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Kurzfassung
Diese Dissertation beinhaltet aktuelle Anwendungen des auf der Renormierungsgruppe (RG) basierenden
Konzepts der Planckskalensicherheit (PS) in der Modellbildung jenseits des Standardmodells der Teilchen-
physik (SM, BSM). PS bezeichnet dabei ein RG-Laufen aller Kopplungen bis zum Quantengravitationsregime
an der Planckskala ohne Vakuuminstabilitäten und Landau-Pole. Dazu muss die Metastabilität des SM Hig-
gspotentials behoben werden. Wir gehen diese Aufgabe in minimalen SM-Erweiterungen mit vektorartigen
Fermionen, Singulett-Skalaren oder beiden, mit oder ohne flavor an. Dazu untersuchen wir die RG-Flüsse
dieser Modelle in höheren Schleifenordnungen sowie die gesamten durch BSM-Massen, -Multiplizitäten,
-Ladungen und -Kopplungen aufgespannten verfügbaren Parameterräume. Dabei enthüllen und charakter-
isieren wir mehrere fundamentale RG-Mechanismen für PS, sowie deren Zusammenspiel. Die Forderung nach
PS impliziert dann Bedingungen an die BSM-Parameter. Wir studieren auch die Beschleunigerphänomenolo-
gie unsere Modelle, insbesondere im Hinblick auf die Komplementarität zwischen phänomenologischen und
PS-Bedingungen an Parameter. Danach widmen wir uns einer komplexeren Klasse von BSM Modellen,
nämlich anomaliefreien, flavor-vollen 𝑍′-Modellen. Das 𝑍′-Boson kann flavor-verändernde neutrale Ströme
auf Baumgraphenniveau induzieren, die im SM Schleifen- und Cabibbo-Kobayashi-Maskawa-unterdrückt
sind. Daher sind 𝑍′-Modelle natürliche Kandidaten um experimentell gemessene Abweichungen einiger
flavor-Observablen von ihrer SM-Vorhersage zu erklären. Insbesondere fokussieren wir uns dabei auf die
anhaltenden Anomalien im Zusammenhang mit 𝑏 → 𝑠𝜇+𝜇− Übergängen sowie die unerwartet große 𝐶𝑃-
und 𝑈-Spin-Verletzung in 𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− Zerfällen. Allerdings treten in 𝑍′-Modellen typischerweise
niederenergetische Landau-Pole auf, durch die die Theorien ihre Vorhersagekraft verlieren. Wir zeigen,
wie in 𝑍′-Modellen die Anomalien im beauty- und charm-Sektor jeweils aufgelöst und gleichzeitig Landau-
Pole hinter die Planckskala geschoben werden können. Dadurch ergeben sich präzise Vorhersagen für
charakteristische, phänomenologische Signaturen, die an Beschleunigern gesucht werden können.

Abstract
This thesis comprises recent applications of the renormalization group (RG) based concept of Planck
safety (PS) in beyond the Standard Model of particle physics (SM, BSM) model building. PS refers to
a RG flow of all couplings up to the quantum gravity regime at the Planck scale without any vacuum
instabilities or Landau poles. This requires to cure the metastability of the SM Higgs potential. We tackle
this task in several minimal SM extensions featuring vector-like fermions, singlet scalars or both, with or
without flavor. We investigate the higher loop-order RG flows of these models, scrutinizing their complete
available parameter spaces spanned by BSM masses, multiplicities, charges and couplings. Thereby, we
unveil and characterize several fundamental mechanisms for PS as well as their interplay. Requiring
PS then results in constraints on BSM parameters. We also study the collider phenomenology of our
models, focusing in particular on the complementarity between phenomenological and PS constraints.
We then turn to a class of more complex BSM models, namely flavorful, anomaly-free 𝑍′ models. The
𝑍′ boson can induce flavor-changing neutral current transitions at tree-level, which in the SM are loop-
and Cabibbo-Kobayashi-Maskawa-suppressed. Therefore, 𝑍′ models are natural candidates to address
several experimentally measured deviations from the SM in flavor observables. In particular, we focus
on the persistent anomalies in 𝑏 → 𝑠𝜇+𝜇− transitions as well as the large 𝐶𝑃 and 𝑈-spin breaking in
𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− decays. On the other hand, 𝑍′ models are generically plagued by low-energy Landau
poles spoiling the predictivity of the theory. We show how the flavor anomalies in the beauty and charm
sector can respectively be resolved in 𝑍′ models while the notorious Landau pole is simultaneously pushed
beyond the Planck scale. This results in distinct predictions of characteristic phenomenological signatures
that can be searched for at colliders.
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1 Introduction

Revealing the elementary building blocks of nature as well as their fundamental interactions is one of
the major challenges in modern natural science and is studied in the field of elementary particle physics.
An enormous joint effort from mathematics, theory and experiment in the middle of the past century
resulted in the formulation of the Standard Model of particle physics (SM), unifying the strong, weak
and electromagnetic forces in a quantum field theory (QFT) framework obeying the bizarre principles of
quantum mechanics and special relativity. Ever since, it has been validated with great precision in a vast
number of measurements by several different experiments promoting it to the most successful theory at the
quantum level these days. It was completed in 2012 by the discovery of the Higgs boson [8, 9] at the Large
Hadron Collider (LHC) unveiling the last postulated particle of the SM [10–13].

Despite its tremendous success, the SM cannot be the fundamental description of nature as it suffers from
several shortcomings and unexplained observations. First of all, it does not incorporate a quantum theory
of gravity, the force dominating the dynamics of the universe at large scales. It also lacks an explanation
for dark matter and dark energy which according to cosmological observations account for 95% of the
total energy of the universe [14]. Finally the amount of 𝐶𝑃 violation in the SM is orders of magnitude
too low to explain the observed baryon asymmetry of the universe (BAU), i.e. the dominance of matter
over antimatter [15]. Eventually, the discovery of neutrino oscillations [16, 17] evidenced tiny but non-zero
neutrino masses which is incompatible with the strictly vanishing neutrino masses in the SM. The above
shortcomings altogether imply the existence of physics beyond the Standard Model (BSM), whose imprints
are hunted for in close interplay between theory and experiment.
Additional theoretical shortcomings of the SM are related to its renormalization group (RG) evolution.

The postulation of the RG [18–23] encoding the scale dependence of couplings was a major breakthrough in
formal QFT and famously allowed to simultaneously explain the phenomena of confinement and asymptotic
freedom (AF) in quantum chromodynamics (QCD) [24, 25]. The running of couplings is thereby encoded in
their renormalization group equations (RGEs), which can be computed in the perturbative loop expansion
with systematically increasing precision. While there is a whole industry pushing this frontier by deriving
general RGEs in template QFTs, e.g. [26–31], the results are encoded in software packages such as [32–35]
which allow to compute the RGEs of a specific model in an automated way.

Solving the RGEs of the SM, one finds that its RG flow exhibits two unpleasant features. Firstly, in
the deep ultraviolet (UV) at 𝜇 ≃ 1041 GeV the hypercharge coupling runs into a Landau pole, where
perturbation theory breaks down and the SM looses its predictivity. Secondly, precision computations
revealed that the effective Higgs potential becomes metastable around 𝜇 ≃ 1011 GeV [36–38]. One ansatz to
avoid these shortcomings is the notion of asymptotic safety (AS) [39], demanding that couplings run into a
UV fixed point. Hence, the corresponding theory is valid up to arbitrarily high energy scales. The discovery
of AS in gauge-Yukawa (GY) theories [40] a decade ago then opened the door for asymptotically safe BSM
model building [41–46]. Within this thesis we deploy the deduced concept of Planck safety (PS) where
the requirement of a UV fixed point is relaxed to demanding a well-behaved RG flow of couplings without
any Landau poles or vacuum instabilities until the the Planck scale 𝑀Pl ≃ 1019 GeV where quantum
gravity effects are expected to set in. Demanding PS in a BSM model then results in constraints on model
parameters which are complementary to phenomenological ones promoting PS to a promising guideline
for BSM model building. The main part of this thesis is therefore devoted to analyzing the possibility
of achieving PS in BSM models. In particular, we work out the basic RG mechanisms giving rise to PS
in minimal models based on vector-like fermions (VLFs) and scalars. Moreover, we also investigate more
sophisticated models with characteristic phenomenology which simultaneously resolve other issues of the
SM.

From the phenomenological side, there are three main frontiers in the quest for new physics (NP). At the
energy frontier mostly hadron machines such as the LHC explore energies at the TeV scale in search for the
direct production of heavy BSM particles which are predicted in several BSM models. At lower energies,
at the precision frontier experiments such as Large Hadron Collider beauty (LHCb) or BELLE-II search
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1 Introduction

for small deviations of precision observables from their SM prediction. Such deviations can be caused by
quantum effects of virtual NP particles and allow to also indirectly probe higher energy scales than direct
searches. The correct framework for these model-independent, indirect searches are effective field theories
(EFTs), in particular Weak Effective Theory (WET) and Standard Model Effective Field Theory (SMEFT),
which allow to link BSM models in the UV with low-energy observables. As they can be used both in
top-down and bottom-up direction they provide an ideal interface between theory and experiment. The set
of frontiers is completed by the cosmological frontier.

While direct evidence for BSM particles is still absent, some hints are emerging at the precision frontier.
Several of them are related to the field of flavor physics. In particular flavor observables related to rare
flavor changing neutral current (FCNC) processes provide an excellent testing ground for BSM physics,
as they are severely Cabibbo-Kobayashi-Maskawa (CKM)-, loop- and partially Glashow-Iliopolus-Maiani
(GIM)-suppressed in the SM. Scrutinizing these processes in experiments revealed some systematic deviations
from SM predictions in rare 𝑏 → 𝑠𝜇+𝜇− transitions, which are jointly referred to as the 𝐵 anomalies. In
particular, several related lepton flavor universality (LFU) ratios [47–50], branching ratios [51–53], and
angular observables [54, 55] were found to individually deviate from the SM at the 1-3𝜎 level. Another puzzle
recently emerged in the charm sector, where the direct 𝐶𝑃 asymmetries in hadronic 𝐷0 → 𝜋+𝜋−, 𝐾+𝐾−

decays [56, 57] hint at a simultaneous, severe breaking of the approximate SM 𝐶𝑃 and 𝑈-spin symmetries.
We address these anomalies in the framework of flavorful 𝑍′ models, e.g. [58–61]. They are based on

extending the SM by an additional 𝑈(1)′ gauge symmetry mediated by a massive 𝑍′ boson. While being
subject to several, severe theoretical and experimental constraints, in particular from anomaly cancellation,
electroweak precision observables, meson mixing and notorious low energy Landau poles, the 𝑍′ induces
tree-level FCNC couplings which are potentially able to explain the observed deviations in rare FCNC
decays. Within this thesis, we therefore explore if and how the anomalies can be resolved in flavorful 𝑍′

models and whether simultaneously PS can be realized.

This thesis is based on [1–7] by the author and structured as follows: In Chap. 2 we briefly review the
SM, its shortcomings as well as SM-based EFTs. Afterwards, we discuss RGEs in general gauge-Yukawa
theories with special focus on the SM and introduce the concept of PS as well as our analysis workflow in
Chap. 3. We then analyze whether and how PS can be realized in minimal BSM models featuring VLFs,
singlet scalars or both. In Chap. 4, we focus on VLF models and identify the gauge- and Yukawa portal
mechanism for PS. The subsequent Chap. 5 deals with scalar singlet extensions, that allow to achieve
PS via the direct and indirect Higgs portal mechanism and have implications for Higgs phenomenology.
We combine both sectors in Chap. 6, which gives rise to a novel PS mechanism based on a pure BSM
Yukawa interaction. We also work out collider signatures. Chap. 7 is then devoted to an introduction to 𝑍′

models as well as a discussion of the central theoretical and phenomenological constraints. We apply these
findings in context of the 𝐵 anomalies in Chap. 8, where we construct Planck-safe 𝑍′ models resolving
the anomalies. Afterwards, in Chap. 9 we build different 𝑍′ models, designed to resolve the 𝑈-spin-𝐶𝑃
anomaly in hadronic charm decays. We conclude in Chap. 10. Several supplementary technical details are
relegated to the appendix.
The presented research works were performed using the software packages [32, 33, 62, 63].
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2 The Standard Model of Particle Physics and Beyond

Following the literature [64–66], in this chapter we briefly review the SM. We introduce the fields and
interactions in Sec. 2.1, before recapitulating the mechanism of electroweak symmetry breaking (EWSB) in
Sec. 2.2 and the SM flavor structure in Sec. 2.3. Afterwards, we summarize motivations for BSM physics in
Sec. 2.4 and introduce the framework of EFTs in Sec. 2.5.

2.1 Fields and Interactions
The SM is a four-dimensional, renormalizable gauge QFT with local gauge group

𝒢SM = 𝑈(1)𝑌 × 𝑆𝑈(2)𝐿 × 𝑆𝑈(3)𝐶 , (2.1)

which describes all known elementary particles and their interactions except gravity at the most fundamental
level. Here 𝑆𝑈(3)𝐶 represents the strong interaction coined QCD [24, 25, 67–69] whereas 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌
describes the electroweak interaction [70–72] which is spontaneously broken to the 𝑈(1)em of quantum
electrodynamics (QED). The charges of fields under the 𝑆𝑈(3)𝐶, 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 gauge interactions are
referred to as color, weak isospin and hypercharge, respectively. The electric charge 𝑄𝑒 of a field is related
to its weak isospin component 𝑇 3 and its hypercharge 𝑌 via the Gell-Mann-Nishijima relation

𝑄𝑒 = 𝑇 3 + 𝑌 . (2.2)

The field content of the SM is split into fermions of spin 1
2 and bosons of spin 0 or 1. The SM fermion fields

are classified according to their charges under 𝒢SM and summarized in Tab. 2.1. They are divided into
color-charged quarks and colorless leptons. According to their representation under 𝑆𝑈(2)𝐿 it is further
distinguished between left-handed (LH) quark doublets 𝑄 and right-handed (RH) singlets 𝑈, 𝐷 as well
as LH lepton doublets 𝐿 and RH singlets 𝐸. Thus, LH and RH fermions carry different charges under
𝒢SM rendering the SM a chiral theory, see App. A.1 for the definitions of chiral field components. The
upper and lower 𝑆𝑈(2)𝐿 components of 𝑄 and 𝐿 correspond to LH up- 𝑢 and down-type 𝑑 quarks as well
as LH neutrinos 𝜈 and charged leptons ℓ, respectively. Note that neutrinos in the SM do not have a RH
counterpart. Interestingly, all SM fermion representations 𝑄, 𝑈, 𝐷, 𝐿, 𝐸 come in three different copies
called generations, families or flavors that share the same quantum numbers and only differ in their masses.

The 𝑈(1)𝑌, 𝑆𝑈(2)𝐿 and 𝑆𝑈(3)𝐶 gauge interactions between fields are mediated by spin-1 gauge bosons.
These are the electroweak bosons 𝐵𝜇, 𝑊 𝑎

𝜇 and the gluons 𝐺𝑏
𝜇, respectively, where 𝑎 = 1, 2, 3 and 𝑏 = 1, ..., 8

corresponding to the 𝑁2 − 1 generators of the respective 𝑆𝑈(𝑁). The SM particle content is completed by
the Higgs boson 𝐻 which is a complex scalar 𝑆𝑈(2)𝐿 doublet uncharged under 𝑆𝑈(3)𝐶.
The SM Lagrangian density can be compactly written as1

ℒSM =ℒG + ℒF + ℒY + ℒH , (2.3)

ℒG = − 1
4

(𝐵𝜇𝜈𝐵𝜇𝜈 + 𝑊 𝑎
𝜇𝜈𝑊 𝜇𝜈

𝑎 + 𝐺𝑏
𝜇𝜈𝐺𝜇𝜈

𝑏 ) , (2.4)

ℒF = + i𝑄𝑖
/𝐷𝑄𝑖 + i𝑈𝑖 /𝐷𝑈𝑖 + i𝐷𝑖 /𝐷𝐷𝑖 + i𝐿𝑖 /𝐷𝐿𝑖 + i𝐸𝑖 /𝐷𝐸𝑖 , (2.5)

ℒY = − 𝑄𝑖𝐻𝑌 𝑖𝑗
𝑑 𝐷𝑗 − 𝑄𝑖𝐻

𝑐𝑌 𝑖𝑗
𝑢 𝑈𝑗 − 𝐿𝑖𝐻𝑌 𝑖𝑗

ℓ 𝐸𝑗 + h.c. , (2.6)
ℒH = + (𝐷𝜇𝐻)†(𝐷𝜇𝐻) − 𝑉𝐻 , (2.7)

1Here we omit the phenomenologically irrelevant gauge-fixing and ghost terms. Moreover, we neglect the 𝐶𝑃 violating
QCD 𝛩-term 𝛩QCD

𝑔2
3

32𝜋2 𝜖𝜇𝜈𝜌𝜎𝐺𝑎
𝜇𝜈𝐺𝑎

𝜌𝜎 as it is extremely constrained by measurements of the neutron electric dipole
moment [73] to 𝛩QCD ≲ 10−13 [74].
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2 The Standard Model of Particle Physics and Beyond

Field Flavors 𝑈(1)𝑌 × 𝑆𝑈(2)𝐿 × 𝑆𝑈(3)𝐶 𝑇 3 𝑄𝑒

𝑄𝑖 (𝑢
𝑑
)

𝐿

, (𝑐
𝑠
)

𝐿

, (𝑡
𝑏
)

𝐿

(+1
6 , 2, 3)

1
2

−1
2

2
3

−1
3

𝑈𝑖 𝑢𝑅, 𝑐𝑅, 𝑡𝑅 (+2
3 , 1, 3) 0 2

3
𝐷𝑖 𝑑𝑅, 𝑠𝑅, 𝑏𝑅 (−1

3 , 1, 3) 0 −1
3

𝐿𝑖 (𝜈𝑒
𝑒

)
𝐿

, (𝜈𝜇
𝜇

)
𝐿

, (𝜈𝜏
𝜏

)
𝐿

(−1
2 , 2, 1)

1
2

−1
2

0
−1

𝐸𝑖 𝑒𝑅, 𝜇𝑅, 𝜏𝑅 (−1, 1, 1) 0 −1

𝐻 (𝜙+

𝜙0 ) (1
2 , 2, 1)

1
2

−1
2

1
0

Table 2.1: SM field content including the representation under the SM gauge group (2.1). Different
fermion flavors (𝑖 = 1, 2, 3) as well as the Higgs 𝐻 are indicated in terms of their 𝑆𝑈(2)𝐿 components
that differ by the associated weak isospin 𝑇 3 and electric charge 𝑄𝑒. Fermion subscripts 𝐿, 𝑅 refer to
LH and RH chirality, respectively.

where we implicitly summed over all gauge 𝑎, 𝑏 as well as flavor 𝑖, 𝑗 indices and employed Feynman slash
notation /𝐷 = 𝐷𝜇𝛾𝜇 with the Dirac matrices 𝛾𝜇. ℒG (2.4) contains the kinetic terms of the gauge fields
𝐹 𝑙

𝑘,𝜇 = 𝐵𝜇, 𝑊 𝑎
𝜇 , 𝐺𝑏

𝜇 for 𝑘 = 1, 2, 3 with their field strength tensors

𝐹 𝑙
𝑘,𝜇𝜈 = ∂𝜇𝐹 𝑙

𝑘,𝜈 − ∂𝜈𝐹 𝑙
𝑘,𝜇 + i𝑔𝑘 𝑓 𝑙𝑚𝑛

𝑘 𝐹 𝑚
𝑘,𝜇𝐹 𝑛

𝑘,𝜈 , (2.8)

where 𝑔𝑘 and 𝑓 𝑙𝑚𝑛
𝑘 correspond to the gauge couplings and structure constants of 𝑈(1)𝑌, 𝑆𝑈(2)𝐿 and

𝑆𝑈(3)𝐶, respectively. Thus, for non-Abelian gauge groups with non-vanishing structure constants ℒG gives
rise to gauge boson self interactions. ℒF (2.5) contains the kinetic terms and gauge interactions of fermions
encoded in the covariant derivative

𝐷𝜇 = ∂𝜇 + i𝑔1𝑌 𝐵𝜇 + i𝑔2𝑊 𝑎
𝜇 𝑇 𝑎 + i𝑔3𝐺𝑏

𝜇𝑡𝑏 , (2.9)

where 𝑇 𝑎 (𝑎 = 1, 2, 3) and 𝑡𝑏 (𝑏 = 1, ..., 8) correspond to the canonically normalized 𝑆𝑈(2)𝐿 and 𝑆𝑈(3)𝐶
generators of the field representation they are acting on, respectively. ℒY (2.6) contains the Yukawa
matrices 𝑌 𝑖𝑗

𝑢 , 𝑌 𝑖𝑗
𝑑 , 𝑌 𝑖𝑗

ℓ which encode the couplings of up-type quarks, down-type quarks and charged leptons
to the Higgs boson, respectively. Here 𝐻𝑐 = i𝜎2𝐻∗ denotes the charge conjugated Higgs with the second
Pauli matrix 𝜎2. ℒ𝐻 (2.7) finally encodes the kinetic term, gauge interactions and (tree-level) potential 𝑉𝐻
of the Higgs. Note that any explicit fermion and gauge boson mass terms are forbidden by gauge invariance.
They are generated by the Higgs mechanism [10–13] during EWSB. This is discussed in the next section.

2.2 Electroweak Symmetry Breaking
The SM Higgs potential at tree-level is given as

𝑉𝐻 = −𝜇2𝐻†𝐻 + 𝜆(𝐻†𝐻)2 . (2.10)
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2.2 Electroweak Symmetry Breaking

For positive parameters 𝜇2, 𝜆 > 0 the potential has its global minimum2 at

(𝐻†𝐻) = 𝜇2

2𝜆
= 𝑣2

ℎ
2

, (2.11)

where 𝐻 acquired a vacuum expectation value (VEV) 𝑣ℎ ≃ 246GeV. Choosing the specific ground state
⟨𝐻⟩ = 1√

2(0, 𝑣ℎ)𝑇 out of the infinitely many degenerate minima in (2.11) spontaneously breaks the SM
gauge symmetry as

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌
⟨𝐻⟩

−−−→ 𝑆𝑈(3)𝐶 × 𝑈(1)em. (2.12)

After EWSB the Higgs field in unitary gauge is given as

𝐻 = 1√
2

( 0
𝑣ℎ + ℎ) , (2.13)

where the electrically neutral real scalar field ℎ denotes the physical Higgs boson with mass 𝑀ℎ ≃ 125GeV
[8, 9]. The broken Higgs potential

𝑉ℎ = 𝜆
4

ℎ4 + 𝜆𝑣ℎℎ3 + 𝜆𝑣2
ℎℎ2 − 𝜆𝑣4

ℎ
4

≡ 𝜅4ℎ4 + 𝜅3ℎ3 + 1
2

𝑀2
ℎℎ2 − 𝑉0 (2.14)

then features a quartic 𝜅4 as well as trilinear 𝜅3 Higgs self-coupling and the mass term 𝑀2
ℎ . Note that

the independent determination of 𝑀ℎ and 𝑣ℎ fixes the quartic as 𝜆 = 𝑀2
ℎ

2𝑣2
ℎ
in the SM. After spontaneous

symmetry breaking (SSB), of a priori four degrees of freedom (d.o.f.) in 𝐻 there is only a single physical
d.o.f. ℎ left. Each of the other three d.o.f. corresponds to a broken generator of 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 which
according to Goldstone’s theorem [75] each yield a massless scalar Goldstone boson. However, when
inserting (2.13) into ℒ𝐻 the Higgs VEV generates mass terms for 𝐵𝜇 and 𝑊 𝑎

𝜇 , that are diagonalized via

𝑊 ±
𝜇 = 1√

2
(𝑊 1

𝜇 ∓ i𝑊 2
𝜇) , (𝑍𝜇

𝐴𝜇
) = (cos 𝜃𝑊 − sin 𝜃𝑊

sin 𝜃𝑊 cos 𝜃𝑊
) (𝑊 3

𝜇
𝐵𝜇

) , (2.15)

where the weak mixing angle 𝜃𝑊 is defined as

sin 𝜃𝑊 = 𝑔1

√𝑔2
1 + 𝑔2

2
. (2.16)

This yields the massive electroweak gauge bosons 𝑊 ±
𝜇 and 𝑍𝜇 as well as the massless photon 𝛾 (𝐴𝜇) as

physical d.o.f., where the Goldstone modes have been absorbed in the additional longitudinal polarizations
of the massive 𝑊 ±

𝜇 and 𝑍𝜇. The 𝑊- and 𝑍-boson masses are given as

𝑚𝑊 = 1
2𝑔2𝑣ℎ 𝑚𝑍 = 𝑚𝑊

cos 𝜃𝑊
. (2.17)

We can now rewrite the electroweak part of the covariant derivative (2.9) as

𝐷𝜇 = ∂𝜇 − i 𝑔2√
2

(𝑊 +
𝜇 𝑇 + + 𝑊 −

𝜇 𝑇 −) − i 𝑔2
cos 𝜃𝑊

𝑍𝜇(𝑇 3 − sin2 𝜃𝑊𝑌 ) − i𝑒𝐴𝜇𝑄𝑒 , (2.18)

2The full effective Higgs potential additionally contains higher-order corrections which may modify its shape and alter the
extrema structure, e.g. [36–38], see also Subsec. 3.2.3.
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with 𝑇 ± = 𝑇 1 ± 𝑖𝑇 2 for the 𝑆𝑈(2)𝐿 generators and the electromagnetic coupling

𝑒 = 𝑔1 cos 𝜃𝑊 = 𝑔2 sin 𝜃𝑊 . (2.19)

2.3 Flavor
The fermion kinetic Lagrangian ℒ𝐹 (2.5) is diagonal in flavor space and features a global flavor symmetry

𝑈(3)5 = 𝑈(3)3
𝑞 × 𝑈(3)2

ℓ = [𝑈(3)𝑄 × 𝑈(3)𝑈 × 𝑈(3)𝐷] × [𝑈(3)𝐿 × 𝑈(3)𝐸] (2.20)

under unitary transformations on the chiral fermion fields 𝑄𝑖, 𝑈𝑖, 𝐷𝑖, 𝐿𝑖, 𝐸𝑖. This flavor symmetry is
explicitly broken by the Yukawa sector (2.6) to

𝑈(3)5
𝑌𝑢,𝑑,𝑒
−−−→ 𝑈(1)𝐵 × 𝑈(1)𝑒 × 𝑈(1)𝜇 × 𝑈(1)𝜏 , (2.21)

corresponding to baryon number (𝐵) and lepton family numbers (𝑒, 𝜇, 𝜏), which are exact global symmetries
of the full SM Lagrangian (2.3).
After EWSB the Higgs VEV in ℒ𝑌 generates mass terms 𝑀 𝑖𝑗

𝑓 = 𝑣ℎ√
2𝑌 𝑖𝑗

𝑓 for 𝑓 = 𝑢, 𝑑, ℓ. To obtain the
physical fermion fields we have to go to the fermion mass basis. Thus, we have to diagonalize the Yukawa
matrices which are a priori unconstrained, complex matrices by a bi-unitary transformation

𝑦𝑓 = 𝑉 𝑓
𝐿𝑌𝑓𝑉 𝑓†

𝑅 . (2.22)

This corresponds to applying unitary transformations on the chiral fermion fields

𝑓 ′
𝐿,𝑅 = 𝑉 𝑓

𝐿,𝑅𝑓𝐿,𝑅 , (2.23)

where primed (unprimed) fields denotes the mass (gauge) basis. We then obtain the fermion mass terms

− ℒmass = 𝑚𝑖
𝑢𝑢̄𝑖

𝐿𝑢𝑖
𝑅 + 𝑚𝑖

𝑑
̄𝑑𝑖
𝐿𝑑𝑖

𝑅 + 𝑚𝑖
ℓ

̄ℓ𝑖
𝐿ℓ𝑖

𝑅 , (2.24)

with the masses 𝑚𝑓 = 𝑣ℎ√
2𝑦𝑓 where we dropped the primes for notational convenience. The numerical

values of quark and lepton masses are collected in App. A.2. They exhibit a strong hierarchy that remains
unexplained within the SM and is part of the SM flavor puzzle [76]. Neutrinos on the other hand are
strictly massless in the SM.

Most of the fermion field transformations (2.23) are unphysical and do not have any observable effect. The
reason is that most terms in ℒ𝐹 are ∝ ̄𝑓𝐿,𝑅𝛾𝜇𝑓𝐿,𝑅, so that the fermion field transformations immediately
drop out due to unitarity. The only exception are charged current interactions of quarks with the 𝑊 ±-bosons
via

ℒ𝑐𝑐 = 𝑔2√
2

(𝑢̄𝑖
𝐿𝑉𝑖𝑗𝛾𝜇𝑑𝑗

𝑅 + ̄𝜈𝑖
𝐿𝛾𝜇ℓ𝑖

𝐿) 𝑊 +
𝜇 + h.c. , (2.25)

which couple LH up- and down-type quarks. The CKM matrix [77, 78]

𝑉 = 𝑉CKM = 𝑉 𝑢†
𝐿 𝑉 𝑑

𝐿 = ⎛⎜
⎝

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

⎞⎟
⎠

(2.26)

is the only combination of fermion transformations 𝑉 𝑓
𝐿,𝑅 that becomes physical and gives rise to flavor

6



2.4 Motivation and Directions for BSM

changing charged currents. In contrast, there are no tree-level FCNCs in the SM. Note that in the lepton
sector due to the absence of RH neutrinos in the SM we can apply the unitary transformation 𝑉 ℓ

𝐿 also to
𝜈𝐿, such that the leptonic charged current interactions remain flavor diagonal.

In the SM, the CKM matrix is strictly unitary and contains four free parameters, namely three mixing
angles and a 𝐶𝑃-violating phase. It exhibits a very peculiar hierarchy, i.e. it is numerically close to the
unit matrix. This can be conveniently seen in the Wolfenstein parametrization [79]

𝑉CKM = ⎛⎜⎜
⎝

1 − 𝜆2

2 𝜆 𝐴𝜆3 (𝜌 − i𝜂)
−𝜆 1 − 𝜆2

2 𝐴𝜆2

𝐴𝜆3 (1 − 𝜌 − i𝜂) −𝐴𝜆2 1

⎞⎟⎟
⎠

+ 𝒪(𝜆4) , (2.27)

where we expanded in the small Wolfensteinparameter 𝜆 ≃ 0.2. Note that up to 𝒪(𝜆3) 𝐶𝑃 violation just
occurs in the CKM elements 𝑉𝑡𝑑 and 𝑉𝑢𝑏 while it is absent elsewhere.

We can now examine the number of independent free parameters in the SM. These are the three gauge
couplings 𝑔𝑖, the parameters of the Higgs potential 𝜇2 and 𝜆, nine fermion masses and four CKM parameters
summing up to 18 parameters3, of which 13 are related to flavor. At first glimpse, this number seems large.
However, these 18 parameters allow to simultaneously explain several hundreds of measurements which
impressively demonstrates the predictive power of the SM.

2.4 Motivation and Directions for BSM
Despite its tremendous success the SM is not the most fundamental theory of nature. The reason are
several observed phenomena that remain unexplained within the SM and prove the existence of NP.
A prominent example is the discovery of neutrino oscillations [16, 17] which provides evidence for non-

vanishing mixing of the three SM neutrino flavors. It is encoded in the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix which is the leptonic counterpart of the CKM matrix and implies the existence of lepton
flavor violation (LFV). Moreover, neutrino oscillations demonstrated that at least two neutrinos have
non-zero masses which however have to be several order of magnitude smaller than the other SM fermion
masses [14].
Several shortcomings of the SM are related to cosmological observations. First of all, it does not

incorporate a quantum theory of gravity which is the fundamental force dominating our universe on large
scales. Furthermore, SM matter just accounts for roughly 5% of the energy budget of the universe [14].
The majority of the universes energy is stored in dark matter and dark energy which are not part of the
SM. Finally, the SM does not offer an explanation for the observed BAU which quantifies the dominance of
matter over antimatter in the universe. The BAU can only have been generated in processes fulfilling the
three Sakharov conditions [80]. Besides out of equilibrium dynamics, these also require the violation of
baryon number 𝐵 and 𝐶𝑃. In the SM 𝐵 violation is completely absent and the magnitude of 𝐶𝑃 violation
is significantly too small to explain the measured value of the baryon-to-photon-ratio in the observable
universe [15]. Thus, additional BSM sources of 𝐵 and 𝐶𝑃 violation have to exist.

Moreover, precision computations [4, 36–38] have evidenced the metastability of the SM Higgs potential.
This metastability can potentially be cured by NP. Although the lifetime of the false vacuum is larger than
the age of the universe and thus metastability is not in conflict with observations the stabilization of the
SM vacuum has become an active new direction in BSM model building. We discuss this in more detail in
Subsec. 3.2.3.

Another open question is the origin of the SM flavor structure that constitutes the SM flavor puzzle [76].
In the flavor sector both the fermion mass spectrum and the CKM matrix exhibit large hierarchies. This is

3In this counting we omitted again the QCD 𝛩-term.
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2 The Standard Model of Particle Physics and Beyond

in principle allowed as fermion masses and quark mixing angles are free parameters of the SM. However, the
peculiar patterns of these parameters are often interpreted as hints for some more fundamental underlying
dynamics.
In addition, several anomalies related to flavor observables have emerged in experiments during the

last years. In particular, a set of systematic deviations from the SM coined the 𝐵 anomalies has been
experimentally observed in the past decade in several observables related to rare 𝑏 → 𝑠𝜇+𝜇− FCNC
transitions. This is discussed in detail in Subsec. 8.1.1. Interestingly, also hints for an excess in the
branching ratio of the related 𝐵+ → 𝐾+𝜈 ̄𝜈 decay have been reported by the Belle II experiment [81, 82].
In the charm sector, hints for BSM sources of 𝐶𝑃 and 𝑈-spin violation have been recently gathered by
LHCb, cf. Sec. 9.1. In this thesis we aim at explaining these flavor anomalies in anomaly-free, flavorful
𝑈(1)′ extensions of the SM in Chap. 8 and Chap. 9, respectively. A key tool for this purpose are EFTs,
which constitute an interface between experimental low-energy data and BSM models in the UV.

2.5 Effective Field Theories

Despite the clear evidence for BSM physics discussed in Sec. 2.4 up to now no new particles have been
directly discovered. Therefore, indirect and model-independent NP searches have become increasingly
important. The crucial theoretical framework for this task are EFTs, see e.g. [83–88] for more comprehensive
and detailed reviews.
The basic idea of an EFT is to describe physical processes in a certain energy range just in terms of

the relevant, dynamical d.o.f.. Sufficiently heavier d.o.f. are systematically decoupled from the the low
energy description of the process [89]. Thereby, EFTs allow to disentangle low energy (long distance) and
high energy (short distance) physics contributions in a given process. The low-energy physics is encoded in
higher-dimensional operators 𝑂(𝑑)

𝑖 with mass dimension 𝑑 > 4 constructed of the dynamical fields. At each
mass dimension all possible operators obtained from field combinations respecting gauge invariance and
possible additional symmetries of the system have to be taken into account. Short-distance contributions
on the other hand are captured in dimensionful effective couplings of these operators. This separative
approach is formally referred to as operator product expansion (OPE) [90]. The effective couplings can
further be expressed as ratios 𝐶(𝑑)

𝑖 /𝛬𝑑−4 with dimensionless Wilson coefficients (WCs) 𝐶(𝑑)
𝑖 suppressed by

𝑑-4 powers of a high scale 𝛬.
An EFT can be used in two different ways. In a top-down approach one starts from a renormalizable

model in the UV and obtains the WCs in a low energy EFT by integrating out the heavy fields. In a
model-independent bottom-up approach in contrast the WCs are treated as free parameters. Observables
are computed in the EFT as functions of the WCs and their allowed values are determined by fits to
experimental data. This allows to extract widely model independent constraints on heavy NP contributions
to the WCs providing directions for model building.

A prominent historical example of an EFT is Fermi’s theory [91] which constitutes an effective description
of the charged current weak interactions (2.25) in the SM. The full effective Lagrangian of Fermi’s theory
is given as

ℒFermi = −4𝐺𝐹√
2

𝐽−𝜇𝐽+
𝜇 + 𝒪 ( 𝑞2

𝑚2
𝑊

) , (2.28)

with the charged current

𝐽+
𝜇 = 𝑉𝑖𝑗𝑢̄𝐿,𝑖𝛾𝜇𝑑𝐿,𝑗 + ̄𝜈𝐿,𝑖𝛾𝜇𝑒𝐿,𝑖, 𝐽−

𝜇 = (𝐽+
𝜇 )† , (2.29)
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(a) (b)

𝜇 𝜈𝜇

𝑞𝑊

𝜈𝑒 𝑒

𝜇 𝜈𝜇

𝜈𝑒 𝑒

𝑞 ≪ 𝑚𝑊

Figure 2.1: Leading order (LO) Feynman diagrams for muon decay in the SM (left) and Fermi’s theory
(right). The crosses indicate a local four-fermion operator in the EFT. The WC of the operators for
𝑞 ≪ 𝑚𝑊 is obtained by integrating out the 𝑊-boson.

where the summation over flavor indices 𝑖, 𝑗 is understood and we introduced the Fermi constant

𝐺𝐹 =
√

2𝑔2
2

8𝑚2
𝑊

= 1√
2𝑣2

ℎ
(2.30)

as effective coupling of the theory.

We illustrate the derivation of the EFT description from the full theory in a top-down study of muon
decay. The corresponding LO Feynman diagrams in the SM as well as Fermi’s theory are depicted in
Fig. 2.1. The energy scale of the decay is set by the momentum transfer 𝑞2 ∼ 𝑚2

𝜇 ≪ 𝑚2
𝑊. Thus, we can

treat the 𝑊-boson as approximately static, i.e. collapse the propagator 1
𝑞2−𝑚2

𝑊
→ − 1

𝑚2
𝑊

+ 𝒪( 𝑞2

𝑚2
𝑊

). This
gives rise to an effective four fermion operator ( ̄𝑒𝐿𝛾𝜇𝜈𝑒𝐿)( ̄𝜈𝜇𝐿𝛾𝜇𝜇𝐿) ⊃ 𝐽−𝜇𝐽+

𝜇 with the effective coupling
𝐺𝐹 ∝ 1

𝑚2
𝑊

containing the high energy information about the 𝑊-boson. Hence, the precise value of 𝐺𝐹 ≡ 𝐶
𝛬2

in (2.30) is fixed by matching the amplitude in the full theory to the EFT. Historically, 𝐺𝐹 was extracted
from data in a bottom-up approach, demonstrating the power of EFTs to perform low-energy computations
completely agnostic of the high-energy dynamics.

The precision of the EFT computation can be systematically improved by considering corrections of
higher orders in the small expansion parameter 𝑞2

𝑚2
𝑊
. This gives rise to higher-dimensional operators with

corresponding WCs suppressed by higher powers of 1
𝑚2

𝑊
. Thus, the increasing precision comes at the price

of an increasing number of operators and WCs that have to be considered. When expanding to all orders
in 𝑞2

𝑚2
𝑊

the EFT is formally equivalent to the full theory. However, as the expansion parameter is typically
tiny for practical purposes it is often sufficient to consider LO contributions.

To compare low energy data to high-energy predictions from UV models we have to relate the values of
WCs at different energy scales 𝜇. Demanding the effective Lagrangian

ℒeff = − 1
𝛬2 ∑

𝑖
𝐶𝑖(𝜇)𝑂𝑖(𝜇) (2.31)
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to be independent of the scale 𝜇 implies a running and mixing of WCs 𝐶𝑖 obeying

d𝐶𝑖
d ln𝜇

= 𝛾𝑇
𝑖𝑗𝐶𝑗 . (2.32)

It is governed by the so-called anomalous dimension matrix (ADM) 𝛾𝑖𝑗 defined through the renormalization
of operators due to QCD corrections reading d𝑂𝑖

d ln 𝜇 ≡ −𝛾𝑖𝑗𝑂𝑗. It can be systematically computed order by
order in perturbation theory. Crucially, solving (2.32) for 𝛾𝑖𝑗 at 𝑘-loop order also resums potentially large
logarithmic terms ∝ 𝛼𝑘−1

𝑠 (𝛼𝑠 ln 𝛬
𝜇 )𝑛 ∀𝑛 ∈ ℕ. We now introduce two SM-based EFTs that are relevant for

this work in more detail.

2.5.1 Standard Model Effective Field Theory
The SMEFT is extensively applied in model-independent searches for heavy NP, see e.g. [92]. It is a
generalization of the SM, i.e. operators are constructed of all SM fields and respect the full SM gauge
symmetry 𝒢𝑆𝑀 (2.1). SMEFT just makes use of two central assumptions: Firstly, all possible BSM particles
have masses well above the electroweak scale and secondly EWSB is linearly realized by a 𝑆𝑈(2)𝐿 doublet
Higgs4. Apart from that, the SMEFT approach is completely model independent. The SMEFT Lagrangian
is given as

ℒSMEFT = ℒSM +
∞

∑
𝑑=5

ℒ(𝑑) with ℒ(𝑑) = ∑
𝑖

1
𝛬𝑑−4 𝐶(𝑑)

𝑖 𝑄(𝑑)
𝑖 , (2.33)

where 𝐶(𝑑)
𝑖 and 𝑄(𝑑)

𝑖 denote the WCs and operators at mass dimension 𝑑, respectively. As ℒSMEFT contains
the full ℒSM all WCs strictly vanish within the SM. SMEFT operator bases are explicitly known up to 𝑑 = 8
[94–97] as well as an algorithm to construct operator bases at arbitrary dimension [97, 98]. The leading ℒ(5)

contains only the lepton number violating Weinberg operator [94] which can give rise to Majorana mass
terms for neutrinos. In fact, all operators of odd mass dimension necessarily violate either baryon or lepton
number [99] and are therefore not relevant for this work. Thus, the leading NP contributions to observables
in SMEFT typically arise from ℒ(6). The first complete generating set of operators for ℒ(6) was derived in
[100]. Later on, redundant operators were successfully removed in [95] by applying equations of motion and
integration by parts relations yielding the so-called Warsaw basis for ℒ(6). Assuming baryon and lepton
number conservation, ℒ(6) contains 59 linearly independent operators and 2499 real parameters [101]. The
large number of parameters is mainly related to the fermion fields and corresponding WCs carrying flavor
indices and can be drastically reduced by assuming flavor symmetries. For maximal 𝑈(3)5 flavor symmetry
there remain 76 real parameters5 [101], which as of now are still too many to perform a full fit. Thus, in
bottom-up fits typically just a subset of operators is considered and certain flavor symmetries are imposed
on the WCs. In contrast, for the top-down approach a completely general tree-level dictionary is available
to match any renormalizable UV model to SMEFT [102]. In both cases the running of WCs between the
NP scale and the typical scales of observables has to be taken into account. The corresponding SMEFT
ADM is known completely at 1-loop [101, 103, 104] and partially at 2-loop [105].

2.5.2 Weak Effective Theory
At energies below the electroweak scale SMEFT is not the appropriate framework, as the heavy SM fields
𝑡, 𝐻, 𝑍, 𝑊 decouple and the electroweak symmetry is broken down to QED. Accordingly, operators should

4There is also a more general EFT called Higgs Effective Field Theory (HEFT) where this assumption is dropped, see [93]
for a review.

5Some of the 59 WCs are complex-valued yielding two real parameters.
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2.5 Effective Field Theories

not contain fermion doublets but their weak isospin components separately. The EFT realizing these
features is called WET6. To relate observables above and below the electroweak scale it is crucial to match
WCs in SMEFT onto those in WET which is typically done at 𝜇 = 𝑚𝑊. The matching conditions at
tree-level as well as one-loop are completely known [106]. Note that in contrast to SMEFT in WET several
WCs are already induced in the SM by integrating out the heavy 𝑡, 𝐻, 𝑍, 𝑊 fields.

A central application of WET are 𝐵 decays, see e.g. [107]. In particular, we are interested in rare
semileptonic 𝑏 → 𝑠ℓ+ℓ− FCNC transitions, which are the subject of Chap. 8. The part of the WET
Lagrangian that gives rise to such transitions at tree-level reads

ℒ𝑏𝑠ℓℓ
WET = 4𝐺𝐹√

2
𝛼𝑒
4𝜋

𝑉𝑡𝑏𝑉 ∗
𝑡𝑠 [𝑐7𝑂7 + 𝑐′

7𝑂′
7 + ∑

ℓ=𝑒,𝜇,𝜏
∑

𝑖=9,10,𝑆,𝑃
(𝑐ℓ

𝑖 𝑂ℓ
𝑖 + 𝑐′ℓ

𝑖 𝑂′ℓ
𝑖 ) + ∑

𝑖=𝑇 ,𝑇 5
𝑐ℓ

𝑖 𝑂ℓ
𝑖] , (2.34)

with the fine structure constant 𝛼𝑒 = 𝑒2

4𝜋 and the semileptonic dimension-six operators

𝑂ℓ
9 = ( ̄𝑠𝐿𝛾𝜇𝑏𝐿)( ̄ℓ𝛾𝜇ℓ), 𝑂ℓ

10 = ( ̄𝑠𝐿𝛾𝜇𝑏𝐿)( ̄ℓ𝛾𝜇𝛾5ℓ),
𝑂ℓ

𝑆 = 𝑚𝑏( ̄𝑠𝐿𝑏𝑅)( ̄ℓℓ), 𝑂ℓ
𝑃 = 𝑚𝑏( ̄𝑠𝐿𝑏𝑅)( ̄ℓ𝛾5ℓ),

𝑂ℓ
𝑇 = 1

2
( ̄𝑠𝜎𝜇𝜈𝑏)( ̄ℓ𝜎𝜇𝜈ℓ), 𝑂ℓ

𝑇 5 = 1
2

( ̄𝑠𝜎𝜇𝜈𝑏)( ̄ℓ𝜎𝜇𝜈𝛾5ℓ),

(2.35)

where 𝜎𝜇𝜈 = 𝑖
2 [𝛾𝜇, 𝛾𝜈]. The electromagnetic dipole operator

𝑂7 = 𝑚𝑏
𝑒

( ̄𝑠𝐿𝜎𝜇𝜈𝑏𝑅)𝐹 𝜇𝜈 (2.36)

can also contribute indirectly to 𝑏 → 𝑠ℓ+ℓ− transitions via electromagnetic penguins. Primed operators
𝑂ℓ′

𝑖 for 𝑖 = 7, 9, 10, 𝑆, 𝑃 are obtained by interchanging the quark chiralities 𝐿 ↔ 𝑅. Note that we do not
consider possible lepton flavor violating (LFV) operators 𝑂ℓℓ′ with ℓ ≠ ℓ′. The WCs

𝑐(′)ℓ
𝑖 = 𝐶(′)SM

𝑖 + 𝐶(′)ℓ,NP
𝑖 (2.37)

contain a LFU SM contribution 𝐶(′)SM
𝑖 and a potential, flavor specific NP contribution 𝐶(′)ℓ,NP

𝑖 . In the
SM the (pseudo-)scalar, tensor and primed WCs are negligibly small at 𝜇𝑏 ∼ 𝑚𝑏 whereas 𝐶SM

7,9,10(𝜇𝑏) read
𝐶SM

7 (𝜇𝑏) ≃ −0.29, 𝐶SM
9 (𝜇𝑏) = −4.31 and 𝐶SM

10 (𝜇𝑏) = 4.07 at NNLO [108].
At 1-loop, 𝑏 → 𝑠ℓ+ℓ− transitions additionally receive LFU contributions from the charged-current

four-quark operators
𝑂𝑞

1 = ( ̄𝑠𝛼
𝐿𝛾𝜇𝑞𝛼

𝐿)( ̄𝑞𝛽
𝐿𝛾𝜇𝑏𝛽

𝐿), 𝑂𝑞
2 = ( ̄𝑠𝛼

𝐿𝛾𝜇𝑞𝛽
𝐿)( ̄𝑞𝛽

𝐿𝛾𝜇𝑏𝛼
𝐿), (2.38)

with 𝑞 = 𝑢, 𝑐 and color indices 𝛼, 𝛽. The corresponding WCs 𝐶𝑞
1 as well as through RG-mixing also 𝐶𝑞

2 are
induced at tree level in the SM and constitute a central source of theoretical uncertainties in predictions for
𝑏 → 𝑠ℓ+ℓ− observables, e.g. [109].

6In the literature there is a subtle ambiguity in the use of the term WET. Processes at scales 𝑚𝑏 ≲ 𝜇 ≲ 𝑚𝑊 should be
described by the ’traditional’ WET also called WET-5 referring to the five active quark flavors 𝑢, 𝑑, 𝑠, 𝑐, 𝑏. Unless stated
otherwise, within this thesis when speaking of WET we always refer to WET-5, which is the correct tool for 𝐵 physics.
However, at lower scales 𝑚𝑐 ≲ 𝜇 ≲ 𝑚𝑏 the bottom quark has to be integrated out yielding a different EFT called WET-4
which is the right framework for charm physics.
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3 Renormalization Group Running as Tool for Model
Building

A crucial feature of QFTs is the dependence of coupling constants on the energy scale 𝜇 due to quantum
fluctuations. In perturbation theory this phenomenon manifests itself in the frequent appearance of
unphysical UV divergences in the evaluation of corresponding higher-order loop diagrams. These have to be
cancelled in the computation of physical observables, which is achieved in the processes of regularization and
renormalization, see e.g. [64, 65] for a detailed pedagogical introduction of the concepts. The divergences
are first analytically parametrized by employing a certain regularization method and then absorbed into
the bare parameters of the theory by choosing a proper renormalization scheme. Common choices are
dimensional regularization [110] and the modified minimal subtraction scheme (MS-scheme) [111] which
are also employed within this thesis. However, physical observables are scheme-independent, i.e. all explicit
dependencies on the regularization and renormalization method have to cancel in their computation. This
condition is encoded in the Callan-Symanzik equation [18–23] which implies RGEs for the renormalized
parameters in the theory. For coupling constants 𝛼𝑔 the RGEs read

d𝛼𝑔

d ln𝜇
= 𝛽𝑔 , (3.1)

where 𝜇 is the renormalization scale and 𝛽𝑔 denotes the 𝛽-function of the coupling 𝛼𝑔. It can be systematically
computed in the perturbative loop expansion, i.e.

𝛽𝑔 =
∞

∑
𝑛=1

𝛽(𝑛)
𝑔 , (3.2)

where 𝛽(𝑛)
𝑔 denotes the 𝑛-loop contribution to 𝛽𝑔. The 𝛽(𝑛)

𝑔 depend on the couplings and field content of
the theory with each successive loop order being proportional to higher powers of coupling constants. Once
the 𝛽-functions are known the RGEs can be solved for some starting values 𝛼𝑔(𝜇0) at a reference scale
𝜇0. The dependence of the coupling constants 𝛼𝑔(𝜇) on the renormalization scale implied by the RGEs is
referred to as RG evolution, flow or running. Crucially, the precision in the determination of the running
can be systematically improved by including higher loop orders in the 𝛽-functions.
In this chapter we first investigate the RGEs in GY theories in general and the SM in particular in

Sec. 3.1 before introducing the concepts of asymptotic safety and Planck safety as guidelines for BSM
model building in Sec. 3.2.

3.1 Gauge-Yukawa Running
The SM is a GY theory, promoting them to objects of crucial interest in particle physics. Thus, large efforts
have been made to investigate the RGEs in GY systems [26–31, 112–117]. For this purpose, it is convenient
to introduce redefined coupling constants

𝛼𝑋 = 𝑋2

16𝜋2 , 𝛼𝑌 = 𝑌 2

16𝜋2 , 𝛼𝑍 = 𝑍
16𝜋2 , (3.3)

where 𝑋, 𝑌 and 𝑍 refer to gauge, Yukawa and scalar quartic couplings, respectively. In this specific
convention, all loop factors 1/(4𝜋)2 are incorporated in 𝛼𝑋,𝑌 ,𝑍 and hence removed from the 𝛽-functions.
Moreover, the powers of fundamental coupling constants for the different interactions in (3.3) are chosen
such that all 𝑛-loop diagrams contributing to a 𝛽-function are of 𝒪(𝛼𝑛). Accordingly, all 𝛽(𝑛) are of 𝒪(𝛼𝑛+1)
yielding a simple method to identify the loop order of a given term in a 𝛽-function. To shorten the notation,
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3.1 Gauge-Yukawa Running

we define the lmn approximation (also lmn loop order) as taking into account l-, m- and n-loop order in the
gauge, Yukawa and scalar quartic sector, respectively.

The complete set of 2-loop template 𝛽-functions in a fully general GY theory has been first worked out in
[112–114] and corrected in [115, 116]. As of now, template RGEs are available up to 432 loop order [26–28].
General 3-loop scalar quartic 𝛽-functions are subject of active research and only partially known [29–31] as
computations in theories featuring chiral fermions and charged scalars are significantly complicated by the
correct treatment of 𝛾5 in dimensional regularization, see [118] and references therein for details. For some
special cases results at higher loop orders are also available1. However, obtaining multi-loop RGEs in a
specific model from the GY template 𝛽-functions remains quite an involved task. While a first attempt to
simplify the process was put forward in [126] it is nowadays performed with the help of computer codes.
Prominent examples are PYR@TE 3 [34], RGBeta [35], ARGES [32] and FoRGEr [33]. In this work we made
use of the latter two as the application of symbolic rather than numeric computation methods allows us
also to leave some parameters such as field multiplicities and representations unspecified. We now examine
the general anatomy of 𝛽-functions in the different sectors.

3.1.1 Gauge Couplings

The 1-loop 𝛽-function 𝛽(1)
𝑔 of a gauge coupling 𝛼𝑔 is given as

𝛽(1)
𝑔 = −𝐵 𝛼2

𝑔 , (3.4)

where we introduced the 1-loop coefficient 𝐵 which depends on the gauge group and particle content of the
theory. We see that 𝛽(1)

𝑔 ∝ 𝛼2
𝑔. In fact, all terms in 𝛽𝑔 up to arbitrary loop order are ∝ 𝛼𝑘

𝑔 with 𝑘 ≥ 2 2 [28].
Thus, gauge couplings 𝛼𝑔 cannot be RG induced if they vanish at some scale 𝜇0. This feature is referred to
as technical naturalness and always protected by a symmetry. We also see that 𝛽(1)

𝑔 is independent of all
other gauge, Yukawa or quartic couplings that might be present in the theory. Solving the 1-loop RGEs
analytically yields

𝛼𝑔(𝜇) =
𝛼𝑔(𝜇0)

1 + 𝛼𝑔(𝜇0) 𝐵 ln 𝜇
𝜇0

. (3.5)

Assuming that the inclusion of higher loop orders does not change the running significantly, we can deduce
the RG behavior of 𝛼𝑔 depending on the sign of 𝐵. For 𝐵 > 0 the coupling constant 𝛼𝑔(𝜇) decreases
towards higher energies and asymptotically approaches zero in the UV. This behavior is referred to as
asymptotic freedom and was first observed in QCD [24, 25]. For 𝐵 < 0 on the other hand 𝛼𝑔 grows with
increasing energy and finally diverges. This phenomenon is referred to as a Landau pole and occurs at the
scale

𝜇LP = 𝜇0 exp( 1
𝐵𝛼𝑔(𝜇0)

). (3.6)

When approaching this scale in the UV, perturbation theory breaks down and our capability to make
predictions is compromised.
In a 𝑆𝑈(𝑁) gauge theory with 𝑁𝐹 Weyl fermions in the representation 𝑅𝐹 under the gauge group and

1In the SM, the full 3-loop 𝛽-function of the Higgs quartic coupling 𝛼𝜆 was derived in [119, 120]. In pure QCD and QED
the full 5-loop gauge 𝛽-functions are known [121–124]. In pure scalar theories 6-loop 𝛽-functions were pioneered in [125].

2The sole exception to this rule arises from kinetic mixing of two abelian gauge fields (see Sec. 7.2 for details) with gauge
couplings 𝛼𝑖 with 𝑖 = 1, 2 in a semi-simple gauge group [28]. In this case, the kinetic mixing parameter 𝜂 induces terms
in 𝛽𝑖 that are of lower power in 𝛼𝑖 but contain powers of 𝛼𝑗 instead. The terms of lowest power in 𝛼𝑖 are 𝛽(1)

𝑖 ⊃ 𝜂2𝛼𝑖𝛼𝑗
for 𝑖 ≠ 𝑗 [28, 127]. These terms are however still ∝ 𝛼𝑖, quadratic in gauge couplings and vanish for 𝜂 = 0.
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3 Renormalization Group Running as Tool for Model Building

𝑁𝑆 scalars with representation 𝑅𝑆 the 1-loop coefficient reads [112]

𝐵 = 22
3

𝑁 − 4
3

𝑁𝐹𝑆2(𝑅𝐹) − 2
3

𝑁𝑆𝑆2(𝑅𝑆) . (3.7)

The Dynkin index 𝑆2(𝑅) is defined as 𝑆2(𝑅)𝛿𝐴𝐵 = Tr [𝑡𝐴(𝑅)𝑡𝐵(𝑅)] with 𝑡𝐴(𝑅) denoting the generators of
the representation 𝑅 and takes the values 𝑆2(𝐹) = 1

2 , 𝑆2(𝑆) = 1
2(𝑁 − 2), 𝑆2(𝑆) = 1

2(𝑁 + 2) and 𝑆2(𝐴) = 𝑁
for the fundamental 𝐹, anti-symmetric 𝑆, symmetric 𝑆 and adjoint representation 𝐴 of 𝑆𝑈(𝑁). The first
term in (3.7) arises from gauge boson self-interactions. Thus, (3.7) also applies for a 𝑈(1) gauge theory
when setting 𝑁 = 0. Interestingly, there is a competition between gauge bosons on the one hand as well as
charged fermions and scalars on the other hand. While the first contribute positively to 𝐵 pushing the
theory towards asymptotic freedom, the latter contribute negatively promoting the occurrence of a Landau
pole. Thus, in 𝑆𝑈(𝑁) theories the UV fate is determined by the specific gauge group and field content of
the theory. For 𝑈(1) gauge theories in contrast we invariably encounter a Landau pole in the UV unless all
fields are uncharged (quantum triviality).
In the SM and denoting with 𝐵𝑖 the 1-loop coefficient for 𝛼𝑖 with 𝑖 = 1, 2, 3 we find

𝐵SM
1 = −41

3
, 𝐵SM

2 = 19
3

, 𝐵SM
3 = 14 , (3.8)

implying asymptotic freedom for 𝛼2,3 whereas the hypercharge coupling 𝛼1 runs into a Landau pole at
roughly 1041 GeV. This can also be seen in Fig. 3.1, where the full 3-loop SM RG flow from the TeV scale
up to transplanckian energies is shown. The strong coupling 𝛼3 in contrast diverges in the infrared (IR)
around 𝛬QCD ≃ 𝒪(0.1 GeV) causing confinement.
Starting from 2-loop, 𝛽𝑖 also receives contributions from the other gauge and Yukawa couplings in the

theory. Assuming for now a simple gauge group with gauge coupling 𝛼𝑔 and a single Yukawa coupling 𝛼𝑦
the gauge coupling 𝛽-function reads

𝛽(2)
𝑔 = 𝛼2

𝑔(−𝐵 + 𝐶𝛼𝑔 − 𝐷𝛼𝑦) , (3.9)

where we applied the notation from [40, 128] and 𝐶, 𝐷 depend on field content of the theory. The coefficient
𝐶 can have either sign but 𝐵 ≤ 0 always implies 𝐶 > 0 [128]. Thus, for 𝐵 ≤ 0 the 2-loop gauge contribution
is not able to prevent the occurrence of a Landau pole. For the Yukawa contribution in contrast it holds
𝐷 ≥ 0 offering a mechanism to slow down the growth of gauge couplings [128]. For semi-simple gauge
groups and several Yukawa couplings the constants 𝐵, 𝐶 are generalized to matrices in coupling space,
respectively, without changing the qualitative findings derived above [128]. Going to higher orders 𝛽𝑔
eventually also receives contributions of quartic couplings of (un-)charged scalars starting from 3-loop
(4-loop) [129].

3.1.2 Yukawa Couplings
The 1-loop 𝛽-function of a Yukawa coupling 𝛼𝑦 in a theory featuring a simple gauge group and a single
Yukawa coupling reads

𝛽(1)
𝑦 = 𝛼𝑦(𝐸𝛼𝑦 − 𝐹𝛼𝑔) , (3.10)

where the coefficients 𝐸, 𝐹 depend on the field content. We see that also 𝛼𝑦, like all Yukawa couplings
occurring in this thesis, is technically natural due to underlying protective symmetries. Moreover, 𝛽𝑦
already contains a term involving 𝛼𝑔 at leading order. In particular, as 𝐸, 𝐹 are always positive [128],
the Yukawa contribution itself induces a growth of 𝛼𝑦 whereas the gauge coupling contribution brakes it.
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Figure 3.1: SM 3-loop running of the Higgs quartic [119, 120], top Yukawa [130, 131], and gauge
couplings [117, 132, 133] between the TeV and the Planck scale (gray band), and further up to the
Landau pole of the hypercharge coupling. The Higgs quartic becomes negative around 𝜇 ≈ 1011 GeV
and remains so up to the Planck scale. Plot adapted from [2].

Consequently, whether 𝛼𝑦 grows or decreases towards the UV depends on the field content and the initial
values of 𝛼𝑔,𝑦. In case of several gauge and Yukawa couplings 𝐸, 𝐹 are promoted to matrices sharing the
discussed features [128].

In the SM the leading order 𝛽-functions of the top- and bottom Yukawa couplings read

𝛽(1)
𝑡,SM =𝛼𝑡 (9𝛼𝑡 + 3𝛼𝑏 − 17

6
𝛼1 − 9

2
𝛼2 − 16𝛼3) ,

𝛽(1)
𝑏,SM =𝛼𝑏 (9𝛼𝑏 + 3𝛼𝑡 − 5

6
𝛼1 − 9

2
𝛼2 − 16𝛼3) ,

(3.11)

where we neglected contributions from the Yukawas of all lighter fermions. The dominant contribution
stems from the strong gauge coupling 𝛼3 yielding 𝛽𝑡,𝑏 < 0 throughout the running which induces a decrease
of 𝛼𝑡,𝑏 towards high energies as observed in Fig. 3.1.
Starting from 2-loop also scalar quartic couplings contribute to 𝛽𝑦, yielding a full connection of the

Yukawa RG evolution to all other sectors.

3.1.3 Scalar Quartic Couplings
In the scalar sector, already at leading order 𝛽-functions can receive contributions from all other sectors.
In a theory with a single gauge 𝛼𝑔, Yukawa 𝛼𝑦 and quartic coupling 𝛼𝑞, respectively, the 1-loop quartic
𝛽-function has the structure [114]

𝛽(1)
𝑞 = 𝐻𝛼2

𝑞 − 𝐼𝑔𝛼𝑔𝛼𝑞 + 𝐼𝑦𝛼𝑦𝛼𝑞 + 𝐽𝑔𝛼2
𝑔 − 𝐽𝑦𝛼2

𝑦 , (3.12)

where the constants 𝐻, 𝐼𝑔,𝑦, 𝐽𝑔,𝑦 depend on the details of the theory and are typically positive [134]. If
more couplings of a kind are present, the constants 𝐻, 𝐼𝑔,𝑦, 𝐽𝑔,𝑦 are promoted to three index objects in
coupling space. Crucially, there can be contributions which do not contain the scalar quartic coupling itself
at all, i.e. in contrast to gauge and protected Yukawa couplings quartics are in general not technically
natural. Hence, even if a quartic is set to zero at some scale it can be switched on radiatively if not
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3 Renormalization Group Running as Tool for Model Building

protected by a symmetry. Moreover, the quartic can become negative within its RG evolution.
In the SM the 1-loop Higgs quartic 𝛽-function reads3

𝛽(1)
𝜆,SM = −6𝛼2

𝑡 + 3
8

(𝛼2
1 + 2𝛼1𝛼2 + 3𝛼2

2) + (12𝛼𝑡 − 3𝛼1 − 9𝛼2) 𝛼𝜆 + 24𝛼2
𝜆 , (3.13)

where we neglected all Yukawas except from the top. As the Higgs is a color singlet there is no contribution
from 𝛼3 at leading order. The numerically dominant contribution is negative and stems from the top
Yukawa. It induces a decrease of 𝛼𝜆 towards higher energies which can be seen in Fig. 3.1. Notably, 𝛼𝜆
turns negative around 𝜇SM

inst. ≃ 1011 GeV indicating the loss of absolute stability of the SM Higgs potential,
see Subsec. 3.2.3 for details. After taking a minimal value of 𝛼𝜆 ≃ −10−4 closely prior to 𝑀Pl around
1017 GeV it becomes positive again in the transplanckian regime around 1028 GeV. This second sign change
is fueled by the steady growth of the hypercharge coupling. Eventually, in the very deep UV there is a
third sign change immediately below the hypercharge Landau pole where 𝛼𝜆 becomes negative again and
diverges towards large negative values at the pole.

3.2 Concepts from SM to BSM
Having reviewed the anatomy of GY RGEs we now investigate how RG running can provide directions for
BSM model building. The SM RG flow Fig. 3.1 exhibits two unpleasant features. Firstly, in incorporates a
Landau pole of the hypercharge coupling in the deep UV around 𝜇 ≃ 1041 GeV. While not being unphysical,
the occurrence of such poles impedes our comprehension of physics beyond certain scales. Hence, it is
worth to explore the opportunity to avoid Landau poles due to the presence of BSM physics in more
detail. Secondly, we encountered a negative value of 𝛼𝜆 in the vast range 1011 GeV ≲ 𝜇 ≲ 1028 GeV hinting
metastability of the SM Higgs potential, see Subsec. 3.2.3 for details. Despite vacuum metastability with
sufficiently long lifetime not being in conflict with observations, a theory of nature with an absolutely
stable ground state is desirable and seems most intuitive. Driven by this thought, restoring absolute Higgs
stability due to a modified RG evolution has become a common objective in BSM model building, see
[2] for a thorough overview of approaches and existing works. More importantly, BSM running can also
worsen the stability w.r.t. the SM. This can result in a metastability with lifetime smaller than the age of
the universe or even an unstable BSM potential. Both cases are in conflict with observations and hence
excluded. Thus, checking for vacuum stability is a crucial task and should actually be performed in any
BSM model. A promising approach to tackle both problems at the same time are the concepts of AS and
PS where AS constitutes a top-down approach and PS is its bottom-up counterpart.

3.2.1 Asymptotic Safety
In the previous section we have learned that some coupling constants asymptotically approach zero in the
deep UV, a phenomenon coined AF. AS generalizes this scenario by observing that couplings in the UV
may also run into an interacting fixed point (FP) rather than a free one. On a technical level, AS is related
to the zeros of the 𝛽-functions 𝛽𝑖 of all couplings 𝛼𝑖 in a theory that define a FP 𝛼∗

𝑖 via

𝛽𝑖|∗ ≡ ∂𝛼𝑖
∂ ln𝜇

∣
𝛼𝑖=𝛼∗

𝑖

= 0. (3.14)

3Note that there are different conventions for the normalization of 𝜆 yielding different but equivalent 𝛽-functions. We apply
the normalization of (2.10) with quartic term 𝜆(𝐻†𝐻)2 but also the normalization 𝜆

2 (𝐻†𝐻)2 is common.
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The RG flow can have several different FPs. For a FP to be physical and perturbative it has to hold
0 ≤ 𝛼∗

𝑖 ≲ 14. In general, FPs can be Gaussian (free), partially interacting or fully interacting as well
as UV or IR attractive. The set of coupling configurations that give rise to RG trajectories running
into a FP in the deep UV is referred to as UV critical surface. They correspond to QFTs that remain
controlled and predictive up to arbitrarily high energies. Crucially, the UV critical surface typically has
lower dimensionality than the full coupling space. In this case, demanding AS reduces the number of
independent coupling constants which strongly increase the predictive power of the theory.
Initially put forward as a scenario for quantum gravity [39], AS within the last decade also gained

increasing attention in the context of GY theories. An important proof of existence was provided in [40]
demonstrating that exact AS with a stable ground state can arise in GY theories featuring a 𝑆𝑈(𝑁) gauge
group under strict perturbative control in the Veneziano limit5. Up to now all known examples for AS in
four-dimensional, non-supersymmetric, renormalizable, weakly coupled GY theories uniquely trace back to
this model in the large 𝑁 limit [134]. The phenomenon was then studied in more detail in several subsequent
works [41–46, 128, 136–151]. Highlights investigating AS in template GY theories include extensions
beyond the Veneziano limit [138, 139, 141], to semi-simple gauge groups [144] and supersymmetric theories
[139, 140]. Furthermore, several necessary conditions as well as strict no-go theorems for AS to arise in
weakly coupled GY without gravity were derived in [128, 136]. In particular, it was proven that Yukawa
interactions together with elementary scalar fields offer a unique key towards AS [128]. In addition, the
presence of weakly coupled UV FPs strictly requires non-Abelian gauge interactions [136].
The FP structure of a GY RGE system depends on the loop order taken into account in the different

sectors. Thus, a detailed study at different loop orders is crucial to check the perturbative stability of
FPs. The complexity of the RGEs then increases as the various couplings successively start to mix in
the different 𝛽-functions. In the 210 approximation, which is the leading order for AS to appear, the GY
system is decoupled and the running of scalar couplings is not taken into account at all. However, the
scalar sector is crucial for two reasons. Firstly, in SM extensions the running of scalar couplings can induce
instabilities in the potential. Secondly, an enlarged scalar potential can give rise to a nontrivial vacuum
structure with important phenomenological consequences. Thus, it is necessary to include also the RGEs of
scalar quartics in the analysis.
Due to the fast progress in template GY theories also realistic BSM model building guided by AS has

become a very active business [41–46, 145–149]. Directions include SM extensions with VLFs and matrix
singlet scalars [41–46] inspired by [40], grand unified theories (GUTs) [147], supersymmetry [149] and
two Higgs doublet models [145, 146]. Applying AS as top-down guideline for BSM model building has
two main advantages. Firstly, it yields QFTs that remain controlled and predictive up to arbitrarily high
energies. Secondly, it allows to significantly constrain the viable parameter space of a given model due to
the typically reduced dimensionality of the UV critical surface. Demanding also the existence of UV-IR
connecting trajectories narrows the available parameter space further down. Finally, the derived constraints
are widely independent of and often complementary to those from phenomenology. Hence, combining both
increases the predictivity of the theory.

3.2.2 Planck Safety
In spite of the success of AS in BSM model building it has a shortcoming. Quantum gravity effects are
expected to modify the RG flow starting from the Planck scale 𝑀Pl = √ℏ𝑐/𝐺𝑁 ≃ 1019 GeV where 𝐺𝑁
denotes Newton’s constant. Thus, discussing the RG evolution of a BSM model without gravity up to

4There exist exceptions to the positivity criterium for some scalar quartic couplings that might also become moderately
negative without spoiling vacuum stability.

5In the Veneziano limit the number of fermion flavors 𝑁𝐹 and the rank of the gauge group 𝑁𝐶 are sent to infinity while
their ratio is fixed and kept as continuous parameter [135].
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arbitrarily high energies is rather academic. Therefore, in the deduced concept of PS requiring a physical
and perturbative UV FP is alleviated to demanding a RG flow without vacuum instabilities or Landau
poles up to 𝑀Pl, while the RG evolution in the transplanckian regime is not taken into account. This
concept was first pioneered in [45, 46] and further explored in [1, 2, 4, 5, 7].

Despite sharing a similar ansatz, there are some differences between PS and AS. While AS constitutes a
top-down approach, PS works bottom-up. Moreover and in contrast to AS, demanding PS does typically
not fix a parameter (combination) to an exact value but rather constrains it to an allowed range. We
refer to the subset of parameter values that make it safely up to the Planck scale as BSM critical surface.
Normally, it still has the same dimensionality as the full parameter space but with reduced volume. Thus,
also PS yields enhanced predictive power yet not as much as AS. In a similar manner, demanding the
existence of a physical and perturbative UV FPs severely narrows down the shape of viable models [128,
136] posing a challenge to realistic BSM model building. In particular, requiring AS leads to a prima facie
exclusion of potentially viable models featuring a physical and perturbative RG evolution up to the Planck
scale that only exhibit shortcomings in the transplanckian regime.
An important example are models in which the RG flow features a walking regime. There, the running

of a subset of couplings is significantly slowed down such that they stay locked at almost constant values
for several orders of magnitude. On a technical level, this phenomenon is related to approximate zeros of
the the 𝛽-functions, which arise in the vicinity of pseudo FPs. These can be FPs in the RGEs of a subset
of couplings or FPs featuring unphysical, e.g. complex, coupling values. Walking regimes have first been
observed in the gauge sector of technicolor and composite Higgs models, see e.g. [152, 153]. More recently,
they have also been noticed in the scalar and Yukawa sector [1, 2, 4, 5, 7, 45, 46]. If walking regimes
now capture gauge or quartic couplings they can enforce PS by preventing the occurrence of subplanckian
Landau poles and vacuum instabilities, respectively. This effect is of high relevance for this thesis.

Another advantage of PS is the possible connection of effects in the UV to low energy physics. The loss
of absolute SM vacuum stability is a high energy effect far out of reach of present and future colliders.
However, the scale of the metastability does not point to a mass scale of NP to cure it. Its remedy may
arise from new phenomena at much lower scales, possibly as low as a TeV. Thus, PS opens a door to
indirectly test stability at existing and future colliders. Note that in our methodology the absence of a
cutoff scale below 𝑀Pl thereby constitutes an important conceptual difference w.r.t. the EFT approach.
PS also constitutes a new ansatz for model building on its own right. Up to now, particle physics

experiments have mostly confirmed the predictions of the SM with tremendous accuracy in a plethora of
measurements at various experiments. This is contrasted by just a few anomalies and the absence of clear
NP signatures at colliders or elsewhere, calling for novel theory ideas. PS provides such a new direction in
a well-motivated manner. Hence, a central goal of this thesis is to establish and improve PS as powerful
tool for BSM model building by exploring the underlying RG mechanisms as well as the interplay of PS
with phenomenology.

3.2.3 Vacuum Stability
A crucial feature of Planck-safe models is the stability of the scalar potential which has to be explicitly
assured throughout the RG flow. The existence of a stable vacuum requires the scalar potential to be
bounded from below. In case of the SM Higgs potential (2.10) the simple condition

𝜆 > 0 (3.15)

assures tree-level vacuum stability but is broken in the SM for 1011 GeV ≲ 𝜇 ≲ 1028 GeV. In order to
rigorously investigate the stability of a scalar potential, additional corrections from loops and higher-order
operators have to be taken into account. To do so, one has to compute the full Coleman-Weinberg effective
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(a) Running of the effective Higgs quartic coupling
𝛼𝜆,eff(𝜇) using the PDG central value of the top mass 𝑀𝑡
from cross section-measurements [155] (thick line) and
five standard deviations in either direction (thin lines),
while the gray band indicates the Planck scale. Also
shown is the running of the tree-level quartic coupling
𝛼𝜆(𝜇) for comparison (thick dashed line). The full
effective potential is absolutely stable if 𝛼𝜆,eff(𝜇) stays
manifestly positive during the whole RG evolution.

(b) (In-)stability regions of the full effective SM Higgs
potential up to 𝑀Pl as a function of the top mass 𝑀𝑡
from cross section-measurements and the strong cou-
pling constant 𝛼(5)

𝑠 (𝑀𝑍). Color-coding indicates abso-
lute stability 𝛼𝜆,eff(𝜇) ≥ 0 for all 𝜇0 ≤ 𝜇 ≤ 𝑀Pl (green)
or its loss min𝛼𝜆,eff(𝜇) < 0 (red/gray). Central values
(crosshairs) and uncertainties taken from PDG [155].
We also show the first five 1𝜎 uncertainty rings (thin
lines) with deviations added in quadrature.

Figure 3.2: Stability of the SM effective potential at state-of-the-art accuracy. Plots taken from [4].

potential [154] and to subsequently perform a detailed analysis of its extrema structure. If the potential
features local minima, the lifetime of each false vacuum has to be inferred by computing the tunneling
probability to the true vacuum. Only if the lifetime of the false vacuum is sufficiently larger then the age of
the universe it constitutes a viable ground state of the theory.
In the SM, corresponding computations [36–38] evidenced the metastability of the full effective Higgs

potential 𝑉eff with a sufficiently large lifetime. The loss of absolute stability of 𝑉eff is indicated by a sign
change of the effective Higgs quartic coupling

𝛼𝜆,eff = 𝛼𝜆 + 𝒪(𝛼2) , (3.16)

which explicitly contains the mentioned higher-order effects, see App. A in [4] and references therein for
a pedagogical derivation and precise definition. We reanalyzed the stability of the SM Higgs vacuum
in [4], exceeding the precision of previous computations by applying the highest available loop orders
for the effective potential, 𝛽-functions and matching, respectively, as well as the most precise available
determination of input parameters. Here, we only briefly review the central results referring to [4] for
details. Overall, the evidence for the loss of vacuum stability in the SM is sharpened. This can be seen in
Fig. 3.2a, which displays the running of 𝛼𝜆,eff. At the reference scale 𝜇ref = 200 GeV, 𝛼𝜆,eff(𝜇ref) is 17%
larger than its tree-level pendant 𝛼𝜆(𝜇ref). However, it still turns negative around 𝜇 ≃ 2 ⋅ 1011 GeV close to
the scale of sign change of the tree-level quartic and stays slightly negative 𝛼𝜆,eff ≳ −10−4 until beyond the
Planck scale. This reflects our previous finding from Subsec. 3.1.3 that the Higgs quartic is subdominant to
its own RG evolution. We conclude that the loss of SM vacuum stability is mainly RG induced while the
impact of finite order corrections to the effective potential on stability is rather small.

Rigorously inferring the loss of Higgs stability at the 5𝜎 level is however still prevented by experimental
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uncertainties of input parameters, in particular the top mass and the strong coupling constant6. This is
illustrated in Fig. 3.2b. Absolute vacuum stability is restored if the PDG average for the top quark mass
from direct cross-section measurements 𝑀𝑡 = 172.5 ± 0.7 GeV7 or the 5-flavor strong coupling constant
at the 𝑍 mass 𝛼(5)

𝑠 (𝑀𝑍) = 0.1180 ± 0.0009 deviate by −3.9𝜎 (cf. Fig. 3.2a) and +8.0𝜎 from their central
values, respectively. Neglecting possibly relevant correlations [157] and adding uncertainties in quadrature,
already a 3.5𝜎 shift would suffice to achieve stability. Notably, all other input parameters for the stability
analysis are either numerically too small (e.g. masses of fermions except for the top) or determined with a
too small uncertainty (e.g. 𝛼1,2, 𝑀𝑍, 𝑀ℎ) for their uncertainties to matter at the level of 𝑀𝑡 and 𝛼(5)

𝑠 (𝑀𝑍)
for the stability of the effective potential.

Unfortunately, repeating the full effective potential analysis in BSM models is quite intricate and
computationally expensive. Moreover, our model building goal is rather to identify Planck-safe parameter
space regions and to qualitatively understand the underlying RG mechanisms than to perform high precision
stability analyses. Therefore, in this work we apply a more efficient approach by just checking for tree-level
stability. This naturally limits the precision of our computation but in exchange facilitates a comparatively
fast and automated stability analysis. We also recall that finite-order corrections to the SM effective
potential are only of minor impact for stability, which is rather dominated by RG effects, cf. Fig. 3.2a. Thus,
the tree-level analysis constitutes a good and well-justified approximation for checking vacuum stability.
Nevertheless, we also try to estimate the reach of higher-order contributions to stabilize the effective

potential. A mild violation of tree-level stability might in fact be compensated by such higher-order
corrections yielding a metastable potential as in the SM [4, 37, 38]. Strong violations of tree-level stability
on the other hand are expected to correspond to instabilities of the effective potential. In case of the Higgs
potential we therefore distinguish between metastabilities −10−4 < 𝛼𝜆 < 0 and instabilities 𝛼𝜆 < −10−4

roughly estimating the critical value from [37, 38]. On a technical level, this also implies the discrimination
between RG flows exhibiting strict and soft PS, which we define as:

• strict Planck safety: No Landau poles below 𝑀Pl,
absolute tree-level vacuum stability ∀𝜇 ∈ [𝜇0, 𝑀Pl]

• soft Planck safety: As strict PS,
but allowing for an intermediate, moderately negative Higgs quartic8

− 10−4 ≲ 𝛼𝜆(𝜇) ≲ 0 for 𝜇 ∈ [𝜇0, 𝑀Pl) but 𝛼𝜆(𝑀Pl) > 0.

Here 𝜇0 denotes a low scale, typically the scale of NP. This distinction is exemplarily illustrated in
Fig. 3.3. In both cases, the RG flow has to be free of subplanckian Landau poles but the vacuum stability
requirements differ in rigor. The notion of strict PS demands absolute tree-level vacuum stability during
the complete RG flow all the way up to 𝑀Pl. Thus, strict PS provides a conservative criterium for stability.
Note that strict PS always requires the NP scale 𝜇0 to be lower than the scale of the sign change of 𝛼𝜆 in
the SM of ∼ 1011 GeV. Soft PS on the other hand also allows for intermediate, SM-like metastabilities
of the Higgs potential. However, instabilities are forbidden and the potential has to be fully stable at
𝑀Pl. Interestingly, the last condition is also beneficial for asymptotically safe models of quantum gravity,
as matching them to the SM typically disfavors SM-like 𝛼𝜆(𝑀Pl) < 0, e.g. [158, 159]. Hence, soft PS

6Note that although contributing only starting from 2-loop to both 𝛽𝜆 and the effective potential, the strong coupling and
its uncertainty still have a crucial impact on stability due to the numerically sizeable value of 𝛼3 (and 𝛼𝑡).

7We stress that the methodology for an accurate extraction of the top quark mass from data is quite intricate and subject
of an ongoing debate [4, 156].

8If a BSM stability condition in a model with extended scalar sector is not well-defined for 𝛼𝜆 < 0, we conservatively deploy
this condition in the limit 𝛼𝜆 → 0.
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Figure 3.3: The different possible RG fates of the Higgs quartic 𝛼𝜆. Trajectories with min𝛼𝜆(𝜇) <
−10−4 correspond to an unstable potential (brown). For −10−4 ≤ min𝛼𝜆(𝜇) ≤ 0 the trajectory features
metastabilities. In this case we label the trajectory as metastable (yellow) if 𝛼𝜆(𝑀Pl) ≤ 0 or softly
Planck-safe (light blue) if 𝛼𝜆(𝑀Pl) > 0 corresponding to Planck scale stability. If finally min𝛼𝜆(𝜇) > 0
the RG evolution is strictly Planck-safe and features absolute stability all the way up to 𝑀Pl.

still constitutes an improvement w.r.t. the SM, exploring the maximum reach for Planck scale stability
by imposing stabilization due to neglected higher-order corrections at intermediate scales. Thus, soft PS
provides a more optimistic estimate for vacuum stability.

Note that BSM models featuring new scalars, imply additional vacuum stability conditions complementing
(3.15). Tree-level vacuum stability conditions for arbitrary potentials can be derived following the methods of
[137, 160, 161] using copositivity criteria and typically imply a set of inequality conditions for scalar quartic
couplings9. Quantifying the effect of violating these tree-level BSM stability conditions on vacuum stability
would require a rigorous analysis of the full BSM effective potential from which we refrain. Consequently,
we do not allow for any violation of BSM stability conditions but demand all of them to be fulfilled at all
scales up to 𝑀Pl for both strict and soft PS.

3.2.4 Strategy and Workflow
The starting point our PS analysis in BSM models are the values of SM couplings at a scale 𝜇ref = 200GeV,
which have been determined at high precision in [162] from experimental data. The precise values are given
in App. A.2. The couplings are evolved towards the UV using the SM 𝛽-functions at full 3-loop order in the
gauge [117, 132, 133], Yukawa [130, 131] and scalar [119, 120] sector. This is done by numerically solving
the RGEs using Mathematica [63]. In order to reduce the complexity and computing time we thereby
neglect all Yukawa couplings other than the top and bottom one. This approximation is well justified, as
the neglected Yukawas are significantly smaller than all other SM couplings.
The next task is to match the SM RG flow to the BSM one at the NP scale 𝜇NP which is set by the

mass scale of BSM particles 𝑀BSM. We restrict ourselves to scenarios where the NP scale is well above the
electroweak scale, i.e. 𝜇EW < 𝜇NP ≃ 𝑀BSM. Typically we assume NP around the TeV scale which allows

9The asymptotic shape of the potential for very large field values is dictated by the scalar quartic couplings. Thus, the
conditions for boundedness from below, i.e. the existence of a stable vacuum, only depend on the quartics and are
independent of all other parameters in the scalar sector.
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for collider signatures at the LHC. Moreover, we assume that the BSM particles exhibit no large mass
hierarchies, so that from the RG point of view our model is characterized by just a single scale10. If not
stated otherwise, SM couplings are matched to their BSM counterparts at tree level via

𝛼BSM
1,2,3,𝑡,𝑏,𝜆(𝜇NP) = 𝛼SM

1,2,3,𝑡,𝑏,𝜆(𝜇NP). (3.17)

The values of BSM couplings are treated as free model parameters above 𝜇NP and set to zero below.
We then employ the tools ARGES [32] and FoRGEr [33] to infer the 𝛽-functions of all couplings in the

BSM model at full 2-loop order. As couplings in all sectors can be of similar size we refrain from including
available higher loop orders in the gauge- and Yukawa 𝛽-functions for the sake of consistency of the
perturbative expansion11. 𝛽-functions of SM couplings in the full model above 𝜇NP are composed of the
SM contribution and a BSM one

𝛽1,2,3,𝑡,𝑏,𝜆 = 𝛽SM
1,2,3,𝑡,𝑏,𝜆 + 𝛽BSM

1,2,3,𝑡,𝑏,𝜆, (3.18)

whereas 𝛽-functions of BSM couplings are purely BSM and just switched on above 𝜇NP. Note that in our
matching procedure the BSM fields have been implicitly approximated as infinitely heavy below 𝜇NP and as
massless above. However, at loop level threshold corrections to this approximation induced by finite BSM
particle masses arise which replace the dependence on the unphysical matching scale 𝜇NP by the physical
mass 𝑀BSM, see e.g. [163] for a pedagogical introduction. Pleasantly, when matching at 𝜇NP = 𝑀BSM all
threshold corrections ∝ ln 𝜇NP

𝑀BSM
induced by the heavy BSM fields vanish. Thus, in our procedure threshold

corrections are minimized which justifies our approximation.
Having the complete set of 𝛽-functions as well as SM coupling values at the matching scale at hand,

we also fix the values of BSM parameters in order to solve the full RGEs up to 𝑀Pl and analyze the
obtained RG flow to determine its RG fate. This task is automated in a Mathematica [63] routine. It
numerically integrates the RGEs and subsequently evaluates the numerical solution which is a function of
log𝜇 at several hundred intermediate energies 𝜇0 ≤ 𝜇𝑖 ≤ 𝑀Pl

12. If a numerical RG trajectory features a
very large coupling 𝛼(𝜇𝑖) > 10 or derivative d 𝛼

d log 𝜇(𝜇𝑖) > 500 for any 𝜇𝑖
13, we categorize it as featuring

a pole. For a pole-free RG flow, we next determine min𝑖 𝛼𝜆(𝜇𝑖). If min𝑖 𝛼𝜆(𝜇𝑖) ≤ −10−4 we label the
trajectory as Higgs unstable. For RG flows without a Higgs instability we also evaluate (potential) BSM
stability conditions ∀𝜇𝑖, deploying them in the limit 𝜆 → 0 at 𝜇𝑖 iff 𝜆(𝜇𝑖) < 0 and they would be ill-defined
otherwise. If there is a violation of BSM stability at any 𝜇𝑖, we categorize the trajectory as vacuum unstable.
If not, we compute 𝛼𝜆(𝑀Pl) and label the flow as Higgs metastable if 𝛼𝜆(𝑀Pl) < 0, softly Planck-safe if
𝛼𝜆(𝑀Pl) > 0, −10−4 < min𝑖 𝛼𝜆(𝜇𝑖) < 0 and eventually strictly Planck-safe if min𝑖 𝛼𝜆(𝜇𝑖) > 0. We stress
that the order of the steps is crucial to determine the labeling of trajectories exhibiting several unpleasant
features, i.e. a pole and a Higgs instability14.
This procedure can straightforwardly be repeated for other values of BSM parameters in a systematic

scan over the available parameter space in order to determine the BSM critical surface of a model.

10Obviously the situation is different from the view point of phenomenology where the exact particle masses are crucial to
e.g. determine kinematically allowed decay channels of BSM particles.

11The absence of 3-loop quartic template 𝛽-functions prevents us from employing 333 loop order also in the full theory.
12We thereby use the same grid points that Mathematica dynamically determined as anchors for the numerical integration,

with the step-width depending on the slope of the flow.
13The numbers have been carefully adjusted such that it is very improbable to mislabel a trajectory as pole. The derivative

criterium filters out rare, unphysical trajectories featuring evident numerical instabilities close to an apparent pole that
can arise for large numbers of couplings.

14We thereby intentionally chose to first check for the occurrence of poles, as affected trajectories quite often entail a loss of
vacuum stability closely below the pole. Our convention aims at only correspondingly labeling trajectories with vacuum
stability problems in the well perturbative regime while not including those with pole-induced instabilities.
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In this chapter we systematically explore the possibility to render the SM Planck-safe by extending it with
VLFs, closely following [2, 5]. The presented BSM models offer a promising, minimally invasive approach
towards Higgs stability as they comprise just a single BSM field and are hence controlled by just a few
free parameters. However, this ansatz towards Higgs stability based solely on VLFs has so far received
surprisingly little attention. The few existing works [164–169] mostly restrict themselves to models with
additional, weakly coupled BSM Yukawa interactions. In particular, stabilization in the absence of BSM
Yukawas was only fragmentarily studied for certain colorful VLFs in [169]. Also the regime of tiny or strongly
coupled Yukawas up to now has hardly been explored at all. We close this gap by performing an in-depth
analysis of minimal VLF models in order to identify the different vacuum stabilization mechanisms arising
in the RG flow, quantify their effect on the Higgs potential and examine their phenomenological implications.

We start with presenting our setup and notation. In our models, the SM is extended by 𝑁𝐹 generations of
VLFs 𝜓 of mass 𝑀𝐹 in the representation (𝑌𝐹, 𝑑2, 𝑑3) under the SM gauge group 𝑈(1)𝑌 ×𝑆𝑈(2)𝐿 ×𝑆𝑈(3)𝐶,
that may or may not allow for a Yukawa portal coupling 𝜅 to SM fields. Here, vector-like refers to the equal
representation of the LH 𝜓𝐿 and RH 𝜓𝑅 components of 𝜓 under the SM gauge group which constitutes an
important qualitative difference to chiral SM fermions. The implementation of the VLFs in a BSM model
is by design quite straightforward for two reasons. Firstly, our models are free of gauge anomalies which
would spoil the consistency of the theory but can only be caused by chiral fermions, see [170] for a detailed
review. Secondly, the vector-like representation allows for explicit Dirac mass terms of the VLFs which for
chiral fermions are forbidden by gauge invariance. Hence, the VLFs acquire a mass even without the Higgs
mechanism. In this work, we generically assume the VLF mass to be 𝑀𝐹 ≳ 1TeV.
We now first explore the possibility to stabilize the Higgs via a modified running of gauge couplings in

Sec. 4.1 before turning to models with an extended Yukawa sector in Sec. 4.2. We also briefly comment on
phenomenological implications of our findings.

4.1 Gauge Portals

The core of the gauge portal mechanism for Higgs vacuum stability is the addition of charged BSM matter
to the SM. More precisely, we add 𝑁𝐹 VLFs charged under the SM as (𝑌𝐹, 𝑑2, 𝑑3), without introducing
any new interactions. Therefore, for now we focus on VLF representations that do not allow for a Yukawa
coupling to SM fields or assume possible Yukawa couplings to be negligibly small, a property that is
conserved in the RG flow due to their technical naturalness. The addition of charged matter manifests
itself in a modified running of the respective gauge couplings. The Higgs 𝛽-function in contrast remains
unchanged. Hence, a stabilization of the Higgs can only arise indirectly and is channeled through the
modified running of gauge couplings and the top Yukawa.
In order to understand the RG dynamics of the gauge portal mechanism we make use of the general

properties of 𝛽-functions in GY theories, which have been discussed in detail in Sec. 3.1. In particular, we
work out the leading order deviations of the RG flow in our VLF models from the SM one. Integrating the
1-loop gauge coupling RGEs (3.4)

𝛽𝑖 = −𝐵𝑖𝛼2
𝑖 (4.1)

we obtain their well-known RG evolution (3.5)

𝛼𝑖(𝜇) = 𝛼𝑖(𝜇0)
1 + 𝛼𝑖(𝜇0) 𝐵𝑖 ln

𝜇
𝜇0

. (4.2)
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from the matching scale 𝜇0 to some high scale 𝜇. The relevant 1-loop coefficients

𝐵1 = −41
3

− 𝛿𝐵1, 𝐵2 = 19
3

− 𝛿𝐵2, 𝐵3 = 14 − 𝛿𝐵3 (4.3)

consist of the SM contributions as well as a BSM ones

𝛿𝐵1 = 8
3𝑁𝐹 𝑑2 𝑑3 𝑌 2

𝐹 , 𝛿𝐵2,3 = 8
3𝑁𝐹 𝑑3,2 𝑆2(𝑑2,3) , (4.4)

where 𝑆2(𝑑2,3) denote the respective Dynkin indices of the 𝑆𝑈(2)𝐿 and 𝑆𝑈(3)𝐶 representations. The
magnitude of the 𝛿𝐵𝑖 is controlled by the multiplicity 𝑁𝐹 and representation (𝑌𝐹, 𝑑2, 𝑑3) of the VLFs.
Crucially, the BSM contribution is always positive, i.e. 𝛿𝐵𝑖 ≥ 0. Thus, the gauge couplings above the NP
scale generically take larger values than in the SM. Quantitatively, from (4.2) we find

1
𝛼𝑖(𝜇)

− 1
𝛼SM

𝑖 (𝜇)
= −𝛿𝐵𝑖 ln( 𝜇

𝜇0
) < 0 (4.5)

for the enhancement w.r.t. the SM. Consequently, all models still feature the hypercharge Landau pole at
an equal or lower scale than in the SM 𝜇LP ≤ 𝜇SM

LP ≃ 1041 GeV which can be subplanckian. More so, if
𝛿𝐵2,3 are too large, also AF of 𝑆𝑈(2)𝐿 and 𝑆𝑈(3)𝐶 is lost and 𝛼2,3 run into a Landau pole, too. Hence,
the 𝛿𝐵𝑖 should not be too large in order to avoid any Landau poles below 𝑀Pl.

The modified running of gauge couplings imprints itself also on the running of the top Yukawa, which
due to its size has a crucial impact on the running of the Higgs quartic coupling. In contrast to the gauge
sector, the 1-loop top 𝛽-function does not receive any direct BSM contributions from the charged new fields.
It remains the same as in the SM (3.11)

𝛽𝑡 ≃ 𝛼𝑡 (9𝛼𝑡 − 17
6 𝛼1 − 9

2𝛼2 − 16𝛼3) , (4.6)

where we neglected the bottom Yukawa due to its smallness. Nevertheless, also the top running is modified
due to the gauge contributions to 𝛽𝑡. Crucially, 𝛽𝑡 receives negative contributions from all gauge couplings
𝛼𝑖, so that the increase in the RG evolution of gauge couplings (4.5) results in a accelerated decrease of 𝛼𝑡
in comparison to the SM. Analytically integrating the RG flow to leading order in couplings and 𝛿𝐵𝑖 as
well as to leading logarithmic accuracy, we find

𝛼𝑡(𝜇) − 𝛼SM
𝑡 (𝜇) ≈ −𝛼𝑡(𝜇0) (17

12𝛿𝐵1 𝛼2
1 + 9

4𝛿𝐵2 𝛼2
2 + 8 𝛿𝐵3 𝛼2

3) ln2 ( 𝜇
𝜇0

) < 0 (4.7)

as approximate result for the decrease of 𝛼𝑡 w.r.t. the SM. As (4.1) and (4.6) are both 1-loop the deviation
from SM running is a resummation effect which is signaled by the squared logarithmic term in (4.7).
Thus, the leading deviation of 𝛼𝑡(𝜇) manifests itself at 2-loop due to the modified 1-loop running of gauge
couplings contained within (4.6). Note that there is also a competing effect at the same order in couplings
from the direct modification of the top 𝛽-function at 2-loop due to additional VLF gauge contribution.
However, this contribution is only linear in the large logarithm ln 𝜇

𝜇0
and therefore a subleading effect w.r.t.

the resummed deviation (4.7).

Turning to the running of the Higgs quartic, we note that at 1-loop 𝛽𝜆 does not receive any direct BSM
contributions and is thus given by its SM pendant (3.13). Nevertheless, analogously to the top Yukawa
also the running of the Higgs quartic is indirectly modified due to the altered RG evolution of the gauge
and Yukawa sector. Direct BSM contributions to the Higgs 𝛽-function at higher loop orders in contrast are
of subleading logarithmic accuracy and therefore neglected. Given that 𝛼𝜆 around the electroweak scale is
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much smaller than the top Yukawa and gauge couplings, cf. (A.6), 𝛽𝜆 is numerically dominated by the
inhomogeneous 1-loop terms and can be approximated as

𝛽𝜆 ≃ 3
8

(𝛼2
1 + 2𝛼1𝛼2 + 3𝛼2

2) − 6𝛼2
𝑡 . (4.8)

Crucially, the gauge contributions are positive while the top one is negative. Thus, both the increase of
gauge couplings (4.5) and the decrease of the top-Yukawa (4.7) relatively to the SM result in an increase of
𝛽𝜆. To quantify the effect on the Higgs quartic, we integrate the RG flow of 𝛼𝜆 in (4.8) deploying (4.5)
and (4.7). To leading order in 𝛿𝐵𝑖 and couplings as well as leading logarithmic accuracy we finally obtain

𝛼𝜆(𝜇) − 𝛼SM
𝜆 (𝜇) ≈ + 3

8𝛼2
1(𝜇0) [𝛼1(𝜇0) + 𝛼2(𝜇0)] 𝛿𝐵1 ln2 ( 𝜇

𝜇0
)

+ 3
8𝛼2

2(𝜇0) [𝛼1(𝜇0) + 3𝛼2(𝜇0)] 𝛿𝐵2 ln2 ( 𝜇
𝜇0

)

+ 32 𝛼2
𝑡 (𝜇0) 𝛼2

3(𝜇0) 𝛿𝐵3 ln3 ( 𝜇
𝜇0

) ,

(4.9)

which constitutes the central result of our semi-analytical analysis.
We learn that an uplift of the electroweak gauge couplings 𝛼1,2 directly results in an uplift ∝ 𝛿𝐵1,2 in 𝛼𝜆

at 2-loop order. In case of the strong coupling there is no such effect as the Higgs is uncharged under QCD.
This is reflected in the absence of an 𝛼3 contribution to 𝛽𝜆 at 1-loop (4.8). Hence, the leading effect of 𝛿𝐵3
on the running of 𝛼𝜆 arises at 3-loop and is channeled through the altered top running. Despite being of
higher loop order, this effect turns out to be numerically comparable to electroweak contributions due to
larger values of both the numerical coefficient in (4.9) and 𝛼3,𝑡(𝜇0). Analogous 3-loop enhancements of
𝛼𝜆 due to modified top running arise ∝ 𝛿𝐵1,2 from the electroweak gauge couplings. They are however
not included in (4.9) as they are subleading with respect to the explicitly given direct electroweak effects.
The strong gauge portal mechanism via the top Yukawa has already been noticed in [169]. A systematic
derivation of the RG dynamics as presented here as well as a rigorous analysis of the available parameter
space are however missing. Beyond that, the direct electroweak portal mechanisms so far to our knowledge
have not been considered at all in the literature and constitute a main novelty of this work.

Notably, all 𝛿𝐵𝑖 contribute positively to (4.9). Hence, the effects of all three gauge portals constructively
add up jointly pushing the Higgs towards stability. We infer that the presence of BSM matter charged
arbitrarily under at least one SM gauge interaction invariably results in an uplift of the Higgs quartic

𝛼𝜆(𝜇) − 𝛼SM
𝜆 (𝜇) > 0 (4.10)

and potentially vacuum stability. This establishes the viability of the gauge portal mechanism. In particular,
we aim at finding Planck safety windows in the model parameter space, where the 𝛿𝐵𝑖 are sufficiently
sizeable to enable vacuum stability but still below the threshold to cause subplanckian Landau poles. Note
that the magnitude of the different contributions in (4.9) is not only set by the size of the 𝛿𝐵𝑖 but also
increases with the RG time ln 𝜇

𝜇0
that has passed since the matching at 𝜇0 ≃ 𝑀𝐹. This is not surprising,

as the resummed effect of the modified BSM accumulates when contributing increasingly long to the RG
evolution.

Given that the leading order scalar and Yukawa 𝛽-functions are the same as in the SM, the overall shape
of the RG trajectory 𝛼𝜆(𝜇) also approximately resembles the SM case Fig. 3.1. In particular, the extrema
structure of the trajectory is preserved. However, an important difference arises when the enhanced running
of gauge couplings (4.5) generates a Landau pole below the SM hypercharge one 𝜇LP < 𝜇SM

LP ≃ 1041 GeV.
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In this case, the accelerated running of gauge couplings also results in an accelerated running of 𝛼𝜆(𝜇)
between the matching scale and the Landau pole but still approximately along its SM trajectory. More
precisely, it holds 𝛼𝜆(𝜇) ≈ 𝛼SM

𝜆 (𝜇SM(𝜇)) with 𝜇SM(𝜇) ≥ 𝜇 bijectively mapping [𝜇0, 𝜇LP] → [𝜇0, 𝜇SM
LP ]. This

squeezing can exemplarily be seen for the hypercharge portal in Fig. 4.4 and is discussed in more detail in
Subsec. 4.1.3. Hence, there are two net effects of the gauge portal mechanism on the running of 𝛼𝜆 w.r.t
the SM: A compression of the RG trajectory and a moderate uplift (4.9). The relative size of this effects
depends on the choices of parameters and varies for the three different gauge portals.
Crucially, these two modifications of the trajectory imply that 𝛼𝜆(𝜇) is bounded from below by its

minimal value in the SM. Discarding the tiny region in 𝜇 close to the hypercharge Landau pole after the
third sign change of 𝛼𝜆, this yields 𝛼𝜆(𝜇) ≳ 𝛼min,SM

𝜆 ≃ −10−4. Moreover, due to the squeezing and the
increase of the uplift with ln 𝜇

𝜇0
the minimum of 𝛼𝜆(𝜇) always appears at lower or equal scales than in the

SM, i.e. at 𝜇min ≤ 𝜇SM
min ≃ 1017 GeV. Recalling that the minimal SM value corresponds to metastability

of the full effective potential with sufficiently large lifetime [37, 38], we conclude that also in any gauge
portal extension the effective potential is at least metastable. In particular, any observationally forbidden
instabilities are automatically excluded justifying the tree-level approach for stability.

4.1.1 Strong Portal
In order to analyze the strong gauge portal in more detail, we now study VLFs in the representation
(0, 1, 𝑑3) that only interact via 𝑆𝑈(3)𝐶. Hence, the running of the strong coupling is enhanced by 𝛿𝐵3 > 0
whereas the evolution of electroweak gauge couplings remains SM-like with 𝛿𝐵1,2 = 0, see (4.4). The model
is characterized by just three parameters: the multiplicity 𝑁𝐹, mass 𝑀𝐹 and 𝑆𝑈(3) representation 𝑑3 of
the VLFs.

To begin, we focus on VLQs with 𝑑3 = 3. We compute the full 2-loop RG evolution of couplings from the
matching scale 𝜇0 ≃ 𝑀𝐹 up to the Planck scale, scanning over the free parameters (𝑀𝐹, 𝑁𝐹) as described
in Subsec. 3.2.4. The result is depicted in Fig. 4.1a, where different colors indicate different RG fates. In
regions of relatively low 𝑁𝐹 or large 𝑀𝐹 we end up with a metastable potential at the Planck scale (yellow),
similar as in the SM. For large 𝑁𝐹 and low 𝑀𝐹 we encounter subplanckian Landau poles (red).However,
there is also a wedge-shaped region in between where these problems are avoided and the vacuum is stable
at the Planck scale (blue). It corresponds to a Planck-safe RG evolution and constitutes the BSM critical
surface constrained by upper and lower bounds on 𝑁𝐹 as well as an upper bound on 𝑀𝐹.

This division of the parameter space can be understood by recalling the results (4.9) of our semi-analytical
analysis. The strong portal mechanism is controlled by 𝛿𝐵3 which is proportional to 𝑁𝐹 (4.4). For low 𝑁𝐹,
the uplift in the Higgs quartic (4.9) induced by the enhanced running of 𝛼3 is not sizeable enough to render
𝛼𝜆 positive at the Planck scale. This implies a lower bound on 𝑁𝐹 for PS. For sizeable 𝑁𝐹 in contrast
also 𝛿𝐵3 is sizeable and above 𝑁𝐹 ≳ 10 AF of the strong coupling is lost, in excellent agreement with the
1-loop estimate 𝑁𝐹 ≳ 21

2 from (4.4). Hence, we encounter an 𝛼3 Landau pole in the UV, which for large
𝑁𝐹 and sufficiently low 𝑀𝐹 occurs below the Planck scale. This gives rise to the (𝑀𝐹-dependent) upper
bound on 𝑁𝐹. The upper bound on 𝑀𝐹 arises as the values of 𝛼3,𝑡(𝜇0) for large 𝜇0 ≃ 𝑀𝐹 have already
severely decreased due to their SM running. Hence, the uplift ∝ 𝛼2

3(𝜇0)𝛼2
𝑡 (𝜇0) is not sizeable enough

anymore and the strong portal mechanism becomes insufficient to ensure stability. Moreover, for larger 𝑀𝐹
there is less RG time left between 𝜇0 ≃ 𝑀𝐹 and 𝜇 = 𝑀Pl for the uplift ∝ ln3 𝜇

𝜇0
in 𝛼𝜆 to sufficiently set

in. This explains the wedged shape of the Planck-safe region in Fig. 4.1 which generically requires larger
multiplicities 𝑁𝐹 for increasing masses 𝑀𝐹.

The BSM critical surface is further subdivided into regions of soft (light blue) and strict (dark blue) PS,
where the vacuum is stable at or even all the way up to 𝑀Pl, respectively. These different stability regions
arise due to different stabilization mechanisms. Strict PS is achieved by an uplift in 𝛼𝜆 from (4.9) that is
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4.1 Gauge Portals

(a) BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane.
Different colors indicate strict (dark blue) as
well as soft (light blue) PS, a metastable vac-
uum at the Planck scale (yellow) or a subplanck-
ian Landau pole (red).
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(b) Example of a strictly Planck-safe RG flow due to the strong
portal mechanism. We show the RG evolution of couplings
until the Planck scale (gray) at full 2-loop order in a model
featuring 𝑁𝐹 = 2 vector-like quarks (VLQs) (solid lines) with
mass 𝑀𝐹 = 1TeV together with SM 3-loop running (dashed
lines) for reference.

Figure 4.1: The strong gauge portal for a SM extensions with VLQs charged as (0, 1, 3) under the SM.
Shown is the BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane (a) as well as an exemplary strictly Planck-safe
RG evolution (b). Figures adapted from [2].

sufficiently large to render its minimum value positive and prevent subplanckian metastability. An example
for a strictly Planck-safe RG evolution due to the strong portal mechanism is depicted in Fig. 4.1b for the
case of 𝑁𝐹 = 2 VLQs of mass 𝑀𝐹 = 1TeV. As expected from our semi-analytical estimate, in this scenario
(solid lines) we observe a mild enhancement of 𝛼3 along with a decrease in 𝛼𝑡 w.r.t. the SM (dashed lines)
that is sufficient to ensure vacuum stability all the way up to 𝑀Pl.
In the regions of soft PS in contrast the uplift is not sizeable enough to render the minimum positive.

Nevertheless, the uplift can be sufficient to shrink the metastability interval such that the second sign change
already appears below 𝑀Pl. This is mostly relevant for small 𝑁𝐹. In addition, there is a collaborating
effect from the squeezing of the RG trajectory of 𝛼𝜆(𝜇). It starts being relevant as soon as AF in 𝛼3 is lost
and its Landau pole appears below the hypercharge one, i.e. 𝑁𝐹 ≳ 10 − 12 with slight dependence on 𝑀𝐹.
The squeezing then has the same effect, namely pulling the second sign change below 𝑀Pl enabling soft PS.
Putting it all together, we obtain from Fig. 4.1a the conditions

𝑀𝐹 ≲ 104 TeV, 2 ≤ 𝑁𝐹 ≤ 15,
(𝑀𝐹 ≲ 106 TeV, 2 ≤ 𝑁𝐹 ≤ 19)

(4.11)

for strict (soft) PS, which demonstrates the predictive power of PS.
Of particular interest are the borders between the different regions in the parameter space. At the

boundary between soft PS and metastability at 𝑀Pl we find 𝛼𝜆(𝑀Pl) ≃ 0 whereas at the frontier between
soft and strict PS the minimum value of the Higgs quartic is 𝛼min

𝜆 (𝜇) ≃ 0, indicating Higgs criticality.
We now turn to higher representations 𝑑3 > 3 under 𝑆𝑈(3)𝐶. The Dynkin-Index 𝑆2(𝑑3) increases for
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4 Stabilizing the Higgs with Vector-like Fermions

(a) BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane.
Same color coding as Fig. 4.1. The weak portal
extents far into the region of large 𝑀𝐹 and 𝑁𝐹.
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(b) Example of a strictly Planck-safe RG flow due to the weak
portal mechanism. Shown is the RG evolution of couplings at
full 2-loop order in a model featuring 𝑁𝐹 = 5 vector-like leptons
(VLLs) (solid lines) with mass 𝑀𝐹 = 1TeV together with SM
3-loop running (dashed lines) for reference.

Figure 4.2: The weak gauge portal for a SM extensions with VLLs charged as (0, 2, 1) under the SM.
Shown is the BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane (a) as well as an exemplary strictly Planck-safe
RG evolution (b). Figures adapted from [2].

larger 𝑑3, cf. Subsec. 3.1.1, yielding larger contributions 𝛿𝐵3 for fixed 𝑁𝐹 (4.4). Hence, the 𝑁𝐹 window
of the BSM critical surface is shifted towards lower values and shrinks, see also Fig. B.2 in App. B. For
𝑑3 = 6, 8 PS can still be achieved implying qualitatively similar conditions as (4.11). For 𝑑3 = 10 however,
already adding 𝑁𝐹 = 1 VLFs with a mass in the multi-TeV range generates a subplanckian Landau pole
and the PS window ceases to occur. This excludes PS for all representations 𝑑3 ≥ 10.

We stress that the gauge portal mechanism operates at weak coupling in the safely perturbative regime.
Thus, we expect our full 2-loop order results to be a good approximation such that the existence and shape
of the gauge portal should not be relevantly altered at higher loop orders. We verified this for the highest
available loop order 432 in the gauge, Yukawa and scalar sector, respectively, see Fig. B.1. There, we can
see that increasing the loop order to 432 indeed has negligible impact on the BSM critical surface.

Color charged VLFs in the TeV range without (or with super feeble) Yukawas can be probed at colliders
in 𝑅-hadron and dijet searches, see [42] for details. Moreover, it is possible to hunt for the direct impact
on the running of 𝛼3(𝜇) which was measured up to 𝜇 ≃ 4TeV by the ATLAS collaboration [171]. For the
masses 𝑀𝐹 ≳ 1TeV we are interested in, the respective bounds however do not constrain relevant fractions
of the BSM critical surface.

4.1.2 Weak Portal
For the analysis of the weak gauge portal, we focus on SM extensions featuring 𝑁𝐹 colorless VLFs of mass
𝑀𝐹 ≳ 1TeV in the representation (0, 𝑑2, 1) which are charged solely under 𝑆𝑈(2)𝐿. This implies an uplift
𝛿𝐵2 ≥ 0 whereas 𝛿𝐵1,3 = 0. An exemplary strictly Planck-safe RG evolution at 2-loop is shown for 𝑑2 = 2,
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𝑀𝐹 = 1TeV and 𝑁𝐹 = 5 in Fig. 4.2b.
We also provide the BSM critical surface in the 𝑀𝐹 −𝑁𝐹 plane for 𝑑2 = 2 in Fig. 4.2. We again encounter

a sizeable, wedged PS window situated right between the region of subplanckian 𝛼2 Landau poles (low 𝑀𝐹
and high 𝑁𝐹) and Higgs metastability at 𝑀Pl (low 𝑁𝐹 or very high 𝑀𝐹). The different regions arise in the
same manner as in the strong portal case. Interestingly, AF in 𝛼2 is lost already starting from 𝑁𝐹 ≳ 5 in
accord with the 1-loop estimate 𝑁𝐹 ≥ 19

4 from (4.4). However, for TeV-ish VLLs the 𝛼2 pole only occurs
below the hypercharge one for 𝑁𝐹 ≥ 8 and below 𝑀Pl for 𝑁𝐹 ≥ 11.Note that these 𝑁𝐹 values increase with
increasing 𝜇0 = 𝑀𝐹 due to the decrease of 𝛼2 in the SM. From Fig. 4.2a we obtain the conditions

𝑀𝐹 ≲ 105 TeV, 4 ≤ 𝑁𝐹 ≤ 16,
(𝑀𝐹 ≲ 1012 TeV, 3 ≤ 𝑁𝐹 ≤ 53)

(4.12)

for strict (soft) PS. Notably, for soft PS the upper bounds on 𝑀𝐹 and 𝑁𝐹 are quite large which is different
to the strong portal. The reason is, that the SM decrease in 𝛼2 for a wide range of 𝑀𝐹 can still be
compensated by a large 𝑁𝐹 causing large 𝛿𝐵2 (4.4). The resulting direct uplift and squeezing of 𝛼𝜆 are
sufficient to pull the second sign change below 𝑀Pl and still enable soft PS. This explains the ’banana
shape’ of the soft PS window. Due to the reduced RG time until the Planck scale for large 𝜇0 = 𝑀𝐹, the
stabilizing effect is for a long time not spoiled by the appearance of subplanckian 𝛼2 Landau poles.

For higher representations 𝑑2 ≥ 3 the allowed range in 𝑁𝐹 shrinks and shifts towards lower values due to
larger contributions 𝛿𝐵2 analogously as for the strong portal case, see also Fig. B.3 in App. B. For 𝑑2 ≥ 5
PS is excluded for VLFs in the TeV-range, as there is already a subplanckian 𝛼2 pole for 𝑁𝐹 = 1.

4.1.3 Hypercharge Portal
We now consider VLFs in the representation (𝑌𝐹, 1, 1) under the SM in order to investigate the hypercharge
portal. We obtain an enhancement 𝛿𝐵1 ≥ 0 whereas the running of the non-abelian gauge couplings remains
SM-like with 𝛿𝐵2,3 = 0. The model is characterized by multiplicity 𝑁𝐹, mass 𝑀𝐹 and the hypercharge
𝑌𝐹 which in contrast to 𝑑2,3 is a continuous parameter. At first glimpse, the existence of the hypercharge
portal seems counterintuitive as the hypercharge Landau pole in comparison to the SM is shifted towards
lower, eventually subplanckian energies when adding 𝑈(1)𝑌 charged matter. However, we find that PS
can also be realized via the hypercharge portal mechanism. We investigate this in more detail for 𝑌𝐹 = 1

2 ,
see Fig. 4.3. An exemplary, softly Planck-safe RG flow is depicted for 𝑁𝐹 = 20 of these VLLs with a
mass of 𝑀𝐹 = 1TeV in Fig. 4.3b. The running of 𝛼1 is strongly enhanced w.r.t. the SM with the Landau
pole looming close-by in the transplanckian regime around 𝜇 ≃ 1022 GeV. The induced uplift of 𝛼𝜆 is still
not sufficient to render the vacuum stable all the way up to 𝑀Pl in contrast to the non-abelian gauge
portals. However, the squeezing of the trajectory pulls down the second sign change below 𝑀Pl yielding
𝛼𝜆(𝑀Pl) > 0 and hence soft PS.

This effect is further illustrated in Fig. 4.4 for fixed 𝑁𝐹 = 34 and different values of 𝑀𝐹. The squeezing
is most pronounced for the lowest masses 𝑀𝐹, as the enhanced growth of 𝛼1 starts earlier. For large
masses, we still encounter a metastable vacuum at 𝑀Pl as the squeezing w.r.t. the SM is not sufficient.
For lower masses, the squeezing is sufficient to pull-down the second sign change of 𝛼𝜆 to subplanckian
energies, yielding a stable vacuum at 𝑀Pl. However, when further decreasing 𝑀𝐹 eventually also the third
sign change triggered by 𝛼1 ≳ 𝒪(10−2 becomes subplanckian, destabilizing again the vacuum at 𝑀Pl. For
slightly lower masses finally the Landau pole itself becomes subplanckian.

The different RG fates are also reflected in the BSM critical surface Fig. 4.3a. While regions of strict PS
are absent, there is a sizeable window for soft PS which extends deep into the high mass and multiplicity
region. Interestingly, there is a narrow instability ridge (brown) located between the pole region and the
BSM critical surface which precisely corresponds to the situation where the third sign change is subplanckian,
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4 Stabilizing the Higgs with Vector-like Fermions

(a) BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane.
Same color coding as Fig. 4.1, also indicating
instabilities of the Higgs potential 𝛼𝜆 < −10−4

(brown).
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(b) Example of a softly Planck-safe RG flow due to the hyper-
charge portal mechanism. We show the RG evolution of couplings
at full 2-loop order in a model featuring 𝑁𝐹 = 20 VLLs (solid
lines) with mass 𝑀𝐹 = 1TeV together with SM 3-loop running
(dashed lines) for reference.

Figure 4.3: The hypercharge portal for a SM extensions with VLLs charged as ( 1
2 , 1, 1) under the SM.

Shown is the BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane (a) as well as an exemplary softly Planck-safe
RG evolution (b). Figures adapted from [2].
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Figure 4.4: Illustration of the squeezing of the RG trajectory of the Higgs quartic. Shown is the 2-loop
running of 𝛼𝜆 in a SM extension featuring 𝑁𝐹 = 34 VLLs in the representation ( 1

2 , 1, 1) for different
masses 𝑀𝐹 (solid lines) indicated by different colors compared to SM running (dashed line). While, the
location of the first sign flip hardly changes, the second and third sign changes experience a significant
pull down from the deep transplanckian regime (Fig. 3.1) to 𝑀Pl and below. The pull-down is larger
for lower 𝑀𝐹. Figure adapted from [2].
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but the Landau pole is not. The PS window shares the well-known ’banana shape’ of the weak portal
caused by the requirement of larger 𝛿𝐵1 for higher masses 𝑀𝐹 to achieve a stabilization within less RG
time ln 𝜇

𝜇0
between 𝜇0 ≃ 𝑀𝐹 and 𝑀Pl. The window finally closes for very large masses and multiplicities,

yielding the soft PS conditions
𝑀𝐹 ≲ 109 TeV, 19 ≤ 𝑁𝐹 ≤ 55 . (4.13)

Turning to higher (lower) values of |𝑌𝐹|, the value of 𝛿𝐵1 increases (decreases), cf. (4.4). Thus, the PS
window in 𝑁𝐹 moves towards lower (higher) values and shrinks (widens), see also Fig. B.4. As 𝛿𝐵1 ∝ 𝑁𝐹𝑌 2

𝐹 ,
there is to a good approximation an anti-proportionality between the allowed ranges in 𝑁𝐹 and 𝑌 2

𝐹 which
is just broken by the 2-loop term 8𝑁𝐹𝑌 4

𝐹 𝛼3
1 ⊂ 𝛽1. The maximum allowed value of 𝑌𝐹 is obtained for the

lowest number of flavors, i.e. 𝑁𝐹 = 1. For a TeV-ish VLL PS is achieved for 2.16 ≤ 𝑌𝐹 ≤ 2.53. The allowed
range gets more narrow and shifts towards higher values when increasing the mass, e.g. to 3.33 ≤ 𝑌𝐹 ≤ 3.45
for 𝑀𝐹 = 1011 GeV, shortly before the stability window finally closes.

Theory constraints on VLL parameters from demanding PS can be confronted with experimental
measurements of the electroweak precision parameters [172]

𝑌 = 3
50𝛼1

𝑚2
𝑊

𝑀2
𝐹

𝛿𝐵1, 𝑊 = 1
10𝛼2

𝑚2
𝑊

𝑀2
𝐹

𝛿𝐵2, (4.14)

which directly depend on 𝑀𝐹 [173] and 𝑁𝐹 via 𝛿𝐵1,2 (4.4). However, for 𝑀𝐹 ≳ 1 TeV the existing
constraints are not restricting the weak or hypercharge stability windows. Moreover, for VLLs without
Yukawa couplings LHC searches for long lived charged particles [174], as well as ̄𝜓𝜓 resonances decaying to
diphotons apply. Corresponding limits are available for electric charge ≥ 1 and 𝑁𝐹 = 1, and up to now do
not exceed 𝑀𝐹 ≳ 1TeV.

4.2 Yukawa Portals

We now turn to VLFs representations allowing for a renormalizable Yukawa portal coupling 𝜅 to the Higgs
and a SM fermion. In total, there are 13 of these VLF representations that are listed in Tab. 4.1. The
presence of the BSM Yukawa coupling crucially influences the RG flow of the models as it contributes to
the gauge, Yukawa and Higgs quartic 𝛽-functions (3.9) starting at 2-, 1- and 1-loop order, respectively, cf.
(3.9), (3.10) and (3.12). In particular, the negative contribution to the gauge 𝛽-functions

𝛽𝑖 ⊂ −𝐷𝑖𝜅𝛼2
𝑖 𝛼𝜅 , (4.15)

with 𝐷𝑖𝜅 ≥ 0 offers a unique mechanism to slow down the growth of gauge couplings [128] and hence to
prevent subplanckian Landau poles. The most relevant contributions to the Higgs quartic 𝛽-function read

𝛽𝜆 ⊂ +𝐼𝜆𝜅𝛼𝜆𝛼𝜅 − 𝐽𝜅𝜅𝛼2
𝜅 + 𝐾𝜅𝜅𝜅𝛼3

𝜅 , (4.16)

with 𝐼𝜆𝜅, 𝐽𝜅𝜅, 𝐾𝜅𝜅𝜅 ≥ 0 and can either stabilize or destabilize the Higgs vacuum depending on the values
of 𝛼𝜅 and the relevant coefficients. Note that for charged VLFs also the gauge portal mechanism is active.
In order to disentangle the different effects simultaneously influencing the RG evolution we first consider
feeble Yukawas before allowing for sizeable Yukawa couplings to a single or all three generations of SM
fermions.
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4 Stabilizing the Higgs with Vector-like Fermions

Model (𝑌𝐹, 𝑑2, 𝑑3) −ℒ𝑌
portal

A (−1, 1, 1) 𝜅𝑖𝑗 𝐿𝑖𝐻𝜓𝑅𝑗 + h.c.
B (−1, 3, 1) 𝜅𝑖𝑗 𝐿𝑖𝜓𝑅𝑗𝐻 + h.c.
C (−1

2 , 2, 1) 𝜅𝑖𝑗 𝜓𝐿𝑖𝐻𝐸𝑗 + h.c.
D (−3

2 , 2, 1) 𝜅𝑖𝑗 𝜓𝐿𝑖𝐻
𝑐𝐸𝑗 + h.c.

E ( 0, 1, 1) 𝜅𝑖𝑗 𝐿𝑖𝐻𝑐𝜓𝑅𝑗 + h.c.
F ( 0, 3, 1) 𝜅𝑖𝑗 𝐿𝑖𝜓𝑅𝑗𝐻𝑐 + h.c.
G (−1

3 , 1, 3) 𝜅𝑖𝑗 𝑄𝑖𝐻𝜓𝑅𝑗 + h.c.
H (+2

3 , 1, 3) 𝜅𝑖𝑗 𝑄𝑖𝐻
𝑐𝜓𝑅𝑗 + h.c.

I (−1
3 , 3, 3) 𝜅𝑖𝑗 𝑄𝑖𝜓𝑅𝑗𝐻 + h.c.

J (+2
3 , 3, 3) 𝜅𝑖𝑗 𝑄𝑖𝜓𝑅𝑗𝐻𝑐 + h.c.

K (+1
6 , 2, 3) 𝜅𝑢

𝑖𝑗 𝜓𝐿𝑖𝐻
𝑐𝑈𝑗 + 𝜅𝑑

𝑖𝑗 𝜓𝐿𝑖𝐻𝐷𝑗 + h.c.
L (+7

6 , 2, 3) 𝜅𝑖𝑗 𝜓𝐿𝑖𝐻𝑈𝑗 + h.c.
M (−5

6 , 2, 3) 𝜅𝑖𝑗 𝜓𝐿𝑖𝐻
𝑐𝐷𝑗 + h.c.

Table 4.1: List of all VLF extensions of the SM allowing for a renormalizable Yukawa portal coupling 𝜅
with a SM fermion and the Higgs (two portals 𝜅𝑢,𝑑 exist in Model K). Shown are the VLF representation
(𝑌𝐹, 𝑑2, 𝑑3) under the SM and the explicit BSM Yukawa interaction ℒ𝑌

portal. Table adapted from [2].

(a) Model G. The pole region corresponds to subplanck-
ian 𝛼3 Landau poles. The BSM critical surface is quali-
tative similar to the pure strong portal case Fig. 4.1a
but extends further into the high 𝑀𝐹 and 𝑁𝐹 region
due to the collaborating hypercharge portal. Figure
adapted from [2].

(b) Model I. The pole region corresponds to subplanck-
ian 𝛼2 Landau poles. Stabilization arises from collabo-
ration between all three gauge portals with the weak
portal being dominant. PS can only be realized for
relatively heavy VLFs with 𝑀𝐹 ≳ 30TeV and low mul-
tiplicities 𝑁𝐹.

Figure 4.5: Collaboration of gauge portals for vanishing Yukawa portal coupling 𝛼𝜅 = 0. Shown is the
BSM critical surface in the (𝑁𝐹, 𝑀𝐹) plane for model G (a) and I (b). Same color coding as in Fig. 4.1.
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Model Poles Planck safety
(𝑌𝐹, 𝑑2, 𝑑3) 𝑁pole

𝐹 𝛼pole soft strict
A (−1, 1, 1) 7 𝛼1 𝑁𝐹 = 6 X
B (−1, 3, 1) 3 𝛼1 1 ≤ 𝑁𝐹 ≤ 2 1 ≤ 𝑁𝐹 ≤ 2
C (−1

2 , 2, 1) 12 𝛼2 3 ≤ 𝑁𝐹 ≤ 11 5 ≤ 𝑁𝐹 ≤ 11
D (−3

2 , 2, 1) 2 𝛼1 𝑁𝐹 = 1 X
E ( 0 , 1, 1) ∞ X X
F ( 0 , 3, 1) 3 𝛼2 1 ≤ 𝑁𝐹 ≤ 5

2
3
2 ≤ 𝑁𝐹 ≤ 5

2
G (−1

3 , 1, 3) 11 𝛼3 2 ≤ 𝑁𝐹 ≤ 10 2 ≤ 𝑁𝐹 ≤ 10
H (+2

3 , 1, 3) 6 𝛼1 2 ≤ 𝑁𝐹 ≤ 5 2 ≤ 𝑁𝐹 ≤ 5
I (−1

3 , 3, 3) 1 𝛼2 X X
J (+2

3 , 3, 3) 1 𝛼2 X X
K (+1

6 , 2, 3) 4 𝛼2 1 ≤ 𝑁𝐹 ≤ 3 1 ≤ 𝑁𝐹 ≤ 3
L (+7

6 , 2, 3) 1 𝛼1 X X
M (−5

6 , 2, 3) 2 𝛼1 𝑁𝐹 = 1 𝑁𝐹 = 1

Table 4.2: Planck fate of VLFs models A-M from Tab. 4.1 for different multiplicities 𝑁𝐹 assuming
𝑀𝐹 = 1 TeV and vanishing Yukawa portals 𝛼𝜅|𝑀𝐹

≃ 0. For 𝑁𝐹 ≥ 𝑁pole
𝐹 , the gauge coupling 𝛼pole

runs into a subplanckian Landau pole. Allowed ranges of 𝑁𝐹 for soft and strict PS are also indicated.
Model E remains metastable as in the SM, whereas Models I, J, and L develop Landau poles below
𝑀Pl already for 𝑁𝐹 = 1. Note that since the BSM fermion representations are real in Models E and F,
half-integer values for 𝑁𝐹 (odd number of Weyl fermions) are compatible with the cancellation of gauge
anomalies [170]. Table adapted from [2].

4.2.1 Feeble Yukawas
Yukawa portal couplings are technically natural. Hence, when chosen feebly small or vanishing at the
matching scale this property is conserved during the RG evolution. In this case, the influence of 𝛼𝜅 on
the RG flow is negligible. The gauge portal mechanism is however still active, and potentially capable of
ensuring vacuum stability. For VLFs charged nontrivially under more than one SM gauge interaction the
effects from the different gauge portals add up according to (4.9), see also Fig. 4.5. Adding too many charged
VLFs for feeble 𝛼𝜅 ≃ 0 gives rise to a subplanckian Landau pole of the gauge coupling corresponding to the
dominant portal mechanism. Hence, we search for Planck safety windows where the enhanced running of
gauge couplings is sufficient to stabilize the Higgs but does not yet cause Landau poles below 𝑀Pl.
For 𝑀𝐹 = 1TeV, the results of our analyses in model A-M are summarized in Tab. 4.2. Strict PS can

be realized for some ranges of 𝑁𝐹 in models B,C,F1,G,H,K,M. Models A and D do not allow for strict
but for soft PS. This is understandable as stabilization in model A (D) proceeds purely (mostly) via the
hypercharge portal. PS cannot be achieved in models E,I,J,L. The VLFs in model E are SM singlets, thus
the gauge portal is inactive and the Higgs remains metastable as in the SM independent of 𝑁𝐹. Models
I,J,L on the other hand develop subplanckian Landau poles already for 𝑁𝐹 = 1. The reason is the large
color factor 𝑑3 = 3 contributing to 𝛿𝐵1,2 (4.4) which in combination with sizeable 𝑑2 = 3 (𝑌𝐹 = 7

6) gives

1Note that VLFs in models E and F come in real representations under the SM gauge group. Hence, an odd number of
Weyl fermions corresponding to an half-integer number of Dirac fermions 𝑁𝐹 is compatible with the cancellation of gauge
anomalies [170].
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4 Stabilizing the Higgs with Vector-like Fermions

Model Interactions Planck fate Gauge Portal Yukawa Portal
(𝑌𝐹, 𝑑2, 𝑑3) −ℒportal

𝑌 for 𝛼𝜅 = 0 𝛼strict
𝜅,max|𝑀𝐹

𝛼soft
𝜅,max|𝑀𝐹

𝛼soft
𝜅,min|𝑀𝐹

𝛼strict
𝜅,min|𝑀𝐹

A (−1, 1, 1) 𝜅 𝐿3𝐻𝜓𝑅 metastability X X 6 ⋅ 10−3 0.2
B (−1, 3, 1) 𝜅 𝐿3𝜓𝑅𝐻 strict PS 2 ⋅ 10−4 1.6 ⋅ 10−3 1.6 ⋅ 10−2 0.4
C (−1

2 , 2, 1) 𝜅 𝜓𝐿𝐻𝐸3 metastability X X 6 ⋅ 10−3 0.2
D (−3

2 , 2, 1) 𝜅 𝜓𝐿𝐻𝑐𝐸3 soft PS X 3 ⋅ 10−5 8 ⋅ 10−3 0.2
E ( 0, 1, 1) 𝜅 𝐿3𝐻𝑐𝜓𝑅 metastability X X 5 ⋅ 10−3 0.2
F ( 0, 3, 1) 𝜅 𝐿3𝜓𝑅𝐻𝑐 soft PS X 1 ⋅ 10−3 1.6 ⋅ 10−2 0.4
G (−1

3 , 1, 3) 𝜅 𝑄3𝐻𝜓𝑅 metastability X X 1 ⋅ 10−2 0.2
H (+2

3 , 1, 3) 𝜅 𝑄3𝐻𝑐𝜓𝑅 metastability X X 6 ⋅ 10−3 0.2
I (−1

3 , 3, 3) 𝜅 𝑄3𝜓𝑅𝐻 𝛼2-pole X X 0.3 0.6
J (+2

3 , 3, 3) 𝜅 𝑄3𝜓𝑅𝐻𝑐 𝛼2-pole X X 0.3 0.6

K (+1
6 , 2, 3) 𝜅𝑡 𝜓𝐿𝐻𝑐𝑈3 strict PS 1 ⋅ 10−5 1 ⋅ 10−4 0.13 0.25

+𝜅𝑏 𝜓𝐿𝐻𝐷3 1 ⋅ 10−5 1 ⋅ 10−4 0.13 0.25
L (+7

6 , 2, 3) 𝜅 𝜓𝐿𝐻𝑈3 𝛼1-pole X X 1 ⋅ 10−2 0.2
M (−5

6 , 2, 3) 𝜅 𝜓𝐿𝐻𝑐𝐷3 strict PS 8 ⋅ 10−4 1.4 ⋅ 10−3 8 ⋅ 10−3 0.2

Table 4.3: Planck safety windows of SM extensions featuring a single VLF of mass 𝑀𝐹 = 1TeV with
Yukawa coupling 𝛼𝜅 only to third generation SM fermions and the Higgs. The allowed soft and strict
PS ranges in 𝛼𝜅|𝑀𝐹

for both the gauge and the Yukawa portal are indicated in each model, respectively.
For model K, the indicated ranges correspond to the case of just one Yukawa coupling 𝜅𝑡,𝑏 being
switched on at a time, respectively. Notably, for large 𝛼𝜅|𝑀𝐹

the Yukawa portal mechanism allows for
strict PS in all models due to the occurrence of strongly coupled walking regimes. The gauge portal
mechanism on the other hand can only render a few models Planck-safe. For vanishing Yukawas, the
Planck fate of each model is indicated and the results of Tab. 4.2 are recovered. Table adapted from [2].

rise to an 𝛼2 (𝛼1) pole below 𝑀Pl in model I,J (L). The subplanckian poles can be avoided by choosing
larger 𝜇0 ≃ 𝑀𝐹. This is illustrated for model I in Fig. 4.5 where a PS window opens up for 𝑀𝐹 ≳ 30TeV
implying a lower mass bound for PS. We also observe the characteristic wedge shape of the PS window
which can exemplarily be seen in Fig. 4.5a for model G.

4.2.2 Third Generation Yukawa Portals
In full generality, the portal coupling 𝜅𝑖𝑗 is a matrix in flavor space with 3 𝑁𝐹 independent components.
However, in the spirit of minimality for the remainder of this section we restrict ourselves to 𝑁𝐹 = 1
generations of VLFs2. This reduces the number of free parameters and simplifies the analysis of the
emerging RG dynamics. To start, we assume only a single non-negligible Yukawa coupling of the VLF to
the third SM fermion generation to be switched on. This setup is popular also in experimental analyses, e.g.
[175, 176], as models A-M are then fully characterized by the VLF mass 𝑀𝐹 and the value of the portal
coupling 𝛼𝜅.
The results of our analysis are summarized in Tab. 4.3 assuming 𝑀𝐹 = 1TeV. For vanishing Yukawas

2Two models with 𝑁𝐹 = 3 and additional BSM scalar fields are studied in Chap. 6. In comparison to the minimal models
they exhibit a rich phenomenology coming at the price of a large number of free BSM parameters.
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Figure 4.6: Illustration of the Yukawa portal mechanism. Exemplarily shown is the strictly Planck-
safe RG flow in Model M of Tab. 4.3 for a single VLF with mass 𝑀𝐹 ≃ 1TeV and Yukawa coupling
𝛼𝜅|𝑀𝐹

= 0.2 at full 2-loop order (solid). The large initial value of the Yukawa coupling induces a
walking regime closely above the matching scale. The Yukawas 𝛼𝜅,𝑡 as well as 𝛼𝜆 are kept at strongly
coupled values all the way up to the Planck scale. The gauge couplings on the other hand do not
participate in the walking but continue to run at weak coupling all the way up to the Planck scale,
similar as in the SM (dashed). Figure adapted from [2].

𝛼𝜅|𝑀𝐹
≃ 0, the models exhibit diverse phenomena such as strict (B,K,M) and soft (D,F) PS due to the

gauge portal mechanism, Higgs metastability at 𝑀Pl (A,C,E,G,H) or subplanckian Landau poles (I,J,L),
in agreement with our findings from Subsec. 4.2.1. The gauge portal window in models B,D,F,K,M
generically implies model-dependent upper limits on 𝛼𝜅|𝑀𝐹

for strict and soft PS in the ballpark of
10−5 − 10−3, see Tab. 4.3. This is not a surprise as increasing 𝛼𝜅|𝑀𝐹

destabilizes the Higgs due to the
negative contribution 𝛽𝜆 ⊃ −𝐽𝜅𝜅𝛼2

𝜅, cf. (4.16). This destabilizing effect was already observed in [164–169].
Hence, for intermediate, weakly coupled values 𝛼𝜅|𝑀𝐹

PS cannot be realized.
When further increasing the Yukawa coupling, the situation however changes. Sizeable values of 𝛼𝜅|𝑀𝐹

induce walking regimes, where some couplings almost stop running and nearly stay constant for several
orders of magnitude. This behavior is related to approximate zeros of the 𝛽-functions of involved couplings,
see Subsec. 3.2.2 for details. An example is illustrated in Fig. 4.6 for model M with 𝑀𝐹 = 1TeV and
𝛼𝜅|𝑀𝐹

= 0.2. While the running of gauge couplings stays SM-like, the Yukawa and quartic couplings 𝛼𝑡,𝜅,𝜆
enter the walking regime closely above the matching scale and are captured at sizeable, positive values
all the way up to 𝑀Pl

3. In particular, the walking renders 𝛼𝜆 positive throughout until the Planckian
regime, enforcing vacuum stability. Moreover, the sizeable values of the Yukawas 𝛼𝜅,𝑡 decelerate the growth
of gauge couplings and push Landau poles further towards the UV. Hence, the walking regime allows to
stabilize the Higgs and to prevent subplanckian Landau poles and a new PS window opens up at large
𝛼𝜅|𝑀𝐹

which we refer to as Yukawa portal. Notably, we find that the emergence of such walking regimes is
quite generic and PS can be achieved via the Yukawa portal mechanism in all models A-M for sufficiently
large 𝛼𝜅|𝑀𝐹

. In some models, soft PS can already arise for couplings as low as 𝛼𝜅|𝑀𝐹
≳ few × 10−3. For

strongly coupled 𝛼𝜅|𝑀𝐹
≳ few × 10−1 we finally obtain strict PS in all models. This constitutes a central

result of our analysis.
3Interestingly, 𝛼𝜅,𝑡 asymptote to very similar values as up to subleading corrections from 𝛼1,𝑏,𝜆 their 𝛽-functions are

identical after exchanging 𝛼𝜅 ↔ 𝛼𝑡.
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<latexit sha1_base64="Lcrn2NjRVdSGFJYFYdSeS1rxXIY=">AAACE3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRhS4r2FpoQplMJ+3QeYSZiVBCwJ/wF9zq3p249QPc+iVO0yy09cCFM+fcy517ooRRbTzvy6ksLa+srlXXaxubW9s77u5eR8tUYdLGkknVjZAmjArSNtQw0k0UQTxi5D4aX039+weiNJXizkwSEnI0FDSmGBkr9d2DLFAcXqN0SPIggMWrJZVBLO+7da/hFYCLxC9JHZRo9d3vYCBxyokwmCGte76XmDBDylDMSF4LUk0ShMdoSHqWCsSJDrPihhweW2UAY6lsCQML9fdEhrjWEx7ZTo7MSM97U/FfL+Jzm018EWZUJKkhAs8WxymDRsJpQHBAFcGGTSxBWFH7d4hHSCFsbIw1G4o/H8Ei6Zw2fK/h357Vm5dlPFVwCI7ACfDBOWiCG9ACbYDBI3gGL+DVeXLenHfnY9ZaccqZffAHzucPftWeLg==</latexit><latexit sha1_base64="Lcrn2NjRVdSGFJYFYdSeS1rxXIY=">AAACE3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRhS4r2FpoQplMJ+3QeYSZiVBCwJ/wF9zq3p249QPc+iVO0yy09cCFM+fcy517ooRRbTzvy6ksLa+srlXXaxubW9s77u5eR8tUYdLGkknVjZAmjArSNtQw0k0UQTxi5D4aX039+weiNJXizkwSEnI0FDSmGBkr9d2DLFAcXqN0SPIggMWrJZVBLO+7da/hFYCLxC9JHZRo9d3vYCBxyokwmCGte76XmDBDylDMSF4LUk0ShMdoSHqWCsSJDrPihhweW2UAY6lsCQML9fdEhrjWEx7ZTo7MSM97U/FfL+Jzm018EWZUJKkhAs8WxymDRsJpQHBAFcGGTSxBWFH7d4hHSCFsbIw1G4o/H8Ei6Zw2fK/h357Vm5dlPFVwCI7ACfDBOWiCG9ACbYDBI3gGL+DVeXLenHfnY9ZaccqZffAHzucPftWeLg==</latexit><latexit sha1_base64="Lcrn2NjRVdSGFJYFYdSeS1rxXIY=">AAACE3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRhS4r2FpoQplMJ+3QeYSZiVBCwJ/wF9zq3p249QPc+iVO0yy09cCFM+fcy517ooRRbTzvy6ksLa+srlXXaxubW9s77u5eR8tUYdLGkknVjZAmjArSNtQw0k0UQTxi5D4aX039+weiNJXizkwSEnI0FDSmGBkr9d2DLFAcXqN0SPIggMWrJZVBLO+7da/hFYCLxC9JHZRo9d3vYCBxyokwmCGte76XmDBDylDMSF4LUk0ShMdoSHqWCsSJDrPihhweW2UAY6lsCQML9fdEhrjWEx7ZTo7MSM97U/FfL+Jzm018EWZUJKkhAs8WxymDRsJpQHBAFcGGTSxBWFH7d4hHSCFsbIw1G4o/H8Ei6Zw2fK/h357Vm5dlPFVwCI7ACfDBOWiCG9ACbYDBI3gGL+DVeXLenHfnY9ZaccqZffAHzucPftWeLg==</latexit><latexit sha1_base64="Lcrn2NjRVdSGFJYFYdSeS1rxXIY=">AAACE3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRhS4r2FpoQplMJ+3QeYSZiVBCwJ/wF9zq3p249QPc+iVO0yy09cCFM+fcy517ooRRbTzvy6ksLa+srlXXaxubW9s77u5eR8tUYdLGkknVjZAmjArSNtQw0k0UQTxi5D4aX039+weiNJXizkwSEnI0FDSmGBkr9d2DLFAcXqN0SPIggMWrJZVBLO+7da/hFYCLxC9JHZRo9d3vYCBxyokwmCGte76XmDBDylDMSF4LUk0ShMdoSHqWCsSJDrPihhweW2UAY6lsCQML9fdEhrjWEx7ZTo7MSM97U/FfL+Jzm018EWZUJKkhAs8WxymDRsJpQHBAFcGGTSxBWFH7d4hHSCFsbIw1G4o/H8Ei6Zw2fK/h357Vm5dlPFVwCI7ACfDBOWiCG9ACbYDBI3gGL+DVeXLenHfnY9ZaccqZffAHzucPftWeLg==</latexit>

Yukawa Portal

<latexit sha1_base64="g4CBan96GbZz6ZOvXxHsZTB4Ll8=">AAACDXicbVC7SgNBFJ2Nrxhf66OzGQyCVdgVQcugjWUE85BkCXcns8mQmZ1lZlaJS77BX7DV3k5s/QZbv8RJsoUmHrhwOOdezuWECWfaeN6XU1haXlldK66XNja3tnfc3b2GlqkitE4kl6oVgqacxbRumOG0lSgKIuS0GQ6vJn7znirNZHxrRgkNBPRjFjECxkpd9yDrKIHv0iE8QAfXpDLAx1237FW8KfAi8XNSRjlqXfe705MkFTQ2hIPWbd9LTJCBMoxwOi51Uk0TIEPo07alMQiqg2z6/RgfW6WHI6nsxAZP1d8XGQitRyK0mwLMQM97E/FfLxRzySa6CDIWJ6mhMZkFRynHRuJJNbjHFCWGjywBopj9HZMBKCDGFliypfjzFSySxmnF9yr+zVm5epnXU0SH6AidIB+doyq6RjVURwQ9omf0gl6dJ+fNeXc+ZqsFJ7/ZR3/gfP4ACiSbzA==</latexit><latexit sha1_base64="g4CBan96GbZz6ZOvXxHsZTB4Ll8=">AAACDXicbVC7SgNBFJ2Nrxhf66OzGQyCVdgVQcugjWUE85BkCXcns8mQmZ1lZlaJS77BX7DV3k5s/QZbv8RJsoUmHrhwOOdezuWECWfaeN6XU1haXlldK66XNja3tnfc3b2GlqkitE4kl6oVgqacxbRumOG0lSgKIuS0GQ6vJn7znirNZHxrRgkNBPRjFjECxkpd9yDrKIHv0iE8QAfXpDLAx1237FW8KfAi8XNSRjlqXfe705MkFTQ2hIPWbd9LTJCBMoxwOi51Uk0TIEPo07alMQiqg2z6/RgfW6WHI6nsxAZP1d8XGQitRyK0mwLMQM97E/FfLxRzySa6CDIWJ6mhMZkFRynHRuJJNbjHFCWGjywBopj9HZMBKCDGFliypfjzFSySxmnF9yr+zVm5epnXU0SH6AidIB+doyq6RjVURwQ9omf0gl6dJ+fNeXc+ZqsFJ7/ZR3/gfP4ACiSbzA==</latexit><latexit sha1_base64="g4CBan96GbZz6ZOvXxHsZTB4Ll8=">AAACDXicbVC7SgNBFJ2Nrxhf66OzGQyCVdgVQcugjWUE85BkCXcns8mQmZ1lZlaJS77BX7DV3k5s/QZbv8RJsoUmHrhwOOdezuWECWfaeN6XU1haXlldK66XNja3tnfc3b2GlqkitE4kl6oVgqacxbRumOG0lSgKIuS0GQ6vJn7znirNZHxrRgkNBPRjFjECxkpd9yDrKIHv0iE8QAfXpDLAx1237FW8KfAi8XNSRjlqXfe705MkFTQ2hIPWbd9LTJCBMoxwOi51Uk0TIEPo07alMQiqg2z6/RgfW6WHI6nsxAZP1d8XGQitRyK0mwLMQM97E/FfLxRzySa6CDIWJ6mhMZkFRynHRuJJNbjHFCWGjywBopj9HZMBKCDGFliypfjzFSySxmnF9yr+zVm5epnXU0SH6AidIB+doyq6RjVURwQ9omf0gl6dJ+fNeXc+ZqsFJ7/ZR3/gfP4ACiSbzA==</latexit><latexit sha1_base64="g4CBan96GbZz6ZOvXxHsZTB4Ll8=">AAACDXicbVC7SgNBFJ2Nrxhf66OzGQyCVdgVQcugjWUE85BkCXcns8mQmZ1lZlaJS77BX7DV3k5s/QZbv8RJsoUmHrhwOOdezuWECWfaeN6XU1haXlldK66XNja3tnfc3b2GlqkitE4kl6oVgqacxbRumOG0lSgKIuS0GQ6vJn7znirNZHxrRgkNBPRjFjECxkpd9yDrKIHv0iE8QAfXpDLAx1237FW8KfAi8XNSRjlqXfe705MkFTQ2hIPWbd9LTJCBMoxwOi51Uk0TIEPo07alMQiqg2z6/RgfW6WHI6nsxAZP1d8XGQitRyK0mwLMQM97E/FfLxRzySa6CDIWJ6mhMZkFRynHRuJJNbjHFCWGjywBopj9HZMBKCDGFliypfjzFSySxmnF9yr+zVm5epnXU0SH6AidIB+doyq6RjVURwQ9omf0gl6dJ+fNeXc+ZqsFJ7/ZR3/gfP4ACiSbzA==</latexit>

unstable
<latexit sha1_base64="WZAqt/B5Jnn/v8P+TnOpr21BGo4=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lhHMA5I1zE4myZCZ2WXmrhCW1P6CrfZ2Yut32PolTpItNPHAwOGce+ZeTpRIYdH3v7yV1bX1jc3CVnF7Z3dvv3Rw2LBxahivs1jGphVRy6XQvI4CJW8lhlMVSd6MRjdTv/nIjRWxvsdxwkNFB1r0BaPopIesYxRJtUXqApNuqexX/BnIMglyUoYctW7pu9OLWaq4Riapte3ATzDMqEHB3H/FTmp5QtmIDnjbUU0Vt2E2u3pCTp3SI/3YuKeRzNTfiYwqa8cqcpOK4tAuelPxXy9SC5uxfxVmQicpcs3mi/upJBiTaSWkJwxnKMeOUGaEu52wITWUoSuu6EoJFitYJo3zSuBXgruLcvU6r6cAx3ACZxDAJVThFmpQBwYGnuEFXr0n78179z7moytenjmCP/A+fwBiWJld</latexit><latexit sha1_base64="WZAqt/B5Jnn/v8P+TnOpr21BGo4=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lhHMA5I1zE4myZCZ2WXmrhCW1P6CrfZ2Yut32PolTpItNPHAwOGce+ZeTpRIYdH3v7yV1bX1jc3CVnF7Z3dvv3Rw2LBxahivs1jGphVRy6XQvI4CJW8lhlMVSd6MRjdTv/nIjRWxvsdxwkNFB1r0BaPopIesYxRJtUXqApNuqexX/BnIMglyUoYctW7pu9OLWaq4Riapte3ATzDMqEHB3H/FTmp5QtmIDnjbUU0Vt2E2u3pCTp3SI/3YuKeRzNTfiYwqa8cqcpOK4tAuelPxXy9SC5uxfxVmQicpcs3mi/upJBiTaSWkJwxnKMeOUGaEu52wITWUoSuu6EoJFitYJo3zSuBXgruLcvU6r6cAx3ACZxDAJVThFmpQBwYGnuEFXr0n78179z7moytenjmCP/A+fwBiWJld</latexit><latexit sha1_base64="WZAqt/B5Jnn/v8P+TnOpr21BGo4=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lhHMA5I1zE4myZCZ2WXmrhCW1P6CrfZ2Yut32PolTpItNPHAwOGce+ZeTpRIYdH3v7yV1bX1jc3CVnF7Z3dvv3Rw2LBxahivs1jGphVRy6XQvI4CJW8lhlMVSd6MRjdTv/nIjRWxvsdxwkNFB1r0BaPopIesYxRJtUXqApNuqexX/BnIMglyUoYctW7pu9OLWaq4Riapte3ATzDMqEHB3H/FTmp5QtmIDnjbUU0Vt2E2u3pCTp3SI/3YuKeRzNTfiYwqa8cqcpOK4tAuelPxXy9SC5uxfxVmQicpcs3mi/upJBiTaSWkJwxnKMeOUGaEu52wITWUoSuu6EoJFitYJo3zSuBXgruLcvU6r6cAx3ACZxDAJVThFmpQBwYGnuEFXr0n78179z7moytenjmCP/A+fwBiWJld</latexit><latexit sha1_base64="WZAqt/B5Jnn/v8P+TnOpr21BGo4=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lhHMA5I1zE4myZCZ2WXmrhCW1P6CrfZ2Yut32PolTpItNPHAwOGce+ZeTpRIYdH3v7yV1bX1jc3CVnF7Z3dvv3Rw2LBxahivs1jGphVRy6XQvI4CJW8lhlMVSd6MRjdTv/nIjRWxvsdxwkNFB1r0BaPopIesYxRJtUXqApNuqexX/BnIMglyUoYctW7pu9OLWaq4Riapte3ATzDMqEHB3H/FTmp5QtmIDnjbUU0Vt2E2u3pCTp3SI/3YuKeRzNTfiYwqa8cqcpOK4tAuelPxXy9SC5uxfxVmQicpcs3mi/upJBiTaSWkJwxnKMeOUGaEu52wITWUoSuu6EoJFitYJo3zSuBXgruLcvU6r6cAx3ACZxDAJVThFmpQBwYGnuEFXr0n78179z7moytenjmCP/A+fwBiWJld</latexit>

stable
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(a) Absolute value of the Higgs quartic coupling at the
Planck scale |𝛼𝜆(𝑀Pl)| as a function of the Yukawa por-
tal coupling at the matching scale 𝛼𝜅|𝑀𝐹

. Stability can
be achieved via the gauge portal (blue) or the Yukawa
portal (red) for feebly or strongly coupled 𝛼𝜅|𝑀𝐹

, re-
spectively. In between, weakly coupled 𝛼𝜅|𝑀𝐹

destabi-
lize the Higgs potential and render 𝛼𝜆(𝑀Pl) negative
(green).
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(b) Running |𝛼𝜆(𝜇)| for different values of 𝛼𝜅|𝑀𝐹
, in-

dicated by different colors. We observe the transition
from the gauge to the Yukawa portal by varying 𝛼𝜅|𝑀𝐹

.
For feeble 𝛼𝜅 (violet, dark blue) strict PS is achieved
via the gauge portal. Increasing 𝛼𝜅|𝑀𝐹

renders the
minimum of 𝛼𝜆 negative, giving rise to a subplanckian
metastability interval (light blue). When further in-
creasing 𝛼𝜅|𝑀𝐹

, the second sign change moves beyond
𝑀Pl yielding Planck scale metastability (green). Even-
tually, for 𝛼𝜅 ≳ 10−2 (yellow, orange, red) soft and
strict PS are restored due to a strongly coupled walking
regime.

Figure 4.7: Gauge and Yukawa portal mechanism for different values of 𝛼𝜅|𝑀𝐹
. Exemplarily shown are

plots for model M with a single VLF of mass 𝑀𝐹 ≃ 1TeV. For feeble values of 𝛼𝜅|𝑀𝐹
, PS is achieved

via the gauge portal mechanism. In the weakly coupled regime, the Yukawa destabilizes the Higgs
vacuum. Finally, strongly coupled 𝛼𝜅|𝑀𝐹

allows for PS again. Figures taken from [2].

We stress that the Yukawa portal relies on a completely different mechanism than the gauge portal. In
the gauge portal mechanism, the mild enhancement in the running of gauge couplings indirectly causes an
higher-order uplift and squeezing of 𝛼𝜆. This results in a mild deformation of the RG trajectories w.r.t.
the SM. In the Yukawa portal mechanism in contrast, the shape of Yukawa and quartic RG trajectories is
drastically changed due to large 𝛼𝜅 contributions to their 𝛽-functions already at leading order.
The dominant RG mechanisms that are operative for different magnitudes of the Yukawa coupling are

further illustrated in comparison in Fig. 4.7. There, the impact of the value of 𝛼𝜅|𝑀𝐹
on vacuum stability

is investigated exemplarily in model M for 𝑀𝐹 = 1TeV. Fig. 4.7a shows |𝛼𝜆(𝑀Pl)| as a function of 𝛼𝜅|𝑀𝐹
whereas Fig. 4.7b depicts the full RG trajectory |𝛼𝜆(𝜇)| for selected values of 𝛼𝜅|𝑀𝐹

. From Fig. 4.7b
we see that for feeble and weak Yukawas 𝛼𝜅|𝑀𝐹

≲ 10−2 the hypercharge Landau pole occurs above 𝑀Pl
around 𝜇 ≃ 5 ⋅ 1023 GeV. The minimum value 𝛼min

𝜆 is realized around 𝜇min ≃ 1013 GeV. For feeble Yukawa
couplings (violet, dark blue) the Higgs quartic stays positive throughout the running and we obtain a
strictly Planck-safe RG evolution due to the gauge portal mechanism. When increasing the Yukawa, 𝛼min

𝜆
decreases and eventually turns negative for 𝛼𝜅|𝑀𝐹

≳ 8 ⋅ 10−4. This give rise to a metastability interval
of quickly increasing width. At first, the second sign change stays subplanckian (light blue) and we still
encounter soft PS with 𝛼𝜆(𝑀Pl) > 0, see also Fig. 4.7a (blue). Above 𝛼𝜅|𝑀𝐹

≳ 1.4 ⋅ 10−3 in contrast the
second change is pushed in the transplanckian regime and the gauge portal closes due to the loss of Planck
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4.2 Yukawa Portals

(a) Model M. (b) Model L.

Figure 4.8: BSM critical surfaces in the 𝑀𝐹 − 𝛼𝜅|𝑀𝐹
plane for Model M (a) and L (b) from Tab. 4.1

for 𝑁𝐹 = 1 and coupling to third generation SM fermions only. Same color coding as Fig. 4.1, also
indicating unstable potentials 𝛼𝜆 < −10−4 (brown). 90% confidence level (c.l.) exclusion regions on
𝛼𝜅/𝑀2

𝐹 from SMEFT fits [177, 178] are indicated as black hatched regions. Figures taken from [2].

scale stability (green).
This changes again for 𝛼𝜅|𝑀𝐹

≳ 8 ⋅ 10−3, when the Yukawa portal opens up and 𝛼𝜆 is captured in a
walking regime at sizeable, positive 𝛼𝜆 ≃ 10−1. The second sign change is thereby again enforced below
𝑀Pl, rendering the trajectory softly Planck-safe (yellow, orange)4. The onset of walking occurs earlier for
larger 𝛼𝜅|𝑀𝐹

. Above 𝛼𝜅|𝑀𝐹
≳ 0.2 the walking starts immediately above the matching scale, even preventing

the first sign flip and inducing strict PS again.

We are now in the position to study the impact of varying the matching scale 𝜇0 ≃ 𝑀𝐹 on the RG flow.
To this end, we perform systematic scans over the 𝑀𝐹 − 𝛼𝜅|𝑀𝐹

parameter space in all models A-M. In
Fig. 4.8 we exemplarily show the BSM critical surfaces for models M and L, of which the first exhibits a
gauge portal for TeV-ish 𝑀𝐹 while the latter does not.

More precisely, in model M we find that the strict (soft) PS via the gauge portal mechanism is achieved
for small 𝛼𝜅|𝑀𝐹

≲ 10−3 − 10−4 and 𝑀𝐹 ≲ 10TeV (𝑀𝐹 ≲ 3 ⋅ 103 TeV), in accord with our previous findings.
For higher masses, the gauge portal closes as there is not enough RG time left to render 𝛼𝜆(𝑀Pl) positive
and we encounter Planck scale metastability. For 10−3 ≲ 𝛼𝜅|𝑀𝐹

≲ 10−2 we observe the characteristic
vacuum instability strip due to the destabilizing contribution ⊃ −𝐽𝜅𝜅𝛼2

𝜅 ⊂ 𝛽𝜆. Above, the Yukawa portal
opens up at 𝛼𝜅|𝑀𝐹

≳ 10−2 (𝛼𝜅|𝑀𝐹
≳ 10−1) for soft (strict) PS. In contrast to the gauge portal, the soft

and strict Yukawa portal window stays open almost all the way up to their natural cut-off scales, i.e. 𝑀Pl
and 𝑀𝐹 ≃ 107 TeV where 𝛼𝜆 becomes negative in the SM, respectively. The reason are the inhomogeneous
𝛼𝜅 contributions to 𝛽𝜆 which dominate for large 𝛼𝜅|𝑀𝐹

and can cause 𝛼𝜆 to enter a stabilizing walking
regime almost immediately above the matching scale.
In model L in contrast there is no gauge portal for TeV-ish 𝑀𝐹, due to the hypercharge Landau pole

being subplanckian around 𝜇 = 1014 TeV. When increasing the mass the Landau pole is however pushed
into the transplanckian regime and for 3 ⋅ 102 TeV ≲ 𝑀𝐹 ≲ 106 TeV, a gauge portal into soft PS opens up.

4Interestingly, the walking regime also pushes the hypercharge Landau pole further towards the UV.
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4 Stabilizing the Higgs with Vector-like Fermions

The rest of the parameter space looks qualitatively similar to model M. In fact, this is the case for all
models. At large mass and low coupling we encounter metastability as in the SM. Intermediate values
of 𝛼𝜅|𝑀𝐹

cause an instability band, above which the Yukawa portal for soft and finally strict PS opens
up. Qualitative differences only arise in the low 𝑀𝐹 and 𝛼𝜅|𝑀𝐹

region, which can exhibit a gauge portal
window, metastability or subplanckian Landau poles.

We also studied the impact of coupling the VLF to first or second instead of third generation SM fermions.
While the phenomenological implications differ (see Subsec. 4.2.4), the BSM critical surfaces are almost
identical to the third generation case. The reason is that mixed terms containing both SM and BSM
Yukawas in the 𝛽-functions are numerically small and hardly influence the RG flow.

The Yukawa portal mechanism is sourced by large values of the Yukawa coupling which induce walking
regimes and often requires 𝛼𝜅|𝑀𝐹

≳ 10−1. This is close to the perturbativity limit 𝛼𝜅 ≃ 1 and hence raises
the question whether the Yukawa portal and the associated walking regimes are perturbatively stable,
i.e. whether they persist at higher loop orders. At the highest available loop order which is 432 in the
gauge, Yukawa and scalar sector, respectively, the Yukawa portal disappears due to Landau poles in the
Yukawa sector, see Fig. B.5. However, given that walking regimes typically also attract the Higgs quartic
at similarly sizeable values 𝛼𝜆 ≳ 10−1 as the Yukawas, applying the 432 𝛽-functions seems inconsistent. To
clarify the situation an analysis at full 3-loop order is needed. Unluckily, up to now this is not possible due
to the lack of a template formula for scalar quartic 𝛽-functions at 3-loop order.

4.2.3 Flavorful Yukawa Portals
So far, we considered Yukawa couplings of VLFs only to a single SM fermion at a time. However, it seems
natural to allow for all renormalizable couplings compatible with symmetries to be present in the theory.
Therefore, while still keeping precisely 𝑁𝐹 = 1 BSM fermion we now generalize our analysis by taking into
account three VLF Yukawa couplings 𝜅𝑖 to the three SM fermion generations, respectively. In the spirit of
minimality, we make use of the approximate SM flavor symmetry

𝑈(2)𝑄 × 𝑈(2)𝑈 × 𝑈(2)𝐷 × 𝑈(3)𝐿 × 𝑈(3)𝐸 , (4.17)

cf. (2.20) which is only broken mildly by small SM Yukawas of leptons as well as first- and second-generation
quarks. Accordingly, we use the ansatz

𝜅𝑖 = {(𝜅, 𝜅, 𝜅) for VLLs
(𝜅, 𝜅, ̃𝜅) for VLQs

, (4.18)

which reduces the number of independent BSM Yukawa couplings to two (one) for VLQs (VLLs).
We find, that the BSM critical surfaces in all models are qualitatively very similar to their pendants in

the Subsec. 4.2.2 with coupling to third generation SM fermions only. The only systematic deviation is
a shift of the PS windows towards lower values of 𝛼𝜅|𝑀𝐹

compared to the single Yukawa case. In VLL
models A-F this shift amounts roughly to a factor of ≲ 3. The reason is that 𝛼𝜅 contributions to the
𝛽-functions stemming from fermion bubble diagrams pick up an additional factor three from all SM fermion
generations running in the loop. This also reflects our finding from Subsec. 4.2.2 that the RG evolution is
hardly influenced by the choice of the SM fermion generation a VLF couples to.
In the case of VLQs, the flavor symmetry (4.17) suggests two independent Yukawa couplings 𝛼𝜅,𝜅. For

flavor-universal 𝛼𝜅|𝑀𝐹
= 𝛼𝜅|𝑀𝐹

we again find the downwards shift in 𝛼𝜅=𝜅|𝑀𝐹
to amount to a factor ≲ 3,

cf. Fig. 4.9 exemplarily for model L and M, in complete analogy to the VLL case. Fig. 4.9 also shows
the BSM critical surfaces of model L and M in the 𝛼𝜅|𝑀𝐹

− 𝛼𝜅|𝑀𝐹
plane for 𝑀𝐹 = 1TeV. The plots are

basically symmetric under the interchange 𝛼𝜅 ↔ 2𝛼𝜅 as two SM fermion generations couple with 𝜅 but
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4.2 Yukawa Portals

(a) Model M, 𝑀𝐹 = 1TeV.

(b) Model M, 𝛼𝜅|𝑀𝐹
= 𝛼𝜅|𝑀𝐹

.

(c) Model L, 𝑀𝐹 = 1TeV.

(d) Model L, 𝛼𝜅|𝑀𝐹
= 𝛼𝜅|𝑀𝐹

.

Figure 4.9: BSM critical surfaces for 𝑁𝐹 = 1 VLF with Yukawa portal couplings to all SM fermion
generations. Surfaces are exemplarily given for models M (a,b) and L (c,d) in the 𝛼𝜅|𝑀𝐹

− 𝛼𝜅|𝑀𝐹
plane

with fixed 𝑀𝐹 = 1TeV (a,c) and the 𝑀𝐹 − 𝛼𝜅|𝑀𝐹
plane for 𝛼𝜅|𝑀𝐹

= 𝛼𝜅|𝑀𝐹
(b,d), respectively. Same

color coding as Fig. 4.1. Regions excluded by 𝛥𝐹 = 1 or 𝛥𝐹 = 2 FCNC bounds [179] on 𝛼𝜅/𝑀2
𝐹 and

𝛼2
𝜅/𝑀2

𝐹, respectively, are indicated by the black hatched areas. Most stringent FCNC constraints are
from 𝐾𝐿 → 𝜇𝜇 decays and 𝐾-mixing in model M (a,b) as well as 1-loop contributions to 𝐷-mixing in
model L (c,d). Figures taken from [2].
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(a) VLF pair production at colliders (schematic). Fig-
ure adapted from [5].
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(b) VLF contribution to 𝐷-mixing (model L).

Figure 4.10: Phenomenology of VLF models.

just one with ̃𝜅. We also learn that for hierarchical Yukawas 𝛼𝜅 ≪ 𝛼𝜅 and vice versa the Planck fate is
determined by the larger coupling while the influence of the smaller one is of minor importance. While the
Yukawa portal dynamics are widely independent of the SM fermion generation(s) and even species the
VLF couples to, phenomenological signatures and existing bounds differ severely.

4.2.4 Mass Limits
We briefly examine experimental probes of VLF models A-M featuring a single VLF with Yukawa portal
coupling 𝜅. While detailed phenomenological analyses can be found elsewhere [46, 179–181] we focus on
the interplay of constraints from phenomenology and PS. A non-vanishing BSM Yukawa coupling 𝜅 ≠ 0
induces VLF decay to a SM fermion and a Higgs, 𝑊- or 𝑍-boson, depending on the model [179, 180]. This
allows for pair and single-production searches at colliders (Fig. 4.10a), see. e.g. [175, 176], which constrain
𝑀𝐹 and 𝛼𝜅 as a function of 𝑀𝐹, respectively. Mass bounds from these direct searches typically do not
exceed 𝑀𝐹 ≲ 1.5TeV [175] and are not shown in the surface plots for clarity. In addition, bounds on
𝛼𝜅/𝑀2

𝐹 can be inferred from global SMEFT fits. They are particularly sensitive to large values of 𝛼𝜅 which
are required for the Yukawa portal mechanism. This complementarity often allows to probe higher BSM
masses than direct searches.
We exemplarily study the mass bounds arising from the combination of PS and phenomenological

constraints for model L, starting with the third generation only scenario. Matching the model to SMEFT
induces only two WCs, namely [102]

𝐶33
𝐻𝑢 = 8𝜋2 𝛼𝜅

𝑀2
𝐹

, 𝐶33
𝑢𝐻 = 8𝜋2𝑦𝑡

𝛼𝜅
𝑀2

𝐹
(4.19)

corresponding to the operators

𝑄𝑖𝑗
𝐻𝑢 = 𝑖 ((𝐻†𝐷𝜇𝐻) − (𝐷𝜇𝐻)†𝐻) (𝑈𝑅

𝑖 𝛾𝜇𝑈𝑅
𝑗 ), 𝑄𝑖𝑗

𝑢𝐻 = (𝐻†𝐻)(𝑄̄𝑖𝐻𝑐𝑈𝑗) . (4.20)

From a single operator SMEFT fit [178] we obtain the 90 % c.l. limit 𝛼𝜅/𝑀2
𝐹 < 0.01TeV−2. Recalling that

model L does not feature a gauge portal, PS in contrast requires sizeable values of 𝛼𝜅 to achieve PS via the
Yukawa portal. Combining both constraints, from Fig. 4.8b we can read off the mass bounds

4TeV ≲ 𝑀𝐹 ≲ 107 TeV, (1TeV ≲ 𝑀𝐹 ≲ 1016 TeV) (4.21)

for strict (soft) PS, where the lower limit for strict PS is already higher than direct search bounds.
If Yukawa couplings to more than one SM fermion generation are switched on, additional constraints
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Model Flavor universal
(𝑌𝐹, 𝑑2, 𝑑3) 𝑀 soft

𝐹,min 𝑀 strict
𝐹,min

A (−1, 1, 1) 170 TeV 870 TeV
C (−1

2 , 2, 1) 170 TeV 870 TeV
D (−3

2 , 2, 1) X 870 TeV
F ( 0, 3, 1) X 1400 TeV
G (−1

3 , 1, 3) 56 TeV 420 TeV
H (+2

3 , 1, 3) 13 TeV 420 TeV
I (−1

3 , 3, 3) 29 TeV 29 TeV
J (+2

3 , 3, 3) 30 TeV 30 TeV
L (+7

6 , 2, 3) 19 TeV 480 TeV

Table 4.4: Lower VLF mass bounds in models A-M from Tab. 4.1 with 𝑁𝐹 = 1 from the interplay of
strict and soft Planck safety as well as phenomenological FCNC bounds for flavor-universal Yukawa
couplings 𝜅𝑖 = (𝜅, 𝜅, 𝜅). While the first in the absence of a gauge portal necessitates large Yukawa
couplings 𝛼𝜅|𝑀𝐹

≳ 𝒪(10−3 − 10−1) the latter restrict 𝛼(2)
𝜅 /𝑀2

𝐹 to tiny values, which in combination can
require quite large 𝑀𝐹 of up to a few hundred TeV. The strongest FCNC bounds in VLL and VLQ
models typically stem from LFV decays and meson mixing or decays, respectively. For models A, K, M
(D, F) no mass bound for (soft) PS can be derived as they feature a gauge portal for strict (soft) PS also
for vanishing 𝛼𝜅. Model E does not induce charged LFV, thus no such mass bounds can be derived.

arise from FCNC processes. In particular, 𝛥𝐹 = 1 decays are induced at tree-level via fermionic mixing in
all models A-M. In addition, 𝛥𝐹 = 2 contributions to neutral meson mixing arise at 1-loop order from
Higgs-VLF box diagrams, e.g. Fig. 4.10b, without CKM or mass suppression in VLQ models G-M. In both
cases, the bounds are typically orders of magnitude stronger than the single Yukawa ones.

In model L, the strongest constraint on the flavor-universal scenario arises from 𝐷-mixing [179] via
Fig. 4.10b and reads 𝛼𝜅/𝑀𝐹 ≲ 1.3 ⋅ 10−4 TeV−2. From Fig. 4.9d we infer the combined mass bounds

480TeV ≲ 𝑀𝐹 ≲ 107 TeV, (19TeV ≲ 𝑀𝐹 ≲ 1016 TeV) (4.22)

for strict (soft) PS. In both cases the lower limits are significantly higher than (4.21) and existing collider
bounds, impressively demonstrating the predictive power of PS and phenomenological bounds.

The parameter space in the 𝑀𝐹-𝛼𝜅|𝑀𝐹
-plane is qualitatively similar in all models A-M. The only exception

is the low 𝑀𝐹 and 𝛼𝜅|𝑀𝐹
region, where only some models exhibit a gauge portals. These models allow for

arbitrarily small 𝛼𝜅 and are tested in diboson resonance and long lived charged particle searches [174]. In
addition, VLQs models are tested in 𝑅-hadron and dijet resonance searches [42]. In all other models without
low scale gauge portal, similar bounds as (4.21) and (4.22) arise from the interplay of PS and experiments
and are summarized in Tab. 4.4. The strongest bounds arise in VLL models from LFV processes such as
𝜇-𝑒-conversion experiments [179] and are of 𝒪(103) TeV. However, flavor constraints can always be evaded
by keeping just one Yukawa coupling to a single SM fermion generation sizeable and making the other ones
feebly small. In this case, the models fall back to those in Subsec. 4.2.2.
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4 Stabilizing the Higgs with Vector-like Fermions

4.3 Summary
In this chapter we systematically explored the possibility to cure the Higgs metastability in the SM by
extending it with VLFs. We identified the gauge portal mechanism as a minimally invasive way to render
the SM Planck-safe. It relies solely on the presence of SM-charged VLFs which enhance the running of
gauge couplings. This induces an uplift (4.9) and squeezing (Fig. 4.4) of the RG trajectory of the Higgs
quartic that is potentially able to stabilize the Higgs all the way up to the Planck scale. Demanding
PS thereby results in constraints on VLF masses and multiplicities. While adding ”too few, too late” is
insufficient to cure the metastability, adding ”too many, too soon” results in the breakdown of the model
due to subplanckian Landau poles. Notably, for all three gauge interactions and combinations thereof there
exists a gauge portal window in between where the model is rendered Planck-safe, see Fig. 4.1, 4.2, 4.3 and
4.5. In particular, the electroweak gauge portals constitute a main novelty of this work. The effects of the
gauge portal mechanism are more pronounced for lower VLF masses, as there is more RG time left up to
the Planck scale for the mechanism to be operative. Vice versa, for heavier VLFs also higher multiplicities
are required for PS before the gauge portal windows finally close for larger masses.

We also studied all 13 VLF representations with renormalizable Yukawa coupling to the Higgs and a SM
fermion. For feeble Yukawas some models exhibit a gauge portal window in the TeV range, while others
suffer from subplanckian Landau poles or Planck scale metastability, cf. Tab. 4.2. While intermediate
values of 𝛼𝜅 tend to destabilize the Higgs [164–169], we find that for 𝑁𝐹 = 1 and large 𝛼𝜅 ≳ 𝒪(10−1) strict
PS can be realized in all models, cf. Tab. 4.3, due to the occurrence of strongly coupled walking regimes,
illustrated in Fig. 4.6. This phenomenon is qualitatively similar in all models and for all flavor structures
of the Yukawa coupling, yielding similar BSM critical surfaces in all models, see Fig. 4.8 and 4.9.
The VLF models can be experimentally searched for at colliders. Models without or with extremely

feeble Yukawas are tested in searches for diboson resonances and long lived charged particles [174] as well
as 𝑅-hadrons and dijet resonances in case of VLQs [42]. Models with non-feeble Yukawas are constrained
by SMEFT fits [178] and if flavorful by severe FCNC bounds. In consequence, in models without a TeV-ish
gauge portal the interplay of complementary experimental and PS constraints results in strong lower mass
bounds in the flavor-universal case of up to a few hundred TeV, see Tab. 4.4.

Starting from our findings, several interesting directions for future works open up. While the gauge portal
mechanism operates at weak coupling, the Yukawa portal mechanism hand appears in the strongly coupled
regime with 𝛼𝜅,𝜆 ≳ 10−1 close to the perturbativity limit 𝛼𝜅,𝜆 ≃ 1. A crucial future task is therefore to
check the persistence of the Yukawa portal at higher orders, i.e. full 3-loop orders as soon as general
template scalar 3-loop 𝛽-functions are available.
It also appears promising to exploit the identified portal mechanisms for other purposes. In the gauge

portal mechanism, the mild enhancement of gauge coupling RG trajectories which is controlled by the VLF
representation might allow for coupling unification at or below 𝑀Pl, motivating a connection to GUTs with
a stable ground state (cf. [147] for an example with AS). Moreover, the possibility to achieve (approximate)
Higgs criticality at or slightly below the Planck scale renders the gauge portal an interesting tool to connect
the SM to quantum gravity in the transplanckian regime [158].

Eventually, Majorana fermions à la model F might enable leptogenesis and generate neutrino masses via
the seesaw mechanism while simultaneously stabilizing the electroweak (EW) vacuum [182]. Moreover, it is
appealing to investigate the reach of singlet VLFs as dark matter candidates.
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5 Scalar Portals into Higgs Stability

In this chapter, we investigate the possibility to induce PS in minimal SM extensions relying solely on BSM
singlet scalars, closely following [4]. Such models imply an extended scalar potential featuring additional
quartic interactions. It is well know that in this setup Higgs stability can arise due to a renormalizable portal
coupling ∼ 𝛿(𝐻†𝐻)(𝑆†𝑆) of BSM scalars 𝑆 and the Higgs [183–191], with minor influence on the gauge and
Yukawa sector. At the same time, additional BSM stability conditions constrain the allowed values of BSM
quartics. We extend previous studies by investigating this Higgs portal mechanism at full 2-loop accuracy
including all quartics and systematically scrutinizing the complete allowed parameter space in minimal
scalar extensions with and without flavor. If there is SSB in the BSM sector the Higgs portal induces scalar
mixing with crucial consequences for Higgs phenomenology. We investigate the complementarity between
PS and phenomenological constraints in this scenario which results in an enhanced predictivity. We also
work out prospects for present and future colliders with a focus on Higgs self-couplings which determine
the shape of the Higgs potential.
This chapter is structured as follows: We start with unveiling the RG dynamics of the Higgs portal

mechanism, in particular focusing on models with a 𝑂(𝑁𝑆) or 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) flavor symmetry and
also explicitly exploring potentially negative BSM quartics in Sec. 5.1. Afterwards, we analyze the
phenomenology of Planck-safe models based on scalar mixing in Sec. 5.2 with special emphasis on induced
deviations in the couplings of the physical Higgs boson and the corresponding collider reach. In Sec. 5.3 we
conclude.

5.1 The Higgs Portal Mechanism
SM extensions with real singlet scalars 𝑆𝑖 allow for a renormalizable Higgs portal interaction

ℒ ⊃ ∑
𝑖

𝛿𝑖 (𝐻†𝐻)(𝑆𝑇
𝑖 𝑆𝑖) (5.1)

via the dimensionless portal couplings 𝛿𝑖. It is well known that the Higgs portal directly affects the RG
evolution of the Higgs quartic via the 1-loop contribution to its 𝛽-function

𝛽𝜆 = 𝛽SM
𝜆 + ∑

𝑖
2 𝑛𝑖 𝛼2

𝛿𝑖
. (5.2)

Here 𝑛𝑖 denotes the number of real scalar fields in the component 𝑆𝑖, such that (5.1) is compatible with
an 𝑂(𝑛𝑖) symmetry for each 𝑆𝑖. Integrating 𝛽𝜆 (5.2) from the NP scale 𝜇0 to a scale 𝛬 > 𝜇0 yields an
enhancement of the Higgs quartic

𝛼𝜆(𝛬) − 𝛼SM
𝜆 (𝛬) ∝ ∑

𝑖
2 𝑛𝑖𝛼2

𝛿𝑖
. (5.3)

This constitutes the (direct) Higgs portal mechanism. Note that the portal couplings contribute positively
to 𝛽𝜆 independent of their signs.
For the sake of simplicity, we now focus on a minimal scenario with a single Higgs portal coupling 𝛼𝛿.

Its RG evolution is then technically natural and given by

𝛽𝛿 = 𝑋𝛼𝛿 with 𝑋 = ∑
𝑛

𝑋(𝑛)(𝛼(𝜇)) (5.4)

being a polynomial receiving contributions from both SM and BSM couplings 𝛼, cf. (3.12). Hence, 𝛼𝛿
cannot be induced radiatively and the Higgs portal mechanism therefore requires 𝛼𝛿(𝜇0) ≠ 0 at the
matching scale. The scalar potential in addition contains quartic couplings 𝛼𝑞 between the BSM scalars
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5 Scalar Portals into Higgs Stability

whose structure is determined by the underlying symmetries. However, they have little direct influence on
the running of SM couplings as contributions of 𝛼𝑞 to SM 𝛽-functions only arise beyond 2-loop order and
always involve the portal coupling 𝛼𝛿 [114]. Thus, the leading impact of these pure BSM quartics on 𝛼𝜆
arises indirectly from their 1-loop contributions to the running of the Higgs portal coupling that reads

𝛽(1)
𝛿 = 𝑋(1)𝛼𝛿 ⊃ ∑

𝑞
+𝐻𝛿𝑞

𝛿 𝛼𝑞𝛼𝛿 , (5.5)

cf. (3.12). As ∑𝑞 𝐻𝛿𝑞
𝛿 𝛼𝑞 is typically positive, this enhances the running of |𝛼𝛿| and thereby fuels the

Higgs portal mechanism. Also the SM 1-loop contribution 𝑋(1)(𝛼SM(𝜇0)) is positive for 𝜇0 ≲ 1010 GeV,
rendering the full 𝑋(1) > 0. Hence, for small 𝛼𝛿 ≪ 1 and slowly varying 𝑋, (5.4) induces an approximately
exponential RG growth of |𝛼𝛿| obeying 𝛼𝛿(𝜇) ∝ 𝛼𝛿(𝜇0)(𝜇/𝜇0)𝑋. Sizeable BSM quartic values then imply a
sizeable 𝑋 via (5.5) and thereby a fast growth of the portal coupling. Notably, for sufficiently large 𝛼𝑞, this
still allows to induce sizeable 𝛼𝛿(𝜇) in the RG flow which can stabilize the Higgs even when starting with
very feeble 𝛼𝛿(𝜇0) at the matching scale. This indirect Higgs portal mechanism constitutes one of the main
novelties of this work. It demonstrates that vacuum stability from singlet scalars can unexpectedly also be
achieved for almost arbitrarily feeble portal couplings.
The maximum values of scalar quartic couplings are however constrained by demanding tree-level

perturbative unitarity in scalar 2 → 2 scattering. For the physical SM ℎ and BSM 𝑠 Higgs modes with a
potential

𝑉 (4)(ℎ, 𝑠) = 𝜆
4

ℎ4 + 𝛥
𝒩2 𝑠4 + 𝛿

2𝒩
ℎ2𝑠2 , (5.6)

cf. App. C, these constraints in the limit of vanishing mixing read [192]

𝛼𝜆 ≲ 1
6𝜋

, 𝛥 ≲ 𝒩2

24𝜋
, 𝛿 ≲ 𝒩

6𝜋
, (5.7)

constraining quartics to rather perturbative values. However, the conditions (5.7) are relaxed when taking
into account loop corrections. If there is SSB in the BSM sector additional limits on quartics arise from
scalar mixing as discussed in Subsec. 5.2.1.

5.1.1 𝑂(𝑁𝑆) Scalars
We now focus on the simplest global symmetry group for a SM extension with 𝑁𝑆 real BSM scalars, that is
𝑂(𝑁𝑆). The scalar potential reads

𝑉𝑂(𝑁𝑆)(𝐻, 𝑆) = −𝜇2
𝐻𝐻†𝐻 −

𝜇2
𝑆
2

𝑆𝑇𝑆 + 𝜆(𝐻†𝐻)2 + 𝑣(𝑆𝑇𝑆)2 + 𝛿 (𝐻†𝐻)(𝑆𝑇𝑆) , (5.8)

where the implicit summation over scalar flavor indices is understood. It features the Higgs portal coupling
𝛿 as well as a single BSM scalar self-coupling 𝑣 and a mass parameter 𝜇2

𝑆. It is stable at tree-level if

𝜆 > 0, 𝑣 > 0, 𝛿 > −2
√

𝜆𝑣 , (5.9)

interestingly also allowing for negative values of the portal coupling. Note that the potential (5.8) also
describes the case of 1

2𝑁𝑆 complex scalars with a global 𝑈(𝑁𝑆/2) symmetry for 𝑆𝑇 → 𝑆† and an additional
factor 2 in the 𝜇2

𝑆 term, cf. App. C. Additional quartic interactions may arise in the case of more
sophisticated global symmetries. Nevertheless, the 𝑂(𝑁𝑆) symmetry can always be restored by setting
these additional couplings to zero.
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Figure 5.1: Planck-safe 2-loop RG flow in the 𝑂(𝑁𝑆) model (solid) and in the SM (dashed). Exemplarily
shown are the RG trajectories of couplings for 𝑁𝑆 = 1 real BSM scalar singlet of mass 𝑀𝑠 = 1TeV
with 𝛼𝛿(𝑀𝑠) = 10−3, 𝛼𝑣(𝑀𝑠) = 10−2 (a) and 𝛼𝛿(𝑀𝑠) = 10−3, 𝛼𝑣(𝑀𝑠) = 10−4 (b), respectively. In (a)
the quartic couplings 𝛼𝜆,𝛿,𝑣 enter a walking regime before the Planck scale, whereas in (b) the running
to 𝑀Pl occurs within a weakly coupled regime without walking. Plots taken from [4].

The Higgs portal mechanism arises at 1-loop in the 𝛽-function of the Higgs quartic

𝛽(1)
𝜆 = 𝛽(1),SM

𝜆 + 2𝑁𝑆 𝛼2
𝛿 , (5.10)

which is enhanced by an inhomogeneous 𝛼2
𝛿 term in accord with (5.2) for 𝑛1 = 𝑁𝑆. Apart from that, RGEs

of SM couplings are widely independent of the BSM sector with the leading contributions of 𝛼𝛿 (𝛼𝑣) to
Yukawa and gauge 𝛽-functions arising at 2-loop (3-loop) and 3-loop (4-loop), respectively. Recall that the
RG evolution of the Higgs portal is technically natural and governed by both SM and BSM couplings, cf.
(5.4). Most importantly,

𝛽(1)
𝛿 ⊃ +[(16 + 8𝑁𝑆)𝛼𝑣 + 8𝛼𝛿]𝛼𝛿 (5.11)

receives a positive 1-loop contribution from the pure BSM quartic 𝛼𝑣, cf. (5.5)1. Hence, sizeable 𝛼𝑣 can
indirectly fuel the Higgs portal mechanism by accelerating the RG growth of 𝛼𝛿. The 1-loop 𝛽-function of
the pure BSM quartic 𝛼𝑣

𝛽(1)
𝑣 = (64 + 8𝑁𝑆)𝛼2

𝑣 + 2𝛼2
𝛿 (5.12)

depends only on the BSM quartics 𝛼𝛿,𝑣. Importantly, it is not technically natural as it can be radiatively
switched on by 𝛼𝛿. SM coupling contributions on the other hand just arise starting from 2-loop order and
are always mediated by the portal coupling, i.e. ∝ 𝛼2

𝛿 .
The vacuum stabilization via the Higgs portal mechanism can proceed either in a weakly coupled or a

walking regime, see Fig. 5.1, which is determined by the choice of parameters. The occurrence of walking
regimes is generically promoted by larger values of 𝛼𝛿, 𝛼𝑣 and 𝑁𝑆. Also the onset of walking occurs at
lower energies for larger multiplicities and quartics. Typically the walking regimes capture all quartics at
sizeable positive values 𝛼𝜆,𝛿,𝑣 ≃ 𝒪(10−2 − 10−1) which stabilizes the Higgs, prevents possible subplanckian
Landau poles in 𝛼𝛿 and thereby significantly enhances the Planck-safe parameter space.

We now examine the influence of the four free model parameters on vacuum stability, namely the physical
1We omitted all SM coupling contributions in (5.11) as they are not relevant for demonstrating the portal dynamics.
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(a) 𝑁𝑆 = 1. (b) 𝑁𝑆 = 10. (c) 𝑁𝑆 = 100.

Figure 5.2: The Higgs portal mechanism in the 𝑂(𝑁𝑆) model. Exemplarily shown are the BSM
critical surfaces in the 𝛼𝛿(𝑀𝑠)-𝛼𝑣(𝑀𝑠) plane for 𝑁𝑆 = 1 (a), 𝑁𝑆 = 10 (b) and 𝑁𝑆 = 100 (c) real BSM
scalar singlets of mass 𝑀𝑠 = 1TeV, respectively. PS can be achieved for sufficiently sizeable 𝛼𝛿 or 𝛼𝑣.
The minimally required values decrease with increasing 𝑁𝑆. We also indicate bounds from tree-level
perturbative unitarity (5.7) (black hatched) and scalar mixing (5.27) (grey hatched). Instabilities of
the Higgs potential with 𝛼𝜆 < −10−4 are indicated in brown, apart from that same color coding as
Fig. 4.1a. Plots taken from [4].

BSM scalar mass 𝑀𝑠 ≳ 1 TeV, cf. App. C, as well as 𝑁𝑆, 𝛼𝛿(𝑀𝑠) and 𝛼𝑣(𝑀𝑠). Starting with the quartics,
the BSM critical surface in the 𝛼𝛿(𝑀𝑠)-𝛼𝑣(𝑀𝑠) plane is shown in Fig. 5.2 for 𝑁𝑆 = 1, 10, 100 BSM scalars
of mass 𝑀𝑠 = 1TeV. Note that for 𝑁𝑆 = 1 the scalar symmetry falls back to a ℤ2. The metastability of
the Higgs potential can be cured if either 𝛼𝛿 or 𝛼𝑣 is sufficiently sizeable. However, too large values of 𝛼𝛿
eventually give rise to subplanckian Landau poles in 𝛼𝛿 or instabilities of the potential2. For too low 𝛼𝑣,𝛿
on the other hand the effect is too small and the metastability persists. When increasing 𝑁𝑆, the minimal
required value of 𝛼𝛿,𝑣 decrease. More precisely, we find the conditions

10−3/√𝑁𝑆 ≲ 𝛼𝛿 ≲ few × 10−2

or 𝑁𝑆 𝛼𝑣 ≳ 10−2 and 𝛼𝛿 ≳ 10−0.16 𝑁𝑆−6.6 (𝛼𝛿 ≳ 10−0.93 𝑁𝑆−6.1)
(5.13)

for strict (soft) PS. While the first condition is for direct stabilization and only depends on 𝛼𝛿, the latter
corresponds to indirect stabilization sourced by the pure BSM quartic 𝛼𝑣, see Fig. 5.3. The scaling of the
minimal values of 𝛼𝛿 and 𝛼𝑣 can be understood from 𝛽𝜆 (5.10) and 𝛽𝛿 (5.11). The stabilizing contribution
to 𝛽𝜆 is ∝ 𝑁𝑆𝛼2

𝛿 which explains the scaling 𝛼min
𝛿 ∝ 1/√𝑁𝑆 for direct stabilization. In case of indirect

stabilization on the other hand the enhancement of 𝛽𝛿 by 𝛼𝑣 is in good approximation ∝ 𝑁𝑆𝛼𝛿𝛼𝑣 implying a
scaling 𝛼min

𝑣 ∝ 1/𝑁𝑆. Moreover, indirect stabilization requires a minimal value of 𝛼𝛿(𝑀𝑠) > 0 as otherwise
the mechanism is spoiled by the technical naturalness of 𝛼𝛿. However, this minimally required value of
𝛼𝛿(𝑀𝑠) exponentially decreases with 𝑁𝑆 down to extremely feeble values, see Fig. 5.3a. The reason is that
a large 𝑁𝑆𝛼𝑣 ≳ 10−2 due to (5.11) induces an exponential growth of 𝛼𝛿 over several orders of magnitude as
depicted in Fig. 5.3b. There, for 𝑁𝑆 = 10 a feeble value of 𝛼𝛿(𝑀𝑠) = 10−15 is still sufficient to induce soft
PS. The PS conditions (5.13) become more strict for larger BSM masses 𝑀𝑠, see Fig. 5.4, as there is less

2For large 𝑁𝑆 and 𝛼𝛿 negative 2-loop contributions ∝ 𝑁𝑆𝛼3
𝛿 to 𝛽𝛿 become relevant and tame the pole. However,

simultaneously negative 2-loop contributions to 𝛽𝜆 also scaling with 𝑁𝑆𝛼3
𝛿 spoil the stabilization of the Higgs.
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(a) BSM critical surface in the 𝛼𝛿(𝑀𝑠) −
𝑁𝑆-plane for fixed 𝛼𝑣(𝑀𝑠) = 10−2

𝑁𝑆
and 𝑀𝑠 =

1TeV. For larger 𝑁𝑆 the minimally required
value of 𝛼𝛿(𝑀𝑠) for the indirect portal mecha-
nism significantly reduces down to extremely
feeble values. Same color coding as Fig. 5.2.
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(b) Exemplary softly Planck-safe RG flow due to the indirect
Higgs portal mechanism. We show the RG evolution of couplings
at full 2-loop order for 𝑁𝑆 = 10 BSM scalars (solid lines) with
mass 𝑀𝑠 = 1TeV and 𝛼𝛿(𝑀𝑠) = 10−15, 𝛼𝑣(𝑀𝑠) = 10−3 with
SM running (dashed lines) for reference. The portal coupling 𝛼𝛿
exponentially grows over several orders of magnitude, eventually
getting sufficiently sizeable to render 𝛼𝜆(𝑀Pl) > 0.

Figure 5.3: The indirect Higgs portal mechanism in the 𝑂(𝑁𝑆) model for feeble portal couplings 𝛼𝛿.
The mechanism is induced by the sizeable 𝑁𝑆𝛼𝑣(𝑀𝑠) but still requires 𝛼𝛿 > 0.

(a) 𝛼𝑣(𝑀𝑠) = 10−4. (b) 𝛼𝑣(𝑀𝑠) = 10−2.

Figure 5.4: Impact of the BSM mass scale 𝑀𝑠 on the Higgs portal mechanism in the 𝑂(𝑁𝑆) model.
Exemplarily shown are the BSM critical surfaces in the 𝑀𝑠-𝛼𝛿(𝑀𝑠) plane for 𝑁𝑆 = 1 real BSM scalar
singlet of mass 𝑀𝑠 = 1TeV for fixed 𝛼𝑣(𝑀𝑠) = 10−4 (a) and 𝛼𝑣(𝑀𝑠) = 10−2 (b), respectively. While in
the first case there is little influence of 𝑀𝑠 on the allowed range of 𝛼𝛿(𝑀𝑠), in the latter the sizeable
𝛼𝑣(𝑀𝑠) opens up large amounts of parameter space for small 𝛼𝛿(𝑀𝑠) at low 𝑀𝑠 due to the indirect
Higgs portal mechanism. Same color coding and exclusion regions as Fig. 5.2. Plots taken from [4].
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RG time ln 𝜇
𝜇0

left to stabilize the Higgs. This effect has little impact on the direct Higgs portal mechanism
but it is quite important for the indirect stabilization via sizeable 𝛼𝑣 ≳ 3 ⋅ 10−3, see Fig. 5.4b. There, the
strong increase of the minimal required 𝛼𝛿(𝑀𝑠) with 𝑀𝑠 nicely illustrates the decreasing effectivity of the
indirect stabilization mechanism due to the reduced RG time for which it is active. For TeV-ish 𝑀𝑠 and
sizeable 𝛼𝑣(𝑀𝑠) = 10−2 however strict (soft) PS can already arise for 𝛼𝛿 ≳ 10−5 (10−7).

5.1.2 Flavorful Scalar Matrix Field
We now study a more sophisticated SM extension by a BSM scalar sector as in the Litim-Sannino model [40].
It features a flavorful, complex BSM scalar matrix singlet field 𝑆𝑖𝑗 with flavor indices 𝑖, 𝑗 = 1, … , 𝑁𝐹 which
obeys a 𝑆𝑈(𝑁𝐹)𝐿 × 𝑆𝑈(𝑁𝐹)𝑅 flavor symmetry under which 𝑆 → 𝑉 †𝑆𝑈 and 𝑉 , 𝑈 ⊂ 𝑆𝑈(𝑁𝐹)𝐿, 𝑆𝑈(𝑁𝐹)𝑅,
respectively. The scalar potential of the model reads

𝑉𝑆𝑈(𝑁𝐹)2(𝐻, 𝑆) = −𝜇2
𝐻𝐻†𝐻 − 𝜇2

𝑆Tr [𝑆†𝑆] + 𝜆(𝐻†𝐻)2 + 𝑢Tr [𝑆†𝑆𝑆†𝑆] + 𝑣 [Tr𝑆†𝑆]2 + 𝛿 (𝐻†𝐻)Tr [𝑆†𝑆] ,
(5.14)

where traces are in flavor space. It features the portal coupling 𝛿 as well as two pure BSM quartics 𝑢, 𝑣.
The large flavor symmetry severely reduces the number of BSM parameters by preventing the occurrence
of a plethora of a priori independent quartics. For 𝑢 = 0 the global flavor symmetry falls back to the
𝑂(2𝑁2

𝐹) case according to the 2𝑁2
𝐹 real d.o.f.. Therefore, 𝛼𝑢 is technically natural and cannot be switched

on radiatively.
The model is interesting for several reasons. First of all, the presented scalar sector has proven to be key

for AS in GY theories [40, 42, 45, 46] and also strongly facilitates PS in BSM model building [1, 45, 46].
Moreover, it is possible to connect scalar to SM fermion flavor for 𝑁𝐹 = 3 [1, 45, 46, 181]. This can give
rise to unique, flavorful collider signatures while still evading FCNC limits [181]. In addition, the potential
(5.14) exhibits two distinct ground states 𝑉 ±

𝑉 + ∶ { 𝜆 > 0, 𝑢 > 0, 𝑢 + 𝑁𝐹 𝑣 > 0,
𝛿 > −2√𝜆 (𝑢/𝑁𝐹 + 𝑣) and 𝑉 − ∶ { 𝜆 > 0, 𝑢 < 0, 𝑢 + 𝑣 > 0,

𝛿 > −2√𝜆 (𝑢 + 𝑣) (5.15)

depending on the sign of 𝑢. Notably, the ground state 𝑉 + (𝑉 −) allows for negative quartics 𝛿, 𝑣 < 0
(𝛿, 𝑢 < 0). 𝑉 − in addition spontaneously breaks flavor universality offering a novel opportunity to address
flavor anomalies [45].
We now work out the dynamics of the Higgs portal in this model. The Higgs quartic 𝛽-function reads

𝛽(1)
𝜆 = 𝛽(1),SM

𝜆 + 𝑁2
𝐹 𝛼2

𝛿 (5.16)

giving rise to a strong, 𝑁2
𝐹 enhanced Higgs portal. The influence of the BSM quartic self-interactions 𝛼𝑢,𝑣

on 𝛼𝜆 is as in the 𝑂(𝑁𝑆) case channeled through their contribution to

𝛽(1)
𝛿 ⊃ [8𝑁𝐹𝛼𝑢 + (4𝑁2

𝐹 + 4)𝛼𝑣 + 4𝛼𝛿]𝛼𝛿 (5.17)

enabling the indirect portal mechanism. Their own RG evolution is controlled by

𝛽(1)
𝑢 = (8𝑁𝐹𝛼𝑢 + 24𝛼𝑣)𝛼𝑢 , (5.18)

𝛽(1)
𝑣 = [12𝛼2

𝑢 + 16𝑁𝐹𝛼𝑢𝛼𝑣 + (4𝑁2
𝐹 + 16)𝛼2

𝑣 + 2𝛼2
𝛿 ] (5.19)

and largely decoupled from the SM. 𝛼𝑣 can be switched on radiatively by both 𝛼𝛿,𝑢, whereas 𝛼𝑢 is technically
natural. This prevents any RG-induced sign changes of 𝛼𝑢 giving rise to vacuum transitions between 𝑉 ±.
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5.1 The Higgs Portal Mechanism

(a) 𝛼𝛿(𝑀𝑠)-𝛼𝑣(𝑀𝑠) plane. (b) 𝛼𝛿(𝑀𝑠)-𝛼𝑢(𝑀𝑠) plane. (c) 𝛼𝑢(𝑀𝑠)-𝛼𝑣(𝑀𝑠) plane.

Figure 5.5: The Higgs portal mechanism in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model. Exemplarily shown are the
BSM critical surfaces in the 𝛼𝛿(𝑀𝑠)-𝛼𝑣(𝑀𝑠) (a), 𝛼𝛿(𝑀𝑠)-𝛼𝑢(𝑀𝑠) (b) and 𝛼𝑢(𝑀𝑠)-𝛼𝑣(𝑀𝑠) (c) plane,
respectively, for 𝑁𝐹 = 3 flavors of complex BSM scalars with a mass 𝑀𝑠 = 1TeV and the remaining
quartic fixed as 𝛼𝑢,𝑣,𝛿(𝑀𝑠) = 10−6. The indirect stabilization mechanism is less efficient for 𝛼𝑢, which
develops subplanckian Landau poles for too sizeable initial values 𝛼𝑢(𝑀𝑠). Dark (light) blue corresponds
to strict (soft) PS in the vacuum configuration 𝑉 +. Apart from that, same color coding and exclusion
regions as Fig. 5.2. Plots taken from [4].

For the parameter space analysis we mostly focus on 𝑁𝐹 = 3 flavors of complex BSM scalars with a
mass of 𝑀𝑠 = 1TeV. The corresponding BSM critical surfaces are shown in Fig. 5.5 in the different planes
spanned by the quartic couplings. Qualitatively, the parameter space looks similar to the 𝑂(𝑁𝑆) model
Fig. 5.2. Stabilization is possible directly via sizeable 𝛼𝛿(𝑀𝑠) or indirectly via large 𝛼𝑢,𝑣. However, too
sizeable 𝛼𝛿,𝑢(𝑀𝑠) give rise to subplanckian Landau poles due to their technical naturalness. If in contrast
all quartics are small their impact does not suffice to stabilize the Higgs.
Stability is achieved more easily for larger 𝑁𝐹. This is not surprising, as the contributions to both the

direct and indirect mechanisms increase with 𝑁𝐹. The BSM critical surface in the 𝛼𝛿(𝑀𝑠) − 𝑁𝐹 plane is
exemplarily depicted for tiny 𝛼𝑢,𝑣 in Fig. 5.6a. The minimally required value of 𝛼𝛿(𝑀𝑠) decreases as 1

𝑁𝐹
as

expected from (5.16). For lower 𝑁𝐹, an upper limit on 𝛼𝛿 arises due to the occurrence of subplanckian
Landau poles. This changes however at larger 𝑁𝐹 where the pole is tamed by a negative 2-loop contribution
to 𝛽(2)

𝛿 ⊃ −(𝑁2
𝐹 +10)𝛼3

𝛿 . However, in that case also the Higgs quartic receives a negative 2-loop contribution
𝛽(2)

𝜆 ⊃ −4𝑁2
𝐹𝛼3

𝛿 which for 𝛼𝛿 ≳ 0.25 dominates over the 1-loop uplift (5.17) and causes an instability in the
Higgs potential. In combination we obtain the condition

1
𝑁𝐹

1.4 ⋅ 10−3 ≲ 𝛼𝛿(𝑀𝑠) ≲ {(0.05 … 0.08) 𝑁𝐹, 𝑁𝐹 ≲ 10
0.25, 𝑁𝐹 ≳ 10

(5.20)

for PS via the direct portal mechanism, widely independent of 𝛼𝑢,𝑣(𝑀𝑠) and 𝑀𝑠, unless 𝛼𝑢,𝑣(𝑀𝑠) ≃ 𝒪(1)
or 𝑀𝑠 ∼ 𝑀Pl. As a novelty w.r.t. the 𝑂(𝑁𝑆) model, we find that indirect stabilization can be achieved
via both 𝛼𝑢 and 𝛼𝑣. The indirect mechanism via 𝛼𝑢 is however less efficient as its contribution to 𝛽𝛿 only
scales with 𝑁𝐹 whereas the 𝛼𝑣 one scales with 𝑁2

𝐹, see (5.17). Accordingly we find the conditions

(6 … 8) ⋅ 10−3 ≲ 𝑁2
𝐹 𝛼𝑣(𝑀𝑠), 3 ⋅ 10−3 ≲ 𝑁𝐹 𝛼𝑢(𝑀𝑠) ≲ (6 … 8) ⋅ 10−2 (5.21)
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(a) Impact of the number of BSM flavors 𝑁𝐹 on the
Higgs portal for feeble 𝛼𝑢,𝑣(𝑀𝑠). The minimal required
value of 𝛼𝛿(𝑀𝑠) for Higgs stability scales ∝ 1/𝑁𝐹 in
accord with the contribution to 𝛽𝜆 ⊃ 𝑁2

𝐹𝛼2
𝛿 (5.17). Too

large, values of 𝛼𝛿 on the other hand destabilize the
Higgs due to a sizeable negative 2-loop contribution of
𝛼𝛿 to 𝛽𝜆. Plot taken from [4].

(b) Impact of the BSM scalar mass 𝑀𝑠 on the Higgs por-
tal. For lighter 𝑀𝑠, soft PS can still be realized also for
feeble portal couplings 𝛼𝛿(𝑀𝑠) due to the indirect por-
tal mechanism. It is fueled by sizeable 𝛼𝑢,𝑣(𝑀𝑠) = 10−3

which induces a fast RG growth of 𝛼𝛿. For larger 𝑀𝑠
also larger 𝛼𝛿(𝑀𝑠) are required to still induce sufficient
impact in the reduced RG time left until 𝑀Pl.

Figure 5.6: Influence of the number of scalar flavors 𝑁𝐹 (a) and the scalar mass 𝑀𝑠 (b) on the
Higgs portal in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model. Exemplarily shown are the BSM critical surfaces in the
𝛼𝛿(𝑀𝑠)-𝑁𝐹 (a) and 𝑀𝑠-𝛼𝛿(𝑀𝑠) (b) plane, respectively, with the fixed values of all other parameters
indicated in the plots. Same color coding and exclusion regions as Fig. 5.5.
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Figure 5.7: Illustration of the Higgs portal mechanism in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model. Shown is the
2-loop running of couplings for 𝑁𝐹 = 3 and 𝑀𝑠 = 1TeV (solid lines) compared to SM running (dashed
line). The quartic couplings 𝛼𝜆,𝛿,𝑣 enter a walking regime at sizeable values around 𝜇 ≃ 1010 GeV
whereas 𝛼𝑢 asymptotically approaches zero, restoring the 𝑂(2𝑁2

𝐹) symmetry. Plot taken from [4].
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Figure 5.8: Exemplary RG flow for a negative portal coupling 𝛼𝛿(𝑀𝑠) = −10−7 in the 𝑂(𝑁𝑆) model.
Shown is the 2-loop running of couplings for 𝑁𝑆 = 1 and 𝑀𝑠 = 1 TeV compared to SM running (dashed
line). The value of |𝛼𝛿| is just sufficient to render 𝛼𝜆(𝑀Pl) > 0, but already violates the BSM stability
condition 𝛼𝛿 > −2√𝛼𝜆𝛼𝑣 at 𝑀Pl spoiling PS.

for small, but not too small 𝛼𝛿(𝑀𝑠) > 0 and TeV-ish 𝑀𝑠. The upper bound on 𝛼𝑢 arises from demanding
the absence of subplanckian Landau poles.

The impact of 𝑀𝑠 on stability is shown in Fig. 5.6b. As in the 𝑂(𝑁𝑆) model, for TeV-ish 𝑀𝑠 and sizeable
𝛼𝑢,𝑣(𝑀𝑠) PS can also be achieved for tiny 𝛼𝛿(𝑀𝑠) due to the indirect portal mechanism. It is fueled by the
pure BSM quartics which induce a fast RG growth of 𝛼𝛿. For larger 𝑀𝑠 there is less RG time left until
𝑀Pl for the mechanism to set-in. Hence, also larger 𝛼𝛿(𝑀𝑠) are required to still induce sufficient impact to
stabilize the potential.
Larger values of quartics 𝛼𝛿,𝑢,𝑣 and flavors 𝑁𝐹 favor the occurrence of walking regimes, see Fig. 5.7,

enlarging the PS window. interestingly, the walking regime corresponds to the same pseudo FP as in the
𝑂(2𝑁2

𝐹) case3. In accordance, 𝛼𝑢 rapidly goes to zero as soon as the other quartics enter the walking
regime.

5.1.3 Negative Quartics
Interestingly, the vacuum stability conditions both in the 𝑂(𝑁𝑆) (5.9) and the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) (5.15)
model explicitly allow for negative values of the portal coupling 𝛼𝛿. In the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model in
addition, negative values of the pure BSM quartics 𝛼𝑢,𝑣 are compatible with tree-level stability.
A negative portal coupling 𝛼𝛿 < 0 stays negative throughout the RG evolution due to its technical

naturalness, cf. (5.5). Notably, this does not spoil the Higgs portal mechanics as the portal contribution to
𝛽𝜆 (5.10), (5.16) scales with 𝛼2

𝛿 . However, we find that PS cannot be realized at all for a negative 𝛼𝛿 in
either of the models. This is related to a conflict between the portal stability conditions in (5.9), (5.15)
and Higgs stability. While the portal conditions in (5.9), (5.15) are trivially fulfilled for positive quartics,
they restrict a negative 𝛼𝛿 not to be excessive compared to the remaining quartics. PS via the Higgs portal
mechanism on the other hand requires a sufficiently sizeable 𝛼2

𝛿 contribution to 𝛽𝜆 at some intermediate
scale, which for 𝛼𝛿 < 0 then turns out to generically be in conflict with BSM stability, see Fig. 5.8.

3Note that the normalization of 𝛿, 𝑣 differs between 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) and 𝑂(2𝑁2
𝐹) and therefore they asymptote to

different values in Fig. 5.1a and Fig. 5.7.
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(a) (𝛼𝛿|𝑀𝑠
, −𝛼𝑢|𝑀𝑠

) plane with 𝛼𝑣|𝑀𝑠
= 10−4.

(b) (𝛼𝛿|𝑀𝑠
, −𝛼𝑢|𝑀𝑠

) plane with 𝛼𝑣|𝑀𝑠
= 10−2.

(c) (−𝛼𝑢|𝑀𝑠
, 𝛼𝑣|𝑀𝑠

) plane with 𝛼𝛿|𝑀𝑠
= 10−4.

(d) (−𝛼𝑢|𝑀𝑠
, 𝛼𝑣|𝑀𝑠

) plane with 𝛼𝛿|𝑀𝑠
= 10−2

Figure 5.9: BSM critical surfaces in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model for negative 𝛼𝑢. Surfaces are given
in the (𝛼𝛿(𝑀𝑠), −𝛼𝑢(𝑀𝑠) (a,b) and (−𝛼𝑢(𝑀𝑠), 𝛼𝑣(𝑀𝑠)) (c,d) plane for 𝑁𝐹 = 3 and 𝑀𝑠 = 1TeV with
the remaining quartic fixed as 𝛼𝛿,𝑣(𝑀𝑠) = 10−4 (a,c) and 𝛼𝛿,𝑣(𝑀𝑠) = 10−2 (b,d), respectively. Dark
(light) green corresponds to strict (soft) PS in the vacuum configuration 𝑉 − while gray indicates a
violation of the BSM stability conditions in (5.15). Apart from that same color coding and exclusion
regions as Fig. 5.2. The stability condition 𝛼𝑢 + 𝑁𝐹𝛼𝑣 > 0 dictates the most negative allowed value of
𝛼𝑢|𝑀𝑠

for PS giving rise to the border between regions of PS and vacuum instabilities. Plots taken
from [4].

A too large −𝛼𝛿(𝑀𝑠) > 0 violates the portal stability condition already at the matching scale. Hence,
vacuum stability at 𝜇0 ∼ 𝑀𝑠 implies an upper limit on −𝛼𝛿(𝑀𝑠) which depends on the value of the pure
BSM quartic(s) 𝛼𝑣 (𝛼𝑢,𝑣). For weakly coupled or tiny 𝛼𝑣(𝑀𝑠) (𝛼𝑢,𝑣(𝑀𝑠)) also −𝛼𝛿(𝑀𝑠) has to be small.
We find that in this scenario the effect on 𝛼𝜆 is generically to small to induce Higgs stability all the way up
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(a) (𝛼𝛿(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) plane with 𝛼𝑢(𝑀𝑠) = 10−4.

(b) (𝛼𝛿(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) plane with 𝛼𝑢(𝑀𝑠) = 10−2.

(c) (𝛼𝑢(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) plane with 𝛼𝛿(𝑀𝑠) = 10−4.

(d) (𝛼𝑢(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) plane with 𝛼𝛿(𝑀𝑠) = 10−2.

Figure 5.10: BSM critical surfaces in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model for negative 𝛼𝑣. Surfaces are
given in the (𝛼𝛿(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) (a,b) and (𝛼𝑢(𝑀𝑠), −𝛼𝑣(𝑀𝑠)) (c,d) plane for 𝑁𝐹 = 3 and 𝑀𝑠 = 1TeV
with the remaining quartic fixed as 𝛼𝛿,𝑢(𝑀𝑠) = 10−4 (a,c) and 𝛼𝛿,𝑢(𝑀𝑠) = 10−2 (b,d), respectively.
Same color coding and exclusion regions as Fig. 5.9 with dark (light) blue indicating strict (soft) PS in
the vacuum configuration 𝑉 +. The stability condition 𝛼𝑢 + 𝛼𝑣 > 0 dictates the most negative allowed
value of 𝛼𝑣(𝑀𝑠) for PS giving rise to the border between regions of PS and vacuum instabilities. Plots
taken from [4].

to 𝑀Pl via the direct or indirect Higgs portal mechanism. Strongly coupled 𝛼𝑣(𝑀𝑠) (or 𝛼𝑢(𝑀𝑠)) in contrast
induce a quasi-exponential RG growth of −𝛼𝛿 via (5.4)4. For very feeble −𝛼𝛿(𝑀𝑠) the indirect portal
mechanism is still to weak to render 𝛼𝜆 positive. If in contrast −𝛼𝛿(𝑀𝑠) is sufficiently large to prevent the
sign change of 𝛼𝜆, this growth invariably results in a RG-induced violation of the portal stability condition

4The pure BSM quartic terms(s) quickly dominates the RG evolution of the portal coupling independent of 𝛼𝑣(,𝑢)(𝑀𝑠), as
sizeable 𝛼𝑣(,𝑢) > 0 is also always inhomogeneously induced by 𝛼𝛿 itself, cf. (5.12), (5.18), (5.19).
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below the Planck scale and potentially even a negative 𝛼𝛿 pole. The deeper reason is the the large separation
between the scale of the 𝛼𝜆 sign change in the SM, 𝜇 ∼ 1011 GeV, and 𝑀Pl. Therefore, the above problems
cannot be circumvented by increasing the matching scale up to the scale of sign change 𝑀𝑠 ≲ 1011 GeV,
either. Hence, we find that strict PS cannot be realized for negative portal couplings, which we explicitly
verified numerically in extensive parameter scans. In addition, also soft PS with intermediately negative 𝛼𝜆
is inevitably excluded for negative portal couplings as 𝛼𝜆 ≲ 0 always violates the portal stability condition5.
Moreover, we find that restoring Higgs stability at 𝑀Pl comes at the price of a simultaneous portal stability
violation preventing full Planck scale stability, see Fig. 5.8. Putting it all together, PS is excluded for 𝛼𝛿 < 0.

Vacuum stability in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model (5.15) also allows for negative values of the pure
BSM quartic 𝛼𝑣 (𝑉 +) or 𝛼𝑢 (𝑉 −). The BSM critical surfaces for negative 𝛼𝑢(𝑀𝑠) < 0 and 𝛼𝑣(𝑀𝑠) < 0
are depicted in Fig. 5.9 and Fig. 5.10, respectively. In both cases, PS can be realized for a vast range of
couplings and in the ground state 𝑉 − (𝑉 +) for negative 𝛼𝑢 (𝛼𝑣), but without transitions due to the technical
naturalness of 𝛼𝑢. Vacuum stability (5.15) at the matching scale in 𝑉 + (𝑉 −) requires 𝛼𝑣(𝑀𝑠) > |𝛼𝑢(𝑀𝑠)|
(𝛼𝑢(𝑀𝑠) > 𝑁𝐹|𝛼𝑣(𝑀𝑠)|). These conditions explain several of the borders between regions of PS or Higgs
metastability and vacuum instabilities, respectively.
Outside these regions of vacuum instabilities, the BSM critical surfaces exhibit similar patterns as for

positive quartics. Stabilization can be achieved directly via a sizeable portal coupling 𝛼𝛿(𝑀𝑠) widely
independent of the pure BSM quartics 𝛼𝑢,𝑣(𝑀𝑠). Additionally for sizeable 𝛼𝑢,𝑣(𝑀𝑠) indirect stabilization
is operative also for smaller 𝛼𝛿(𝑀𝑠). The BSM critical surfaces are qualitatively similar for negative 𝛼𝑢
and 𝛼𝑣, respectively, only differing in their vacuum configuration. However, indirect stabilization via 𝛼𝑢
is again a bit less effective than via 𝛼𝑣 due to smaller contributions to 𝛽𝛿 (5.17) and the occurrence of
subplanckian Landau poles for |𝛼𝑢(𝑀𝑠)| ≳ 10−2 … 10−1. The identification of sizeable PS parameter space
regions for negative 𝛼𝑢,𝑣 constitutes one of the main novelties in this work and is only possible due to the
richer flavor symmetry.

5.2 Higgs Phenomenology
We now work out some crucial implications of our models for Higgs phenomenology at LO. They arise from
scalar mass mixing between the SM Higgs and the BSM scalar after SSB via the portal coupling 𝛿, affecting
the width and couplings of the physical Higgs. For a more detailed discussion including higher-order effects
in the 𝑂(𝑁𝑆) and 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model, see e.g. [192, 193] and [46], respectively.

5.2.1 Higgs-BSM Mixing
We start by briefly discussing mixing while relegating the details to App. C. If there occurs SSB in the
BSM sector, the BSM scalar 𝑆 acquires a VEV 𝑣𝑠 via

𝑂(𝑁𝑆) ∶ 𝑆𝑖 =(𝑠+𝑣𝑠)𝛿𝑖1+… , 𝑉 + ∶ 𝑆𝑖𝑗 =
𝛿𝑖𝑗

√2𝑁𝐹
(𝑠+𝑣𝑠+𝑖 ̃𝑠)+… , 𝑉 − ∶ 𝑆𝑖𝑗 =

𝛿𝑖1𝛿𝑗1√
2

(𝑠+𝑣𝑠+𝑖 ̃𝑠)+… , (5.22)

where 𝑠 denotes the BSM Higgs mode, while the pseudoreal singlet ̃𝑠 and the remaining scalar components
indicated by the dots are irrelevant for the following discussion. Goldstone bosons are assumed to acquire

5For 𝜆 < 0 the portal stability conditions in (5.9), (5.15) are not well defined. We therefore recall our definition of soft PS
in Subsec. 3.2.3: For intermediate, moderate −10−4 ≲ 𝛼𝜆 ≲ 0, we conservatively deploy the portal stability condition in
the limit 𝛼𝜆 → 0, i.e. 𝛿 > 0 in both models, when checking for soft PS.
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small masses from additional, symmetry breaking mass terms to meet phenomenological constraints [46] but
have not been further considered here. From the breaking patterns (5.22) and the unbroken potentials (5.8)
and (5.14) we obtain the broken scalar potential of the SM and BSM Higgs modes. It can be expressed as

𝑉 (ℎ, 𝑠) = −𝜇2
𝐻
2

(ℎ + 𝑣ℎ)2 − 1
2

𝜇2
𝑆(𝑠 + 𝑣𝑠)2 + 𝜆

4
(ℎ + 𝑣ℎ)4 + 𝛥

𝒩2 (𝑠 + 𝑣𝑠)4 + 𝛿
2𝒩

(ℎ + 𝑣ℎ)2(𝑠 + 𝑣𝑠)2 (5.23)

in a model-independent fashion where it holds

𝑂(𝑁𝑆) ∶ 𝒩 = 1, 𝛥 = 𝑣 , 𝑉 + ∶ 𝒩 = 2, 𝛥 = 𝑢
𝑁𝐹

+ 𝑣 , 𝑉 − ∶ 𝒩 = 2, 𝛥 = 𝑢 + 𝑣 (5.24)

in the different models and vacuum configurations. After EWSB, the portal coupling 𝛼𝛿 induces mixing
between the gauge eigenstates ℎ, 𝑠 into the mass eigenstates ℎ′, 𝑠′ with a mixing angle 𝛽 given as

tan 2𝛽 = 𝛿√
𝜆𝛥

𝑚ℎ𝑚𝑠
𝑚2

𝑠 − 𝑚2
ℎ

, (5.25)

where 𝑚ℎ,𝑠 ∝ 𝑣ℎ,𝑠 are the unrotated masses in the gauge basis. In contrast, we denote the masses of
the physical fields as 𝑀ℎ = 𝑚ℎ′ = 125 GeV and 𝑀𝑠 = 𝑚𝑠′ > 𝑀ℎ. The scalar mixing and implied
phenomenology are very similar in all our models and independent of the multiplicities 𝑁𝑆, 𝑁𝐹 as there is
always just a single BSM Higgs mode.

There are five (six) additional model parameters 𝜇2
𝐻, 𝜇2

𝑆, 𝜆, 𝛿, 𝑣 (and 𝑢) in the 𝑂(𝑁𝑆) (𝑆𝑈(𝑁𝐹)×𝑆𝑈(𝑁𝐹))
model which are constrained by two independent observables, namely the physical Higgs mass 𝑀ℎ = 125 GeV
and VEV 𝑣ℎ = 246 GeV obtained from 𝐺𝐹 via (2.30). Hence, the models are controlled by (three) four free
BSM parameters in addition to the scalar multiplicity 𝑁𝑆, 𝑁𝐹, which we take to be 𝑀𝑠, 𝛼𝛿(𝑀𝑠), 𝛼𝑣(𝑀𝑠)
(and 𝛼𝑢(𝑀𝑠)) as a pleasant choice for the RG analysis. Crucially, this fixes the Higgs quartic 𝜆(𝑀𝑠) to a
value deviating from the SM one 𝜆SM = 𝑀2

ℎ/(2𝑣2
ℎ) depending on the BSM couplings and mass, see (C.25)

for the tree-level expression. While this effect has only minor influence on the RG evolution (cf. also
Subsec. 3.1.3), it has observable impact on the following phenomenological analysis.

The scalar mixing opens many decay channels of the mass eigenstate 𝑠′ to SM fermions or gauge bosons.
Vice versa, the decay width of the physical Higgs ℎ′ to SM final states {𝑓} is reduced as

𝛤(ℎ′ → {𝑓}) = cos2 𝛽 𝛤 SM(ℎ → {𝑓}) . (5.26)

This implies a model-independent bound on the mixing angle at 95% c.l. [192]

| sin𝛽| ≤ 0.2 (5.27)

due to combined Higgs signal strength measurements from ATLAS [194] and CMS [195]. In the limit of
small 𝛽, we can now approximate (5.25) as

𝛽 ≃ 𝛿√
𝜆𝛥

𝑚ℎ
𝑀𝑠

, (5.28)

which is controlled by the size of the portal coupling 𝛿 and the scalar mass hierarchy 𝑚ℎ/𝑀𝑠. We see
that the mixing bound (5.27) can be be conveniently fulfilled by choosing the phenomenologically hardly
constrained pure BSM quartic 𝛼𝛥 sufficiently large w.r.t. the portal coupling 𝛼𝛿 or large 𝑀𝑠 ≫ 𝑚ℎ.
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5 Scalar Portals into Higgs Stability

5.2.2 Modified Higgs Couplings

The scalar mixing alters the values of the physical Higgs couplings w.r.t. the SM. In particular, we find for
the coupling 𝑔ℎ′𝑉 𝑉 of a single Higgs to a pair of electroweak gauge bosons 𝑉 = 𝑊, 𝑍

𝛿𝑔ℎ𝑉 𝑉 = 𝑔ℎ′𝑉 𝑉
𝑔SM

ℎ𝑉 𝑉
− 1 = cos𝛽 − 1

𝛽≪1
≃ −𝛽2

2
, (5.29)

which in the small mixing angle approximation is suppressed by 𝛽2. The present and future experimental
individual sensitivity is generically larger for the 𝑍-coupling [155, 196]. The best individual bounds on
𝛿𝑔ℎ𝑍𝑍 are currently at the level of 6% by ATLAS [197] and 7% by CMS [198] while 𝑊-bounds are weaker.
The currently most stringent combined bound stems from ATLAS [197] assuming 𝛿𝑔ℎ𝑊𝑊 = 𝛿𝑔ℎ𝑍𝑍 and
reads 𝛿𝑔ℎ𝑉 𝑉 ≲ 0.031 which still is a slightly weaker constraint than (5.27) from Higgs signal strength. The
bound on 𝛿𝑔ℎ𝑍𝑍 will be superseded in the near future by HL-LHC with a projected sensitivity of 1.5%
[199] and increased by another order of magnitude to 0.16% at FCC-ee [196] and 0.17% at ILC [200] with 1
TeV center of mass energy, respectively. This will also increase the bound on the mixing angle (5.27) to
| sin𝛽| ≲ 0.17 (HL-LHC) and | sin𝛽| ≲ 0.06 (ILC, FCC-ee), respectively. Notably, this reasoning can also
be turned around. It was argued in [201] that measuring any 𝛿𝑔ℎ𝑉 𝑉 ≠ 0 at the mentioned present or future
colliders invariably implies the existence of new bosons within experimental reach, in agreement with our
findings.
We now turn to mixing induced deviations in the self-couplings of the physical Higgs boson defined in

(2.14). Rotating the cubic terms

𝑉 (3)(ℎ, 𝑠) = 𝜆𝑣ℎℎ3 + 𝛿
𝒩

𝑣𝑠ℎ2𝑠 + 𝛿
𝒩

𝑣ℎℎ𝑠2 + 4𝛥
𝒩2 𝑣𝑠𝑠3 (5.30)

in the broken scalar potential (5.23) to the mass basis we obtain

𝑉 (3)(ℎ′, 𝑠′) ⊃ (𝜆𝑣ℎ cos3 𝛽 − 𝛿𝑣𝑠
𝒩

cos2 𝛽 sin𝛽 + 𝛿𝑣ℎ
𝒩

cos𝛽 sin2 𝛽 − 4𝛥𝑣𝑠
𝒩2 sin3 𝛽) ℎ′3 , (5.31)

which fixes the ratio of the trilinear Higgs self-coupling 𝜅3ℎ′3 w.r.t. its SM value 𝜅SM
3 = 𝜆SM𝑣ℎ as

𝜅3
𝜅SM

3
= 𝜆

𝜆SM
cos3 𝛽 − 𝛿𝑣𝑠

𝒩𝜆SM𝑣ℎ
cos2 𝛽 sin𝛽 + 𝛿

𝒩𝜆SM
cos𝛽 sin2 𝛽 − 4𝛥𝑣𝑠

𝒩2𝜆SM𝑣ℎ
sin3 𝛽

𝛽≪1
≃ 1 − 𝛽2 (3

2
𝜆

𝜆SM
− 𝛿

𝒩𝜆SM
) .

(5.32)

Note that in the small angle approximation the 𝒪(𝛽) term precisely cancels against the shift in 𝜆 (C.25),
hence the leading deviation to the SM arises at 𝒪(𝛽2). Currently 𝜅3 is only poorly constrained by ATLAS
−1.5 < 𝜅3/𝜅SM

3 < 6.7 [202] and CMS −1.24 < 𝜅3/𝜅SM
3 < 6.49 [198]. However, experimental constraints are

expected to improve by one order of magnitude to 50% at HL-LHC and another one to 5% at FCC-hh
[196]. The projected sensitivity at ILC with 1 TeV center of mass energy is 10% [200].
Proceeding analogously as for 𝜅3, we obtain for the quartic self-interaction 𝜅4

𝜅4
𝜅SM

4
= 𝜆

𝜆SM
cos4 𝛽 + 2𝛿

𝒩𝜆SM
cos2 𝛽 sin2 𝛽 + 4𝛥

𝒩2𝜆SM
sin4 𝛽

𝛽≪1
≃ 1 + 𝛿2

4𝛥𝜆SM
. (5.33)

Notably, the quartic receives a potentially sizeable enhancement which is not suppressed by the mixing
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(a) (b)

(c)

Figure 5.11: Modified Higgs couplings 𝛿𝑔ℎ𝑍𝑍 (5.29) and 𝜅3/𝜅SM
3 (5.32) in the 𝑂(𝑁𝑆) model for

𝑁𝑆 = 1 and 𝑀𝑠 = 0.3 TeV (a), and 𝑀𝑠 = 1 TeV (b) and 𝑀𝑠 = 3 TeV (c). Scattered dots correspond
to different choices of 𝛼𝛿,𝑣(𝑀𝑠) from Fig. 5.2 with corresponding color coding indicating the Planck
fate. Gray-shaded regions are excluded by direct measurements, whereas black lines indicate projected
future sensitivities at current and future colliders. Plots taken from [4].

angle 𝛽 or scalar mass hierarchy. Hence, for Planck-safe regions with 𝛿 ∼ 2√𝛥𝜆SM (cf. Fig. 5.2 and
Fig. 5.5) it can be of order unity and also amount to a factor of a few, even for large BSM masses and
smaller 𝛽. So far, no constraints on 𝜅4 are available [155]. However, FCC-hh is expected to constrain the
quartic self-interaction for the first time as −4 ≲ 𝜅4/𝜅SM

4 ≲ 10 for 0 ≲ 𝜅3/𝜅SM
3 ≲ 1 [196]. For now, there

exists only the theoretical limit from tree-level perturbative unitarity (5.7) implying 𝜅4/𝜅SM
4 ≲ 65.

5.2.3 Collider Signatures

We now analyze in detail collider signatures and constraints on our model parameters from the modification
of Higgs couplings. While we retain the exact analytical expressions for 𝛿𝑔ℎ𝑍𝑍 (5.29), 𝜅3 (5.32) and 𝜅4
(5.33) the indicated expressions in the small angle approximation allow to qualitatively understand some
characteristic features of our analysis results.

We show the modifications of Higgs couplings in the 𝑂(𝑁𝑆) model induced by different values of 𝛼𝛿(𝑀𝑠)
and 𝛼𝑣(𝑀𝑠) in the 𝜅3-𝛿𝑔ℎ𝑍𝑍 plane and the 𝜅4-𝛿𝑔ℎ𝑍𝑍 plane in Fig. 5.11 and Fig. 5.12, respectively, for
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(a)

(b)

(c)

(d)

Figure 5.12: Modified Higgs couplings 𝛿𝑔ℎ𝑍𝑍 (5.29) and 𝜅4/𝜅SM
4 (5.33) in the 𝑂(𝑁𝑆) model for 𝑁𝑆 = 1

and 𝑀𝑠 = 0.3 TeV (a), 𝑀𝑠 = 1 TeV (b), 𝑀𝑠 = 3 TeV (c) and 𝑀𝑠 = 10 TeV (d). Note the slightly lower
|𝛿𝑔ℎ𝑍𝑍| plot range in (d). Same color coding and exclusion regions as Fig. 5.11. Plots taken from [4].

different scalar masses 𝑀𝑠 and 𝑁𝑆 = 16 where the color indicates the Planck fate as in Fig. 5.2. We see
that some Planck-safe parameter configurations are already ruled out by the existing LHC bounds on
𝛿𝑔ℎ𝑍𝑍 and 𝜅3 (grey area). Generically, experimental bounds on 𝛿𝑔ℎ𝑍𝑍 are more stringent than the ones on
𝜅3. While for lower masses such as 𝑀𝑠 = 0.3 TeV in Fig. 5.11a the modification of 𝜅3 could be detectable
already at HL-LHC, for TeV-ish or heavier BSM scalars the current (HL-LHC) 𝛿𝑔ℎ𝑍𝑍 bound constrains
the deviation in the trilinear to less than 20% (10%), see Fig. 5.11a, which is still in reach of FCC-hh.
Eventually, the limit on 𝛿𝑔ℎ𝑍𝑍 will increase by another order of magnitude at FCC-ee implying deviations
in 𝜅3 to be below the sensitivity of FCC-hh even for low masses. When increasing the BSM mass to more
than a few TeV, deviations in both the 𝑍 and the trilinear coupling slip out of reach, due to their quadratic
suppression with the mixing angle, cf. (5.29), (5.32), and hence the scalar mass ratio due to (5.28).

Turning to the quartic Higgs self-coupling 𝜅4 in Fig. 5.12 we observe that a large enhancement of a factor
larger than ten which is in reach of FCC-hh is implied for some Planck-safe parameters points, independent

6Recall that fixed 𝛼𝛿,𝑣 and 𝑀𝑠 map exactly onto the same point in Higgs coupling space for all 𝑁𝑆. Changing the
multiplicity for fixed quartics and mass might only change the Planck-fate of this configuration. In particular, increasing
𝑁𝑆 can render RG trajectories Planck-safe for smaller values of 𝛼𝛿,𝑣 as the Higgs portal mechanism is enhanced with 𝑁𝑆.
However, the corresponding parameter space points imply only tiny variations in the Higgs couplings and are therefore
not visible in Fig. 5.11.
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(a)

(b)

(c)

(d)

Figure 5.13: Modified Higgs couplings 𝛿𝑔ℎ𝑍𝑍 (5.29), 𝜅3/𝜅SM
3 (5.32) (a,b) and 𝜅4/𝜅SM

4 (5.33) (c,d)
in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model for 𝑁𝐹 = 3 and 𝑀𝑠 = 1 TeV in the vacuum configuration 𝑉 + (a,c)
and 𝑉 − (b,d). Scattered dots correspond to different choices of 𝛼𝛿,𝑢,𝑣(𝑀𝑠) from Fig. 5.5, Fig. 5.9 and
Fig. 5.10 with corresponding color coding indicating the Planck fate. Gray-shaded regions are excluded
by direct measurements, whereas black lines indicate projected future sensitivities at current and future
colliders.

of 𝑀𝑠. This reflects the fact that 𝜅4/𝜅SM
4 (5.33) is not suppressed by the BSM scalar mass. Hence, for

large 𝑀𝑠 ≳ 10TeV the enhancement of the Higgs quartic is the only signature of the model in reach of
FCC, as the sensitivity to 𝛿𝑔ℎ𝑍𝑍 and 𝜅3 is lost, see Fig. 5.12d.

The modifications of Higgs couplings 𝛿𝑔ℎ𝑍𝑍, 𝜅3 and 𝜅4 in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model are shown in
Fig. 5.13 for both vacuum configurations 𝑉 + and 𝑉 −. As expected from Subsec. 5.2.2, in both vacuum
configurations we find the same characteristic patterns as in the 𝑂(𝑁𝑆) model. In particular, effects in
𝛿𝑔ℎ𝑍𝑍 and 𝜅3/𝜅SM

3 are rather small as they are suppressed by 𝛽2 while the deviation from the SM in 𝜅4
can be sizeable. We also find a similar dependence on the BSM scalar mass 𝑀𝑠 as in the 𝑂(𝑁𝑆) case. We
conclude that from the Higgs coupling analysis only it is hardly possible to distinguish the 𝑂(𝑁𝑆) model as
well as the different vacuum configurations 𝑉 ± in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model from each other.
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5.3 Summary
In this chapter we studied the possibility to achieve vacuum stability via the Higgs portal mechanism.
Therefore, we extended the SM by an additional BSM scalar singlet field 𝑆. The core of the stabilization
mechanism is the new Higgs portal coupling 𝛿(𝐻†𝐻)(𝑆†𝑆), which contributes positively to 𝛽𝜆 potentially
enabling stability, see Fig. 5.2 and Fig. 5.5. The uplift increases with the number of scalars, allowing for
PS also for smaller values of the portal coupling, Fig. 5.3a and Fig. 5.6a.

In addition, the potential features quartic BSM scalar self-interactions depending on the scalar symmetry.
We studied two models with real and complex BSM scalars featuring an 𝑂(𝑁𝑆) (Subsec. 5.1.1) and a
𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) (Subsec. 5.1.2) flavor symmetry, respectively. In the first case (5.8), there is only one
pure BSM quartic 𝑣, while in the latter (5.14) there are two, 𝑢 and 𝑣. A main novelty of this work was
the finding that independent of the symmetry Higgs stability can also be indirectly achieved for extremely
feeble portal couplings via sizeable pure BSM quartics 𝛼𝑣(𝑢) (Fig. 5.3). In this case, 𝛼𝑣(𝑢) induces a strong
RG growth of 𝛼𝛿 (Fig. 5.3b) which enhances the value of the Higgs quartic 𝛼𝜆. Whether vacuum stability
can be achieved also depends on the BSM mass scale 𝑀𝑠, as for larger masses there is less RG time until
𝑀Pl left to cause sufficient uplift in the Higgs quartic, see Fig. 5.4 and Fig. 5.6b. The PS parameter space
is enhanced by the occurrence of walking regimes (Fig. 5.1a and Fig. 5.7) which capture quartic couplings
at sizeable, positive values and thereby enforce stability.
Interestingly, the vacuum stability conditions (5.9), (5.15) also allow for negative values of the portal

coupling 𝛿, which equally well fuel the Higgs portal mechanism due to the uplift in 𝛽𝜆 being ∝ 𝛼2
𝛿 . However,

we find that negative 𝛼𝛿 < 0 are generically excluded due to vacuum instabilities which are invariably
induced by the RG dynamics as discussed in Subsec. 5.1.3. In contrast, in the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model
stability can be also achieved for negative BSM scalar quartic self-couplings 𝛼𝑢 or 𝛼𝑣 in the vacuum
configuration 𝑉 − and 𝑉 +, respectively, see Fig. 5.9 and Fig. 5.10.

The main phenomenological signatures of the models in case of a non-trivial BSM ground state arise from
scalar mixing between the SM and BSM Higgs modes where the mixing angle is constrained to be small by
Higgs signal strength measurements (5.27). The mixing alters the couplings of the physical Higgs bosons
and is probed at LHC through measurements of the ℎ𝑍𝑍 and trilinear Higgs self-coupling. The BSM
effects are however suppressed by the mixing angle and scalar mass hierarchy, see Fig. 5.11. Existing limits
are expected to improve significantly at HL-LHC, ILC and FCC, probing large new parts of Planck-safe
parameter space for TeV-ish BSM scalar masses or below. Crucially, the partially significant enhancement
of the quartic Higgs self-interaction Fig. 5.12 is unsuppressed by the BSM mass, potentially providing the
only detectable signature of our models with multi-TeV scalars at FCC-hh.

There are still several open questions for the future. As soon as scalar template 3-loop 𝛽-functions are
available it will be crucial to check the perturbative stability of the walking regimes. Furthermore, to
ultimately distinguish meta- and instability a full BSM effective potential analysis is desirable. It would
also be interesting to explore if a connection can be made to cosmology and in particular to baryogenesis as
attempted in [203, 204]. Finally, a possible next step is to analyze the interplay of portals. Naturally, charged
scalars allow for the gauge, Higgs and potentially Yukawa portal mechanisms to operate simultaneously.
Alternatively, more elaborate models featuring both scalar singlets and VLFs entail the gauge and Higgs
portal along with a pure BSM Yukawa interaction. We investigate this possibility in the next chapter.
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6 Planck Safety from Vector-like Quarks and Flavorful
Scalars

In the previous two chapters we have analyzed mechanisms to render the SM Planck-safe in a minimally
invasive manner by adding VLFs or singlet scalars. As a natural next step, in this chapter based on work
in progress [7] we investigate whether and how new PS mechanisms can arise in more complex models
from the interplay of both presented BSM sectors. The choice of the BSM field content is guided by the
template model [40] for AS in GY theories as well as in SM extensions [41, 42], cf. Subsec. 3.2.1. Previous
works [44–46, 181] already studied extensions of the SM by VLLs and a flavorful complex singlet scalar
matrix field as in Subsec. 5.1.2. Interestingly, it was found that these models did not only allow for PS but
also for an explanation of the apparent anomalies in the muon and electron anomalous magnetic moments
(𝑔 − 2)𝜇,𝑒 [155, 205]. Inspired by this success, we choose a similar setup and study models featuring VLQs
and matrix scalars. The RG analysis of these models is much more involved than in minimal VLF and
scalar models due to the larger number of parameters but also implies a richer phenomenology.

This chapter is structured as follows: We present our model setup in Sec. 6.1 before turning to the RG
analysis in Sec. 6.2. We then discuss SMEFT constraints and collider phenomenology of our models in
Sec. 6.3, respectively, before concluding in Sec. 6.4.

6.1 Models

We extend the SM by 𝑁𝐹 generations of VLQs as well as a 𝑁𝐹 × 𝑁𝐹 complex singlet scalar matrix field
̂𝑆, cf. Subsec. 5.1.2. In order to make contact with SM flavor we set 𝑁𝐹 = 3. We focus on the VLQ

representations (𝑌𝐹, 𝑑2, 𝑑3) = (7
6 , 2, 3) (model L) and (𝑌𝐹, 𝑑2, 𝑑3) = (−5

6 , 2, 3) (model M), cf. Tab. 4.1,
which allow for a mixed SM-BSM Yukawa portal coupling 𝜅𝑖𝑗 between the VLQs, the SM Higgs and SM
fermions. This choice complements similar studies with VLLs [44–46, 181].
The models a priori exhibit a large BSM flavor symmetry

𝒢BSM = 𝑈(3)𝜓𝐿
× 𝑈(3)𝜓𝑅

× 𝑈(3) ̂𝑆𝑅
× 𝑈(3) ̂𝑆𝐿

, (6.1)

which due to the pure BSM Yukawa interaction

− ℒY
BSM = ̂𝑦𝑖𝑗 𝜓𝐿𝑖

̂𝑆𝑖𝑗 𝜓𝑅𝑗
+ h.c. (6.2)

is broken down via 𝑈(3) ̂𝑆𝐿,𝑅
∼ 𝑈(3)𝜓𝐿,𝑅

to 𝑈(𝑁𝐹)𝜓𝐿
× 𝑈(𝑁𝐹)𝜓𝑅

. 𝒢BSM is also intertwined with the SM
flavor symmetry (2.20) via the portal interactions

− ℒY
portal = {

̂𝜅𝑖𝑗 𝜓𝐿𝑖
𝐻𝑐𝐷𝑗 + h.c. (model M)

̂𝜅𝑖𝑗 𝜓𝐿𝑖
𝐻 𝑈𝑗 + h.c. (model L)

(6.3)

as 𝑈(3)𝜓𝐿
∼ 𝑈(3)𝑈(𝐷) in model L (M). Recall that 𝒢SM is explicitly broken by SM Yukawas, cf. (2.21). In

particular, the sizeable top (bottom) Yukawa couplings 𝑦𝑡 (𝑦𝑏) single out third generation quarks and breaks
down 𝑈(3)𝑈(𝐷) to the approximate 𝑈(2)𝑈(𝐷) symmetry of first and second generation up-type (down-type)
quarks. In compliance with these findings, the ansatz

̂𝜅𝑖𝑗 = diag(𝜅, 𝜅, ̃𝜅) (6.4)

suggests that also the BSM flavor symmetry is broken down to 𝑈(2)𝜓𝐿
∼ 𝑈(2)𝑈(𝐷) in model L (M). This
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constitutes a crucial difference to VLL models [44–46, 181] and leads to a modification

− ℒY
portal = {

𝜅 𝜓𝐿𝑖
𝐻 𝑈𝑖 + ̃𝜅 𝜓𝐿3

𝐻 𝑡𝑅 + h.c. (model L)
𝜅 𝜓𝐿𝑖

𝐻𝑐𝐷𝑖 + ̃𝜅 𝜓𝐿3
𝐻𝑐𝑏𝑅 + h.c. (model M)

(6.5)

of the Yukawa portal couplings in (6.3) with 𝑖 = 1, 2. Moreover, the 3 × 3 matrix scalar ̂𝑆 effectively
splinters into four independent scalar fields 𝑆 (2 × 2), 𝜙𝐿 (2 × 1), 𝜙𝑅 (1 × 2) and 𝜑 (1 × 1) as

̂𝑆 = ⎛⎜
⎝

𝑆 ⋯ 𝜙𝐿
⋮ ⋱ ⋮

𝜙𝑅 ⋯ 𝜑
⎞⎟
⎠

. (6.6)

In order to reduce the number of free parameters while retaining the distinction of third generation couplings,
we will from now on neglect the scalars 𝜙𝐿,𝑅, i.e. set all their potential couplings to zero. Note that this
ansatz is radiatively stable and fully compliant with the flavor structure (6.4). The pure BSM Yukawa
Lagrangian is then given by

− ℒY
BSM = 𝑦 𝜓𝐿𝑖

𝑆𝑖𝑗𝜓𝑅𝑗
+ ̃𝑦 𝜓𝐿3

𝜑𝜓𝑅3
+ h.c. . (6.7)

The scalar potential for the fields 𝐻, 𝑆 and 𝜑

𝑉 (4) =𝜆 (𝐻†𝐻)2 + 𝛿 (𝐻†𝐻)Tr(𝑆†𝑆) + ̃𝛿 (𝐻†𝐻)(𝜑†𝜑)
+ 𝑢Tr(𝑆†𝑆𝑆†𝑆) + 𝑣Tr(𝑆†𝑆)Tr(𝑆†𝑆) + 𝑠 (𝜑†𝜑)2 + 𝑤 (𝜑†𝜑)Tr(𝑆†𝑆)

(6.8)

features pure BSM quartics 𝑢, 𝑣, 𝑠 as well as portal couplings 𝛿, ̃𝛿, 𝑤. It is stable if [137, 160, 161]

𝜆 > 0, 𝛥 > 0, 𝑠 > 0, 𝛿′ = 𝛿 + 2
√

𝜆𝛥 > 0, ̃𝛿′ = ̃𝛿 + 2
√

𝜆𝑠 > 0,

𝑤′ = 𝑤 + 2
√

𝑠𝛥 > 0, 2
√

𝜆𝛥𝑠 + 𝛿
√

𝑠 + ̃𝛿
√

𝛥 + 𝑤
√

𝜆 + √𝛿′ ̃𝛿′𝑤′ > 0 ,
(6.9)

where the parameter

𝛥 = {
𝑢
2 + 𝑣 > 0 for 𝑢 > 0 (𝑉 +)
𝑢 + 𝑣 > 0 for 𝑢 < 0 (𝑉 −)

(6.10)

depends on the vacuum configuration 𝑉 ± of 𝑆, cf. Subsec. 5.1.2. For the sake of simplicity, we also define
the abbreviated notation

𝑋̂ = (𝑋, 𝑋, 𝑋) . (6.11)

for all fields and parameters that are subject to splitting between the third 𝑋 and first two generation 𝑋
components.

6.2 RG Analysis
In order to study the RG flow of our models we restrict ourselves to scenarios with a NP scale around
𝜇0 ≃ 1TeV which is set by the VLF 𝑀𝐹 and scalar 𝑀 ̂𝑆 masses. A characteristic feature of our models
is a sizeable enhancement of all gauge 𝛽-functions due to the large multiplicity and charges of the BSM
fermions as in Sec. 4.1. As a crucial consequence, the parameter space in both models is dominated by the
occurrence of a subplanckian 𝛼1 Landau pole, which for feeble or vanishing BSM couplings appears around
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109 GeV (1014 GeV) in model L (M). The only possibility to push the pole beyond 𝑀Pl while keeping
𝜇0 ≃ 1 TeV are sufficiently sizeable Yukawa couplings. This a priori excludes PS only via the gauge and
Higgs portal mechanisms, cf. also Tab. 4.2, and promotes the Yukawa portal mechanism to the key player
for PS. Accordingly, Planck-safe RG flows typically exhibit strongly coupled walking regimes, as already
seen in Sec. 4.2. In particular, PS generically requires strongly coupled values of 𝛼𝑦 ≳ 𝒪(10−1), whose
contribution to 𝛽1 is enhanced by a factor of (𝑁𝐹 − 1)2 = 4. Large values of 𝛼 ̃𝑦,𝜅,𝜅 only on the other hand
are typically not sufficient for PS. Moreover, sizeable Yukawa couplings tend to destabilize the Higgs, which
implies upper bounds for the Yukawa portal couplings 𝛼𝜅,𝜅.

The RGEs in our models are much more interconnected than in the minimal models from Chap. 4 and 5
due to the larger number of couplings. In consequence, the BSM couplings 𝛼𝛿, ̃𝛿,𝑢,𝑣,𝑤,𝑠 are not technically
natural (anymore) and thus can be radiatively induced or change their sign. Crucially, 𝛼𝛿,𝑢 (𝛼 ̃𝛿,𝑠) are
induced by the typically sizeable BSM Yukawas 𝛼𝑦 (𝛼 ̃𝑦). This has two important consequences: Firstly, RG
induced sign changes of 𝛼𝑢 enable transitions between the vacuum configurations 𝑉 ± but also instabilities.
Secondly, inducing the Higgs portal couplings 𝛼𝛿, ̃𝛿 via large 𝛼𝑦, ̃𝑦 potentially strengthens the Higgs portal
mechanism and benefits PS. In spite of this finding, the values of scalar quartics are typically only loosely
constrained by PS. An exception are strongly coupled ≳ 𝒪(1) values of quartics which tend to induce
Landau poles in the scalar sector and therefore disfavor PS, cf. Sec. 5.1. Intermediate values of the Higgs
portal couplings 𝛼𝛿, ̃𝛿 as well as the pure BSM quartics 𝛼𝑢,𝑣,𝑤,𝑠 in contrast promote Higgs stability via the
direct and indirect Higgs portal mechanism and therefore favor PS. However, this effect is only relevant in
the small pole-free subset of the parameter space and therefore of minor importance.
Our models contain in total ten free BSM couplings. Therefore, the complexity of the RG analysis in

comparison to the minimal models increases exponentially which prohibits a similarly rigorous scrutinization
of the full parameter space. While still scanning the whole parameter space as closely meshed as possible1,
we apply our knowledge from the previous chapter to identify parameter space regions that are particularly
promising for PS. Due to their special role in taming the 𝛼1 pole, we especially focus on the BSM Yukawas
and the parameter space regions where they are sizeable. In contrast, we scan only coarsely meshed over
values of the pure BSM quartic couplings whose impact on the RG evolution of SM couplings at 2-loop
order is only indirect and channeled through the Higgs portals. We thereby typically assume feeble, positive
values for all pure BSM quartics.

6.2.1 Model M
We find that in model M strict PS can be realized in both vacuum configurations 𝑉 + and 𝑉 − at 𝑀Pl,
whereas the model parameter space hardly exhibits any regions of soft PS or metastable Higgs. The BSM
critical surface in the 𝛼𝜅,𝑦|𝜇0

and 𝛼𝜅, ̃𝑦|𝜇0
plane is displayed in Fig. 6.1. We see that 𝛼𝜅|𝜇0

is crucial to
determine which vacuum configuration 𝑉 ± is realized at 𝑀Pl. The 𝑉 − region in Fig. 6.1 thereby originates
from a dynamical, RG induced vacuum transition 𝑉 + → 𝑉 − between the TeV and Planck scale. In total
we find that PS requires

𝛼𝑦|𝜇0
≳ 10−1, 𝛼 ̃𝑦|𝜇0

≳ 10−1, 𝛼𝜅|𝜇0
≲ 3 ⋅ 10−3, {𝛼𝜅|𝜇0

≲ 3 ⋅ 10−3 ∨ 𝛼𝜅|𝜇0
≳ 1 for 𝑉 +

3 ⋅ 10−1 ≲ 𝛼𝜅|𝜇0
≲ 1 for 𝑉 − , (6.12)

1The limiting factors are a comparably long CPU time to integrate the large, interconnected system of RGEs for a
single configuration of coupling values (∼ 3 s on a processor with six cores and a frequency of 2.9 GHz) and the high
dimensionality of the coupling space. Due to the ’curse of dimensionality’ only scanning three different values per
parameter already yields 310 ≃ 60.000 mesh points and requires a CPU time of roughly two days. Analogously, slightly
increasing the number of values per parameter from three to five would require a factor 510

310 ≃ 165 larger CPU time of
almost a year.
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⨯

(a) 𝛼𝑦-𝛼𝜅-plane for {𝛼𝜅, 𝛼 ̃𝑦}|𝜇0
= {10−3, 10−0.5}. (b) 𝛼 ̃𝑦-𝛼𝜅-plane for {𝛼𝜅, 𝛼𝑦}|𝜇0

= {10−5, 1}.

Figure 6.1: BSM critical surface for model M with 𝑁𝐹 = 3 and 𝜇0 = 1 TeV scanning over 𝛼𝑦,𝜅|𝜇0
(a)

and 𝛼 ̃𝑦,𝜅|𝜇0
(b). BSM quartics are fixed as {𝛼𝛿, ̃𝛿, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {10−5.5, 10−5, 10−6, 10−7, 10−5}.
Same color coding as Fig. 5.9. The black cross indicates the benchmark point for which the RG running
is plotted in Fig. 6.2.
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Figure 6.2: Planck-safe RG flow in model M for 𝑁𝐹 = 3 and 𝜇0 = 1 TeV. RG trajectories for couplings
are indicated by different colors and annotations. Dashed lines with the same color as solid ones
correspond to the (tilded) third generation couplings, e.g. 𝛼 ̃𝑦 and 𝛼𝑦. Initial values of BSM couplings
are fixed as {𝛼𝜅,𝜅, 𝛼𝑦, ̃𝑦, 𝛼𝛿, ̃𝛿, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {10−3, 10−0.5, 10−5.5, 10−5, 10−6, 10−7, 10−5}. Note
that 𝛼𝑏,𝑤 stay feeble during the whole RG evolution and are therefore not visible.

which we deduced from extensive parameter scans. Interestingly, this excludes PS for the scenario where
the scalar 𝜑 is decoupled in a radiatively stable manner by setting 𝛼 ̃𝑦,𝜅, ̃𝛿,𝑤,𝑠 = 0.

An exemplary Planck-safe RG flow is shown in Fig. 6.2. The sizeable values of 𝛼𝑦, ̃𝑦|𝜇0
induce a walking
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⨯

(a) 𝛼𝑦-𝛼𝜅-plane for {𝛼𝜅, 𝛼 ̃𝑦}|𝜇0
= {10−0.5, 10−0.5}. (b) 𝛼 ̃𝑦-𝛼𝜅-plane for {𝛼𝜅, 𝛼𝑦}|𝜇0

= {10−5, 1}.

Figure 6.3: BSM critical surface in model L for 𝑁𝐹 = 3 and 𝜇0 = 1 TeV scanning over 𝛼𝑦,𝜅|𝜇0
(a)

and 𝛼 ̃𝑦,𝜅|𝜇0
(b). BSM quartics are fixed as {𝛼𝛿, ̃𝛿, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {10−5.5, 10−5, 10−6, 10−7, 10−5}.
Same color coding as Fig. 5.9. The black cross indicates the benchmark point for which the RG running
is plotted in Fig. 6.4.

regime directly above the matching scale that lasts until the transplanckian regime. It quickly captures
the quartics 𝛼𝑢,𝑣,𝑠 at values of 𝒪(10−2 − 10−1), whereas the Yukawas 𝛼𝑦, ̃𝑦 are interlocked at 𝒪(1). The
portal couplings 𝛼𝜅,𝜅,𝛿, ̃𝛿,𝑤 do not participate in the walking but decrease such that the scalar portals 𝛼𝛿, ̃𝛿,𝑤
even change sign. The gauge couplings on the other hand although tamed by the Yukawas are enhanced
w.r.t. the SM and feed the gauge portal mechanism, cf. Sec. 4.1. In consequence, the Higgs is stabilized at
weak coupling all the way up to 𝑀Pl. Note also that the initial symmetry between third and the first two
generations couplings {𝛼𝜅, 𝛼 ̃𝑦, 𝛼 ̃𝛿}|𝜇0

= {𝛼𝜅, 𝛼𝑦, 𝛼𝛿}|𝜇0
is explicitly broken in the RG evolution as there

are sizeable deviations between the running of tilded and the corresponding untilded couplings.

6.2.2 Model L
Planck safety can also be realized in model L. Due to the larger VLQ hypercharge 𝑌𝐹 compared to model
M, it is harder to avoid a subplanckian 𝛼1 pole. This results in stricter constraints on the BSM parameters.
Accordingly, a smaller BSM critical surface was obtained in the parameter scans, see the corresponding
surface plot Fig. 6.3. Moreover and in contrast to model M PS can only be realized in the vacuum
configuration 𝑉 + at 𝑀Pl. The relevant conditions for a Planck-safe RG flow are

𝛼𝑦|𝜇0
≳ 10−1, (𝛼 ̃𝑦|𝜇0

≳ 10−1), 𝛼𝜅|𝜇0
≲ 10−2, 𝛼𝜅|𝜇0

≳ 1.5 ⋅ 10−1 , (6.13)

where the ̃𝑦 condition in brackets is not strictly necessary but strongly promotes PS. Large values of all
Yukawa couplings (except for 𝛼𝜅) are required at the matching scale to realize PS.

An exemplary Planck-safe RG trajectory is shown in Fig. 6.4. As in model M, the RG flow features a
walking regime with onset closely above the matching scale including the pure BSM quartics 𝛼𝑢,𝑣,𝑠 and
Yukawas 𝛼𝑦, ̃𝑦. Interestingly, also 𝛼𝜆 participates in the walking, resulting in a stabilization of the Higgs at
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Figure 6.4: Planck-safe RG flow in model L for 𝑁𝐹 = 3 and 𝜇0 = 1 TeV. Same labeling as
in Fig. 6.2. Initial values of BSM couplings are fixed as {𝛼𝜅, 𝛼𝜅, 𝛼𝑦, ̃𝑦, 𝛼𝛿, ̃𝛿, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

=
{10−3, 10−0.5, 10−0.5, 10−5.5, 10−5, 10−6, 10−7, 10−5}.

strong coupling in contrast to Fig. 6.2. We conclude that here the stabilization is mostly due to the Yukawa
rather than the gauge portal mechanism. Around 𝜇 ≃ 1016 GeV a transition to a second walking regime
occurs in the RG flow. This walking regime attracts not only the former mentioned couplings but also all
other quartics and Yukawas as well as most importantly the hypercharge coupling 𝛼1, which prevents a
subplanckian pole. Note that in this second walking regime most couplings are locked at sizeable values of
𝒪(0.1 − 1).

6.3 Phenomenology

We now work out phenomenological bounds on our model parameters and compare them to PS constraints.
The isolated phenomenology of BSM models featuring only VLFs or scalars have already been discussed
in Chap. 4 and Chap. 5, respectively. Thus, in the following we mainly focus on effects arising from the
interplay of the different BSM sectors.

6.3.1 SMEFT Bounds

Matching our models to SMEFT, cf. Subsec. 2.5.1 allows us to derive constraints on our model parameters
by comparing induced WCs to results from global fits. Integrating out the BSM fields at tree-level induces
the four dimension-6 operators

𝑄𝑖𝑗
𝐻𝑞 = 𝑖 ((𝐻†𝐷𝜇𝐻) − (𝐷𝜇𝐻)†𝐻) (𝑞𝑅

𝑖 𝛾𝜇𝑞𝑅
𝑗 ), 𝑄𝑖𝑗

𝑞𝐻 = (𝐻†𝐻)(𝑄̄𝑖𝐻 [𝑐]𝑞𝑅
𝑗 ),

𝑄𝐻� = (𝐻†𝐻)∂𝜇∂𝜇(𝐻†𝐻), 𝑄𝐻 = (𝐻†𝐻)3,
(6.14)

with flavor indices 𝑖, 𝑗 and 𝑞𝑅
𝑖,𝑗 = 𝐷𝑖,𝑗 [𝑈𝑖,𝑗] in model M [L]. The scalar WCs 𝐶𝐻,𝐻� only depend on

parameters of the scalar sector which are hardly constrained by PS and are therefore not considered here.
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Model WC 𝐶/(𝛬2[TeV2]) c.l. Flavor Symmetry Fit Constraint on Numerical Value Ref.
M 𝐶11

𝐻𝑑 −2.8 ± 1.9 1𝜎 - full 𝛼𝜅/𝑀2
𝐹[TeV2] ( 3.5 ± 2.4) ⋅ 10−2 [177]

M 𝐶22
𝐻𝑑 −0.6 ± 1.4 1𝜎 - full 𝛼𝜅/𝑀2

𝐹[TeV2] ( 0.7 ± 1.8) ⋅ 10−2 [177]
M 𝐶33

𝐻𝑑 −0.66 ± 0.22 1𝜎 - full 𝛼𝜅/𝑀2
𝐹[TeV2] ( 8.4 ± 2.8) ⋅ 10−3 [177]

M 𝐶33
𝑑𝐻 0.018 ± 0.049 1𝜎 - full 𝛼𝜅/𝑀2

𝐹[TeV2] ( 1.6 ± 4.5) ⋅ 10−2 [177]
L 𝐶11,22

𝐻𝑢 −0.00+0.073
−0.075 95% 𝑆𝑈(2)2 × 𝑆𝑈(3)3 single 𝛼𝜅/𝑀2

𝐹[TeV2] (−0.0+9.2
−9.5) ⋅ 10−4 [178]

L 𝐶22
𝐻𝑢 0.11 ± 0.17 1𝜎 - full 𝛼𝜅/𝑀2

𝐹[TeV2] ( 1.4 ± 2.1) ⋅ 10−3 [177]
L 𝐶33

𝐻𝑢 5.3 ± 7.1 95% 𝑆𝑈(2)2 × 𝑆𝑈(3)3 full 𝛼𝜅/𝑀2
𝐹[TeV2] ( 6.7 ± 9.0) ⋅ 10−2 [178]

L 𝐶33
𝐻𝑢 0.6 ± 3.5 95% 𝑆𝑈(2)2 × 𝑆𝑈(3)3 single 𝛼𝜅/𝑀2

𝐹[TeV2] ( 0.8 ± 4.4) ⋅ 10−2 [178]
L 𝐶33

𝑢𝐻 −0.10 ± 0.91 95% 𝑆𝑈(2)2 × 𝑆𝑈(3)3 single 𝛼𝜅/𝑀2
𝐹[TeV2] (−0.1 ± 1.4) ⋅ 10−2 [178]

L 𝐶33
𝑢𝐻 −0.28 ± 2.7 1𝜎 - full 𝛼𝜅/𝑀2

𝐹[TeV2] (−0.4 ± 4.0) ⋅ 10−2 [177]

Table 6.1: Most stringent limits on fermionic Wilson coefficients 𝐶𝐻𝑑,𝑑𝐻,𝐻𝑢,𝑢𝐻 collected from [177,
178] and corresponding bounds on our model parameters in model L and M. The entries ’full’ and
’single’ in the column ’Fit’ indicate whether the WCs for a whole set of operators or just one single
operator are fitted.

The fermionic WCs read2

𝐶𝑖𝑗
𝐻𝑞 = 𝜉𝑞 8𝜋2 𝛼𝜅̂𝑖

𝑀2
𝐹

𝛿𝑖𝑗, 𝐶𝑖𝑗
𝑞𝐻 = 8𝜋2𝑌 𝑗𝑖∗

𝑞
𝛼𝜅̂𝑗

𝑀2
𝐹

, (6.15)

cf. also (4.19), with 𝜉𝑞 = −1 [+1] in model M [L]. We see that 𝐶𝐻𝑞 and 𝐶𝑞𝐻 are induced by the Yukawa
portal 𝛼𝜅̂ where 𝐶𝑖𝑗

𝑞𝐻 in comparison to 𝐶𝑖𝑗
𝐻𝑞 is suppressed by the SM Yukawa matrix element 𝑌 𝑗𝑖∗

𝑞 . Hence,
we find that 𝐶33

𝑞𝐻 is the only non-negligible component of 𝐶𝑖𝑗
𝑞𝐻. Imposing the residual 𝑈(2)3 flavor symmetry

for the light quarks we also find 𝐶11
𝐻𝑞 = 𝐶22

𝐻𝑞. We stress that all induced WCs are insensitive to the pure
BSM Yukawa 𝛼𝑦, ̃𝑦. Hence, the PS requirement of having sizable 𝛼𝑦, ̃𝑦 in both models is not in conflict
with SMEFT bounds. We recall that more dimension six operators than (6.14) are switched on due to
RG running [101, 103, 104] between the NP and EW scale, see Sec. 2.5. However, these contributions are
neglected due to the loop suppression and the proximity of the NP scale 𝜇0 ≃ 1 TeV to the electroweak
scale.

The most constraining numerical fit results for 𝐶𝑖𝑖
𝐻𝑞,𝑞𝐻 along with the resulting constraints on our model

parameters 𝛼𝜅̂/𝑀2
𝐹 are given in Tab. 6.1. In [177] 31 WCs where fitted simultaneously without assuming

any BSM flavor symmetry. Thus, the limits are quite robust and can be applied in both models. For model
L, in accordance with (6.4) we also take into account the top-specific fit [178] with 𝑆𝑈(2)2 × 𝑆𝑈(3)3 flavor
symmetry including 34 WCs.

For model M, comparing limits from [177] with (6.15) yields

𝛼𝜅

𝑀2
𝐹[TeV2]

≲ 3.7 ⋅ 10−2, 𝛼𝜅

𝑀2
𝐹[TeV2]

≲ 1.3 ⋅ 10−2 (6.16)

at 90% c.l.. For the scenario 𝑀𝐹 ≃ 𝜇0 ≃ 1 TeV the constraints presented above are weaker than but in
agreement with those from PS (6.12) in large parts of the BSM critical surface. In particular, SMEFT and
PS bounds for the vacuum configuration 𝑉 + can always be conveniently fulfilled by imposing sufficiently

2We computed the WCs using [102]. We also explicitly checked that the expressions (6.15) for 𝐶𝐻𝑞,𝑞𝐻 coincide with the
ones from [206] in the basis [100], as well as the generalization of the expressions in [178, 207] for one generation of 𝜓.

67



6 Planck Safety from Vector-like Quarks and Flavorful Scalars

small values of 𝛼𝜅,𝜅(𝜇0). On the other hand, for 𝑀𝐹 ≃ 𝜇0 ≃ 1 TeV the fit clearly excludes values of
𝛼𝜅(𝜇0) ≳ 0.3 which are necessary to realize the vacuum configuration 𝑉 − at the Planck scale. However, the
bounds (6.16) can still be fulfilled along with the 𝑉 − condition in (6.12) by assuming heavier new physics.
Combining the PS conditions with the fit bounds yields

𝑀𝐹 ≳ 4.8 TeV (6.17)

at 90% c.l. which is well beyond current experimental limits, see Subsec. 6.3.4. Hence, we do not analyze
this possibility in more detail.

We now briefly repeat the SMEFT analysis for model L. We obtain the bounds

𝛼𝜅

𝑀2
𝐹[TeV2]

≲ 1.6 ⋅ 10−3 (7.8 ⋅ 10−4), 𝛼𝜅

𝑀2
𝐹[TeV2]

≲ 6.2 ⋅ 10−2 (1.0 ⋅ 10−2) (6.18)

at 90 % c.l., which are extracted from the full [177] (single WC [178]) fit via (6.15). The 𝛼𝜅(𝜇0) condition
in (6.18) can always be conveniently fulfilled in accord with the PS bound (6.13) by choosing 𝛼𝜅(𝜇0)
sufficiently small. However, for 𝑀𝐹 ≃ 𝜇0 ≃ 1 TeV, the full (single WC) 𝛼𝜅(𝜇0) bound (6.18) is clearly
(slightly) excluded by the PS constraint (6.13) requiring 𝛼𝜅(𝜇0) ≳ 0.15. When allowing for heavier VLQs,
the full (single WC) bounds can be fulfilled if

𝑀𝐹 ≳ 1.6 TeV (3.9 TeV). (6.19)

The full fit mass bound is of the order of current experimental limits which are in the range of 0.9 – 1.5 TeV
(see e.g. [208–210] for details) and motivates dedicated searches. However, it constitutes a very optimistic
estimate of the minimal VLQ mass scale, as in our model just three out of the 34 WCs included in the fit
are induced, so that the single WC fit bound in (6.19) seems actually more realistic. As this is well beyond
current limits, we do not consider model L in the following analysis of collider phenomenology.

6.3.2 Fermionic Mixing

After EWSB, the two 𝑆𝑈(2)𝐿 components of each VLQ 𝜓𝑖 in model M are rearranged into two Dirac
fermions with different electric charges via 𝜓𝑖 = (𝜓−1/3, 𝜓−4/3)𝑖. The Yukawa portal ̂𝜅 then induces mass
mixing between 𝜓−1/3 and SM down-type quarks 𝑑𝑖. Defining

𝒟𝑖 ≡ (𝑑−1/3, 𝜓−1/3, 𝜓−4/3)𝑖 (6.20)

the relevant mass terms read3

− ℒ𝑚𝒟
= 𝒟̄𝑖𝐿

ℳ𝒟
𝑖𝑗𝒟𝑗𝑅

+ h.c., with ℳ𝒟
𝑖𝑗 = ⎛⎜⎜

⎝

𝑣ℎ√
2𝑌𝑑 0 0

𝑣ℎ√
2 ̂𝜅 𝑀𝐹 0
0 0 𝑀𝐹

⎞⎟⎟
⎠𝑖𝑗

. (6.21)

We assume the CKM rotation to be entirely in the up-sector, hence 𝑌𝑑 is diagonal. This choice natu-
rally avoids inter-generational mixing which is severely constrained by hadronic FCNC processes. After

3The exotically charged 𝜓−4/3 does not take part in the mixing but is included in 𝒟 for later convenience.
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diagonalizing ℳ𝒟 we obtain the rotated mass eigenstates

𝒟′
𝑖 = 𝑂𝑖𝐿,𝑅

𝒟𝑖, with 𝑂𝑖𝐿,𝑅
= ⎛⎜⎜

⎝

cos 𝜃𝑖𝐿,𝑅
− sin 𝜃𝑖𝐿,𝑅

0
sin 𝜃𝑖𝐿,𝑅

cos 𝜃𝑖𝐿,𝑅
0

0 0 1

⎞⎟⎟
⎠

, (6.22)

which is governed by the six mixing angles

tan 𝜃𝑖𝐿
= 1

2𝑦𝑑𝑖
̂𝜅𝑖 ( 𝑣ℎ

𝑀𝐹
)

2
+ 𝒪 ( 𝑣ℎ

𝑀𝐹
)

4
, tan 𝜃𝑖𝑅

= 1√
2

̂𝜅𝑖 ( 𝑣ℎ
𝑀𝐹

) + 𝒪 ( 𝑣ℎ
𝑀𝐹

)
3

, (6.23)

where we assumed universal 𝑀𝐹. The RH mixing angles 𝜃𝑖𝑅
are much more sizable than the LH ones as

the latter are suppressed by an additional tiny factor 𝑚𝑑𝑖
/𝑀𝐹. Rotating the weak interaction Lagrangians

ℒ𝑍 and ℒ𝑊 to the mass basis gives rise to mixing terms between the VLQs and SM quarks. In particular,
one obtains

ℒ𝑊 ⊃ − 𝑔√
2

𝑊 −
𝜇

̄𝜓′4/3
𝑖 𝛾𝜇 (sin 𝜃𝑖𝐿

𝑃𝐿 + sin 𝜃𝑖𝑅
𝑃𝑅) 𝑑′

𝑖 + 𝑔√
2

𝑉𝑖𝑗𝑊 −
𝜇 ( ̄𝜓′1/3

𝑖 𝛾𝜇 sin 𝜃𝐿𝑖𝑃𝐿𝑢′
𝑗) , (6.24)

ℒ𝑍 ⊃ − 𝑔
2 cos 𝜃𝑊

𝑍𝜇
̄𝜓′1/3
𝑖 𝛾𝜇 (sin 2𝜃𝑖𝐿

𝑃𝐿 +
sin 2𝜃𝑖𝑅

2
𝑃𝑅) 𝑑′

𝑖 . (6.25)

6.3.3 BSM Sector Decay

We now work out the decay modes of the VLQs. The exotically charged 𝜓−4/3
𝑖 can cascade down through

the weak interaction via 𝜓−4/3 → 𝜓−1/3
𝑖 𝑊 −∗ and subsequent 𝑊 − decays. The decay is driven by the

tiny mass splitting 𝛥𝑀 = 0.57 GeV due to EW gauge boson loops, which is obtained from [211]. The
corresponding decay width is heavily suppressed and reads

𝛤(𝜓−4/3 → 𝜓−1/3
𝑖 𝑊 −∗ → 𝜓−1/3

𝑖 ℓ− ̄𝜈) ≃ 𝐺2
𝐹

15𝜋3 (𝛥𝑀)5 , (6.26)

where we expanded in 𝛥𝑀. If no other decay modes are available, the 𝜓−4/3 is long lived with a lifetime
𝜏 = ℏ

𝛤 of 37 ps corresponding to 𝑐𝜏 ≃ 1.1 cm which gives rise to displaced vertex signatures at the LHC.
However, for ̂𝜅 ≠ 0, fermionic mixing also enables the decay 𝜓−4/3

𝑖 → 𝑑𝑖𝑊 − with a width of

𝛤(𝜓−4/3
𝑖 → 𝑑𝑖𝑊 −) = 𝜋𝛼2

4
𝑀𝐹 (sin2 𝜃𝑖𝐿

+ sin2 𝜃𝑖𝑅
) (1 − 𝑚2

𝑊
𝑀2

𝐹
)

2
(2 + 𝑀2

𝐹
𝑚2

𝑊
) + 𝒪 (

𝑚2
𝑑𝑖

𝑀2
𝐹

) . (6.27)

For TeV-ish VLQs this decay mode is completely dominating and results in a prompt decay unless the
Yukawa portal coupling is extremely feeble with 𝛼𝜅̂ ≲ 10−14.

The 𝜓−1/3 can decay via the ̂𝜅-Yukawas as 𝜓−1/3
𝑖 → 𝑑𝑖ℎ. Moreover, there are decay modes induced from

fermionic mixing as 𝜓−1/3
𝑖 → 𝑢𝑗𝑊 − and 𝜓−1/3

𝑖 → 𝑑𝑖𝑍. If kinematically open also 𝜓−1/3
𝑖 → 𝑑𝑗

̂𝑆𝑖𝑗 is possible.
The respective decay widths are

𝛤(𝜓−1/3
𝑖 → 𝑑𝑖ℎ) = 𝜋𝛼𝜅̂

4
𝑀𝐹 (1 − 𝑚2

ℎ
𝑀2

𝐹
)

2

, (6.28)
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(a) 𝑀𝐹 < 𝑀 ̂𝑆.

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

(b) 𝑀𝐹 > 𝑀 ̂𝑆 for 𝑀 ̂𝑆 = 0.5 TeV and 𝛼𝑦 = 0.3.

Figure 6.5: Tree-level branching ratios of the different VLQ 𝜓−1/3
3 decay modes as a function of the

BSM fermion mass 𝑀𝐹 where the decay 𝜓−1/3
3 → 𝑏𝜑 is either kinematically forbidden (a) or open (b).

Note that ℬ(𝜓−1/3
3 → 𝑡𝑊 −) is rescaled by an additional factor 104.

𝛤(𝜓−1/3
𝑖 → 𝑢𝑗𝑊 −) = 𝜋𝛼2

4
𝑀𝐹|𝑉𝑖𝑗|2 sin2 𝜃𝑖𝐿

(1 − 𝑚2
𝑊

𝑀2
𝐹

)
2

(2 + 𝑀2
𝐹

𝑚2
𝑊

) , (6.29)

𝛤(𝜓−1/3
𝑖 → 𝑑𝑖𝑍) = 𝜋𝛼2

8 cos2 𝜃𝑊
𝑀𝐹 (sin2 2𝜃𝑖𝐿

+
sin2 2𝜃𝑖𝑅

4
) (1 − 𝑚2

𝑍
𝑀2

𝐹
)

2

(2 + 𝑀2
𝐹

𝑚2
𝑍

) , (6.30)

𝛤(𝜓−1/3
𝑖 → 𝑑𝑗

̂𝑆𝑖𝑗) =
𝜋𝛼 ̂𝑦

2
𝑀𝐹 cos2 𝜃𝑖𝐿

sin2 𝜃𝑗𝑅
(1 −

𝑀2
̂𝑆

𝑀2
𝐹

)
2

, (6.31)

where in (6.31) there is no summation over 𝑗 and we made use of (6.24), (6.25). Interestingly, the
weak interaction decay rates are kinematically enhanced with 𝑀2

𝐹/𝑚2
𝑊,𝑍. Branching ratios for the

different 𝜓−1/3 decay modes are plotted in Fig. 6.5 as a function of 𝑀𝐹. In the small angle ap-
proximation (6.23) the branching ratios are independent of 𝛼𝜅̂. Moreover, to good accuracy it holds
ℬ(𝜓−1/3

𝑖 → 𝑑𝑖𝑍) ≈ ℬ(𝜓−1/3
𝑖 → 𝑑𝑖ℎ) ≈ 50%. The decay 𝜓−1/3

𝑖 → 𝑢𝑗𝑊 − in comparison is strongly sup-
pressed with |𝑉𝑖𝑗|2 sin2 𝜃𝑗𝐿

/ sin2 𝜃𝑖𝑅
∝ |𝑉𝑖𝑗|2(𝑚𝑑𝑖

/𝑀𝐹)2 ≲ 𝒪(10−4) and therefore negligible. Lower- and
inter-generational decays of 𝜓−1/3

𝑖 → 𝑢𝑗𝑊 − are even further CKM- and down-quark mass suppressed.
Note that the first two generations can decay as 𝜓−1/3

𝑖 → 𝑑𝑗𝑆𝑖𝑗 with 𝑖, 𝑗 = 1, 2, i.e. to two different final
states involving SM scalars. Hence, the corresponding branching ratio is a factor two larger than 𝜓−1/3

3 → 𝑏𝜑.

If kinematically allowed, the BSM scalars ̂𝑆𝑖𝑗 decay via the sizeable BSM Yukawa 𝛼 ̂𝑦 to VLQ pairs
̄𝜓𝑖𝜓𝑗 and to ̄𝜓𝑖𝑑𝑗, ̄𝑑𝑖𝜓𝑗, ̄𝑑𝑖𝑑𝑗 via fermionic mixing. Rewriting the BSM Yukawa term (6.7) in terms of the

(pseudo-)scalar component ̂𝑆𝑠(𝑝)
𝑖𝑗

̂𝑆𝑠
𝑖𝑗 = 1

2
( ̂𝑆𝑖𝑗 + ̂𝑆∗

𝑗𝑖) and ̂𝑆𝑝
𝑖𝑗 = − 𝑖

2
( ̂𝑆𝑖𝑗 − ̂𝑆∗

𝑗𝑖) , (6.32)
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(b) diagonal 𝑆22.

Figure 6.6: Branching ratios for dominant decay modes of off-diagonal (a) and diagonal (b) components
of the BSM scalar ̂𝑆𝑖𝑗. Solid (dashed) lines correspond to (pseudo-)scalar components ̂𝑆𝑠

𝑖𝑗 ( ̂𝑆𝑝
𝑖𝑗). We fixed

𝛼𝜅 = 0.02 and 𝑀𝐹 = 1.5 TeV close to recent bounds. The dependence on 𝛼 ̂𝑦 completely cancels in the
branching ratios. It holds ℬ( ̂𝑆𝑠/𝑝

𝑖𝑗 → ̄𝑑𝑖𝜓
−1/3
𝑗 ) ≈ ℬ( ̂𝑆𝑠/𝑝

𝑖𝑗 → ̄𝜓1/3
𝑖 𝑑𝑗) as well as ℬ( ̂𝑆𝑠/𝑝

𝑖𝑗 → ̄𝜓1/3
𝑖 𝜓−1/3

𝑗 ) ≈
ℬ( ̂𝑆𝑠/𝑝

𝑖𝑗 → ̄𝜓4/3
𝑖 𝜓−4/3

𝑗 ). Note that in the regime 𝑀𝑆 < 𝑀𝐹 for diagonal components 𝑆𝑠,𝑝
𝑖𝑖 the 1-loop

decay to gluons is dominant over the fermionic decay.

as well as the fermions 𝒟 (6.20) and rotating to the fermion mass basis via (6.22) yields

−ℒBSM
𝑌 = ̂𝑦𝒟̄′

𝑖( ̂𝑆𝑠
𝑖𝑗(𝑋𝑖𝑗𝑃𝑅+𝑋†

𝑖𝑗𝑃𝐿)+𝑖 ̂𝑆𝑝
𝑖𝑗(𝑋𝑖𝑗𝑃𝑅−𝑋†

𝑖𝑗𝑃𝐿))𝒟′
𝑗, 𝑋𝑖𝑗 = ⎛⎜

⎝

𝑠𝑖𝐿
𝑠𝑗𝑅

𝑠𝑖𝐿
𝑐𝑗𝑅

0
𝑐𝑖𝐿

𝑠𝑗𝑅
𝑐𝑖𝐿

𝑐𝑗𝑅
0

0 0 1
⎞⎟
⎠

, (6.33)

where 𝑠𝑖𝐿,𝑅
= sin 𝜃𝑖𝐿,𝑅

, 𝑐𝑖𝐿,𝑅
= cos 𝜃𝑖𝐿,𝑅

. The scalar decay width then in agreement with [46] reads

𝛤( ̂𝑆𝑠/𝑝
𝑖𝑗 →𝒟̄′𝛼

𝑖 𝒟′𝛽
𝑗 ) =𝜋𝑁𝐶𝛼 ̂𝑦𝑀 ̂𝑆[(𝑋2

𝛼𝛽+𝑋2
𝛽𝛼)(1 − 𝑟2

𝑖,𝛼 − 𝑟2
𝑗,𝛽) − 4𝜉𝑠/𝑝𝑋𝛼𝛽𝑋𝛽𝛼𝑟𝑖,𝛼𝑟𝑗,𝛽]

⋅ √1 + 𝑟4
𝑖,𝛼 + 𝑟4

𝑗,𝛽 − 2𝑟2
𝑖,𝛼 − 2𝑟2

𝑗,𝛽 − 2𝑟2
𝑖,𝛼𝑟2

𝑗,𝛽 𝛩(1 − 𝑟𝑖,𝛼 − 𝑟𝑗,𝛽) ,
(6.34)

where 𝑟𝛼,𝑖/𝛽,𝑗 = 𝑀𝒟′𝛼/𝛽
𝑖/𝑗

/𝑀 ̂𝑆, 𝛼, 𝛽 = 1, 2, 3 are field component indices of 𝒟 and 𝜉𝑠[𝑝] = +1 [−1]. Depending
on the BSM mass hierarchy not all decay channels may be kinematically open. The branching ratios for
the different fermionic decay modes are plotted in Fig. 6.6. As soon as kinematically allowed, the decays to
𝜓′ rather than 𝑑′ final state fermions become almost instantly dominant. This is due to the suppression of
decays to SM quarks by small mixing angles.

For large 𝛼𝑦 ≳ 10−1 as required for PS and 𝑀 ̂𝑆 > 2𝑀𝐹 the BSM scalars decay promptly. The same holds
true for 𝑀𝐹 < 𝑀 ̂𝑆 < 2𝑀𝐹 unless 𝜅 is very feeble with 𝛼𝜅 ≲ 𝒪(10−13). In the scenario where 𝑀 ̂𝑆 < 𝑀𝐹 the
scalar decay to down-type quarks is doubly mixing suppressed which for weak 𝛼𝜅 ≲ 𝒪(10−4) can lead to
displaced vertex signatures of off-diagonal components that can be searched for at the LHC.

The diagonal components ̂𝑆𝑖𝑖 on the other hand can also decay to pairs of SM gauge bosons via BSM
fermion triangle loops. The corresponding decay widths to two electroweak bosons 𝐺𝐺′ and to gluons 𝑔𝑔
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read [42, 46]

𝛤( ̂𝑆𝑠/𝑝
𝑖𝑖 →𝐺𝐺′) =

𝑁𝐶𝛼2
𝑒𝛼 ̂𝑦

16𝜋
𝑀3

̂𝑆
𝑀2

𝐹
∣𝐶𝐺𝐺′𝐴𝑠/𝑝( 𝑀2

̂𝑆
4𝑀2

𝐹
)∣

2
, 𝛤 ( ̂𝑆𝑠/𝑝

𝑖𝑖 →𝑔𝑔) = 𝜋𝛼2
3𝛼 ̂𝑦

𝑀3
̂𝑆

𝑀2
𝐹

∣2
√

2𝐴𝑠/𝑝( 𝑀2
̂𝑆

4𝑀2
𝐹
)∣

2
.

(6.35)

The non-vanishing coefficients 𝐶𝐺𝐺′ in the limit 𝑀 ̂𝑆 ≫ 𝑚𝑊,𝑍 are given as

𝐶𝛾𝛾 =17
9

, 𝐶𝑍𝑍 = 1
2
tan−2 𝜃𝑊 + 25

18
tan2 𝜃𝑊,

𝐶𝑊𝑊 = 1√
2 cos2 𝜃𝑊

, 𝐶𝑍𝛾 =
√

2 (tan−1 𝜃𝑊
2

− 25
18

tan 𝜃𝑊)
(6.36)

and it holds

𝐴𝑠/𝑝(𝜏) = 2
𝜏2 (𝜉𝑠/𝑝𝜏 + (𝜏 − 𝜉𝑠/𝑝)𝑓(𝜏)) with 𝑓(𝜏) =

⎧{
⎨{⎩

arcsin(
√

𝜏), 𝜏 ≤ 1

−1
4 (ln 1+

√
1−𝜏−1

1−
√

1−𝜏−1 − 𝑖𝜋)
2

, 𝜏 > 1
. (6.37)

We find that the decay to gluons dominates over decays to EW bosons due to the relative enhancement
factor (4𝜋𝛼3)2/(𝑁𝑐𝛼2

𝑒) ≈ 41 for 𝑀𝐹 ≃ 𝑀 ̂𝑆 = 1 TeV. For the full diboson decay hierarchy we then find
𝛤𝑔𝑔 ≫ 𝛤𝑍𝑍 ≳ 𝛤𝛾𝛾 > 𝛤𝑊𝑊 > 𝛤𝑍𝛾. Interestingly, in the regime 𝑀 ̂𝑆 < 𝑀𝐹, the 1-loop decay to gluons is
dominant over the fermionic decay (cf. Fig. 6.6). Furthermore, the diagonal components of ̂𝑆𝑖𝑖 acquiring a
VEV can decay via scalar mixing described in App. C, to all kinematically open final states of a Higgs
boson decay. For 𝑀 ̂𝑆 > 2𝑀𝐻, also a decay to two Higgs bosons is possible.

6.3.4 Collider Bounds
Our model implies characteristic signatures at colliders which result in bounds on our model parameters.
The presence of the 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 charged VLQs modifies the running of 𝛼1,2 which impacts the EW
precision parameters 𝑌 , 𝑊 defined in (4.14). At 1-loop, using LEP data [172] results in the relatively weak
mass bound

𝑀𝐹 ≳ 365 GeV . (6.38)

In contrast to VLL models [46], bounds can be also derived from the running of 𝛼3. It has been found to
be consistent with the SM in various measurements by CMS [212, 213] and ATLAS [171, 214, 215] exploring
scales of up to 𝜇 = 4 TeV [171, 215]. A fit of the SM running against the latter is found in Fig. 6.7. All
data are well contained within the uncertainty, and the central value lies very close to the world average
fit [216]. We also show 𝛼3 running in our BSM model with feeble or weak BSM Yukawas for comparison,
where the matching was performed such that deviations from the fit band occur at 1.5 TeV or 4 TeV. From
the latter we can estimate the minimal NP scale 𝜇0 ∼ 𝑀𝐹 yielding a lower bound

𝑀𝐹 ≳ 650 GeV (6.39)

on the VLQ mass, which is still sub-TeV but stronger than (6.38) from 𝛼1,2 running.
If not too heavy, VLQs and BSM scalars can also be singly and pair produced in various processes at

colliders. A selection of corresponding tree-level Feynman diagrams is given in Fig. 6.8. We now briefly
summarize the most relevant direct detection bounds on our model from VLQ searches by ATLAS [217–220]
and CMS [221–225].
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Figure 6.7: Running of the strong coupling constant 𝛼3(𝑄). Dots correspond to experimental
determinations by CMS [212] (black) and [213] (gray) as well as ATLAS [214] (light and dark brown)
and [171, 215] (orange and purple). The blue curve and its shaded error region correspond to the SM
fitted against the latest ATLAS data [171, 215]. The result is in very good agreement with SM running
using the world average [216] (red curve). Green and pink curves represent the running of 𝛼3 in our
model for feeble BSM couplings of 10−10 (dashed lines) or 𝛼𝜅̂(𝑄) = 10−4 and 𝛼 ̂𝑦(𝑄) = 0.2 (solid lines).
The curves are matched to the upper end of the fit uncertainty band at the scale 𝑄 = 4 TeV (green)
and the lower one at 𝑄 = 1.5 TeV (pink), respectively.

Most analyses [218–221, 223–225] assume only one VLQ generation that mixes exclusively with third
generation SM quarks and hence search for final states involving 𝑡 or 𝑏 quarks. In these works the VLQ
doublet (𝜓−1/3, 𝜓−4/3) is denoted by (𝐵, 𝑌 ). As in our models inter-generational mixing is extremely
suppressed (cf. Subsec. 6.3.2), the experimental results are only applicable for 𝜓−1/3

3 and 𝜓−4/3
3 , while

the properties of 𝜓1,2 are hardly constrained at all. Furthermore, in searches for 𝐵 it was assumed that
ℬ(𝐵 → 𝑡𝑊) + ℬ(𝐵 → 𝑏ℎ) + ℬ(𝐵 → 𝑏𝑍) = 100%. Hence, the limits on 𝑀𝐵 only apply to 𝜓−1/3

3 if
Br(𝜓−1/3

3 → 𝑏 ̂𝑆) = 0, i.e. if 𝑀 ̂𝑆 > 𝑀𝜓−1/3
3

4, and are lowered otherwise. The best limits are 𝑀𝑌 ≥ 1350 GeV
[218] and 𝑀𝐵 ≥ 1450 GeV [225]5. Recall that in our model the mass splitting within a VLQ doublet is
negligible, thus mass bounds for 𝜓−4/3 also apply for 𝜓−1/3 independent of the BSM VLQ to scalar mass
hierarchy.
In [220] constraints on the dominant mixing angle 𝜃3𝑅

were derived from single 𝐵 VLQ production. In
our model, these yield upper limits on 𝛼𝜅 as a function of the VLQ mass, cf. (6.23). For 𝑀𝐵 = 800 GeV,
the upper limit 𝛼𝜅 ≲ 4 ⋅ 10−3 is of order of the 𝑉 + PS bound (6.12). On the other hand, the 𝑉 − condition
in (6.12) is excluded in the whole analyzed mass range of 800 ≤ 𝑀𝐵 ≤ 1800 GeV, in agreement with the
SMEFT results in Subsec. 6.3.1.

In contrast to the mentioned works, the searches [217, 222] focus on a single VLQ generation that couples
only to light quarks. In particular, in [217] a VLQ 𝑄 with electric charge −4/3 decaying exclusively into
a 𝑊 boson and a light down-type quark 𝑑, 𝑠 was assumed. A lower mass bound 𝑀𝑄 > 690 GeV was

4Note that ℬ(𝜓−1/3
3 → 𝑏 ̂𝑆) = 0 can also be achieved by 𝛼𝑦 = 0. This scenario is however excluded from PS.

5According to the branching ratio predictions in our model Fig. 6.5 we always quote the bounds on 𝑀𝐵 for ℬ(𝐵 → 𝑏ℎ) =
ℬ(𝐵 → 𝑏𝑍) = 50% assuming Br(𝜓−1/3

3 → 𝑏 ̂𝑆) = 0.
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Figure 6.8: Tree-level diagrams for BSM sector production at hadron colliders. For the VLQs 𝜓, pair
production via gluon fusion (diagrams a)-c)) as well as quark anti-quark fusion to an 𝑠-channel gluon
(diagram d)) are the dominant production mechanisms at hadron machines. Moreover, single and pair
production of 𝜓−1/3 via 𝑡-channel Higgs (diagrams e)-f)) are possible via the BSM Yukawa coupling ̂𝜅.
Pair production via 𝑠-channel 𝑊 (diagram g)) is also possible at hadron colliders. At hadronic and
leptonic machines, VLQs can finally be pair produced in fermion-antifermion fusion to 𝑠-channel 𝛾, 𝑍
or Higgs (diagrams h)-i)). The BSM scalars ̂𝑆𝑖𝑗 can be singly and pair produced in fermion-antifermion
fusion to 𝑠-channel Higgs via the portal coupling ̂𝛿 (diagram j)). Moreover, BSM scalars are produced
via scalar mixing with the Higgs and in 𝜓−1/3 decays (not shown).

derived which also applies for 𝜓−4/3
1,2 . Note however that in our model we have two generations of VLQs

coupling (mainly) to the first and second-generation quarks. Hence, for 𝑀𝜓−4/3
1

= 𝑀𝜓−4/3
2

the resulting
mass bound is stronger, as the total VLQ production cross section at parton level is enhanced by a
factor of two. In [222] a search for a VLQ 𝐷 was presented with electric charge −1/3 decaying into light
quarks. Assuming pair production and Br(𝐷 → 𝑞𝑍) = Br(𝐷 → 𝑞ℎ) = 50% with 𝑞 = 𝑑, 𝑠 yields a mass
bound 𝑀𝐷 > 570 GeV which is applicable to 𝜓−1/3

1,2 . Again, the real 𝑀𝜓−1/3
1,2

bound is lowered if the decay

𝜓−1/3
1,2 → 𝑞𝑆 is kinematically allowed but might also be stronger due to the factor two enhanced parton

level production cross section.
Putting everything together we finally obtain the combined VLQ mass bounds

𝑀𝜓1,2
≲ 690 GeV, 𝑀𝜓3

≥ { 1450 GeV, 𝑀𝜓3
≤ 𝑀 ̂𝑆

1350 GeV, 𝑀𝜓3
> 𝑀 ̂𝑆

, (6.40)

which are dominated by the direct searches.
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6.4 Summary

6.4 Summary
In this chapter we demonstrated that PS can be realized in complex BSM models featuring VLQs and
flavorful singlet matrix scalars. We focused on 𝑁𝐹 = 3 generations of TeV-ish VLQs in the representations
(3, 2, −5

6) (model M) and (3, 2, 7
6) (model L). To consistently account for sizeable SM Yukawas 𝑦𝑡,𝑏 in

the RG flow, also third generation BSM couplings have to be treated separately from first and second
generations ones. This implies a high-dimensional parameter space featuring ten a priori free BSM couplings
and gives rise to rather interconnected RG dynamics. We found that large values of the new, pure BSM
Yukawa coupling 𝛼 ̂𝑦 ≳ 𝒪(10−1) are key to PS by preventing a subplanckian hypercharge Landau pole. In
the pole-free parts of the parameter space, the known gauge and Yukawa portal mechanisms as well as the
direct and indirect Higgs portal mechanism can then all together push the Higgs towards stability, where
the dominant mechanism is determined by the BSM coupling values. Interestingly, Model M allows for PS
in both vacuum configurations 𝑉 ±, whereas in model L the BSM critical surface is generically tighter and
only 𝑉 + is realized at 𝑀Pl.
Matching our models to SMEFT implies upper limits on 𝛼𝜅̂/𝑀2

𝐹. While PS in 𝑉 + in model M is
compatible with SMEFT bounds, for 𝑀𝐹 ≃ 1TeV PS is completely excluded in model L as well as for
𝑉 − in model M. This demonstrates how PS can guide model building. We then analyzed the collider
phenomenology of model M in 𝑉 +. Firstly, by comparing BSM running of gauge couplings with LHC
measurements we derived VLQ mass bounds of a few 100 GeV. If not too heavy, VLQs are also directly
singly and pair produced at hadron machines and decay via the Yukawa portal coupling or fermionic mixing
to SM down-type quarks and bosons. Corresponding experimental searches yield lower VLQ mass bounds
of up to 1450 GeV. If 𝑀𝐹 > 𝑀 ̂𝑆, also the decay 𝜓−1/3 → 𝑑𝑆 is possible providing novel signatures that can
be searched for at LHC. In particular, the subsequent BSM scalar decay via the sizeable BSM Yukawa 𝛼 ̂𝑦
to ̄𝑑𝑑 or gluons provide characteristic triple-jet final states, which are not included in present experimental
analyses and invite dedicated study.

Several interesting aspects are still to be analyzed in the future. First of all, it would be desirable to
scrutinize the complete high-dimensional model parameter space more rigorously. Moreover, it would
be interesting to quantify the impact of our findings from Chap. 4 and Chap. 5 e.g. regarding varying
BSM masses and multiplicities on PS. Finally, a full phenomenological analysis based on the scalar mixing
between all three scalar fields would be desirable to explore the complex phenomenology of the scalar sector.

75



7 Interlude: Anomaly-free 𝑈(1)′ Models for Flavor
Anomalies

So far, we have restricted our PS analyses to minimal SM extensions by VLFs and flavorful scalars. In the
remainder of this theis we want to apply the gained knowledge in the context of a more complex class of
BSM models, namely flavorful 𝑈(1)′ models. In doing so, the main challenge from the RG point of view is
the generic Landau pole of the abelian BSM gauge coupling which has to be assured to appear sufficiently far
in the UV, c.f. (3.6). Phenomenologically on the other hand flavorful 𝑈(1)′ models are natural candidates
to explain several experimentally observed anomalies in the flavor sector1 and therefore subject to very
active research, e.g. [58–61]. In such models we enlarge the SM gauge group with an additional 𝑈(1)′

gauge symmetry with generation-dependent charges 𝐹𝑋𝑖
for the SM fermions 𝑋 = 𝑄, 𝑈, 𝐷, 𝐿, 𝐸 as well as

potentially three BSM RH neutrinos 𝑋 = 𝜈. The 𝑈(1)′ interaction is then mediated by a massive 𝑍′ boson
which acquires its mass from a 𝑈(1)′ breaking SM-singlet scalar 𝜙 with 𝑈(1)′ charge 𝐹𝜙 ≠ 0.

In this chapter we review some generic features of flavorful 𝑈(1)′ models. We start with discussing the
cancellation of gauge anomalies in Sec. 7.1 as well as gauge kinetic mixing in Sec. 7.2. Afterwards, we
focus on the generation of tree-level FCNC couplings from gauge to mass basis rotations in Sec. 7.3 before
turning to meson mixing and 𝑍′ decays in Sec. 7.4 and Sec. 7.5, respectively.

7.1 Anomaly Cancellation

Fermionic 𝑈(1)′ charge assignments are constrained by gauge anomaly cancellation conditions (ACCs),
see [170] for a comprehensive review. The ACCs assure that triangle diagrams with three external gauge
bosons and an internal chiral fermion loop exactly vanish. This is necessary as divergences originating from
such diagrams cannot be absorbed in counter-terms in the process of renormalization and hence spoil the
consistency of the underlying QFT. In the SM all gauge anomalies cancel generation-wise. In the absence
of SM-charged BSM fermions this still holds for all triangle diagrams involving only SM gauge bosons.
Demanding anomaly cancellation also in diagrams involving at least one external 𝑈(1)′ gauge boson on the
other hand implies six conditions on the 𝑈(1)′ charges of SM fermions and RH neutrinos, namely [59]

𝑆𝑈(3)2
𝐶 × 𝑈(1)′ ∶

3
∑
𝑖=1

[2𝐹𝑄𝑖
−𝐹𝑈𝑖

−𝐹𝐷𝑖
] = 0 ,

𝑆𝑈(2)2
𝐿 × 𝑈(1)′ ∶

3
∑
𝑖=1

[3𝐹𝑄𝑖
+𝐹𝐿𝑖

] = 0 ,

𝑈(1)2
𝑌 × 𝑈(1)′ ∶

3
∑
𝑖=1

[𝐹𝑄𝑖
+3𝐹𝐿𝑖

−8𝐹𝑈𝑖
−2𝐹𝐷𝑖

−6𝐹𝐸𝑖
] = 0 ,

gauge-gravity ∶
3

∑
𝑖=1

[6𝐹𝑄𝑖
+2𝐹𝐿𝑖

−3𝐹𝑈𝑖
−3𝐹𝐷𝑖

−𝐹𝐸𝑖
−𝐹𝜈𝑖

] = 0 ,

𝑈(1)𝑌 × 𝑈(1)′2 ∶
3

∑
𝑖=1

[𝐹 2
𝑄𝑖

−𝐹 2
𝐿𝑖

−2𝐹 2
𝑈𝑖

+𝐹 2
𝐷𝑖

+𝐹 2
𝐸𝑖

] = 0 ,

𝑈(1)′3 ∶
3

∑
𝑖=1

[6𝐹 3
𝑄𝑖

+2𝐹 3
𝐿𝑖

−3𝐹 3
𝑈𝑖

−3𝐹 3
𝐷𝑖

−𝐹 3
𝐸𝑖

−𝐹 3
𝜈𝑖

] = 0 .

(7.1)

1We focus on two specific flavor anomalies in the next two chapters. In particular we discuss the 𝑏 → 𝑠𝜇+𝜇− anomalies and
the 𝑈-Spin-𝐶𝑃 anomaly in charm in Subsec. 8.1.1 and Sec. 9.1, respectively.
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7.2 Kinetic Mixing

Here we assumed that the RH neutrinos whose 𝑈(1)′ charges appear in the gauge-gravity and 𝑈(1)′3 ACCs
are the only chiral BSM fermions in the theory. Potential vector-like BSM fermions in contrast do not
contribute to gauge anomalies. In total, (7.1) imposes six linearly independent conditions on 18 (15) a
priori unconstrained fermion charges in models with (without) RH neutrinos, with implications for the RG
evolution, cf. Subsec. 8.1.3, and phenomenology [58–60].
Let us briefly comment on some features of the anomaly-free charge assignments studied within this

thesis. First of all, we assume all 𝑈(1)′ charges 𝐹𝑋 of fermions and scalars in the model to be rational
numbers. Secondly, we stress that 𝑈(1)′ contributions to physical observables always involve same powers
of 𝑈(1)′ charges 𝐹𝑋 and the gauge coupling 𝑔4. Hence all theories that are related via a transformation
𝐹𝑋 → 𝑐 𝐹𝑋 ∀𝑋, 𝑔4 → 𝑔4

𝑐 for any real constant 𝑐 ≠ 0 are equivalent. We make use of this rescaling
invariance to fix the largest 𝑈(1)′ charge as max𝑋 |𝐹𝑋| = 1 without loss of generality. This choice comes
with the advantage that the naive perturbativity limit for the 𝑈(1)′ coupling 𝐹𝑋𝑔4 ≲ 4𝜋, ∀𝑋 simplifies
to 𝛼4 ≲ 1 in analogy to the other couplings in the theory. Moreover, we observe that the ACCs (7.1) are
invariant under any arbitrary permutation of charge assignments within each individual fermion species.
The phenomenology of models in contrast typically changes significantly under such permutations. Hence,
in this work we assign the 𝑈(1)′ charges explicitly for each generation fixed.

7.2 Kinetic Mixing
𝑈(1)′ models feature two abelian gauge bosons: the heavy 𝑍′ as well as the hypercharge gauge boson.
Gauge invariance in this case explicitly allows for the presence of a mixed abelian gauge kinetic term

ℒgauge ⊃ −1
4(1 − 𝜂2)

( 𝐵𝜇𝜈

𝐵′𝜇𝜈)
⊺

(
1 −𝜂

−𝜂 1
) (

𝐵𝜇𝜈
𝐵′

𝜇𝜈
) , (7.2)

where 𝐵′𝜇𝜈 corresponds to the 𝑈(1)′ field strength tensor, cf. (2.8). The size of the mixed kinetic term is
controlled by the kinetic mixing parameter 𝜂, with |𝜂| < 1, which after EWSB induces 𝑍-𝑍′ mass mixing.
If the Higgs was also involved in the 𝑈(1)′ breaking, additional mixing terms would be generated. However,
in this thesis we decouple the electroweak and 𝑈(1)′ symmetry breaking mechanisms by choosing the Higgs
to be uncharged under the 𝑈(1)′, i.e.

𝐹𝐻 = 0 , (7.3)

which evades the presence of further mixing terms.
Kinetic mixing induces corrections to electroweak precision observables such as the 𝜌 parameter

𝜌 = 𝑀𝑊
𝑀𝑍 cos 𝜃𝑊

, (7.4)

which in the SM at tree-level takes the value 𝜌SM = 1 due to custodial symmetry. Electroweak precision
data on the other hand indicate [155]

𝜌 − 𝜌SM

𝜌
= (3.8 ± 2.0) ⋅ 10−4 , (7.5)

constraining the size of a potential NP contribution. In the presence of kinetic mixing in contrast the
modification of the 𝜌-parameter reads

𝜌−1 = 1 + 𝜂2 sin2 𝜃𝑊
1 − 𝑧2 with 𝑧 = ( 𝑀𝑍

𝑀𝑍′
) ∣

𝜂=0
, (7.6)
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7 Interlude: Anomaly-free 𝑈(1)′ Models for Flavor Anomalies

suggesting a deviation from the SM value of opposite sign than the experimental value (7.5). Thus, in
absence of cancellations of different origin, kinetic mixing is expected to be subleading at the EW scale
𝜇EW which roughly translates to the condition

|𝜂(𝜇EW)| ≲ 𝒪(10−2) . (7.7)

Additional constraints arise from corrections of SM fermion 𝑋𝑖 couplings to the 𝑍 and photon ∝ 𝜂𝐹𝑋𝑖
𝑔4.

Again, EW precision data [155] suggest that these corrections are small indicating a small 𝜂(𝜇EW) in
agreement with (7.7).
The RG evolution of the kinetic mixing parameter is not technically natural. Hence, it is radiatively

induced even if set to zero at the NP scale. Nonetheless, its RG growth is diminished in case the 1-loop
contribution to its 𝛽-function vanishes. This translates to a condition on fermionic 𝑈(1)′ charges that reads
[226]

3
∑
𝑖=1

∑
𝑋=𝑄,𝑈,𝐷,𝐿,𝐸

(𝑑3,𝑋𝑖
𝑑2,𝑋𝑖

𝑌𝑋𝑖
𝐹𝑋𝑖

) =
3

∑
𝑖=1

(𝐹𝑄𝑖
− 𝐹𝐿𝑖

+ 2𝐹𝑈𝑖
− 𝐹𝐷𝑖

− 𝐹𝐸𝑖
) = 0 . (7.8)

7.3 Flavor Rotations
Let us now derive how the 𝑍′ couplings to physical fermions are related to the generation-dependent 𝑈(1)′

charge assignments and the fermionic gauge to mass basis rotations 𝑉 𝑓
𝐿,𝑅 (2.23), see Sec. 2.3 for details. To

start, we define the SM fermion 𝑈(1)′ charge matrices in the gauge basis

ℱ𝑋 = ⎛⎜
⎝

𝐹𝑋1
0 0

0 𝐹𝑋2
0

0 0 𝐹𝑋3

⎞⎟
⎠

, (7.9)

where 𝑋 = 𝑄, 𝑈, 𝐷, 𝐿, 𝐸. After EWSB and going to the chiral mass basis we obtain the rotated charge
matrices

ℱ′
𝑑𝐿

=𝑉 𝑑†
𝐿 ℱ𝑄𝑉 𝑑

𝐿 , ℱ′
𝑑𝑅

= 𝑉 𝑑†
𝑅 ℱ𝐷𝑉 𝑑

𝑅 ,

ℱ′
𝑢𝐿

=𝑉 𝑢†
𝐿 ℱ𝑄𝑉 𝑢

𝐿 , ℱ′
𝑢𝑅

= 𝑉 𝑢†
𝑅 ℱ𝑈𝑉 𝑢

𝑅 ,

ℱ′
ℓ𝐿

=𝑉 ℓ†
𝐿 ℱ𝐿𝑉 ℓ

𝐿, ℱ′
ℓ𝑅

= 𝑉 ℓ†
𝑅 ℱ𝐸𝑉 ℓ

𝑅 ,

(7.10)

for quarks and charged leptons. Fermion couplings 𝑔𝑓𝑖𝑓𝑗
𝐿,𝑅 in the mass basis with 𝑓 = 𝑢, 𝑑, ℓ(, 𝜈) are then

given by
𝑔𝑓𝑖𝑓𝑗

𝐿,𝑅 = 𝑔4(ℱ′
𝑓𝐿,𝑅

)𝑖𝑗 . (7.11)

For flavor-universal charge assignments the gauge to mass basis rotations in (7.10) always cancel due to
unitarity. Hence, in the SM the rotation matrices 𝑉 𝑓

𝐿,𝑅 are solely constrained by 𝑉 𝑢†
𝐿 𝑉 𝑑

𝐿 = 𝑉CKM whereas
all other rotations are unphysical and therefore arbitrary. However, for generation-dependent charge
assignments non-vanishing flavor rotations become observable and induce deviations between the charge
matrices in the gauge and mass basis. In particular, the latter can feature tree-level FCNC couplings due
to (7.11), which are typically strongly experimentally constrained. In the lepton sector we therefore fix
𝑉 ℓ

𝐿,𝑅 = 1 which forbids all LFV couplings. In the quark sector in contrast we choose the rotations such
that the desired FCNC couplings are induced.
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b

s̄, d̄

s, d

b̄

u, c, t

W W
ū, c̄, t̄

(a) 𝐵𝑠,𝑑-mixing in the SM. The contribution is small
due to loop- and CKM suppression.

b

s̄, d̄

s, d

b̄

Z ′

(b) Tree-level contribution to 𝐵𝑠,𝑑-mixing in our 𝑍′

model.

Figure 7.1: Leading contributions to 𝐵𝑠,𝑑-mixing in the SM (a) and 𝑍′ models (b). For both diagrams
there is also a 90∘ rotated version contributing which is not shown explicitly. The topology of LO
diagrams contributing to 𝐷0- and 𝐾0-mixing is the same as for 𝐵𝑠,𝑑.

7.4 Meson Mixing

𝑍′-quark FCNC couplings 𝑔𝑞𝑞′

𝐿,𝑅 ≠ 0 (7.11) with 𝑞𝑞′ = 𝑏𝑠, 𝑏𝑑, 𝑠𝑑, 𝑐𝑢 invariably generate tree-level contri-
butions to the mixing of neutral pseudoscalar mesons 𝑃 = 𝐵𝑠, 𝐵𝑑, 𝐾0, 𝐷0, respectively. In the SM in
contrast neutral meson mixing is loop-, CKM and in case of the 𝐷0 also GIM-suppressed promoting it to an
excellent test ground for NP. The topology of LO SM and BSM Feynman diagrams contributing to neutral
meson mixing is exemplarily depicted for 𝐵𝑠,𝑑 mesons in Fig. 7.1. Due to the strong SM suppression severe
bounds on the FCNC couplings 𝑔𝑞𝑞′

𝐿,𝑅 arise from the experimental determination of neutral meson mass
differences 𝛥𝑀𝑃, see [155]. Theory predictions on the other hand are typically less precise due to sizeable
hadronic uncertainties. For 𝐵 mesons it has to hold [1, 227]

𝛥𝑀SM+NP
𝐵𝑠

𝛥𝑀SM
𝐵𝑠

≤ 1.156,
𝛥𝑀SM+NP

𝐵𝑑

𝛥𝑀SM
𝐵𝑑

≤ 1.154 (7.12)

at 2.5𝜎 c.l., which leaves room for a NP contribution of up to 15% compared to the SM. The theory
prediction for the 𝑍′ contribution is given by [1, 227]

𝛥𝑀SM+NP
𝐵𝑞

𝛥𝑀SM
𝐵𝑞

= ∣1 + 200 (5TeV
𝑀𝑍′

)
2

[(𝑔𝑏𝑞
𝐿 )2 + (𝑔𝑏𝑞

𝑅 )2 − 𝑋𝐵𝑞
𝑔𝑏𝑞

𝐿 𝑔𝑏𝑞
𝑅 ] ∣ (7.13)

for 𝑞 = 𝑠, 𝑑 and with 𝑋𝐵𝑞
≃ 10 for 𝑀𝑍′ ≃ 5TeV, see [1, 227] for details. Interestingly, the NP contribution

to 𝛥𝑀𝐵𝑞
cancels for 𝑔𝑏𝑞

𝐿 = 𝑋(−1)
𝐵𝑞

𝑔𝑏𝑞
𝑅 . If only one non-vanishing coupling is present the condition (7.12)

combined with (7.13) for the 𝐵𝑠-meson simplifies to [228]

𝑔𝑏𝑠
𝐿,𝑅

𝑀2
𝑍′

≲ 1.24 ⋅ 10−5 TeV−2 ≡ 𝐼max (7.14)

at 99% c.l.. This constitutes a quite powerful constraint on viable 𝑍′ models coupling to 𝑏- or 𝑠-quarks.

Conversely, for 𝐷-mixing no sufficiently controlled SM prediction is available [229]. Conservatively
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7 Interlude: Anomaly-free 𝑈(1)′ Models for Flavor Anomalies

demanding the 𝑍′ contribution not to exceed experimental bounds implies the limit [3, 230]

|(𝑔𝑐𝑢
𝐿 )2 + (𝑔𝑐𝑢

𝑅 )2 + 𝑋𝐷0𝑔𝑐𝑢
𝐿 𝑔𝑐𝑢

𝑅 |
𝑀𝑍′

2 ≤ 5 ⋅ 10−7 TeV−2 (7.15)

at 95% c.l. where we took into account the recent Heavy Flavor Averaging Group (HFLAV) update
[231]. Note that RG effects on the right-hand side (RHS) of (7.15) only amount to a few percent for
𝑀𝑍′ ∈ [10, 104] GeV and it holds 𝑋𝐷0

≃ 20 for 𝑀𝑍′ ≃ 1TeV, see [3, 230] for details.
Last but not least, the 𝑍′ can contribute to neutral kaon oscillations. In order to evade the corresponding

strong experimental bounds [155] by construction here and in the following we always assure 𝑔𝑠𝑑
𝐿,𝑅 = 0 (cf.

(7.11)) via
(𝐹𝑄1

= 𝐹𝑄2
) and (𝐹𝐷1

= 𝐹𝐷2
or 𝑉 𝑑

𝐿 = 1) . (7.16)

7.5 Branching Ratios
The 𝑍′ decays to pairs of 𝑈(1)′ charged fermions 𝑓 or scalars 𝑠 with mass 𝑚𝑓,𝑠 < 𝑀𝑍′/2, respectively. The
corresponding tree-level decay widths read [232]

𝛤(𝑍′ →𝑓 ̄𝑓) =
2𝜋𝑁𝑓

𝐶
3

𝛼4𝑀𝑍′[(𝐹 2
𝑓𝐿

+𝐹 2
𝑓𝑅

)−
𝑚2

𝑓

𝑀2
𝑍′

(𝐹 2
𝑓𝐿

−6𝐹𝑓𝐿
𝐹𝑓𝑅

+𝐹 2
𝑓𝑅

)] √1−4
𝑚2

𝑓

𝑀2
𝑍′

𝛩 (𝑀𝑍′ −2𝑚𝑓) ,

𝛤 (𝑍′ → 𝑠𝑠) =𝜋𝑁𝑠
3

𝛼4𝑀𝑍′𝐹 2
𝑠 √1 − 4 𝑚2

𝑠
𝑀2

𝑍′

3

𝛩 (𝑀𝑍′ − 2𝑚𝑠) ,

(7.17)
where 𝑁𝑓

𝐶 = 3 (𝑁𝑓
𝐶 = 1) for quarks (leptons), 𝑁𝑠 is the number of real components of the scalar 𝑠 and

kinetic mixing has been neglected due to its smallness. Note that for vanishing kinetic mixing the 𝑍′ cannot
decay to SM gauge bosons at LO. Along with (7.3) we deduce that the 𝑍′ typically decays dominantly to
fermions.
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8 A Planck-Safe 𝑈(1)′ Explanation for the 𝐵 Anomalies

In the Chap. 4-6 we have learned that PS can be achieved via a variety of mechanisms in BSM models
featuring VLFs, flavorful scalars or both. We now examine whether and how PS can be realized in a similar
way in BSM models explaining a set of anomalies in rare 𝑏 → 𝑠𝜇+𝜇− FCNC transitions coined the 𝐵
anomalies. Popular tree-level mediators to resolve these anomalies are flavorful 𝑍′ bosons or leptoquarks.
In this chapter which is based on [1, 233] we explore the reach of heavy, flavorful 𝑍′ models introduced in
Chap. 7 as candidates for a Planck-safe explanation of the 𝐵 anomalies.

We start with a brief motivation based on a discussion of the 𝐵 anomalies and the implied subplanckian
Landau poles in generic 𝑍′ explanations in Sec. 8.1. We then introduce our model in Sec. 8.2 and analyze
various theoretical and experimental constraints. In Sec. 8.3 we explore how the model resolves the 𝐵
anomalies by matching it to WET before turning to a Planck safety analysis in Sec. 8.4. Afterwards, we
work out phenomenological constraints and signatures in Sec. 8.5 before summarizing in Sec. 8.6. Finally,
in Sec. 8.7 we briefly comment on attempts to adapt the model to the latest 𝑅𝐾 data [234, 235] which were
published well after the completion of this project [1, 233].

8.1 Motivation

In this section, we briefly review the 𝐵 anomalies as well as EFT fits pinning down the structure and size
of possible NP contributions. Afterwards we show that 𝑍′ explanations of the anomalies generically imply
a subplanckian Landau pole.

8.1.1 The B Anomalies

In the past decade, deviations from SM predictions emerged in several observables related to rare 𝑏 → 𝑠𝜇+𝜇−

transitions. They are collectively referred to as (neutral current) 𝐵 anomalies1, see [236] for a recent
review. These FCNC processes are severely loop- and CKM-suppressed in the SM and therefore especially
sensitive to possible NP contributions. However, such observables are also subject to sizeable theoretical
and experimental uncertainties. Therefore, deviations in single observables do typically not exceed 2-3 𝜎.
But interestingly, deviations in related observables exhibit characteristic patterns which invites for a joint
interpretation as hints for BSM physics.
In particular, measured branching ratios of various decays with underlying 𝑏 → 𝑠𝜇+𝜇− transitions

such as 𝐵 → 𝐾(∗)𝜇+𝜇− [51], 𝐵𝑠 → 𝜙𝜇+𝜇− [52] as well as the branching ratio of 𝐵𝑠 → 𝜇+𝜇− [53, 237]
are systematically lower than their SM prediction. Moreover, some optimized angular observables in
𝐵 → 𝐾∗𝜇+𝜇− decays, most prominently 𝑃 ′

5 , exhibit a tension between experimental measurements [54, 55]
and their SM prediction [238]. Furthermore, several LFU ratios [239]

𝑅𝐻 =
∫𝑞2

max

𝑞2
min

dℬ(𝐵→𝐻𝜇+𝜇−)
d𝑞2 d𝑞2

∫𝑞2
max

𝑞2
min

dℬ(𝐵→𝐻𝑒+𝑒−)
d𝑞2 d𝑞2

, (8.1)

with the dilepton invariant mass squared 𝑞2 and 𝐻 = 𝐾(∗), 𝐾𝑆, 𝜙, ..., were measured below their SM
expectation of unity [47–49]. A similar muon-to-electron suppression was seen in the baryonic decay

1Data also show some anomalies related to charged current 𝑏 → 𝑐𝜏𝜈 transitions, see e.g. [236]. These are however not
considered in this work as they cannot be explained in flavorful 𝑍′ models and are less sensitive to NP.
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𝛬0
𝑏 → 𝑝𝐾−ℓ+ℓ− [50]. Most prominently,

𝑅LHCb’22
𝐾 |[1.1,6.0] =0.846+0.042

−0.039(stat)
+0.013
−0.012(syst),

𝑅LHCb’17
𝐾∗ |[0.045,1.1] =0.66+0.11

−0.07(stat) ± 0.03(syst),
𝑅LHCb’17

𝐾∗ |[1.1,6.0] =0.69+0.11
−0.07(stat) ± 0.05(syst),

(8.2)

where the subscript specifies the 𝑞2 bin in units of GeV2, individually used to deviate from the SM prediction
at the level of 3𝜎 [47, 48]. The 𝑅𝐻 are both theoretically and experimantaly very clean observables, as
hadronic uncertainties as well as many experimental systematics widely cancel in the ratio. Thus, in
particular the deviations (8.2) in 𝑅𝐾(∗) were often interpreted as promising hints for lepton flavor universality
violating (LFUV) BSM physics, indicating a different treatment of electrons and muons.

Disclaimer: The 𝑅𝐾(∗) data (8.2) are not the most recent, but rather reflect the situation at the time
this project [1, 233] was carried out. Afterwards, in December 2022 the LHCb collaboration released a new
measurement of 𝑅𝐾(∗) [234, 235] which is compatible with unity and thus in agreement with the SM. We
discuss the implications of the new 𝑅𝐾(∗) data and our attempts to adjust the model accordingly in detail
in Sec. 8.7. Until then, we stick with the former data (8.2) from [47, 48] used within [1, 233].

8.1.2 EFT Interpretation and Fits

The correct tool to analyze possible NP indicated by the 𝐵 anomalies in a model-independent way is WET,
introduced in detail in Subsec. 2.5.2. The most general WET Lagrangian inducing tree-level 𝑏 → 𝑠𝜇+𝜇−

transitions is given in (2.34). A plethora of global WET fits for NP WCs2 to the 𝐵 anomalies have been
performed by various groups, see e.g. [240] and references therein. The individual fits often differ by the
considered WCs, their flavor assumptions as well as the included observables. Nevertheless, fit results
are widely consistent. In this chapter, we use the results of a fit to 𝑏 → 𝑠 data from [240]. The fit was
performed with the tool flavio [241] and includes LFU ratios 𝑅𝐻 (8.1), (binned) branching ratios as well
angular observables such as 𝐴𝐹𝐵, 𝐹𝐻 and 𝑃 ′

𝑖 , see [240] for details.
We focus on the fit scenarios summarized in Tab. 8.1 which assume NP only in the semimuonic NP WCs

𝐶𝜇(′)
9,10, from now on dropping the superscript NP for brevity. In contrast, the (pseudo-)scalar 𝑂(′)

𝑆,𝑃, tensor
𝑂𝑇 ,𝑇 5 and electromagnetic dipole operators 𝑂(′)

7 are not relevant in 𝑍′ models and therefore neglected.
Note that 𝐶(′)ℓ

9,10 for 𝜇𝑏 ≲ 𝜇 ≲ 𝜇EW do not suffer from sizeable RG effects as they are invariant under QCD
[240]. In addition, for 𝜇0 ≳ 𝜇 ≳ 𝜇EW the running of corresponding SMEFT operators is rather slow and
amounts only to ≲ 5% from a scale as high as 𝜇0 = 10TeV down to 𝜇EW [240]. Hence, we neglect these
small RG effects.
The fit results Tab. 8.1 strongly favor NP contributions to semimuonic WCs 𝐶𝜇

9,10 with a pull of ∼ 6𝜎
from the SM throughout all fit scenarios. Interestingly, the one and two-dimensional fits jointly indicate a
pattern

− 𝐶𝜇
9 ≥ 𝐶𝜇

10 ≥ 0 , (8.3)

with −1.3 ≲ 𝐶𝜇
9 − 𝐶𝜇

10 ≲ −0.8 mostly fueled by a sizeable negative contribution to 𝐶𝜇
9 . In particular,

already the 1d fit scenarios 𝐶𝜇
9 and 𝐶𝜇

9 = −𝐶𝜇
10 are sufficient to achieve a 6𝜎 pull from the SM. 𝐶′𝜇

9,10 in
contrast are compatible with zero and their inclusion does not significantly increase the pull.

2Recall that some WCs in WET also receive a non-vanishing SM contribution, see (2.37).
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Dim. Fit for 𝐶𝜇
9 𝐶𝜇

10 𝐶′𝜇
9 𝐶′𝜇

10 PullSM

1d 𝐶𝜇
9 −0.83 ± 0.14 - - - 6.0 𝜎

1d 𝐶𝜇
9 = −𝐶𝜇

10 −0.41 ± 0.07 −𝐶9 - - 6.0 𝜎
2d 𝐶𝜇

9,10 −0.71 ± 0.17 0.20 ± 0.13 - - 5.9 𝜎
4d 𝐶(′)𝜇

9,10 −1.07 ± 0.17 0.18 ± 0.15 0.27 ± 0.32 −0.28 ± 0.19 6.5 𝜎

Table 8.1: Best fit values for the semimuonic NP WCs 𝐶(′)𝜇
9,10 in different NP scenarios and their

respective pull from the SM hypothesis. Table adapted from [1], entries taken from [240].

8.1.3 Landau Poles in Flavorful 𝑍′ Explanations

A tremendous effort in model building in the past decade has resulted in a vast number of different BSM
explanations for the 𝐵 anomalies, see e.g. [236] for an overview. A simple and popular ansatz to resolve
the anomalies are flavorful 𝑍′ models as introduced in Chap. 7. However, these models are typically not
Planck-safe due to a generic, subplanckian Landau pole in the 𝑈(1)′ gauge coupling entailing a loss of
predictivity much below 𝑀Pl. We carefully derive this finding in the following.
Minimal 𝑈(1)′ charge assignments to induce the favored 𝐶𝜇

9 contribution in Tab. 8.1 to 𝑏 → 𝑠𝜇+𝜇−

transitions are to LH muons (𝐹𝐿2
) and LH 𝑏- (𝐹𝑄3

) or 𝑠-quarks (𝐹𝑄2
). Moreover, inducing the 𝑏𝑠-coupling

of the 𝑍′ requires quark flavor mixing. Assuming the mixing to be CKM induced from 𝑉 ∗
𝑡𝑠𝑉𝑡𝑏 ≃ −0.04 by a

rotation in the down sector with 𝑉 𝑑
𝐿 ≃ 𝑉CKM and 𝑉 𝑢

𝐿 ≃ 1 (cf. Sec. 2.3) the 𝑍′ contribution to 𝑏 → 𝑠𝜇+𝜇−

transitions is
𝑏

̄𝑠

𝜇−

𝜇+

𝑍′
∼ 𝑉 ∗

𝑡𝑠𝑉𝑡𝑏𝐹𝑄3
𝐹𝐿2

𝑔2
4(𝑀𝑍′)
𝑀2

𝑍′
≃ 1

𝛬2 , (8.4)

see Sec. 8.3 for details. Here, 𝑔4 and 𝑀𝑍′ denote the 𝑈(1)′ gauge coupling and the 𝑍′ mass, respectively.
Inducing sufficiently sizeable NP contributions to explain the 𝐵 anomalies as in Tab. 8.1 points to a NP
scale of 𝛬 ≃ 40TeV [242]. Generic mass bounds for a flavorful 𝑍′ in comparison are in the ballpark of
5TeV [243]. As the 𝑍′ contribution scales as 𝑔2

4
𝑀2

𝑍′
the 𝑍′ mass suppression has to be compensated by larger

values of 𝑔4. More precisely, 𝑀𝑍′ ≃ 5 TeV together with (8.4) yields

𝛼4(𝜇0 = 5TeV) ∼ 1
(4𝜋)2

(5TeV/40TeV)2

𝑉𝑡𝑏𝑉 ∗
𝑡𝑠𝐹𝐿2

𝐹𝑄3

∼ 1
40𝜋2

1
𝐹𝐿2

𝐹𝑄3

(8.5)

as required value of the 𝑈(1)′ coupling 𝛼4 = 𝑔2
4

16𝜋2 . The leading order RG evolution of the 𝑈(1)′ coupling is
then given by (3.5) and governed by the 1-loop coefficient 𝐵4 defined in (3.7), see Subsec. 3.1.1 for details.
It implies a Landau pole at

ln 𝜇LP
𝜇0

= 1
𝐵4𝛼4(𝜇0)

, (8.6)

cf. (3.6). Assigning the required non-zero 𝑈(1)′ charges 𝐹𝐿2
and 𝐹𝑄3

to LH muons and 𝑏 quarks, respectively,
as well as the minimal amount of extra charges to avoid gauge anomalies (see Sec. 7.1) we find

𝐵4 ≥ 16
3

(𝐹 2
𝐿2

+ 3𝐹 2
𝑄3

) . (8.7)
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Plugging this and (8.5) into (8.6) we obtain

ln 𝜇LP
𝜇0

= 1
𝐵4𝛼4(𝜇0)

= 15𝜋2

2
𝐹𝐿2

𝐹𝑄3

𝐹 2
𝐿2

+ 3𝐹 2
𝑄3

≲ 15𝜋2

4
√

3
, (8.8)

irrespective of the charge assignments 𝐹𝐿2,𝑄3
. Hence, for 𝜇0 ≃ 𝑀𝑍′ ≃ 5TeV the Landau pole appears at

𝜇LP ≲ 1010 TeV ≪ 𝑀Pl (8.9)

well below the Planck scale. We stress that in realistic models 𝐵4 is typically larger than (8.7) due to
contributions from additional 𝑈(1)′ charges. This translates to an exponentially lower scale for the Landau
pole, see Fig. 8.2 for an example. Note that demanding anomaly cancellation was crucial for this derivation
and that our findings are not altered when including kinetic mixing below the experimental limit (7.7).
We briefly comment on exceptions to the generic bound (8.9). One possibility is to impose sizeable

flavor rotations 𝑉 𝑢,𝑑
𝐿 in the up- and down-sector that largely cancel as 𝑉 𝑢†

𝐿 𝑉 𝑑
𝐿 = 𝑉CKM, see e.g. [244, 245].

Thereby, the required 𝑍′𝑏𝑠-coupling can be generated by 𝛼4 lower than (8.5) which pushes the Landau
pole to higher energies. However, in these scenario potentially sizeable contributions to several FCNCs
transitions are induced in the down- and up-sector but severely constrained experimentally. Hence, they
prevent the rotations 𝑉 𝑢,𝑑

𝐿 to become arbitrarily large which limits the reach of this mechanism to lower
the required value of 𝛼4.
Secondly, one could choose all first- and second-generation quarks to be uncharged under the 𝑈(1)′

gauge symmetry as e.g. in third generation hypercharge or 𝐵3 − 𝐿2 models, see [237, 246]. In that case 𝑍′

production in 𝑝𝑝 collisions is severely suppressed and the corresponding LHC mass bounds are lowered. As
the 𝑍′ contribution to 𝑏 → 𝑠𝜇+𝜇− (8.4) scales with 𝛼4

𝑀2
𝑍′

this also allows for lower values of 𝛼4. However,
even in this scenario contributions to 𝑍′ production from 𝑏𝑏̄ fusion typically still result in mass bounds
well above a TeV and thus might not allow for a sufficiently low 𝛼4 to avoid a subplanckian Landau pole.
Moreover, in order to achieve PS in both scenarios the Higgs metastability still needs to be cured. As they
are also rather fine tuned we do not consider them in this work. Instead, our goal in this chapter is to
develop a Planck-safe 𝑍′ model explaining the 𝐵 anomalies with the help of an enlarged BSM sector via
the mechanisms discussed in Chap. 4, Chap. 5 and in particular Chap. 6.

8.2 𝑍 ′ Model Set-Up
We extend the SM with a heavy flavorful 𝑍′, a 𝑈(1)′ breaking SM singlet scalar 𝜙 as well as three BSM
RH neutrinos 𝜈. Moreover, we include 𝑁𝐹 generations of universally charged BSM fermions 𝜓𝐿,𝑅 as well as
a 𝑁𝐹 × 𝑁𝐹 SM singlet scalar matrix field 𝑆𝑖𝑗.
For the sake of simplicity and in order to reduce the number of free parameters we promote the BSM

fermions 𝜓𝐿,𝑅 to vector-like SM singlets coming in three generations and assume the matrix scalar to be
uncharged also under the 𝑈(1)′ gauge interaction. Hence, we fix

𝑁𝐹 = 3, 𝑌𝜓𝐿/𝑅,𝑖
= 0, 𝑑2,𝜓𝐿/𝑅,𝑖

= 1, 𝑑3,𝜓𝐿/𝑅,𝑖
= 1, 𝐹𝜓𝐿/𝑅,𝑖

= 𝐹𝜓, 𝐹𝑆 = 0 . (8.10)

8.2.1 Yukawa Sector
The Yukawa sector of our model

− ℒYukawa = 𝑌 𝑑
𝑖𝑗 𝑄𝑖𝐻𝐷𝑗 + 𝑌 𝑢

𝑖𝑗 𝑄𝑖𝐻𝑈𝑗 + 𝑌 ℓ
𝑖𝑗 𝐿𝑖𝐻𝐸𝑗 + 𝑌 𝜈

𝑖𝑗 𝐿𝑖𝐻𝜈𝑗 + 𝑦 𝜓𝐿𝑖 𝑆𝑖𝑗 𝜓𝑅𝑗 + h.c. (8.11)
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8.2 𝑍′ Model Set-Up

contains the SM Yukawa matrices 𝑌 𝑢,𝑑,ℓ, a similar BSM Yukawa 𝑌 𝜈 for neutrinos as well as the single pure
BSM Yukawa coupling 𝑦 as in Chap. 6. It is protected by the only softly broken 𝑆𝑈(𝑁𝐹)𝜓𝐿

× 𝑆𝑈(𝑁𝐹)𝜓𝑅
flavor symmetry. It also forbids any additional Yukawa interactions involving 𝜓𝐿,𝑅 or 𝑆𝑖𝑗 and in particular
a Yukawa portal coupling 𝜅 à la Model E in Tab. 4.1. We restrict ourselves to charge assignments with
𝐹𝜙 ≠ ±2𝐹𝜈, which by construction forbid a potential Majorana-like Yukawa interactions of the RH neutrinos
and the scalar 𝜙.
While gauge invariance of the BSM Yukawa 𝑦 is already ensured by (8.10), for the SM and neutrino

Yukawa matrices it requires

𝑌 𝑢
𝑖𝑗 ∶ 0 = 𝐹𝑄𝑖

+ 𝐹𝐻 − 𝐹𝑈𝑗
, 𝑌 𝑑

𝑖𝑗 ∶ 0 = 𝐹𝑄𝑖
− 𝐹𝐻 − 𝐹𝐷𝑗

,

𝑌 ℓ
𝑖𝑗 ∶ 0 = 𝐹𝐿𝑖

− 𝐹𝐻 − 𝐹𝐸𝑗
, 𝑌 𝜈

𝑖𝑗 ∶ 0 = 𝐹𝐿𝑖
+ 𝐹𝐻 − 𝐹𝜈𝑗

,
(8.12)

for 𝑖, 𝑗 = 1, 2, 3. Fulfilling all conditions (8.12) invariably implies flavor-universal 𝑈(1)′ charges for all
quarks and leptons. This forbids non-universal 𝐹𝑄2

≠ 𝐹𝑄3
which is however required to induce a tree-level

LH 𝑍′𝑏𝑠 coupling in order to explain the 𝐵 anomalies, see (8.4).
In the following we therefore pursue a different path that allows us to explain the 𝐵 anomalies in a

radiatively stable and Planck-safe manner. We mitigate the conditions (8.12) by only demanding invariance
of diagonal quark Yukawa couplings via

𝑌 𝑢
𝑖𝑖 ∶ 0 = 𝐹𝑄𝑖

+ 𝐹𝐻 − 𝐹𝑈𝑖
, 𝑌 𝑑

𝑖𝑖 ∶ 0 = 𝐹𝑄𝑖
− 𝐹𝐻 − 𝐹𝐷𝑖

, (8.13)

which allows for the corresponding mass terms. Thereby, we explicitly assure gauge invariance of the most
sizeable top (and bottom) Yukawa coupling(s) while only neglecting Yukawa couplings that are numerically
small and of negligible impact for the RG analysis. This includes the lepton and neutrino Yukawas 𝑌 ℓ,𝜈

𝑖𝑗 .
We stress that solving the flavor puzzle, i.e. explaining the observed patterns in fermion masses as well as
CKM and PMNS mixing is beyond the scope of this work.

8.2.2 Scalar Sector

The scalar potential

𝑉 (4) =𝜆 (𝐻†𝐻)2 + 𝑠 (𝜙†𝜙)2 + 𝑢Tr(𝑆†𝑆𝑆†𝑆) + 𝑣Tr(𝑆†𝑆)Tr(𝑆†𝑆)

+ 𝛿 (𝐻†𝐻)Tr(𝑆†𝑆) + ̃𝛿 (𝐻†𝐻)(𝜙†𝜙) + 𝑤 (𝜙†𝜙)Tr(𝑆†𝑆)
(8.14)

is structurally equivalent to (6.8). It contains Higgs (𝜆) and BSM (𝑢, 𝑣, 𝑠) quartic self interactions as well
as portal couplings (𝛿, ̃𝛿, 𝑤) among the different scalar fields. The potential (8.14) exhibits the two distinct
ground states 𝑉 ± with stability criteria

𝜆 > 0, 𝛥 > 0, 𝑠 > 0, 𝛿′ = 𝛿 + 2
√

𝜆𝛥 > 0, ̃𝛿′ = ̃𝛿 + 2
√

𝜆𝑠 > 0,

𝑤′ = 𝑤 + 2
√

𝑠𝛥 > 0, 2
√

𝜆𝛥𝑠 + 𝛿
√

𝑠 + ̃𝛿
√

𝛥 + 𝑤
√

𝜆 + √𝛿′ ̃𝛿′𝑤′ > 0 ,
(8.15)

cf. (6.9) and (6.10), which are distinguished by the parameter

𝛥 = {
𝑢
3 + 𝑣 > 0 for 𝑢 > 0 (𝑉 +)
𝑢 + 𝑣 > 0 for 𝑢 < 0 (𝑉 −)

. (8.16)
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After spontaneous breaking of the 𝑈(1)′ symmetry, the scalar 𝜙 acquires a VEV ⟨𝜙⟩ = 𝑣𝜑/
√

2 > 0 which
generates a mass term for the 𝑍′ boson

𝑀𝑍′ = |𝐹𝜙|𝑔4𝑣𝜑 , (8.17)

where additional contributions from the Higgs are prevented by (7.3). Moreover, after EWSB

𝐻 = 1√
2

( 0
𝑣ℎ + ℎ) , 𝜙 = 1√

2
(𝑣𝜑 + 𝜑), (8.18)

the surviving real scalar modes ℎ and 𝜑 mix, see Subsec. 5.2.1 and App. C for details. The scalar mixing
angle 𝛽 is constrained to be small by Higgs signal strength measurements (5.27). Applying (8.17) in the
limit 𝛽 ≪ 1 results in a bound

|𝐹𝜙|𝑔4
̃𝛿

𝑠
≲ 0.81 𝑀𝑍′ [TeV] , (8.19)

which can be easily fulfilled by ̃𝛿 ≲ 𝑠 as typically |𝐹𝜙|𝑔4 ≲ 𝒪(1) in our models as outlined in Subsec. 8.3.3.
For a more detailed phenomenological discussion of the 𝑈(1)′ breaking scalar 𝜙 we refer to [247]. If in
addition the scalar 𝑆 acquires a VEV it also participates in the mixing. However, this effect can be regulated
by the size of the portal couplings |𝛿| and |𝑤|, and is therefore not further analyzed in this work.

8.3 Viable 𝑍 ′ Models Explaining the 𝐵 Anomalies
We now match the minimal 𝑍′ model for 𝑏 → 𝑠𝜇+𝜇− transitions to the low energy description in WET,
briefly discuss important phenomenological constraints and derive viable benchmark models (BMs).

8.3.1 EFT Matching
In order to generate the required contributions to the semileptonic 𝑏 → 𝑠𝜇+𝜇− transitions via (8.4) the
𝑍′ has to couple to 𝑏- and 𝑠-quarks as well as muons with 𝑔𝑏𝑠

𝐿/𝑅 and 𝑔𝜇𝜇
𝐿/𝑅, respectively, cf. (7.11). The

requisite minimal Lagrangian in the mass basis reads

ℒ𝑍′ ⊃ (𝑔𝑏𝑠
𝐿 ̄𝑠𝐿𝛾𝜇𝑏𝐿𝑍′

𝜇 + 𝑔𝑏𝑠
𝑅 ̄𝑠𝑅𝛾𝜇𝑏𝑅𝑍′

𝜇 + h.c.) + 𝑔𝜇𝜇
𝐿 ̄𝜇𝐿𝛾𝜇𝜇𝐿𝑍′

𝜇 + 𝑔𝜇𝜇
𝑅 ̄𝜇𝑅𝛾𝜇𝜇𝑅𝑍′

𝜇 . (8.20)

Integrating out the 𝑍′ at tree level yields the effective Lagrangian

− ℒeff
𝑍′ ⊃ 1

2𝑀2
𝑍′

[ (𝑔𝑏𝑠
𝐿 (𝑠𝐿𝛾𝜇𝑏𝐿) + 𝑔𝑏𝑠

𝑅 (𝑠𝑅𝛾𝜇𝑏𝑅) + h.c. ) + 𝑔𝜇𝜇
𝐿 ( ̄𝜇𝐿𝛾𝜇𝜇𝐿) + 𝑔𝜇𝜇

𝑅 ( ̄𝜇𝑅𝛾𝜇𝜇𝑅)]
2

(8.21)

and comparing to the WET Lagrangian (2.34) we can read off the 𝑍′ contributions to semimuonic WCs

𝐶(′)𝜇
9 = (−

√
2 𝐺𝐹 𝛼𝑒

𝜋
𝑉𝑡𝑏 𝑉 ∗

𝑡𝑠)
−1 𝑔𝑏𝑠

𝐿(𝑅)(𝑔𝜇𝜇
𝑅 + 𝑔𝜇𝜇

𝐿 )
𝑀2

𝑍′
,

𝐶(′)𝜇
10 = (−

√
2 𝐺𝐹 𝛼𝑒

𝜋
𝑉𝑡𝑏 𝑉 ∗

𝑡𝑠)
−1 𝑔𝑏𝑠

𝐿(𝑅)(𝑔𝜇𝜇
𝑅 − 𝑔𝜇𝜇

𝐿 )
𝑀2

𝑍′
.

(8.22)

Here, we have neglected the numerically small running of 𝐶(′)ℓ
9,10 enabling us to directly match our 𝑍′ model

to WET at the NP scale 𝜇0 ≃ 𝑀𝑍′ .
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The requisite couplings 𝑔𝑏𝑠,𝜇𝜇
𝐿,𝑅 are determined by (7.11). In order to induce the required FCNC coupling

𝑔𝑏𝑠
𝐿 ≠ 0 we choose the CKM rotation to be entirely in the down-sector, i.e. 𝑉 𝑑

𝐿 = 𝑉CKM which yields

𝑔𝑏𝑠
𝐿 = 𝑔4(ℱ′

𝑑𝐿
)23 = 𝑔4𝑉𝑡𝑏 𝑉 ∗

𝑡𝑠 (𝐹𝑄3
− 𝐹𝑄2

) + 𝑉𝑢𝑏 𝑉 ∗
𝑢𝑠 (𝐹𝑄1

− 𝐹𝑄2
) ≃ 𝑔4𝑉𝑡𝑏 𝑉 ∗

𝑡𝑠 (𝐹𝑄3
− 𝐹𝑄2

) , (8.23)

where we made use of CKM unitarity and hierarchy. This choice also implies 𝑉 𝑢
𝐿 = 1 which along with

𝑉 𝑢
𝑅 = 1 evades any potential FCNC couplings in the up-sector. Also in the RH down sector unless stated

otherwise we choose 𝑉 𝑑
𝑅 = 1 resulting in 𝑔𝑏𝑠

𝑅 = 0 and hence 𝐶′ℓ
9,10 = 0 in accord with the fit results Tab. 8.1.

In the lepton sector we fix 𝑉 ℓ
𝐿,𝑅 = 1 which forbids all LFV couplings and with 𝑖 = 1, 2, 3 ↔ ℓ = 𝑒, 𝜇, 𝜏

simply gives
𝑔ℓℓ

𝐿 = 𝑔4𝐹𝐿𝑖
, 𝑔ℓℓ

𝑅 = 𝑔4𝐹𝐸𝑖
. (8.24)

8.3.2 Phenomenological Constraints

To avoid severe experimental constraints from LEP-II [248, 249] and other EW precision measurements [58]
we demand electrons to be uncharged under the 𝑈(1)′, i.e.

𝐹𝐿1
= 0, 𝐹𝐸1

= 0 , (8.25)

such that they do not couple to the 𝑍′. Moreover, to avoid contributions to kaon mixing we choose

𝐹𝑄1
= 𝐹𝑄2

, 𝐹𝐷1
= 𝐹𝐷2

, (8.26)

which yields 𝑔𝑠𝑑
𝐿,𝑅 = 0, c.f. (7.16). The required 𝑍′ coupling 𝑔𝑏𝑠

𝐿 ≠ 0 in contrast invariably generates tree-level
contributions to 𝐵𝑠-mixing, c.f. Fig. 7.1, which is strongly bounded by (7.14). Using 𝐼max = 1.24⋅10−5 TeV−2

from (7.14) we define the ratio

𝑟𝐵𝑠
= 1

𝐼max

|𝑔𝑏𝑠
𝐿 |2

𝑀2
𝑍′

(8.27)

for future reference which has to be 𝑟𝐵𝑠
< 1 in viable models. This bound implies

∣ 𝑔𝑏𝑠
𝐿

𝑔𝜇𝜇
𝑅 + 𝑔𝜇𝜇

𝐿
∣ ≲ 8 ⋅ 10−3

|𝐶𝜇
9 |

, (8.28)

which means that the 𝑍′ couples much more strongly to muons than 𝑏𝑠 and results in a charge hierarchy

𝐹𝐸2
+ 𝐹𝐿2

𝐹𝑄3
− 𝐹𝑄1

≳ −5.1 𝐶𝜇
9 . (8.29)

Constraints on |𝑔𝑏𝑑
𝐿 |2/𝑀2

𝑍′ from 𝐵𝑑-mixing analogous to (7.14) are of the same order but less stringent due
to the stronger CKM suppression of 𝑔𝑏𝑑

𝐿 , cf. (8.23). In order to realize the favored pattern for the values of
WCs (8.3) the involved 𝑈(1)′ charges have to obey

(𝐹𝑄3
> 𝐹𝑄2

and 𝐹𝐿2
≥ 𝐹𝐸2

≥ 0) or (𝐹𝑄3
< 𝐹𝑄2

and 𝐹𝐿2
≤ 𝐹𝐸2

≤ 0) . (8.30)

From (8.22) we can moreover deduce that the scenario 𝐶𝜇
9 = −𝐶𝜇

10 requires 𝐹𝐸2
= 0, whereas 𝐶𝜇

10 = 0
necessitates vector-like muon charges 𝐹𝐿2

= 𝐹𝐸2
.
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Figure 8.1: 2d fit to the 𝐵 anomalies in the 𝐶𝜇
9 -𝐶

𝜇
10-plane from [240], cf. Tab. 8.1. Indicated are the

overall 1-3𝜎 best fit regions (red) along with 1𝜎 contours for fits to subsets of observables, namely only
𝑅𝐾 (green), only 𝑅𝐾∗ (yellow) and 𝐵 → 𝐾∗𝜇+𝜇− angular observables (blue). Our four benchmark
models in Tab. 8.2 are indicated by diamond-shaped symbols, the dashed black line corresponds to
𝐶𝜇

9 = −𝐶𝜇
10. Note that BM1 and BM4 generate the same values for 𝐶𝜇

9,10. Plot taken from [1].

Model 𝐹𝑄𝑖
𝐹𝑈𝑖

𝐹𝐷𝑖
𝐹𝐿𝑖

𝐹𝐸𝑖
𝐹𝜈𝑖

𝐹𝐻 𝐹𝜓 𝐹𝑆 𝐹𝜙

BM1 1
20

1
20 − 1

10
1

20
1

20 − 1
10

1
20

1
20 − 1

10 0 − 9
10

9
10 0 − 9

10
9

10 0 0 0 0 1 0 1
5

BM2 −1
4 −1

4
1
6 −1

4 −1
4

1
6 −1

4 −1
4

1
6 0 1 0 0 0 1 1

12 − 1
12 1 0 11

12 0 1
9

BM3 −1
8 −1

8 0 −1
8 −1

8 0 −1
8 −1

8 0 0 1
2

1
4 0 1

4
1
2 0 1

4
1
2 0 1 0 1

8
BM4 0 0 1

9 0 0 1
9 0 0 1

9 0 1
3 −2

3 0 1
3 −2

3 0 1
3 −2

3 0 1 0 1
6

Table 8.2: 𝑈(1)′ charge assignments 𝐹𝑋 with 𝑋 = 𝑄𝑖, 𝑈𝑖, 𝐷𝑖, 𝐿𝑖, 𝐸𝑖, 𝜈𝑖, 𝜓, 𝐻, 𝑆, 𝜙 in our four bench-
mark models. Table adapted from [1].

8.3.3 Benchmark Models

We now work out viable 𝑍′ BMs charge assignments fulfilling all relevant constraints from Chap. 7. The
number of a priori free 𝑈(1)′ charges is reduced by choosing the scalar 𝑆 to be a complete gauge singlet
(8.10), cancellation of gauge anomalies (7.1), decoupling EW from 𝑈(1)′ symmetry breaking (7.3), gauge
invariance of quark mass terms (8.13) as well as electron (8.25) and kaon bounds (8.26). Moreover, to
evade the 𝐵𝑠-mixing bound (7.14) 𝑈(1)′ charges have to fulfill (8.29). In order to match the patterns of
WCs in (8.3) favored in the fits, cf. Tab. 8.1 and Fig. 8.1, 𝑈(1)′ charges in addition have to fulfill (8.30).

We identified four different BMs fulfilling all these requirements, with the corresponding charge assignments
given in Tab. 8.2. The BMs induce different NP scenarios in the WCs 𝐶𝜇

9,10:

BM1,4: 𝐶𝜇
9 < 0 and 𝐶𝜇

10 = 0, BM2: 𝐶𝜇
9 = −𝐶𝜇

10 < 0, BM3: − 𝐶𝜇
9 ≫ 𝐶𝜇

10 > 0, (8.31)

see also Fig. 8.1 where the corresponding values of WCs are indicated in the 𝐶𝜇
9 -𝐶

𝜇
10-plane. For BM1-BM3

we assume the 𝑍′ mass to be 𝑀𝑍′ ≃ 5TeV. In BM4 in contrast a lower value 𝑀𝑍′ ≃ 3TeV is considered.
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8.4 Planck Safety Analysis

We now discuss the characteristics of each BM in more detail. BM1 belongs to a class of models with

𝐹𝑞3
= −2𝐹𝑞2

= −2𝐹𝑞1
, 𝐹ℓ1

= 0, 𝐹ℓ3
= −𝐹ℓ2

, 𝐹𝜈1
= 0, 𝐹𝜈3

= −𝐹𝜈2
, (8.32)

where 𝑞 = 𝑄, 𝑈, 𝐷 and ℓ = 𝐿, 𝐸, controlled by only three free parameters 𝐹𝑞3
, 𝐹ℓ3

, 𝐹𝜈3
, for chiral fermions.

Interestingly, we can choose 𝐹𝜈3
= 0 and obtain a model without RH neutrinos. This is not possible

in models with 𝐶𝜇
10 ≠ 0 as in this case anomaly cancellation in combination with the other constraints

invariably requires some non-vanishing 𝐹𝜈𝑖
≠ 0. Moreover, in BM1 diagonal lepton Yukawas 𝑌 ℓ

𝑖𝑖 and
corresponding mass terms are allowed by gauge invariance. BM1 also fulfills (7.8) so that the kinetic mixing
parameter 𝜂 is not induced at 1-loop. In order to obtain the best fit value 𝐶𝜇

9 = −0.83 we fix the 𝑈(1)′

gauge coupling as 𝛼4(𝜇0) = 1.87 ⋅ 10−2.
For BM2, in order to obtain 𝐶𝜇

10 = −𝐶𝜇
9 = −0.41 we set 𝐹𝐸2

= 0 and fix 𝛼4(𝜇0) = 5.97 ⋅ 10−3. Note that
the model is rather close to the 𝐵𝑠-mixing bound (7.14) with 𝑟𝐵𝑠

≃ 0.86, cf. (8.27).
In BM3, the charge assignment along with 𝛼4(𝜇0) = 4.60 ⋅10−2 generates hierarchical 𝐶𝜇

9 = −0.71, 𝐶𝜇
10 =

+0.24 in excellent agreement with the 2d scenario in Tab. 8.1. This is highly nontrivial, as only the value of
the gauge coupling could be adjusted in order to generate the required values for both WCs. Interestingly,
in this BM third-generation quarks are uncharged and the coupling 𝑔𝑏𝑠

𝐿 is generated only from 𝐹𝑄2
after

the gauge to mass basis rotation.
Finally, in BM4 first- and second-generation quarks are uncharged under the 𝑈(1)′. Hence, a lighter

𝑍′ of 𝑀𝑍′ = 3TeV is still compatible with collider bounds, due to the double 𝑏-quark parton distribution
function (PDF) suppression in 𝑍′ production. Fixing 𝛼4(𝜇0) = 2.45 ⋅ 10−2 we obtain 𝐶𝜇

9 = −0.83, 𝐶𝜇
10 = 0

as in BM1. BM4 can be considered more minimal as fewer fields are 𝑈(1)′ charged than in the other BM
models.

8.4 Planck Safety Analysis
The RG analysis of our BM models is rather complex due to the large number of different couplings and
their interplay. Whereas 𝛼4(𝜇0) for 𝜇0 ∼ 𝑀𝑍′,𝜓,𝑆 is fixed by explaining the 𝐵 anomalies, the set of mostly
a priori free BSM couplings

{𝜂, 𝛼𝑦, 𝛼𝑢, 𝛼𝑣, 𝛼𝑠, 𝛼𝛿, 𝛼 ̃𝛿, 𝛼𝑤}|𝜇0
(8.33)

is only loosely constrained by kinetic (7.7) as well as scalar mixing (8.19) and spans an eight dimensional
parameter space to be scrutinized. Luckily, we can make use of our findings from the previous chapters to
identify subsets of this parameter space which are likely to give rise to a Planck-safe RG flow.
The required value of 𝑈(1)′ gauge coupling to explain the 𝐵 anomalies with a heavy 𝑍′ is typically

rather large with 𝛼4(𝜇0) ≃ 𝒪(10−2), cf. (8.4). In addition, many particles are charged under the 𝑈(1)′

which accelerates the RG growth of 𝛼4. This growth if not tamed results in a Landau pole much below the
estimate (8.9) and only a few orders of magnitude above the TeV scale3, see for instance Fig. 8.2. Hence,
large parts of the BSM parameter space exhibit subplanckian poles. However, the BSM Yukawa 𝛼𝑦 slows
down the growth of 𝛼4 via

𝛽4 ⊃ −4 𝑁2
𝐹 𝑑2,𝜓 𝑑3,𝜓 𝐹 2

𝜓 𝛼2
4𝛼𝑦 , (8.34)

which is enhanced by 𝑁2
𝐹. This allows to prevent subplanckian Landau poles in our BMs for

𝐹 2
𝜓𝛼𝑦(𝜇0) ≳ 𝒪(10−1) . (8.35)

3In fact, we also analyzed many more phenomenologically viable charge assignments than our BMs. However, for the
majority of them the 𝑈(1)′ Landau pole could not be pushed beyond 𝑀Pl preventing us from achieving PS.
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Figure 8.2: 2-loop running of couplings in a realistic heavy 𝑍′ model explaining the 𝐵 anomalies. The
RG flow exhibits an 𝛼4 Landau pole already a few order of magnitude above the TeV scale. The 𝑈(1)′

charges and coupling in this plot are the same as in BM 3 of Tab. 8.2, but without any of the BSM
fields 𝜓, 𝑆 and 𝜙, see Sec. 8.3 for details. Plot taken from [1].

Exploiting this mechanism implies an upper limit on the mass of the BSM fields 𝜓, 𝑆 interacting via the
Yukawa coupling 𝑦. If their mass is close to or above the naive Landau pole estimate (8.6), the fields do not
become dynamical before the pole is reached and the theory falls apart before the slow-down by 𝛼𝑦 sets in.
In (8.35) we moreover heavily profit from the absence of stringent phenomenological bounds on 𝛼𝑦 as well as
some patterns in our BM charge assignments. All 𝑈(1)′ charged fields 𝑋 contribute to 𝐵4 ⊃∝ 𝑑2,𝑋𝑑3,𝑋𝐹 2

𝑋
which drives the RG growth of 𝛼4 with their color and isospin multiplicity, cf. (3.7). Hence, we benefit
from small quark charges |𝐹𝑞𝑖

|/|𝐹𝜓| ≪ 1 with 𝑞 = 𝑄, 𝑈, 𝐷 which for 𝐹𝑄2,3
is incidentally in accord with

requirements from 𝐵𝑠-mixing bounds (7.14). Moreover, opposite-signed 𝐹𝑄2,3
in combination with large

muon charges 𝐹𝐿2,𝐸2
allow to account for the 𝐵 anomalies with still comparably low values of 𝛼4(𝜇0).

Unluckily, large Yukawa coupling values also tend to destabilize the Higgs potential, cf. Sec. 4.2.
Nonetheless, if one of the portal couplings 𝛿, ̃𝛿 is sufficiently sizeable with roughly

10−3 ≲ 𝛼𝛿/ ̃𝛿(𝜇0) ≲ 10−1, (8.36)

stability can still be achieved via the Higgs portal mechanism, see Sec. 5.1 for details. As previously,
strongly coupled walking regimes which are induced by the rather large 𝛼𝑦,𝛿, ̃𝛿(𝜇0) are key to achieve PS as
they mutually tame the 𝑈(1)′ Landau pole and stabilize the Higgs. Interestingly, quartic couplings are not
technically natural and can thus change signs, cf. Sec. 6.2, in particular allowing for transitions between
the vacua 𝑉 ± by sign changes of 𝛼𝑢.

Notably, we also find some fine-tuned Planck-safe trajectories with both Higgs portal couplings tiny
at the matching scale. The reason is a sizeable, inhomogeneous 2-loop contribution ∝ 𝛼2

4𝛼𝑡 to 𝛽 ̃𝛿. This
constitutes a qualitatively new mechanism w.r.t. Chap. 6 as it is based on the non-vanishing scalar 𝑈(1)′

charge 𝐹𝜙 ≠ 0. It allows to induce sizeable 𝛼 ̃𝛿 promoting Higgs stability, similarly to the indirect Higgs
portal mechanism in Chap. 5. However, this effect can easily be spoiled by the contributions of other
couplings in the interconnected RG flow.
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⨯

(a) 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝛿(𝜇0) = 10−2.5.

⨯

(b) 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝑦(𝜇0) = 10−0.5.

Figure 8.3: BSM critical surface of BM1 in the 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)- (a) and 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane (b)
for 𝜇0 = 5 TeV. The remaining BSM couplings are fixed as {𝛼4, 𝜂, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {1.87 ⋅
10−2, 0, 10−4, 10−5, 10−6, 10−2}. Same color coding as Fig. 4.1a. Plots taken from [1].
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Figure 8.4: Exemplary Planck-safe RG trajectories in BM1 (a) and BM2 (b) for the parameter
configurations indicated by the black crosses in Fig. 8.3 and Fig. 8.5, respectively. Plots taken from [1].
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Model 𝜇0 𝛼4(𝜇0) 𝜇LP 𝛼𝑦(𝜇0) 𝛼𝛿(𝜇0) 𝛼 ̃𝛿(𝜇0)
BM1 5 TeV 1.87 ⋅ 10−2 110TeV ≳ 10−1.25 10−4 ≲ 𝛼𝛿(𝜇0) ≲ 10−0.75 10−5 ≲ 𝛼 ̃𝛿(𝜇0) ≲ 10−0.75

BM2 5 TeV 5.97 ⋅ 10−3 2 ⋅ 105 TeV ≳ 10−1.75 10−6 ≲ 𝛼𝛿(𝜇0) ≲ 10−1 10−5 ≲ 𝛼 ̃𝛿(𝜇0) ≲ 10−0.5

BM3 5 TeV 4.60 ⋅ 10−2 25TeV ≳ 10−1 10−4 ≲ 𝛼𝛿(𝜇0) ≲ 10−1 10−2.5 ≲ 𝛼 ̃𝛿(𝜇0) ≲ 10−1

BM4 3 TeV 2.46 ⋅ 10−2 60TeV ≳ 10−1.25 10−4 ≲ 𝛼𝛿(𝜇0) ≲ 10−1 10−4 ≲ 𝛼 ̃𝛿(𝜇0) ≲ 10−1

Table 8.3: RG characteristics of our BMs. Indicated are the NP scale 𝜇0 ≃ 𝑀𝑍′ , the required value of
𝛼4(𝜇0) to obtain the best fit WCs Tab. 8.1 and the scale of the naive Landau pole 𝜇LP when setting all
BSM couplings to zero that dictates an upper mass limit for the BSM fields 𝜓 and 𝑆 of 𝑀𝑆,𝜓 < 𝜇LP.
Moreover, we give the preferred parameter ranges in 𝛼𝑦,𝛿, ̃𝛿 which give rise to a Planck-safe RG evolution.

8.4.1 Individual Benchmarks
The discussed RG characteristics are qualitatively rather similar in the individual BMs. Some quantitative
features are therefore jointly collected in Tab. 8.3, indicating also the naive Landau pole estimate, and
precise Planck-safe ranges for the BSM Yukawa and Higgs portal couplings.
An exemplary Planck-safe RG flow in BM1 is illustrated in Fig. 8.4a. We observe that 𝛼4,𝑦 and some

quartic couplings enter a walking regime around 𝜇 ∼ 107 GeV. The Higgs portal couplings 𝛼𝛿, ̃𝛿 and the
Higgs quartic 𝛼𝜆 join the walking around 108 GeV and 109 GeV, respectively. Within the walking regime,
most couplings take sizeable values of 𝒪(10−1), except for the portal couplings 𝛼𝛿,𝑤 which are locked at
negative values of lower magnitude. The SM gauge couplings do not participate in the walking but run
moderately, similar as in the SM. The top Yukawa 𝛼𝑡 and kinetic mixing parameter 𝜂 grow more strongly,
but stay well perturbative all the way up to 𝑀Pl. The BSM parameter space Fig. 8.3 in BM1 is widely
dominated by poles. PS can however be realized if poles are prevented by a large BSM Yukawa in accord
with the estimate (8.35) as well as at least one sizeable Higgs portal coupling 𝛼𝛿, ̃𝛿 promoting vacuum
stability, cf (8.36) and Tab. 8.3. The remaining BSM couplings stay widely unconstrained. However, we
observe a slight tendency for larger 𝛼𝑢,𝑣,𝑠(𝜇0) to enlarge the viable ranges for 𝛼𝛿, ̃𝛿(𝜇0) due to the indirect
Higgs portal mechanism as long as they are still small enough to evade interference with the walking regime
and Landau poles in quartic couplings. Stability at the Planck scale is always realized in the vacuum
configuration 𝑉 + although some RG trajectories feature intermediate transitions to 𝑉 −. We also examined
the possibility to include RH neutrinos with 𝐹𝜈3

= −𝐹𝜈2
≠ 0 in the model. The impact on the RG evolution

is however small and of minor relevance. We conclude that including 𝑈(1)′-charged RH neutrinos in the
model is possible from the view of PS. We now discuss the RG evolution of BM2-BM4 more briefly, focusing
mostly on individual characteristics and differences w.r.t. the other BMs.

For BM2, the BSM critical surfaces are depicted in Fig. 8.5. Interestingly, due to the low value of 𝛼4(𝜇0)
compared to the other BMs already lower values of 𝛼𝑦 ≳ 10−1.75 allow to tame the 𝑈(1)′ Landau pole and
induce PS. This is also reflected in the higher scale of the naive Landau pole in Tab. 8.3. Accordingly,
also the allowed ranges of the Higgs portal couplings 𝛼𝛿, ̃𝛿 are wider. The reason is the lower value of
the destabilizing 𝛼𝑦 contribution to 𝛽𝜆, enabling Higgs stability already for smaller values of the portal
couplings 𝛼𝛿, ̃𝛿. Turning to an exemplary Planck-safe RG flow in Fig. 8.4b, we notice that stabilization
entails a crossover between two different walking regimes. The first walking regime appears already around
105 GeV capturing most quartics including the Higgs at values of ≲ 10−1 while gauge and Yukawa couplings
except for 𝛼𝑦 keep running at weakly coupled values. Around 1012 GeV the situation however changes. In
particular, 𝛼4 and 𝜂 start to participate in the walking, the portal coupling 𝛼𝛿, ̃𝛿,𝑤 change sign and several
couplings are now locked at borderline perturbative values of 𝒪(1).
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⨯

(a) 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝛿(𝜇0) = 10−1.5.

⨯

(b) 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝑦(𝜇0) = 10−0.5.

Figure 8.5: BSM critical surface of BM2 in the 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)- (a) and 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane (b)
for 𝜇0 = 5 TeV. The remaining BSM couplings are fixed as {𝛼4, 𝜂, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {5.97 ⋅
10−3, 0, 10−4, 10−5, 10−6, 10−2}. Same color coding as Fig. 4.1a. Plots taken from [1].

⨯

(a) 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝛿(𝜇0) = 10−1.5.

⨯

(b) 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝑦(𝜇0) = 10−0.5.

Figure 8.6: BSM critical surface of BM3 in the 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)- (a) and 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane (b)
at 𝜇0 = 5 TeV. The remaining BSM couplings are fixed as {𝛼4, 𝜂, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {4.60 ⋅
10−2, 0, 10−4, 10−5, 10−6, 10−3.5}. Same color coding as Fig. 4.1a. Plot taken from [1].
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Figure 8.7: Exemplary Planck-safe RG trajectories in BM3 (a) and BM4 (b) from the NP scale
𝜇0 = 5 TeV (a) and 𝜇0 = 3 TeV (b) up to the Planck scale, for the parameter configurations indicated
by the black crosses in Fig. 8.6 (a) and Fig. 8.8 (b), respectively. Plots taken from [1].

⨯

(a) 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝛿(𝜇0) = 10−1.5.

⨯

(b) 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane for 𝛼𝑦(𝜇0) = 10−0.5.

Figure 8.8: BSM critical surface of BM4 in the 𝛼𝑦(𝜇0)-𝛼 ̃𝛿(𝜇0)- (a) and 𝛼𝛿(𝜇0)-𝛼 ̃𝛿(𝜇0)-plane (b)
for 𝜇0 = 5 TeV. The remaining BSM couplings are fixed as {𝛼4, 𝜂, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝛼𝑠}|𝜇0

= {2.45 ⋅
10−2, 0, 10−4, 10−5, 10−6, 10−2}. Same color coding as Fig. 4.1a. Plots taken from [1].

PS is comparably harder to achieve in BM3 due to the lowest scale of the naive Landau pole resulting
in the strictest constraints on 𝛼𝑦,𝛿, ̃𝛿, cf. Tab. 8.3. This can also be seen from the BSM critical surface in
Fig. 8.6. Notably, in contrast to the other BMs it consists of two isolated pieces which are separated by the
occurrence of Landau poles. While the first features sizeable 𝒪(10−1) values of both Higgs portal couplings
𝛼𝛿, ̃𝛿, the latter requires one portal to be comparably small and both not to exceed values of ∼ 10−2. A
Planck-safe RG flow in the latter piece is depicted in Fig. 8.7a. We find that it is overall more perturbative
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than in the other BMs with values of most couplings at the Planck scale ≲ 10−1 and the majority even
≲ 10−2. The reason is that only 𝛼𝑦,4,𝑢,𝑣 and hence much less couplings than in the other BMs enter a
walking regime.

We show the BSM critical surface and an exemplary Planck-safe RG flow of BM4 in Fig. 8.8 and Fig. 8.7b,
respectively. Recall, that BM4 features a lower NP scale than the other BMs of 𝜇0 = 3 TeV. As expected,
also here we find a parameter space region giving rise to Planck-safe trajectories characterized by large 𝛼𝑦
and moderate 𝛼𝛿, ̃𝛿, cf. Tab. 8.3. PS is thereby enforced by a characteristic walking regime capturing 𝛼𝑦,4
and the BSM quartics at strongly coupled values until beyond the Planck scale.

8.5 Phenomenological Implications
We now derive predictions for 𝑍′-induced dineutrino branching ratios, work out collider signatures and
discuss consequences of potential 𝑍′-mediatedRH quark currents.

8.5.1 Predictions for 𝐵 → 𝐾(∗)𝜈 ̄𝜈
The 𝑍′ couples to neutrinos due to the charges 𝐹𝐿𝑖,𝜈𝑖

and hence contributes to decays 𝐵 → 𝐻𝜈 ̄𝜈,
𝐻 = 𝐾, 𝐾∗, … at tree-level. In absence of RH quark currents the effect on the corresponding branching
ratios is universal and given by [240]4

ℬ (𝐵 → 𝐻𝜈 ̄𝜈)
ℬ (𝐵 → 𝐻𝜈 ̄𝜈)SM

= 1
3

( ∑
𝑖

|1 + 𝐹𝐿𝑖
𝑎|2 + |𝐹𝜈𝑖

𝑎|2) where 𝑎 =
−

√
2𝜋(𝐹𝑄3

− 𝐹𝑄2
)𝑔2

4

𝐺𝐹 𝛼𝑒 𝑀2
𝑍′ 𝑋SM

, (8.37)

with 𝑋SM = −12.64 [250] encoding the SM contribution. From the BM charge assignments Tab. 8.2 and
employing (8.37) we obtain the ratios 1.003, 1.05, 1.08 and 0.97 in BM1, BM2, BM3 and BM4, respectively.
Since |𝑎| ≪ 1, the leading BSM effect stems from the interference of the LH 𝑍′ contribution with the SM.
For RH neutrinos there is no such interference [251] and their contribution is only at the permille level.
This explains the smallness of the BSM contribution in BM1, where the interference terms cancel due to
∑𝑖 𝐹𝐿𝑖

= 0. As expected, the 𝐵 anomalies generically point towards enhanced ℬ (𝐵 → 𝐻𝜈 ̄𝜈) [240]. An
exception is BM4, where 𝑎 > 0 along with ∑𝑖 𝐹𝐿𝑖

< 0 results in a mild suppression due to a negative
sum of interference terms. However, in all BMs the BSM effect on 𝑏 → 𝑠 dineutrino branching ratios
only amounts to ≲ 10% which is too small to be distinguished from the SM within present precision. In
particular, it is not sufficient to explain the excess in ℬ(𝐵+ → 𝐾+𝜈 ̄𝜈) hinted by the Belle II experiment
[81, 82]. Moreover, while Belle II is expected to observe ℬ(𝐵 → 𝐾(∗)𝜈 ̄𝜈) at the SM level [252] and thus in
all BMs, the projected sensitivity is insufficient to distinguish between our BMs and the SM.

8.5.2 Collider Signatures
From the partial 𝑍′ decay widths (7.17) and assuming negligible kinematic suppression of the decays
𝑍′ → ̄𝜓𝜓, 𝜙𝜙 we compute the total 𝑍′ widths in our models. They are in the ballpark of 𝛤 tot

𝑍′ = few×0.1 𝑀𝑍′

in all BMs, indicating a broad 𝑍′ due to large 𝛼4. The precise values for the 𝑍′ widths and (tree-level)
branching ratios in our BMs are summarized in Tab. 8.4.

If kinematically allowed, in all models the dominant 𝑍′ decay mode is 𝑍′ → ̄𝜓𝑖𝜓𝑖 with flavor-summed BM
specific branching ratios of ∼ 50% − 80%. If the dominant decay 𝑍′ → ̄𝜓𝜓 is kinematically forbidden, the
total 𝑍′ width is reduced by a factor 2 (4-5) in BM1 and BM2 (BM3 and BM4) while all other branching

4Neutrinos are experimentally only indirectly detected as missing energy. Thus, we give the branching ratio prediction
summing over neutrino flavors.
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Model jets 𝑏 𝑡 𝑒 𝜇 𝜏 𝜈𝑒,𝜇,𝜏 ℎ 𝜓1,2,3 𝜙 𝛤 tot
𝑍′

BM 1 0.5 0.5 0.5 0 15 15 15 0 54 0.2 0.43 𝑀𝑍′

BM 2 14 1.5 1.5 0 9 9 18 0 46 0.1 0.14 𝑀𝑍′

BM 3 5 0 0 0 4 4 8 0 79 0.1 0.73 𝑀𝑍′

BM 4 0 0.9 0.9 0 3 11 14 0 72 0.2 0.43 𝑀𝑍′

Table 8.4: Total 𝑍′ widths and branching ratios of different fermionic and scalar 𝑍′ → ̄𝑓𝑓, 𝑠𝑠 decays
at tree-level in %. Numerical values are given neglecting fermionic, scalar as well as kinetic mixing
and assuming 𝑍′ → 𝜓𝑖

̄𝜓𝑖, 𝜙𝜙 to be kinematically open with negligible phase space suppression. If the
dominant decay to 𝜓 ̄𝜓 is forbidden (kinematically significantly suppressed), the other branching ratios
increase by a factor of (up to) 2, 4 and 5 in BM1 and BM2, BM3 as well as BM4, respectively. Table
adapted from [1].

ratios are correspondingly enhanced. Keeping in mind that 𝜓 is a SM singlet and in combination with
sizeable branching ratios of ≳ 10% to (LH and RH) neutrinos ̄𝜈𝑖𝜈𝑖, we learn that the 𝑍′ decays dominantly
to invisibles with a total branching ratio of 65%-85%. This provides a smoking-gun signature of our model
class. Moreover, all benchmarks feature sizeable branching ratios in muons and taus which differ among
the individual benchmarks and range between 3% and 15%. BM2 and BM3 also exhibit sizeable branching
ratios of 15% and 5% to jets, respectively, whereas this decay mode is negligible in BM1 and BM4. In
combination, measuring 𝑍′ branching ratios at the level of 10% would allow to distinguish between the
different benchmarks. Decays 𝑍′ → ̄𝑡𝑡, 𝑏̄𝑏, 𝑒+𝑒−, ℎℎ, 𝜙𝜙 have negligible branching ratios of ≲ 1% in all BMs.
The 𝑍′ can be produced at a hadron machine in 𝑞 ̄𝑞-fusion. A clean signal are high-energy Drell-Yan

processes. The corresponding cross section reads [155, 253]

𝜎(𝑝𝑝 → 𝑍′𝑋 → 𝑓 ̄𝑓𝑋) ≃ 𝜋
6𝑠

∑
𝑞

𝑐𝑓
𝑞𝑤𝑞(𝑠, 𝑀𝑍′

2) , (8.38)

where 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐, 𝑏 and interference with the SM has been neglected. The model-independent functions
𝑤𝑞(𝑠, 𝑀𝑍′

2) encode all necessary information on proton PDFs and QCD corrections. The coefficients

𝑐𝑓
𝑞 = 16𝜋2𝛼4 (𝐹 2

𝑞𝐿
+ 𝐹 2

𝑞𝑅
) ℬ(𝑍′ → 𝑓 ̄𝑓) (8.39)

on the other hand are BM specific and depend on quark 𝑈(1)′ charges as well as the 𝑍′ branching ratios.
We now deploy the results of a CMS search [243] for high 𝑝𝑇 dileptons which gives 𝑍′ mass limits as a
function of 𝑐ℓ

𝑢,𝑑 with ℓ = 𝑒, 𝜇 and obtain

𝑀BM1
𝑍′ ≳ 5.0 TeV(5.4 TeV) , 𝑀BM2

𝑍′ ≳ 5.9 TeV(6.3 TeV) , 𝑀BM3
𝑍′ ≳ 5.8 TeV(6.8 TeV) (8.40)

at 95% c.l. for 2𝑀𝜓 ≪ 𝑀𝑍′ (2𝑀𝜓 > 𝑀𝑍′). The results however have to be taken with a grain of salt as
the muon and electron channels were combined, whereas in our BMs the 𝑍′ does not decay to electrons.
Moreover, 𝑠, 𝑐 and 𝑏 contributions to the production cross sections were not taken into account. For this
reason we cannot derive a mass limit for BM4 where first-generation quarks are uncharged under the 𝑈(1)′.
However, mass bounds as low as 𝑀𝑍′ ≳ 1.2TeV have been obtained in similar models without couplings to
light quarks [244, 254, 255], which serves as a ballpark estimate.
All our BMs can also be searched for at a future muon collider, where the large muon coupling 𝐹𝐿2

𝑔4
strongly enhances 𝑠-channel 𝑍′ production. We find for the corresponding LO BSM cross section with
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subsequent invisible 𝑍′ decay

𝜎(𝜇+𝜇− → 𝑍′ → 𝜓 ̄𝜓, 𝜈 ̄𝜈) = 16𝜋3

3
𝛼2

4 (𝐹 2
𝐿2

+ 𝐹 2
𝐸2

) 𝑠

(𝑀2
𝑍′ − 𝑠)2 + 𝑀2

𝑍′𝛤 2
𝑍′

[2𝑁𝐹𝐹 2
𝜓 + ∑

𝑖
(𝐹 2

𝐿𝑖
+ 𝐹 2

𝜈𝑖
)] . (8.41)

For
√

𝑠 = 3TeV [256], it is enhanced w.r.t. the LO SM cross section

𝜎(𝜇+𝜇− → 𝑍 → 𝜈 ̄𝜈) =
3 𝑠 (𝑔𝜈𝐿

𝑍 )2 [(𝑔𝜇𝐿
𝑍 )2 + (𝑔𝜇𝑅

𝑍 )2]

48𝜋 (𝑀2
𝑍 − 𝑠)2 (8.42)

by a factor of 880, 72, 560 and 4800 in BM1-BM45, respectively, where the SM 𝑍 couplings 𝑔𝜇𝐿,𝑅,𝜈𝐿,𝑅
𝑍 can

be read off from (2.18). The large enhancement in BM4 is due to resonant 𝑍′ production with 𝑀𝑍′ =
√

𝑠.
For a detailed muon collider study of 𝑍′ models for the 𝐵 anomalies see [257].

8.5.3 Right-handed Quark Currents
Thus far, we focused on models with only LH FCNC quark couplings 𝑔𝑏𝑠

𝐿 inducing 𝐶𝜇
9,10 which suffices to

explain the 𝐵 anomalies, c.f. Tab. 8.1, but always implies 𝑅𝐾∗ ≃ 𝑅𝐾 [258]. However, LHCb data [47, 48]
given in (8.2) indicate 𝑅𝐾+ > 𝑅𝐾∗0 at the 1𝜎 level. If confirmed, 𝑅𝐾∗ ≠ 𝑅𝐾 hints at a non-vanishing RH
coupling 𝑔𝑏𝑠

𝑅 ≠ 0 as at LO [258]
𝑅𝐾∗

𝑅𝐾
≃ 1 − 0.41 (𝐶′𝜇

9 − 𝐶′𝜇
10), (8.43)

c.f. also (8.22). 𝐶′𝜇
9 − 𝐶′𝜇

10 ≠ 0 can be induced by assuming RH 𝑏𝑠 mixing in 𝑉 𝑑
𝑅 by a small angle 𝜃𝑑

resulting in 𝑔𝑏𝑠
𝑅 ≃ (𝐹𝐷3

− 𝐹𝐷2
) sin 𝜃𝑑𝑔4, see (7.11). We then obtain

𝐶′𝜇
9

𝐶𝜇
9

=
𝐶′𝜇

10
𝐶𝜇

10
=

𝑔𝑏𝑠
𝑅

𝑔𝑏𝑠
𝐿

≡ 𝑟, (8.44)

with the fit in Tab. 8.1 suggesting 𝑟 ≲ 0. 𝑟 < 0 (𝑟 > 0) then implies 𝑅𝐾∗ < 𝑅𝐾 (𝑅𝐾∗ > 𝑅𝐾) where the
𝐵𝑠-mixing bound (7.12) currently allows for a deviation of the order ∼ 10% (∼ 20%) at the 2𝜎 level in all
BMs. Note that a potential cancellation between LH and RH contributions to 𝐵𝑠-mixing (7.13) requires
positive 𝑟 = 𝑋𝐵𝑠

or 𝑟 = 𝑋−1
𝐵𝑠

which is disfavored by the data.

8.6 Summary
In this chapter we studied flavorful 𝑍′ models which can explain the 𝐵 anomalies in a Planck-safe manner.
We identified four viable BM models which fulfill all relevant theoretical and phenomenological constraints,
most prominently from anomaly cancellation, Yukawa gauge invariance, EW precision data and neutral
meson mixing. The main features of the individual BM models are summarized in Tab. 8.5. The BMs
correspond to different global fit scenarios to experimental data (Tab. 8.1 and Fig. 8.1) and all induce NP
in 𝑏 → 𝑠𝜇+𝜇− transitions with 𝐶𝜇

9 − 𝐶𝜇
10 ∼ −1 as favored by data. Potential subleading contributions to

RH WCs 𝐶′𝜇
9,10 could also be realized in all BMs, see Subsec. 8.5.3.

𝑍′ models explaining the 𝐵 anomalies are generically plagued by the occurrence of subplanckian Landau
poles, see Subsec. 8.1.3. While the 𝑈(1)′ gauge interaction is responsible for accommodating 𝑏 → 𝑠𝜇+𝜇−

5In this estimate we neglected subleading SM-BSM interference terms as well as SM contributions to the ̄𝜈𝜇𝜈𝜇 final state
from 𝑡-channel 𝑊-exchange.
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Model 𝜇0 𝛼4(𝜇0) 𝐶𝜇
9 𝐶𝜇

10 𝑌 𝑢,𝑑
𝑖𝑖 𝑌 ℓ

𝑖𝑖 𝑌 𝜈
𝑖𝑖 𝑟𝐵𝑠

ℬ(𝑍′ → inv.) 𝜈𝑅

BM 1 5 TeV 1.87 ⋅ 10−2 −0.83 0 ✓ ✓ X 0.35 73% X
BM 2 5 TeV 5.97 ⋅ 10−3 −0.41 −𝐶𝜇

9 ✓ X X 0.86 64% ✓
BM 3 5 TeV 4.60 ⋅ 10−2 −0.71 +0.24 ✓ X X 0.60 87% ✓
BM 4 3 TeV 2.46 ⋅ 10−2 −0.83 0 ✓ ✓ ✓ 0.70 86% ✓

Table 8.5: Overview of the characteristics of Planck-safeBM models from Tab. 8.2. We show the values
of the NP scale 𝜇0 = 𝑀𝑍′ , induced semimuonic WCs 𝐶𝜇

9,10 as well as the 𝑈(1)′ gauge coupling 𝛼4(𝜇0)
and indicate which diagonal fermion Yukawa couplings (𝑌 𝑢,𝑑,𝑒,𝜈

𝑖𝑖 ) are allowed by gauge invariance as
well as whether RH neutrinos 𝜈𝑅 are included in the model. Furthermore, we give the branching ratio of
invisible 𝑍′ decays 𝑍′ → 𝜈 ̄𝜈, 𝜓 ̄𝜓 and the room left by the 𝐵𝑠-mixing constraint 𝑟𝐵𝑠

≤ 1. Table adapted
from [1].

data, a large value of the BSM Yukawa 𝛼𝑦 is key to push the notorious 𝑈(1)′ Landau pole beyond
the Planck scale by inducing strongly coupled walking regimes as discussed in Sec. 8.4. Simultaneously,
sizeable BSM quartics are able to stabilize the scalar potential via the (indirect) Higgs portal mechanism.
Hence, the enlarged BSM sector with VLFs and matrix scalars 𝑆𝑖𝑗 is indispensable to achieve PS in our
models. Moreover, the combination of phenomenological and theoretical constraints from 𝐵 data and PS,
respectively, greatly enhances the predictivity of the models and guides further model building.
The 𝑍′ is quite broad and decays dominantly to invisibles, which provides a smoking-gun signature of

our model. Model specific branching ratios to dimuons, ditaus and jet of ∼ 0 − 20% allow to distinguish
between different BMs. Effects of the 𝑍′ on dineutrino branching ratios 𝐵 → 𝐾(∗) ̄𝜈𝜈 on the other hand
do not exceed a few % in all BMs which is still within present theoretical uncertainties. Our models can
be probed at hadron machines in Drell-Yan production of dimuons and ditaus as well as at future muon
colliders. As of now, corresponding LHC searches generically imply mass bounds of 𝑀𝑍′ ≳ 5 TeV for a 𝑍′

explaining the 𝐵 anomalies and coupling to light quarks.

8.7 Addendum: Implications of the Latest LHCb Measurement
𝑅𝐾(∗) ≃ 1

At the time this project [1, 233] was carried out data pointed to 𝑅𝐾(∗) < 1 at the 3𝜎 level. However, the
most recent LHCb data for 𝑅𝐾(∗) [234, 235] of December 2022

𝑅𝐾|[0.1,1.1] =0.994+0.090
−0.082(stat)

+0.029
−0.027(syst), 𝑅𝐾|[1.1,6.0] = 0.949+0.042

−0.041(stat)
+0.022
−0.022(syst),

𝑅𝐾∗ |[0.1,1.1] =0.927+0.093
−0.087(stat)

+0.036
−0.035(syst), 𝑅𝐾∗ |[1.1,6.0] = 1.027+0.072

−0.068(stat)
+0.027
−0.026(syst)

(8.45)

are in agreement with the SM within 1𝜎. Hence, 𝑅𝐾(∗) now support LFU in rare 𝐵 decays and the former
experimental hints for 𝜇-𝑒 universality violation disappeared. The origin of the deviation w.r.t. the previous
result (8.2) was an intricate experimental problem related to electron misidentification in the former
measurements [47, 48] that was just resolved in the latest update [234, 235]. Purely muonic observables
such as angular observables and branching ratios discussed in Subsec. 8.1.1 were however not affected by
electron misidentification and the tension of 𝑏 → 𝑠𝜇+𝜇− data with the SM still persists. We now briefly
discuss consequences of (8.45) for EFT fits to rare 𝐵 decay data in Subsec. 8.7.1 and possible attempts to
accommodate them in 𝑍′ in Subsec. 8.7.2, respectively.
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Fit for value PullSM

𝐶𝜇
9 −0.42+0.13

−0.14 3.2 𝜎
𝐶𝜇

9 = −𝐶𝜇
10 −0.17+0.06

−0.06 2.7 𝜎
𝐶ℓ

9 −0.78+0.21
−0.21 3.7 𝜎

𝐶ℓ
9 = −𝐶ℓ

10 −0.40+0.11
−0.11 3.5 𝜎

Table 8.6: Results of the WET fit [259] to rare 𝐵 decay data, including the new 𝑅(∗)
𝐾 data [234, 235] of

December 2022 (8.45). Given are the values of semileptonic WCs 𝐶ℓ(𝜇)
9,10 in different LFU (muon-specific)

1d NP fit scenarios and their respective pull from the SM hypothesis. Table entries taken from [259].

8.7.1 Updated Fit Results
The new 𝑅𝐾(∗) measurement (8.45) changes the overall picture of the 𝑏 → 𝑠𝜇+𝜇− anomalies. This is
seen in recent EFT fits to rare 𝐵 decays [238, 259–261] including the new LHCb data, see [262] for a
comprehensive overview. In particular, the overall pull from the SM is reduced, as 𝑅𝐾(∗) ceased to be a key
driver of the 𝐵 anomalies. While the preferred patterns in the Dirac structure of semileptonic operators
remain unchanged, i.e. NP scenarios with 𝐶9 ≲ −𝐶10 ≲ 0, the fits now unsurprisingly favor 𝜇-𝑒-universal
rather than muon-specific NP. However, also muon-specific scenarios still increase the compatibility with
data compared to the SM. The best fit is achieved for a sizeable 𝜇-𝑒-universal contribution and a small,
muon-specific correction. These patterns are observed in all fits [238, 259, 261]. Despite using different
statistical methods, hadronic parametrizations and software tools, the fit results are numerically in good
agreement demonstrating the robustness of the results.
We exemplarily discuss the results from [259] in detail. Best fit values for the most favored 1d NP

scenarios from [259] together with their pull from the SM are given in Tab. 8.6. The SM-pulls of 2.7-3.7𝜎
are still significant but roughly halved compared to the old fit in Tab. 8.1 with ∼ 6𝜎. The best fit result
is obtained for a 𝜇-𝑒-universal 𝐶ℓ

9 ≃ −0.8 very close to the former, muon-specific best-fit value of 𝐶𝜇
9 .

Analogously, 𝐶ℓ
9 = −𝐶ℓ

10 ≃ −0.4 is basically identical to the old best fit value of 𝐶𝜇
9 = −𝐶𝜇

10 in Tab. 8.1.
This can be understood as electronic 𝑏 → 𝑠𝑒+𝑒− branching ratios and angular observables generically are
experimentally less constrained than muonic ones. NP effects in semielectronic operators of the same
magnitude as favored for semimuonic ones are typically allowed within experimental uncertainties. Hence,
𝜇-𝑒-universal scenarios are favored as simultaneously compatible with both 𝑅𝐾(∗) = 1 and 𝑏 → 𝑠𝜇+𝜇− data.
Muon-specific scenarios in comparison are slightly less favored with pulls of ∼ 3𝜎. Moreover, the best fit
values of 𝐶𝜇

9 ≃ −0.4, 𝐶9 = −𝐶𝜇
10 ≃ −0.2 are only roughly half as large as in the old fit Tab. 8.1 due to the

generically induced tension with 𝑅𝐾(∗) . Hence, a LFU contribution is preferred by the data.
However, fit results for LFU NP in 𝐶ℓ

9 have to be taken with a grain of salt. The reason are potentially
sizeable LFU contributions to 𝑏 → 𝑠ℓ+ℓ− transitions from electroweak penguins with non-local charm
loops. Those contributions can mimic a NP contribution to 𝐶7,9 as they are coupled identically to the
leptonic vector current [236, 262] which introduces an intrinsic bias in the fit. The magnitude and therefore
relevance of such non-local charm contributions is theoretically hard to predict and therefore subject of an
ongoing debate. One group even claims that 𝑏 → 𝑠𝜇+𝜇− data can be entirely explained in the SM that way
[260], in contrast to [238, 259, 261]. This disagreement arises due to the very general parametrization of the
charm contributions in [260], which by construction allows to absorb any potential NP in 𝐶ℓ

9 in hadronic
free parameters. Deploying a more sophisticated parametrization based on the analyticity of the amplitude
and deriving dispersive bounds from unitarity constraints in contrast allows to control the uncertainty
of the non-local charm contribution [109, 263]. The theory predictions of [109, 263] for 𝐵 → 𝐾𝜇+𝜇−,
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𝐵 → 𝐾∗𝜇+𝜇− and 𝐵 → 𝜙𝜇+𝜇− still exhibit sizeable tensions between data and the SM hinting that charm
contributions are too small to explain the anomaly. This result is in agreement with the finding of [238]
that there is now evidence for an explicit dependence of the best fit value for 𝐶ℓ

9 on the dilepton invariant
mass squared 𝑞2, as it would be caused by a loop contribution.
In conclusion, the new LHCb measurements of 𝑅𝐾(∗) [234, 235] (8.45) in contrast to before now point

towards 𝜇-𝑒 universality. However, the 𝑏 → 𝑠𝜇+𝜇− anomalies in several angular observables and branching
ratios still persist, hinting the presence of NP. This is reflected in updated EFT fits such as [259]. While
the overall pull from the SM is reduced, one-parameter fits for LFU NP in 𝐶ℓ

9 or 𝐶ℓ
9 = −𝐶ℓ

9 still exhibit a
sizeable pull of ≳ 3.5𝜎 from the SM hypothesis. While these findings are still subject to uncertainties due
to non-local charm loops there is increasing evidence that these contributions are too small to explain the
anomalies in the SM. We conclude that strong hints for LFU NP in rare 𝐵 decays remain to be present.

8.7.2 Attempts to Accommodate the New Data in 𝑍′ Models
In spite of the new LHCb LFU data [234, 235], our BMs presented in this chapter are still valid BSM
models as they reduce the overall tension between theory predictions and data w.r.t. the SM. The reason is
that they still resolve the 𝑏 → 𝑠𝜇+𝜇− anomalies while being in tension with the latest 𝑅𝐾(∗) data (8.45)
only at the 2𝜎 level, cf. [237]. Consequently, the pull of our BMs from the SM in recent fits is reduced
from ∼ 6𝜎 to ∼ 3𝜎 [259]. In order to improve compatibility with data, we explored several different an-
sätze to modify our 𝑍′ models such that we obtain 𝑅𝐾(∗) ≃ 1 while still explaining the 𝑏 → 𝑠𝜇+𝜇− anomalies.

The most natural strategy is to assume LFU 𝑍′ couplings 𝑔𝑒𝑒
𝐿,𝑅 = 𝑔𝜇𝜇

𝐿,𝑅 to electrons and muons resulting
in 𝑅𝐾(⋆) ≃ 1 due to 𝐶𝑒

9,10 = 𝐶𝜇
9,10 as favored by fits [259]. In this case the 𝑍′ contributes to 𝑒+𝑒− → 𝑒+𝑒−

scattering at tree level. The induced SMEFT WCs 𝐶1111
𝑙𝑙,𝑙𝑒,𝑒𝑒 of the corresponding four-electron operators

𝑄𝑖𝑗𝑘𝑙
𝑙𝑙 = (𝐿̄𝛾𝜇𝐿)(𝐿̄𝛾𝜇𝐿), 𝑄𝑖𝑗𝑘𝑙

𝑙𝑒 = (𝐿̄𝛾𝜇𝐿)( ̄𝐸𝛾𝜇𝐸), 𝑄𝑖𝑗𝑘𝑙
𝑒𝑒 = ( ̄𝐸𝛾𝜇𝐸)( ̄𝐸𝛾𝜇𝐸), (8.46)

with 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3 ↔ 𝑒, 𝜇, 𝜏 are however severely constrained by LEP-II data [248, 249, 264]. While

𝐶1111
𝑙𝑙 = −

𝑔2
4𝐹 2

𝐿1

𝑀2
𝑍′

, 𝐶1111
𝑙𝑒 = −

𝑔2
4𝐹𝐿1

𝐹𝐸1

𝑀2
𝑍′

, 𝐶1111
𝑒𝑒 = −

𝑔2
4𝐹 2

𝐸1

𝑀2
𝑍′

(8.47)

induced in viable 𝑍′ models are always negative6, LEP-II data [248] indicate positive 𝐶1111
𝑙𝑙,𝑙𝑒,𝑒𝑒. Generating

𝐶ℓ
9 ∼ −0.8 ± 0.2 [259] while accommodating the charge hierarchy (8.29) dictated by the 𝐵𝑠-mixing bound

(7.14) implies a lower limit on the absolute values of 𝐶1111
𝑙𝑙,𝑙𝑒,𝑒𝑒 resulting in a pull of at least 4.0𝜎, 2.5𝜎 and

2.7𝜎 from LEP-II data, respectively. Hence LFU 𝑍′ couplings are evidently disfavored. The tension with
electron data can be slightly reduced in 𝑍′ models with moderate lepton flavor universality violation
(LFUV), e.g. from a gauged 3𝐵3 − 2𝐿𝜇 − 𝐿𝑒 symmetry [245]. However, this in turn causes increasing
tension with 𝑅𝐾(∗) (8.45) again, preventing a relevant overall increase of compatibility with data.

Another possibility to accommodate the new data on an EFT level is to assume complex WCs 𝐶𝜇
9,10.

Neglecting 𝐶′𝜇
9,10, in this case we obtain [258]

𝑅𝐾 = (1 + 2Re
𝐶𝜇

9 − 𝐶𝜇
10

𝐶SM
9 − 𝐶SM

10
+

|𝐶𝜇
9 − 𝐶𝜇

10|2 + |𝐶𝜇
9 + 𝐶𝜇

10|2

|𝐶SM
9 − 𝐶SM

10 |2
) /(𝜇 → 𝑒) , (8.48)

6Demanding 𝜇 − 𝑒 universality with 𝐹𝐿1,𝐸1
= 𝐹𝐿2,𝐸2

in combination with the previous constraints always yields models
with 𝐹𝐿1

= 𝐹𝐸1
and thus also 𝐶1111

𝑙𝑒 < 0.
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𝑏
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𝛾

Figure 8.9: Dominant 𝜏-loop induced BSM contribution to 𝐶𝜇,eff
9 (𝑞2) in a 𝑈(1)′ model (left) and WET

(right), respectively.

where the interference term with the SM vanishes for purely imaginary 𝐶𝜇
9,10, approximately yielding

𝑅𝐾 ≃ 1. Such a scenario with complex 𝐶𝜇
9,10 was analyzed in detail in [265]. Inducing complex 𝐶𝜇

9,10 in a
𝑍′ model requires a complex 𝑔𝑏𝑠

𝐿 , which can be induced by phases in the gauge to mass basis rotation 𝑉 𝑑
𝐿 .

However, complex values of 𝑔𝑏𝑠
𝐿 are experimentally strongly constrained from 𝐶𝑃 violation. In particular,

the 𝑍′-contribution to 𝐵𝑠-mixing also induces a BSM contribution to the 𝐶𝑃 asymmetry 𝐴mix
𝐶𝑃 (𝐵𝑠 → 𝐽/𝜓𝜙)

via the interference of mixing and decay7, see [227, 266] for details. Additional 𝐶𝑃 asymmetries arise in
angular observables in 𝑏 → 𝑠𝜇+𝜇− transitions [227, 266]. Whereas 𝐴mix

𝐶𝑃 (𝐵𝑠 → 𝐽/𝜓𝜙) allows for either
mostly real or mostly imaginary 𝑔𝑏𝑠

𝐿 , semimuonic observables indicate a sizeable Re(𝑔𝑏𝑠
𝐿 ) [227, 266]. Hence,

fits show that all complex values of 𝑔𝑏𝑠
𝐿 with sizeable imaginary part are in strong tension with at least one

of the experimental constraints from 𝐴mix
𝐶𝑃 (𝐵𝑠 → 𝐽/𝜓𝜙), angular 𝑏 → 𝑠𝜇+𝜇− observables or 𝐵𝑠-mixing, c.f.

[266] Fig. 4 and [227] Fig. 6. This rules out a mostly imaginary 𝑔𝑏𝑠
𝐿 to avoid large BSM effects in 𝑅𝐾(⋆) .

A more sophisticated ansatz is to assume that NP in 𝑏 → 𝑠𝜇−𝜇+ is not induced at tree-level but rather
from 𝜏-loops, see Fig. 8.9. In this scenario, the light leptons are uncharged under the 𝑈(1)′ such that
𝜇-𝑒-universality is conserved while simultaneously tree-level contributions to WCs of four-electron operators
(8.46) constrained by LEP-II [248] are evaded. The 𝜏-loop contribution in Fig. 8.9 to 𝑏 → 𝑠𝜇+𝜇− processes
can be encoded in the effective WC [83, 267, 268]

𝐶𝜇,eff
9 (𝑞2) = 𝐶𝜇

9 + 𝑌SM(𝑞2) + 𝑌𝜏 ̄𝜏(𝑞2) , (8.49)

which exhibits a dependence on the dilepton invariant mass squared 𝑞2 and contains well-known SM loop
contributions 𝑌 SM(𝑞2) [83, 267, 268]8 as well as the BSM 𝑍′ contribution 𝑌𝜏 ̄𝜏(𝑞2) ∝ −𝛼𝑒

2𝜋 𝐶𝜏
9 from the

𝜏-loop, see [269] for details and a definition of 𝑌𝜏 ̄𝜏(𝑞2). Due to the loop and 𝛼𝑒 suppression this scenario
requires huge 𝐶𝜏

9 in order to generate the necessary 𝐶ℓ
9 ≃ −0.8. However, 𝐶𝜏

9 is constrained by rare 𝐵
decays [240, 269] and Drell-Yan processes [240]. In particular, we obtain 𝐶𝜏

9 < 510 (910) for 𝐶𝜏
9 = 𝐶𝜏

10
(𝐶𝜏

10 = 0) [269] from the BaBar bound ℬ(𝐵+ → 𝐾+𝜏+𝜏−) < 2.25 ⋅ 10−3 at 90% c.l. [270]. Saturating
this bound for 𝐶𝜏

10 = 0 we find that the allowed average contribution to 𝐶𝜇
9 is −𝐶𝜇,eff

9 (𝑞2) ≲ 0.18 for
𝑞2 ∈ [1.1GeV2, 6GeV2] which is only ≲ 20% of the required value to account for the 𝑏 → 𝑠𝜇+𝜇− anomalies.
Moreover, assuring perturbativity of the 𝑍′-𝜏-coupling, i.e. 𝑔𝜏𝜏

𝐿 < 4𝜋, and simultaneously evading the
𝐵𝑠-mixing bound (7.14) in this case requires 𝑔𝑏𝑠

𝐿 /𝑔𝜏𝜏
𝐿 ≲ 10−5 and 𝑀𝑍′ < 60GeV which clearly rules out a

heavy 𝑍′ of a few TeV as required by muon Drell-Yan searches [243, 244, 254, 255].

7Note that bounds from 𝐴mix
𝐶𝑃 (𝐵𝑠 → 𝐽/𝜓𝜙) and 𝛿𝑀𝐵𝑠

have not been considered in [265] where only the effects of
semileptonic WCs 𝐶𝜇

9,10 were investigated. In 𝑍′ models on the other hand, contributions to these observables are
invariably generated by a complex 𝑔𝑏𝑠

𝐿 .
8The SM contribution 𝑌SM(𝑞2) is typically already taken into account in fits such as [259].
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8 A Planck-Safe 𝑈(1)′ Explanation for the 𝐵 Anomalies

Integrating out the 𝑍′ also generates the WCs 𝐶3,5 of the four-quark operators

𝑂3 = ( ̄𝑠𝐿𝛾𝜇𝑏𝐿) ∑
𝑞

( ̄𝑞𝐿𝛾𝜇𝑞𝐿), 𝑂5 = ( ̄𝑠𝐿𝛾𝜇𝑏𝐿) ∑
𝑞

( ̄𝑞𝑅𝛾𝜇𝑞𝑅) (8.50)

at tree level which can contribute to 𝐶ℓ,eff
9 (𝑞2) via quark loops with the same topology as Fig. 8.9. However,

𝑔𝑏𝑠
𝐿 /𝑔𝜏𝜏

𝐿 ≲ 10−5 from perturbativity together with 𝐵𝑠-mixing generically implies |𝐶3,5(𝑚𝑊)| ≲ 𝒪(10−3)
which is of the same order as 𝛼𝑠-corrections to the WET matching [83] and has negligible impact on
𝐶ℓ,eff

9 (𝑞2) at the 𝑏 mass scale 𝜇𝑏. Hence, loop-induced 𝜇-𝑒-universal 𝑍′ contributions to 𝐶ℓ,eff
9 are also

disfavored as an explanation for the 𝑏 → 𝑠𝜇+𝜇− anomalies, in agreement with the analysis in [238].9

The last ansatz we discuss are LFU 3-3-1 models, see [272, 273] for a detailed introduction. The models
feature a 𝑆𝑈(3)𝐶 × 𝑆𝑈(3)𝐿 × 𝑈(1)𝑋 gauge group which is broken to 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌, where
the 𝑍′ corresponds to the gauge boson of 𝑈(1)𝑋. In this models, the hypercharge is given by [273]

𝑌 = 𝛽𝑇 8 + 𝑋 , (8.51)

where 𝑇 8 and 𝑋 denote the corresponding generator of 𝑆𝑈(3)𝐿 and the 𝑈(1)𝑋 charge, respectively. 𝛽 is a
free parameter, but only integer multiples of

√
3, 1/

√
3 yield integer charges for the gauge bosons. The

models are very predictive and completely controlled by the free parameters 𝛽 and 𝑀𝑍′ . The relevant 𝑍′

couplings read [273]

𝑔𝑏𝑠
𝐿 = 𝑔𝑋𝑉𝑡𝑏𝑉 ∗

𝑡𝑠
cos 𝜃𝑊

√
3√1 − (1 + 𝛽2) sin2 𝜃𝑊

,

𝑔ℓℓ
𝐿 = 𝑔𝑋

−1 + sin2 𝜃𝑊 +
√

3𝛽 sin2 𝜃𝑊

2
√

3 cos 𝜃𝑊√1 − (1 + 𝛽2) sin2 𝜃𝑊

, 𝑔ℓℓ
𝑅 =

⎧{
⎨{⎩

−𝑔𝑋
𝛽 sin2 𝜃𝑊

cos 𝜃𝑊√1−(1+𝛽2) sin2 𝜃𝑊

, 𝛽 ≠
√

3

𝑔𝑋
√1−4 sin2 𝜃𝑊√

3 cos 𝜃𝑊
, 𝛽 =

√
3

,

(8.52)

with 𝑈(1)𝑋 gauge coupling 𝑔𝑋 and |𝛽| < √(1 − sin2 𝜃𝑊)/ sin2 𝜃𝑊 ≃ 1.82 to avoid diverging or imagi-
nary couplings. Moreover, for fixed 𝛽 the 𝐵𝑠-mixing bound (7.14) implies a lower limit on 𝑀𝑍′ , which
translates to an upper limit −𝐶ℓ

9 ≲ −0.01, −0.18, −0.03, −0.34, −0.09 at 99% c.l. for the allowed values
𝛽 = 1/

√
3, −1/

√
3,

√
3, −

√
3, 0, respectively10. Hence, even if saturating the 99% c.l. 𝐵𝑠-mixing bound

and in the best scenario 𝛽 = −
√

3 only ∼ 40% of the value 𝐶ℓ
9 ≃ −0.8 indicated by fits to 𝐵 data can be

accommodated. Thus, also 3-3-1 models do not offer a satisfactory explanation for the 𝑏 → 𝑠𝜇+𝜇− anomalies.

In conclusion it seems rather hard to simultaneously accommodate all relevant experimental data from
rare 𝐵 decays, 𝐵𝑠-mixing and electroweak precision observables in models with a single 𝑍′ as new mediator.
A possible loop-hole are models containing several 𝑍′s, e.g. [274, 275]. Clearly, future measurements are
needed to further constrain NP effects in 𝑏 → 𝑠ℓ+ℓ− and direct model building. In particular, the expected
LHCb angular analysis of the 𝐵 → 𝐾∗𝑒+𝑒− decay will hopefully shed new light on the 𝐵 anomalies.

9Beyond 𝑍′ models, BSM charm-loop contributions to 𝐶ℓ,eff
9 via the charged-current four-quark operators 𝑂𝑐

1,2 (2.38) can
potentially account for the 𝐵 anomalies, see [271] for details.

10Note that 𝛽 fixes the ratios 𝑔𝑏𝑠
𝐿 /(𝑔ℓℓ

𝐿 + 𝑔ℓℓ
𝑅 ) and 𝐶ℓ

9/𝐶ℓ
10.
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9 A 𝑈(1)′ Explanation to the U-Spin-CP Anomaly in
Charm

In the previous chapter we have established Planck-safe 𝑍′ models as an explanation for the anomalies
observed in rare 𝑏 → 𝑠𝜇+𝜇− transitions. In this chapter, which is based on [3, 6], we explore in a similar
manner the reach of flavorful 𝑈(1)′ models to address another flavor anomaly, namely the 𝑈-Spin-𝐶𝑃
anomaly in charm. Interestingly, in this case data point to a subelectroweak, leptophobic 𝑍′ with a different
phenomenology and RG behavior than the heavy 𝑍′ models for the 𝐵 anomalies.

We introduce the 𝑈-Spin-𝐶𝑃-anomaly in charm in Sec. 9.1. Afterwards, in Sec. 9.2 we present our models,
discuss constraints from charm data and work out the implied 𝑍′ mass scale. We then analyze the light 𝑍′

phenomenology in Sec. 9.3, before turning to the RG evolution in Sec. 9.4. In Sec. 9.5 we conclude.

9.1 The U-Spin-CP Anomaly in Charm
In 2019, the LHCb determination of [56]

𝛥𝐴𝐶𝑃 = 𝐴𝐶𝑃(𝐾+𝐾−) − 𝐴𝐶𝑃(𝜋+𝜋−) = (−15.4 ± 2.9) ⋅ 10−4 (9.1)

in 𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− decays with the 𝐶𝑃 asymmetries

𝐴𝐶𝑃(𝑓) = 𝛤(𝐷0 → 𝑓) − 𝛤(𝐷̄0 → 𝑓)
𝛤(𝐷0 → 𝑓) + 𝛤(𝐷̄0 → 𝑓)

(9.2)

provided the first observation of 𝐶𝑃 violation in charm. Recently, LHCb also directly measured [57]

𝐴𝐶𝑃(𝐷0 → 𝐾+𝐾−) = (6.8 ± 5.4(stat) ± 1.6(syst)) ⋅ 10−4 . (9.3)

This allowed for the first time to fit the direct 𝐶𝑃 asymmetries in 𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− decays to

𝑎𝑑,exp
𝐾−𝐾+ = (7.7 ± 5.7) ⋅ 10−4 , 𝑎𝑑,exp

𝜋−𝜋+ = (23.2 ± 6.1) ⋅ 10−4 , (9.4)

providing a 3.8 𝜎 evidence of 𝐶𝑃 violation in 𝐷0 → 𝜋+𝜋−. These results are puzzling for two reasons:
Firstly, 𝑎𝑑

𝜋−𝜋+ is quite large, while in the SM 𝐶𝑃 violation is CKM suppressed, cf. (2.27). Applying CKM
unitarity to parametrize the SM amplitude as

𝒜 =𝒜SM(𝐷0 → 𝜋+𝜋−) = 𝜆𝑑𝑡 + 𝜆𝑏ℎ𝑒𝑖𝛿 ,
̄𝒜 =𝒜SM(𝐷̄0 → 𝜋+𝜋−) = 𝜆∗

𝑑𝑡 + 𝜆∗
𝑏ℎ𝑒𝑖𝛿 (9.5)

in terms of CKM factors 𝜆𝑞 = 𝑉 ∗
𝑐𝑞𝑉𝑢𝑞 and the relative strong phase 𝛿 yields

𝑎𝑑, SM
𝜋−𝜋+ = |𝒜|2 − | ̄𝒜|2

|𝒜|2 + | ̄𝒜|2
≃ 2 ⋅ Im( 𝜆𝑏

𝜆𝑑
) ℎ

𝑡
sin 𝛿 ≲ 1.2 ⋅ 10−3 ℎ

𝑡
, (9.6)

where we neglected contributions of higher powers in the CKM ratio 𝜆𝑏/𝜆𝑑 ∼ 10−3. A SM explanation of
𝑎𝑑,exp

𝜋+𝜋− in (9.4) would thus require higher-order contributions ℎ to be enhanced over the tree-level one by a
factor of ℎ

𝑡 ≳ 2 to compensate the CKM suppression. This required enhancement is significantly larger
than theoretical estimations [276, 277] which however suffer from sizeable uncertainties due to hadronic
final-state interactions. Notably, in the same manner the theoretical upper limit |𝛥𝐴𝑑

𝐶𝑃| ≲ 2.4 ⋅ 10−4

[278] on direct 𝐶𝑃 violation in 𝛥𝐴𝐶𝑃 is a factor six lower than the measured value (9.1). Secondly, (9.4)
implies a 2.7𝜎 violation of the approximate SM 𝑆𝑈(2) 𝑈-spin symmetry rotating 𝑑 and 𝑠 quarks [279],
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9 A 𝑈(1)′ Explanation to the U-Spin-CP Anomaly in Charm
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Figure 9.1: The 𝑈-spin-𝐶𝑃 anomaly in charm. Shown are LHCb bounds on 𝛥𝐴𝐶𝑃 (9.1) (green) and
𝐴𝐶𝑃(𝐾+𝐾−) (9.3) (grey), as well as 𝐴𝐶𝑃(𝜋+𝜋−) = (12 ± 14) ⋅ 10−4 from HFLAV [231] (grey). The
best fit values 𝑎𝑑

𝐾+𝐾−,𝜋−𝜋+ (9.4) are shown including their correlation at 1𝜎 and 2𝜎 c.l. (orange). The
𝑈-spin limit (red dashed line) including ≲ 30% SM-like 𝑈-spin breaking (red cones) and the modified
𝑈-spin relation (9.7) (red dotted line) are also indicated. In addition we show the predictions in our BM
models BM III (for 𝐺 = 0) and BM IV (both thick brown line), see Tab. 9.1. Figure adapted from [3].

which predicts 𝑎𝑑
𝜋−𝜋+ = −𝑎𝑑

𝐾−𝐾+ . SM 𝑈-spin breaking is only of 𝒪 (𝑚𝑠−𝑚𝑑
𝛬QCD

) ≃ 30% and thereby insufficient
to explain the data by a factor ∼ 4. This constitutes the 𝑈-Spin-𝐶𝑃 anomaly in charm which is further
illustrated in Fig. 9.1. Note that a SM-like 30% 𝑈-spin breaking contribution of opposite signs is more
than enough to explain the enhancement of ℬ(𝐷 → 𝐾+𝐾−)/ℬ(𝐷 → 𝜋+𝜋−) ≃ 2.8 [155]. This suggests a
modified 𝑈-spin relation

𝑎𝑑
𝐾−𝐾+

𝑎𝑑
𝜋−𝜋+

= −√ ℬ(𝐷 → 𝜋+𝜋−)
ℬ(𝐷 → 𝐾+𝐾−)

≃ −0.60 , (9.7)

also shown in Fig. 9.1 but only slightly alleviates the tension with data. Hence, the anomaly still remains.

9.2 Models

We now aim at explaining the 𝑈-Spin-𝐶𝑃 anomaly in charm with flavorful 𝑍′ models. The 𝑍′ contributes
to the decays 𝐷0 → 𝜋+𝜋−, 𝐾+𝐾− at tree-level via the diagram shown in Fig. 9.2. The corresponding
contribution to the direct 𝐶𝑃 asymmetries arises from interference with the SM and reads [280]

𝑎𝑑
𝜋−𝜋+,𝐾−𝐾+ = 𝑔2

4
𝑀2

𝑍′
𝛥 ̃𝐹𝑅 [𝑐𝜋,𝐾𝐹𝑄1,2

+ 𝑑𝜋,𝐾𝐹𝐷1,2
] , (9.8)

where we assumed maximal relative strong and weak phases. The hadronic parameters 𝑐𝜋,𝐾, 𝑑𝜋,𝐾 include
the LO RG running of WET WCs from the 𝑍′ to the charm mass scale as well as the hadronic matrix

104
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Figure 9.2: Leading 𝑍′ contributions to 𝐷0 → 𝜋+𝜋−, 𝐾+𝐾− decay amplitudes. Figure adapted from
[3].

Model 𝐹𝑄𝑖
𝐹𝑈𝑖

𝐹𝐷𝑖
𝐹𝐿𝑖

𝐹𝐸𝑖
𝐹𝜈𝑖

BM III 0 0 0 𝐺 -𝐹 0 𝐹 -𝐺 0 0 0 0 0 -𝐺 𝐹 0 𝐺 -𝐹
BM IV 0 0 0 -𝐹𝑢 𝐹𝑢 0 𝐹𝑑 0 -𝐹𝑑 0 0 0 𝐹𝑒 0 -𝐹𝑒 𝐹𝜈 -𝐹𝜈 0

Table 9.1: Flavorful 𝑍′ BM charge assignments for the 𝑈-spin-𝐶𝑃 anomaly in charm. Interestingly,
swapping charges in the RH up sector of BM III, i.e. 𝐹𝑈1

= −𝐹, 𝐹𝑈2
= 𝐺, yields an equally viable

model to which we refer as BM III-s. In BM III(-s), (9.11) and (9.25) imply |𝐺/𝐹 | ≪ 1 also allowing
for 𝐺 = 0. In BM IV, 𝐹𝑒, 𝐹𝑢, 𝐹𝑑 are related by anomaly cancellation while RH neutrinos can also
be decoupled by setting 𝐹𝜈 = 0. Unless stated otherwise we use the specific charge assignment (9.12).
Table adapted from [3].

elements, see [3, 280] for details. Note that the latter suffer from sizeable uncertainties. The quantity

𝛥 ̃𝐹𝑅 = 𝑒𝑖𝜙𝑅(ℱ′
𝑢𝑅

)21 = sin 𝜃𝑢 cos 𝜃𝑢 (𝐹𝑈2
− 𝐹𝑈1

) (9.9)

relates to the RH 𝑐 → 𝑢 FCNC coupling 𝑔𝑢𝑐
𝑅 and is obtained following Sec. 7.3. Here, we assumed RH 𝑐-𝑢

mixing by

𝑉 𝑢
𝑅 = ⎛⎜

⎝

cos 𝜃𝑢 −𝑒𝑖𝜙𝑅 sin 𝜃𝑢 0
𝑒−𝑖𝜙𝑅 sin 𝜃𝑢 cos 𝜃𝑢 0

0 0 1
⎞⎟
⎠

, (9.10)

with a mixing angle 𝜃𝑢 ≠ 0 and phase 𝜙𝑅 ≠ 0 as well as 𝐹𝑈2
≠ 𝐹𝑈1

. In contrast, we set 𝑉 𝑑
𝑅 = 1 and

𝐹𝑄1,2
= 0, in order to avoid kaon constraints according to (7.16). Moreover, applying (9.8) and (9.4) we

demand
𝐹𝐷2

𝐹𝐷1

=
𝑑𝜋 𝑎𝑑,exp

𝐾−𝐾+

𝑑𝐾 𝑎𝑑,exp
𝜋−𝜋+

≃ − 0.42+0.83
−0.13 , (9.11)

i.e. explicit 𝑈-Spin breaking with a hierarchy |𝐹𝐷2
| ≪ |𝐹𝐷1

| to accommodate the data. In addition, we
demand the cancellation of gauge anomalies according to (7.1) as well as gauge invariance of the top Yukawa
coupling (cf. (8.12)) and prefer the absence 1-loop induced kinetic mixing via (7.8). The first typically
requires the addition of RH neutrinos 𝜈𝑅.
Applying this selection criteria results in the BM charge assignments BM III and BM IV in Tab. 9.1

with their characteristic patterns1. BM III features two independent charges 𝐹 and 𝐺, where (9.11) implies
|𝐺/𝐹 | ≪ 1 and we fix 𝐹 = 1 without loss of generality. BM III-s, a variant of BM III with 𝐹𝑈1

↔ 𝐹𝑈2
is

equally viable and exhibits a different phenomenology due to the suppressed charm coupling. In BM IV, the
1Note that we do not include BM I, II from [3] in this chapter, as they are clearly ruled out by the lepton bounds in

Subsec. 9.3.2, see [3] for details.
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Figure 9.3: 𝐷-mixing constraints on our 𝑍′ models BM III (with 𝐺 = 0) and BM IV from Tab. 9.1.
Shown are the parameter regions for 𝑔4 𝐹𝐷1

/𝑀𝑍′ as a function of 𝛥 ̃𝐹𝑅/𝐹𝐷1
with 𝑑𝜋 ≃ 0.1 TeV2, that

allow to explain 𝛥𝐴𝐶𝑃 (9.1) and 𝑎𝑑
𝜋−𝜋+ (9.4) at 1𝜎 including additional 30% of hadronic uncertainty

(brown). The regions are identical in both BMs and can be expressed semi-analytically as 𝑔4𝐹𝐷1
/𝑀𝑍′ =

𝑐 (𝛥 ̃𝐹𝑅/𝐹𝐷1
)−1/2 with factor 𝑐 = 0.133 ± 0.003TeV−1, see (9.15). Parameter regions excluded by

𝐷-mixing (9.14) are indicated in red. Moreover, curves corresponding to different values of 𝑎𝑑
𝜋−𝜋+

(dashed lines) are shown for comparison. Figure adapted from [3].

charges 𝐹𝑒, 𝐹𝑢, 𝐹𝑑 are not independent but related by anomaly cancellation (7.1). Rational, anomaly free
charges assignments obeying the hierarchy |𝐹𝑒| ≪ |𝐹𝑢|, |𝐹𝑑| that will turn out to be required from lepton
bounds (9.25) can be systematically derived by a Diophantine construction, see [3] for details. Neutrino
charges 𝐹𝜈 on the other hand can be freely adjusted, allowing also to decouple them completely. Unless
stated otherwise, in this work we set

𝐹𝑑 = 1, 𝐹𝑢 = 985
1393

, 𝐹𝑒 = 1
1393

, 𝐹𝜈 = 0 . (9.12)

9.2.1 Charm Phenomenology and Constraints
𝑍′ models contributing to 𝛥𝐴𝐶𝑃 also invariably induce 𝐶𝑃 asymmetries in 𝐷0,+ → 𝜋0𝜋0,+ decays [280],
where 𝐷+ → 𝜋0𝜋+ explicitly requires isospin violation. In our BMs where |𝐹𝐷2

| ≪ |𝐹𝐷1
| all 𝐶𝑃 asymmetries

involving pions are correlated as [280]

𝐴𝐶𝑃(𝜋+𝜋0) ≃ 𝑑𝜋′

𝑑𝜋0
𝐴𝐶𝑃(𝜋0𝜋0) ≃ −𝑑𝜋′

𝑑𝜋
(1 −

𝐹𝑈1

𝐹𝐷1

) 𝛥𝐴𝐶𝑃 . (9.13)

As the hadronic parameters 𝑑𝜋, 𝑑𝜋′ , 𝑑𝜋0 are all of similar size and |𝐹𝑈1
| < |𝐹𝐷1

| in our models 𝐴𝐶𝑃(𝜋0,+𝜋0)
are both of opposite sign and similar magnitude as 𝛥𝐴𝐶𝑃 ∼ 10−3, hence sizeable. More precisely, we find
that the relative factor 1 − 𝐹𝑈1

/𝐹𝐷1
equals 1 in BM III (with 𝐺 = 0) whereas in BM III-s (with 𝐺 = 0)

and BM IV with the charge assignment (9.12) it generates an enhancement of 2 and 1.7 w.r.t. |𝛥𝐴𝐶𝑃|,
respectively, due to the opposite signs of 𝐹𝑈1

and 𝐹𝐷1
.
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9.2 Models

Lepton Observable Ref. Charge Constraint

𝑒 Drell-Yan [282] √𝐹 2
𝐿1

+ 𝐹 2
𝐸1

≲ 2.3 |𝐹𝐷1
|

𝜇 ℬ(𝐷0 → 𝜇+𝜇−) [283] |𝐹𝐿2
− 𝐹𝐸2

| ≲ 0.8 |𝐹𝐷1
|

ℬ(𝐷0 → 𝜋0𝜇+𝜇−) [284] √𝐹 2
𝐿2

+ 𝐹 2
𝐸2

≲ 0.8 |𝐹𝐷1
|

𝜏 Drell-Yan [282] √𝐹 2
𝐿3

+ 𝐹 2
𝐸3

≲ 4.7 |𝐹𝐷1
|

𝜈 ℬ(𝐷0 → 𝜋0 + inv.) [285] |𝐹𝜈| ≲ 110 |𝐹𝐷1
|

Table 9.2: Most stringent bounds on lepton charges from charming dilepton processes. Indicated is
the most constraining experimental observable, the corresponding reference as well as the resulting
constraint on the 𝑈(1)′ charges for charged leptons and neutrinos using (9.15). Note that the bound
for neutrinos gets more strict if more than one neutrino generation is charged. Moreover, the same
bound applies for the charge 𝐹𝜓 of a potential singlet VLFs 𝜓 if 𝐷0 → 𝜋0 ̄𝜓𝜓 is kinematically allowed.

We now discuss constraints on model parameters from 𝐷-mixing, Drell-Yan data as well as branching
ratios of (semi-)leptonic or invisible 𝐷-decays2. The 𝑍′ contributes to 𝐷-mixing at tree-level, cf. Sec. 7.4.
The experimental limit (7.15) for 𝑔𝑢𝑐

𝐿 = 0 yields the bound

𝑔4 𝛥 ̃𝐹𝑅
𝑀𝑍′

< 7.1 ⋅ 10−4 TeV−1 (9.14)

at 95 % c.l. in our BMs. The bound severely constrains the available parameter space, which is illustrated
in 𝑔4𝐹𝐷1

/𝑀𝑍′ − 𝛥 ̃𝐹𝑅/𝐹𝐷1
space in Fig. 9.3 (red). Curves explaining 𝑎𝑑

𝜋−𝜋+ (9.4) at 1𝜎 and including
additional 30% hadronic uncertainty are also shown for BM III and IV (brown). They are roughly given by

𝑔4 𝐹𝐷1

𝑀𝑍′
√𝛥 ̃𝐹𝑅

𝐹𝐷1

≃ 0.13TeV−1 . (9.15)

We see that 𝐷-mixing constrains 𝛥 ̃𝐹𝑅/𝐹𝐷1
≲ 3⋅10−5. Hence large hierarchies |𝛥 ̃𝐹𝑅| ≪ |𝐹𝐷1

| are necessary
to generate a sizeable 𝑎𝑑

𝜋+𝜋− while simultaneously evading constraints from 𝐷-mixing (9.14), which can be
achieved by adjusting the mixing angle to small values sin 𝜃𝑢 ≪ 1. 𝐷-mixing also implies a lower limit of
30 TeV−1 on 𝐹𝐷1

𝑔4/𝑀𝑍′ , cf. Fig. 9.3, suggesting a low NP scale. More precisely, combining (9.4), (9.8)
and (9.14) we find

𝑔4𝐹𝐷1

𝑀𝑍′
≃ 1

0.025 TeV
×

|𝑎𝑑
𝜋+𝜋− |

0.002
, (9.16)

indicating a light, subelectroweak 𝑍′, with significantly lower mass than in Chap. 8. This constitutes a
central finding of our analysis with consequences for phenomenology.
The main constraints from dilepton processes in charm are summarized in Tab. 9.2. 𝑈(1)′ charges of

electrons and muons are constrained by branching ratio measurements of rare (semi-)leptonic 𝐷 → (𝜋)ℓ+ℓ−

decays with ℓ = 𝜇, 𝑒, see [283, 284]. These turn out to give the strongest available constraints for muons.
For ℓ = 𝑒, 𝜏 in cotrast Drell-Yan constraints [282] are most stringent. From these bounds and applying
(9.15) we learn that 𝑈(1)′ charges of charged leptons should not be excessive compared to the quark ones,

2The 𝑍′ contribution to four-quark operators ̄𝑐𝑢 ̄𝑞𝑞 with 𝑞 = 𝑑, 𝑠 is roughly 2-3 orders of magnitude smaller than the SM
tree-level one from 𝑊 exchange [3, 281]. Hence, the 𝑍′ contribution to 𝐷 → 𝜋+𝜋−, 𝐾+𝐾− branching ratios is negligible.
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(b) 𝜓𝑖 → 𝜋+𝜋−. Figure adapted from [3].

Figure 9.4: Tree-level 𝑍′ contribution to hadronic quarkonia decay amplitudes.

i.e. 𝐹𝐿𝑖,𝐸𝑖
≲ (1...2) ⋅ 𝐹𝐷1

.
The 𝑍′ couplings to RH neutrinos are probed in (semi-)invisible decays. Following [286] and again applying

(9.15) the most stringent bound is obtained from the BESIII upper limit ℬ(𝐷0 → 𝜋0 + inv.) < 2.1 ⋅ 10−4 at
90% c.l. [285]. We find that RH neutrino charges are only poorly constrained with |𝐹𝜈𝑖

| ≲ 110|𝐹𝐷1
|. This

bound also constrains 𝑈(1)′ charges of potential light singlet VLFs 𝜓 with 𝑀𝜓 < 𝑚𝐷/2. Note that the
constraint gets stricter if several flavors contribute to the decay.

Overall, we find that both BM III(-s) and BM IV from Tab. 9.1 pass all relevant charm constraints. All
models exhibit explicit 𝑈-spin breaking |𝐹𝐷2

| ≪ |𝐹𝐷1
| and fulfill the bounds in Tab. 9.2 on lepton charges.

Most importantly, explaining 𝑎𝑑
𝜋+𝜋− while evading 𝐷-mixing constraints implies a subelectroweak 𝑍′ mass

scale (9.16).

9.3 A Hadrophilic 𝑍 ′ of 𝒪(10 GeV)?
Constraints on couplings of a light 𝑍′ to quarks arise from low mass dijets. For 10 GeV ≲ 𝑀𝑍′ ≲ 50 GeV
the strongest constraint stems from CMS [287] and their search for dijets in association with initial state
radiation (ISR) [288], which approximately results in the limit 𝑔4𝐹𝐷1

≲ 0.5. In combination with the
constraints from charm (9.4) and (9.16) this yields the allowed mass range

10 GeV ≲ 𝑀𝑍′ ≲ 20 GeV . (9.17)

Around and below 10 GeV constraints become model dependent due to quarkonia constraints.

9.3.1 Quarkonium Constraints
Around 10 GeV, severe constraints arise from 𝛶 → 𝑗𝑗 decays [289], cf. Fig. 9.4a, which apply to models
with non-vanishing 𝑏-quark 𝑈(1)′ charges, i.e. our BM IV. Using [290] as well as the charge assignment
(9.12) we find that explaining 𝐶𝑃 data (9.4) via (9.16) while accommodating bounds from 𝛶 (1𝑠) decays
implies the mass limits

𝑀𝑍′ ≲ 7 GeV or 𝑀𝑍′ ≳ 15 GeV (BM IV). (9.18)

In BM III(-s) in contrast no constraints arise as the 𝑏 quark is uncharged under the 𝑈(1)′.
Charm couplings of a GeV-ish 𝑍′ are probed in charmonium decays, cf. Fig. 9.4b, which provide

additional constraints in BM III and IV. BM III-s in contrast evades all charmonium constraints as the
charm quark is uncharged under the 𝑈(1)′ (for 𝐺 = 0). The model can however be probed in hadronic
processes involving first-generation quarks and invisibles. Potential 𝑍′ masses below a GeV would then due
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(a) BM III with 𝐺 = 0.
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(b) BM IV with charge assignment (9.12).

Figure 9.5: 𝑍′ mass constraints from charmonium decays in BM III (a) and BM IV (b). Horizontal
red (blue) bands correspond to the experimental determination of the LHS of (9.19), using 1𝜎 ranges
of 𝐽/𝜓 (𝜓′) data [155] and values of the pion form factor |𝐹𝜋(𝑚𝐽/𝜓)| = 0.056 (|𝐹𝜋(𝑚𝜓′)| = 0.04) from
𝑒+𝑒− → 𝜋+𝜋− data [293]. Colored curves represent the corresponding predictions of the RHS of (9.19)
in our BM models using (9.16) including experimental uncertainties from (9.4). The SM prediction for
photon-exchange is also shown (grey). Figures taken from [3].

to (9.16) imply a feebly interacting 𝑍′, which could be searched for at forward facilities [291].

In BM III and IV, following [292] we find for the 𝜓𝑖 = 𝐽/𝜓, 𝜓′ pion-to-electron ratio of branching ratios

ℬ(𝜓𝑖 → 𝜋+𝜋−)
ℬ(𝜓𝑖 → 𝑒+𝑒−)

4
|𝐹𝜋(𝑚𝜓𝑖

)|2
= ∣1+ 𝐴𝑍′

𝐴𝛾
∣
2

, 𝐴𝑍′

𝐴𝛾
=

𝑚2
𝜓𝑖

𝑚2
𝜓𝑖

−𝑀2
𝑍′ +𝑖𝑀𝑍′𝛤𝑍′

3𝑔2
4𝐹𝑈2

(𝐹𝑈1
−𝐹𝐷1

)
8𝜋𝛼𝑒

. (9.19)

Here, 𝐴𝑍′ and 𝐴𝛾 correspond to the 𝑍′-induced and SM photon amplitude contributing to the pionic
decay, respectively, and we neglected the numerically small SM 𝑍 contribution. 𝐹𝜋 denotes the pion form
factor which is extracted from 𝑒+𝑒− → 𝜋+𝜋− and pion-electron scattering data to |𝐹𝜋(𝑚𝐽/𝜓)| = 0.056 and
|𝐹𝜋(𝑚𝜓′)| = 0.04 [293]. As the 𝑍′ is (quasi-)electrophobic in our BMs its effect in this 𝐹𝜋 determination
method is negligible. The total 𝑍′ width 𝛤𝑍′ is obtained from (7.17) and selected numerical values are
given in Tab. 9.3. The normalization of the left-hand side (LHS) of (9.19) is chosen such that it equals one
in the SM.

The constraints from (9.19) on BM III and IV as a function of 𝑀𝑍′ are shown in Fig. 9.5. The
experimental determination of the pion-to-electron ratio via the LHS of (9.19) from 𝐽/𝛹 (𝜓′) data [155]
including 1𝜎 uncertainties and using 𝐹𝜋 from [293] is illustrated as red (blue) horizontal band. Crucially, the
experimentally determined values are enhanced w.r.t. the SM (grey) roughly by a factor ∼ 3, corresponding
to a deviation of 7𝜎 and 1.8 𝜎 from the SM, respectively. The theoretical prediction of the pion-to-electron-
ratio via the RHS of (9.19) is indicated by red (blue) curves for 𝐽/𝜓 (𝜓′) and assumes (9.16) to accommodate
𝐶𝑃 data (9.4) within their experimental uncertainty. The curves exhibit the expected resonance structure
with peaks around 𝑚𝐽/𝜓,𝜓′ and only slowly decoupling NP contributions due to (9.16). The main difference
between the two BM models originates from the 𝑍′ − 𝛾 interference term in (9.19), which is of similar size
but opposite sign. As a consequence, favored 𝑍′ mass regions in BM III are in the resonant region, whereas
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9 A 𝑈(1)′ Explanation to the U-Spin-CP Anomaly in Charm

in BM IV they occur in the tails. More precisely,

BM III: 2.3 GeV ≲ 𝑀𝑍′ ≲ 2.8GeV or 3.2 GeV ≲ 𝑀𝑍′ ≲ 3.3GeV ,
BM IV: 4.6 GeV ≲ 𝑀𝑍′ ≲ 7GeV

(9.20)

allow to simultaneously accommodate 𝐽/𝜓, 𝜓′, 𝛶 and charm 𝐶𝑃 data. In this scenario, our models also
offer an explanation for the longstanding discrepancy between 𝐹𝜋 extractions from 𝐽/𝜓 → 𝜋+𝜋− decays
and QCD estimates, see e.g. [294]. Hence, our 𝑍′ models can resolve two anomalies at once.

However, recall that our results are subject to sizeable uncertainties from several sources. That is first of
all the uncertainty from the evaluation of hadronic matrix elements, cf. [3]. Moreover, if the 𝑍′ is light
with a mass close to the charm scale sizeable corrections arise to tree-level WET matching, i.e. simply
integrating out the 𝑍′. The proper framework for charm physics in this case would rather be a ’WET+𝑍′’
EFT including the 𝑍′ as dynamical d.o.f., cf. Sec. 2.5. We also neglect 𝐺-parity violating SM contributions
to quarkonia decays, see [295] for details, noting that the tension of 7𝜎 tension for 𝐽/𝜓 data is significant.
Therefore in our analysis we also consider 𝑍′ masses in wider ranges than (9.20).

BM III also features sizeable 𝑍′ couplings to taus and RH neutrinos, which contribute to charmonium
decays. In particular, the measurement of ℬ(𝜓′ → 𝜏+𝜏−) = (3.1 ± 0.4) ⋅ 10−4 implies the allowed 𝑍′ mass
ranges 𝑀𝑍′ ≲ 2.2 GeV and 4.0 GeV ≲ 𝑀𝑍′ ≲ 4.8 GeV, very close to the mass window (9.20) from the
pion form factor. ℬ(𝐽/𝜓 → inv.) < 7 ⋅ 10−4 [155] on the other hand requires either a very light 𝑍′ with
𝑀𝑍′ < 0.7 GeV or the BSM neutrino coupling to the 𝑍′ to be heavier than 𝑚𝐽/𝜓

2 to kinematically forbid
the corresponding decay. This might be achieved via the Dirac inverse see-saw mechanism, see [296], but is
not investigated here.

9.3.2 Leptonic Constraints

We now work out constraints from light 𝑍′ decays in dileptons. In particular, we focus on dark photon
searches via kinetic mixing (cf. Sec. 7.2), which provide severe constraints on electron and muon couplings
[297] in the mass range of 1-100 GeV. A subelectroweak 𝑍′ mixes with the photon via

ℒgauge ⊃ −1
4

( 𝐹 𝜇𝜈

𝐵′𝜇𝜈)
⊺

(
1 𝜂′

𝜂′ 1
) (

𝐹𝜇𝜈
𝐵′

𝜇𝜈
) , (9.21)

where the photon kinetic mixing parameter 𝜂′ can be related to the hypercharge one 𝜂 in (7.2) via
𝜂′ = 𝜂 cos𝛩𝑊. It induces a coupling of the 𝑍′ to the electromagnetic current 𝐽𝜇 which reads

ℒ𝜖 = −𝜖𝑒𝐽𝜇𝑍′
𝜇 with 𝜖 = − 𝜂′

√1 − 𝜂′2
. (9.22)

Experimental search limits on 𝜖 in (9.22) read

|𝜖(𝑀𝑍′)| ≲ 10−3 (9.23)

in both electrons and muons [298, 299]. This can be translated to a bound on 𝑍′ lepton couplings via

𝑔4𝐹𝐿1,2,𝐸1,2
= √8𝜋𝛼𝑒𝜖 ≲ 4 ⋅ 10−4. (9.24)
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Along with the required 𝑍′ coupling strength to 𝑑-quarks from (9.16) this implies a severe suppression of
electron and muon charges

𝐹𝐿1,2,𝐸1,2

𝐹𝐷1

≲ 1
750

(9.25)

for 𝑀𝑍′ ≃ 10 GeV, significantly stronger than the 𝐷-decay and Drell-Yan constraints in Tab. 9.2.
Moreover, the kinetic mixing induced correction to the 𝜌 parameter (7.4) in terms of 𝜖 reads

𝜌 − 𝜌SM

𝜌
= −𝜖2 tan2 𝜃𝑊

2(1 + 𝜖2)
𝑀2

𝑍′

𝑀2
𝑍

+ 𝒪 (𝑀𝑍′

𝑀𝑍
) . (9.26)

It has the opposite sign than the experimental determination (7.5) but is within the 2𝜎 region if

|𝜖(𝑀𝑍)| ≲ 4 ⋅ 10−1 (7 ⋅ 10−2) (9.27)

for 𝑀𝑍′ ≳ 3GeV (𝑀𝑍′ ≳ 15GeV). As the kinetic mixing parameter 𝜖 is not technically natural, simulta-
neously evading the dark photon bound (9.23) at 𝑀𝑍′ and the 𝜌-parameter bound (9.27) at 𝑀𝑍 yields
additional constraints on model parameters. In BM IV, the kinetic mixing fulfills (7.8) and becomes
effectively natural as the leading naturalness breaking term arises only at 2-loop order and is suppressed
by small 𝛼𝑏

3. Hence, for tiny or vanishing 𝜖 both constraints are fulfilled. In BM III in contrast the RG
evolution [3]

𝜖(𝜇) = 𝜖(𝜇0) − 𝛿𝜖 ln( 𝜇
𝜇0

) + 2-loop , with 𝛿𝜖 = 𝑒𝐹𝑔4
3𝜋2 + 𝒪(𝜖) (9.28)

along with 𝐹𝑔4
𝑀𝑍′

≳ 30TeV−1 from (9.16) implies a running

|𝜖(𝑀𝑍) − 𝜖(𝑀𝑍′)| ≳ 10 𝑒
𝜋2

𝑀𝑍′

TeV
ln( 𝑀𝑍

𝑀𝑍′
) ≃ 10−3 (9.29)

between 𝑀𝑍 and 𝑀𝑍′ , where in the last step we used 𝑀𝑍′ ≃ 3 GeV. Hence, dilepton and 𝜌-parameter
bounds can be avoided if |𝜖(𝑀𝑍)| ≃ 𝒪(10−2), i.e. by tuning the contribution at the matching scale (9.27)
at the level of 10%, see [3] for details.
In summary, dark photon bounds on light lepton 𝑈(1)′ charges (9.25) as well as dark photon and

𝜌-parameter bounds on kinetic mixing itself can be simultaneously avoided in both BMs. The key is a
large charge hierarchy |𝐺/𝐹 | ≲ 10−3 and |𝐹𝑒/𝐹𝑑| ≲ 10−3, retrospectively motivating the charge assignment
(9.12), in BM III and IV, respectively, and small 𝜖(𝑀𝑍′).

9.3.3 𝑍′ Decay
𝑍′ branching ratios and total widths obtained from (7.17) are summarized in Tab. 9.3. We learn that the
𝑍′ decays promptly in all BMs with the largest branching ratio to light quarks. For low 𝑀𝑍′ the results
are however not accurate, as rather hadronic than partonic final states have to be considered. Decays
to pairs of electroweak gauge or Higgs bosons are kinematically forbidden. In the same manner, also
ℬ(𝑍′ → 𝑏̄𝑏, ̄𝑐𝑐, 𝜏+𝜏−) are kinematically suppressed or forbidden for a GeV-ish 𝑍′, while they can be sizeable
for 𝑀𝑍′ > 2𝑚𝑓 with 𝑓 = 𝑐, 𝑏, 𝜏. Moreover, all models are muon- and electrophobic. In BM III(-s) the
invisible decay to neutrinos can have a branching ratio in the ballpark of 10%-20%. 𝑍′ decays to pairs of
charged particles receive contributions from kinetic mixing. Generically, the corresponding decay width are

3Recall that the top-quark is uncharged under the 𝑈(1)′ in BM IV.
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Figure 9.6: Production of hadrons in association with missing energy at 𝑒+𝑒− machines in our BM
models. A 𝑞 ̄𝑞-pair is produced via a 𝑠-channel photon and radiates off a 𝑍′ which decays invisibly
to ̄𝜓𝜓 or ̄𝜈𝜈. This process constitutes a smoking-gun signature for the scenario |𝐹𝜓/𝜈| ≳ |𝐹𝑋| with
𝑋 = 𝑄, 𝑈, 𝐷, 𝐿, 𝐸. Figure adapted from [3].

Model light quarks 𝑏 𝑐 𝑒 𝜇 𝜏 𝜈 𝛤𝑍′ [GeV]
BM III|𝑀𝑍′=2.5 GeV 75 0 0 0 0 0 25 2 ⋅ 10−3

BM III|𝑀𝑍′=15 GeV 38 0 37 0 0 12 13 0.8
BM III-s|𝑀𝑍′=2.5 GeV 86 0 0 0 0 0 14 3 ⋅ 10−3

BM III-s|𝑀𝑍′=15 GeV 75 0 0 0 0 12 13 0.8
BM IV|𝑀𝑍′=5 GeV 79 0 21 0 0 0 0 2 ⋅ 10−2

BM IV|𝑀𝑍′=15 GeV 54 28 18 0 0 0 0 0.8

Table 9.3: Fermionic 𝑍′ → ̄𝑓𝑓 branching ratios and total widths 𝛤𝑍′ at tree-level for heavier and
lighter 𝑍′ masses according to (9.17) and (9.20), respectively. Results for BM III(-s) and BM IV are
given for 𝐺 ≪ 𝐹 and the charge assignment (9.12), respectively. Branching ratios differ between the
indicated 𝑍′ masses, as the decays 𝑍′ → 𝑏𝑏̄, 𝑐 ̄𝑐, 𝜏+𝜏− are kinematically forbidden or suppressed for a
GeV-ish 𝑍′. Kinetic mixing induced corrections to branching ratios via (9.30) are generically ≲ 10−7.
Table adapted from [3].

suppressed w.r.t. unmixed ones by a tiny factor 𝜅 that reads

𝜅 ∼
∑𝑓(2𝑁𝑓

𝐶𝑞2
𝑓)𝜖2𝑒2

∑𝑓 𝑁𝑓
𝐶(𝐹 2

𝑓𝐿
+ 𝐹 2

𝑓𝑅
)𝑔2

4
∝ 𝜖2𝑒2

𝑔2
4

, (9.30)

where 𝑞𝑓 denotes the fermion electric charge. In combination with (9.27) and for 𝑔4 = 𝒪(1) we obtain
𝜅 ∼ 10−7. This provides an order of magnitude estimate for kinetic mixing corrections to 𝑍′ branching
ratios, which are negligible for our purposes.

Branching ratios to quarks and leptons can be suppressed by large |𝐹𝜈| ≫ |𝐹𝑢,𝑑,𝑒| in BM IV, cf. Tab. 9.2,
yielding a mainly invisibly decaying 𝑍′. The same can be achieved in all models by adding a SM singlet
VLF 𝜓 with 𝑀𝜓 < 𝑀𝑍′/2 and |𝐹𝜓| ≫ |𝐹𝑋| where 𝑋 = 𝑄, 𝑈, 𝐷, 𝐿, 𝐸 promoting 𝑍′ → ̄𝜓𝜓 to the main
decay mode, in analogy to our approach in Chap. 8 for a heavy 𝑍′. This scenario implies characteristic
signals involving quarks and invisibles. More precisely, the production of hadrons in association with
missing energy from an invisibly decaying 𝑍′ radiated off final-state hadrons constitutes a smoking-gun
signature of this scenario at 𝑒+𝑒− machines, see Fig. 9.6. Unluckily, to our knowledge no experimental
search for this process is available to date. Existing searches for 𝑒+𝑒− → 𝛾ISR + (𝑍′ → 𝜓 ̄𝜓) [300–302] are
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9.4 RG Evolution

Figure 9.7: Scale 𝜇LP of the 𝑈(1)′ Landau pole as a function of 𝑀𝑍′ in BM III (blue line) following
(9.32) and including 30% uncertainty in 𝑎𝑑

𝜋+𝜋− in (9.16) (blue band). The preferred 𝑍′ mass range is
shaded in green. In the presence of a dark VLF, the pole is systematically shifted towards lower scales
(green line). The red shaded area is excluded, as 𝜇LP ≤ 𝑀𝑍′ . The Planckian regime is indicated in
yellow. Figure taken from [3].

significantly less constraining as the corresponding cross sections are strongly suppressed by 𝜖2 or 𝐹 2
𝐸1

even
for ℬ(𝑍′ → 𝜓 ̄𝜓) ≃ 100%. Note however that 𝐹𝜈,𝜓 cannot be arbitrarily large due to the occurrence of
Landau Poles close to the electroweak scale, which is detailed in the next subsection.

9.4 RG Evolution

We now examine the consequences of the required size of the NP contribution in (9.16) on the RG evolution
of our models. Perturbativity of all 𝑈(1)′ fermion couplings, i.e. 𝐹 2

𝑋𝛼4 ≲ 1 ⇔ 𝐹𝑋𝑔4 ≲ 4𝜋, results in an
upper bound

𝑀𝑍′ ≲ 400 GeV (9.31)

on the 𝑍′ mass. However, much stricter constraints arise from demanding the scale 𝜇LP of the notorious
𝑈(1)′ to be above a certain minimal scale 𝜇min. The location of the pole is approximately given by

𝜇LP ≃ 𝑀𝑍′ exp((4𝜋)2𝛬2

𝑀2
𝑍′

) , (9.32)

cf. (3.6), with the NP scale 𝜇0 ≃ 𝑀𝑍′ and a characteristic scale 𝛬. (9.32) implies 𝜇LP ≃ 𝑀𝑍′ for
𝑀𝑍′ ≳ 4𝜋𝛬. Hence, avoiding Landau poles close to 𝑀𝑍′ requires 𝑀𝑍′ ≪ 4𝜋𝛬. With (3.6), we find for 𝛬

1
√𝐵4𝛬

= 𝑔4(𝑀𝑍′)
𝑀𝑍′

≃ 1
30 GeV

, (9.33)
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9 A 𝑈(1)′ Explanation to the U-Spin-CP Anomaly in Charm

where 𝐵4 is the 𝑈(1)′ 1-loop coefficient (3.7) and we applied (9.16) in the last step. Note again that
in this case the characteristic scale is three orders of magnitude lower than for the 𝐵 anomalies, where
√𝐵4𝛬 ≃ 40 TeV, cf. Subsec. 8.1.3 for details. Ideally, in the spirit of PS we would now like to demand
the Landau pole (9.32) to only occur beyond 𝜇min = 𝑀Pl. Due to the low characteristic scale dictated by
(9.33) we find that this option implies quite stringent bounds on the 𝑍′ mass. The location of the Landau
pole as a function of 𝑀𝑍′ is illustrated in more detail in Fig. 9.7 for BM III, where from 𝐵4 = 32

3 𝐹 2 and
(9.33) we obtain 𝛬 ≃ 10 GeV. Here, avoiding Landau poles below 𝜇min = 𝑀Pl (𝜇min = 1TeV) requires
light, subelectroweak

𝑀𝑍′ ≲ 20GeV (81 GeV) , (9.34)

in agreement with mass constraints from dijets (9.17) and quarkonium data (9.20). The Landau pole
appears significantly lower in the presence of a dark VLF 𝜓, which is shown exemplarily for 𝐹𝜓 = 4𝐹.

It is not clear whether PS might still be achievable for a very light, GeV-ish 𝑍′ that pushes the Landau
pole beyond 𝑀Pl. The reason are sizeable uncertainties in our analysis presented above from several sources.
Firstly, we only use the naive 1-loop Landau pole estimate (9.32) in (9.34), which generically gets more
strict when taking into account higher loop orders. Moreover, we so far completely neglected the 𝑈(1)′

breaking scalar 𝜙 which is necessary to generate the 𝑍′ mass. While sizeable phenomenological effects at
low energies can be avoided by choosing a large BSM scalar mass, its quartic couplings might be crucial to
cure the notorious Higgs metastability via the direct or indirect Higgs portal mechanism, cf. Sec. 5.1. At
the same time, its 𝑈(1)′ charge 𝐹𝜙 ≠ 0 enhances the running of 𝛼4 and thereby aggravates the Landau
pole problem. This effect can however be kept under control by choosing a small |𝐹𝜙| ≪ 1. Eventually, a
sizeable uncertainty arises when deploying the running in the full UV model all the way from the EW scale
down to GeV-ish energies as it is potentially subject to large logarithmic corrections, cf. Sec. 2.5. Deriving
a reliable RG flow for a GeV-ish 𝑍′ would therefore rather require to compute the RG flow between the 𝑍′

and EW scale in a ’WET+𝑍′’ EFT, match it to the full BSM model at the EW scale and then deploy the
full BSM RGEs up to 𝑀Pl.

9.5 Summary
Recent LHCb charm data (9.3) along with 𝛥𝐴𝐶𝑃 (9.1) hint at a sizeable violation of two approximate
symmetries of the SM: 𝐶𝑃 and 𝑈-spin, see Fig. 9.1. While hadronic uncertainties in the corresponding
𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− decays are still large, the direct 𝐶𝑃 asymmetries (9.4) taken at face value can be
interpreted as a hint for NP.
In this chapter we explored the reach of flavorful 𝑈(1)′ models as a BSM explanation for charm 𝐶𝑃

data. The shape of viable models is severely narrowed down by various experimental and theoretical
constraints. Nevertheless, we identified three BMs Tab. 9.1 which fulfill all relevant constraints, most
importantly from 𝐷-mixing, rare 𝐷 decays, dijets and dark photon searches. In consequence, the BMs
exhibit very characteristic patterns: they feature a light, subelectroweak 𝑍′ of ≲ 20 GeV, which is muon-
and electrophobic and couples only to 𝑆𝑈(2)𝐿 singlet fermions. Moreover, they imply specific signals
such as sizeable 𝐴𝐶𝑃(𝜋+,0𝜋0) and enhanced 𝜋+𝜋−, 𝐷̄𝐷 (, 𝜏+𝜏−, ̄𝜈𝜈) production. The models might also
be able to address the large isospin breaking in 𝜓(3770) → 𝐷+𝐷−, 𝐷̄0𝐷0 decays [155] and in case of BM
IV potentially the 𝑈-spin puzzle in hadronic 𝐵 decays [303]. This has however to be clarified by future
investigations.

BM III and IV can be further probed in charmonium decays. Interestingly, a very light 𝑍′ of 𝑀𝑍′ ≃ 3 GeV
in BM III or 𝑀𝑍′ ≃ 4−7 GeV in BM IV also allows to explain the measured enhancement of 𝐽/𝜓, 𝜓′ → 𝜋+𝜋−

branching ratios and to thereby resolve the longstanding pion formfactor discrepancy between extraction
from 𝑒+𝑒− data and 𝐽/𝜓, 𝜓′ decays, see Fig. 9.5. Models may also feature large couplings to neutrinos or
dark VLFs. This scenario can be tested at 𝑒+𝑒− machines in final states involving hadrons and missing
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9.5 Summary

energy, cf. Fig. 9.6, but is also constrained by demanding a controlled RG evolution.
The presented 𝑈(1)′ BM models are generically plagued by a low energy 𝑈(1)′ Landau pole close above

the matching scale, which prevents us from establishing PS in our BMs. The reason for this is the in
comparison to the 𝐵 anomalies discussed in Chap. 8 very low characteristic scale (9.33) implied by data.
Nearby poles can therefore only be avoided if the 𝑍′ is quite light with 𝑀𝑍′ ≲ few × 10 GeV, see Fig. 9.7.

It remains as a future task to rigorously check whether PS might be achievable for a very light 𝑍′ in the
GeV range. Recall that the accuracy of our our RG analysis in Sec. 9.4 for this scenario was quite limited.
A robust PS analysis would in contrast be rather complex and require to compute the RG flow up to full
2-loop order, explicitly including the full scalar sector and in a ’WET+𝑍′’ EFT. It would then have to be
matched onto the full UV model at the EW scale and evolved further to the Planck scale using full BSM
RGEs.
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10 Conclusion and Outlook

In this thesis we demonstrated the power of the RG based concept of Planck safety as a guideline for
BSM model building. In particular, we worked out several fundamental RG mechanisms towards PS in
minimal models at full 2-loop accuracy and systematically scrutinized their complete BSM parameter spaces.
We also investigated the interplay and complementarity between Planck safety and BSM phenomenology.
Thereby, we pointed out corresponding synergies in both minimal and more sophisticated models, such as
𝑈(1)′ extensions addressing flavor anomalies in the beauty and charm sector.

After revisiting the full 2-loop RGEs of gauge-Yukawa theories and especially the SM we introduced the
notion of PS as bottom-up counterpart to AS in Chap. 3. Planck-safe models by definition exhibit a well
behaved RG evolution of couplings without any Landau poles or vacuum instabilities all the way up to
the Planck scale 𝑀Pl ≃ 1019 GeV where quantum gravity effects are expected to set in. In particular, PS
requires to cure the notorious SM Higgs metastability. Demanding PS then results in bounds on BSM model
parameters which are widely independent of and complementary to experimental constraints. Thereby, PS
greatly enhances the predictivity of BSM models which also motivates its application in phenomenologically
driven model building.

To start with, we investigated PS in SM extensions featuring BSM vector-like fermions, singlet scalars or
both in Chap. 4, Chap. 5 and Chap. 6, respectively. In particular, we worked out the basic, underlying RG
mechanisms for PS in these models taking into account higher loop effects and systematically scanned the
complete available parameter spaces spanned by BSM masses, multiplicities, charges and couplings.
In VLF models (Chap. 4) we identified the strong and novel electroweak gauge portal mechanisms as

minimal pathways to PS. They are based on the presence of SM charged BSM matter that enhances
the running of gauge couplings. This results in an uplift of the Higgs quartic, which in wide ranges of
masses and multiplicities allows to achieve vacuum stability without inducing subplanckian Landau poles.
Moreover, for thirteen suitable VLF representations 𝜓 renormalizable mixed SM-BSM Yukawa portals à la
𝜅 ̄𝜓𝐻𝑓SM are available. If sizeable, they offer a unique way to tame potential poles in the gauge sector and
induce PS in strongly coupled walking via the newly established Yukawa portal mechanism. While VLF
models without Yukawa portal are hardly experimentally constrained, the portal coupling induces fermionic
mixing, VLF decays and if flavorful FCNCs, which can result in mass bounds of up to a few 100 TeV.

In Chap. 5 we then turned to SM extensions based on singlet scalars 𝑆. Generically, the models feature
a more complex scalar potential, exhibiting a Higgs portal coupling 𝛿(𝐻†𝐻)(𝑆†𝑆) as well as pure BSM
quartics. The portal coupling enhances the running of the Higgs quartic 𝛼𝜆 and promotes Higgs stability
via the direct Higgs portal mechanism. Notably, we demonstrated that stability can also be achieved for
tiny values of the portal coupling via the indirect Higgs portal mechanism. In this case, sizeable pure BSM
quartics induce a fast RG growth of the portal coupling and thereby eventually also of 𝛼𝜆. BSM vacuum
stability conditions interestingly also allow for negative values of BSM quartics. While negative portal
couplings although allowed by stability are found to be entirely excluded by PS, pure BSM couplings of
flavorful 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) matrix scalars are compatible with PS, enabling also the flavor-asymmetric
vacuum configuration 𝑉 −. After SSB, the Higgs portal induces mass mixing between the SM and BSM
Higgs mode. This generically results in a reduction of most Higgs couplings, such as the triple Higgs or
ℎ𝑍𝑍 coupling, which is however controlled by the small mixing angle. Crucially, the mixing also induces an
unsuppressed enhancement of the Higgs quartic self-interaction of a factor a few or even larger, providing a
novel smoking gun signatures of our models with experimental prospects at future hadron machines even
for very heavy BSM scalars.
Combining the presented minimal BSM sectors in Chap. 6 we afterwards focused on a more complex

model featuring VLQs and matrix scalars. Here, key to PS is a large value of the new BSM Yukawa
coupling 𝑦 ̄𝜓𝑖𝑆𝑖𝑗𝜓𝑗 which induces walking regimes and allows to push the notorious hypercharge pole beyond
the Planck scale. In the pole free parts of the parameter space, vacuum stability can then arise through
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the interplay of the gauge, Yukawa and Higgs portal mechanisms. Phenomenologically, the models are
probed in direct and indirect searches. Crucially, SMEFT fits for some models and vacuum configurations
allow to completely exclude PS from TeV-ish NP. In particular, combined mass bounds can exceed those
from measuring the running of gauge couplings and from direct searches. If not too heavy, BSM parti-
cles are singly and pair produced at colliders. This implies novel characteristic signals such as resonant
𝜓 → 𝑑𝑆 → 𝑑 ̄𝑑𝑑, 𝑑𝑔𝑔 decays to three-jet final states.

In the remainder of this thesis we aimed at achieving PS in flavorful 𝑍′ models addressing flavor anomalies
which we introduced in Chap. 7. The 𝑍′ can induce FCNC couplings via generation dependent charges but
is subject to various experimental and theoretical constraints from anomaly cancellation, EW precision
observables and meson mixing. Moreover, 𝑍′ models for flavor anomalies generically feature subplanckian,
low energy Landau poles, that have to be tamed by an extended BSM Yukawa sector.
In Chap. 8 we constructed four Planck-safe 𝑍′ models explaining the ongoing anomalies observed in

𝑏 → 𝑠𝜇+𝜇− transitions. While the heavy 𝑍′ is key to explain the flavor data by inducing WET WCs
𝐶𝜇

9 − 𝐶𝜇
10 ≃ −1, PS is achieved via the inclusion of singlet VLFs and a matrix scalar featuring a large

BSM Yukawa coupling 𝛼𝑦. Strong bounds on model parameters arise in particular from 𝐵𝑠-mixing and
dimuon Drell-Yan searches which typically imply a heavy 𝑍′ of 𝑀𝑍′ ≳ 5TeV. Interestingly, Planck-safe 𝑍′

explanations predict a dominantly invisibly decaying 𝑍′, providing a characteristic signature at colliders.
We also tried to modify our models in order to accommodate the latest LHCb measurement of 𝑅𝐾(∗) ≃ 1
[234, 235] which now to good accuracy suggest 𝜇-𝑒-universality in rare 𝐵 decays. In particular, we analyzed
scenarios with 𝜇-𝑒-universal charge assignments, imaginary semileptonic WCs, 𝜏-loop induced 𝑏 → 𝑠ℓ+ℓ−

transitions as well as 3-3-1 models. However, it turned out that each ansatz was excluded by different
constraints, respectively, showing that simultaneously accommodating all relevant experimental data in
BSM models based on a single 𝑍′ is a rather involved task.
Moving to charm physics, in Chap. 9 we exploited the possibility to explain the sizeable violations of

𝑈-spin and 𝐶𝑃 in 𝐷0 → 𝐾+𝐾−, 𝜋+𝜋− decays indicated by LHCb [56, 57] in a 𝑍′ model. Surprisingly,
charm 𝐶𝑃 asymmetries in combination with 𝐷-mixing bounds suggest a subelectroweak 𝑍′ while the
large required coupling generically excludes PS due to low-energy Landau poles. The models are severely
constrained by rare 𝐷-decays, dijets and dark photon searches which imply a light, leptophobic 𝑍′ of
≲ 20 GeV. A GeV-ish 𝑍′ is further probed in 𝛶 and charmonium decays. Notably, it also allows to resolve
the longstanding pion formfactor discrepancy between extraction from 𝑒+𝑒− → 𝜋+𝜋− and 𝐽/𝜓 → 𝜋+𝜋− data.

By and large, in this thesis we demonstrated that Planck safety is a powerful and well-motivated tool for
BSM model building. To date, the overall number of anomalies in particle physics is small and decreasing.
Hence, the possibility of a great desert without NP up to energies possibly as high as the Planck scale
has to be taken for real. This calls for novel directions in model building. The core focus on a safe RG
evolution up to highest energies therefore promotes Planck safety to a prime candidate to cross the desert.
The implied characteristic links between the UV fate and the low-energy phenomenology of BSM models
thereby further augment the rich future prospects of Planck safety.

In order to fully exploit the potential of Planck safety, several open questions remain to be addressed in
future works. Most importantly, the generically large coupling values in walking regimes sourced by the
Yukawa or Higgs portal mechanism call for a dedicated analysis at higher loop orders in order to infer their
perturbative persistence and stability. Moreover, minimal BSM models featuring charged scalars such as
leptoquarks provide ideal natural laboratories to further investigate the interplay of the gauge, Yukawa and
Higgs portal mechanisms and invite future studies. Finally, the successful projects presented in this thesis
motivate the application of Planck safety also in other areas of phenomenologically driven model building
such as cosmology, dark matter or neutrino physics. We are looking forward to further pursue this exciting
endeavor in the future.
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A Notations, Conventions and Parameters

Within this thesis we work in natural units, i.e. we set ℏ = 𝑐 = 1, where ℏ denotes the reduced Planck
constant and 𝑐 is the speed of light. Hence, all physical observables have dimensions of (inverse) powers of
energy, typically given in powers of electron volt (eV).

A.1 Chiral Fermion Fields
Chiral fermion fields

𝜓 = 𝜓𝐿 + 𝜓𝑅, ̄𝜓 = 𝜓𝐿 + 𝜓𝑅 (A.1)

consist of a LH 𝜓𝐿 = 𝑃𝐿𝜓 and RH 𝜓𝑅 = 𝑃𝑅𝜓 component with the chirality projectors

𝑃𝐿 = 1 − 𝛾5

2
, 𝑃𝑅 = 1 + 𝛾5

2
. (A.2)

where the fifth Dirac matrix is defined as

𝛾5 = i𝛾0𝛾1𝛾2𝛾3 = i
4!

𝜖𝜇𝜈𝜌𝜎𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎 (A.3)

and 𝜖𝜇𝜈𝜌𝜎 denotes the totally anti-symmetric tensor of rank four obeying 𝜖0123 = 1. Furthermore, it holds

𝜓𝐿,𝑅 = 𝜓†
𝐿,𝑅𝛾0 = ̄𝜓𝑅,𝐿 (A.4)

A detailed overview of the Dirac algebra as well as explicit expressions for Dirac matrices and fermion
spinors can be found in [64, 65].

A.2 Experimental Input Parameters
In this section we give all relevant experimental input parameters that have been used in this thesis, which
were mostly taken from the PDG [155].

The SM gauge, Yukawa and quartic couplings

𝛼𝑖 = 𝑔2
𝑖

16𝜋2 , 𝛼𝑡,𝑏 =
𝑦2

𝑡,𝑏

16𝜋2 , 𝛼𝜆 = 𝜆
16𝜋2 , (A.5)

were extracted with great accuracy at 𝜇ref = 200GeV in the MS-scheme in [162] and read

𝛼1(𝜇ref) = 8.15474 ⋅ 10−4, 𝛼2(𝜇ref) = 2.64950 ⋅ 10−3, 𝛼3(𝜇ref) = 8.41148 ⋅ 10−3,
𝛼𝑡(𝜇ref) = 5.40400 ⋅ 10−3, 𝛼𝑏(𝜇ref) = 1.48916 ⋅ 10−6, 𝛼𝜆(𝜇ref) = 7.82285 ⋅ 10−4, (A.6)

where we neglected all other fermion Yukawa couplings due to their numerical smallness.
The Fermi constant 𝐺𝐹 (2.30) and weak mixing angle in the MS-scheme at the 𝑍-boson mass are given

as [155]
𝐺𝐹 = 1.1663788(6) × 10−5 GeV−2, sin2 𝜃𝑊(𝑀𝑍) = 0.23121(4) , (A.7)

respectively.
We now turn to the masses of SM particles. The electroweak and Higgs boson masses read [155]

𝑀𝑊 = 80.377 ± 0.012GeV, 𝑀𝑍 = 91.1876 ± 0.0021GeV, 𝑀ℎ = 125.25 ± 0.17GeV . (A.8)
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A.2 Experimental Input Parameters

The SM lepton masses are determined to

𝑚𝑒 = 511.0 keV, 𝑚𝜇 = 105.66MeV, 𝑚𝜏 = 1.777GeV, (A.9)

with negligible errors [155]. Furthermore, the quark masses in the MS-scheme are given as

𝑚𝑢(2GeV) = 2.16+0.49
−0.26 MeV, 𝑚𝑑(2GeV) = 4.67+0.48

−0.17 MeV, 𝑚𝑠(2GeV) = 93.4+8.6
−3.4 MeV,

𝑚𝑐(𝑚𝑐) = 1.27 ± 0.02GeV, 𝑚𝑏(𝑚𝑏) = 4.18+0.03
−0.02 GeV 𝑚𝑡(𝑚𝑡), = 162.5+2.1

−1.5 GeV . (A.10)

The absolute values of CKM matrix elements numerically are [155]

|𝑉CKM| = ⎛⎜
⎝

0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011
0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085

−0.00074
0.00857+0.00020

−0.00018 0.04110+0.00083
−0.00072 0.999118+0.000031

−0.000036

⎞⎟
⎠

. (A.11)

Equivalently, they can be obtained in the Wolfenstein parametrization (2.27) from the parameters [155]

𝜆 = 0.22500 ± 0.00067, 𝐴 = 0.826+0.018
−0.015, 𝜌 = 0.159 ± 0.010, 𝜂 = 0.348 ± 0.010 . (A.12)

Furthermore we make use of the following meson and quarkonium masses [155]

𝑚𝐵0 = 5.27965(12)GeV , 𝑚𝐵± = 5.27934(12)GeV , 𝑚𝐵0
𝑠

= 5.36688(14)GeV ,
𝑚𝐷0 = 1.86484(5)GeV , 𝑚𝐷± = 1.86966(5)GeV ,

𝑚𝐾0 = 497.611(13)MeV , 𝑚𝐾± = 493.677(16)MeV , 𝑚𝐾∗ = 845(17)MeV ,
𝑚𝜋0 = 134.9768(5)MeV , 𝑚𝜋± = 139.57039(18)MeV ,
𝑚𝐽/𝜓 = 3.096900(6)GeV , 𝑚𝜓′ = 3.68610(6)GeV , 𝑚𝛶 (1𝑠) = 9.46040(10)GeV .

(A.13)
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B Details on Planck Safety in Minimal VLF Models

In this appendix we give some additional surface plots illustrating Planck safety in minimal VLF models.

B.1 Gauge Portal
B.1.1 Higher Loop Orders

(a) The strong gauge portal at 222
loop order, same as Fig. 4.1a.

(b) The strong gauge portal at 432
loop order.

(c) The weak gauge portal at 222
loop order, same as Fig. 4.2a.

(d) The weak gauge portal at 432
loop order.

(e) The hypercharge portal at 222
loop order, same as Fig. 4.3a.

(f) The hypercharge portal at 432
loop order.

Figure B.1: Gauge portals at different loop orders. Shown are the BSM critical surfaces in the
(𝑁𝐹, 𝑀𝐹) plane for the strong (a, b), weak (c, d) and hypercharge (e, f) portal with indicated VLF
representations at loop order 222 and 432 in the gauge, Yukawa and scalar sector, respectively. While
the first ansatz takes into account the same loop order for all couplings, the latter applies the highest
available loop order in each sector. The BSM critical surfaces are for all portals basically identical in
both scenarios. Same color coding as Fig. 4.1a.
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B.1 Gauge Portal

B.1.2 Higher Representations

(a) 𝑑3 = 3, same as Fig. 4.1a. (b) 𝑑3 = 6. (c) 𝑑3 = 8.

Figure B.2: The strong gauge portal at full 2-loop order for VLFs charged as (0, 1, 𝑑3) for 𝑑3 = 3 (a)
and higher representations 𝑑3 = 6, 8 (b, c) under 𝑆𝑈(3)𝐶. Shown is the BSM critical surface in the
(𝑁𝐹, 𝑀𝐹) plane. Same color coding as Fig. 4.1. For higher 𝑑3 the Planck safety window is systematically
shifted towards lower 𝑁𝐹 and shrinks (Note the different scaling of the 𝑁𝐹-axes).

(a) 𝑑2 = 2, same as Fig. 4.2a. (b) 𝑑2 = 3.

Figure B.3: Weak portal at full 2-loop order for a SM extensions with VLLs charged as (0, 𝑑2, 1)
under the SM. Shown is the BSM critical surface of the in the (𝑁𝐹, 𝑀𝐹) plane for 𝑑2 = 2 (a) and
𝑑2 = 3 (b). The stability window shrinks for higher representations (Note the different scaling of the
𝑁𝐹-axes). Same color coding as Fig. 4.1.
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B Details on Planck Safety in Minimal VLF Models

(a) 𝑌𝐹 = 1
2 , same as Fig. 4.3a. (b) 𝑌𝐹 = 2

3 . (c) 𝑌𝐹 = 4
3 .

Figure B.4: Hypercharge portal at full 2-loop order for a SM extensions with VLLs charged as
(𝑌𝐹, 1, 1) under the SM. Shown is the BSM critical surface of the in the (𝑁𝐹, 𝑀𝐹) plane for 𝑌𝐹 = 1

2 (a),
𝑌𝐹 = 2

3 (b) and 𝑌𝐹 = 4
3 (c). The stability window in 𝑁𝐹 is significantly reduced for higher 𝑌𝐹 (note the

different scaling of the 𝑁𝐹-axes). Same color coding as Fig. 4.1.

B.2 Yukawa Portal
B.2.1 Higher Loop Orders

(a) The Yukawa portal at 222 loop order, as Fig. 4.8a. (b) The Yukawa portal at 432 loop order.

Figure B.5: The Yukawa portal at different loop orders. Exemplarily shown are the BSM critical
surfaces in the (𝑁𝐹, 𝑀𝐹) plane in model M featuring 𝑁𝐹 = 1 VLF charged as ( 5

6 , 2, 3) under the SM at
loop order 222 (a) and 432 (b) in the gauge, Yukawa and scalar sector, respectively. While the first
ansatz takes into account the same loop order for all couplings, the latter applies the highest available
loop order in each sector. At order 432 the Yukawa portal disappears due to Landau poles in the
Yukawa sector. However, walking regimes sourcing the Yukawa portal mechanism at 222 typically also
attract the Higgs quartic at similarly sizeable values as the Yukawas 𝛼𝜆 ≃ 𝒪(10−1). Therefore the 432
approximation seems inconsistent. Same color coding as Fig. 4.1a.
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C Scalar Mixing

In this appendix we discuss in detail scalar mass mixing in BSM models with additional singlet scalars.
The canonically normalized kinetic and mass terms for a single, free scalar field 𝑆 read

ℒ𝑆 = 𝒩
2

(∂𝜇𝑆)†∂𝜇𝑆 − 𝒩
2

𝑚2
𝑆𝑆†𝑆 (C.1)

where 𝒩 = 2 (𝒩 = 1) for a complex (real) scalar field. If there is SSB in the BSM sector, a VEV 𝑣𝑠 and a
real BSM Higgs mode 𝑠 emerge as

𝑆 = 1√
𝒩

(𝑠 + 𝑣𝑠) + … (C.2)

together with additional components indicated by (… ) depending on the details of the scalar sector. In the
𝑂(𝑁𝑆) model, SSB yields an additional scalar field 𝜙 in the fundamental representation of the remaining
𝑂(𝑁𝑆 − 1) symmetry:

𝑂(𝑁𝑆) ∶ 𝑆 = (𝑣𝑠 + 𝑠, 𝜙1, … , 𝜙𝑁𝑆−1)𝑇 . (C.3)

In the 𝑆𝑈(𝑁𝐹)𝐿 × 𝑆𝑈(𝑁𝐹)𝑅 model in contrast after SSB we always additionally obtain a pseudo-real
singlet ̃𝑠 as the scalar field is complex valued. In the vacuum configuration 𝑉 − the scalar symmetry is
broken as 𝑆𝑈(𝑁𝐹)𝐿 × 𝑆𝑈(𝑁𝐹)𝑅 → 𝑆𝑈(𝑁𝐹 − 1)𝐿 × 𝑆𝑈(𝑁𝐹 − 1)𝑅, which gives rise to additional fields 𝜙𝐿,𝑅
and 𝛷 in the decomposition

𝑆 =
⎛⎜⎜⎜⎜
⎝

1√
2(𝑣𝑠 + 𝑠 + 𝑖 ̃𝑠) 𝜙1

𝑅 … 𝜙𝑁𝐹−1
𝑅

𝜙1
𝐿 𝛷1,1 … 𝛷1,𝑁𝐹−1

⋮ ⋮ ⋮
𝜙𝑁𝐹−1

𝐿 𝛷𝑁𝐹−1,1 … 𝛷𝑁𝐹−1,𝑁𝐹−1

⎞⎟⎟⎟⎟
⎠

. (C.4)

Here, 𝜙𝐿,𝑅 are in the fundamental and singlet representation under 𝑆𝑈(𝑁𝐹 − 1)𝐿,𝑅 and 𝑆𝑈(𝑁𝐹 − 1)𝑅,𝐿,
respectively, whereas 𝛷 is bifundamental. In 𝑉 + on the other hand, the breaking proceeds as 𝑆𝑈(𝑁𝐹)𝐿 ×
𝑆𝑈(𝑁𝐹)𝑅 → 𝑆𝑈(𝑁𝐹)𝑉. This yields the pseudoreal adjoints 𝑅 and 𝐼, respectively, and implies the
decomposition

𝑆𝑖𝑗 =
𝛿𝑖𝑗

√2𝑁𝐹
(𝑣𝑠 + 𝑠 + 𝑖 ̃𝑠) + (𝑅𝑎 + 𝑖𝐼𝑎) 𝑡𝑎

𝑖𝑗 , (C.5)

where 𝑡𝑎
𝑖𝑗 denote the (traceless) generators of 𝑆𝑈(𝑁𝐹)𝑉. Expressing the unbroken scalar potentials

𝑉𝑂(𝑁𝑆)(𝐻, 𝑆) = − 𝜇2
𝐻𝐻†𝐻 − 1

2
𝜇2

𝑆𝑆𝑇𝑆 + 𝜆(𝐻†𝐻)2 + 𝑣(𝑆𝑇𝑆)2 + 𝛿 (𝐻†𝐻)(𝑆𝑇𝑆), (C.6)

𝑉𝑆𝑈(𝑁𝐹)2(𝐻, 𝑆) = − 𝜇2
𝐻𝐻†𝐻 − 𝜇2

𝑆 Tr [ 𝑆†𝑆] + 𝜆(𝐻†𝐻)2 + 𝑢Tr [𝑆†𝑆𝑆†𝑆] + 𝑣 [Tr𝑆†𝑆]2 + 𝛿 (𝐻†𝐻)Tr [𝑆†𝑆] ,
(C.7)

cf. (5.8) and (5.14), through the scalar field components after SSB yields very long expressions. However,
mixing with the SM Higgs boson solely arises from the part of the potential depending on the SM ℎ and
BSM 𝑠 Higgs modes. It can be model-independently parametrized as (5.23)

𝑉 (ℎ, 𝑠) = −𝜇2
𝐻
2

(ℎ + 𝑣ℎ)2 − 1
2

𝜇2
𝑆(𝑠 + 𝑣𝑠)2 + 𝜆

4
(ℎ + 𝑣ℎ)4 + 𝛥

𝒩2 (𝑠 + 𝑣𝑠)4 + 𝛿
2𝒩

(ℎ + 𝑣ℎ)2(𝑠 + 𝑣𝑠)2 (C.8)

which falls back to the model-specific expressions for

𝑂(𝑁𝑆) ∶ 𝒩 = 1, 𝛥 = 𝑣 , 𝑉 + ∶ 𝒩 = 2, 𝛥 = 𝑢
𝑁𝐹

+ 𝑣 , 𝑉 − ∶ 𝒩 = 2, 𝛥 = 𝑢 + 𝑣 . (C.9)
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C Scalar Mixing

Minimizing the potential (C.8) via d𝑉 (ℎ, 𝑠)/dℎ = d𝑉 (ℎ, 𝑠)/d𝑠 = 0 implies the conditions

𝜇2
𝐻 = 𝜆𝑣2

ℎ + 𝛿
𝒩

𝑣2
𝑠 , 𝜇2

𝑆 = 4𝛥
𝒩2 𝑣2

𝑠 + 𝛿
𝒩

𝑣2
ℎ . (C.10)

The quadratic terms in the broken potential (C.8) then correspond to mass terms for the real scalars ℎ and
𝑠 according to

𝑉 (ℎ, 𝑠) ⊂ +1
2

𝑚2
ℎℎ2 + 1

2
𝑚2

ℎ𝑠ℎ𝑠 + 1
2

𝑚2
𝑠𝑠2 . (C.11)

Reading off the explicit expressions for the mass terms

𝑚2
ℎ = d2𝑉 (ℎ, 𝑠)

dℎ2 ∣
ℎ,𝑠=0

=2𝜆𝑣2
ℎ, 𝑚2

ℎ𝑠 =2d
2𝑉 (ℎ, 𝑠)
dℎd𝑠

∣
ℎ,𝑠=0

= 4
𝒩

𝛿𝑣ℎ𝑣𝑠, 𝑚2
𝑠 = d2𝑉 (ℎ, 𝑠)

d𝑠2 ∣
ℎ,𝑠=0

= 8
𝒩2 𝛥𝑣2

𝑠

(C.12)
additionally yields

𝑣2
ℎ = 𝑚2

ℎ
2𝜆

, 𝑣2
𝑠 = 𝒩2𝑚2

𝑠
8𝛥

, 𝑚2
ℎ𝑠 = 𝛿√

𝜆𝛥
𝑚ℎ𝑚𝑠 . (C.13)

Moreover, we define the mass matrix

𝑀2 = ( 𝑚2
𝑠 𝑚2

ℎ𝑠/2
𝑚2

ℎ𝑠/2 𝑚2
ℎ

) = (
8

𝒩2 𝛥𝑣2
𝑠

2
𝒩𝛿𝑣ℎ𝑣𝑠

2
𝒩𝛿𝑣ℎ𝑣𝑠 2𝜆𝑣2

ℎ
) (C.14)

such that

1
2

(𝑠, ℎ)𝑀2 (𝑠
ℎ) = 1

2
𝑚2

𝑠𝑠2 + 1
2

𝑚2
ℎ𝑠ℎ𝑠 + 1

2
𝑚2

ℎℎ2 = 4
𝒩2 𝛥𝑣2

𝑠𝑠2 + 2
𝒩

𝛿𝑣ℎ𝑣𝑠𝑠ℎ + 𝜆𝑣2
ℎℎ2. (C.15)

The scalars ℎ and 𝑠 now mix into mass eigenstates ℎ′ and 𝑠′ via

(𝑠′

ℎ′) = 𝑂 (𝑠
ℎ) (C.16)

with the orthogonal mixing matrix

𝑂 = ( cos𝛽 sin𝛽
− sin𝛽 cos𝛽) . (C.17)

Demanding the (1,2) element of the diagonalized mass matrix

𝑀 ′2 = 𝑂𝑀2𝑂𝑇 (C.18)

to vanish, we obtain the relation

tan 2𝛽 = 𝑚2
ℎ𝑠

𝑚2
𝑠 − 𝑚2

ℎ
=

4
𝒩𝛿𝑣ℎ𝑣𝑠

( 8
𝒩2 𝛥𝑣2

𝑠 − 2𝜆𝑣2
ℎ)

= 𝛿√
𝜆𝛥

𝑚ℎ𝑚𝑠
𝑚2

𝑠 − 𝑚2
ℎ

. (C.19)

for the mixing angle 𝛽. From the other components of (C.18) we obtain the additional relations

𝑚2
𝑠 = cos2 𝛽 𝑚2

𝑠′ + sin2 𝛽 𝑚2
ℎ′ , 𝑚2

ℎ = cos2 𝛽 𝑚2
ℎ′ + sin2 𝛽 𝑚2

𝑠′ , sin 2𝛽 = 𝑚2
ℎ𝑠

𝑚2
𝑠′ − 𝑚2

ℎ′
, (C.20)
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where in the main part of this thesis we denote the physical scalar masses as

𝑚ℎ′ = 𝑀ℎ = 125 GeV , 𝑚𝑠′ = 𝑀𝑠. (C.21)

We see that for 𝑚𝑠′ > 𝑚ℎ′ as well as 𝛿 > 0 (and thus 𝑚2
ℎ𝑠 > 0) as required by PS we always obtain a

positive mixing angle 𝛽 > 0. Moreover, for 𝑚𝑠′ > 𝑚ℎ′ it holds 𝑚2
ℎ′ ≤ 𝑚2

𝑠, 𝑚2
ℎ ≤ 𝑚2

𝑠′ , where 𝑚′
𝑠 ≃ 𝑚𝑠,

𝑚′
ℎ ≃ 𝑚ℎ in the small angle approximation 0 < 𝛽 ≪ 1. Note that this approximation works well for 𝑚′

𝑠
but breaks down for 𝑚′

ℎ as soon as 𝛽𝑚′
𝑠 ≳ 𝑚′

ℎ.
Alternatively, from explicitly diagonalizing 𝑀2 we obtain for the masses of the physical scalars ℎ′, 𝑠′

𝑚2
𝑠′,ℎ′ = 𝑚2

𝑠 + 𝑚2
ℎ

2
∓ 𝑚2

𝑠 − 𝑚2
ℎ

2
√1 +

𝑚4
ℎ𝑠

(𝑚2
𝑠 − 𝑚2

ℎ)2 = 𝑚2
𝑠 + 𝑚2

ℎ
2

∓ 𝑚2
𝑠 − 𝑚2

ℎ
2

√1 + 𝛿2

𝜆𝛥
𝑚2

ℎ𝑚2
𝑠

(𝑚2
𝑠 − 𝑚2

ℎ)2 (C.22)

where 𝑚2
𝑠′ > 𝑚2

𝑠 and 𝑚2
ℎ′ < 𝑚2

ℎ. Vice versa, we can express

𝑚2
𝑠,ℎ =

𝑚2
𝑠′ + 𝑚2

ℎ′

2
∓

𝑚2
𝑠′ − 𝑚2

ℎ′

2
√1 − 4𝛿2

4𝜆𝛥 − 𝛿2
𝑚2

ℎ′𝑚2
𝑠′

(𝑚2
𝑠′ − 𝑚2

ℎ′)2 (C.23)

Note that demanding 𝑚2
𝑠, 𝑚2

ℎ > 01 with (C.20) implies the condition

|𝛿| < 4
√

𝜆𝛥
𝑚2

𝑠′ − 𝑚2
ℎ′

𝑚2
𝑠′ + 𝑚2

ℎ′
. (C.24)

Note also that equating the unrotated 𝑚2
ℎ in (C.12) and (C.23) fixes 𝜆 as

𝜆 =𝜆SM + 1
4𝑣2

ℎ

⎛⎜
⎝

𝑚2
𝑠′ − 𝑚2

ℎ′ + 𝛿2

2𝛥
𝑣2

ℎ − √(𝑚2
𝑠′ − 𝑚2

ℎ′)2 − 2(𝑚2
𝑠′ + 𝑚2

ℎ′)
𝛿2

2𝛥
𝑣2

ℎ + ( 𝛿2

2𝛥
𝑣2

ℎ)
2
⎞⎟
⎠

=𝜆SM + 𝛿2

4𝛥
(1 +

𝑚2
ℎ′

𝑚2
𝑠′

+ 𝒪 (
𝑚4

ℎ′

𝑚4
𝑠′

))

(C.25)

where 𝜆SM = 𝑚2
ℎ′

2𝑣2
ℎ
.

We briefly comment on a possible contribution −𝜇𝑑𝑒𝑡(𝑑𝑒𝑡(𝑆) + 𝑑𝑒𝑡(𝑆†)) to the scalar potential (C.7) in
the 𝑆𝑈(𝑁𝐹) × 𝑆𝑈(𝑁𝐹) model, which is explicitly allowed by the global symmetries. For 𝑁𝐹 = 3 𝜇𝑑𝑒𝑡 is
dimensionful and therefore negligible in the RG flow. Nevertheless, in 𝑉 + it gives rise to an additional term
−𝜇𝑑𝑒𝑡(𝑠 + 𝑣𝑠)3/(

√
2√𝑁𝐹

3) in the broken potential 𝑉 (ℎ, 𝑠) (C.8) that contributes to the trilinear Higgs
coupling 𝜅3 as 𝜇𝑑𝑒𝑡 sin3 𝛽/(

√
2√𝑁𝐹

3). Due to the strong suppression by the small mixing angle (and the
multiplicity 𝑁𝐹) this contribution is negligible for the phenomenological analysis. However, the presence
of 𝜇𝑑𝑒𝑡 changes the BSM minimization condition in (C.10) to 𝜇2

𝑆 = 𝛥𝑣2
𝑠 + 𝛿

2𝑣2
ℎ − 𝑣𝑠𝜇𝑑𝑒𝑡

√2𝑁𝐹
. This alters the

relation (C.12) between the BSM scalar mass and VEV to 𝑚2
𝑠 = 2𝛥𝑣2

𝑠 − 𝑣𝑠𝜇𝑑𝑒𝑡
√2𝑁𝐹

, introducing a dependence
of 𝑣𝑠 on 𝜇𝑑𝑒𝑡 for a fixed BSM mass. This does not change the sign of the mixing angle but complicates the
parameter space analysis by adding another d.o.f.. Hence, we neglect 𝜇𝑑𝑒𝑡 for the purpose of this work. We
also stress that no such contribution to the broken potential arises in 𝑉 −.

1By this choice we avoid spontaneous 𝐶𝑃 violation from complex VEVs.
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