detail, for each simulation setting, e.g., 100 — 1,000 or 1,000 — 3,000 nodes, we pre-fetch
a sequence of requests and keep it in memory. For example, to observe 3,000 distinct nodes in the
case of Facebook’s data center traffic, we have to fetch a much larger traffic sequence, than in the
case of 1,000 distinct nodes. Furthermore, to ensure fairness, the fetched traffic sequence does not
stop at the last node discovered, but rather goes slightly beyond that, to allow the last discovered
node to eventually be observed a few times in subsequent requests. Subsequently, depending on
the current amount of nodes n, we only use the requests from the fetched sequence, where traffic
occurs between those n nodes. Hence, the computational workload for, e.g., 1,000 nodes is higher
in the setting of 1,000—3,000 nodes in comparison to the setting of 1,000—3,000 nodes.

Reconfiguration delay. In order to model the reconfiguration delays of optical circuit switches,
our approach is the following. We account for the reconfiguration delay by introducing a penalty
parameter 6 € [0, 1], which denotes the percentage of time per traffic sequence a switch needs for
reconfiguration. We first compute the optimized load of the network as if no reconfiguration delay

8Note that a maximum matching algorithm is not optimal regarding path lengths in all topologies. However, when the
distances between all nodes are identical in the static network part, a standard maximum matching approach is optimal in
hybrid switch networks w.r.t. weighted path length [33].
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Fig. 4. Algorithmic comparison of the maximum load and runtime for different Facebook clusters. W.r.t. max.
load, Greedy, Max Weight Matching, and HSN-SN perform at very similar levels.
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Fig. 5. Algorithmic comparison of the maximum load and runtime for pFabric and HPC traces. W.r.t. max.
load, Greedy, Max Weight Matching, and HSN-SN perform at very similar levels for HPC.

applies. Then, we query the network for the optical link load and redistribute (load * ) amount
of bytes from the optical link to the electrical links. Finally, we query the network again for the
maximum load.
Experimental setup. All considered topologies, ranging from 40 to 3,000 nodes,” employ hybrid
switch networks as in Figure 2(b).!” We repeat each setting by running it 5 times and display the
averaged results, normalizing the workload in the static topology. For the runtime, we also display
the averaged results, normalizing them against the results of our HSN-SN algorithm.
Our simulations were run on a machine with two Intel Xeons E5-2697V3 SR1XF with 2.6 GHz,
14 cores'! each and a total of 128 GB RAM. The host machine was running Ubuntu 18.04.3 LTS.
We implemented the algorithms in Python (3.7.3) leveraging the NetworkX library (2.3). For
the implementation of the maximum matching algorithm we used the algorithm provided by
NetworkX.

5.2 Results and Discussion

We report on the main results obtained in our simulations based on the different datasets. Figures 4
and 6 summarize our evaluation results in terms of load and runtime for the Facebook traces;
Figure 5 shows the corresponding results for the HPC and pFabric traces.

9See Alistarh et al. [5] w.r.t. the feasibility of 1,000 port optical switches in data centers.

101 other words, we assume that the static networks can be abstracted as trees of depth one, due to them being, e.g.,
non-blocking, such as for fat-trees or Clos topologies in general.

However, each algorithm only utilized a single core.
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Potential for load optimization. All algorithms significantly improve the load over the Oblivi-
ous baseline and provide relatively stable benefits throughout all scenarios investigated. We eval-
uate all algorithms with and without a reconfiguration delay, where the dashed lines in the max-
imum load plots correspond to the results achieved with a reconfiguration delay applied. The re-
configuration delay penalty 6 is set to 0.05 in all experiments. Hence, 5% of the load on an optical
link is redistributed to the electrical links to account for the reconfiguration delay.

Among these algorithms, the HSN algorithms typically clearly outperform the others.

More specifically, for the database (Figures 4(a) and 6(a)) clusters, the reduction in the maximum
load provided by the HSN-SN algorithm is almost a factor of two throughout the spectrum.

For the Hadoop clusters (Figures 4(c) and 6(b)), the performance of HSN-SN slightly decreases,
but still achieves ~ 60% of the original Oblivious load up until a network size of 1,000 and then
stays stable at & 70% beyond. The three remaining algorithms (Greedy, Max. Weight Matching,
and our HSN-US) achieve nearly identical values, with Greedy and HSN-US being slightly better.
Above 1,000 nodes, we can observe that their capability to further reduce the load seems to be
quite restricted. In some Hadoop workload instances, Max. Weight Matching achieves no or only
minimal load reduction results, matching up Lemma 4.9 to practice. Notwithstanding, they always
perform significantly worse than HSN-SN, resulting in a comparatively load-increase of ~ 60%.

Regarding the HPC traces, we can observe similar results as in the Database Cluster, in terms
of maximum load reduction. Also for the pFabric traces, our HSN-US algorithm achieves a lower
maximum load compared to the Greedy or Max. Weight Matching. Here, the variance is slightly
higher than in the other experiments; this matches empirical observations on the complexity of
the traces produced by these synthetic traces [7].

In regard to the maximum load reduction, we conclude that our HSN-SN algorithm is quite
stable w.r.t. to the number of nodes in the network. In contrast to that, Max. Weight Matching and
the Greedy algorithm asymptotically approach the maximum load of the unconfigured network.

With respect to the results achieved while using the reconfiguration delay penalty 6, we can
observe that the maximum link load is slightly higher for all algorithms. However, the simulations
show that the reconfiguration delay penalty has a larger impact on our HSN-SN algorithm. The
reason for this is that the HSN-SN algorithm is capable of distributing the traffic load more equally
between the optical and electrical links. Therefore, redistributing 5% (6 = 0.05) of the load from
the optical links to the electrical links results in an approximately 5% increase of the load on the
electrical link, which then carries the maximum load. Compared to that, the other algorithms fail
to offload a significant amount of traffic to the optical links. Hence, the reconfiguration delay has
a minor influence on the maximum link load because the electrical links already carry the vast
amount of traffic.

Runtime performance. The best runtime is generally achieved by the Greedy algorithm, due to
its early termination when no link can be added anymore. Our experiments show that in the case
of the Greedy algorithm, this is unfortunately happening very early on. Regarding the runtime of
the Max. Weight Matching, we want to emphasize that the algorithm is unaware of the underlying
problem of reducing the maximum link load. Therefore, a lot of runtime is actually wasted without
achieving any further load reduction. Hence, in some cases, e.g., in the larger Facebook clusters,
Max. Weight Matching is even slower than HSN-SN. In comparison to Max. Weight Matching,
our HSN-US has a similar runtime, while spending all of it searching for the best load reduction
matching.

HSN-US is consistently faster than HSN-SN, and the latter features quite a high variance in
runtime. Notwithstanding, HSN-US has the benefit of only routing along single paths, which can
be beneficial for performance metrics beyond load [72, 87]. On the other hand, such issues can
also be alleviated with specialised multipath procotols [23, 68, 83]. Still, in some cases and specific
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Fig. 6. Algorithmic comparison of the maximum load and runtime for different larger Facebook clusters.
W.r.t. max. load, Greedy, Max Weight Matching, and HSN-SN perform at very similar levels.

workloads, the routing of related demands becomes easier in the SN model. Hence HSN-SN can
even be slightly faster than HSN-US, such as for the Hadoop cluster at 3,000 nodes, due to the fact
that the underlying matching problem is identical for both HSN-US/-SN.

Summary. While all algorithms provide load reductions, the extent of these optimizations and
the required runtime differ significantly. Our results suggest that the load optimizations provided
by HSN-US might prove beneficial over other segregated routing strategies, particularly because
of its low runtime which is comparable to that of the Max. Weight Matching. We conclude that
when considering both potential load reduction and runtime, HSN-SN provides a better tradeoff
than HSN-US.

6 RELATED WORK

Most related work on flow routing in data center networks focuses on non-reconfigurable
topologies [64]. That said, many recent works design and evaluate reconfigurable topologies
e.g., [17, 29, 37, 44, 55, 56, 59-61, 67, 80-82, 85, 86], often showing significant performance gains
over static topologies and proving real-world viability. However, the algorithmic complexity of
reconfigurable data center networks is mostly unstudied [34], and many fundamental questions
remain open [11].

Scheduling traffic matrices with specific skew were investigated in [56, 57, 67, 80], but perfor-
mance guarantees were only obtained by Venkatakrishnan et al. [80] due to leveraging submodu-
larity, a condition that does not hold in our setting. Similarly, Avin et al. [8-10] investigate traffic
matrices with low entropy, but they require scalable constant reconfigurable degrees and are obliv-
ious to hybrid networks, as in [16, 65], and thus do not translate to the herein considered model.

The idea of leveraging good connectivity in data center contexts arose from utilizing random
graphs [75], and later extended into deterministic versions [22, 52, 77]. Xia et al. [86] used this
idea to heuristically switch between random graphs and Clos topologies, depending on the traffic
pattern, whereas Mellette et al. [60] incorporate it to improve their Rotornet [61] approach: If a
flow cannot be delayed respectively be buffered, it gets sent along a short route. Both works of
Mellette et al. also have the benefit that their reconfigurations are oblivious to the current traffic
pattern, but hence also depend on the same for the resulting performance.

One of the notable works that does not rely on centralized computation is ProjecToR by Ghobadi
et al. [37], which instead performs a distributed matching protocol reminiscent to the idea of sta-
ble matchings [1]. In their setting, they obtain a (2 + ¢) approximation for the weighted latency
objective but do not consider load.
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The algorithmic complexity of weighted latency was also considered in [32, 33], where already
basic topologies and settings turned out to be intractable. On the other hand, finding a single
shortest path in a partially reconfigured network can be done efficiently, and hence yields well
performing heuristics [31]. Moreover, some routing models can even be solved optimally. Notwith-
standing, it is unclear how to transfer these results to a load-optimization setting: in topologies
with unfavorable betweenness centrality, shortest path routing can overload popular links with
high load.

Load-optimization in reconfigurable data centers was recently studied by Yang et al. [87], who
investigated the impact of wireless interference on cross-layer optimization. Different wireless
links are modeled as a conflict graph, where the task is to find sufficiently good independent (link)
sets, in order to provide an interference-free reconfiguration. We see our work as orthogonal, as
we only consider inherently interference-free technologies, and as thus it would be interesting to
leverage their results in future work.

Another interesting line of work is by Zheng et al. [91], who study how to enhance the
design of Diamond, BCube, and VL2 network topologies with small reconfigurable switches,
inspired by Flat-Tree [86]. They target maximum link load as well, and present intractability
results on general graphs, although these results do not transfer to specific data center topologies
or trees, respectively. Different routing models are not analyzed. Moreover, they propose to
reconfigure the network with a greedy algorithm, which however does not come with formal
performance guarantees. In evaluations of small network sizes, their combination of greedy
algorithm and enhanced network design reduces the maximum load by 12% on average. We
see similar greedy algorithm behavior in our evaluations, where however the greedy algo-
rithm performance decreases to just a few percent of load improvement as the network size
grows.

That being said, even though our work is mostly motivated by technologies emerging in data
center networks, it also applies to other reconfigurable technologies, as long as they fulfill our
model properties. Fundamentally different however are reconfigurable optical wide-area networks,
as therein the fiber connectivity is fixed. Hence capacities can be adjusted and alternative failover
paths provided, leading to improvements in the scheduling of bulk-transfers [21, 48, 49, 58] and
reliability concerns [39, 42, 74, 92].

7 CONCLUSION

We investigated load minimization in reconfigurable hybrid networks, leveraging the flexibility
of emerging programmable physical layers. To this end, we investigated the underlying problem
complexity, unveiling that already tree topologies of small height induce intractability for a multi-
tude of routing models, and that one cannot hope for general approximability via submodularity
techniques. Notwithstanding, we showed that hybrid switch networks, and in turn, non-blocking
data center interconnects, can be optimized efficiently. Trace-driven simulations show that our
hybrid switch algorithms significantly outperform a state-of-the-art maximum matching baseline,
but also greedy algorithms.

APPENDIX
A DEFERRED PROOFS AND ALGORITHMS
A.1 Proof of Lemma 4.3 for 7 = SN

LEmMMA A.1. Given a reconfigured network N(M), which is a triangle on nodes V = {a, b, c} with
the only configured link {a,b} € &, then for demands D, a load-optimization flow fo; in N(M) can
be computed in constant time by Algorithm 5 when T = SN.
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Proor. When 7 = SN, any two distinct demands in D in the triangle {a, b, c} are called related
if they share the same source or sink. Let f be an arbitrary flow serving D under 7 = SN. For any
two related demands, e.g., D(a, b) and D(a, ¢), W.L.O.G., we assume D(a, b) sending a flow of size
B > 0 along (a,c,b) and D(a, c) sending a flow of size @ > 0 along (a, b, c) in f; and remaining
of D(a,b) and D(a, c) are only sent on directed links (a, b) and (a, ¢), respectively, in f. We call
such a routing as interfering for these two related demands. W.L.O.G, we also assume f§ > «. The
interfering between D(a, b) and D(a,c) in f can be canceled by redirecting a flow of size a of
D(a, c) from its indirect path (a, b, c) to its shortcut (g, c), while forcing D(a, b) only sending a
flow of size f — a along (a,c, b). Clearly, the cancellation would not increase the maximum load
of f. Thus, there must be a load-optimization flow f* serving D such that no interfering occurs
between any two related demands, otherwise we can do the interfering cancellation in f*.

Now, we need to find the load-optimization flow f*. Given a triangle N and demands, we will
prove that Algorithm 5 can find ™ in constant time. Clearly, Algorithm 5 terminates in constant
time since the number of demands is at most 6. It is clear that the returned flow fqp is an interfering-
free flow since when a demand D(u, v) is marked split, all its related demands are rejected for
being further splitted. Given an upper-bound y, our algorithm guarantees that all directed links
have loads no more than p. Now, we just need to prove that y found in Algorithm 4 is minimum.
We assume that p’ < p is actually the minimized maximum load. Each demand marked as split in
Algorithm 5: YD(u, v) € Ds must send a flow of size D(u, v) — p’C(u, v) to its indirect path, where
D(u,v) — p'C(u,v) > D(u,v) — uC(u, v), otherwise, some links would have loads more than p’.
Due to the interfering-free requirement, each demand in D \ Dg cannot send its flow to its indirect
path. WL.O.G, let D(p, q) be the unsplit demand in D\ Ds, which has the maximum load y in S, in
Algorithm 4. Since the related demands of D(p, q), which are marked as split, need to send more
flows to their indirect paths, where (p, ) is included. Then the load on the link (p, g) will be larger
than y, which contradicts the assumption. O

ALGORITHM 4: Determine Optimal Load

Input :A Triangle N on three nodes V, demands D, a set of split demands Dg;
Output:a load-otimization flow fopt for N;

1 Define a set Sy = (0 and a variable y € R*;

2 for each unsplit demand D(u,v) € D \ Ds do

3 Let D’ C Ds be split” demads related to D(u, v);
4 D(u,v) is only sent on (u,v) in fopt;

5 If ID’| = 2,let D’ = {D(u,d),D(d,v)};

t _ D(u,v)+D(u,d)+D(d,v)
6 compute b = =0, V7 C(w, d)+C(d, )
7 If |D’| < 1, similar computation of ;

and S, =S, U {p};

8 = max{'u’ :/,l/ € Sﬂ};

9 for each split demand D(p, q) € Ds do

10 D(p, q) send a flow of size i - C(p, g)on (p, q) and remaning flow on (p, k, q) in fopt, where k € V
| andk ¢ {q,p};

1 return fopt;

-
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ALGORITHM 5: Triangle Optimization When 7 = SN

Input :A Triangle N = (V,E, &, C) with nodes V = {a, b, c}, demands D, and the configured link
(bidirected) {a, b} € &;
Output:a load-otimization flow fopt for N;

1 Define a set Dg = 0 and values VD(u,v) € D : a0 = gg;z;,

Let any two demands D(u, v) and D(p, q), where u,v,p,q € V, u # v, and p # g, be related if either

)

u=porov=gq;

Let D(u, v) be the demand in D with the highest value a4;

4 if a demand D(p, q) is related to D(u,v) and apq = o then
L return fopt = Algorithm 4(N, D, Ds);

Mark the demand D(u,v) “split” and Dg = Dg U {D(u,v)};

Set D = {D(u,v),D(u,d),D(d,v)}, where d = V' \ {u,v};

Let D(p, q) be a demand in D, := D \ D; with the highest ayq;

if AD(i, j) € D1 is unsplit and has ajj > apq for D(p, q) then

10 L return fopt = Algorithm 4(N, D, Dg);

u if AD(i, j) € Dy is related to D(p, q) and has a;j > apq then

12 L return fopt = Algorithm 4(N, D, Dg);

13 Mark the demand D(p, q) “split” and Dg = Ds U {D(p, q)};

1 Set D3 = {D(p,q),D(p,d), D(d, q)}, where d =V \ {q,p};

15 if D(f,g) := D2 \ D3 # 0, where f,g € V and f # g then

16 L if AD(i,j) € D\ D(f,g) is unsplit and has a;; > ay, then

L Mark D(f, g) “split” and Ds = Ds U {D(f,g)};

@

«

=N

<

o

©

17

18 return fopt = Algorithm 4(N, D, Dg);
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