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Introduction

“There is a logical inconsistency in physics and physicists do not care about it.
Where is the scientific rationality, that is supposed to distinctively characterise
this discipline?” Admittedly, this is a very provocative take on the paradox
of phase transitions, but it illustrates that even a rather special topic in the
philosophy of science like this, which is neither a pressing foundational issue nor
one that carries immediate consequences for society, bears a high relevancy as it
has the potential to challenge the perception of physics as a rational enterprise.
What is the issue with phase transitions? As everyone can observe, phase
transitions occur in nature and can be prepared in technical apparatuses – water
boils and ice melts. We can certainly assure that the samples that we observe
are finite in extension. Now, the prediction of statistical mechanics is that no
finite substance can ever undergo a phase transition. Such sharp transformations
are only possible for infinite systems. This seems to be a clear case of a falsified
theory. The paradox, however, is (or seems to be) that physicists nevertheless
use statistical mechanics to deal with phase transitions of finite systems. This is
only possible through a mathematical trick. The results of statistical mechanics
for infinite models agree very well with the observations of phase transitions in
macroscopic real systems.
The question of how to resolve the tension in applying a theory to a real phe-
nomenon that, according to that theory, cannot exist under realistic conditions,
has engendered an intense philosophical debate. In this book, I want to present
a novel approach to the purported paradox of phase transitions. My objective is
to show that it is not a logical inconsistency. There is nothing wrong with the
customary treatment and definition of phase transitions in statistical mechanics.
I will draw on a particular position in the general philosophy of science that
is particularly well suited for discussing idealisations and limit processes: the
Structuralist View of Erhard Scheibe, and Günther Ludwig. The distinctive
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feature of their brand of structuralism is the central incorporation of formal
tools to deal with different sources of inaccuracies in empirical theories, like
approximations, idealisations or simply imprecise measurements. These seem to
be obvious and integral aspects of physical theories, but the remarkable fact is
that the competing philosophical accounts on physical theories come without
covering these important features or by integrating them in inapt ways. By
considering physical theories as structural images of the empirical reality with a
finite precision, many logical puzzles of physical theories are solved: that sur-
passed theories are merely approximately retained in their successors, that they
are continued to be applied after being proven wrong, which means deviating
from the best available theory, that deviations between theoretical results and
measurements larger than the measurement imprecision are not considered as
falsification of said theory, as long as the difference is still small, that approximate
theoretical methods are so effective in theoretical physics. In application to phase
transitions, I will argue that this frameworks helps to defend that finite real
systems may well be faithfully represented by finite as well as infinite models, as
long as they are theoretically indistinguishable when the empirical imprecision
structures of the theory are taken into account. In doing so, I overcome the
apparent issues problematised by the paradox of phase transitions.
Hence, I do not pursue a revisionist approach. It is not my intention to rectify
established and successful scientific definitions or methods from a reputedly
superior philosophic perspective. My goal is rather to defend a general view
on physical theories, in which the current scientific approach does not appear
paradoxical. In other words, I will argue that the paradox of phase transitions
is a result of inappropriate exigencies on physical theories, and that it simply
disappears when we take a more appropriate stance. In general, I focus on epis-
temical problems related to the study of phase transitions, and my background
position is hardly compatible with scientific realism. Therefore, my approach
will certainly not suit everyone.

The more philosophers inquired the theoretical treatment of phase transitions
and the corresponding asymptotic reasoning, the more related issues have been
found. These carried the debate on for the last twenty years. It began with ac-
centuating the difference between smooth and singular limit relations of theories,
which is closely connected to contrasting reducible and emergent phenomena,
fundamental and phenomenological theories. A different point of view highlighted
the dissimilitude of limit properties and limit models, which is related to the
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distinction between idealisations and approximations. This led to the question of
the indispensability of the thermodynamic limit and infinite idealisations for the
explanation of phase transitions. Later the topic of universality classes of critical
exponents and their explanation by applying renormalisation group techniques
received increased attention, which involves a second limit taking besides the
thermodynamic limit – the limit of infinite steps of renormalisations. Besides,
the topic of spontaneous symmetry breaking, which is intimately associated to
phase transitions of higher order, gave rise to a debate on its own. In this book I
cannot deal with all of these issues. In particular, the topic of the renormalization
group approach is not covered. This may seem surprising, but the simple reason
is that I aim for a conceptual solution to the purported paradox within the
standard framework of statistical mechanics. If my solution were dependent on
renormalization group techniques or finite scaling, it would indirectly admit that
statistical mechanics without these advanced methods would indeed induce the
paradox.
The other topics, by contrast, will benefit greatly from the conceptual clarifica-
tions and expedient concepts of the defended structuralist position. Scheibe’s
theory of reduction offers precise analyses of limiting processes of physical theories
with an unmatched attention to details of these relations and their peculiarities.
In my opinion, the debates mentioned above have so far lacked such a foundation
of basic concepts of the philosophy of science.

The roadmap
The first chapter starts with a presentation of the theoretical inquiry of phase
transitions. The first part is an analysis of the meaning and the theoretical revi-
sions of the term ‘phase transition’. In the second part, I examine the paradox of
phase transitions in-depth. I analyse the propositions of Craig Callender’s (2001)
formulation of the paradox and give a brief overview on possible ways out. I
discuss several approaches that get along without taking the thermodynamic
limit, and explain why I adhere to the limit and the resulting restriction of phase
transitions to macroscopic systems. I close the first chapter with a sketch of how
my approach settles the paradox by replacing an implicit representation claim.
The purpose of chapter 2 is to justify my resolution of the paradox of phase transi-
tions by a rational reconstruction of statistical mechanics and its thermodynamic
limit. Due to the versatility of this theory, it can be reconstructed in various
ways, targeting different facets. Mine focusses on the thermo-statistical aspects.
That is why I proceed in close analogy to the structure of thermodynamics.
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Thereby I take advantage of the fact that the Structural View permits partial,
pinpoint reconstructions, that only encompass the relevant parts of the examined
theories. I outline the basic structures of both theories – thermodynamics and
statistical mechanics – that involve the domain of the respective phase spaces
equipped with the thermodynamic functions. After accomplishing this structural
reconstruction, I go on analysing the taking of the thermodynamic limit in terms
of Scheibe’s limiting case reduction. The thermodynamic limit is a particularly
intricate one. Particle number and volume simultaneously approach infinity,
while the external factors and all intensive properties are kept constant. This
is further complicated by the limit’s dependence on the method of expanding
the volume. Accordingly, several preparatory steps, exploiting other kinds of
reduction, are necessary in order to reproduce the actual theoretical technique
of taking the thermodynamic limit.
The reconstruction of the limit taking as a limiting case relation between the
finite models of statistical mechanics and the infinite limit models proves the
purported proximity of finite and infinite models. Within the theoretical im-
precision, which constitutes the underlying topology of the limit process, it is
not possible to distinguish between the larger finite models and infinite ones.
They can represent the same real systems. This is how the definition of phase
transitions, that is technically restricted to infinite models, can be applied to
finite real systems.
Chapter 3 addresses the implications of my solution for some of the related
philosophical issues. The crucial question of the reducible or emergent nature of
phase transitions has been boiled down to the decision of whether the limit is
smooth or singular. While thus far the debate lacked a clear commitment to one
concept of physical theories, the seemingly simple conclusion could not be drawn,
as there are arguments for both sides. Whereas the semantical perspective, which
takes a theory as a set of models, succeeds to provide an unambiguous answer.
My reconstruction in chapter 2 shows that the case of phase transitions does
not involve a singular limit. Accordingly, it is not an emergent phenomena in
Batterman’s terms. However, also other concepts of emergence are discussed in
the context of phase transitions. I argue that phase transitions are a conceptual
novelty of the infinite limit and can thus be considered as emergent in a weak
sense.

From the perspective of general philosophy of science, this book is the first
implementation to prove the importance of admissible blurs on the basis of a
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concrete problem of the philosophy of physics. In general, problems of condensed
matter theory are dealt with to a much lesser extent within the field of rational
reconstructions of physical theories than the fundamental ones. It was my
expectation to show how instructive the formal methods of general philosophy
of science can be in this area as well.
Most parts of this book either deal with problems of theoretical physics or
formal methods of philosophy of science. I tried my best to minimise technical
details, only chapter 2 makes use of the probably rather unfamiliar formal
style of the Structural View. It is not a rigorous treatise. I refrained from
a foundational grounding of the physical and philosophical views presented,
and thorough formal proofs. I introduce the necessary theoretical background
in detail. Thus, acquaintance with the physical or philosophical basics is not
required. My intention was to make this book readable and worthwhile for
anyone with interest in the philosophical issues of theoretical physics, who is not
disinclined to formal methods of general philosophy of science.
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Chapter 1

Phase transitions and the
thermodynamic limit

Most topics in modern physics and contemporary philosophy of physics involve
phenomena that are far away from everyday experience and seem to be primarily
of theoretic interest. Phase transitions, on the contrary, are present in human
ordinary life: Leaving the house on a November’s evening, inhabitants of tem-
perate areas of the northern hemisphere have to leap over the numerous puddles
left by the autumnal rainfalls in order to avoid getting wet feet, while the next
slightly colder morning, this thread is gone, though the now slippery surfaces
and rigid constitution of the former watery puddles pose even greater obstacles
to pedestrians.
We do not only observe phase transitions in nature. Even rudimentary technical
artefacts as a pot and a fireplace allow for boiling water, which exhibits another
phase transformation of liquid water. The periods of early human civilisation
are even named after the materials whose phase transitions humankind mastered
technically: the Copper, Bronze and Iron Age. And the technical significance
of phase transitions did even grow with the technological progress. Almost the
whole industrial manufacturing of modern times relies on exploitation of phase
transitions. The industrialisation has been initiated by steam engines as univer-
sal power units and large scale melting furnaces in metallurgy, the combustion
engines, that replaced the steam engines, are driven by oil extracted also by
means of liquid-gas-transitions, electrical engineering investigates new phases like
high temperature superconductors that allow for large distance, resistant-free
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current transmission, the nutrition and pharmaceutical industry researches gel
materials, semi-solids with liquid-like behaviour, for a wide range of applications,
civil engineering makes use of metastable phases like glasses, . . . (Papon et al.,
2002, p. 31). Thus, the ubiquity of phase transitions in industry and everyday
life makes it hardly surprising that there exists a pre-scientific idea of what phase
transitions are.
Though, the systematic scientific investigation of phase transitions began con-
siderably late, in the 19th century. Ever since this methodical study of ther-
modynamics began, phase transitions received special attention. Discontinuous
phenomena in nature, which ought to non facit saltum, attracted academic
curiosity. The discontinuity of certain physical quantities at phase transitions
became the universal characteristic of such diverse phenomena as melting, mag-
netic ordering, conductor-insulator-transitions or changes in the lattice structure
of crystals. This characterisation of phase transitions motivated the Ehrenfest
classification, which is still the conceptual basis of theoretical examinations,
but its validity is limited as it has to face counterexamples, for instance the
𝜆-transition of helium.
Thermodynamics is intricately intertwined with statistical mechanics in appli-
cation to many-body systems. The scientific definition of ‘phase transition’
can be straightforwardly translated to statistical mechanics, which offers new
prospects for its theoretical investigation. Though, the consequential treatment
in statistical mechanics comes at high conceptual costs: Phase transitions from
that viewpoint require the thermodynamic limit, which transcends the sample
systems’ finite volume and amount of substance to infinity.
In the pragmatic way of thinking of the majority of physicists, this poses no
problem. For macroscopic systems, both magnitudes are sufficiently large in com-
parison to the microscopic basic entities of consideration in statistical mechanics,
such that the infinite idealisation seems to be reasonable. The achievements of
theoretical methods that are based on the thermodynamic limit further justify
this limit taking. However, the logical point of view reveals: If we accept the
definition of statistical mechanics, only infinitely extended systems can undergo
phase transitions. But we do observe phase transitions, and all of our objects of
study are finite. Thus, philosophers shout out: “Physics should not be logically
inconsistent! There is a problem, that is to be solved.”

In this chapter I am going to outline how a refined view on physical theories that
takes into account the inherent inaccuracy of physical theories and theoretical
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terms prevents this problem, which is known as the paradox of phase transitions.
The first part examines the transformations of the concept ‘phase transition’
from a pre-scientific idea to a technical term of theoretical physics and its various
revisions in the course of the scientific progress. We will see that it passed
through quite a few controversies, of which the paradox at issue seems to be
the pinnacle. Likewise, the steady modifications that have been made to this
concept deliver us from sticking unyieldingly to any textbook definition.
In the second part, I examine the paradox of phase transitions. The ongoing
debate has been set off by Craig Calender’s article “Taking Thermodynamics
Too Seriously” (2001). Since then, a basketful of philosophical comments and
proposed solutions has been published. In this chapter, I will provide a system-
atic overview and turn in particular to the widely accepted approach of Paul
Mainwood (2006), which relocates the defining theoretical criterion of phase tran-
sitions from realistic descriptions of the considered systems to idealised infinite
models. Mainwood’s solution is however not fully satisfactory, as it cannot ex-
plain the successful assignment of the infinite limit and admits phase transitions
of arbitrary small systems, that do not even give rise to the macroscopic concept
of phases. More recent proposals draw on the distributions of zeros approach
(e.g. Menon and Callender, 2013; Ardourel, 2017) that does not take this as a
fault. It rather intends to overcome the separation between macroscopic and
nano systems in the context of phase transitions by proposing a definition that
applies equally to both kinds of physical systems. I will state in detail why I
maintain the view that phase transitions are phenomena of macroscopic systems
and why I do not follow this approach but intend to resolve the paradox pursuing
Mainwood’s account by amending it by a measure of adequacy of the infinite
idealisation.

The solution that I will propose is grounded in a particular view on empirical
science. The underlying general framework and the detailed implementation of
my solution constitute the content of chapter 2.

1.1 Defining ‘phase transition’

There seems to be something wrong with our scientific concept of phase transi-
tions. Though, where does the issue arise from, is it the very foundation of the
concept or its theoretical treatment in thermodynamics or statistical mechanics?
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Often the latter is blamed to adopt the thermodynamic concept in a too narrow
way. Thus, my first task is to expose the concept’s meaning and the changes it
has undergone during its modifications from a term of ordinary language into a
theoretical term.
I start with reflections on processes that are usually subsumed under phase
transitions to state a definition in pre-theoretical terms. Since ‘phase transition’
is a composed term, a terminological analysis of its components might be in-
structive as well. This will be my second attempt for a non-theoretical definition.
The way how these first two definitions characterise our term in question will
be used from then on to guide the theoretical definitions that appear in ther-
modynamics and statistical mechanics. While examining the first theoretical
definition we will already stumble upon reservations that accompany the closely
integrated approach of Ehrenfest from the very beginning. We will see that the
term’s appearance in statistical mechanics results from a direct translation of
the theoretical vocabulary of thermodynamics. Though, in statistical mechanics
we will encounter the need for the thermodynamic limit for the first time and
at least some suspect counterfactual reasoning seems to be inevitably stuck to
its treatment of phase transitions. The resulting concerns are the topic of the
ensuing section 1.2.

1.1.1 Pre-theoretical reflections

What is the common feature of melting, evaporation, the transition from a
super- to a normal conductor and the loss of the permanent magnetism of some
material? In each case a minimal change of external conditions into a specific
direction causes at least one property of the physical system to change abruptly.
At the melting point, ice loses its structural robustness and becomes easily
deformable, its density jumps up, as well as its heat capacity, while its thermal
conductivity suddenly decreases. At the critical temperature, or likewise at the
critical magnetic field, a superconductor’s conductivity declines by a leap from
perfect conductivity to a finite resistance, and its feature of expelling magnetic
field lines from its interior vanishes. Transcending the Curie temperature destroys
the magnetic order of a ferromagnet and turns it into a paramagnetic material.
In all of these cases the affected properties are characteristic for the physical
nature of the systems, such that for many physical reflections the kind of phase
is more important than the material that substantiates this state, to such an
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extent, that condensed and solid matter physics form an own branch of physics,
and electrodynamics is more concerned with distinguishing insulator, super-,
semi- and normal conductors, as well as ferro-, ferri- antiferro- and paramagnetic
materials, rather than considering the constitution of the substances. Thus,
transformations of phases are substantial changes of material properties, which
moreover happen at once, at very specific external conditions that only depend
on the kind of substance.

Sudden changes are quite uncommon in processes that we can observe in nature.
Apart from phase transitions, minimal variations of external conditions use to
vary the physical properties marginally and continuously. Hence, it lends itself
to take this extraordinary property of phase transitions as defining characteristic.
Accordingly, I determine the abrupt change as necessary condition for phase
transitions. Though, is it yet sufficient?
Also chemical reactions that set in at specific external conditions, like an activa-
tion energy, which can be gathered by surpassing a certain limit temperature, or
the presence of a required minimum pressure, may cause an abrupt change of
a system’s physical properties. Hence, this sole condition is not sufficient. We
have to exclude alterations of the chemical composition. This second condition
cannot be formulated in entirely pre-scientific terms, but in a certain sense it is
still pre-theoretical, as we do not need any theory of phase transitions for stating
this condition.
A second domain of similar phenomena whose differentiation from phase transi-
tions is to be discussed, is that of relaxations of excited states. These processes
also happen instantaneously and depending on the system’s state space, the
transition might change the material properties as severely as phase transitions
do. This time the distinction is trickier, as phase transitions can be understood
as transitions from one state that is the ground state at one range of external
conditions but becomes an unstable excited state as the environmental conditions
transcend this range, which results in the passing into the new ground state. But
unlike universally unstable excited states, that decay anyway no matter what the
environmental conditions are, phase transitions need this marginal variation of
the external condition. Therefore, phase transitions are not simply characterised
by an abrupt change of material properties but by an abrupt change as result of
a slight adjustment of the environmental conditions.
Is this stricter condition sufficient to exclude any unintended transition between
excited and ground states? Rather not, since the excitation of a system’s ground
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state into an excited state might likewise be the result of a slight, specific ad-
justment of external factors, e.g. the variation of the frequency of radiation
can change a fluorescent material from the non-luminous into a fluorescing
state. A non-theoretical distinction of phase transitions might proceed in one
of two ways: 1) The fluorescence case might motivate to restrict the variable
external parameters that control phase transitions, as the frequency of the
exposed radiation is different from the environmental conditions that govern
phase transitions. Though, this idea cannot be generalised that easily. A wide
range of excitations are driven by the magnetic field, which on the other hand
is indisputably a crucial parameter for many phase transitions. Thus, it seems
hopeless to distinguish phase transitions in that manner by a set of admitted
variable environmental conditions. 2) We might demand that both states, before
and after the transition, are stable states over a finite range of environmental
conditions, including parameter configurations close to the point of transition.
This likewise excludes the unintended case, but since metastable phases are an
important application of phase transitions this condition is overly restrictive and
disagrees with the scientific use of the term ‘phase transition’. In order to avoid
to start with an excessively constrained concept, the condition of the causation
of the sudden change by the variation of the external conditions should suffice
for a first approach.

Definition 1.1: Pre-theoretical definition

A system undergoes a phase transition ⇔ slight variations of environmen-
tal conditions around material-specific configurations result in drastic and
abrupt changes of some of its characteristic properties, while its chemical
composition remains unchanged.

In the literature on phase transitions, it is usually assumed that an extensional
indication of that concept, that is by listing some typical phase transitions, is
sufficient to clarify the matter. For this reason my attempt to capture an inten-
sional characterisation can only be compared to the few existing terminological
analyses of the composite term ‘phase transition’. Gérard Emch and Chuang Liu
define it rather tautological as “a physical process unique to a transition from
one phase to another” (2002, p. 375). This is rather a rewording than a proper
definition. The terminological recommendation of the International Union of
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Pure and Applied Chemistry (IUPAC) is more illuminative. According to this, a
phase transition is

[a] change in the nature of a phase or in the number of phases as
a result of some variation in externally imposed conditions, such
as temperature, pressure, activity of a component or a magnetic,
electric or stress field. (Clark et al., 1994, p. 588)

This is quite similar to definition 1.1, as it remains committed to the causation
of phase transitions by variations of external conditions. In comparison to the
proposal of Emch and Liu, it gets rid of ‘transition’, though what exactly is a
phase? The same source indicates: A phase is “[a]n entity of a material system
which is uniform in chemical composition and physical state” (Clark et al., 1994,
p. 588). The technical definition by Deutsches Institut für Normung (DIN)
states almost the same: “Eine Phase ist jeder homogene Teil eines Systems”1

(DIN 1345:1993-12 in DIN Deutsches Institut für Normung e.V., 2009, p. 390),
whereat ‘system’ is defined as what thermodynamics takes as macroscopic sys-
tem. Also Wolfgang Nolting insists on the macroscopic aspect of ‘phase’: “Als
Phasen bezeichnet man die möglichen, unterschiedlichen Zustandsformen einer
makroskopischen Substanz”2 (Italics in the original, 2005, p. 245). Even though
the purposes of the quoted sources are quite different – ranging from recom-
mended definitions for the scientific work of chemists and a standardisation of
terms with primarily technical focus to a textbook on thermodynamics that ad-
dresses undergraduate students – there is a common conceptual core discernible,
which I sum up in definition 1.2.

Definition 1.2: Terminological definition

A system undergoes a phase transition ⇔ the nature or number of its
phases changes as result of slight variations of environmental conditions.

A phase is a homogeneous part of a macroscopic material system.

Just like in definition 1.1, phase transitions are specified as resulting from
marginal changes of external conditions the physical system is exposed to. In

1“A phase is any homogeneous part of a system.” (Translation mine)
2“The term phases refers to the possible, different states of a macroscopic substance.”

(Translation mine)
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comparison to the former definition, 1.2 accentuates that phase transitions are
phenomena of macroscopic objects, while the prior proposal does not explicitly
exclude phase transitions of microscopic systems. There are some reservations
against the usage of the attribute ‘macroscopic’ in natural sciences, as it seems
to establish an anthropocentric criterion, which is said to be inappropriate for a
description of human-independent nature. I do not use ‘macroscopic’ to refer
to system sizes of about human scale but as a reference to systems that are
adequately described by a certain class of physical theories. Some theories are
devised for systems that are distinguished as macroscopic, others for microscopic
systems. I apply ‘macroscopic’ in this theory-related sense. This is an anthro-
pocentric stance only to that extent that all physical theories we know, hence
also the macroscopic-microscopic distinction, are human-made.
On the other hand, definition 1.2 does not mention the sharp nature of the
transition, which has been the key characteristic in the first one. Still, this point
requires further reflection. Is it indeed possible that one phase may pass into
another without a sudden change in a material property? Phases, as defined
in 1.2, are homogeneous parts of macroscopic systems. As we know from atomic
and molecular physics, matter is no homogeneous continuum but made up of
highly inhomogeneously allocated elementary components. Hence, no part of
matter can be perfectly homogeneous, at best, it might appear so in a coarse
inspection that ignores microscopic details. Therefore, we have to take this
attribute as an approximative term. In this regard, the first definition seems
preferable for the absence of vague terms – since ‘slight variation’ and ‘abrupt
change’ can be specified in exact mathematical terms as infinitesimal variation
and discontinuity. This approximative nature of the second definition exerts us
to think of distinguishable phases as those that differ sharply, which motivates
the assumption that one phase can only discontinuously transition into a notably
different phase. Thus, although definition 1.2 does not explicitly mention the
jump-like nature of phase transitions, it is a consequence of the specific notion
of phases, that restricts their modes of transition.3

In conclusion, as the two definitions have their advantages and flaws, I propose

3Transitions around critical points, like those from liquid states into gaseous through
superfluids, might challenge this assertion, as the differences between liquids and gases fade
away while approaching the critical point (see footnote 10). Beyond this point they are not
any longer considered as different phases. In subsection 1.1.2 I will discuss how this problem
can be handled.
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considering both as mutually complementary approaches to the concept of phase
transitions, that we will now inspect from the theoretical perspective with the
anticipation that this may help to flesh out the still unsettled points.

1.1.2 Theoretical definitions

In view of the difficulties we had in 1.1.1, it is not surprising that virtually always
phase transitions are approached from the theoretical side. It suggests itself
to formulate this concept in terms of thermodynamics, as this is the physical
theory in which phase transitions have been scientifically spelled out for the
first time, by almost directly rephrasing definition 1.1 into its theoretical terms.
Although devised as theory of heat engines, thermodynamics quickly developed
into a very general theory of the effects of temperature and energy on matter
(Haynie, 2008, p. 27), such that by now it has the widest scope of application
among all physical theories (Giles, 1964, p. 14).

The thermodynamic perspective on phase transitions
A virtue of thermodynamics is its complete description of systems with many
degrees of freedom, typically about 1023, by few macroscopic state variables.
Among these variables we find those magnitudes that we have already encoun-
tered as governing phase transitions like temperature, pressure, and magnetic
field strength. Within the pre-scientific reflection we could not resolve the prob-
lem to distinguish these parameters that control phase transitions from those
that lead to similar but different phenomena, thermodynamics will help us out. A
further advantage is its foundation on considerable intuitive axioms in relatively
plain terms,4 that are moreover directly accessible to experimental corroboration
(Carathéodory, 1909). For these reasons thermodynamics is considered as a
phenomenological theory (Huang, 1987, p. 3).

What concerns us of the laws of thermodynamics is the following formulation of
the conversation of energy – the first law of thermodynamics. A system’s total
energy 𝑈 can be changed by adding or extracting heat 𝑄, by work 𝑊 performed
by the system, or in form of exchange of substance 𝐸𝐶 . This is expressed in
equation (1.1.1), where the prefixes “𝑑” and “𝛿” symbolise an infinitesimal change

4Not every philosopher of science appreciates theoretical terms that are charged with
pre-scientific ideas. They have a much harder time with thermodynamics (see (Giles, 1964) for
an approach close to the Received View, and chapter XIV in (Ludwig, 1979)).
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of a quantity.5

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊 + 𝛿𝐸𝐶 (1.1.1)

𝑑𝑈 = 𝑇𝑑𝑆 −
𝑛∑︁

𝑖=1

𝐹𝑖𝑑𝑞𝑖 +
𝑚∑︁

𝑗=1

𝜇𝑗𝑑𝑁𝑗 (1.1.2)

Equation (1.1.1) is not very instructive, as long as we do not know more about
heat and the kind of work a system might perform. The second law of thermody-
namics states that for reversible processes – and we have any reason to presume
that phase transitions are reversible processes – an infinitesimal change of a
system’s heat can be expressed by 𝛿𝑄 = 𝑇𝑑𝑆, that is in terms of the system’s
temperature 𝑇 and change of entropy 𝑑𝑆.6 The expression of the work depends
on the kind of system, thus “𝛿𝑊 =

∑︀𝑛
𝑖=1 𝐹𝑖𝑑𝑞𝑖” is a merely symbolic formula

that generalises the mechanical concept of work as a product of generalised
coordinates 𝑞𝑖 and generalised forces 𝐹𝑖, though, mostly 𝐹𝑖 and 𝑞𝑖 will be quite
different from forces and coordinates, e.g. the pressure-volume work of com-
pression or expansion of gases is given by 𝛿𝑊 = 𝑝𝑑𝑉 as the volume change 𝑑𝑉
under pressure 𝑝. The variable 𝑖 sums over the various forms of work the system
under investigation does. However, in most calculations only one kind of work is
assumed, the others have usually far less influence on the system’s effects but
considerably complicate the computation if they are not neglected. Analogously,
the substance exchange energy 𝐸𝐶 can be expressed by chemical potentials 𝜇𝑗

and variations of the corresponding amounts of substance 𝑑𝑁𝑗 (Nolting, 2005,
pp. 144–180).
𝑑𝑈 is an exact differential of the entropy 𝑆, generalised coordinates 𝑞𝑖 and
amounts of substances 𝑁𝑗 . This implies that it can be expressed in partial

5The distinction between “𝑑” and “𝛿” is due to mathematical differences between exact and
inexact differentials. An exact differential of a function 𝑓 of 𝑛 variables 𝑑𝑓 =

∑︀𝑛
𝑖=1

𝜕𝑓/𝜕𝑥𝑖𝑑𝑥𝑖

features path-independent integrals, that is ∫𝐵𝐴 𝑑𝑓 does not depend on the way that connects 𝐴

and 𝐵, or in terms of thermodynamics, the difference in internal energy Δ𝑈 = ∫𝐵𝐴 𝑑𝑈 between
two states 𝐴 and 𝐵 does not depend on the particular process 𝐶 via which 𝐴 is transformed
into 𝐵, the difference in heat Δ𝑄 = ∫𝐶 𝛿𝑄 does (Nolting, 2005, p. 145).

6Unlike mechanical sequences, many thermodynamic processes can only proceed in one
direction, they are irreversible. The entropy 𝑆 is designed as the measure that distinguishes
physically possible processes, by increasing along irreversible process sequences. The physically
impossible reversals are recognisable by a decreasing entropy, which indicates thermodynam-
ically impossible operations (Boltzmann, 2006[1905], pp. 144–145). Especially in statistical
mechanics, the entropy has a many-faceted and flamboyant rôle. Here, the only important
aspect is that the entropy is an extensive quantity, that is, it depends on the system size and
changes proportionally if the system is enlarged or narrowed.
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derivatives (cf. footnote 5)

𝑑𝑈 =

(︂
𝜕𝑈

𝜕𝑆

)︂

𝑞𝑖,𝑁𝑗

𝑑𝑆 −
𝑛∑︁

𝑖=1

(︂
𝜕𝑈

𝜕𝑞𝑖

)︂

𝑇,𝑞𝑖′ ̸=𝑖,𝑁𝑗

𝑑𝑞𝑖 +
𝑚∑︁

𝑗=1

(︂
𝜕𝑈

𝜕𝑁𝑗

)︂

𝑇,𝑞𝑖,𝑁𝑗′ ̸=𝑗

𝑑𝑁𝑗 . (1.1.3)

A comparison with equation (1.1.2) evinces that the temperature 𝑇 , generalised
forces 𝐹𝑖 and chemical potentials 𝜇𝑗 are simply partial derivatives of 𝑈 with
respect to 𝑆, 𝑞𝑖 and 𝑁𝑗 . The same holds for the material properties, the so
called response functions: specific heat, compressibility, coefficients of thermal
expansion, etc., which are determinable from second order partial derivatives
of 𝑈 . Thus, everything we need to know about a thermodynamic system can be
calculated from the function 𝑈 (𝑆, 𝑞𝑖, 𝑁𝑗) by partial derivatives. This is great!
There is but a slight shadow cast by the fact that the variable of entropy 𝑆

is an unhandy quantity that is challenging to control and measure. Though,
mathematics provides remedy: Legendre transformations allow to transform the
variables of real-valued convex functions, as the internal energy 𝑈 and the other
thermodynamic potentials are, by subtracting from it the product of one variable
multiplied by the function’s partial derivative with respect to that variable.
Concretely, the Legendre transformation of the internal energy 𝑈 with respect
to the entropy 𝑆 yields

𝑈 − 𝑆

(︂
𝜕𝑈

𝜕𝑆

)︂

𝑞𝑖,𝑁𝑗

= 𝑈 − 𝑆𝑇 ≡ 𝐹 (𝑇, 𝑞𝑖, 𝑁𝑗) (1.1.4)

the free energy 𝐹 (𝑇, 𝑞𝑖, 𝑁𝑗). By examining the exact differential 𝑑𝐹 , it can be
easily shown that the free energy 𝐹 has indeed the temperature 𝑇 as natural
variable instead of the entropy 𝑆

𝑑𝐹 = 𝑑 (𝑈 − 𝑆𝑇 ) = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇

= 𝑇𝑑𝑆 −
𝑛∑︁

𝑖=1

𝐹𝑖𝑑𝑞𝑖 +
𝑚∑︁

𝑗=1

𝜇𝑗𝑑𝑁𝑗 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇

= −𝑆𝑑𝑇 −
𝑛∑︁

𝑖=1

𝐹𝑖𝑑𝑞𝑖 +
𝑚∑︁

𝑗=1

𝜇𝑗𝑑𝑁𝑗 . (1.1.5)

Hence, the handier quantity temperature 𝑇 is among the natural variables of
the free energy function 𝐹 (𝑇, 𝑞𝑖, 𝑁𝑗). At the same time, this function is as
informative as the other thermodynamic potentials, for instance the mentioned
internal energy 𝑈 (𝑆, 𝑞𝑖, 𝑁𝑗). As a matter of course, any of the other variables
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might be replaced in the same manner (Nolting, 2005, pp. 205–210). For our
purposes, besides the free energy only Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗), which
emerges under exchange of the generalised forces 𝐹𝑖 in place of the coordinates 𝑞𝑖
of the free energy 𝐹 (𝑇, 𝑞𝑖, 𝑁𝑗), will be relevant.

Now, the thermodynamic approach to phase transitions is a plain sailing: Every
thermodynamic property of a system is determined by a partial derivative of a
thermodynamic potential, possibly factorised by a state variable, which has no
influence on the relevant mathematical behaviour at the transition points. The
first definition 1.1 principally characterises phase transitions by a sudden change
of characteristic properties. This has to be reflected by the derivatives and thus
by the thermodynamic potential. In mathematical terms these sudden changes
are certain discontinuities. Figure 1.1 depicts the effects of such mathematical
singularities7 in derivatives on the thermodynamic potential, there I have chosen
the Gibbs free energy 𝐺 (𝑇, 𝑝,𝑁) for the common case of pressure-volume work.
Thus, the occurrence of singular points in thermodynamic potentials constitutes
the necessary and sufficient condition for phase transitions, since abrupt changes
require singularities of thermodynamic potentials, and every other change of the
thermodynamic state occurs continuously, which indicates that the thermody-
namic potentials are non-singular elsewhere.

Definition 1.3: Thermodynamic definition

A system undergoes a phase transition ⇔ the corresponding thermody-
namic potential is singular at the respective configuration of thermody-
namic variables.

This is the most common way to define phase transitions (e.g. Fisher, 1964,
p. 39; Huang, 1987, p. 206; Goldenfeld, 1992, p. 29; Emch and Liu, 2002, p. 375;
Nolting, 2014, p. 399). It successfully overcomes the problems that plagued the
corresponding pre-theoretical definition 1.1. With Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗)

as thermodynamic potential, we can directly read off which external conditions
govern phase transitions: the temperature 𝑇 and those magnitudes that function

7A singularity is a point of a function, where it does not behave well: Either the function
or a derivative has a gap at this particular point, exhibits a jump discontinuity, or becomes
infinite, in at least one limit towards this point. In consequence, the function is not infinitely
differentiable at its singular points (Knopp, 1945, pp. 123 ff.).
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Figure 1.1: Qualitative diagrams of the temperature-dependency of ther-
modynamic quantities: Delineated are the thermodynamic potential 𝐺 in
the first column, in the second and third column first derivatives with the
entropy 𝑆 and volume 𝑉 , and the heat capacity 𝐶𝑝 as an example of a
quantity based on a second derivative in the fourth column. In all graphs the
pressure 𝑝 and amount of substance 𝑁 are held constant. The characteristic
singularities of phase transitions are only found in the second and third row.
The respective temperatures are marked by 𝑇𝑐. Different phases, I and II,
are present at both sides of 𝑇𝑐.

as generalised forces 𝐹𝑖 or coordinates 𝑞𝑖 of thermodynamical work 𝑊 . Of
course, in each case only one of both, the force 𝐹𝑖 or the coordinate 𝑞𝑖, can be
chosen independently. This set of applicable parameters provides a clear-cut
criterion to distinguish between phase transitions and other phenomena that also
imply discontinuous changes. Not in every case the assignment of generalised
forces 𝐹𝑖 and coordinates 𝑞𝑖 is as unambiguous as for pressure-volume work.
For example, there exist several formulations for the work a system does in an
external electric �⃗� or magnetic field �⃗� (see table 1.1).
However, the physical implications are not affected by the different choices,
therefore the variety is no problem for the idea to tie phase transitions to
these parameters. On this matter, a variation of the electric potential 𝜙 that
is appropriate to cause a phase transition is accompanied by a change of the
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electric field magnetic field

𝛿𝑊𝑒 = −�⃗� 𝑑�⃗� 𝛿𝑊𝑚 = −�⃗� 𝑑�⃗� (Nolting, 2005, pp. 144–145)

𝛿𝑊𝑒 = −�⃗� 𝑑�⃗� 𝛿𝑊𝑚 = �⃗�𝑑�⃗� (Ludwig, 1979, p. 137)
𝛿𝑊𝑒 = −𝜙𝑑𝑞 𝛿𝑊𝑚 = −𝐼 𝑑Φ𝐵 (Giles, 1964, pp. 122, 125)

Table 1.1: Formulations of a system’s work 𝛿𝑊 in electro-magnetic fields

field �⃗� ≡ −∇⃗𝜙, which also holds for the variations of magnetic field �⃗� and the
material’s magnetisation �⃗� , while Giles’s version of work in magnetic fields8 is
restricted to the very specific case of an electric current 𝐼 through an inductor.
Nolting’s variant seems to be the most natural choice. Much like temperature 𝑇
and pressure 𝑝, electric �⃗� and magnetic field �⃗� are impacts on a system that
are imposed from its environment. Accordingly, the system’s properties like its
volume 𝑉 , polarisation �⃗� and magnetisation �⃗� are adapted to these external
conditions. A further detail is that volume, polarisation and magnetisation
are extensive quantities, whereas temperature, pressure and the strengths of
external fields are intensive. Intensive quantities of a system are independent of
its size. Just parting a system does not change its intensive properties like the
temperature. Extensive quantities, on the other hand, scale linearly with the
system size. Consequently, the total amount of an extensive quantity is the sum
of all subsystems’ values. Since the internal energy 𝑈 is extensive, it is usually
the case that either the generalised force 𝐹𝑖 or the coordinate 𝑞𝑖 is intensive
and the respective counterpart extensive, just like the other pairs of conjugate
quantities temperature 𝑇 and entropy 𝑆, as well as chemical potential 𝜇𝑗 and
amount of substance 𝑁𝑗 . To most extensive properties corresponds a meaningful
intensive quantity, which can be simply obtained by dividing it by an extensive
quantity, commonly the amount of substance 𝑁 or the volume 𝑉 . Examples are
the free energy per particle 𝑓 = 𝐹/𝑁 and the particle density 𝜌 = 𝑁/𝑉 .

Besides this determination of relevant external conditions, definition 1.3 also
offers a new approach to clarify the concept of phases. According to that, phases
are regions within the phase space (𝑇, 𝐹𝑖) where the thermodynamic potentials
are throughout devoid of singularities, and even analytic.9 The singular points

8In Giles’s formulation the corresponding generalised coordinate is the magnetic flux
𝑑Φ𝐵 = �⃗� · 𝑑�⃗� with the surface area elements 𝑑�⃗�.

9Analyticity is the property of mathematical functions to be locally expressible by convergent
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of Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁) are continuously located on hyperplanes of the
phase space, and thereby constitute phase boundaries, which separate different
phases (Goldenfeld, 1992, p. 29). The fact that the phase boundaries are lines in
phase diagrams is due to Gibbs phase rule

𝑓 ′ = 𝑐− 𝑃 + 2. (1.1.6)

The number of independent intensive thermodynamic variables 𝑓 ′ is determined
by the number of chemically independent constituents of the system 𝑐 and the
number of their phases 𝑃 . For single component systems, we find coexistence
areas between two phases on lines (𝑓 ′ = 1), this means, there is one variable to
be measured in order to determine the state of a two-phase-system. Accordingly,
the coexistence of three phases of single component systems is restricted to triple
points (𝑓 ′ = 0), there is not a single parameter variable. Figure 1.2 depicts the
phases of H2O in the two-dimensional phase space spanned by temperature 𝑇
and pressure 𝑝. Apart from the many different phases of ice, due to lattice
reordering at very high pressures or low temperatures, this picture seems quite
familiar and inconspicuous. Though, the critical point, at which the vaporisation
and condensation line ends,10 constitutes a real problem for this view on phases:
We realise that the liquid and vapour phase are not properly enclosed by phase
boundaries. At the critical temperature and pressure, they have an open border
to the supercritical fluid state.
There are only three ways to accommodate the critical point into this view on
phase transitions: 1) Either we maintain the conviction that gaseous and liquid

power series. Analytic functions are analytic on their whole domain. As a result, analytic
functions have highly convenient mathematical properties, for example, they are arbitrarily
differentiable (Amann and Escher, 2006a, pp. 397–398).

10The differences between the liquid and vapour state diminish continuously with increasing
temperature along the line of transition, such that liquid and vapour become indistinguishable
at the critical point. The state beyond is called “supercritical fluid” but it does not constitute
an own phase, since there are no discernible changes when the liquid or vapour passes over
into the supercritical fluid. Hence, there is no phase transition between the formers and
the supercritical liquid. The existence of this critical point is no peculiarity of water but
characteristic for every fluid.
Recent investigations indicate that the supercritical fluid state of water is qualitatively different
from its liquid state, and hence a candidate for a separate kind of phase (Gorbaty and
Bondarenko, 2017). Though, up till now there are just a few indications for the hypothesis
that the transition to the supercritical fluid marks a genuine phase transition, which requires
further theoretical and experimental confirmation. Since the existence of phase boundaries
between liquid and supercritical fluid, as well as between the latter and the vapour states
would resolve the issue that I discuss subsequently, potential new findings will not pose a
threat to the presented approach.
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Figure 1.2: Phase diagram of H2O on a logarithmic pressure axis: The
different phases have clear-cut borders on which the adjacent phases coexist.
At the critical point, marked by the black dot, the liquid and gaseous state
become indistinguishable and the line of the liquid-vapour transition stops.
Beyond water enters the supercritical fluid phase. Some of the various solid
phases are indicated with their common labels in Roman numbers. Their
phase boundaries were calculated using the SeaFreeze package for Python
(Journaux et al., 2019).

state are different phases, but supercritical fluids do not form a separate phase.
Then we have to accept that there exist ways to change a system’s phase apart
from phase transitions, namely by circumventing the critical point through the
supercritical fluid. 2) Or we adopt the supercritical fluid state as further phase.
This entails that there are phase transitions without discontinuous changes of
material properties, since indeed there is neither an observable difference between
a liquid and a supercritical fluid, nor between the latter and a gas (see foot-
note 10). Hence, the condition in definition 1.3 would not be necessary for phase
transitions. 3) Or we think of the difference between liquid and vapour phase as a
merely quantitative one that is less profound than the qualitative differences that
ordinarily exist between phases. In this line of thought, liquid and vapour can
only be distinguished in case that both are present and thus the system exhibits
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a phase separation. This separation vanishes at the critical point, such that the
present phase that can neither be uniquely characterised as vapour, nor as liquid,
is labelled as “supercritical fluid” (Landau and Lifshitz, 1980, p. 258). Although,
it is by no means a universally shared decision, a usual pick of theoretical physi-
cists is the last option. Exemplarily states one of the principal investigators
of the critical point of fluids, Thomas Andrews (1869, p. 589) – clearly rather
an experimental physicist than a theoretical one: “[T]he gaseous and liquid
states are only distant stages of the same condition of matter.” This suggests
a classification of phase transitions into two kinds, which will be our next concern.

The phase transitions that we observe in everyday life do not come to pass
instantaneously. This is especially clear for freezing and melting. The surface of
a wintry lake freezes quite fast. Though, it uses to take weeks, if it happens at
all, that an entire lake is frozen to the bottom – fortunately for its inhabitants.
The abruptness of changes during phase transitions is not to be observed in the
course of time, but through the change of the exterior conditions, just to think of
the sharp lines of transition in figure 1.2. In this case, an abrupt change occurs
at slight variations of the temperature around 0∘ C from positive to negative or
vice versa.
The wintry lake seems to disprove also this form of abrupt change, as we
can observe liquid phases in lakes, even though the exterior temperature has
fallen noticeably below zero degrees. There, the inhomogeneity of the external
conditions – that is the difference in temperature of the air on the lake’s surface
compared to the warmer lake bottom, and the different thermal transfers at
both sides due to material difference between soil and air – and the fact that
the environmental conditions vary faster than the thermodynamical system of
the lake is able to adapt to, are to be blamed for the disagreement with the
theoretical reflections. The first point is merely a complication of the theoretical
approach as we may have to take into account temperature distributions in order
to get the right description. Whereas the second point restricts the validity
of my discussion. I only consider equilibrium thermodynamics, this means,
all processes have to happen so slowly that the whole system is always in a
thermodynamic equilibrium. Since there are phase transition phenomena that
involve non-equilibrium processes, like supercooled or superheated phases, these
have to be analysed separately, which is however no flaw of this examination,
as it is quite common to start with equilibrium thermodynamics to carry on
with non-equilibrium thermodynamics, whose state of research is far behind and
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hence less accessible to philosophic reflections, as many results are still unsettled
on the general level.

The Ehrenfest classification
What happens while heating ice at 0∘ C? The applied heat does not raise the
system’s temperature as it does steadily below and above 0∘ C, it is rather spent
on breaking down the intra-molecular bonds that fix the molecules’ positions
within the solid state. This latent heat of fusion explains why the abrupt change
with regard to the system’s state variables is no temporal sudden change. An
important development in the physics of phase transitions was the realisation
that not every phase transition involves such a latent heat.
If liquid helium (Helium I) is cooled below 2,18K, it undergoes a phase transition
to a macroscopic quantum state (Helium II) with rather peculiar properties.
Unlike the previously known phase transitions, there is no latent heat necessary
to pass over from Helium II to Helium I, but the heat capacity’s dependence on
the temperature has a characteristic 𝜆-shape, which has initially been interpreted
as a jump discontinuity as in the third line of figure 1.1. The discovery of this
new form of 𝜆-transitions gave rise to Paul Ehrenfest’s (1933) classification of
phase transitions. Interestingly, the existence of two liquid phases Helium I and
Helium II had been hypothesised before evidence for any qualitative difference
between both states has been observed. Although neither a latent heat, nor
a phase boundary at the point of coexistence, nor a qualitative difference be-
tween both states – that are the characteristics of all until then known phase
transitions – have been witnessed, Willem Keesom and Mieczysław Wolfke,
leading physicists of the study of low-temperature physics in the early 20th
century, nonetheless assumed such a phenomenon (Jaeger, 1998, p. 57). This
illustrates the close association between phase transitions and abrupt changes
of material properties. Since the sole observation of the latter has been suffi-
cient to suggest a phase transition against the absence of all the other indications.

Due to the relation between entropy and heat 𝑑𝑆 = 𝛿𝑄/𝑇 , heat supply or
extraction ∆𝑄 at a constant temperature 𝑇𝑐, like at ordinary transition points
from one phase I to another II, involves a jump discontinuity of the entropy
as a function of the temperature 𝑆II (𝑇𝑐) − 𝑆I (𝑇𝑐) = 𝑇𝑐∆𝑄𝑙 proportional to
the latent heat ∆𝑄𝑙, which is absent for the new kind of phase transitions.
Thus, for these cases the entropy remains continuous 𝑆II (𝑇𝑐)− 𝑆I (𝑇𝑐) = 0. But
the characteristic property of phase transitions becomes apparent at the heat
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capacity with |𝐶𝑝II (𝑇𝑐)− 𝐶𝑝I (𝑇𝑐) | > 0 (see figure 1.1).
Noting that in the first case the jump discontinuity affects first derivatives of
Gibbs free energy function – besides the entropy also the volume jumps at 𝑇𝑐 –
while the new kind of phase transitions has continuous first derivatives but
discontinuities in second order derivatives – e.g. the heat capacity, thermal
expansion, compressibility etc., Ehrenfest generalised this result to his well
known classification of phase transitions. He defines a phase transition of order 𝑘
as a transition between two phases I and II, whereat the Gibbs free energy and
all of its derivatives of order up to 𝑘 − 1 are continuous, while those of order 𝑘
are discontinuous

𝐺I (𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) = 𝐺II (𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) (1.1.7)
𝜕𝑛𝐺I

𝜕𝑥1 · · · 𝜕𝑥𝑛
(𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) =

𝜕𝑛𝐺II

𝜕𝑥1 · · · 𝜕𝑥𝑛
(𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) for all 1 ≤ 𝑛 < 𝑘

𝜕𝑘𝐺I

𝜕𝑥1 · · · 𝜕𝑥𝑘
(𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) ̸= 𝜕𝑘𝐺II

𝜕𝑥1 · · · 𝜕𝑥𝑘
(𝑇𝑐, 𝐹𝑖𝑐 , 𝑁) for all 𝑥1, . . . , 𝑥𝑘 ∈ {𝑇, 𝐹𝑖} .

This is a specification of the thermodynamic definition for phase transitions 1.3,
since the scheme (1.1.7) restricts the admissible singularities at the transition
points, which are left open in definition 1.3. Ehrenfest (1933, p. 153) presented it
as a generalisation to the concept of phase transitions, that had been established
at that time and merely included phase transitions of first-order according to
his classification. We will see soon that his specification leads to a too narrow
concept of phase transitions.
With empirical evidence for only one phase transition that was known to be not
of order one – which moreover was no uncontested case as we have already seen –
this classification had a rather weak empirical basis. Hence, it is not surprising
that the concept of phase transitions of higher-order had to face doubts. In his
historical reconstruction of the evolution of the Ehrenfest classification, Gregg
Jaeger (1998, p. 70) reports of minority attitudes of blanket rejection of the
existence of second-order phase transitions, as well as of their acceptance as phase
changes, though as improper phase transitions. This uncertainty is reflected in
Ehrenfest’s cautious wording of second-order phase transitions having a mere
“suggestive similarity with a phase transition” (Translation mine, italics in the
original, 1933, p. 153) – whereat he refers to the preceding concept of phase
transitions, that are those of order one in his sense. At the same time, there were
contrary aspirations to extend the concept of second-order phase transitions to
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encompass phenomena with steep gradients of the heat capacity which however
do not involve a change of the phase (Jaeger, 1998, p. 55). Despite of all these
issues, the Ehrenfest classification soon became the standard view on phase
transitions. But this historic perspective also illustrates that the extension of
this concept might have been different if one of the other factions had prevailed.
Ironically, precisely the only attested example for a second-order phase transition,
turned out to be outside the scope of Ehrenfest’s classification (Jaeger, 1998,
pp. 74–75). Contrary to the interpretation of the measurement results at the
time when Ehrenfest devised his classification, 𝜆-transitions do not involve a
jump discontinuity of the heat capacity at 𝑇𝑐, it rather rises up to infinity like
𝐶𝑝 ∼ |𝑇 − 𝑇𝑐|−0,013. Thus, the equations (1.1.7) do not hold in this case, since
the first order partial derivatives are continuous at 𝑇𝑐 – just as claimed by
Ehrenfest – but the second order derivatives diverge, hence higher orders do
not exist at 𝑇𝑐. Ehrenfest’s scheme (1.1.7) fails because no derivative of Gibbs
free energy exhibits jump discontinuities. This is no problem for the general
thermodynamic definition 1.3, but it testifies that Ehrenfest’s classification is
too restrictive with respect to the admissible singularities.11

A further deficiency is the fact that phase transitions of arbitrary higher-order
have not been adopted. Until which order of derivatives of the thermodynamic
potential can we still speak of a characteristic property of a physical system?
Already the third derivations are so abstract that they can hardly be assigned
to any meaningful physical quantity. Thus, since many second-order phase
transitions are wrongly described and the concept of still higher-order phase
transitions does not make sense, the contemporary application of Ehrenfest’s
theory is limited to first-order phase transitions (Pippard, 1966, pp. 136–137;
Nolting, 2005, p. 262).
The substantial result of this discussion is that the theoretical definition of
phase transitions is tricky, especially since there has not even been an agreement
on which phenomena are to be included. Later, this consensus came from
the theoretical side, viz. only what falls under the theoretical definition of
phase transition is considered as a phase transition. However, this requires a
generalisation of Ehrenfest’s approach. His proposal with its focus on jump

11Ehrenfest (1933, p. 155) writes of discontinuities but from his mathematical formulation
similar to equation (1.1.7) it is suggestive that he only considers jump discontinuities. Jaeger
(1998, p. 60) expresses the same view.
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discontinuities is very close to my proposed definitions. Ehrenfest’s only mistake
is to overly constrain the type of the occurring singularities. For, what would also
be possible to say that everything that is not covered by the specification (1.1.7)
is not a phase transition, is no option because Ehrenfest particularly wanted to
include 𝜆-transitions.

Landau theory of phase transitions of the second kind
Right at the point where Ehrenfest’s approach does not succeed, Landau’s theory
comes into play. His expression ‘phase transitions of the second kind’ is synony-
mous to Ehrenfest’s ‘non-first-order phase transitions’. Landau’s differentiation
does not start from reflections on the types of singularities of the thermodynamic
potentials, he rather addresses the microscopic changes at transition points.
Transitions of the first kind involve abrupt rearrangements of the basic compo-
nents, whereas phase transitions of the second kind are distinguished by the
onset of continuous microscopic changes which immediately destroy at least one
of the system’s symmetries and thereby cause non-analytic changes of some
macroscopic properties. This is why the two kinds are also called ‘discontinuous’
and ‘continuous kind’ of phase transitions.
Landau theory characterises the respective symmetric and unsymmetric phases
by an associated order parameter 𝜂, which is zero in the symmetric phase and
non-zero beyond (Landau and Lifshitz, 1980, p. 449). In some cases the order
parameter is rather obvious, like the net magnetisation �⃗� for transitions of
ferromagnetic phases. In the less symmetric phase all spins are orientated along
one direction �⃗� ̸= 0. This destroys the symmetry of spatial isotropy, which is
present in the absence of applied magnetic fields and realised by the disordered
paramagnetic state with �⃗� = 0. But there is no general method to determine
the order parameter of a particular continuous phase transition. It is rather to
be found phenomenologically. Due to the potential abstractness, order parame-
ters of some phase transitions have been recognised only after their theoretical
explanation (Huang, 1987, p. 394).
This is not the only reason why Landau theory is less useful than Ehrenfest’s
approach in determining transition points. The second reason is that it is a
local theory that is supposed to describe a system’s behaviour close to critical
points – and it has its relevance because it does so quite successfully. Hence as
it is a phenomenological and local theory, we have to know a thermodynamic
potential and the configurations of the transition points (𝑇𝑐, 𝐹𝑖𝑐). Additionally,
to the natural variables of Gibbs free energy 𝐺0 (𝑇, 𝐹𝑖, 𝑁𝑗), Landau considers its
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dependence on the order parameter 𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗 ; 𝜂) (the semicolon is to separate
natural variables from the mere parameter 𝜂). Since 𝜂 is zero in the symmet-
ric phase and evolves continuously with 𝑇 and 𝐹𝑖 in case of continuous phase
transitions, the following expansion holds close to transition points (Landau and
Lifshitz, 1980, p. 451)

𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗 ; 𝜂) ≈ 𝐺0 (𝑇, 𝐹𝑖, 𝑁𝑗) +𝐴1𝜂 +𝐴2𝜂
2 +𝐴3𝜂

3 +𝐴4𝜂
4. (1.1.8)

The considerations on the assumed behaviour of the order parameter 𝜂 at
the transition point call for restrictions of the introduced expansion parame-
ters 𝐴1, 𝐴2, 𝐴3, 𝐴4 to

𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗 ; 𝜂) ≈ 𝐺0 (𝑇, 𝐹𝑖, 𝑁𝑗) +𝐴 (𝐹𝑖, 𝑁𝑗) · (𝑇 − 𝑇𝑐) 𝜂
2 +𝐵 (𝐹𝑖, 𝑁𝑗) 𝜂

4.

(1.1.9)

The dependency of the order parameter 𝜂 on the natural variables 𝑇, 𝐹𝑖, 𝑁𝑗

is determinable from the condition that Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗 ; 𝜂) is
minimal for the right choice of 𝜂.

(︂
𝜕𝐺

𝜕𝜂

)︂

𝑇,𝐹𝑖,𝑁𝑗

!
= 0 ⇒ 𝜂2 (𝑇, 𝐹𝑖, 𝑁𝑗) =

⎧
⎨
⎩

0 phase I
𝐴(𝐹𝑖,𝑁𝑗)·(𝑇𝑐−𝑇 )

2𝐵(𝐹𝑖,𝑁𝑗)
phase II

(1.1.10)

Accordingly, we can determine the derivatives of Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁𝑗 ; 𝜂)

with respect to the temperature 𝑇 for the two different phases. We find for the
first two derivatives

(︂
𝜕𝐺II

𝜕𝑇

)︂

𝐹𝑖,𝑁𝑗

−
(︂
𝜕𝐺I

𝜕𝑇

)︂

𝐹𝑖,𝑁𝑗

∼ 𝑇𝑐 − 𝑇 (1.1.11)

(︂
𝜕2𝐺II

𝜕𝑇 2

)︂

𝐹𝑖,𝑁𝑗

−
(︂
𝜕2𝐺I

𝜕𝑇 2

)︂

𝐹𝑖,𝑁𝑗

∼ 𝑇𝑐. (1.1.12)

Thus, the first derivative of Gibbs free energy is continuous at 𝑇 = 𝑇𝑐 and the
second order derivative involves a jump discontinuity just as expected (Landau
and Lifshitz, 1980, pp. 451–454). In addition, Landau theory predicts the right
evolution of the thermodynamic state variables close to the transition points
of many systems. Thereby, continuous phase transitions show a peculiarity
compared to discontinuous ones, which already presupposes vocabulary from
statistical mechanics: Right at the transition point fluctuations of thermody-
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namic quantities, that thermodynamics generally neglects, become dominant for
the behaviour of the physical system and the correlation length, which is the
distance between correlated microscopic parts, diverges (Landau and Lifshitz,
1980, pp. 475–477).
Different phase transitions call for specific formulations of Landau theory. The
probably most famous example is the Ginzburg-Landau theory of superconduc-
tivity. Though, some phenomenologically quite different phase transitions like
vaporisation and the loss of magnetic orientation at the Curie point exhibit the
same scaling behaviour at their respective critical points. Landau theory can
explain this astonishing fact by the same dependence of the free energy on the
order parameters, this is by the same kind of symmetry. Though, as a mean-field
theory it wrongly predicts the quantitative changes, for such applications it got
replaced by other theoretical methods like the renormalisation group approach.

Thus, Landau relates phase transitions with an entirely new concept. Phase
transitions involve symmetry breaking. This novel aspect led to the current hybrid
characterisation of phase transitions (Jaeger, 1998, p. 73). Phase transitions of
first-order can be grasped in accordance with Ehrenfest as jump discontinuities
of first order derivatives of thermodynamic potentials. The other class of higher-
order or continuous phase transitions is characterised by the onset of a non-zero
order parameter or its vanishing at transitions from ordered to disordered states.
Both specifications can be applied to slightly refine the thermodynamic definition
for phase transitions 1.3, but in the main, the discontinuous change of macroscopic
properties remains the essential feature of phase transitions.

Phase transitions in statistical mechanics
The notable benefit of thermodynamics, its omniscient thermodynamic potentials,
poses a major obstacle for applications, since this theory offers no general method
of how to determine these crucial functions. Statistical mechanics can help out.
It underpins thermodynamics microscopically. Instead of continuous matter,
statistical mechanics makes use of the discrete, microscopic constituents of a
system in order to describe its thermodynamic behaviour. According to analytical
mechanics, each particle is completely described by its individual coordinate �⃗�𝑖
and momentum �⃗�𝑖. Due to the sheer size of most systems investigated in
statistical mechanics, it is not possible to obtain all the information that are
necessary to appropriately describe many particle systems in the way analytical
mechanics does. We have to resort to statistical methods – besides this practical
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obstacle, we know by now that there are also principal reasons to rely on a
statistical approach. It turns out that the probability 𝑝 (�⃗�, �⃗�) to find a system
in the state (�⃗�, �⃗�), that is characterised by the coordinates �⃗� ≡ (�⃗�1, . . . , �⃗�𝑁 ) and
momenta �⃗� ≡ (�⃗�1, . . . , �⃗�𝑁 ) of all 𝑁 particles has the following proportionality

𝑝 (�⃗�, �⃗�) ∼ 𝑒−𝛽𝐻(�⃗�,�⃗�) . (1.1.13)

𝛽 ≡ 1/𝑘𝐵𝑇 is the inverse value of the product of the Boltzmann constant 𝑘𝐵 and
the system’s temperature 𝑇 – again I only consider systems in thermodynamic
equilibrium, such that a system’s temperature can be defined. 𝐻 (�⃗�, �⃗�) is the
Hamiltonian of the 𝑁 -particle system. The proportionality factor 𝑍 of the
probability 𝑝 (�⃗�, �⃗�) that is missing in equation (1.1.13) can be easily determined,
since the total probability has to be 1. For discrete phase spaces, we have to
sum over all possible values for �⃗� and �⃗�

∑︁

�⃗�,�⃗�

𝑝 (�⃗�, �⃗�)
!
= 1 (1.1.14)

⇒
∑︁

�⃗�,�⃗�

𝑒−𝛽𝐻(�⃗�,�⃗�)

𝑍
=

1

𝑍

∑︁

�⃗�,�⃗�

𝑒−𝛽𝐻(�⃗�,�⃗�) !
= 1 (1.1.15)

⇒ 𝑍 =
∑︁

�⃗�,�⃗�

𝑒−𝛽𝐻(�⃗�,�⃗�). (1.1.16)

In case of continuous phase spaces, the sum is replaced by integrals over all
coordinates and momenta. For systems composed of 𝑁 particles of the same
kind holds

𝑍 =
1

ℎ3𝑁𝑁 !

∫︁
𝑒−𝛽𝐻(�⃗�,�⃗�) 𝑑𝑟1 . . . 𝑑𝑟3𝑁𝑑𝑝1 . . . 𝑑𝑝3𝑁 . (1.1.17)

The prefactor 1/ℎ3𝑁 involving the Planck constant ℎ is to compensate factors
from integrations and guarantees that 𝑍 is dimensionless, while 1/𝑁 ! is an ad-
hoc correction to properly accommodate statistical effects of indistinguishable
particles.
Surprisingly this inconspicuous normalisation constant 𝑍 constitutes the crucial
link to the thermodynamic potentials. Due to its dependence on 𝛽, 𝑁 and the
possible spatial distributions of the particles, 𝑍 (𝛽, 𝑉,𝑁) is a function of the
system’s temperature 𝑇 – 𝑍 (𝑇, 𝑉,𝑁) and 𝑍 (𝛽, 𝑉,𝑁) have the same physical
significance, since 𝛽 is effectively an inverse temperature – volume 𝑉 , and particle
number 𝑁 . In this rôle, 𝑍 is known as the canonical partition function. Since
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expectation values of observables 𝑂 are to be calculated as the probability-
weighted averages

⟨𝑂⟩ =
∑︁

�⃗�,�⃗�

𝑝 (�⃗�, �⃗�)𝑂 (�⃗�, �⃗�) or ⟨𝑂⟩ =
∫︁
𝑝 (�⃗�, �⃗�)𝑂 (�⃗�, �⃗�) 𝑑3𝑁𝑟𝑑3𝑁𝑝 , (1.1.18)

the calculation of expectation values involves 𝑍. From the particular expectation
value of the energy 𝑈 = ⟨𝐻⟩ follows with 𝐹 = 𝑈 − 𝑇𝑆 the momentous rela-
tion between the free energy 𝐹 (𝑇, 𝑉,𝑁) and the partition function 𝑍 (𝑇, 𝑉,𝑁)

(Nolting, 2014, pp. 70–71)

𝐹 (𝑇, 𝑉,𝑁) = − 1

𝛽
ln𝑍 (𝑇, 𝑉,𝑁) . (1.1.19)

Because of this equation (1.1.19), the partition function is as substantial as the
thermodynamic potentials are: Every thermodynamic property can be derived
from 𝑍. In most cases it is significantly easier to obtain the partition function 𝑍

from the microscopic Hamiltonian 𝐻 of a system, than to derive the free energy 𝐹
directly from macroscopic properties.

The straightforward strategy to analyse phase transitions within statistical me-
chanics is to simply apply the definition from thermodynamics 1.3. In order to
obtain singular points of the free energy 𝐹 , ln𝑍 has to be singular, which may
come to pass in two different ways: Either 𝑍 becomes singular or zero, which
triggers the only non-analytic point of the logarithm function.

Definition 1.4: Definition in statistical mechanics

A system undergoes a phase transition ⇔ its partition function has a
non-analytic point or becomes zero.

However, the partition function is either a sum of fully analytic exponential
functions (1.1.16) or an integral of exponential functions (1.1.17), hence analytic
itself. It has neither non-analytic points, nor zeros because the exponential
functions are entirely positive. This is a devastating result for the treatment of
phase transitions within statistical mechanics.
Though, it did not impress ingenuous physicists, who nonetheless found ways to
expose phase transitions in statistical mechanics: In 1934, Hans Kramers showed
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that the partition function of a ferromagnet reveals two distinct analytic branches,
corresponding to two different phases, if the thermodynamic limit is taken, which
is the simultaneous limit of particle number 𝑁 → ∞ and volume 𝑉 → ∞ under
constant density 𝑁/𝑉 . He was convinced that only this thermodynamic limit may
give rise to partition functions that allow for discontinuous behaviour (Dresden,
1987, pp. 322–323).
About 20 years later, during which only few examples for phase transitions
have been derived in the thermodynamic limit of statistical mechanics – most
notably Lars Onsager’s exact solution of the two-dimensional Ising model in the
absence of external fields, that predicts a second-order phase transition between
the antiferromagnetic and a magnetically disordered state – Tsung-Dao Lee
and Chen-Ning Yang (1952a) proved that extending the arguments of partition
functions to the whole complex plane do not only exhibit zeros for unphysical
complex arguments – which is hardly surprising – but also that these zeros may
approach physically meaningful values on the real axis for the limit of infinitely
extended systems 𝑉 → ∞. The Lee-Yang approach is based on the grand
canonical partition function, but as Michael Fisher (1964, p. 42) points out, there
exists an analogous procedure for the canonical partition function 𝑍 (𝛽, 𝑉,𝑁).
The detailed analysis has been devised by Siegfried Großmann and W. Rosen-
hauer (1967). They start with several steps of transformations of the integral
equation (1.1.17) of the canonical partition function, like integrating the mo-
menta integrals, which do not depend on the particular physical system. Some
other steps make use of assumptions on the form of the interactions between
the particles, which are necessary anyhow, since they guarantee that the ther-
modynamic limit of 𝑍 (𝛽, 𝑉,𝑁) is well defined. Their intermediate result is an
integrand of the form

𝑍 (𝛽, 𝑉,𝑁) = 𝛽

∞∫︁

0

𝑒−𝛽𝑡𝑔𝑉,𝑁 (𝑡) 𝑑𝑡. (1.1.20)

The function 𝑔𝑉,𝑁 (𝑡) of a real valued, auxiliary variable 𝑡 contains the whole
dependency on the system’s volume, particle number, and the effective interac-
tions among the particles and with external fields. Equation (1.1.20) reminds of
a Laplace transform, which converts the function 𝑔𝑉,𝑁 (𝑡) of the real argument 𝑡
to a function of a complex variable, in this case 𝛽. But 𝛽 ≡ 1/𝑘𝐵𝑇 as inverse
temperature 𝑇 is clearly a real valued variable! However, for the sake of applica-
bility of the necessary mathematical tools, we have to extent its domain to the
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whole complex plane. In the end when interpreting the results, we will undo this
auxiliary step. In order to distinguish between the physical meaningful variable
and the mathematical abstraction, I mark the latter by a tilde �̃� ≡ 𝛽 + 𝑖𝛽′.
Thus, the function of the complex variable 𝑍(�̃�) =

∫︀∞
0
𝑒−�̃�𝑡𝑔𝑉,𝑁 (𝑡) 𝑑𝑡 is the

Laplace transform of 𝑔𝑉,𝑁 (𝑡). As a consequence, it is an entire function.12 As
such, Weierstraß factorisation theorem allows for relating the complex partition
function 𝑍(�̃�, 𝑉,𝑁) to the product of its zeros �̃�𝑙 by

𝑍
(︁
�̃�, 𝑉,𝑁

)︁
∼

∞∏︁

𝑙=1

(︃
1− �̃�

�̃�𝑙

)︃
. (1.1.21)

Since equation (1.1.19) relates the free energy 𝐹 to the logarithm of 𝑍, it follows

𝐹 (𝑇, 𝑉,𝑁) = −𝑘𝐵𝑇
∞∑︁

𝑙=1

ln

(︃
1− �̃� (𝑇 )

�̃�𝑙

)︃
+ �̂�

(︁
�̃� (𝑇 ) , 𝑉,𝑁

)︁
, (1.1.22)

whereby �̂� (�̃�, 𝑉,𝑁) results from the omitted proportionality factor of (1.1.21).
The interesting part of equation (1.1.22) is the middle term. Its addends expose
the singular points �̃�𝑙 of the free energy, due to the discontinuity of the logarithm
function at zero. As we have seen all �̃�𝑙 have to lie beyond the real axis, so what
is interesting about this presentation? A general result is that the density of
zeros within a finite range |�̃�𝑙| ≤ 𝑟 is proportional to 𝑁 . Hence, the scattered
zeros of finite systems may form continuous lines when the thermodynamic limit
with 𝑁 → ∞ is taken and due to their symmetry – the complex conjugate of
each zero is a zero likewise – it is probable and possible that these zeros come
arbitrary close to the positive real semiaxis of physical meaningful values 𝛽.
Whether such accumulation points exist for a particular system, depends on
the specific distribution of zeros �̃�𝑙, which in turn can be calculated from the
potential term of the Hamiltonian.
The zeros of the partition function are not necessarily to be expressed in terms
of the temperature. Also one of the generalised coordinates 𝑞𝑖 or forces 𝐹𝑖 of
the particular state space can be extended onto the complex plane in order
to generate zeros. One such example is depicted in figure 1.3. It shows the
distributions of the complex zeros of the comparatively simply solvable model of

12Entire functions are complex-valued functions that are complex differentiable around every
finite point of the complex plane (Amann and Escher, 2006b, p. 361). This generalises the
concept of analytic functions from real analysis. Exponential functions, of which 𝑍 and 𝐹 are
composed, are typical examples of entire functions.

34



weighted Dyck paths13 for the surface adsorption-desorption transition of diluted
polymers. The only parameter of this model, the adsorption activity 𝑎, takes
the role of 𝛽. The plot uses the approximation formula proposed by Beaton
and Janse van Rensburg (2018, p. 10).14 The density of zeros increases with
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N = 10 N = 30 N = 75 N = 1000

Re(ã)
0

×10−3

2
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N = 108

Figure 1.3: Zeros �̃�𝑙 of the canonical partition function for the weighted
Dyck path model for different system sizes 𝑁 , the section on the right is
enlarged by the factor thousand

growing 𝑁 and the distributions of zeros approach a fixed limaçon. No zero lies

13A Dyck path is a staircase walk of length 𝑁 on a square lattice that consists of the possible
steps (1, 1) and (1,−1). Every path starts at (0, 0) and ends in (𝑁, 0). The lattice is restricted
to non-negative points, thus the step (1,−1) is forbidden for any point on the 𝑦 = 0 plane.
The number of returns of a Dyck path to this plane after (0, 0) is counted by the number of
visits 𝑣.
The partition function of the adsorbing Dyck path model is then defined as the sum over visits
of the product of the number of admissible paths 𝑑𝑁 (𝑣) for 𝑣 visits of 𝑦 = 0 weighted by the
adsorption activity 𝑎𝑣 (Beaton and Janse van Rensburg, 2018, p. 2)

𝑍𝑁 (𝑎) =

𝑁/2∑︁
𝑣=1

𝑑𝑁 (𝑣) 𝑎𝑣 .

14The approximate formula misses the two zeros with lowest real part and has two additional
ones with positive real part (Beaton and Janse van Rensburg, 2018, p. 10). This is most
noticeable for the cases 𝑁 = 10 and 𝑁 = 30, but it does not affect this qualitative consideration.
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on the positive real semiaxis – even the densely arranged zeros of 𝑁 = 108 show
a notable gap in the enlarged section on the right – but the plots indicate that
𝑎𝑐 = 2 is an accumulation point of complex zeros. No other positive point on
Re(�̃�) comes into question for a phase transition. Thus, the system can only
come in two different phases, a desorbed phase for 𝑎 ≤ 2 and an adsorption
phase for 𝑎 ≥ 2.

In summary, the previous argument that the partition function 𝑍 (𝑇, 𝑉,𝑁) has
neither zeros, nor singularities holds only for systems of finite size, since in case of
infinite models, the complex zeros may approach the real axis and lead to singular
points of the free energy. Thus, phase transitions occur where accumulation
points of complex zeros of the partition function lay on the positive real semiaxis
of the temperature 𝑇 or a further parameter, such as pressure, the electric
or magnetic field. The Lee-Yang approach works for a wide range of physical
systems and constitutes the first general technique to derive phase transitions
from microscopic interactions. Their results consolidated the view that statistical
mechanics can only account for phase transitions in the thermodynamic limit.
Though, as Nolting (2014, p. 399) points out there is no guarantee that this is
the only possible approach to phase transitions within statistical mechanics, nor
is it ensured that every phase transition is captured by this method.
Remarkably, this subsection does not spell out what phases in terms of statistical
mechanics are, although it exclusively deals with how that theory describes
phase transitions. The reason is that in practice thermodynamics and the
related topics of statistical mechanics merge to the strongly intertwined field
of thermo-statistical physics, where every sharp separation requires significant
regulatory interventions. Hence, it is common to adopt the definition of ‘phase’
from thermodynamics. Though, for those who wish to take statistical mechanics
as the microscopic basis for thermodynamics, this procedure is unacceptable.15

As such further inquiries do not yield new insights into the broader issue of phase
transitions, we can leave it at that.

15In “Statistical Mechanics – Rigorous Results”, David Ruelle (1969, p. 161) presents an
approach to define ‘phase’ within statistical mechanics, that meets such exigencies: He
characterises a pure phase as an 𝐼-ergodic state, whereat 𝐼 is the invariance group of the
state space and the 𝐼-ergodic states are its extremal points. The basic idea is that every
possible state can be described by a unique composition of pure phases, while states of one pure
phase are indecomposable. Ruelle proves that pure phases are equivalent to states for which
the spatial fluctuations of all (macroscopic) observables vanish in the thermodynamic limit.
Consequently, this abstract definition meets the earlier reflections on phases, that emphasised
their homogeneous nature (see definition 1.2).
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In this section 1.1 we have systematically retraced the concept ‘phase transition’
from attempts to characterise the intended phenomena prior to any theory
towards the gradually more theoretical and abstract perspectives in thermody-
namics and statistical mechanics. The first part highlighted abrupt material
changes at distinct, very specific environmental conditions as the key aspect of
phase transitions. It translates into thermodynamics as singular behaviour of
the determining theoretical functions – the thermodynamic potentials. Moreover,
this theoretical treatment accomplishes to further specify the external parameters
that may govern phase transitions, namely, besides the temperature 𝑇 , those
that appear as general forces 𝐹𝑖 or coordinates 𝑞𝑖 in the calculation of the kinds
of work the system might do. It turned out that the apparent idea to determine
all phase transitions as jump discontinuities of derivatives of thermodynamic
potentials fails. In consequence, a hybrid scheme has been established – of first
order phase transitions with jump discontinuities in the first derivatives, and
continuous transitions characterised by spontaneous symmetry breaking in the
course of one direction of the transitions. The weak link of the thermodynamic
approach is that this theory provides no tools to determine the pivotal thermody-
namic potentials. Statistical mechanics manages to derive the free energy from
the microscopic Hamiltonians – a well known concept from analytical mechanics
– of many particle systems. This results in a consequential treatment of phase
transitions in statistical mechanics, as zeros or singularities of the canonical
partition function. The new formulation faces, however, serious problems, since
it can be proven that the partition function can only develop such points in the
thermodynamic limit. The ensuing problem will be addressed in the following
section.

1.2 The paradox of phase transitions

In view of the results of the preceding section we have to realise that the treatment
of phase transitions in statistical mechanics is fully affected by the paradox of
phase transitions. We were able to prove the impossibility of non-analytic points
of the free energy for finite systems, while these characteristic points of phase
transitions may well arise in the thermodynamic limit. Since we do observe phase
transitions in nature, as well as in purposefully organised technical installations,
we have to accept that “if we want well-defined thermodynamically correct
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answers we must always compute the thermodynamic limit” (Fisher, 1964, p. 38).
This is not necessarily problematic, as Kerson Huang explains:

Phase transitions are manifested in experiments by the occurrence of
singularities in the thermodynamic functions,16 such as the pressure
in a liquid-gas system, or the magnetization in a ferromagnet. How
is it possible that such singularities arise from the partition function,
which seems to be an analytic function of its arguments? The answer
lies in the fact that a macroscopic body is close to the idealized
thermodynamic limit – the limit of infinite volume with particle
density held fixed. As we approach this limit, the partition function
can develop singularities, because the limit function of a sequence of
analytic functions need not be analytic. (Huang, 1987, p. 206)

However, his argument misses an essential point: Even though the thermody-
namic limit is an appropriate idealisation for the dimensions of macroscopic
systems, the relevant property of this idealisation is not robust under deideal-
isation. Therefore, his last sentence has to be taken with care. The partition
function only develops singularities after actually taking the thermodynamic
limit, not during approaching it. By passing over from an infinite to a finite
system, we immediately get caught by the no-go theorems for phase transitions
that are derivable in statistical mechanics. In regard to the theoretical capability
to undergo phase transitions, no finite system, not even one of the largest imag-
inable extension, is similar or close to idealised models in the thermodynamic
limit, despite of all the other similarities the systems may have. This is why the
recourse to idealisations cannot solve this problem without further intervention.
In this section I explore different viable strategies to escape the paradox. After
providing an overview in 1.2.1, subsection 1.2.2 deals with non-standard ap-
proaches to phase transitions in statistical mechanics that come along without
the need for the thermodynamic limit. Finally in 1.2.3, I present how an account
on scientific representation that pays attention to the limited accuracy of physical
theories solves the paradox, and discuss the merits of this solution in comparison
to established approaches, as well as its reliance on a certain view on the nature
of physical theories.

16This is a fairly theory-biased view on what can be observed in experiments. Singularities
of functions are at best interpretations of experimental outcomes and quite vulnerable to
misinterpretations as the history of the investigation of the 𝜆-transition exemplifies (see 1.1.2).
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1.2.1 Callender’s paradox

The paradox of phase transitions has been known in physics for decades. Its
present relevance in the philosophy of science is due to its fertility for the
general issues of idealisations, asymptotic reasoning, emergence and reduction of
theories. Callender (2001) introduced it among other examples as evidence for the
latter problem in his argumentation against plain adoptions of thermodynamical
concepts and definitions in statistical mechanics. According to his view, we
should not define phase transitions as done by definition 1.4. He rather suggests
to look for approximative bridging principles and limiting conditions for relating
thermodynamics to statistical mechanics. For now I turn towards Callender’s
formulation of the paradox:

1) real systems have finite 𝑁

2) real systems display phase transitions

3) phase transitions occur when the partition function has a singu-
larity [JM: or zero]17

4) phase transitions are governed/described by classical or quantum
statistical mechanics (through 𝑍).

(Callender, 2001, p. 549)

The previous considerations indicate that the conjunction of these four premises
is contradictory. From proposition 3) and 4) directly follows the definition 1.4
for phase transitions. The mathematical nature of the partition function 𝑍 is
then in disaccord with theses 1) and 2), since 𝑍 can only become singular or
zero for infinite 𝑁 , which excludes phase transitions of finite systems. To deny
any of the four statements would resolve this paradox. Without 1) there is no
problem with the lack of robustness of the infinite idealisation, since it turns
into a realistic depiction. Rejecting 2) delivers us from explaining how real
systems may undergo phase transitions, and withdrawing 3) offers new ways to
define them, possibly in such a manner that is compatible with the other theses.
By refusing the fourth statement, we finally end up within the thermodynamic

17Callender infers from the condition that the free energy is to be non-analytic at points
of phase transitions, that the partition function has to become singular, because the only
alternative, that the partition function has a zero, is not possible. This is true for real-valued
temperatures. But the previous analyses have shown that theoretical physicists actually look
out for zeros of the complex complemented partition function 𝑍(�̃�), which may approach the
positive real semiaxis in the thermodynamic limit. Thus, it is better to modify this thesis to
“singularity or zero.”
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conception, which has no problems with finite systems.
Thus, which proposition is to be denied? The first statement is considerably
safe. We can directly observe that the real systems that we examine for phase
transitions have finite sizes. Mainwood (2006, pp. 228–231) hints at a possible
line of argumentation against this claim by ruling out the possibility to isolate
systems from their environment. But even when our system becomes the whole
universe we most probably remain at a finite system. Hence, the first premise is
to be granted.
By contrast, it is not uncommon that theoretical physicists dismiss thesis 2),
exemplary state Michael Fisher and Leo Kadanoff, two leading theoreticians of
phase transitions:

[A] finite system cannot display a true phase transition
(Emphasis in the original, Fisher, 1964, p. 39).

[P]hase transitions only occur in systems with an infinite number of
degrees of freedom (Italics in the original, Kadanoff, 2009, p. 778).

This line of reasoning is not new. The adoption of Ehrenfest’s phase transi-
tions of higher-order was accompanied by similar arguments for the priority
of theoretical considerations like those on singularities over possible outcomes
of measurements. In order to assure simple theoretical concepts, Fisher and
Kadanoff sacrifice the practical application, since they declare that their concept
of phase transitions does not cover the melting of metal in a furnace or the
boiling water in anyone’s pot. Hence, the realised improper phase transitions
of our empirical world have to be distinguished from true phase transitions,
that only occur in infinite systems. The move of Kadanoff and Fisher shifts all
difficulties of the term ‘phase transition’ from true to improper phase transitions,
and since the latter is no subject of theoretical physics, they do not have to care
about the related problems any more. Besides the mere relocation of the issues,
this position threats common accounts on corroborations of theories, since the
theoretical objects – infinite models – are explicitly designed not to correspond
to empirical objects. Hence, this strategy might be viable to clear the way within
theoretical physics, but it does not provide a solution for the conceptual problem
of the paradox of phase transitions, which includes improper phase transitions.

Callender’s intention was to question the third thesis, which involves the way
statistical mechanics defines phase transitions by singularities of the partition
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function 𝑍. Any opponent of this premise should give us a hint of what might be
an alternative definition. There are indeed three feasible options: a) We may cal-
culate the thermodynamic potentials of the different states of matter separately.
Phase transitions can then be determined as the crossing points of the thermody-
namic potentials in the parameter space. b) Another apparent suggestion is to
relieve the condition of genuine singularities of thermodynamic functions to mere
steep gradients, which can occur also in finite systems. c) Großmann’s version of
the Lee-Yang approach can be applied without taking the thermodynamic limit.
In this case we remain on the complex plane of temperatures or generalised
coordinates 𝑞𝑖 and may define phase transitions for finite systems by zeros of
the partition function in respect to these complex magnitudes. These accounts
face considerable difficulties and have not (yet) been established as standard
approaches to phase transitions in physics, for these reasons I do not take them
up. I postpone their discussion to the subsequent subsection 1.2.2 after providing
an overview of the other options.

The last choice is to argue against 4) – the applicability of statistical mechanics
to phase transitions. And it seems to be the poorest choice, too. To deny the
fourth premise is not to claim that there will be better and more appropriate
theories of phase transitions than statistical mechanics – this is a reasonable
assertion – but that statistical and quantum mechanics are outright incapable of
correctly characterising phase transitions. In light of the achievements of the
theoretical predictions, the fourth thesis can hardly be rejected, all the more
since its rejection drags us away from the scientific treatment of phase transitions.
Callender (2001, p. 549) and Mainwood (2006, p. 224) interpret Ilya Prigogine
as advocating such a view. Indeed, he took phase transitions as one instance
for his claim that theorising should not aim for separable subsystems that obey
simple microphysical laws. Thus, he called for entirely new theories for complex
phenomena. His view remained a remote position in physics and philosophy
of science, and has not given rise to the development of a new theory of phase
transitions, that might replace the treatment within statistical mechanics.

Thus, there are four premises that apparently give rise to a contradiction and I do
not want to dismiss any of them. Do I want to reestablish a dialectical philosophy
of nature? No! I just question that the conjunction of these four propositions is
indeed contradictory. My argument will become apparent at a closer inspection
of Callender’s premises. It is notable that the first two statements refer to real
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systems, while the other two involve theoretical entities. The connecting middle
term between both realms is the predicate ‘. . . undergoes a phase transition’.
This is why Fisher’s strategy solves the paradox that easily. Splitting phase
transitions into real ones, that occur in infinite theoretic models, and improper
transitions of empirical systems completely disentangles the premises 1)/2) from
3)/4). Though, this solution does neither suit my intention, nor is it suggested
by Callender’s wording, which does not distinguish between theoretical and
empirical phase transitions.
The question is how said predicate can be applicable to both theoretical and
empirical objects. The answer evolves around the idea of representation.18

Theoretical models are devised to represent possible empirical systems, they
model these target systems – or from a Platonistic point of view, empirical objects
instantiate theoretical ones. A definition of ‘phase transition’ assesses either
the models or the target systems and becomes applicable to the counterpart
through the representation relation between the two. Apparently, the first pre-
theoretical definitions 1.1 and 1.2 are targeted on empirical systems. Those
systems have a chemical composition and change under environmental influences,
theoretical representations do not. On the other hand, the ensuing definitions 1.3
and 1.4 address theoretical models, which involve mathematical functions that
may exhibit singularities, empirical systems do not. The advantage of the
theoretical definitions is that they provide more precise characterisations of
phase transitions and solve the problem of the missing necessary condition, that
seemed to be undiscoverable in mere non-theoretical terms. Thus, we do not
dispose of different definitions that are to be conciliated, rather the theoretical
definitions have replaced the inferior previous ones. Therefore, the proposition
“the water in the pot starts to boil” is to be understood as “the theoretical model
that faithfully represents the water in the pot under the given circumstances
exhibits a singularity or a zero in its partition function.” Callender does not tell
us anything about the relation between models and target systems. However, in
order to turn 1)–4) into an actual contradiction, we have to append at least the
following condition of representation:

5) Finite real systems are to be represented by finite models and infinite
models can only be instantiated by infinite real systems.

18Elay Shech (2013, p. 1175) draws attention to the same point: “I would like to suggest
that what is really interesting about PT [JM: phase transitions] is the manner by which they
might shed light on the nature of scientific representation and idealization.”
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It is obvious how the denial of this fifth premise resolves the paradox: The
contradiction arises from the theoretical need for infinite models to attain phase
transitions and the contrast that we have only finite target systems and that
those nonetheless feature such phenomena. Before I go on arguing for a replace-
ment of the seemingly self-evident thesis 5) in 1.2.3, I review a similar position
that received much critical acclaim.

Also Mainwood (2006, p. 238) found that the paradox can be circumvented,
while upholding all four premises 1)–4). He presents his solution as an exploit of
Callender’s wording, but conceptionally it comes down to reject proposition 5).
In particular, he defines phase transitions for systems with particle number 𝑁
for which the thermodynamic limit (lim𝑡𝑑) exists by the necessary and sufficient
condition that the limit function of the free energy per particle

𝑓∞ (𝑇, 𝐹𝑖) ≡ lim𝑡𝑑
𝐹 (𝑇, 𝑞𝑖, 𝑁)

𝑁
(1.2.1)

has a singularity at the corresponding system state (𝑇𝑐, 𝐹1𝑐 , . . . , 𝐹𝑛𝑐
).19 The

change of variables from 𝑞𝑖 to 𝐹𝑖 at this point differs from the earlier Legendre
transformations. The natural variables 𝑞𝑖 of free energy 𝐹 (𝑇, 𝑞𝑖, 𝑁), which are
extensive quantities, become infinite while taking the limit, only the fractions 𝑞𝑖/𝑁

remain constant due to the constraints of the thermodynamic limit. Hence, their
counterparts 𝐹𝑖 = −𝜕𝐹/𝜕𝑞𝑖 become more meaningful state parameters. It is
particularly noteworthy that the transition points (𝑇𝑐, 𝐹𝑖𝑐) – e.g. temperature
and pressure – are the same for every (macroscopic) system size 𝑁 , which is not
the case for (𝑇𝑐, 𝑞𝑖𝑐) – e.g. temperature and volume. An equivalent formulation
is:

3′) A system for whose thermodynamic functions the thermodynamic limit
exists undergoes a phase transition at the thermodynamic configura-
tion (𝑇𝑐, 𝐹𝑖𝑐) ⇔ the limit partition function 𝑍∞ (𝑇, 𝐹𝑖) = lim𝑡𝑑 𝑍 (𝑇, 𝑞𝑖, 𝑁)

becomes singular or zero at (𝑇𝑐, 𝐹𝑖𝑐).

Mainwood’s definition is a specification of Callender’s third premise and con-
sistent with that and all of the others. The accordance to the third premise is

19This differs slightly from Mainwood’s original presentation. It is obvious that the limit
has to be taken for the free energy density, as the extensive free energy function 𝐹 (𝑇, 𝑞𝑖, 𝑁)
diverges in the thermodynamic limit. Furthermore, his usage of the term ‘state’ is problematic,
as a 𝑁 -particle system cannot be in the same state as an infinite system.
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due to Callender’s ambiguous reference of the expression “the partition func-
tion” in thesis 3). In Mainwood’s reading this is not 𝑍 (𝑇, 𝑞𝑖, 𝑁) but its limit
function 𝑍∞. Proposition 3′) is thus an inventive proposal to solve the paradox,
but as a definition for phase transitions it should motivate why to define this
concept in that way. It is especially peculiar that a physical process that occurs
in nature requires the taking of a counterfactual limit.
Statistical mechanics seems to require involving the thermodynamic limit in
some way and with the empirical success of its application, its appearance
in the definition has undoubtedly a solid justification. Though, Mainwood’s
strategy to found the concept ‘phase transition’ solely on the limit function
is disputable. The established limit relation 𝑍∞ (𝑇, 𝐹𝑖) = lim𝑡𝑑 𝑍 (𝑇, 𝑞𝑖, 𝑁) is
by itself not sufficient to guarantee that the limit function 𝑍∞ (𝑇, 𝐹𝑖) entails
the correct empirical behaviour of the system that is governed by 𝑍 (𝑇, 𝑞𝑖, 𝑁).
For instance, in figure 1.3 we see that the distribution of complex zeros of the
partition function for a system of ten particles differs significantly from the limit
distribution (in the figure well approximated by the values for 𝑁 = 108). Hence,
if we agreed to amplify the concept ‘phase transition’ to such small systems –
which will be under discussion in 1.2.2 – we would have to acknowledge that
the transition point determined by the real accumulation points of complex
zeros of 𝑍∞ (𝑇, 𝐹𝑖) disagrees with 𝑍 (𝑇, 𝑞𝑖, 𝑁 = 10). The results of Beaton and
Janse van Rensburg (2018) are incompatible with Mainwood’s proposal if it is
supposed to be applicable to such small systems, too. The situation is essen-
tially different for many particle systems, as the distributions for 𝑁 = 1000

and 𝑁 = 108 in the same figure 1.3 nicely illustrate. The predicted transition
points approach the limit value smoothly.
Mainwood (2006, p. 242) is aware of the problematic feature of his definition to
allow for phase transitions of few particle systems just because they coincidently
exhibit a concordant limit function, which however describes an infinite model
that significantly differs from the small target system. He proposes to acquiesce
to this issue, that is to accept that phase transitions can occur in microscopic
systems in spite of the apparent contrast to the macroscopic connotation of the
term ‘phase’. But he also remarks that this point might be easily circumvented
by appending the condition that the systems are to be sufficiently large, this
solution is finally taken up by Jeremy Butterfield (2011, p. 1130).
Besides the common vagueness of such formulations, that makes it inconceivable
to find a well justified lower bound 𝑁𝑚𝑖𝑛 for the size of eligible systems to
undergo phase transitions, the complex theoretic interrelations involve that not
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only the system size determines whether the infinite idealisation is appropriate
for accounting for a certain finite system but also the thermodynamic state of
that system, this is its location in the phase space (Mainwood, 2006, pp. 244–
245). Such a dynamic dependency of the adequacy of the idealisation on the
thermodynamic state variables further complicates the task of concretising this
vague condition.20 Hence, the only justification for this approach is that it works,
and this comes at the cost of admitting microscopic systems for which it is un-
clear whether the given criterion in fact implies phase transition-like phenomena.
The latter consequence can be avoided by demanding a sufficient system size,
but since this vague expression cannot be specified in theoretical terms, it has
no explanatory power. Mainwood’s proposal is the minimal modification to
definition 1.4 that overcomes the paradox of phase transitions, but he cannot
satisfactorily justify the specific choice of this adjustment, such that it appears
to be an ad-hoc solution.

In consequence, the solution, which I present in 1.2.3, will have to specify
Mainwood’s proposal to explain why the resort to the infinite idealisation is
admissible and to demarcate more precisely which finite systems are appropriate
to undergo phase transitions, such that the solution is neither prone to be charged
as vague, nor as arbitrary or ad-hoc. But first I return to revisions of thesis 3)

that solve the paradox by preventing the need for the thermodynamic limit.
Such approaches have recently become popular. Afterwards I set out why I
adhere to 3) in spite of these alternatives.

1.2.2 Phase transitions without the thermodynamic limit

Now it is time to resume to survey the alternatives that escape from the paradox
of phase transitions by rejecting Callender’s third premise. If we find a way
to define ‘phase transition’ within statistical mechanics without presupposing
infinite models, the problem is solved.
The first idea returns to the thermodynamic reflections on the course of the free
energy function at phase transitions (cf. figure 1.1). It appears as piece-wise
composed of two analytic functions which intersect at the transition point, such
that the system’s free energy traces the minimum of both functions. Thus,

20However, Lavis et al. (2021, p. 51) propose a precise definition for “systems counted to be
large” in terms of scaling corrections.
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phase transitions can be defined as occurring at the intersection points of the
thermodynamic potentials calculated for the different phases (Papon et al., 2002,
p. 7). The apparent disadvantage of this approach is that it does not provide
any method to determine the transition points, since in most cases the space
of control parameters of phase transitions is multidimensional, accordingly only
numerical techniques may approach these points. Thus, it sets us back behind
the seminal work of Lee and Yang (1952a), which presents such a constructive
procedure to locate these points.
At first sight this approach is at least a satisfactory solution for the logical
problem of the paradox of phase transitions, no matter whether the requisite
mathematical tools for its application are on hand. But if we take into account
that the full Hamiltonian and in consequence also the resulting partition func-
tion correctly describe all phases of a system, the undesired thermodynamic
limit reappears, since it is only in this limit that the thermodynamic functions
can develop two analytic branches. Hence, even though this definition refrains
from referring to the thermodynamic limit, the need for this limit is a direct
consequence as long as we are aware of the full implication of statistical me-
chanics. This approach is thus primarily relevant for applications for which the
full Hamiltonian is not known or mathematically intricate, such that one has
to resort to phenomenological or highly simplified descriptions of the particular
phases. Therefore, this is a non-fundamental approach to phase transitions and
no solid base for establishing this concept.

A second proposal maintains the abrupt change as the key characteristic of
phase transitions but weakens the mathematical condition from discontinuities
of derivatives of the free energy function to the occurrence of steep gradients.
Whereas finite systems cannot develop discontinuities, their thermodynamic
functions may well change drastically around certain points, while remaining
throughout analytic. This point of view on phase transitions gets further support
from the fact that measurements can hardly assure the existence of disconti-
nuities, while steep gradients of the measured relations are less a matter of
interpretation of the gathered data. Proponents of this view can be found since
the days of Ehrenfest.
But there are also good reasons not to endorse this view. First, it is vague and
unclear how steep gradients have to be in order to account for phase transitions.
It seems quite unpromising to intend to work out a specification in quantitative
terms. Shech (2013, p. 1180) and Mainwood (2006, p. 232) assert that this
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approach to phase transitions lacks sufficiency as “genuine phase transitions”
– by this term Mainwood refers to those that are determined by the Lee-Yang
approach – require discontinuities in the thermodynamic limit, though steep
gradients of the free energy of finite systems do not have to evolve into discon-
tinuities in that limit. This counterargument is, however, based on a fragile
foundation, since, as I have already mentioned, it is not certain that the Lee-Yang
theory indeed encompasses all phase transitions. But it can be strengthened by
taking thermodynamics into account. Singularities of the free energy and not
steep gradients are the signature of phase transitions in that theory. There is
not a single empirical evidence that a revision towards steep gradients would be
an improvement of the thermodynamic treatment of phase transitions. On the
other hand, the criterion is not necessary for phase transitions, at least in case
that we include infinite models. Jump discontinuities in derivatives of the free
energy function apparently do account for phase transitions, but there are no
extremely steep gradients. Even though infinite models do not exist as empirical
objects, the thermodynamic limit is exceptionally helpful as a mathematical
simplification. Now this view reverses the problem of the non-robust charac-
teristic properties while taking the thermodynamic limit, and gets problems to
explain why the infinite idealisation works so well to model and calculate phase
transitions, despite it does not even meet this revised definitional property.
The latter objections can be easily circumvented by modifying the condition
such that the defining steep gradients are to evolve into discontinuities in the
thermodynamic limit. This is just one possible approach towards my proposal
of how to solve the paradox (see 1.2.3). However, it makes explicit use of the
thermodynamic limit then again. But the same is likely to be true if we would
remain committed to the sole condition of steep gradients and try to determine
transition points. When the first limit-free approach faces serious difficulties to
detect intersection points of free energy functions, this one becomes a numerical
nightmare for having to spot steep gradients of its derivatives. Eventually even
this approach has to fall back to applications of the thermodynamic limit and
singularities of the free energy function in order to calculate the transition points.

The former research group “small systems” of the University of Oldenburg de-
veloped an alternative treatment of phase transitions that is especially suited
to small system sizes. It is a follow-up of the considerations of the complex
zeros of the canonical partition function (see 1.1.2). But unlike Großmann and
Rosenhauer (1967), Peter Borrmann et al. (2000) do not take the thermodynamic
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limit and hence they do not restrict their considerations to the positive real axis
of temperatures. Since the temperature is indisputably a real-valued magnitude,
they introduce a new real-valued parameter 𝜏 , that makes up the imaginary part
of the complex quantity �̃� = 𝛽+ 𝑖𝜏/ℏ, which is called “complex temperature”, but
we should be aware that this is only an auxiliary mathematical construct and
besides related to the inverse temperature 𝛽 ≡ 1/𝑘𝐵𝑇 . In 1.1.2 we have seen that
for finite systems all zeros of the partition function 𝑍(�̃�) lie off the positive real
semiaxis. And since there are always numerous complex zeros, not every zero
corresponds to a phase transition. Rather Borrmann et al. (2000) maintain the
view that only series of zeros approaching the positive real semiaxis account for
phase transitions.
Oliver Mülken et al. (2001b, p. 047105-2) claim that the distribution of complex
zeros of the partition function of a particular system contains all relevant in-
formation on the appearances and types of phase transitions. They notice that
zeros close to the real axis are located on lines as in the case of the example in
figure 1.3.21 Then there are three decisive parameters that determine the nature
of a phase transition. The first is 𝜏1 corresponding to the imaginary part of the
zero that is the closest to the real axis. In their analysed cases, Borrmann et al.
(2000, p. 3513) find the relation 𝜏1 ∼ 1/𝑁, which motivates to consider 𝜏1 as a
measure for the appropriateness of the thermodynamic limit for the system. The
functional dependence 𝜏1 (𝑁) is crucial for the recognition as a phase transition,
as only series of complex zeros are considered whose imaginary part 𝜏1 gets closer
to zero with increasing number of particles 𝑁 . The second relevant parameter 𝛾
is the tangent of the angle between the line of zeros and the normal to the 𝛽-axis.
The density of zeros on this line can be approximated by a power law ∼ 𝜏𝛼 for
the physically effective zeros with the slightest 𝜏 . The exponent 𝛼 is crucial to
classify the order of the phase transition, which is determined by the behaviour
of the heat capacity 𝐶.22 First-order transitions correspond to poles of 𝐶, phase

21This assumption is motivated by the circle theorem of Lee and Yang (1952b, p. 414),
which states that for a wide range of interaction potentials the zeros of grand canonical
potentials lie on unit circles in the complex fugacity 𝑧 plane. The connection to the complex
temperatures can be established by the relation 𝑧𝑙 = 𝑒𝜇�̃�𝑙 with the chemical potential 𝜇. For
perpendicular lines of temperature-zeros �̃�𝑙 = 𝛽𝑐 + 𝑖𝜏𝑙, the circles of fugacity-zeros 𝑧𝑙 are
recovered 𝑧𝑙 = 𝑒𝜇𝛽𝑐 · 𝑒𝑖𝜇𝜏𝑙/ℏ (Mülken, 1999, pp. 69–70).

22This exponent 𝛼 must not be confused with the critical exponent that describes the
behaviour of the heat capacity near continuous phase transitions, which is commonly also
denoted by “𝛼” and, into the bargain, its base (𝑇−𝑇𝑐)/𝑇𝑐 is usually designated by “𝜏 ”, which
is of course different from the imaginary part of the zeros of the partition function, which is
labelled with “𝜏 ” here.
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transitions of second-order to jump discontinuities and those of third-order to
kinks at 𝛽𝑐 (see figure 1.1). From analyses of 𝐶(�̃�) results the classification given
in table 1.2. Notably, there exists no kind with negative values of 𝛼. In the
subsequent critical examination of this approach we will see, that calculations
yield transition points with 𝛼 < 0 and 𝛾 ̸= 0, and thus this classification scheme
is at least incomplete.

first-order 𝛼 ≤ 0 𝛾 = 0
second-order 0 < 𝛼 < 1 arbitrary 𝛾

third-order 𝛼 > 1 arbitrary 𝛾

Table 1.2: Classification of phase transitions by parameters of the distri-
bution of zeros (Borrmann et al., 2000, p. 3512)

In conclusion, the distribution of zeros approach suggests to define phase transi-
tions without involving the thermodynamic limit by the existence of complex
zeros of the canonical partition function that approach the real positive semiaxis
of the temperature 𝑇 or generalised forces 𝐹𝑖 in such a way that the density of
zeros scales with the number of particles (Ardourel, 2017, p. 10).23 Since this is
a rather novel and auspicious proposal, I am going to examine its basis in more
detail, in order to explain why I refrain from adopting this idea of overcoming
the paradox of phase transitions by encompassing also phase changes of small
systems, that are not well approximated by the thermodynamic limit.

The literal understanding of ‘phase transitions’ as transitions from one phase to
another leads us to the question of what phases are in the terms of this approach.
Certainly, they are not what I have proposed in definition 1.2, since small systems,
which are explicitly included into Ardourel’s definition, are not macroscopic. We
have already stumbled upon the theoretical definition in thermodynamics, which
takes phases as the analytic regions of the thermodynamic potentials 𝐹 (𝑇, 𝑞𝑖, 𝑁)

or 𝐺 (𝑇, 𝐹𝑖, 𝑁) within the phase space. We had to notice that critical points pose

Borrmann et al. (2000, p. 3513) claim that the critical exponents are related to the parameters
of the distribution of zeros (𝛼, 𝛾) – Mülken et al. (2001a, p. 013611-3) specify the critical
exponent in the thermodynamic limit by 𝛼− 1. Thereby, the distribution of zeros contains all
necessary information on the nature of the phase transition.

23This, Vincent Ardourel’s definition is an improvement of the similar proposal by Tarun
Menon and Craig Callender (2013, p. 208), who require a perpendicular alignment of the zeros
(𝛾 = 0), which encompasses only first-order phase transitions (Ardourel, 2017, p. 10).
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difficulties to demarcate the phase boundaries within this view (see 1.1.2), but
this approach is nonetheless widely accepted. Borrmann et al. (2000, p. 3511)
analogously consider phases as the regions of holomorphy24 of the extended free
energy function 𝐹 (�̃�, �̃�𝑖, 𝑁) on the complex domains of �̃� and �̃�𝑖 – I have added
the dependency on the complex generalised coordinates �̃�𝑖, since besides the
temperature, phase transitions can likewise be driven by the other state variables.
On the one hand, this condition is mathematically equivalent to the theoretical
definition of phases in thermodynamics, since being a holomorphic function on
a certain region of its domain is tantamount to being complex analytic over
there. Thus, this proposal grasps phases as the regions between the zeros of
the canonical partition function, in the sense that the plot of zeros in figure 1.3
functions like a phase diagram (e.g. figure 1.2).
This reading faces a new obstacle: In the case of finite systems, the zeros of
canonical partition functions do not constitute continuous boundary lines that
enclose phases. There are but isolated zeros that are more or less loosely arranged.
Borrmann et al. (2000, p. 3513) describe them as “boundary posts” and, in fact,
figure 1.3 shows that already for 𝑁 = 30 the boundary posts are sufficiently dense
to indicate a phase boundary. However, this is a false analogy. Each point in a
phase diagram corresponds to a possible physical state, while the only possible
physical states in the application of the zeros of the partition function on the
complex plane of �̃� lie on the positive real semiaxis (cf. figure 1.3). The problem
is: There is not a single boundary post in this physical domain. Hence, the zeros
of a partition function do not demarcate boundaries in the physical phase space
by themselves. The only feasible approach is to map the complex zeros �̃�𝑙 with
non-vanishing imaginary part onto the real axis to obtain the border between
different phases. There are various proposals of how this mapping should be
performed, hence there exists no unique determination of the real transition
points. This is not necessarily problematic, since, as we will see, the lines of
phase coexistence become blurred in small systems, such that different methods
of specifying the transition parameters help to estimate the coexistence areas.
On the other hand, this inclusion of the physically meaningless regions beyond
the real axis changes the concept of phases definitely, because holomorphy and
analyticity require the differentiability of the function not only at the considered

24A complex region of holomorphy of a function 𝑓 is a domain where 𝑓 is complex differentiable
in a neighbourhood of each point (Amann and Escher, 2006b, p. 354). Entire functions (see
footnote 12) are special cases that are holomorphic on the whole complex plane.
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points but within neighbourhoods thereof (see footnote 24). Any neighbourhood
of a section of the real axis contains points with non-vanishing imaginary part.
For one thing this implies, that this concept of phases is inevitably tied to physi-
cally meaningless non-real values, which, however, seems to be the only possible
way to maintain the approach via singularities. While within the thermodynamic
conception the singular points lay in the physical phase space, these crucial
points are now to be found beyond, but possibly very close to it in the abstract
complex plane of the parameter space.
Thus, this proposed concept of phases for small systems becomes burdened
with vagueness, due to the unspecified neighbourhoods in the mathematical
concept of holomorphy, and it rests essentially on counterfactual reasoning, since
the imaginary parts of neither the temperature, nor the other parameters 𝑞𝑖
exist. Having such problems with defining a clear concept of phases for small
systems, raises the question whether transition phenomena in small systems are
appropriately subsumed under phase transitions.

A second suspicious point is the replacement of the observable ‘temperature’
by a complex variable. This is a common trick in theoretical physics – for
instance the influence of thermic disorder on a quantum state can be calculated
by utilising the temperature as imaginary part of the variable ‘time’ in Green’s
functions. However, at this point we do no reflect upon perturbation theoretic
corrections but attempt to consistently found the concept of phase transitions in
statistical mechanics. Pointing to Fisher’s utilisation of complex temperatures
does not improve the matter either, since he introduces the imaginary part of
the temperature just at an auxiliary mathematical step and reverts it afterwards
before interpreting the physical results.
The two effected concepts, the canonical partition function 𝑍 (𝛽, 𝑞𝑖, 𝑁) and the
inverse temperature 𝛽, play fundamental rôles in statistical mechanics and their
redefinitions have wide-reaching implications. Thus, where does the imaginary
part 𝜏 of the temperature stem from? An analysis of its mathematical effect might
help along: The definition of the partition function in the discrete case (1.1.16)
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translates into quantum mechanics as trace25

𝑍(𝛽) = Tr
(︁
𝑒−𝛽ℋ̂

)︁
⇒ 𝑍(�̃�) = Tr

(︁
𝑒−�̃�ℋ̂

)︁
(1.2.2)

with the Hamilton operator ℋ̂. By decomposing �̃� = 𝛽 + 𝑖𝜏/ℏ we see that the
complex partition function 𝑍(�̃�) equals the real partition function 𝑍 (𝛽) modified
by the expectation value of the time evolution operator26 at time 𝜏 .27

𝑍(�̃�) = Tr
(︁
𝑒−𝛽ℋ̂ · 𝑒−𝑖𝜏ℋ̂/ℏ

)︁
= 𝑍 (𝛽) · Tr

(︁
�̂� �̂� (𝜏)

)︁
= 𝑍 (𝛽) · ⟨�̂� (𝜏)⟩ (1.2.3)

Thus, the first interpretation for the zeros �̃�𝑙 of the complex-extended partition
function is that the 𝜏𝑙 are the times for which the expectation value of the time
evolution operator vanishes ⟨�̂� (𝜏𝑙)⟩ = 0 (Borrmann et al., 2000, p. 3512). This
is but a quite abstract interpretation, since the expectation value of the time
evolution operator is neither directly measurable nor an intuitively conceivable
quantity. An evaluation of ⟨𝑈 (𝜏𝑙)⟩ in classical approximation links it to fluc-
tuations of the system’s potential energy (Mülken, 1999, pp. 55–58), but this
rough connection cannot constitute the foundation of a revision of statistical
mechanics.

25The trace of a square matrix is defined in linear algebra as the sum of its elements on the
main diagonal. Consequently, the trace of a bounded linear operator �̂� on a Hilbert space
can be defined by the trace of any matrix representation of �̂� in respect to an orthonormal
basis {| 𝜙𝑛⟩}𝑛

Tr �̂� :=
∑︁
𝑛

⟨𝜙𝑛 | �̂� | 𝜙𝑛⟩.

The operators that are considered here are of the trace class, this means that their trace is
finite and does not depend on the chosen basis (Nolting, 2002, pp. 158–159).

26The time evolution operator �̂� (𝑡1, 𝑡2) yields the temporal progression of a quantum state
from time 𝑡1 to 𝑡2. For time-independent Hamiltonians ℋ̂ it becomes a function of the mere
time span (Nolting, 2002, pp. 186–191)

�̂� (𝑡2 − 𝑡1) = 𝑒
−𝑖(𝑡2−𝑡1)ℋ̂/ℏ.

27In equation (1.2.3) I make use of the quantum mechanical definition of the expectation
value of an observable �̂� via the density operator �̂�

⟨�̂�⟩ = Tr
(︁
�̂� �̂�
)︁
,

and the fact that for canonical ensembles the probability to find a system in a state 𝑘 with
energy 𝜖𝑘 is 𝑒−𝛽𝜖𝑘/𝑍(𝛽) (see 1.1.2), hence

Tr

(︃
𝑒−𝛽ℋ̂

𝑍 (𝛽)

)︃
= Tr (�̂�) .
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It seems more enlightening to examine the trace from equation (1.2.3) in the
base of eigenstates of the Hamilton operator | 𝜓𝑘⟩ (with eigenvalues 𝜖𝑘):

𝑍(�̃�) =
∑︁

𝑘

⟨𝜓𝑘 | 𝑒−𝛽ℋ̂ · 𝑒−𝑖𝜏ℋ̂/ℏ | 𝜓𝑘⟩ (1.2.4)

=
∑︁

𝑘

⟨𝜓𝑘 | 𝑒−𝛽𝜖𝑘/2 𝑒
−𝑖𝜏ℋ̂/ℏ 𝑒

−𝛽𝜖𝑘/2 | 𝜓𝑘⟩ (1.2.5)

The Boltzmann weighted energy eigenstates of individual systems 𝑒−𝛽𝜖𝑘/2 | 𝜓𝑘⟩
can be conflated into an ensemble state | Ψ𝛽

𝑐𝑎𝑛⟩ ≡
∑︀

𝑘 𝑒
−𝛽𝜖𝑘/2 | 𝜓𝑘⟩, which corre-

sponds to a canonical ensemble with a Boltzmann distribution of initial states
(Borrmann et al., 2000, p. 3512). Then the zeros of the partition function can
be retraced to

𝑍(�̃�) = ⟨Ψ𝛽
𝑐𝑎𝑛 | �̂� (𝜏) | Ψ𝛽

𝑐𝑎𝑛⟩ (1.2.6)

𝑍(�̃�𝑙) = ⟨Ψ𝛽
𝑐𝑎𝑛 (𝑡) | Ψ𝛽

𝑐𝑎𝑛 (𝑡+ 𝜏𝑙)⟩ !
= 0 (1.2.7)

time spans 𝜏𝑙 after which canonical ensembles lose the memory of their initial dis-
tributions, that is, there is no overlap between the initial | Ψ𝛽

𝑐𝑎𝑛 (𝑡)⟩ and evolved
state | Ψ𝛽

𝑐𝑎𝑛 (𝑡+ 𝜏)⟩. Much like the first reconstruction, this reading suffers from
the abstract nature of the considered canonical states. Both interpretations of 𝜏
are solely retrospective, the appearance of this parameter cannot be deduced from
fundamentals of statistical mechanics. Consequently it has to been concluded
that the distribution of zeros approach does not explain how phase transitions
may arise in finite systems, it is rather a method of calculating characteristic
properties of transition phenomena in finite systems from an ad-hoc modification
of the canonical partition function.

My third point of criticism is that this approach fails to accommodate the
peculiarities of phase-transition-like state changes in small systems. Hence, to
my mind, treating such phenomena together with macroscopic phase transitions
blurs significant differences and is better to be avoided. In the macroscopic case
the particular nature of a phase transition is fully determined by the system’s
material composition. It is a characteristic of water to freeze at normal pressure
and 0∘ C, no matter whether we cool it down in a cold bath or it happens in
an isolated system – as long as the involved thermodynamic processes proceed
quasistaticly. As a result, the transition temperatures are intrinsic attributes of

53



chemical substances. This is completely different for small systems. There, tran-
sition and critical points are “not a characteristic of the system itself but rather a
characteristic of the experimental/simulation conditions of system equilibration”
(Neimark and Vishnyakov, 2006, p. 9404). Consequently, it crucially matters for
transition phenomena in small systems whether they are observed or calculated
as isolated systems or in a thermal reservoir. The reason is simply that the
microcanonical, canonical and grand canonical ensembles28 only coincide in the
thermodynamic limit, which is far away from the conditions in small systems.
While thermodynamic functions calculated for (grand) canonical ensembles can
only develop singularities in the thermodynamic limit, they may well occur in
microcanonical ensembles of finite systems (Dunkel and Hilbert, 2006, p. 391).
The paradox of phase transitions is only a paradox in terms of (grand) canonical
ensembles! Small systems may give rise to phase-transition-like phenomena under
thermal isolation, which are to be distinguished from singularities in canonical
ensembles. Hence, such phenomena, as well as this notable difference of the
environment-dependency are not included into the distribution of zeros approach.
Therefore, the following points are restricted to considerations of small-sized
canonical ensembles.
The most obvious difference of similar phenomena in small systems is that they
appear like smooth realisations of macroscopic phase transitions. The steep
changes are flattened and the transition from one distinctive state into another
does not happen in one point of external conditions but within a certain range.
When small systems melt, they pass several stepwise transitions between the
freezing and the melting temperature. In this process they go through specific
mixture ratios of solid and liquid. In consequence, Gibbs phase rule (1.1.6) is
invalid for such phenomena. Its consequence is not only that the sharp phase
boundaries become broadened areas of coexistence between two states, but it is
also possible that any number of states coexists at given conditions in thermal
equilibrium (Berry, 2002, pp. 321–323) – which Gibbs phase rule restricts to
three for the case of single component macroscopic systems, and these may only
coexist in a definite point of the phase space. Still, the fuzzy determination of

28A microcanonical ensemble is a totality of alike systems under constant energy and
particle number. The temporal evolution of an isolated system remains within the states of a
microcanonical ensemble. In canonical ensembles, the energy of the system is not preserved,
but the temperature and particle number are fixed. This corresponds to closed systems in
thermal baths. The grand canonical ensemble describes systems which are under energy and
particle exchange with the environment, but whose temperature and chemical potential are
specified. This accounts for open systems in thermal reservoirs.
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transition points of the distribution of zeros approach by means of loosely placed
boundary posts may handle this peculiarity.
A more serious issue with regard to Gibbs phase rule arises in how to differ-
entiate between a system’s chemical components and their phases. Phases of
macroscopic systems are considered to be permanent states. This conforms to
the ergodicity hypothesis – which claims that the time a system spends in a
certain part of its phase space are, over long periods of time, proportional to its
volume ratio of that phase space – insofar as macroscopic systems take times that
are considerably longer than the age of the universe to pass through their phase
spaces (Hüttemann et al., 2015, pp. 174–176). Hence, the reason why we do not
observe that a ferromagnet which has once spontaneously chosen a +orientation
will change into a −orientation without external impact is the vast duration of
ergodic exploration. Of course, this is entirely different for nano-scale systems.
Systems of less than hundred particles need just picoseconds for this exploration
until they spontaneously change their states. Though, this is about the same
time scale of isomerisation processes, which blurs the differentiation between
components in form of isomeres of molecules and phase-like states of molecule
clusters. The distinction between components and phases becomes pointless on
the nano-scale (Berry, 2002, p. 321–322), and in consequence, phase transitions
become empirically indistinguishable from certain chemical transformations.
Another important distinction is that between intensive and extensive quantities.
A characteristic feature of the latter is the additivity of such quantities when
multiple systems merge. This, however, is not the case for small systems. Then
interaction effects significantly contribute to the values of the total system, which
makes them differ from the sum of its parts. A rather important consequence for
the customary approach to phase transitions is that the thermodynamic poten-
tials cease to be strictly convex or concave functions of their natural variables.
Since this property is crucial for deriving stability criteria for states (see 2.4),
the corresponding systems have to be treated quite differently (Borderie and
Frankland, 2019, pp. 12–14).
A particularly extraordinary feature of these phenomena at the nano-scale is that
the system size 𝑁 may become a transition governing parameter, to the point
that 𝑁 − 𝑇 phase diagrams are devised (Li et al., 2011). This is totally at the
odds with the distribution of zeros approach, which admits control parameters
besides the temperature 𝑇 but treats the particle number 𝑁 fundamentally
differently from the others. Großmann’s technique of reformulating the free
energy into a sum of complex zeros cannot be applied to the particle number
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analogously to the temperature. And as the particle number is moreover needed
as scaling parameter for the imaginary parts of the zeros in that approach, it
cannot realise this kind of microscopic transition phenomena.
A mere technical problem of the distribution of zeros approach is that some
results of calculations do not fit into its classification scheme (table 1.2). Nelson
Alves et al. (2002, pp. 21, 24) and Wang and He (2011, p. 75) report cases of
𝛼 < 0 and 𝛾 ̸= 0, which are not covered. In light of the fact that these are
two of only a few theoretical applications of this approach, it cast doubts on its
empirical adequacy.
The most threatening objection against the utilisation of the distribution of
zeros approach as fundamental conception for phase transitions of small systems
is the finding of Stephen Berry (2002, p. 320) that “small systems can exhibit
phases – in equilibrium – that cannot possibly be observed for macroscopic sys-
tems.” According to Ardourel’s definition, it is not possible that small systems
exhibit phase transitions that do not occur in macroscopic systems, since his
characterisation of phase transitions includes that the density of zeros close to
the real axis scales with the number of particles. The latter condition prevents
phase transitions that occur only in small systems and are no longer visible when
the system is enlarged. It is also disputable whether this approach is consistent
with the weaker case of moving transition points as depicted in figure 1.3, where
the cutting point between positive real semiaxis and the distribution of zeros
changes with increasing particle number and finally approaches a fixed value
in the thermodynamic limit. This might be a matter of interpretation and is
presumably remediable by a circumspect reformulation of the definition. But
Berry’s observations remain devastating.

I raise these objections not only to argue against the proposals of Ardourel
(2017), Menon and Callender (2013) yet primarily to defend my position to take
phase transitions as macroscopic phenomena. There are microscopic counterparts
which exhibit jump-like transitions that are strikingly similar to phase transitions
of macroscopic objects, but I am convinced that the solution to the paradox of
phase transitions is not to be found in statistical mechanics of small systems. In
general the cautious wording in the cited physical papers is conspicuous. Terms
like “finite size counterparts of phase transitions” (Dunkel and Hilbert, 2006,
p. 404) and “phase-like states” (Mansoori and Keshavarzi, 2019, p. 14) indicate
what is occasionally made explicit (e.g. Berry, 2002, p. 321): Macroscopic phase
transitions and phase-transition-like phenomena of small systems differ in a
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sufficient number of aspects to treat them as similar but different. Thus, the
scientific practice does not enforce us to broaden the term ‘phase transition’ to
include systems for which the thermodynamic limit is inapplicable. Though, we
have to bear in mind that there are still a number of unresolved issues concern-
ing phase-transition-like phenomena in nano systems – recent publications (e.g.
Mansoori and Keshavarzi, 2019) indicate that the above problems have not yet
been resolved.
Besides the sketched approach of the Oldenburg group, there are other propos-
als that ought to provide a conceptional basis for phase transitions of small
systems, most notably (Janke and Kenna, 2001). They make use of the same
theoretical foundation – Lee-Yang or Großmann zeros of partition functions –
and just propose different sets of differentiating parameters. Hence, the major
objections remain: 1) Generally, all measurable quantities in physics are real
variables. The introduction and retention of complex temperatures, magnetic
field strength etc. differs from this practice. The adoption of �̃� with 𝜏 ̸= 0 is
ad-hoc and without foothold on the foundations of statistical mechanics. In
particular, the real part Re�̃� remains the natural variable of the free energy.
The imaginary part 𝜏 is but an auxiliary appendage with a phenomenological
interpretation. 2) In my opinion, the purpose to define phase transitions for small
systems waters down the concept. If the macroscopic nature is removed from the
core of the concept ‘phase’, there remains but an abrupt – and even smoothly
abrupt – change. To my mind this is not enough to characterise phase transitions.

The justification of Ardourel’s account is tied to that of the distribution of zeros
method, so initially it is in a better position than Mainwood’s proposal, which
cannot be retraced that directly to an established theoretical method. But since
the closer inspection reveals that it is not at its best with the tenability of this
account, I refrain from taking up this conception. Nevertheless, my proposal can
equally be applied to this approach, as it is vulnerable to the same objection of
vagueness like Mainwood’s (if the condition of sufficiently large systems is added,
as I aim for). Thus, the proposed enhancement of the latter that I outline in the
next sub-section can be used likewise to specify Ardourel’s vague condition of
“complex zeros close to the real axis.”
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1.2.3 Overcoming the vagueness

Back on the route towards the solution of the paradox of phase transitions, I
still have to present an appropriate replacement for the representation thesis 5),
which I have identified as the root of the paradox. Instead of requiring that
finite empirical systems are to be represented by finite theoretical models, I
will argue for an understanding of the representation relation as an appropriate
approximation of the relevant measurable quantities of the considered empirical
system by theoretical functions of an applicable physical theory.
This puts my account in the line of approaches to phase transitions that solve
the problem with the paradox by creating a new one – the problem of vagueness
of the newly introduced condition of “appropriate approximation”. We have en-
countered the same issue in Huang’s explanation for the empirical success of the
thermodynamic limit, namely that “a macroscopic body is close to the idealized
thermodynamic limit” (Emphasis mine, Huang, 1987, p. 206), in Mainwood’s
supplementary condition of sufficiently large system sizes, and in Ardourel’s
definition of phase transitions, which refers to zeros close to the real axis. The
common criticism, which I have also raised, is that these accounts fail to elucidate
the quite specific scientific concept of phase transitions as long as they do not
succeed in specifying the vague conditions. I have to take this challenge as well.
The solution seems simple: Erecting a topology on the respective abstract sets
(physical systems, phase space) provides a precise meaning to terms like “close
to” or “sufficiently similar”. Such an approach, however, faces a dilemma: Either
the applied topology is left open, then the vagueness is not really solved but just
reformulated in mathematical terms. Or a specific topology is proposed, which
provokes the objection of arbitrariness, since how should one specific topology
be objectively preferred to all others, and how could this singular choice be
compatible with the vast scope of applications of the underlying theory?
I choose the second horn of the dilemma and claim that each physical theory
carries such an empirical topology for at least two reasons: 1. Measurement
results never confirm a theory exactly. Usually inaccuracies of measurement and
experimental methods are blamed for the deviations, but with increasing exacti-
tude of the applied methods, some discrepancies are larger than the experimental
imprecision and thus attributed to the theory itself. 2. The fundamental laws of
many theories are not accessible to direct experimental corroboration. Mostly,
approximations and idealisations are necessary to derive testable assertions. The
same holds for most reductions of theories. Common intertheoretical relations
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involve approximative connections. In doing so, some established reductions can
even justify the empirical topology of the reduced theory. Consequently, the
structuralist view of philosophy of science claims that we cannot understand
the concept of physical theories correctly if we do not take into account the
respective empirical topology – or blurs – associated with each theory. I discuss
these points in much detail in the subsequent chapter. For now this outline
should suffice to motivate the idea of applying the implicitly carried empirical
topology as means to specify the ‘close to’ relation in a precise and non-arbitrary
way.

The general issue that is put at stake by the paradox of phase transitions is the
question of the indispensability of idealisations in scientific representations. On
this point I agree with Shech (2013, p. 1175). Though, scientific representations
are a vast field – including geographic maps, that represent some topological facts
about an area, scale models in wind tunnels representing aerodynamic behaviour
of aircraft, Feynman diagrams representing interactions between subatomic par-
ticles, X-ray images on photographic plates which represent the anatomy of
parts of a human’s body, mathematised physical laws together with numerical
initial conditions represent natural phenomena, etc. Of this multitude of kinds
we are here only concerned with the latter. This greatly simplifies the following
reflections, as the common aspects of all kinds of scientific representations are
still at issue, while the restriction to mathematical representations of physical
phenomena already provides some common ground.
The straightforward view on scientific representation takes it as a binary relation
between a representing model and a target system. Some characterisations
additionally involve users and their intentions, thus they depart from the binary
view. But I think that the present problem can be handled without explicit
reference to pragmatic aspects. Roman Frigg and James Nguyen (2016) indi-
cate five remarkable facets of scientific representation that make clear why its
understanding is of such importance for the philosophy of science:

1. Models allow for surrogative reasoning, that is, some inferences drawn from
the models are valid for their target systems. This is the most important
function of those scientific representations that are considered here. A
good model is characterised by the feature that all derivable inferences
that are relevant for the scientific investigation hold likewise for the target
system and vice versa. Such models are called ‘faithful representations ’.
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2. The representation relation has a certain directionality. Models are about
their target systems, whereas these are not about models.

3. Even though usually each model has a target system, there are also cases
of targetless models.

4. Models can fail to correctly represent their target systems. Misrepresenta-
tions are to be distinguished from non-representations.

5. Representations play a crucial rôle for the application of mathematics on
natural phenomena. A complete account of representation ought to explain
how mathematics can be applied to these.

A widespread view, whose philosophical tradition can be traced back up to
Plato, is that the representation relation is constituted by similarity between
model and target system. Despite of the wide scope of interpretation of the
term ‘similar’, it seems hardly possible to reconcile this essentially symmetric
relation with the required asymmetry of representations, this means, while the
claim that a model is similar to a target holds also conversely, this is not true for
the assertion that a model represents a target, as target systems usually do not
represent their models. The similarity view is apparently incapable of account-
ing for the directionality of representation. The same fate seems to befall the
structuralist concept of representation, which relates representations to (partial)
isomorphisms (Frigg and Nguyen, 2016). The basic idea of the Structural View
on scientific theories is that the task of science is to disclose structures in the
complex manifolds of natural phenomena. The revealed structural relations can
be transferred, for instance into mathematical relations. Transfers that preserve
the entire structural relations are called ‘isomorphisms’. In case that only a
subset of the structural relations is correctly transferred, the intention is to
include all relevant relations, it is referred to as ‘partial isomorphism’. Hence, it
suggests itself to consider representations as a relation between target systems
and isomorphic structures. But much like the similarity relation, isomorphisms
and partial isomorphisms are symmetric and reflexive, the representation relation
is not (Frigg and Nguyen, 2016).

The idea of scientific representation that I want to put up for discussion combines
the similarity and the structuralist view. Consequently, I must clear up their
central criticism. I do so by presupposing a quite specific nature of models, which
is entangled with the Structuralist View on theories that I defend in (Mierau,
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2023). Therefore, my considerations are only meant to be valid for a small
range of scientific representations, namely representations of physical relations
by means of mathematised theories. This subset is still quite comprehensive
and most importantly, it includes the relations between theoretical models and
empirical objects as they appeared in my review of Callender’s formulation of
the paradox.
A model of a physical theory links physical objects and properties to mathematical
entities, commonly numbers. Objects and properties of the same kind are
collected to base sets. Each model has a basic structure – of physical and
optionally mathematical base sets, as well as constants, relations and functions
composed of these base sets – that is prescribed by the corresponding theory
and which, on the other hand, essentially characterises the theory. Furthermore
the models satisfy the theoretical axioms, which are mostly stated in the form
of mathematical equations. Accordingly, models are set-theoretical structures
of certain species. This characterisation of models already ensures the logical
priority of empirical systems over models, as the latter are based on physical
entities. Thus, without the existence of empirical systems there are no models,
but empirical systems exist independently of any models. With this notion of
models at hand, my representation tenet comes down to:

5′) A model 𝑀 of a physical theory 𝑇 represents a physical system 𝑆 if and
only if

(i) the scope of intended application of 𝑇 contains 𝑆,

(ii) to each constant, relation and function of 𝑀 corresponds a property 𝑥𝑖
of 𝑆 (or a natural constant), such that the complete set 𝑥1, . . . , 𝑥𝑛
fully characterises 𝑆 in 𝑇 ,

(iii) 𝑀 is undistinguishable from ⟨𝑥1, . . . , 𝑥𝑛⟩ within the empirical impre-
cision 𝑈 of 𝑇 , this means, 𝑀 lies with respect to the entourage 𝑈
in a sufficiently narrow neighbourhood of the target system’s proper-
ties ⟨𝑥1, . . . , 𝑥𝑛⟩

(⟨𝑥1, . . . , 𝑥𝑛⟩,𝑀) ∈ 𝑈 ⇔ 𝑀 ≈𝑈 ⟨𝑥1, . . . , 𝑥𝑛⟩,

which defines the 𝑈 -similarity relation ≈𝑈 .

At first sight, this concept of representation might seem like a ternary relation
between a model 𝑀 , a theory 𝑇 and a target system 𝑆, but in fact, models,
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in the limited sense to which I have restricted this consideration, are tied to a
specific theory. It does not make sense to speak of a model without mentioning
the theory of which this is a model. Hence, a model 𝑀 of a physical theory 𝑇 is
a fixed unit, rather than two independent constituents.
As a theory’s scope of intended application is usually relatively open – time may
show that it has to be diminished or can be broadened, it is also usually less
strictly laid down than, for instance, the axioms of a theory – the first condition
is rather weak: At least someone has to intend to apply theory 𝑇 to the kind of
physical systems to which 𝑆 belongs. The idea is straightforward: Even though
a model might be an appropriate counterpart to an empirical system, if no one
intends to apply it to that, it does not represent it. In general, unintended
models do not represent. Those who require that a model only represents if
anyone actually intends to represent a certain system by its means, will not be
content with this condition. But the matter of fact that most theories have an
infinite number of models renders it impossible that for each single model exists
someone with some representational intention towards this specific model. Still I
think that a model 𝑀 that is linked to a system 𝑆 by (ii) and (iii) nonetheless
represents it, provided that the theory 𝑇 is laid out to be applicable to that kind
of systems. Thus, the scope of application of theory 𝑇 , at least, roughly sets the
intentions of what the envisaged applications of the models of 𝑇 are, without
determining it for each model in particular.
The second requirement ensures the necessary condition to even think of any
form of isomorphism between model 𝑀 and target system 𝑆: They have to be of
the same structural form, otherwise any comparison is condemned to be senseless.
Since empirical systems are usually much more complex than scientific models
are, such a structural equivalence is only conceivable between a model and the
theoretical determinants 𝑥1, . . . , 𝑥𝑛 of the corresponding empirical system.
But even between these two, the isomorphism relation does not hold in general.
This relation is too demanding as it requires that the structures are in an one-
to-one equivalence. We know for many theories that and how they idealise and
approximate. Thus, we do not expect that they represent empirical systems
exactly. Accordingly, it is fairly obvious that isomorphisms are the wrong relation
to express representations. Partial isomorphisms are not better either.29

29The problem with the partial isomorphisms is that these are still exact mappings, they
are just restricted to sub-structures. Since partial isomorphisms are not linked to topological
concepts, they cannot account for approximations (Mierau, 2023).
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The relation ≈𝑈 , which replaces the isomorphism criterion of ordinary structural
accounts on representation, expresses a mere closeness of the structures 𝑀
and ⟨𝑥1, . . . , 𝑥𝑛⟩. As such it is akin to the geometric approach of the similarity
view but does not require the strong conditions of metrics (for a discussion of the
differences between admissible blurs of uniform structures and metrics see Mierau,
2023). Therefore, the strongest objections against the geometric approach do
not apply. These include, in addition to the problem with symmetry that I have
already addressed, 1) the triangle inequality of metrics, which is found to be
violated in cases of similarity judgements, but that is not taken up in uniform
structures, and 2) the incapability of plain geometric approaches to mirror the
context-sensitivity of similarity (Decock and Douven, 2011, pp. 62–63). My
proposal implements the latter in two ways. Firstly, the similarity relation ≈𝑈

is tied to the theory 𝑇 via the empirical imprecision 𝑈 . Hence, each theory
allows for an own concept of similarity. Secondly, the concept of the empirical
imprecision of a theory can easily be amplified to become a set of admissible
blurs {𝑈,𝑈 ′, . . . }, such that distinct applications of the same theory can also
make use of different blurs, which give rise to various similarity relations and
ensure a broad contextual flexibility.

How does this approach to scientific representation fit in with Frigg’s conditions?
The most important feature of mathematised theories as representational vehicles
is to make valid inferences about the empirical systems under investigation. This
surrogative reasoning from theoretical models about their target systems is a
central claim of physical theories. Besides predictions of temporal evolutions
and calculations of the effects of external influences, one can as well use physical
theories to determine unknown properties of given systems. Consequently, the
extent of valid inferences is the major measure of success for physical theories.
As mentioned before, a fundamental asymmetry is already provided for in the
very concept of models. Models in the sense outlined above presuppose the
existence of physical systems. The characteristic of theories to target particular
systems – those within the respective scopes of application – constitutes the
directionality of representations. Each model is directed at its target system, but
empirical systems are not directed at models, exactly in the sense that physical
theories are in need of a scope of application, while empirical systems exist
unaffected of applicable or non-applicable theories.
The mathematical calculus of a physical theory allows to abstract from concrete
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applications in simulating configurations for which no target system is known or
intended, and to explore the mathematical tools as in the case of toy models.
Targetless models are possible through such utilisations of physical theories. The
only prerequisite is that the underlying theories, in order to be physical theories,
must have some intended applications and thus also representing models.
As empirical theories cannot be definitely verified, they are under permanent
scrutiny with regard to any discrepancies between the scope of intended applica-
tion and the domain of validity. Intended but empirically inadequate applications
are cases of misrepresentations. Inferences through surrogative reasoning on basis
of such models do not hold for the targeted systems, but, despite of their failure
to faithfully represent, these models are directed towards empirical systems.
Right from the stage of establishing the concept of models, I make heavy use of
the applicability of mathematics to physical systems. This is where the mapping
from physical quantities to mathematical structures is brought to bear.
All things considered, 5′) constitutes a decent base for my ongoing quest for a
viable way out of the paradox of phase transitions via a sufficiently broad concept
of representation. I would like to recall that it is not my intention to reach full
universality with these reflections on similarity and representation. It might be
possible (and necessary) even for the restricted domain of representations in
form of mathematised theories to further narrow down some of my thoughts in
order to obtain more adequate concepts, but this is not my primary concern.

I am rather interested in the question of how finite empirical systems can be
faithfully represented by models taken in the thermodynamic limit. The good
news is that 5′) does not inhibit this crossing between finite empirical systems
and infinite models – quite in contrast to 5). Replacing that proposition by 5′)

immediately solves the paradox. But what does this mean for the concept of
phase transitions? What can I say about ≈𝑈? I take up Huang’s statement (1987,
p. 206) once again: “[A] macroscopic body is close to the idealized thermodynamic
limit.” Since anything in the thermodynamic limit – this can only be models –
is something quite different from an empirical object like a macroscopic body,
this “close to” can only be understood with an idea of representation like the
≈𝑈 -relation borne in mind. Thus, Huang seems to indicate that macroscopic
bodies can be faithfully represented by models in the thermodynamic limit
because their extension-defining properties – volume and particle number – are
close to infinity. This does not seem right. Why not? On the one hand, there is
the qualitative difference between finite and infinite theoretical models in regard
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to the analyticity of the free energy. By following Mainwood’s proposal to consider
in both cases the limit function per particle 𝑓∞ (𝑇, 𝐹𝑖) = lim𝑡𝑑

𝐹 (𝑇,𝑞𝑖,𝑁)/𝑁, this
difference loses its physical significance. But there is also the problem that no
finite number is close to infinity. Whichever standard metric 𝑑𝑛 we apply, we
get the complete opposite of closeness – an infinite distance to an infinite value

lim
𝑁 ′→∞

𝑑𝑛 (𝑁,𝑁
′) = ∞ (1.2.8)

for any finite 𝑁 . Even an unimaginably large number like 1010
10

is closer to one
than to infinity. This is however only true with respect to a metrical view on
closeness. More concretely, it is due to the property of translational invariance
of the most common metrics. With reference to such a metric one is as close
to two as 1023 is to 1023 + 1. In the context of particle numbers in statistical
mechanics this is unreasonable. Firstly, it is easier to empirically distinguish
an one-particle system from a physical system made up of two particles than
to distinguish between systems of 1023 and 1023 + 1 particles. Moreover, for
calculation methods it is quite irrelevant whether the system under consideration
contains 1023 or 1023+1 particles, which is not the case for one or two. Thus, the
translational invariance is inadequate for closeness between empirical systems as
well as between theoretical models.
Since all norm-induced metrics are translational invariant, there remain only a
few candidates, provided that one accepts metrics at all to express closeness,
what I do at this point for the sake of simplicity. If it is conceivable that even
a metric is capable of solving that problem, uniform structures definitely do
so. One example is the arctan-metric 𝑑𝑎, that defines the distance between two
points 𝑥 and 𝑥′ by

𝑑𝑎 (𝑥, 𝑥
′) = | arctan (𝑥)− arctan (𝑥′) |. (1.2.9)

The strictly increasing arctan-function is bounded by −𝜋/2 and 𝜋/2 (see figure 1.4).
Hence by means of this metric 𝑑𝑎, each point on the real axis has a finite distance
to infinity, and for each proximity threshold that we may select as maximal
distance between close points, we find finite values close to infinity. Only by
understanding “close to” in terms of a metric like 𝑑𝑎, Huang’s statement becomes
true. Due to its distortion, this metric also successfully overcomes the problem
translational invariant metrics have with the fact that the similarity and closeness
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Figure 1.4: Depiction of the arctan-metric 𝑑𝑎: Distances between large
values are reduced in comparison to the norm-induced metric 𝑑𝑛, such that
the arctan-distance (vertical in dark gray) between 𝑥3 and 𝑥4 is by far
shorter than the corresponding distance between 𝑥1 and 𝑥2, although the
difference of the norms (horizontal in light gray) is smaller for the latter
pair.

to larger values allows for significantly wider deviations than in the case of small
values.
Is 𝑑𝑎 thus the appropriate explication of ‘close to’ in the context of phase transi-
tions? The properties of 𝑑𝑎 seem to accommodate the specifics of the theoretical
treatment quite well, but one might object that from the empirical point of view
it is, contrary to what is claimed by 𝑑𝑎, no problem at all to distinguish between
a large macroscopic body and an infinite model. The particle number of a system
may not be known exactly, but we can simply see (in some cases with help of
technical tools) that a system is finite. This line of reasoning, however, disregards
that we consider 𝑑𝑎 to analyse the ≈𝑈 -relation, which connects a model to an
empirical system and its parameters. Hence, it is not intended to be a direct
relation between two empirical systems. What is imaginable, is a chain inference
to the similarity between a finite empirical system 𝑆 and a hypothetical infinite
system 𝑆′ drawn from the ≈𝑈 -similarity of both to the same model 𝑀 . This is
possible, because in general there is no one-to-one assignment between models
and target systems. Rather there are various ways of how a target system can be
represented, and most models faithfully represent more than one target system.
The latter is one aspect of the generality of science. If the finite system 𝑆 and
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the infinite system 𝑆′ are judged to be similar in this way, it happens through 𝑀
and therefore via the theory 𝑇 of which 𝑀 is a model. Accordingly, 𝑆 and 𝑆′

are declared to be similar with respect to that theory, and I have no problem at
all to accept theory-relative similarity between a finite and an infinite system as
long as they are empirically indistinguishable in all properties that are relevant
for 𝑇 .

When we take stock of the relevant properties for a theoretic description of phase
transitions, we firstly come upon the governing parameters, the pairs of conjugate
quantities: temperature 𝑇 – entropy 𝑆, and generalised forces 𝐹𝑖 – generalised
coordinates 𝑞𝑖, which depend on the thermodynamic work of the system, e.g.
pressure and volume, or magnetic field strength and magnetisation. One of each is
an intensive magnitude, this implies that the values for finite and infinite models
can be directly compared, and should match in case that the thermodynamic
limit is applicable. The respective counterparts are extensive quantities, of which
we know that they can be easily converted into intensive quantities due to their
linear scaling with the system’s extension, such as the molar volume 𝑣 = 𝑉/𝑁

and the magnetisation per particle �⃗� = �⃗�/𝑁. The same applies to the extensive
thermodynamic potentials. By means of the associated intensive functions like
the free energy per particle 𝑓 (𝑇, 𝑞𝑖) = 𝐹 (𝑇,𝑞𝑖,𝑁)/𝑁 finite and infinite models can
be likened. Most importantly, the characteristic singular points of 𝐹 (𝑇, 𝑞𝑖, 𝑁)

likewise show up in 𝑓 (𝑇, 𝑞𝑖). This enables us to completely describe the material
changes that characterise phase transitions in terms of intensive quantities. Of
course, if we want a full set of phenomenological coordinates for thermodynamic
systems, we have to adopt the particle number 𝑁 as additional, extensive quantity.
It can also serve as a measure of the distance to infinite models, as outlined
before. But for an empirical description of the processes of phase transitions it
is not required.
The intensive-extensive-distinction is not exhaustive, as there are quantities that
are neither intensive nor proportional to 𝑁 .30 The canonical partition function

30The situation is even worse for nano-scale systems, since the distinction between intensive
and extensive quantities is less clear under such circumstances and it is presumed that the
type of a quantity may depend on the system size (Mansoori and Keshavarzi, 2019, p. 4). This
need not to bother us, as the current scope is on macroscopic systems.
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with its 𝑁 -dependence of the one-particle term 𝑍1

𝑍 (𝑇, 𝑞𝑖, 𝑁) =
(𝑍1 (𝑇, 𝑞𝑖))

𝑁

𝑁 !
(1.2.10)

is such a case. There does not exist a simple transformation into an intensive
quantity. But as a wholly theoretic function it is neither measurable, hence useless
for comparisons of empirical systems to theoretical models, nor does it provide
any information beyond the mentioned thermodynamic functions for contrasting
models. It is just needed to specify the transition points, and for this purpose we
do not need 𝑍 (𝑇, 𝑞𝑖, 𝑁), but the limit function 𝑍∞ (𝑇, 𝐹𝑖) ≡ lim𝑡𝑑 𝑍 (𝑇, 𝑞𝑖, 𝑁).
Accordingly, the defining characteristic of phase transitions has to be spelled out
by means of the limit function 𝑍∞ (𝑇, 𝐹𝑖). Its usage in place of the partition
function 𝑍 (𝑇, 𝑞𝑖, 𝑁) of finite systems, which comes down to representing finite
physical systems by infinite models, is well justified in case that all intrinsic
magnitudes of the physical systems are that close to the calculated values from
the models such that any discrepancy is below the threshold of the theory’s
inaccuracy 𝑈 .

Definition 1.5: Definition for finite systems

A system for whose thermodynamic functions the thermodynamic limit
exists undergoes a phase transition at the thermodynamic configura-
tion (𝑇𝑐, 𝐹𝑖𝑐) ⇔

(i) the respective limit function 𝑍∞ (𝑇, 𝐹𝑖) = lim𝑡𝑑 𝑍 (𝑇, 𝑞𝑖, 𝑁) be-
comes singular or zero at (𝑇𝑐, 𝐹𝑖𝑐), and

(ii) all of its intensive thermodynamic properties 𝑖𝑁 are at
(𝑇𝑐, 𝐹𝑖𝑐) empirically indistinguishable from the limit properties
lim𝑡𝑑 𝑖𝑁 (𝑇, 𝐹𝑖) ≈𝑈 𝑖𝑁 (𝑇, 𝐹𝑖).

With definition 1.5 we have finally arrived at a – to my mind – satisfactory defi-
nition for phase transitions. The first condition (i) is adopted from Mainwood’s
proposal, (ii) is to cure the points of criticism that I have raised against his
conception. It justifies the taking of the thermodynamic limit and restricts the
domain of the concept ‘phase transition’ to systems that are faithfully represented
in the thermodynamic limit. The latter might be a local property around the
transition point (𝑇𝑐, 𝐹𝑖𝑐). This restriction inhibits the flaw of Mainwood’s ac-
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count that small systems, for which the thermodynamic limit does not yield any
similarity to the thermodynamic functions of the finite systems, are attributed
to undergo phase transitions simply because the limit of their partition functions
coincidently features zeros.
Definition 1.5 successfully solves Callender’s formulation of the paradox of phase
transitions. It allows for real finite systems to undergo phase transitions, and
sticks to the conception from statistical mechanics that phase transitions are
theoretically identified by singular points or zeros of partition functions. It
certainly violates the naïve representation tenet 5), as it requires the representa-
tion of finite real systems by infinite models, though, it meets the sophisticated
version 5′), that takes into account the finite accuracy claim of physical theories.
The crucial novelty of my formulation is the specification of the adequate prox-
imity between theoretical models in the thermodynamic limit and realistic, plain
one-to-one depictions of the characteristic properties of empirical systems in
theoretic variables. This is how I try to make sense of the closeness between
infinite models and finite systems. The origin of the ≈𝑈 -relation is the un-
derlying theory. It will be the task of the subsequent chapter to support the
claim that each physical theory implicitly carries a measure of its (in)accuracy,
even fundamental theories like statistical mechanics. More precisely, within the
structural conception, statistical mechanics is a mathematical formalism that
unifies a wide array of theories which are distinguished by the phase space they
act upon. In this picture, it becomes immediately comprehensible why these
theories cannot be perfectly precise, as each application of the framework of
statistical mechanics requires decisions on the choice of phase space, neglect of
marginal impacts, idealising assumptions on the pureness and closure of the
system etc. The theoretic blur 𝑈 is to recompensate all of this.
The analysis that lead us to definition 1.5 has been driven by theoretical deliber-
ations. However, in 1.2.2 we have seen that the reflection upon the empirically
measurable of phase transitions is likely to drag us into the same direction.
I have shown that the mere replacement of discontinuities of thermodynamic
functions by the occurrence of steep gradients is insufficient to account for phase
transitions and unable to explain the effectiveness of infinite idealisations. Both
failures can be settled by complementing the condition of extreme gradients by
the requirement that they have to turn into discontinuities in the thermodynamic
limit. This is effectively equivalent to definition 1.5. Condition (ii) allows to
approximate the non-analytic changes of thermodynamic properties at transition
points (𝑇𝑐, 𝐹𝑖𝑐) by analytic functions which have to feature extreme gradients,
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since otherwise they could not approximate the thermodynamic properties of
the physical system at both sides of (𝑇𝑐, 𝐹𝑖𝑐) as required. Thus, the theoretical
and the phenomenological perspective converge to definition 1.5.

A similar account is brought forward by Chuang Liu (2001), the one among
the philosophers of science who has dealt with the subject of phase transitions
most extensively and thoroughly. While he initially expressed the opinion that
statistical mechanics should seek for a different approach to phase transitions
than the thermodynamic one (Liu, 1999, p. 105), that is without recourse to
the thermodynamic limit, he wrote later on the application of mathematical
predicates of physical theories to physical systems:

With such predicates, scientists must demand strict exactness among
their relations [...]. But when such predicates are applied to actual
physical systems, estimates of approximations are brought in so that
the right kind of systems are picked out by the predicates.
(Liu, 2001, p. 340)

The mathematical precision requires infinite theoretical models but they can
be applied to finite real physical systems if the finite systems are close to the
infinite idealisation.

The crucial difference to Huang’s approach, who thought to circumvent the
problem by simply stating that macroscopic systems are very close to infinite
models, is that I specify what close to means in this context and how the relation
has to be defined in order to make his claim true. Furthermore, I do not simply
acknowledge the fact that the infinite idealisation works in this case, but I will
explain its success using the tools of formal philosophy of science, in particular a
well-defined concept of limit case reduction, in the subsequent chapter.
I would like to close with one remark on phase transitions of composite systems.
After initially introducing several variables 𝑁𝑗 for the amounts of substance of
the different kinds of substance present in a system, I have dropped the lower
index 𝑗 in the course of my exposition. This does not mean that my proposed
solution is restricted to single-component systems. The transition points and
types of phase transitions are intrinsic properties of kinds of substances. As
such it does not matter for the occurrence of phase transitions whether a certain
substance is present in a single component system or together with other kinds
of substance, as long as the components remain separated by boundary layers.
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In the latter case, statistical mechanics and thermodynamics allow to conceive
the total system as composed of single component subsystems, which can be
theoretically dealt with as described. Hence, such decomposable multi-component
systems pose no problem for this approach.
Things are more complicated in the case that the different substances dissolve in
each other or otherwise establish bonds. Then it is not possible to consider the
total system as composed of single component subsystems. Rather the mixture
has to be treated as a new kind of substance. A treatment in statistical mechanics
as presented in 1.1.2 is however only possible if an appropriate Hamiltonian for
the mixture can be found, which is unlikely for highly heterogeneous mixtures
of complex components. It is hardly manageable to obtain the boiling point of
milk from ab initio calculations within statistical mechanics. Though, these are
merely problems of the practical application. In principle, the outlined approach
captures also phase transitions of such systems.
Things become even more complicated when the mixture ratio of the different
components is treated as a further control variable of phase transitions. From
the theoretical point of view this is not any more a description of one system
under different external conditions but of an array of systems on a continuum
of chemical compositions varying over all possible mixture ratios from a pure
system of a substance 𝐴 to a pure system of another substance 𝐵 and possibly
more components. Such examinations are often carried out in material science to
investigate phase diagrams of alloys. Typically the solidus line – the temperature
at which the system is completely frozen – and the liquidus – the temperature at
which the system starts to melt – are separated and coincide only for the pure
cases and possibly few eutectic points. The region in the parameter space between
both lines characterises states of partly liquid, partly solid mixtures together
with a partly separated component. Such states are not in thermodynamic
equilibrium and thus indeed outside the scope of my reflections. But as these
processes are described in terms of phase states of the subsystems made up of
the homogeneous mixture and the separated components, definition 1.5 provides
nonetheless a conceptional basis for such transition phenomena.

1.3 Summary and further proceeding

Although the reflections of this chapter have shown that the concept ‘phase
transition’ raises some difficulties and is not as easy to clarify as one might think
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at first glance, the final result remains close to the first thoughts. The distinc-
tive feature of phase transitions is the abrupt change of characteristic material
properties as a result of a particular substance-specific, slight variation of the
environmental conditions. In terms of thermodynamics this can be spelled out as
the occurrence of discontinuities in thermodynamic functions and consequently
as non-analytic points of thermodynamic potentials. More concretely, phase
transitions of first order exhibit jump discontinuities in first order derivatives of
Gibbs free energy, while phase transitions of second order involve a continuous
change of the first derivatives but spontaneously break or restore a symmetry
and thereby cause an abrupt change of the thermodynamic response functions.
This clear-cut theoretical characterisation leaves no ambiguity whether a certain
state change is a phase transition or not.
While kinetic gas theory and other approaches from statistical mechanics consid-
erately promoted the advance of thermodynamics, such methods encountered
a serious difficulty in describing phase transitions. Calculations by means of
grand canonical and canonical ensembles in statistical mechanics apparently
need the thermodynamic limit to generate the defining mathematical features
of phase transitions. As the legend goes, Kramers brought his assertion of the
indispensability of the thermodynamic limit for the correct depiction of phase
transitions in statistical mechanics to a vote on the van der Waals Congress
in 1937 (Dresden, 1987, p. 323). Even though the outcome is not documented,
the further development of the theoretic methods speaks in favour of Kramer’s
claim.
The question how this theoretical stance can be reconciled with the finiteness
of empirical systems and their capability to undergo phase transitions engen-
ders the paradox of phase transitions. There are only few reasonable ways out.
One consists in a complete revamp of how statistical mechanics captures phase
transitions that gets along without the need for the thermodynamic limit. The
most promising candidate defines phase transitions as series of the partition func-
tion’s complex zeros that approach the positive real semiaxis of thermodynamic
parameters. Though, I have argued against this approach because it cannot
explicate where the imaginary parts of initially real physical quantities arise from
and it fails to meet its ambition to unify the description of phase transitions in
macroscopic systems and phase-like state changes in small systems, as significant
peculiarities of the latter are not adequately captured. I have rather opted for
leaving the propositions of Callender’s formulation of the paradox untouched
and addressing the underlying assumption of how physical theories represent
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empirical systems. My account to representation requires that models of physical
theories mirror the characteristic properties of the represented systems within
the theory’s accuracy. From this point of view, the paradox of phase transitions
vanishes without further ado, as it allows to faithfully represent finite empirical
systems by infinite models, given that the applied theory of phase transitions
manages to characterise systems by solely intensive quantities. Liu summarises
this as follows:

If this is right, infinite systems provide the extension for a mathemat-
ical predicate which when applied to real physical systems picks out
finite, but very large systems. It is not difficult to imagine that is how
all mathematical predicates which depend on limits or convergences,
such as being differentiable, being continuous, and being smooth,
should be understood. (Liu, 2001, p. 341)

In the next chapter, I will carry out Liu’s imaginative process and embed it into
Erhard Scheibe’s Structuralist View on physical theories and theory relations.
This allows me to specify and execute what has been outlined in the preceding
subsection 1.2.3. Afterwards, I will deal with some general implications of this
solution and take up central questions of the lively philosophical debate about
phase transitions. Among these weighty questions about what is to be learned
from the paradox of phase transitions are the limitations of theory reductions in
physics and theoretical indications of emergent physical phenomena.
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Chapter 2

The structuralist
reconstruction

The objective of this chapter is to substantiate the solution strategy for the
paradox of phase transitions that I have outlined in the previous chapter. The
main claim to be to proven is that infinite models can represent macroscopic
systems equally well as finite ones. A sufficient condition for this assertion is
that the empirically testable predictions of infinite idealisation and finite models
of statistical mechanics are empirically indistinguishable. What this concretely
means, will be explained in the course of this chapter, in particular in section 2.5.
The plan of how to prove this claim consists in reconstructing the thermodynamic
limit as a limiting reduction as defined in Erhard Scheibe’s theory of reduction.
Since a theory reduction in this sense is an operation on one theory to obtain
another one, the first step will be a reconstruction of statistical mechanics of
finite systems pursuant to the structuralist approach.
There are numerous ways to reconstruct the theoretic formalism of statistical
mechanics. Mine is geared towards the analysis of phase transitions. Hence, it
will be oriented to thermodynamics, whose structure will be set out first, serving
as a model for statistical mechanics. I intend to reconstruct the theories as closely
as possible to their application to phase transitions as presented in 1.1.2. It is not
my intention to lay foundations like (Carathéodory, 1909; Giles, 1964; Ludwig,
1979), just as I do not pursue complete, nor especially elegant axiomatisations
of both theories, like going back to a minimal number of primitive terms, basing
the theories on entirely observational terms, or whatsoever. This will be neither
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necessary, nor opportune. Still, my representation of thermodynamics roughly
follows Robin Giles (1964) and Günther Ludwig (1979), my examination of
statistical mechanics in form of canonical ensembles is guided by Willard Gibbs
(1928[1902]) and the logical analysis of his work by Gérard Emch and Chuang
Liu (2002). Both presentations are kept as short as possible, for explanations of
the physical context I refer to chapter 1.
After having achieved the structuralist reconstruction of statistical mechanics
of finite systems, the taking of the thermodynamic limit will be the principal
objective of the formal investigation. I will present it as a limiting case reduction
in Scheibe’s terms. It is important to note that my aim considerably differs from
common theory reductions, whose main target is to prove the reducibility of a
particular theory. This will merely be a by-product, though a quite helpful one
for the ensuing philosophical reflections. I rather aim at proving that there are
finite theoretical models of large particle numbers and volumes arbitrary close
to infinite idealisations, which is needed for my definition of phase transitions in
finite systems.
In any case, the demonstration of the limiting relation between infinite and finite
statistical mechanics will be a really tough task, and only possible under some
additional assumptions on the considered theory. This is due to the fact that
not every problem of statistical mechanics has a well-defined thermodynamic
limit. Consequently, the thermodynamic limit examined in section 2.4 can only
serve as one example of how the process satisfies the conditions on Scheibe’s
limiting reduction. The particular method that I will analyse is valid for classical
systems whose Hamiltonians satisfy a stability and a strong tempering condition.
I have chosen this particularly well known case for didactic reasons. It does not
require many additional technical steps nor advanced mathematical methods
that might obscure the actual limiting process. The special conditions of this
limiting procedure are, however, not a limitation of the generality of my solution
of the paradox. There are analogous techniques for other boundary conditions.
In philosophical discussions of the thermodynamic limit, the step of proving that
it is a limiting reduction is often omitted. It seems to be obvious. However,
as we will see in chapter 3, the philosophical implications of the successful
establishment of a limiting reduction is significantly complicated if the concept
is not clearly specified. Therefore, it is preferable to work with a well-defined
notion of ‘limiting reduction’, which in turn makes it necessary to prove that
it actually applies to cases of infinite limits of statistical mechanics. The first
part of this conceptual clarification is the brief outline in section 2.1 of how to
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reconstruct physical theories as per Structural View. This will serve as a general
summary of the methodology pursued in the subsequent sections 2.2 and 2.3.

2.1 How to reconstruct a theory within the struc-

turalist approach

In contrast to the Nagelian model of reduction, that is based on the Syntactic
View of theories as sets of sentences, it seems more advantageous to specify
limiting reduction from a semantic perspective as a topological relationship
between the sets of models of reducing 𝑇 and reduced theory 𝑇 ′. As a first
approach, we can say that a limiting reduction from 𝑇 ′ to 𝑇 is achieved if all
models of 𝑇 ′ are obtained as limits of certain sequences of models from 𝑇 –
a more detailed characterisation will follow in subsection 2.4.2. It would be
far more difficult to generally define this relationship in terms of the Syntactic
View, which lacks any topological concepts because it is entirely based on logic.
As I have argued in (Mierau, 2023, ch. 6), the sophistication and the level of
detail of Scheibe’s analysis of limiting reduction is unmatched. Consequently, his
structuralist framework for reconstructing physical theories that is tailor-made
for his reduction concept is my preferred choice for the further proceeding.

The general idea follows Patrick Suppes’s slogan “to axiomatize a theory is [. . . ]
to define a set-theoretical predicate” (Italics in the original, Suppes, 1957, p. 247).
Compared to Suppes, Scheibe (2022, pp. 45–55) is more specific and restrictive
about the set-theoretical predicates. He chose Nicholas Bourbaki’s concept of
species of structures as formal framework. Such a species of structures consists
of four components: (1) principal base terms 𝑋1, . . . , 𝑋𝑚, (2) auxiliary base
terms 𝐴1, . . . , 𝐴𝑚, (3) typified terms 𝑠1, . . . , 𝑠𝑙, and (4) axioms 𝛼. The central
components are the typified terms. They encompass all relations, functions and
constants of the theory. The typified terms are defined and typified31 relative to

31A typification of a set states its rule of construction, e.g., a function 𝑓 : R ↦→ R has the
typification 𝑓 ∈ 𝒫 (R× R) as an element of the power set of the Cartesian product R × R,
whereas that of an integer constant 𝑐 is 𝑐 ∈ Z. Thus, the typification indicates what kind of
object the typified set is relative to the set universe spanned by the base sets. An important
property of typifications is that they are transportable or canonically invariant under isomorphic
transformations of the base terms. This is why the same typified term can appear in various
theories, or as an analogue in those that are grounded on different base terms.
If the particular typification is not relevant or left open for reasons of generality, I will follow
Bourbaki’s notation to denote the typification of set 𝑠 relative to the base sets 𝑋 and 𝐴 by
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the base terms – which are often called ‘domains’.
Scheibe’s idea is to use Bourbaki’s principal base terms for physical sets and
auxiliary base terms for mathematical ones. Physical sets might contain tangible
objects like massive bodies or gas tanks, yet also more abstract entities like
state spaces, moments in time etc. They are not limited to actually existing
objects, but rather include possible ones. The formal characteristic of these
physical sets is that they ultimately go back to urelements – non-set entities. The
mathematical sets, on the other hand, can be constructed in the customary way
from the empty set ∅ alone. The difference between physical and mathematical
sets is important for ensuring empirical content to physical theories, but it will
not matter much for the following considerations. The auxiliary terms will not be
transformed in the course of the limit process and most mathematical structures
will be tacitly presupposed in my reconstruction.
The last component is the axiom or the axioms of the theory. The only special
condition on the axiom is that it has to be invariant under isomorphic transfor-
mations of the base terms, just like the typifications of the typified terms are (see
footnote 31). This condition, already present in Bourbaki’s original definition
for species of structures (1966, pp. 12-13), is defended by Scheibe (2001[1994],
p. 505) as a minimal condition for lawlikeness. Its significance is not entirely
clear (cf. Muller, 1998, p. 112; Mierau, 2023, sec. 5.1). This topic is, however,
irrelevant for the practical application.
Scheibe was not the only one to specify Suppes’s informal concept of ‘set-
theoretical predicates’ by Bourbaki’s species of structures (cf. da Costa and
Chuaqui, 1988; Muller, 2011), the distinctive features of his approach are rather
due to the further aspects he requires to fully characterise physical theories:
(1) the scope of application, (2) a frame of the theory, and (3) its admissible blurs
(Scheibe, 2022, p. 52). These three items are to be added to the set-theoretical
predicate. The first one, the scope of application 𝐼, is unspectacular. The
set-theoretical axiomatisation of a theory needs an informal specification of its
intended scope of application. Otherwise, it would be unclear which systems the
intended models are and how the theory can be empirically tested.
The third item, the set of admissible blurs as a measure for the (im)precision of
the theory, is closely linked to the empirical corroboration and interpretation

𝑠 ∈ 𝜎𝑠 (𝑋,𝐴). The echolon scheme 𝜎𝑠 is then a place holder for an arbitrary combination of
Cartesian products and power set-operations on 𝑋 and 𝐴, while 𝑋 and 𝐴 may abbreviate the
possibly multiple base terms 𝑋 ≡ (𝑋1, . . . , 𝑋𝑛) and 𝐴 ≡ (𝐴1, . . . , 𝐴𝑚).
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of the theory. The first relation is fairly obvious. Experimental results are not
expected to exactly confirm theoretical calculations. The extend of acceptable
deviations depends on the experimental and measurement methods but also
on the status of the theory. In case of approximate theories like the ideal gas
theory32 discrepancies between measurements and theoretical predictions are
commonly tolerated, even if they are not entirely attributable to measurement
imprecision. Therefore, it is reasonable to evaluate the accuracy of the theory and
not only of the experimental methods. Accordingly, the measure of imprecision is
a characteristic property of a theory and as such it should be part of its rational
reconstruction.
This consideration could motivate the distinction between exact and approxi-
mate theories of physics, which is often combined with the ambition to assign
fundamental theories into the first kind. The view on theories usually associated
with the concept of admissible blurs, which is advocated in this book, is more
radical. It asserts that every physical theory is imprecise to a certain degree.
The main justification is the indispensability of idealisations. In close analogy
to Norton (2012), I think of an idealisation as an inexact representation of a
target system. Whereas it is widely agreed that deliberate distortions in the
representation of the target system are idealisations, I want to point towards an
aspect that received lesser attention in the philosophical debate on idealisations
and approximations: Decisions that are to be taken in order to mathematically
represent a physical phenomenon, for which there is no sufficient knowledge
base. Typical examples from past and present involve upper and lower bounds
of physical quantities: Is there a physical speed limit? What could be the
maximal spacial extension of objects? Is there a minimum distance between
physical points in space? Even though these questions cannot or could not been
answered with a reasonable degree of certainty, the mathematical formalisms of
physical theories require preliminary decisions. If such assumptions that replace
mere ignorance are included under idealisations, there is no question that even
fundamental physical theories have to resort to idealisations.
Now, the second purpose of admissible blurs, besides the adequate treatment of
discrepancies between theory and empirical data, has to do with the appropriate

32One remark about my usage of the terms ‘model’ and ‘theory’: I use ‘model’ in the
model-theoretic sense of a structure that satisfies a theory. This is not exactly in line with its
usage in physics (cf. Hodges, 2022). Many theoretical entities that are usually called ‘models’
fall under the concept ‘theory’ as defined in the Structural View on theories. Accordingly,
some scientific models will be referred to as theories, such as the theory of ideal gases.
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empirical interpretation of idealisations that have entered into the theory. Inter-
preting them as exactly mirroring reality would be mistaken. These assumptions
are wild guesses, often rather motivated by mathematical convenience, rather
than by actual expectations of the structures of reality, and thus should not
be considered as theoretical predictions of the theory. As the name indicates,
admissible blurs blur the exact mathematical structures such that the blurred
structures contain all effective implications of the theory. A possible blurred
answer to one of the questions above might then be: According to the theory,
the smallest possible distance between two distinct points in space is Planck
length or smaller, whereas the idealised mathematical representation of the
physical space as continuous would indicate that there exists no lowest boundary.
Accordingly, the admissible blurs have to be tailored to the idealisations of the
theory, even though the actual extent of their distortion is often not known.
In subsection 2.4.2, I will discuss this difficile procedure in detail for the blurs
present in statistical mechanics.
Formal methods are often associated with exact descriptions and tend to have
difficulties capturing the described forms of imprecision. One of the key advan-
tages of the Structural View is that its proponents have managed to develop
a formal concept that accounts for imprecisions of theories. The concept of
admissible blurs is based on uniform structures. You find the axioms for both
concepts in appendix A. A critical examination can be found in (Mierau, 2023,
sec. 5.2), at this point I merely want to show how it is supposed to work. A
blur 𝑈 is a binary relation. The interpretation is that two values 𝑥 and 𝑥′ of
theoretical functions or two models of a theory are empirically indistinguishable
if 𝑈 (𝑥, 𝑥′) holds. Thus, the exact confirmation of a theory Σ in form of a number
of numerical values 𝑎1, . . . , 𝑎𝑝 that correspond to one structure 𝑠, such that 𝑠
satisfies the axiom 𝛼 of the theory

∃𝑠
(︀
⟨𝑎1, . . . , 𝑎𝑝⟩ ∈ 𝑠 ∧ 𝛼 (𝑋, 𝑠)

)︀
, (2.1.1)

can be modified, such that not 𝑠 but an empirically indistinguishable theoretical
structure 𝑠′ satisfies 𝛼

∃𝑠, 𝑠′
(︀
⟨𝑎1, . . . , 𝑎𝑝⟩ ∈ 𝑠 ∧ 𝑈 (𝑠, 𝑠′) ∧ 𝛼 (𝑋, 𝑠′)

)︀
. (2.1.2)

This blurs the empirical claim of the theory, since (2.1.2) accepts more data
tuples as confirmations than (2.1.1).
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The second aspect of stripping idealisations from empirical inferences of the
theory is closely related to this first role of admissible blurs. Using the finest
blur 𝑈𝑓 under which the theory can be confirmed, we can conclude that two
different structures 𝑠 and 𝑠′ for which 𝑈𝑓 (𝑠, 𝑠

′) holds must not be interpreted
as representing different empirical objects, rather their difference stems from
the mathematical idealisation in the foundational structure of the theory. This
result will be crucial for my argument on how to deal with phase transitions in
statistical mechanics.

While the admissible blurs are also a central element of similar structuralist
views, namely in Günther Ludwig’s and the Munich Structuralism by Joseph
Sneed, Wolfgang Balzer and Ulises Moulines, both of which also include the
scope of application into their accounts, the second additional component – the
frame – is a unique aspect of Scheibe’s approach. It is primarily geared towards
reductions of theories and it may appear rather abstract and technical at first
glance, but the fixed frame is essential for the viability of considering a limit
reduction as a topological approach of sets of models. When comparing different
models of the same theory, some structural terms appear identically in all models,
while others differ. For example, different models of the ideal gas theory have
different values for pressure, volume, temperature and so forth, but the concept
of pressure – that is in set-theoretical terms the domain of the possible values
that can be assumed – is the same for all applications. Technically spoken, the
domains of possible volumes, temperatures etc. are base terms, while the actual
temperature, volume and pressure of a particular system 𝑆 are obtained from
functions like 𝑉 : 𝑆 ↦→ 𝐷𝑉 , where 𝑉 denotes the volume and 𝐷𝑉 the domain
of possible volumes. A further term that is invariable through all applications
of the theory is the universal gas constant 𝑅. This observation of the two
types motivates to distinguish the invariable terms from the application-specific
variable terms. The frame of the theory encompasses all invariable terms, which
by definition includes the base terms (Scheibe, 2022, p. 55).
The stipulation of base terms as invariable is both convenient for the formal
treatment and problematic in some applications of this account. Considering
the base terms as fixed sets is absolutely appropriate for a simple theory like
the ideal gas theory. It implies that we can compare the particular values of the
state functions of different models – the values differ but the physical concepts
are the same. Though, it becomes difficult, when the theory under consideration
features open base terms, like formulations of classical mechanics in generalised
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coordinates and momenta, which explicitly allow for different physical quantities
acting as coordinates and momenta, but also in thermodynamics and statistical
mechanics as they have been introduced in 1.1.2! This is particularly troubling
for this investigation of statistical mechanics.
I will use the following work-around: Instead of treating statistical mechanics as
one theory, it will be considered as the general formalism of all theories which
are subject to the general conditions of statistical mechanics but specify the
acting generalised forces and coordinates by definite physical quantities. Instead
of one theory of statistical mechanics, there is one theory for the Ising model,
one theory for phonons in lattices, one theory for gaseous systems, etc. But not
only the principal base terms will be troubling. In several instance, such as the
internal energy function in thermodynamics or the Hamiltonian of systems of
statistical mechanics, some rather unintuitive choices regarding the invariable
nature of these terms will have to be made. These are certainly points where
Scheibe’s conception requires purely technical efforts, but they are definitely
outweighed by the benefits of his approach.
I have claimed that the fixed frame, including the base terms, is essential for the
feasibility of defining the limiting reduction as a topological relation between
sets of models. Why is that? Only this condition guarantees that the entirety of
models of a theory is a set – in the well defined axiomatic sense of 𝑍𝐹 or any
equivalent axiomatisation of set theory – and not an object of the more general
concept – a class. This triggers two follow-up questions: (1) How does the fixed
frame ensure that the models form a set? And (2) why is this relevant for the
definition of limiting reduction? Regarding (1), within the Structural View the
set of models of a theory 𝑀Σ is simply considered as the set of structures that
satisfy the axiom

𝑀Σ = {⟨𝑠1, . . . , 𝑠𝑜⟩ | 𝑠1∈𝜎𝑠1(𝑋,𝐴) ∧ · · · ∧ 𝑠𝑜∈𝜎𝑠𝑜(𝑋,𝐴) ∧ 𝛼 (𝑋,𝐴, 𝑠1, . . . , 𝑠𝑜)}.
(2.1.3)

Accordingly, it holds that 𝑀Σ is typified as a subset of the Cartesian product of
the echelon schemes

𝑀Σ ∈ 𝒫 (𝜎𝑠1(𝑋,𝐴)× 𝜎𝑠2(𝑋,𝐴)× · · · × 𝜎𝑠𝑜(𝑋,𝐴)) , (2.1.4)

where all the 𝜎𝑠𝑖 (𝑋,𝐴) are combinations of Cartesian product and power-set
operations on the base sets. Both operations lead to elements of the set universe
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spanned by 𝑋 and 𝐴, therefore, given that 𝑋 and 𝐴 are fixed sets, the models
of the theory form a proper set. If 𝑋 and 𝐴 were variable, this would not be
guaranteed. For instance, the Munich Structuralism, which does not employ the
fixed frame, has to work with classes of models.
Turning towards (2), why is the set-nature of the entirety of a theory’s models
relevant for the particular approach to limiting reduction? The basic idea is to
compare the sets of finite and infinite models in a topological space that encom-
passes both sets. The topology is not freely selectable – otherwise no definite
answer about the topological relationship between the sets of models would be
possible because different topologies could support different claims about the
relative alignment – but it is induced by the uniform structures associated with
the theory of which the limiting case is to be taken. By definition a topological
space is defined as a topological structure on a particular set. The answer is then
simply, that a non-set class of models cannot fit into this set of the topological
space and the whole approach is infeasible.33

This brief summary reflects the bi-perspective nature of Scheibe’s approach: On
the hand, we have the syntactic axiomatisation of the theory in base and typified
terms with typifications and axioms. On the other hand, there is the semantic
perspective on the set of models. The following procedure is typical for Scheibe’s
approach: The syntactic perspective will be dominant while reconstructing the
theories and during the auxiliary alignments of the vocabulary of the theories
for finite and infinite systems in order to permit the topological comparison in
a common topological space, whereas the actually interesting steps will take
place in the semantic setting using the topological space defined by the uniform
structure.
Summarising the essentials of the syntactic elements of Scheibe’s Structural
View on theories, the empirical claim of a physical theory 𝑇 is determined as
the assertion that every physical system 𝑖 of its scope of application 𝐼 can be

33In principle, the concept of Grothendieck topology allows to generalise topological concepts,
such that the domain is not necessarily a set but any arbitrary category. For topological spaces
induced by uniform structures there exists a direct correspondence between the topological
space and the associated Grothendieck topology. The issue here is that the admissible blurs
that define the topology are motivated by the concept of uniform structures, but they do not
necessary satisfy all of the axioms for uniform structures (cf. Mierau, 2023, sec. 5.2).
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regarded as a structure of a common species Σ

∀𝑖∈𝐼
(︀
Σ (𝑋∘, 𝐴∘, 𝑠∘, 𝑠𝑖, 𝛼

∘ ∧ 𝛼𝑖)
)︀
. (2.1.5)

The 𝑋∘ and 𝐴∘ in this formulaic expression are the principal and auxiliary base
terms, which are the same for all applications, indicated by the upper index “∘”.
Additionally, there are structural terms 𝑠∘, 𝑠𝑖 on the base sets that satisfy the
axioms 𝛼 of the theory and uniquely assign a theoretical model ⟨𝑠∘, 𝑠𝑖⟩ to each
system 𝑖. The frame terms 𝑠∘ correspond to natural constants and structures
valid for all applications, while the 𝑠𝑖 represent the individual characteristics
of the specific system 𝑖. The abridged Σ-notation of (2.1.5) is equivalent to
the conjunct of the typification of structural terms with the theoretical axioms,
which can be likewise separated into a universal frame part 𝛼∘ and an individual
claim 𝛼𝑖

∀𝑖∈𝐼
(︀
⟨𝑠∘, 𝑠𝑖⟩∈𝜎𝑠 (𝑋∘, 𝐴∘) ∧ 𝛼∘ (𝑋∘, 𝑠∘) ∧ 𝛼𝑖 (𝑋

∘, 𝑠∘, 𝑠𝑖)
)︀
. (2.1.6)

The objective of the following sections 2.2 and 2.3 is to reconstruct statistical
mechanics as a set-theoretical predicate with the required specifics of Scheibe’s
conception. This allows to apply his general framework of theory reduction to
examine the relation between the finite models of statistical mechanics and the
infinite models in the thermodynamic limit, which I project for section 2.4. The
results of this detailed analysis of the topological relations between the sets of
models constitute the basis for the justification of my claims concerning phase
transitions outlined in 1.2.3. This is scheduled for section 2.5, where I finally
combine all pieces of my argument to resolve the paradox of phase transitions
without rejecting any of Callender’s four premises, and intend to substantiate
my proposed definition 1.5 of ‘phase transition’ from the perspective of general
philosophy of science.

2.2 States and phase spaces

In the particular cases of thermodynamics and statistical mechanics, the abstract
presentation (2.1.6) corresponds to the fundamental conception of both theories
to firstly claim that every physical system of the declared scopes of application is
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at any instant of time in a state 𝑧 of a phase space34 𝑍, which is capable to fully
describe the given systems within the respective theory. The second theoretical
claim is, of course, that these states and their temporal evolutions satisfy the
theoretical laws 𝛼. Consequently, we can sum up this basic setting similarly to
formula (2.1.6)

∀𝑖∈𝐼
(︀
𝑧𝑖∈𝑍 ∧ 𝛼 (𝑍, 𝑧𝑖, . . . )

)︀
. (2.2.1)

Here, 𝑖 comprehends an individuated system 𝑥 at a certain point in time 𝑡. This
conception involves a mapping function 𝑧𝑖 = 𝜙 (𝑥, 𝑡), which relates the pair (𝑥, 𝑡)

to a definite point in the phase space 𝑍. In the following neither the temporal
aspect, nor the commonly non-injective mapping 𝜙 will be formally examined.
Even though phase transitions are evidently dynamical phenomena, the rele-
vant parameters are the thermodynamic quantities and microscopic interaction
properties, as analysed in the first chapter, time is not. The relevant question
is which trajectories in the abstract phase space exhibit phase transitions, not
how they proceed in the course of time. Thus, the otherwise crucially important
Liouville equations will not be covered in the subsequent partial reconstruction
of statistical mechanics, as it is restricted to the application to phase transitions.

The matter concerning the relation between systems and states is somehow more
intricate, though especially for thermodynamics, the assignment 𝜙 is rather
trivial. My reconstructions will primarily focus on the species of structure Σ and
the admissible blurs of the involved theories. For the species of structure, the
concepts ‘state’ and ‘phase space’ are central, whereas the notion ‘system’ comes
only into play when the theory is applied to actual or possible physical entities,
hence beyond the scope of the formal analysis.35 Accordingly, the latter is a
meta-theoretical issue which affects all physical theories in the same way (except
for cosmological theories, which differ with regard to the fact that they are made
for only one system), while questions concerning the nature of states only arise
in theories that make use of this concept. And since different theories may devise

34Even though it might be quite common to designate the space of all possible states of
a thermodynamic system as ‘state space’, I adhere to ‘phase space’ in order to avoid any
confusion with the difference between phase and state space of analytical mechanics, which
might well arise if I used the same term in the context of statistical mechanics.

35In his rational reconstruction of thermodynamics in the spirit of the Received View, Giles
(1964, p. 21) pursues the same strategy. His axiomatisation treats ‘state’ as a primitive term,
while ‘system’ is kept out of the formal considerations.
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it in differing ways, the respective considerations are theory-dependent. This is
especially appreciated in comparisons between classical and quantum mechanics.
The classical concept of states is rather straightforward: A single particle state is
determined by a pair of (generalised) coordinates and momentum. Many particle
states are the according points of the direct product phase spaces. Also several
interpretations of quantum mechanics are based on such pure states, though
these states together with the associated Hamiltonian do not fully determine the
theory-relevant measurable properties of the regarded system, and measurements
use to change the state of the surveyed system. Hence, ‘state’ does not mean
the same in both theories, and while in analytical mechanics the existence of
pure states is generally not put into question, there are various approaches to
quantum mechanics that regard pure states as meaningless and only consider
mixed states.
The concept of mixed states originated in statistical mechanics. There are basi-
cally two interpretations that motivate its occurrence. One upholds pure states
of many particle systems as described in analytical mechanics – that are specified
by the 𝑁 coordinates and 𝑁 momenta of 𝑁 -particle systems – as the realistic
base of mixed states, which are only necessary due to the practical problems
that inhibit the knowledge of all the necessary data to determine pure states
of 𝑁 ≈ 1023-systems, and the methodological incapacity to calculate with such
enormous data sets. Advocates of the competing view use to reject the point of
view of subjective knowledge in a fundamental physical theory. Since the physical
behaviour of a many particle system does not depend on the degree of knowledge
about it physicists may have or not, epistemic concepts like knowledge and
ignorance are ought to be kept out of the theory. As a result, proponents of this
objectivist view commonly discard pure states already within classical statistical
mechanics and base mixed states on possible procedures to reliably prepare many
particle systems (e.g. Giles, 1964, p. 17; Ludwig, 1979, pp. 165–169). Since the
attitude towards pure and mixed states does not matter for the topic of phase
transitions, there is no reason to side with either. Consequently, I maintain a
neutral position in this regard.
While the importance of mixed states in statistical mechanics has the effect that
this concept is extensively treated in introductions into this theory, it is rarely
addressed when dealing with thermodynamics. There, two points of view appear
plausible. The reductionist view already knows from statistical mechanics that
the way thermodynamics specifies states, e.g. by triples of temperature, pressure
and amount of substance, corresponds to macrostates in the fundamental theory.
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Since macrostates can be realised by a multitude of pure microstates, they
are mixed states of equal probability distributions of all possible realisations.
On the other hand, an absolutist view that only takes into consideration the
phase space of thermodynamics comes to the conclusion that its points are pure
states. However, as Brian Pippard (1966, pp. 96–97) cogently argues, the second
law of thermodynamics can only be widely valid if thermodynamic states are
considered as mixed states. Otherwise, fluctuations like a temporal contraction
under unchanged external conditions, this is in the same thermodynamic state,
would violate the second law as such a process decreases the entropy. But if
fluctuations do not amount to different states, a momentary contraction due to
density fluctuations is not a process of state change and the entropy is defined
to be the same for all fluctuations of properties under a fixed thermodynamic
state. Thus, both perspectives result in the conclusion that thermodynamics
deals with mixed states, just like statistical mechanics of many particle systems.
The theories describe the dynamics of such states by two operations: the evolu-
tion of one state into another and the union of two systems into one, which is
reflected on the level of states by ascribing a common state to a composed system
made up of subsystems (Giles, 1964, pp. 22–26). The imposed restriction to equi-
librium states entails that evolutions of statistical ensembles or thermodynamic
states are driven by changes of external conditions. Every evolution of state is
the result of a thermodynamic process acted upon the system. Accordingly, the
typology of the different kinds of thermodynamic processes forms a centrepiece of
thermodynamics, which will not be treated further in my analysis of the general
theoretic frameworks regarding phase transitions. The second operation of union
of systems is especially important to define the concepts of isolated and coupled
systems, as well as the relation of equilibrium between states, which paves the
way for introducing the concept ‘temperature’.

In conclusion, we find the concept of a state ascribed to any applicable system
at the bottom of both theories, together with two primitive operations on states:
the union of subsystems and substates, and the evolution of states linked to
thermodynamic processes. As of the point at which the conceptions of the phase
spaces are to be considered, both theories diverge and have to be examined
separately.
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2.2.1 Phase space in thermodynamics

By comparing once again formula (2.2.1) with (2.1.6), we see that the state 𝑧
is a variable structural term, while the phase space 𝑍𝑡𝑑 corresponds to the set
specified by some echelon scheme 𝜎𝑧 (𝑋∘, 𝐴∘) on the base terms of our theory.
Thus, the phase space is either a principal base term itself or a compound of these.
I choose to adopt it as an abstract base term. This has the advantage that states
are not simply tuples of values like (𝑝, 𝑇,𝑁), but may carry a more profound
conceptual meaning. The mathematical formulation of thermodynamics will
then require to find one or more mathematically more accessible spaces 𝑍𝑝

𝑡𝑑 that
are isomorphic to 𝑍𝑡𝑑. This is the next task, that I approach in close analogy to
my introduction into the thermodynamic treatment of phase transitions in 1.1.2,
and roughly following Ludwig’s presentation of thermodynamics (1979, pp. 8–29).

The generality of thermodynamics is mirrored by the open expression of thermo-
dynamic work 𝑊 . It solely specifies that infinitesimal changes can be written in
the form of

𝛿𝑊 =
𝑛∑︁

𝑖=1

𝐹𝑖 𝑑𝑞𝑖 (2.2.2)

with 𝑛 generalised forces 𝐹𝑖 and generalised coordinates 𝑞𝑖, which is clearly
motivated by the mechanical concept of work 𝛿𝑊 = �⃗� · 𝑑�⃗� and the work
of compression and expansion of gases 𝛿𝑊 = 𝑝 𝑑𝑉 . Textbook examples of
thermodynamics involve only one kind of work, hence the case 𝑛 = 1, but in
general there act multiple components, e.g. surface tension, external stress,
electric or magnetic fields. Each additional constituent carries one 𝑞𝑖 and 𝐹𝑖,
and thereby adds a new dimension to the phase space. Even though every
component carries two variables, they only account for one dimension, since
they cannot be varied independently when all other system parameters are
hold fixed. Accordingly, either 𝑞𝑖 or 𝐹𝑖 is to be selected as a variable for the
parametrisation 𝑍𝑝

𝑡𝑑, and we have already seen that it will be possible to switch to
the other choice via Legendre transformations after establishing thermodynamic
potentials. Since the internal energy is commonly chosen as basic potential, the
first components of the isomorphic parameter space 𝑍𝑝

𝑡𝑑 are the domains of the 𝑞𝑖:
𝐷𝑞1×𝐷𝑞2×· · ·×𝐷𝑞𝑛 . All of the eligible parameters are physical quantities known
from theories different from thermodynamics, hence, within thermodynamics
the 𝑞𝑖 and 𝐹𝑖 are non-theoretical terms. In particular, this implies that there
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exist measurement procedures and related uniform structures on the domains 𝐷𝑞𝑖

that fulfil the demands that I have explicated in 2.1, namely that they cancel out
the idealisations made by the conjectured particular structure of these quantities
(e.g. that they are continuous, or unbounded) and specify the empirical accuracy
of the mathematical representations.
Further necessary parameters to represent the thermodynamic phase space are
the amounts of substance 𝑁𝑗 of all present kinds of substances, which likewise are
bound to a domain 𝐷𝑁 . Also the amount of substance is to be taken as a non-
theoretical term of thermodynamics, which means that there exist measurement
methods that do not involve implications from thermodynamics and also a set of
admissible blurs on 𝐷𝑁 to account for inaccuracies. Since it is usually introduced
into physics within thermodynamics, rigorous foundational presentations often
feature the mass in place of the amount of substance as principal variable to
prevent any worries about its non-theoretical nature in thermodynamics (e.g.
Giles, 1964, p. 86). As this is no primary concern of my reflection, following the
common presentation using 𝑁 is totally adequate. Thus, for the most simple
case of a system made up of one component which may come in two different
phases we need a parametrised space of 𝐷𝑞1 ×𝐷𝑞2 × · · · ×𝐷𝑞𝑛 ×𝐷𝑁 ×𝐷𝑁 with
one 𝐷𝑁 for each phase.
It is an important finding of thermodynamics that this space is still incomplete
for expressing the relevant physical processes. There is one dimension missing
and no pre-thermodynamic quantity is able to complement the parameter space.
This implies that the construction of phase spaces in thermodynamics relies on
a theoretical term. Again there are several alternatives possible and I choose
the commonplace choice – the temperature 𝑇 . With this final constituent we
arrive at

𝑍𝑝
𝑡𝑑 = 𝐷𝑞1 ×𝐷𝑞2 × · · · ×𝐷𝑞𝑛 ×𝐷𝑁 ×𝐷𝑁 × R. (2.2.3)

In contrast to the other variables, we cannot specify the domain of temperatures
yet. Hence, it is provisionally considered as a real variable. It is one task of
thermodynamics to further restrict this domain.
As already mentioned, there exist other, equivalent representations of the phase
space besides 𝑍𝑝

𝑡𝑑, which correspond to the Legendre transformations of the
thermodynamic potentials. For instance a state of a theory of gaseous-liquid
transitions can be specified by 𝑧𝑝1 = (𝑝1, 𝑁1, 0, 𝑇1) or 𝑧𝑝

′

1 = (𝑉1, 𝑁1, 0, 𝑇1). The
first variant uses the natural variables of Gibbs free energy, while the second
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is geared towards the free energy. Consequently, the principal base terms of
thermodynamics encompass all the domains 𝐷𝑞𝑖 , 𝐷𝐹𝑖 , 𝐷𝑁 and 𝐷𝜇, whereof the
latter will not concern us. Before I turn to the further theoretical structures
of thermodynamics like the potentials, I briefly outline the differences to phase
spaces of statistical mechanics.

2.2.2 Phase space in statistical mechanics

Statistical mechanics is supposed to provide a microscopic foundation for ther-
modynamics. This becomes the most apparent when comparing the different
conceptions of their phase spaces. That theory depicts matter as composed of
a large number 𝑁 of microscopic particles with an one-particle phase space Γ1

associated to each of them. In the case of classical descriptions, this space can
be further decomposed into the set of pairs (�⃗�1, �⃗�1) of momentum and position,
which technically is the cotangent bundle of the configuration space of a bounded
region of space Λ ⊂ R𝑑 with dimension 𝑑. It is possible to deal with systems
composed of particles with different individual phase spaces Γ𝑖, though this is
not necessary here, because the general nature of phase transition can be studied
on single component systems, as explained in 1.2.3. Thus, the phase space of a
classical 𝑁 -particle system is generally defined as the Cartesian product of the
individual phase spaces Γ1 (Λ) = R𝑑 × Λ

Γ𝑁
1 (Λ) ≡ Γ1 (Λ)× Γ1 (Λ)× · · · × Γ1 (Λ)⏟  ⏞  

𝑁−times

Γ (Λ) =
⋃︁

𝑁∈N
Γ𝑁
1 (Λ) . (2.2.4)

The all particle numbers encompassing phase space Γ (Λ) will be advantageous for
a general presentation of statistical mechanics and the later thermodynamic limit
taking. Equation 2.2.4 exhibits the special rôle of the particle number 𝑁 among
the state variables. Unlike the amount of substance in thermodynamics, it is not
a coordinate of the phase space, but a number that enters in a more complex
way into its construction. Accordingly, it is taken as a natural number, though
with physical significance, instead of the typified physical quantity 𝑁 ∈𝐷𝑁 of
thermodynamics.
For quantum mechanical descriptions Γ (Λ) is rather the Fock space, which is the
direct sum over all particle numbers of every (anti-)symmetric permutation Θ̂

𝑁

𝑠/𝑎

– depending on the bosonic or fermionic nature of the particles – of tensor powers
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of the single particle Hilbert space Γ1 (Λ) (Dereziński and Gérard, 2013, pp. 64–
67), which is in turn the space Γ1 (Λ) = 𝐿2 (Λ) of Lebesgue-square integrable
functions over Λ

Γ⊗𝑁
1 (Λ) ≡ Γ1 (Λ)⊗ Γ1 (Λ)⊗ · · · ⊗ Γ1 (Λ)⏟  ⏞  

𝑁−times

Γ (Λ) =
⨁︁

𝑁∈N
Θ̂

𝑁

𝑠/𝑎 Γ
⊗𝑁
1 (Λ) . (2.2.5)

Since our theories are to include systems of different volume and hence vary-
ing spatial boundaries Λ, we have to define the parametrised phase space 𝑍𝑝

𝑠𝑚

over all possible regions of R𝑑. Due to the fact that merely shifted regions form
physically equivalent configuration spaces, the selection of Λ can be restricted to
the set 𝑇

(︀
R𝑑

)︀
of closed regions 𝐴 ⊂ R𝑑 that cannot be transformed into another

via translations

𝑍𝑝
𝑠𝑚 =

⋃︁

Λ∈𝑇 (R𝑑)

Γ (Λ) . (2.2.6)

But this is not the whole story about the systems of statistical mechanics.
Especially those which are driven to undergo phase transitions are moreover
governed by external conditions. The determining factors appear as parameters
of the systems’ Hamiltonians. Taking up an idea of Gibbs, these parameters
can be connected to the generalised coordinates 𝑞𝑖, we already got to know in
thermodynamics, that now represent positions of fictional exterior bodies that
despite of not being part of the system affect its thermodynamic behaviour via
the generalised forces 𝐹𝑖 (1928[1902], p. 42). These parameters do not shape the
phase space 𝑍𝑝

𝑠𝑚, but still they co-determine the states we find the systems in.
They do so because the mixed states, that are the relevant states for thermo-
statistical mechanics, are distributions of pure states from 𝑍𝑝

𝑠𝑚, which in turn
depend on the Hamiltonian and its parameters.
Just as the variables 𝑞1, . . . , 𝑞𝑛 and 𝑁 do not completely describe a thermody-
namic state, also mixed states of statistical mechanics require a further theoretical
parameter. This may be the temperature or the internal energy. It seems as if
this additional component is not necessary in statistical mechanics. A widespread,
though inaccurate stance is that temperature is essentially the average kinetic
energy of a system’s particles. Accordingly, it can be calculated from the infor-
mation included in every state of 𝑍𝑝

𝑠𝑚. This is however not the way temperature
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comes into play at this point. It is rather an exterior parameter just like the
generalised coordinates 𝑞𝑖 and the particle number 𝑁 . The environment of a
significantly larger thermal reservoir constrains the system under investigation
into a (mixed) state with temperature 𝑇 . The other possible constraint is the
internal energy for isolated systems with their microcanonical ensembles. Con-
sequently, either the total energy or the temperature is to be added as further
parameter, since we are primarily interested in canonical ensembles our choice is
the temperature. In this way, it enters again as a mere numeric parameter.

Now as the base terms and phase spaces of both theories are settled, it will be
the next task to outline the further theoretical structures that are construed
upon them.

2.3 Theoretical structures and the term ‘phase tran-

sition’

The basic idea of the Structural View is to reconstruct scientific theories as
structures of relations, functions and constants on the theories’ base terms.
After fleshing out these base terms and the respective phase spaces, which are
technically constants of our theories, we will now have to set up the functions
in which the equations of the theories are formulated. Again, both theories
have to be examined separately. The reflections on thermodynamics have a
preliminary purpose. After free energy, temperature and the state functions
have been defined in statistical mechanics the results from thermodynamics can
be adopted immediately. This section will even more than the latter be directed
towards the application to phase transitions and omit any unnecessary aspect.

2.3.1 Theoretical structures of thermodynamics

The phenomenological nature of thermodynamics becomes manifest right at the
first and foremost theoretical function – the internal energy 𝑈 . Everything that
can be said on the general level is that 𝑈 is a continuous function on the phase
space 𝑈 : 𝑍𝑝

𝑡𝑑 ↦→ R, which is monotonic and convex in its variables, and infinitely
differentiable on almost every interval of its domain. The exact mathematical
form of 𝑈 is however part of the highly irregular practise of theory construction
and cannot be derived from any principle of thermodynamics. Therefore, it
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suggests itself to consider this term as part of the frame of each thermodynamic
theory. Right in the sense of how I speak here of thermodynamic theories –
in line with the structuralist conception – this implies that the choice of the
particular phase space and mathematical form of 𝑈 determines the theory.36

To give an example, the thermodynamic theory of ideal gases is specified by
selecting 𝑞 = 𝑉 and 𝐹 = 𝑝, as well as

𝑈𝑖𝑔 (𝑆, 𝑉,𝑁) =
𝑓

2
𝑁𝑘𝐵

(︂
𝑁�̃�

𝑉
· 𝑒

𝑆
𝑁𝑘𝐵

)︂ 2
𝑓

(2.3.1)

with the Boltzmann constant 𝑘𝐵, the parameter 𝑓 , which turns out to be the
number of molecular or atomic degrees of freedom in a microscopic reading,
and a further material-specific constant �̃�. This example reveals two points:
First, besides the interpreted coordinates of the phase space 𝑉 and 𝑁 , there is a
further, now theoretical, variable to be introduced: 𝑆. Second, equation (2.3.1)
differs from the more familiar caloric equation of state of ideal gases

𝑈 𝑐𝑎𝑙
𝑖𝑔 (𝑇, 𝑉,𝑁) =

𝑓

2
𝑁𝑘𝐵𝑇 (2.3.2)

with a different choice for the newly introduced parameter 𝑇 . Only 𝑈𝑖𝑔 (𝑆, 𝑉,𝑁)

accomplishes the full significance of the internal energy as a thermodynamic
potential. Hence, the subsequent points on our agenda are to set out the con-
tent of thermodynamic potentials and to introduce the theoretical terms 𝑆 and 𝑇 .

While the generalised coordinates 𝑞𝑖 function as parameters of the underly-
ing phase space, the conjugate quantities 𝐹𝑖 can now be introduced as func-
tions 𝐹𝑖 : 𝑍

𝑝
𝑡𝑑 ↦→ 𝐷𝐹𝑖 with

𝐹𝑖 = −𝜕𝑈
𝜕𝑞𝑖

. (2.3.3)

This equation is only satisfied by the internal energy function in its natural
variables 𝑈 (𝑆, 𝑞𝑖, 𝑁), and thus defines the crucial property of thermodynamic
potentials. We can easily see that the caloric equation of state is incapable to
fulfil (2.3.3) by examining once again the example of ideal gases. It yields the
constant −𝜕𝑈𝑐𝑎𝑙

𝑖𝑔 /𝜕𝑉 = 0, which does not correspond to the pressure function. The

36This is in line with Scheibe’s choice to include the external force field of a Newtonian
mechanical theory of one moving body into the frame of this theory (2022, p. 55).
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full set of equations 𝐹1 (𝑈, 𝑞1, . . . , 𝑞𝑛, 𝑁), . . . , 𝐹𝑛 (𝑈, 𝑞1, . . . , 𝑞𝑛, 𝑁) completely
describes the thermodynamic behaviour of the physical system, and is generally
known as the equations of state (Ludwig, 1979, p. 22).

In order to define temperature 𝑇 and entropy 𝑆, we have to consider composed
systems. To this end, we have already introduced the operation of union of states.
Since this consideration is restricted to static or equilibrium states, not every
union of equilibrium substates is to be found in the phase space of equilibrium
composed states. There are only two types of composed states included: systems
of isolated subsystems, which are without further interest for us, and thermody-
namically coupled systems of states, which are in a thermodynamic equilibrium
with each other.37 The relation of thermal equilibrium between two states38 is
transitive and can thus be used to define equilibrium classes of thermodynamic
states. To each class a parameter Θ: 𝐷𝑞1 × · · ·𝐷𝑞𝑛 ×𝐷𝑁 ×𝐷𝑁 ↦→ R can be
ascribed – a temperature. Since each system is in thermal equilibrium with a
scaled copy of itself, the temperature is necessarily an intensive quantity (Ludwig,
1979, pp. 33–37).
Let us now consider only one subsystem. The other one is usually regarded as
the reservoir and is only relevant for its coupling with the examined part. Besides
the operation of union, we have also established the evolution of a state under a
thermodynamic process. In case of such a thermodynamic process, which evolves
our system state 𝑧′1 to 𝑧′2, we can define the quantity heat 𝑄 by the difference
in internal energy plus the work done by the primed subsystem 𝑊 ′

𝑄′ := 𝑈 ′ (𝑧′2)− 𝑈 ′ (𝑧′1) +𝑊 ′. (2.3.4)

37It is straightforward to formally define both types of composed systems: In case of isolated
subsystems the common phase space 𝑍 is identical to the Cartesian product of the partial
spaces of equilibrium states 𝑍 = 𝑍′ × 𝑍′′, this means that every combination of equilibrium
states forms a static total state. This is evidently not the case for the second type of coupled
equilibrium states (Ludwig, 1979, p. 31).

38‘Thermal equilibrium between states’ is no primitive relation of thermodynamics, but can
be derived from the relation between the internal energy functions of the subsystems 𝑈 ′ and 𝑈 ′′.
Two states 𝑧′ =

(︀
𝑞′1, . . . , 𝑞

′
𝑛′ , 𝑈

′)︀ and 𝑧′′ =
(︀
𝑞′′1 , . . . , 𝑞

′′
𝑛′′ , 𝑈

′′)︀ are in thermal equilibrium, if the
subsystems’ internal energy functions are fully determined by the generalised coordinates of
the respective sub-phase space and the total internal energy 𝑈 ≡ 𝑈 ′ + 𝑈 ′′

𝑈 ′ = 𝑈 ′ (︀𝑞′1, . . . , 𝑞′𝑛′ , 𝑈
)︀

𝑈 ′′ = 𝑈 ′′ (︀𝑞′′1 , . . . , 𝑞′′𝑛′′ , 𝑈
)︀
,

and are monotonically increasing in 𝑈 if the generalised coordinates are hold fixed (Ludwig,
1979, p. 33).
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The latter is specified by the initial relation (2.2.2) 𝛿𝑊 ′ =
∑︀𝑛′

𝑖=1 𝐹
′
𝑖 𝑑𝑞

′
𝑖. Unlike

the internal energy, work and heat are no state functions. This is reflected by
the fact that work and heat depend on the process by which 𝑧′1 evolves to 𝑧′2.
For infinitesimal steps 𝛿𝑄 = 𝑑𝑈 + 𝛿𝑊 is an inexact differential, but if these are
reversible, there exists an integrating factor and consequently a state property
related to 𝑄 (for inexact differentials and integrating factors see footnote 5). The
derivation of this state function depends on a theoretic assumption, known as
the second law of thermodynamics. It states: An adiabatic cyclic process along
a parametrised curve 𝒞 (𝑡) in the phase space cannot perform positive work

∮︁

𝒞

𝑛∑︁

𝑖=1

𝐹𝑖 (𝑈 (𝑡) , 𝑞1 (𝑡) , . . . , 𝑞𝑛 (𝑡) , 𝑁 (𝑡)) 𝑑𝑞𝑖 (𝑡) ≤ 0 (2.3.5)

(Ludwig, 1979, p. 43). Consequently follows for reversible adiabatic cyclic
processes

∮︁

𝒞

𝑛∑︁

𝑖=1

𝐹𝑖 (𝑈 (𝑡) , 𝑞1 (𝑡) , . . . , 𝑞𝑛 (𝑡) , 𝑁 (𝑡)) 𝑑𝑞𝑖 (𝑡) = 0. (2.3.6)

Josef-Maria Jauch (1972) proved that (2.3.6) is equivalent to the assertion that an
integrating factor to 𝛿𝑄 = 𝑑𝑈 + 𝛿𝑊 exists. It is the absolute temperature 𝑇 (Θ),
and the resulting exact differential

𝑑𝑆 =
𝛿𝑄

𝑇
=

𝑑𝑈 +
𝑛∑︀

𝑖=1

𝐹𝑖 (𝑈, 𝑞1, . . . , 𝑞𝑛, 𝑁) 𝑑𝑞𝑖

𝑇 (𝑈, 𝑞1, . . . , 𝑞𝑛, 𝑁)
(2.3.7)

determines a state function 𝑆 : 𝑍𝑝
𝑡𝑑 ↦→ R up to an additive constant – the entropy.

With entropy 𝑆 and temperature 𝑇 , we can specify the hitherto vacant axis of
the theoretic dimension of the parametrised phase space 𝑍𝑝

𝑡𝑑. It is the entropy,
when choosing the internal energy as thermodynamic potential. Analogously to
the equations (2.3.3) for generalised forces, the temperature appears as partial
derivative

𝑇 =
𝜕𝑈

𝜕𝑆
. (2.3.8)

Though, there are alternative parametrisations of the phase space, which are
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preferred for describing phase transitions. Also the state functions

𝐹 (𝑇, 𝑞1, . . . , 𝑞𝑛, 𝑁) ≡ 𝑈 − 𝑇𝑆 (2.3.9)

𝐺 (𝑇, 𝐹1, . . . , 𝐹𝑛, 𝑁) ≡ 𝑈 − 𝑇𝑆 −
𝑛∑︁

𝑖=1

𝑞𝑖𝐹𝑖 (2.3.10)

define thermodynamic potentials with the more accessible theoretic natural
variable 𝑇 . As all thermodynamic properties of the systems described by states
of 𝑍𝑝

𝑡𝑑 are partial derivatives, the definition of phase transitions as singular points
is reasonable

𝑝𝑡 = { (𝑇 ′, 𝐹 ′
1, . . . , 𝐹

′
𝑛) | 𝐹 ′

1∈𝐷𝐹1
, . . . , 𝐹 ′

𝑛∈𝐷𝐹𝑛
, 𝑇 ′∈R+

0 : ∀𝑁 ′∈𝐷𝑁 ∃𝑧∈𝑍𝑝
𝑡𝑑(︀

𝐹1 (𝑧) = 𝐹 ′
1 ∧ · · · ∧ 𝐹𝑛 (𝑧) = 𝐹 ′

𝑛 ∧ 𝑇 (𝑧) = 𝑇 ′ ∧ 𝑁 (𝑧) = 𝑁 ′ ∧
𝐹 (𝑧) is singular

)︀
}. (2.3.11)

This somehow lengthy characteristic relation is in accordance to our earlier
thermodynamic definition of phase transitions 1.3. It states that phase transi-
tions occur at those system configurations (𝑇 ′, 𝐹 ′

𝑖 ) for which the free energy is
singular for every amount of substance. It is an empirical finding that there are
thermodynamically possible conditions, such that the extension of this concept
is non-empty 𝑝𝑡 ̸= ∅ and the configurations included agree with observed phase
transitions. This is the central result that we are now going to carry over to
statistical mechanics.

2.3.2 Theoretical structures of statistical mechanics

After the rather extensive preparation of the structures of thermodynamics,
the approach of statistical mechanics can now be given very concisely. The
fundamental function is clearly the Hamiltonian

𝐻 : Γ (Λ)×𝐷𝑞1 × . . .×𝐷𝑞𝑛 × R𝑚 ↦→ R (2.3.12)

for Γ (Λ) ∈ 𝒫 (𝑍𝑝
𝑠𝑚) based on the single particle configuration space Λ. The

Hamiltonian typically depends, besides of the generalised forces 𝑞𝑖, the mo-
menta �⃗�𝑗 and coordinates �⃗�𝑗 of all particles, on several further microscopic
parameters 𝑎𝑘 like the particles’ masses, charges etc. It is thus the energy
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function

𝐻 (Λ) = 𝐻 (�⃗�1, . . . , �⃗�𝑁 , �⃗�1, . . . , �⃗�𝑁 , 𝑞1, . . . , 𝑞𝑛; 𝑎1, . . . , 𝑎𝑚,Λ) . (2.3.13)

Unlike the internal energy in thermodynamics, the composition of the Hamilto-
nian follows general patterns given the microscopic interactions that are to be
covered, which makes the formulation of the theoretical functions much easier
in statistical mechanics. However, the principle of conservation of intricacies
strikes back when actually trying to solve the resulting equations, but this
practical obstacle is not our concern (for the moment). In the quantum case,
the self-adjoint linear Hamiltonian operator

ℋ̂ (Λ) : Γ (Λ)×𝐷𝑞1 × · · · ×𝐷𝑞𝑛 × R𝑚 ↦→ Γ (Λ) (2.3.14)

on the microscopic state space Γ (Λ), now a Fock space established on the single-
particle Hilbert space Γ1 (Λ), replaces the Hamiltonian function. Since we are
only concerned with mixed states, the different nature between Hamiltonian
function and operator does not impede a joint presentation of the theoretical
basic structures, despite of the mathematical complications of quantum mechan-
ical calculations.
It certainly makes sense to include the Hamiltonian into the theories’ frame
structure, just as we did with the internal energy function in thermodynamics,
such that the choice of external parameters 𝑞1, . . . , 𝑞𝑛, the microscopic state
space Γ (Λ) and the mathematical formulation of 𝐻 (Λ), respectively ℋ̂ (Λ),
uniquely define a thermo-statistical theory. But this is not that easily possible,
since these terms depend on the configuration space Λ, which we need as a vari-
able term in order to take the thermodynamic limit. As a workaround for this
purely technical issue I also include the configuration space Λ as a variable of the
Hamiltonian. The frame term is then the function that assigns the corresponding
Hamiltonian to the given parameters 𝑞1, . . . , 𝑞𝑛, 𝑎1, . . . , 𝑎𝑚,Λ.

By means of the Hamiltonian, we can define the central partition function
𝑍 : 𝑍𝑝

𝑠𝑚 ↦→ R. It depends on the external conditions 𝑞1, . . . , 𝑞𝑛 and Λ through
the Hamiltonian, the particle number 𝑁 via the integration or the trace over
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the phase space Γ, and a further positive parameter 𝛽 ∈ R.

classical quantum mechanical

𝑍 (𝛽,𝑁, 𝑞𝑖,Λ) ≡
1

ℎ𝑑𝑁𝑁 !

∫︁

Γ

𝑑𝑝𝑑𝑁𝑑𝑟𝑑𝑁 𝑒−𝛽𝐻 𝑍 (𝛽,𝑁, 𝑞𝑖,Λ) ≡ Tr
(︁
𝑒−𝛽ℋ̂

)︁

(2.3.15)

The classical version needs correction factors, the Boltzmann counting to rectify
multiple counting of indistinguishable states, and the term containing the Planck
constant ℎ to obtain a dimensionless quantity. The partition function serves as
normalisation for the density function 𝜌, respectively operator �̂� of canonical
ensemble states:

𝜌 ≡ 𝑒−𝛽𝐻

𝑍
�̂� ≡ 𝑒−𝛽ℋ̂

𝑍
(2.3.16)

As mentioned earlier, the interpretation of canonical ensembles can be set aside,
while taking this choice of mixed states as an empirically confirmed axiomatic
decision. It is therefore a theoretic claim that closed systems – the common
experimental setting for investigations of phase transitions – are properly de-
scribed by canonical ensembles.
The remaining theoretical terms can be defined as almost everywhere differen-
tiable functions on the phase space 𝑍𝑝

𝑠𝑚 ↦→ R (Emch and Liu, 2002, p. 332):

𝑈 ≡
∫︁

Γ

𝑑𝑝3𝑁𝑑𝑟3𝑁 𝜌𝐻 𝑈 ≡ Tr
(︁
�̂�ℋ̂

)︁
(2.3.17)

𝑆 ≡ −𝑘𝐵
∫︁

Γ

𝑑𝑝3𝑁𝑑𝑟3𝑁 𝜌 ln 𝜌 𝑆 ≡ −𝑘𝐵 Tr (�̂� ln �̂�) (2.3.18)

𝐹𝑖 ≡
∫︁

Γ

𝑑𝑝3𝑁𝑑𝑟3𝑁 𝜌

(︂
−𝜕𝐻
𝜕𝑞𝑖

)︂
𝐹𝑖 ≡ Tr

(︃
�̂�

(︃
−𝜕ℋ̂
𝜕𝑞𝑖

)︃)︃
(2.3.19)

By relating the introduced parameter 𝛽 to the temperature 𝑇

𝑇 ≡ 1

𝑘𝐵𝛽
, (2.3.20)

we reobtain the thermodynamic relationships (2.3.3) and (2.3.8)

𝐹𝑖 = −𝜕𝑈
𝜕𝑞𝑖

, 𝑇 =
𝜕𝑈

𝜕𝑆
and 𝑑𝑈 = 𝑇𝑑𝑆 −

𝑛∑︁

𝑖=1

𝐹𝑖 𝑑𝑞𝑖. (2.3.21)
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This striking analogy motivates to take the theoretical functions of statistical
mechanics as internal energy 𝑈 , generalised forces 𝐹𝑖 and entropy 𝑆 of canonical
ensembles.39 Accordingly, Nolting (2014, p. 52) outlines the general strategy of
statistical mechanics as applying the known relations of thermodynamics in order
to solve thermo-statistical problems after the fundamental theoretical terms have
been introduced. The decisive thermodynamic function for the investigation of
phase transitions in statistical mechanics is the free energy 𝐹 (𝑇, 𝑞𝑖,Λ, 𝑁)

𝐹 ≡𝑈 − 𝑇𝑆 (2.3.22)

𝐹 =− 𝑘𝐵𝑇 ln𝑍. (2.3.23)

The latter equation follows directly from the definitions (2.3.17), (2.3.18) and
(2.3.22). In terms of this function, we can immediately adopt the thermodynamic
definition of phase transitions 𝑝𝑡 from (2.3.11)

𝑝𝑡 = { (𝑇 ′, 𝐹 ′
1, . . . , 𝐹

′
𝑛) | 𝐹 ′

1∈𝐷𝐹1
, . . . , 𝐹 ′

𝑛∈𝐷𝐹𝑛
, 𝑇 ′∈R+

0 : ∀𝑁 ′∈N ∃𝑧∈𝑍𝑝
𝑠𝑚(︀

𝐹1 (𝑧) = 𝐹 ′
1 ∧ · · · ∧ 𝐹𝑛 (𝑧) = 𝐹 ′

𝑛 ∧ 𝑇 (𝑧) = 𝑇 ′ ∧ 𝑁 (𝑧) = 𝑁 ′ ∧
𝐹 (𝑧) is singular

)︀
}. (2.3.24)

This procedure is a transfer of a relative term from one theory to another. Despite
of the fact that the characteristic relations of 𝑝𝑡 are equal for the thermodynamic
case (2.3.11) and that of statistical mechanics (2.3.24), the term’s extension
differs in both theories, due to the further constraint on the free energy 𝐹 in
statistical mechanics with (2.3.23). Accordingly, a singularity of 𝐹 (𝑇, 𝑞𝑖,Λ, 𝑁)

has to originate from either a zero or a non-analytic point of the partition
function 𝑍 (𝑇, 𝑞𝑖,Λ, 𝑁). But as extensively discussed in section 1.2, neither is
possible for partition functions defined by (2.3.15) with finite size Λ because
of the analyticity of the exponential function. Thus, it would not even help to
lower the requirement in (2.3.24) such that the singularity has to appear only
at sufficiently high particle numbers 𝑁 ′. The reason that statistical mechanics
is nevertheless applicable to phase transitions is that the infinite limit 𝑁 → ∞

39This differs conceptually from such functions of pure states, but again this is not to be
delved into here.
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yields a non-empty, empirically confirmed set of transition points

𝑝𝑡 = { (𝑇 ′, 𝐹 ′
1, . . . , 𝐹

′
𝑛) | 𝐹 ′

1∈𝐷𝐹1
, . . . , 𝐹 ′

𝑛∈𝐷𝐹𝑛
, 𝑇 ′∈R+

0 : ∀𝑧∈𝑍𝑝
𝑠𝑚(︀

𝐹1 (𝑧) = 𝐹 ′
1 ∧ · · · ∧ 𝐹𝑛 (𝑧) = 𝐹 ′

𝑛 ∧ 𝑇 (𝑧) = 𝑇 ′ ∧
lim𝑡𝑑

𝐹 (𝑧)/𝑁 is singular
)︀
}. (2.3.25)

Before I will analyse and justify this thermodynamic limit taking lim𝑡𝑑 in
application to finite macroscopic systems in the next subsection, table 2.1 sums
up the essential theoretic structures of statistical mechanics with regard to phase
transitions.

frame

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

principal
{︂

domains of gen. coordinates 𝐷𝑞1 , . . . , 𝐷𝑞𝑛

}︂
𝑋∘

base terms domains of gen. forces 𝐷𝐹1 , . . . , 𝐷𝐹𝑛

auxiliary
{︂

mathematical sets N,R
}︂
𝐴∘

base terms for quantum stat. mech. also C⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

spatial dimension 𝑑
⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�̃�∘

parametrised phase space 𝑍𝑝
𝑠𝑚

microscopic parameters 𝑎1, . . . , 𝑎𝑚
Hamiltonians 𝐻 or ℋ̂
Boltzmann constant 𝑘𝐵⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

generalised coordinates 𝑞1, . . . , 𝑞𝑛
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�̃�

structural generalised forces 𝐹1, . . . , 𝐹𝑛

terms particle number 𝑁
partition function 𝑍

vari- density function/operator �̂�
able internal energy 𝑈

entropy 𝑆
temperature 𝑇
free energy 𝐹
configuration space Λ

Table 2.1: Overview of the base terms and structures of statistical mechan-
ics in application to phase transitions: All terms are arranged according
to Scheibe’s distinctions into frame and variable, as well as in base and
structural terms. The right column groups several terms to abbreviate the
formulae of the ensuing section.

The principal base terms are simply the domains of the quantities that macro-
scopically govern the system states – the generalised coordinates and forces. The
mathematical structures are quite intricate, especially in the quantum case, but
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they can be entirely based upon the indicated sets of numbers. The structural
approach allows to set aside the reconstruction of the general mathematical struc-
tures and focus on the relevant physical ones. 𝑍𝑝

𝑠𝑚, representing the combined
phase space over all possible Λ, is the fundamental constant of all models of the
theories of statistical mechanics. It constitutes the domain of the thermodynamic
state variables 𝑁 , 𝑇 , 𝑆, 𝑞𝑖 and 𝐹𝑖, as well as of the more complicated structures
as the Hamiltonians. These are applied as energy functions that depend on
likewise fixed parameters 𝑎𝑗 and the configuration space Λ. For the explication
of phase transitions, both the Hamiltonian and the microscopic parameters act
as fixed circumstances, this is why they are chosen to be part of the fixed frame,
denoted by “ �̃�∘”. Even though the inclusion of the Hamiltonians into the frame
required some technical contortions. The natural constant 𝑘𝐵 holds without a
doubt the same status of a frame term. Alongside the macroscopic state variables,
the variable part of the structural terms �̃� contains the indexical of the state �̂�,
which is a density on 𝑍𝑝

𝑠𝑚, the partition function 𝑍 and the thermodynamic
potentials 𝑈 and 𝐹 . The crucial term is however the configuration space Λ,
which determines the spatial extension of each system and acts as the varying
variable when taking the thermodynamic limit. There exists a multitude of
further quantities like the heat capacities 𝐶𝑉 , 𝐶𝑝, the susceptibilities 𝜒 etc., that
are all derivable from those presented.
This structure in conjunction with the axioms of statistical mechanics 𝛼𝑠𝑚,
which have merely been sketched here and outlined in some more detail in
subsection 1.1.2, makes up the species of structure Σ𝑠𝑚 (𝑋∘, 𝐴∘, �̃�∘, �̃�, 𝛼𝑠𝑚), that
forms the centrepiece of the formalisation of statistical mechanics within the
structuralist framework. We will take it as the starting point of the ensuing
analysis of the thermodynamic limit. According to the prior outline on the
reconstruction of theories as per Structural View in section 2.1, the formalisation
is completed when the frame and the species of structure are accompanied by
the scope of intended applications and sets of admissible blurs. The latter be-
comes pivotal when the thermodynamic limit will be spelled out as a topological
approach.
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2.4 Topological comparison of finite and infinite

models of statistical mechanics

Now as we have brought statistical mechanics into the required form of a set-
theoretical predicate with a fixed frame, we can start with the key element of
my approach to properly define phase transitions of finite macroscopic systems:
The investigation of the alignment between infinite idealisations and the finite
systems of statistical mechanics on the basis of a topology that reflects the
empirical inaccuracy of the respective theory. This procedure consists of the
following steps:

1. In order to make state functions of infinite idealisations comparable to
those of finite systems, the extensive quantities of �̃� are to be transformed
into intensive magnitudes by dividing them by the particle number 𝑁
or the volume 𝑉 and adjusting the axioms accordingly, as outlined in
subsection 1.2.3.

2. The thermodynamic limit is usually taken in form of a stepwise expansion of
Λ𝑘, which depends on its original geometric shape. An increment 𝑘+1 uses
to double the characteristic lengths of Λ𝑘. This procedure can be integrated
into our theory by adding an initial configuration space Λ0 ⊂ R𝑑, a scaling
operation and a scaling parameter 𝑘, such that Λ = scale (Λ0, 𝑘) ≡ Λ𝑘.

3. Some auxiliary steps with merely formal purpose follow that introduce
additional structures to perform the technical steps of taking the thermo-
dynamic limit:

(a) In order to ensure that the limit value is a proper real number instead
of 𝑘 → ∞, I introduce the index 𝛿 = 1/𝑘. Since Λ is defined as a
bounded region, the domain 𝐷𝛿 must only contain positive values.

(b) The next step is to extend this domain 𝐷𝛿 to encompass also the
limit value 𝛿∘ = 0. Since the finite theory never takes this value,
“𝛿 ̸= 𝛿∘” is to be added as an axiom, such that the empirical claim of
the transformed theory is equal to that of Σ𝑠𝑚.

4. A limiting case reduction relates the infinite idealisation to the finite models
of statistical mechanics.

(a) Both theories are examined to meet the preliminary requirements of
that kind of reduction stated.
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(b) The crucial and most delicate point of Scheibe’s exposition of limiting
case reduction is the need for an encompassing space of models of
both theories, which is to be equipped with a topology. Hence, the
consideration on this topology is a central topic.

(c) We obtain the relative position of the sets of finite and infinite models
in the encompassing topological space by following the procedure of
limiting case reduction step by step.

5. Afterwards I draw conclusions on the feasibility of my proposal to con-
sistently define phase transitions of finite systems as delineated in defini-
tion 1.5.

This step-wise approach reflects Scheibe’s general idea on reduction. He thinks of
a reduction as a sequence of several operations on the reducing theory to obtain
the reduced theory. His theory of reduction basically consists of a profound
analysis of the different operations that can be part of a theory reduction. He
calls these elementary operations ‘kinds of reduction’. Thomas Nickles (1973)
proposed the same idea but never put it into practice.
A possible issue could be the fact that there certainly are strong similarities
between many intertheoretical relations in physics, but that for any two relations
some differences can be found, at least in the details. The modular approach
addresses this problem with ease. Not the entire operation reappears at different
instance in the net of physical theories but the sub-steps like those listed above.
Hence, the actual claim is that every established reduction between physical
theories is decomposable into a sequence of kinds of reduction – and even this
is an exaggeration, since Scheibe allows for the introduction of new kinds if
necessary. In the subsequent subsections, several of these kinds will be applied,
most importantly the kind of limiting case reductions.

2.4.1 Preparatory steps

The first two points on our agenda are entirely auxiliary steps. There is neither
philosophical nor physical insight to be expected from them. Accordingly, readers
who are solely interested in the paradox of phase transitions might skip this
purely technical subsection. Still, these transformations may familiarise the
readers with Scheibe’s kinds of reduction, this is why I choose to implement
them in some detail.
The steps 1. and 3.(a) involve equivalence reductions. The main idea of this
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kind of reduction is that the transformed theory is empirically equivalent to the
initial one, with some structural terms exchanged, which are however mutually
translatable between both theories.

An equivalence relation seems to be at odds with the asymmetric nature of
reductions. In some aspects even an equivalence reduction can be asymmetric
(see Scheibe, 2022, pp. 115–117), but for our undertaking this objection is
irrelevant, because we will combine this kind of reduction with others that clearly
are asymmetric. Scheibe (2022, pp. 113–114) characterises the equivalence
reduction between physical theories Σ(𝑋, 𝑟) and Σ′ (𝑋, 𝑡) by four inference
relations:40

Σ (𝑋, 𝑟) ∧ 𝑡=𝑝 (𝑋, 𝑟) ⊢𝑍𝐹𝐶𝑈 Σ′ (𝑋, 𝑡) (Eq-1)

Σ′ (𝑋, 𝑡) ∧ 𝑟=𝑝−1 (𝑋, 𝑡) ⊢𝑍𝐹𝐶𝑈 Σ (𝑋, 𝑟) (Eq-2)

Σ′ (𝑋, 𝑡) ⊢𝑍𝐹𝐶𝑈 𝑡=𝑝
(︀
𝑋, 𝑝−1 (𝑋, 𝑡)

)︀
(Eq-3)

Σ (𝑋, 𝑟) ⊢𝑍𝐹𝐶𝑈 𝑟=𝑝−1
(︀
𝑋, 𝑝 (𝑋, 𝑟)

)︀
(Eq-4)

What basically happens is that the whole structure ⟨𝑋, 𝑟⟩ or parts of this
structure of Σ is replaced by an equivalent structure ⟨𝑋, 𝑡⟩. This means, the
theories Σ(𝑋, 𝑟) and Σ′ (𝑋, 𝑡) only differ with regard to their typified terms,
they make the same empirical claim and are mutually translatable.
In the first step, we start with Σ𝑠𝑚 (𝑋∘, 𝐴∘, �̃�∘, �̃�) and intend to obtain
Σ′

𝑠𝑚 (𝑋∘, 𝐴∘, �̃�∘, 𝑠′), where the extensive functions of �̃� are replaced by intensive
ones in 𝑠′. The effected structural terms are, besides the particle number 𝑁
and the extensive functions 𝑈 , 𝑆, 𝐹 , typically the generalised coordinates 𝑞𝑖,
like volume 𝑉 or magnetisation �⃗� . Though, not even in thermodynamics the
assignment of the pairs of generalised coordinates 𝑞𝑖 and forces 𝐹𝑖 is unambiguous
(see 1.1.2). In statistical mechanics the strict classification – coordinates are
extensive, forces intensive – is still less generally valid. Thus, the selection of
the variables to be transformed – 𝑞𝑖 or 𝐹𝑖 – may depend on the Hamiltonian.
For the sake of a uniform notation, my general presentation is based on the case
that all generalised coordinates 𝑞𝑖 are extensive quantities.
Moreover, some intensive quantities are commonly chosen to be densities of ex-

40‘ZFCU’ stands for the axiomatic definition of sets according to Zermelo-Fraenkel including
the axiom of choice and urelements. The operator ‘⊢𝑍𝐹𝐶𝑈 ’ is then the syntactic derivation
within set theory thus defined.
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tensive quantities 𝑞𝑖/𝑉 ,41 thus related to the volume, for others the proportion is
relative to the particle number or number of lattice sites 𝑞𝑖/𝑁. On this point, too,
I opt for a standardised solution. The generalised coordinates are transformed
per particle number �̂�𝑖 = 𝑞𝑖/𝑁, the thermodynamic functions 𝑆, 𝑈 and 𝐹 become
the densities 𝑠 = 𝑆/𝑉 , 𝑢 = 𝑈/𝑉 and 𝑓 = 𝐹/𝑉 . This uniform choice is particularly
possible because the density 𝑞𝑖/𝑉 and the quantity per particle 𝑞𝑖/𝑁 differ only
by a factor 𝑣 = 𝑉/𝑁, which is held constant while taking the thermodynamic
limit like all �̂�𝑖, and hence allows to easily transform between both.
A single extensive variable suffices to convert the set of intensive functions into
their extensive counterparts. The only remaining extensive quantity is the parti-
cle number 𝑁 but in consideration of the techniques of taking the thermodynamic
limit, it is preferable to keep the volume 𝑉 = 𝑉 (Λ) and to abandon 𝑁 , that can
still be recovered from the remaining variables 𝑁 = 𝑉/𝑣.

The coordinating definitions 𝑡𝑗 = 𝑝𝑗 (𝑋, 𝑟) of the general equivalence reduction,
here with 𝑟 = (�̃�∘, �̃�) and 𝑡 = (�̃�∘, 𝑠′), are thus either the identity mapping for
all structural terms 𝑡𝑗 that correspond to the fixed �̃�∘ or the not converted
functions of �̃� (𝑍, �̂�, Λ), or the described conversion rules. With the volume
set as first generalised coordinate 𝑞1 = 𝑉 , and consequently with the volume
per particle �̂�1 = 𝑣 = 𝑉/𝑁 as the first converted coordinate, the coordinating
definitions read:

𝑡𝑗 = 𝑝𝑗 (𝑟𝑗 , 𝑞1, 𝑁) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑟𝑗
𝑁 for 𝑟𝑗 ∈ {𝑞1, . . . , 𝑞𝑛}
𝑟𝑗
𝑞1

for 𝑟𝑗 ∈ {𝑈, 𝑆, 𝐹}
𝑞1 for 𝑟𝑗 = 𝑁

𝑟𝑗 otherwise

(2.4.1)

41This step presupposes, of course, that the volume 𝑉 is among the generalised coordinates.
This is always the case because in order to confine the system within Λ, as is generally required,
the Hamiltonian needs to include an appropriate wall repulsion, which encloses 𝑉 .
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Accordingly, the inverse relation 𝑝−1 (𝑡) is the compound of:

𝑟𝑗 = 𝑝−1
𝑗 (𝑡𝑗 , �̂�1, 𝑉 ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑡𝑗
𝑉
�̂�𝑗

for 𝑡𝑗 ∈ {�̂�1, . . . , �̂�𝑛}
𝑡𝑗𝑉 for 𝑡𝑗 ∈ {𝑢, 𝑠, 𝑓}
𝑉
�̂�1

for 𝑡𝑗 = 𝑉

𝑡𝑗 otherwise

(2.4.2)

It is rather trivial to prove that the theories Σ𝑠𝑚 and Σ′
𝑠𝑚 defined in this way

satisfy the conditions (Eq-1)–(Eq-4). (Eq-1) and (Eq-2) state that each theory
evolves from the other by exchanging the 𝑟𝑗 by 𝑡𝑗 or vice versa, whereas (Eq-3)
and (Eq-4) claim that it is derivable in Σ′

𝑠𝑚 and Σ𝑠𝑚 that the chains of conversion
and inverse conversion are identity mappings, 𝑡 = 𝑝

(︀
𝑝−1 (𝑡)

)︀
and 𝑟 = 𝑝−1 (𝑝 (𝑟)).

This is easily provable because the consequence – the statement that the re-
conversions are identity mappings – is tautological and hence derivable in any
theory. Both cases are completely analogous, the proof for 𝑟 = 𝑝−1 (𝑝 (𝑟)) is:

𝑝−1
𝑗 (𝑝𝑗 (𝑟)) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑝−1
𝑗

(︀ 𝑟𝑗
𝑁

)︀
=

𝑟𝑗
𝑁 · 𝑉

𝑉/𝑁 = 𝑟𝑗 for 𝑟𝑗 ∈ {𝑞1, . . . , 𝑞𝑛}
𝑝−1
𝑗

(︁
𝑟𝑗
𝑞1

)︁
=

𝑟𝑗
𝑞1

· 𝑉 = 𝑟𝑗 for 𝑟𝑗 ∈ {𝑈, 𝑆, 𝐹}
𝑝−1
𝑗 (𝑞1) =

𝑉
𝑞1̂

= 𝑟𝑗 for 𝑟𝑗 = 𝑁

𝑝−1
𝑗 (𝑟𝑗) = 𝑟𝑗 otherwise

(2.4.3)

But there might arise a difficulty such that the relation between Σ𝑠𝑚 and Σ′
𝑠𝑚

is not an equivalence as defined above. We may conceive the case that the
intensive counterpart 𝑡𝑗 of some extensive function 𝑟𝑗 assumes values, which 𝑟𝑗
never takes, e.g. for integer-valued 𝑟𝑗 , the corresponding intensive variable 𝑡𝑗
may well assume a non-integer rational value. In this case it might be possible
that the respective domain 𝐷𝑟𝑗 does not include these values and that we do
not only have to modify the functions, structural terms, but also their domains,
possibly principal base terms, which is not covered by the kind of equivalence
reduction. However, in view of the fact that we generally deal with continuous
domains, this remains a remote possibility, that can be completely ruled out if
every domain of generalised coordinates and forces in Σ𝑠𝑚 is a convex set with a
zero element.

The thermodynamic limit is a limit in which the system size increases infinitely.
There are various ways how a region in the 𝑑-dimensional space may grow, and
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these ways may affect the obtained limit model – for instance a three dimensional
system on a lattice lim𝑙→∞ (𝑐, 𝑐, 𝑙) (𝑐 is a constant) is infinite but its relevant
physical properties are that of an one-dimensional system, significantly different
from lim𝑙→∞ (𝑙, 𝑙, 𝑙). The dimension is the single most decisive factor for phase
transitions. Accordingly, the thermodynamic limit has to be taken by adequately
respecting the geometry of Λ. In order to represent this in an appropriate way, I
replace the parameter Λ from Σ′

𝑠𝑚 (𝑋∘, 𝐴∘, �̃�∘, 𝑠′) by structural terms that are
more useful for accomplishing the limiting case reduction of the theory of infinite
idealisations.
My idea is to introduce a normalised region Λ0 ⊂ R𝑑 that is congruent with Λ,
as well as a scaling operation, such that Λ = scale (Λ0, 𝑘) holds, whereby Λ0

merely represents the shape and the dimensionless scaling factor 𝑘 the effective
size. For the normalisation of Λ0, I establish a constant volume 𝑉 ∘, whose
actual value does not matter. It determines Λ0 by requiring 𝑉 (Λ0) = 𝑉 ∘.
This approach corresponds to the reduction kind of refinement in which the
vocabulary ⟨𝑋, 𝑠∘, 𝑠⟩ of a theory Σ (𝑋, 𝑠∘, 𝑠) gets replaced by new terms ⟨𝑌, 𝑡∘, 𝑡⟩
to Σ′ (𝑌, 𝑡∘, 𝑡). Scheibe (2022, pp. 132–133) defines the refinement as follows:

𝑋∘ = 𝑃 (𝑌 ∘, 𝑡∘) , 𝑠∘= 𝑞 (𝑌 ∘, 𝑡∘) (Ref-1)

Σ′∘(𝑌 ∘, 𝑡∘) ⊢𝑍𝐹𝐶𝑈Σ
∘(𝑋∘, 𝑠∘) (Ref-2)

Σ′ (𝑌 ∘, 𝑡∘, 𝑡) ∧ 𝑠=𝑞1 (𝑌
∘, 𝑡∘, 𝑡) ⊢𝑍𝐹𝐶𝑈Σ (𝑋∘, 𝑠∘, 𝑠) (Ref-3)

Σ (𝑋∘, 𝑠∘, 𝑠) ∧ Σ′∘(𝑌 ∘, 𝑡∘) ⊢𝑍𝐹𝐶𝑈∃𝑡
(︀
Σ′ (𝑌 ∘, 𝑡∘, 𝑡) ∧ 𝑠=𝑞 (𝑌 ∘, 𝑡∘, 𝑡)

)︀
(Ref-4)

𝐼 = 𝐼 ′ (Ref-5)

The notable difference to the equivalence kind of reduction is that there is no
uniquely determined mutual translation of the vocabularies ⟨𝑋, 𝑠∘, 𝑠⟩ and ⟨𝑌, 𝑡∘, 𝑡⟩.
The first three lines of this definition demand that the former can be expressed
in the latter, but the reversal is not required.
In our case, the principal base terms remain the same 𝑋∘ = 𝑌 ∘. The new frame
structure ⟨𝑋∘, �̃�∘, 𝑉 ∘, scale⟩ is simply the old one supplemented by the constant
norm-volume 𝑉 ∘ ∈ 𝐷𝑞1 and the scaling function

scale :

⎧
⎨
⎩
R𝑑 × R+ ↦→ R𝑑 (for continuous systems)

R𝑑 × N ↦→ R𝑑 (for systems on a lattice).
(2.4.4)

Thus, (Ref-1) and (Ref-2) are satisfied. Also (Ref-5) is unquestionably valid
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as the intended scope of application does not change. The coordinating def-
inition 𝑞1 (𝑋

∘, 𝑡∘, 𝑡) is just the identity mapping for all elements of 𝑠 but Λ,
and Λ is derivable from the new terms by scale (Λ0, 𝑘) = Λ. This satisfies for-
mula (Ref-3). The last condition (Ref-4) demands that the existence of the new
variable structural terms 𝑡 = (�̂�1, . . . , 𝐹𝑛, 𝑍, �̂�, 𝑉, 𝑢, 𝑠, 𝑇, 𝑓,Λ0, 𝑘) can be derived
from the conjunct of the old theory Σ (𝑋∘, 𝑠∘, 𝑠) and the frame of the new one.
Apparently, the most compounds of 𝑡 are identical to those of 𝑠. Only Λ0 ⊂ R𝑑

and 𝑘 ∈ R+ (or 𝑘 ∈ N for lattice systems) appear as new terms, and these
are even uniquely determined by 𝑠 and 𝑡∘: To derive Λ0, we have to determine
the number 𝑥 that satisfies the equation 𝑉 (scale (Λ, 𝑥)) = 𝑉 ∘, then we obtain
Λ0 ≡ scale (Λ, 𝑥). Now 𝑘 is exactly that number which satisfies scale (Λ0, 𝑘) = Λ.
But this method involves two possible issues: The universal choice of 𝑉 ∘ might
not permit to satisfy scale (Λ0, 𝑘) = Λ by an integer scaling factor 𝑘, which is
however required for lattice systems. This can be prevented by setting 𝑉 ∘ to a
sufficiently small value, such that for all the macroscopic systems of the intended
scope of applications holds that the volume difference between 𝑉 (scale (Λ0, 𝑘))

and 𝑉 (Λ) is indiscernible within the imprecision 𝑈𝑉 with which the theory
represents physical volumes. Then the approximate relation for 𝑘

∃ 𝑘 ∈ N
[︁
𝑈𝑉

(︀
𝑉 (scale (Λ0, 𝑘)) , 𝑉 (Λ)

)︀]︁
(2.4.5)

suffices. There is a related problem for continuous systems. The particle number,
expressed in the new terms

𝑁 = 1/𝑣 · 𝑉 (scale (Λ0, 𝑘)) , (2.4.6)

is necessarily an integer, though the term on the right hand side is not. The reso-
lution is similar to the previous. By taking into account the enormous numerical
dimension of 𝑁 and the corresponding inaccuracy of its determination 𝑈𝑁 , it
is not mis-seeming to assume that there is an integer value close enough to the
theoretical expression

∃𝑁 ′ ∈ N
[︁
𝑈𝑁

(︀
1/𝑣 · 𝑉 (scale (Λ0, 𝑘)) , 𝑁

′)︀]︁. (2.4.7)

For the further proceeding I denote the new structural frame terms (�̃�∘, 𝑉 ∘, scale),
which is now the final form of the frame, by “𝑠∘” and the bulk of the variable
terms (�̂�1, . . . , �̂�𝑛, 𝐹1, . . . , 𝐹𝑛, 𝑍, �̂�, 𝑉, 𝑢, 𝑠, 𝑇, 𝑓,Λ0) by “𝑠′′”. The current state
of our theory is then Σ′′

𝑠𝑚 (𝑋∘, 𝐴∘, 𝑠∘, 𝑠′′, 𝑘). The examined relation between
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Σ′
𝑠𝑚 (𝑋∘, 𝐴∘, �̃�∘, 𝑠′) and Σ′′

𝑠𝑚 (𝑋∘, 𝐴∘, 𝑠∘, 𝑠′′, 𝑘) is a rather degenerated example
of a refinement because the enhanced expressiveness of the novel structure is
based on the constant 𝑉 ∘, which is not even physically meaningful. The further
terms are merely equivalent to the old ones.

The next transformation of Σ′′
𝑠𝑚 (𝑋∘, 𝐴∘, 𝑠∘, 𝑠′′, 𝑘) to Σ′′′

𝑠𝑚 (𝑋∘, 𝐴∘, 𝑠∘, 𝑠, 𝛿) is
fairly similar to the first. This equivalence reduction changes just the last
extensive terms that remained in our theory Σ′′

𝑠𝑚 by 𝑘 = 1/𝛿 and 𝑉 = 1/𝑉 .
The advantage of the new parameters is that, formulated in these terms, the
thermodynamic limit approaches a proper limit value 𝛿∘ = 0, which can easily
be included into the domain 𝐷𝛿. This procedure facilitates the later aim to
reconstruct the infinite idealisations as the limit models, which requires the limit
to exist in our set-universe. There is nothing else to be said about the new
scaling parameter 𝛿 and the inverse volume 𝑉 , it is just to keep all values finite,
even in the thermodynamic limit. With 𝑉 in place of 𝑉 , the variable structural
terms take their definite form 𝑠 =

(︀
�̂�1, . . . , �̂�𝑛, 𝐹1, . . . , 𝐹𝑛, 𝑍, �̂�, 𝑉 , 𝑢, 𝑠, 𝑇, 𝑓,Λ0

)︀
.

In order to keep this step consistent with Scheibe’s equivalence reduction the
domain 𝐷𝛿 cannot be introduced straight away (cf. (Eq-1)–(Eq-4)).
It requires the last preparatory step 3.(b) to establish 𝐷𝛿. Due to the coordinating
definition 𝛿 = 1/𝑘, this domain 𝐷𝛿 is initially just a subset of positive reals. But
with the formal extension of Σ′′

𝑠𝑚 (𝑋∘, 𝐴∘, 𝑠∘, 𝑠, 𝛿) to Σ′(𝑋∘, 𝐷∘
𝛿 , 𝐴

∘, 𝑠∘, 𝛿∘, 𝑠, 𝛿) we
purpose to include also the prospective limit value 𝛿∘ = 0 by appending it
to the domain to 𝐷∘

𝛿 = 𝐷𝛿 ∪ {0}. This procedure has to be accompanied by
axiomatically prohibiting that 𝛿 assumes this value 𝛿 ̸= 𝛿′, since otherwise also
infinite models would satisfy our theory of finite systems.
Therefore, the necessary step is a conservative extension of the theory Σ′′

𝑠𝑚.
New terms are introduced and a new axiom is added, but else wise the terms
and axioms of Σ′′

𝑠𝑚 remain untouched. This transformation corresponds to a
reduction by extension. It can be summed up by three conditions. In case of an
extension Σ′ of a theory Σ by a structure ⟨𝑋∘, 𝑋 ′∘, 𝑠′∘, 𝑠′1⟩, they are:

Σ′∘(𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘) ≡ Σ∘(𝑋∘, 𝑠∘)∧ 𝑠′∘∈𝜎′∘(𝑋∘, 𝑋 ′∘) ∧ 𝛼′∘(𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘) (Ex-1)

Σ′ (𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘, 𝑠1, 𝑠
′
1) ⊢𝑍𝐹𝐶𝑈 Σ (𝑋∘, 𝑠∘, 𝑠1) (Ex-2)

Σ (𝑋∘, 𝑠∘, 𝑠1) ∧ Σ′∘(𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘) ⊢𝑍𝐹𝐶𝑈 ∃𝑠′1 Σ′ (𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘, 𝑠1, 𝑠
′
1) (Ex-3)

The first line states the relation between the frames of both theories. The new
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one is the old frame supplemented by the new invariable structure term 𝑠′∘, its
typification and the new frame part of the axiom. According to the second line,
the extension is conservative, such that the entire old theory is contained in the
new one.
In our case, we have 𝑋 ′∘ = 𝐷∘

𝛿 , 𝑠
′∘ = 𝛿∘ and 𝛼′ =

(︀
𝛼𝑠𝑚∧(𝛿 ̸= 𝛿∘)

)︀
. The frame of

the extended theory Σ′ is the frame of the prior theory Σ′′
𝑠𝑚 supplemented by the

typification of the new structural frame term 𝛿∘ ∈ 𝐷∘
𝛿 . Thus, it satisfies (Ex-1).

It is likewise apparent that Σ′′
𝑠𝑚 is derivable from Σ′ as called for by (Ex-2). The

third condition (Ex-3) is irrelevant, since this extension does not involve any
additional variable term 𝑠′1.

These are all preliminary modifications that have to be carried out at the
formulation of the theory of statistical mechanics as we have developed it in 2.3.
By now it is expressed in intensive thermodynamic functions 𝑠 and a scaling
parameter 𝛿 = 1/𝑘, which ranges over the domain 𝐷∘

𝛿 whereat the value 𝛿∘ = 0

is axiomatically forbidden.

2.4.2 The limiting case reduction

We finally enter the really intriguing stage of the limiting case reduction of
the theory of infinite idealisations Σ(𝑋∘, 𝐴∘, 𝑠∘, 𝛿∘, 𝑠) to statistical mechanics
of finite systems Σ′ (𝑋∘, 𝐷∘

𝛿 , 𝐴
∘, 𝑠∘, 𝛿∘, 𝑠, 𝛿). By its very nature, the former

deviates structurally from the latter in the absence of a scaling parameter.
But I nonetheless assume that both theories share the same frame struc-
ture ⟨𝑋∘, 𝐷∘

𝛿 , 𝐴
∘, �̃�∘, 𝑉 ∘, scale, 𝛿∘⟩ with base sets 𝑋∘, 𝐴∘ and structural terms �̃�∘

as defined in table 2.1 – dispensable structural terms can easily be appended to Σ

by the reduction kind of extensions. My intention differs from usual attempts of
theory reduction. It is neither to retrace the reduced theory to finite statistical
mechanics, nor to explain it by virtue of this reducing theory, but to demonstrate
that some finite systems come arbitrary close to idealised infinite models, such
that in consideration of the theoretical inaccuracies, both theories are equally
well applicable to describe large macroscopic systems. In case of success, we
achieve a solid justification for defining phase transitions of finite macroscopic
systems by means of the thermodynamic limit.

Due to the previous adaptations of the structure of the finite theory Σ′, we
already have a broad syntactic similarity to the infinite theory. In particular,
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the following pre-conditions on approximate kinds of reduction are met (Scheibe,
2022, p. 157):

frame of 𝑇 : ⟨𝑋∘, 𝑠∘⟩ (Appr-1a)

frame of 𝑇 ′ : ⟨𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘⟩ (Appr-1b)

Σ′∘ (𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘) ≡ Σ∘ (𝑋∘, 𝑠∘) ∧ 𝑠′∘ ∈ 𝜎′∘ (𝑋∘, 𝑋 ′∘) ∧
𝛼′∘ (𝑋∘, 𝑋 ′∘, 𝑠∘, 𝑠′∘) (Appr-1c)

The first two conditions presuppose that the syntactic structure of the theories Σ

and Σ′ is largely the same, this is particularly required for the frames. This
assumption facilitates the ensuing steps, and it is no restriction of the generality
as the adjustment of both structures can be achieved by preceding other kinds
of reductions, like we did in the previous subsection. In our case, it might seem
as if the infinite theory cannot make much use of the norm-volume 𝑉 ∘, the limit
value 𝛿∘ and the scaling operation but since we got rid of the other means to
refer to the configuration space Λ, also Σ depends on these terms. Beyond that,
(Appr-1c) specifies how the additional structural frame terms and frame axioms
of Σ′ are to be introduced, this is equivalent to the just examined formula (Ex-1).
However, in our case there are none.

In the particular case of a limiting condition the general forms of the species of
structures can be further specified by

Σ (𝑋∘, 𝑠∘, 𝑠) Σ′ (𝑋∘, 𝑋 ′∘, 𝐵∘, 𝑠∘, 𝑠′∘, 𝑏∘, 𝑠, 𝑏) . (LC-1)

They correspond to our theories Σ (𝑋∘, 𝐴∘, 𝑠∘, 𝛿∘, 𝑠) and Σ′ (𝑋∘, 𝐷∘
𝛿 , 𝐴

∘, 𝑠∘, 𝛿∘, 𝑠, 𝛿)

with the only deviation that Σ already involves 𝛿∘, as just explained to select
the corresponding part of the phase space Γ (Λ). Though, this modification does
not pose a problem because 𝛿∘ would have been appended to Σ anyway in the
course of the limiting case reduction. The next condition reads in our particular
situation as

Σ′ (. . . , 𝐷∘
𝛿 , 𝛿

∘, 𝑠, 𝛿) ∧ Σ′ (. . . , 𝐷∘
𝛿 , 𝛿

∘, 𝑠, 𝛿′) ⊢𝑍𝐹𝐶𝑈 𝛿 = 𝛿′. (LC-2)

(LC-2) is the first substantial claim. It states that given the variable param-
eters 𝑠, 𝛿 has to be uniquely determined. The thermodynamic equations of
state 𝐹𝑖 = 𝐹𝑖 (𝑇,𝑁, 𝑞𝑖) and the feasibility of Legendre transformations generally
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provide for this, but since we have transformed the structural terms such that
they encompass only intensive thermodynamic state functions, except for the
inverse volume, we cannot count on that. But 𝑠 still contains the partition
function 𝑍 and the density function �̂� of the mixed state of the system. While
the partition function suffices to derive extensive functions like the internal
energy or entropy, which can discriminate between 𝛿 = 1/𝑘 and 𝛿′ = 1/𝑘′, also
the state �̂� of a 𝑘-sized system always differs from a 𝑘′-sized one when 𝛿′ ̸= 𝛿.
Therefore it is not possible to find a configuration 𝑠 that is the same for different
values of 𝛿 and thus of various system extensions. This thought also helps us
with the following condition on joint models of Σ and Σ′:

⊢𝑍𝐹𝐶𝑈 ¬∃𝑠1, 𝛿′
(︀
Σ (𝑋∘, 𝐴∘, 𝑠∘, 𝛿∘, 𝑠1) ∧ Σ′ (𝑋∘, 𝐷∘

𝛿 , 𝐴
∘, 𝑠∘, 𝛿∘, 𝑠1, 𝛿

′)
)︀

(Appr-2a)

(Appr-2a) requires that there are none, or more precisely, it is not possible
to complement any configuration 𝑠1 of the idealised theory Σ by a finite 𝛿′,
such that (𝑠1, 𝛿

′) fits into the variable part of the finite theory Σ′. This is
true, since no partition function assumes exactly the same value in the infinite
limit and some finite composition provided that every other structural term
remains fixed. Or in other words: The fact that a limiting case reduction is
an approximate kind implies that the empirical claims of reducing and reduced
theory are contradictory from a purely logical point. Nevertheless, both theories
must be valid for some choices of their variable terms without contradicting each
other

⊢𝑍𝐹𝐶𝑈 ∃𝑠1, 𝑠2, 𝛿′
(︀
Σ (𝑋∘, 𝐴∘, 𝑠∘, 𝛿∘, 𝑠1) ∧ Σ′(𝑋∘, 𝐷∘

𝛿 , 𝐴
∘, 𝑠∘, 𝛿∘, 𝑠2, 𝛿

′)
)︀
. (Appr-2b)

This is not controversial at all, as the systems described by 𝑠1 and (𝑠2, 𝛿
′) can be

totally different. Though, it is our ongoing aim to prove that it is even possible
to find pairs

(︀
𝑠1, (𝑠2, 𝛿

′)
)︀

of structures that are suitable to describe the same
physical system.

As I have pointed out in section 2.1, Scheibe sticks to a syntactic approach towards
theories and theory interrelations and only passes to a semantic perspective when
he deals with approximate kinds of reduction. So far, everything established
about Σ and Σ′ is on the syntactic level. This is now to be transferred into the
semantic frame of sets of models. The following sets of models set the stage for
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the ensuing considerations (Scheibe, 2022, p. 177)

𝑀 ′ = {⟨𝑠, 𝛿⟩ | Σ′ (. . . , 𝐷∘
𝛿 , 𝛿

∘, 𝑠, 𝛿)} (LC-3d)

𝑀* = {⟨𝑠, 𝛿⟩ | Σ* (. . . , 𝐷∘
𝛿 , 𝛿

∘, 𝑠, 𝛿)} (LC-3c)

𝑀∘ ⊆ 𝜎 (𝑋∘, 𝐴∘)×𝐷∘
𝛿 (LC-3a)

with 𝑀*,𝑀 ′ ⊂𝑀∘. (LC-3b)

𝑀 ′ is simply the set of models of Σ′. But since the structures of Σ are of a
different species than these, a direct comparison is not possible. We first have
to pass over from Σ(𝑋∘, 𝐴∘, 𝑠∘, 𝛿∘, 𝑠) to Σ* (𝑋∘, 𝐷∘

𝛿 , 𝐴
∘, 𝑠∘, 𝛿∘, 𝑠, 𝛿) by a formal

extension, which technically adds the variable structural term 𝛿 ∈ 𝐷∘
𝛿 and its

domain to the species of structure, but does not further connect 𝛿 with that theory
apart from attaching “𝛿 = 𝛿∘” to its axiom. This is similar to the procedure we
applied before in step 3.(b) to Σ′′

𝑠𝑚. We can now find a superset 𝑀∘ of both
sets of models 𝑀 ′ and 𝑀*. The idea is to select 𝑀∘ such that we may find a
convenient topology to equip 𝑀∘ with. The abstract formulation in (LC-3a)
involving the echelon scheme 𝜎 (𝑋∘, 𝐴∘) is just the combined typification of all
variable structural terms in 𝑠

𝜎 (𝑋∘, 𝐴∘) = (𝑍𝑝
𝑠𝑚 ×𝐷𝑞1)× · · · × (𝑍𝑝

𝑠𝑚 ×𝐷𝐹1
)× · · · × (𝑍𝑝

𝑠𝑚 × R) . (2.4.8)

In conjunction the formulae (LC-3a)–(LC-3d) cover the former conditions (Appr-1a)
to (Appr-1c) and (LC-1). In this semantic conception, (Appr-2a) becomes

𝑀* ∩𝑀 ′ = ∅, (LC-3e)

the absence of joint models. We might also add 𝑀* ̸= ∅ and 𝑀 ′ ̸= ∅ to express
(Appr-2b). (LC-3b) and (LC-3e) – 𝑀 ′ and 𝑀* are disjoint subsets of a common
superset – is the strongest claim about the relation between both theories that
we can make in plain set-theoretical terms. This is quite meagre and not helpful
at all for my argumentative goal to define phase transitions of finite systems in
terms of the thermodynamic limit. Consequently, we have to proceed with a
more expressive tool.

The echelon scheme 𝜎 (2.4.8) helps to obtain the uniform space ⟨𝑀∘,Φ𝑀∘⟩,
which provides us with the required topology. Our first task is to devise uniform
structures on the basic sets 𝐷𝑞𝑖 , 𝐷𝐹𝑖 , 𝑍𝑝

𝑠𝑚, as well as on 𝑍𝑝
𝑠𝑚×R for the functions
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on the phase space, and 𝐷∘
𝛿 . The uniform structure Φ𝑀∘ is then simply the

product of the basic uniform structures because the Cartesian product of uniform
structures is a uniform structure on the product set (Bourbaki, 1971, p. II.10).
We find these fundamental uniform structures in four different states of affairs:

1. The principal base terms 𝐷𝑞𝑖 and 𝐷𝐹𝑖 act as ranges of possible values of
the generalised coordinates and forces. In virtue of their nature as principal
base terms, they represent non-theoretical physical quantities, for which
measurement procedures and numeric scales exist that do not depend
on our theory under consideration. Hence, their operating principles,
applicability and exactitude is sufficiently well known. This is tantamount
to exposing empirical uniform structures Φ𝐷𝑞𝑖

and Φ𝐷𝐹𝑖
that represent the

measurement inaccuracy for every value 𝑞𝑖 ∈ 𝐷𝑞𝑖 or respectively 𝐹𝑖 ∈ 𝐷𝐹𝑖
.

When applying Φ𝐷𝑞𝑖
we particularly have to take into account that we do

not deal any more with the extensive functions 𝑞𝑖 but with their intensive
counterparts, such as the volume per particle 𝑣 = 𝑉

𝑁 , or the magnetisation
per particle �⃗� = �⃗�/𝑁. Their values for macroscopic systems are of the
same order of magnitude as the extensive functions for micro-systems,
but their determination is considerably more precise. Since the values
of intensive functions do not differ much, the absolute difference is a
reasonable choice to define the blurs 𝑈𝑞𝑖,Δ𝑗

∈ Φ𝐷𝑞𝑖
by selecting some small

limit deviations ∆𝑞𝑖,𝑗 ∈ 𝐷𝑞𝑖

𝑈𝑞𝑖,Δ𝑗
= {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐷𝑞𝑖 : |𝑥− 𝑦| < ∆𝑞𝑖,𝑗} .

2. The phase space 𝑍𝑝
𝑠𝑚 of the considered systems is based on the microscopic

states, which are in the classical case the positions and momenta of its
basic constituents. This entails that the inaccuracy related to 𝑍𝑝

𝑠𝑚 is
attributable to the precision of specifying the microstates. Though, we do
not deal with arbitrary states of 𝑍𝑝

𝑠𝑚, but only with canonical ensembles.
Hence, for our purposes the imprecision of determining the macroscopic
state parameters on which the state distribution �̂� depends is decisive.
Therefore, the uniform structure Φ𝑍𝑝

𝑠𝑚
related to the phase space 𝑍𝑝

𝑠𝑚 is
the Cartesian product of Φ𝐷𝑞𝑖

, Φ𝐷𝛿
and the respective uniform structure

for the temperature.

3. The temperature and the other structural terms are real functions on the

113



parametrised phase space.42 As our formulation of statistical mechanics
makes use of their differentiability, the common norm-induced uniform
structure of the real numbers is a natural choice here.

4. The uniform structure Φ𝐷𝛿
is salient for the limit taking and at the same

time quite different from the others. As 𝛿 ∼ 1/𝑁 is a derived variable, the
associated uniform structure relies on the theoretical inaccuracy related to
the particle number 𝑁 . Regarding the limit value in terms of the latter, I
have already pointed out in subsection 1.2.3 that norm-induced metrics are
incapable of handling the infinite limit as required to be close to very large
systems. I have proposed to apply a measure like the arctan-metric, which
has the advantage that finite values may still be at a close distance to
infinity, while by means of norm-induced metrics this distance is invariably
infinite.
This point becomes that important for the domain 𝐷𝛿, because this is
the only differing one when comparing the set of finite models 𝑀 ′ with
the superset of our topological comparison 𝑀∘. The additional points
of 𝑀∘ compared to 𝑀 ′, which might not be covered by the uniform
structure that belongs to the theory Σ′, are those with 𝛿 = 𝛿∘, hence
𝑀∘ ∖𝑀 ′ = 𝜎 (𝑋∘, 𝐴∘)× {𝛿∘}. It is utmost important that the uniform
structure Φ𝐷𝛿

is extendible to these points, otherwise we were unable to
topologically compare the infinite models 𝑀* with the finite ones 𝑀 ′, as
the formers are outside of the uniform structure. Whereas the uniform
structure Φ𝑀 ′ can be constructed just as it has been done here as a product
of the uniform structures on the base sets of Σ′, this is not the case for Φ𝑀∘ .
The difference between 𝑀∘ and 𝑀 ′ is that the latter is the set of models of
a theory in Scheibe’s terms, which entails that the corresponding uniform
structure exists, 𝑀∘ by contrast is not connected to any theory in this way.
Therefore, there is no guarantee that we can use the uniform structures on
the base sets of Σ′ to define Φ𝑀∘ , and in particular it is not ensured that
the uniform space ⟨𝑀 ′,Φ𝑀 ′⟩ might be continued to cover 𝑀∘. Though,
these issues are settled by means of a uniform structure that flawlessly
includes the infinite points. As the particle number is related to 𝛿 by

42The density operator �̂�, which replaces the density function in quantum mechanical
applications, is formally no function. But for every calculation, the density operator has to be
represented by a density matrix, conveniently on the basis of energy eigenstates, which again
maps pairs of states to real values.
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𝛿 ∼ 1/𝑁 the consequential blurs are of the form

𝑈𝛿,Δ𝑗
= {(𝑥, 𝑦) | 𝑥, 𝑦∈𝐷𝛿 : |arctan (𝛼/𝑥)− arctan (𝛼/𝑦)| < ∆𝛿,𝑗}, (2.4.9)

which might be adjusted by positive scaling factors 𝛼 to fit to potential
further constraints. However, any uniform structure with the mentioned
properties is likewise applicable. We can use the uniform structure on the
volume 𝑉 in the same way to define the one related to 𝑉 = 1/𝑉 .

The uniform structure Φ𝑀∘ of blurs 𝑈𝑀∘ , obtained in this way, is just the first
step towards a topology on 𝑀∘ that represents the empirical inaccuracies of the
models as representational devices for physical systems. The principal problem
of employing a whole uniform structure is that it contains blurs that are too
coarse to be applicable for this purpose. The solution is to pick just a subset
of admissible blurs 𝐴𝑀∘ ⊂ Φ𝑀∘ (cf. section 2.1 and appendix A). The most
important aspect is the upper bound of admissible blurs. For the proposed
uniform structures it can be implemented easily, we only have to set a maximal
acceptable deviation ∆𝑚𝑎𝑥

𝑥 as upper bound for each quantity. The Cartesian
product of the thus properly bounded blurs on base sets yields bounded blurs
on 𝑀∘.
Of lesser importance are the lower bounds. Though, they can be introduced
just like the upper bounds by minimal deviations ∆𝑚𝑖𝑛

𝑥 , and will be transferred
to 𝐴𝑀∘ in the same manner. The definitions by metrics ensure the additional
condition of symmetry of each blur. Ludwig also called for countable bases of
admissible blurs (AB-8) and the property that a finite number of admissible
blurs covers its whole base set (AB-9). The first requirement is met if lower
bounds are engaged. The second condition, however, is only satisfied by 𝐴𝐷𝑞𝑖

,
𝐴𝐹𝑞𝑖

and 𝐴𝐷𝛿
. The real numbers are not compact because they are not bounded.

A solution strategy would be to confine the permissible real values within an
interval 𝐼 = [−𝐶,𝐶] with an astronomical limit number 𝐶 ∈ R+, which moreover
may scale with the system size. In doing so, physically meaningless supra-googol
numbers are excluded and the common topology satisfies the demand for a finite
cover (AB-9). Though, this would considerably complicate the mathematical
treatment, therefore I refrain from pursuing this line of thought any further.
What do the admissible blurs reveal about the idealisations in place? Firstly,
insignificant differences, those that are smaller than ∆𝑚𝑖𝑛, of any quantity are
possibly artifacts of our mathematical image and do not correspond to physically
different states. Continuous functions and domains are idealising conjectures
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on the absence of steep fundamental changes. The admissible blurs recall this
fact and are a tool to take it into consideration when interpreting the physical
meaning of theoretical results. It might seem strange to emphasise the possibility
of discontinuous alterations in a treatise on phase transitions, whose charac-
teristic feature is the abruptness of their change, but precisely this contrast to
ordinary, smooth processes is what makes these phenomena that remarkable.
Directly discernible steep changes remain peculiar even when everything changes
discretely but with empirically unrecognisable leaps.
Secondly, the admissible blurs 𝐴𝐷𝛿

indicate that the exact particle number of
the examined systems is unknown. It is also the case that the imprecision grows
with increasing system sizes. This is one reason why the blurs on 𝐷𝛿 are not
defined by absolute differences like the others. Even though the exact particle
number of macroscopic systems cannot be known, they are finite without doubt.
Thus, when physicists take the thermodynamic limit, they deliberately make an
assumption of which they know is incorrect. The admissible blurs have to correct
this unveridical idealisation, and they do so by blurring the sharp separation
between finite and infinite models. Entourages of indistinguishable values as
defined by equation (2.4.9) conflate large finite and infinite models. Hence, when
taking into account the inaccuracies expressed by 𝐴𝐷𝛿

, 𝛿 = 0 might represent
infinite models and finite systems, just like 𝛿 = 10−99.

Now as we have established a uniform space ⟨𝑀∘, 𝐴𝑀∘⟩, we have the means to
express the relations between the subsets of 𝑀∘ in more detail. As asserted by
equation (LC-3e), the set of finite models 𝑀 ′ and that of infinite idealisations 𝑀*

are disjoint but the close connection between their elements can be expressed
topologically. The models 𝑀 ′ cover the open region of 𝑀∘ = 𝜎 (𝑋∘, 𝐴∘)×𝐷𝛿

with 𝛿 > 𝛿∘, while 𝑀* is confined to the closed strip of 𝛿 = 𝛿∘. Consequently,
𝑀* is situated in the outer part of the closure of 𝑀 ′

𝑀* ⊆𝑀 ′ ∖𝑀 ′. (LC-4a)

The closure 𝑀 ′ contains all accumulation points of 𝑀 ′43, in its outer part are only
those accumulation points that are no elements of 𝑀 ′. Thus, formula (LC-4a)
asserts that in ⟨𝑀∘, 𝐴𝑀∘⟩ are sequences of elements of 𝑀 ′ that converge to

43A point 𝑦 of a uniform space ⟨𝑀∘, 𝑈∘⟩ is an accumulation point of a set 𝐴 ⊆ 𝑀∘ if and
only if every neighbourhood 𝑢 ∈ 𝑈∘ around 𝑦 contains points 𝑎 ∈ 𝐴 that are not 𝑦 (Amann
and Escher, 2006a, p. 247).

116



points in 𝑀*. That is exactly what we want to prove by the limiting case
reduction. But we like to be more precise this series should be

lim
𝛿→𝛿∘

𝑀 ′
𝛿 =𝑀* (LC-4b)

under the constraint that the intensive coordinates �̂�𝑖 = 𝑞𝑖/𝑁 remain constant.
In order to obtain a form like this, we have to decompose 𝑀 ′ into disjoint sets
of models with constant 𝛿.

𝑀 ′ =
⋃︁

𝛿∈𝐼′

𝑀 ′
𝛿 (LC-5a)

under the constraint 𝑀 ′
𝛿 ∩𝑀 ′

𝛿′ = ∅ ↔ 𝛿 ̸= 𝛿′ (LC-5b)

with 𝑀 ′
𝛿 = {⟨𝑠, 𝛿′⟩ | Σ′ (. . . , 𝐷∘

𝛿 , 𝛿
∘, 𝑠, 𝛿′) ∧ 𝛿 = 𝛿′} (LC-5c)

and 𝐼 ′ = {𝛿 ∈ 𝐷∘
𝛿 | ∃𝑠Σ′ (. . . , 𝐷∘

𝛿 , 𝛿
∘, 𝑠, 𝛿)} (LC-5d)

This is not difficult at all. Equation (LC-3d) defines 𝑀 ′ as a set of pairs (𝑠, 𝛿).
Thus, its elements can easily be separated by 𝛿. With (LC-2) we have also proven
that each system configuration 𝑠 corresponds to a unique value of 𝛿, and since
the particle number is one coordinate of the phase space 𝑍𝑝

𝑠𝑚, this partition
has also a direct meaning as sorting the models by its (theoretically ascribed)
particle number.
By means of {𝑀 ′

𝛿}𝛿∈𝐼′ we can reformulate the mere symbolic expression (LC-4b)
into a precise statement in terms of uniform structures. Let 𝑀 ′ (𝛿) be the
bijective mapping of the inverse particle number 𝛿 to the corresponding set of
models 𝑀 ′

𝛿

𝑀 ′ (𝛿) : 𝐷∘
𝛿 ∖{𝛿∘} ↦→ 𝒫 (𝑀∘) , (LC-6a)

then our claim becomes that this function smoothly converges to the set of infinite
models 𝑀* in the limit 𝛿 → 𝛿∘. We can express the approach of 𝛿 towards 𝛿∘

by means of the admissible blurs 𝐴𝐷𝛿
because we provided for the blurs to

include the limit value 𝛿∘. The arctan-metric clears an otherwise complicated
issue. Though, we still have to establish a uniform structure for the convergence
in 𝒫 (𝑀∘). What we have is the uniform space ⟨𝑀∘,Φ𝑀∘⟩, which serves to
construct a fundamental system of entourages to equip the powerset 𝒫 (𝑀∘)

with a uniform structure Φ𝒫(𝑀∘) (Scheibe, 2022, p. 179). We can thus specify
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that the function 𝑀 ′ (𝛿) has to be continuous on its whole domain

∀𝑢∈𝑈𝒫(𝑀∘) ∀𝛿∈𝐷∘
𝛿 ∖{𝛿∘} ∃𝑣∈𝑈𝐷∘

𝛿

∀𝛿′∈𝐷∘
𝛿 ∖{𝛿∘}

[︀
⟨𝛿, 𝛿′⟩∈𝑣 → ⟨𝑀 ′ (𝛿) ,𝑀 ′ (𝛿′)⟩∈𝑢

]︀
. (LC-6b)

This ensures 𝑀 ′ (𝛿) to be smooth, its function values do not spread further than
the arguments. For the wanted convergence it is also required that it can be
continuously continued to 𝛿∘ and assumes the value 𝑀 ′ (𝛿∘) =𝑀*

∀𝑢∈𝑈𝒫(𝑀∘) ∃𝑣∈𝑈𝐷∘
𝛿
∀𝛿′∈𝐷∘

𝛿

[︀
⟨𝛿∘, 𝛿′⟩∈𝑣 → ⟨𝑀*,𝑀 ′ (𝛿′)⟩∈𝑢

]︀
. (LC-6c)

If (LC-6a)–(LC-6c) were the final form of the limit, we would be puzzled by
the fact that we do not stumble upon any explicit use of uniform structures in
theoretical physics. What we rather encounter are continuous functions and
their limits. In order to reproduce this, let us consider the continuous mapping 𝑔

𝑔 : 𝑀* × 𝐼 ′ ↦→𝑀 ′. (LC-7a)

Mapping from 𝑀* onto 𝑀 ′ seems to be the wrong way round, as the thermody-
namic limit starts with the finite models 𝑀 ′ to then obtain the infinite ones 𝑀*.
Though, here

𝑀* = {⟨𝑠, 𝛿∘⟩ | Σ (𝑋∘, 𝐴∘, 𝑠)}

does not represent the infinite models, it is rather introduced to refer to its first
component, the variable structures 𝑠 = (�̂�1, . . . , 𝐹𝑛, . . . , 𝑇, 𝑓, . . . ) of the models
of statistical mechanics. Thus, we might as well replace 𝑀* by the echelon
scheme of the totality of variable structural terms 𝜎 (𝑋∘, 𝐴∘). But 𝑀* has the
advantages that the configurations 𝑠 are in fact physically possible models and
no invalid combinations of thermodynamic functions, and that 𝑀* is a subset
of the uniform space ⟨𝑀∘,Φ𝑀∘⟩. Hence, we already have the necessary formal
means to later define the limit and its convergence.
First, we have to stipulate the two key properties of the mapping 𝑔 (𝑧, 𝛿). Its
arguments have an immediate interpretation in the case of models of statistical
mechanics. The first argument 𝑧 ∈ 𝑀* contains all non-extensive parameters
of the system described by 𝑔 (𝑧, 𝛿). Consequently, the second argument 𝛿 is
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intended to determine the extension of the image. Thus, we require

∀𝑧∈𝑀* ∀𝛿∈𝐼 ′
[︀
𝑔 (𝑧, 𝛿)∈𝑀 ′

𝛿

]︀
(LC-7b)

that every 𝑔 (𝑧, 𝛿) is a model from the corresponding subset 𝑀 ′
𝛿 of 𝛿-sized

models. This formula (LC-7b) requires 𝑔 (𝑧, 𝛿) to entirely pass through finite
models of statistical mechanics. This means, that the theoretical relations like
𝑓 = −𝑘𝑏𝑇/𝑉 ln𝑍 are valid for every 𝑔 (𝑧, 𝛿).
For the first argument of 𝑔, we demand that different configurations of the mostly
intensive quantities result in different finite models

𝑧 ̸=𝑧′ ⊢𝑍𝐹𝐶𝑈 ∀𝛿 ∈ 𝐼 ′
[︀
𝑔 (𝑧, 𝛿) ̸= 𝑔 (𝑧′, 𝛿)

]︀
. (LC-7c)

If we have a mapping 𝑔 that satisfies these conditions, we can express the
symbolic limit formula (LC-4b) more precisely by

lim
𝛿→𝛿∘

𝑔 (𝑧, 𝛿) = 𝑧. (LC-7d)

Under fixed first argument 𝑧, the function 𝑔 (𝑧, 𝛿) maps this configuration 𝑧 of
intensive variables onto the different system sizes. The limit assertion is now
that every such configuration 𝑧 has one model of each possible extension, and
that the series of increasing system sizes continuously converge towards the
corresponding infinite models of 𝑀*.
Apparently, this is a pointwise convergence. We do not have one limit for all
configurations 𝑧, but one limit for each 𝑧. This characteristic of the limit is
utmost important in regard to phase transitions, when the thermodynamic limit
occurs in combination with the state configuration approaching transition or
critical points 𝑧𝑐 lim𝑧→𝑧𝑐 . Still, (LC-7d) is just a claim which is to be proven . . .

2.4.3 Put into practice

The thermodynamic limit is not well-defined for every conceivable Hamiltonian.
Consequently, it is not possible to demonstrate equation (LC-7d) in statistical
mechanics all in all. But there are quite general circumstances for which the
existence of the limit is provable. I will exemplify this procedure based on a
technically less demanding instance. Before we start, I want to recall what my
abridged terms 𝑧 ∈𝑀* and 𝑔 (𝑧, 𝛿) ∈𝑀 ′ stand for. Both are Cartesian products
of the variables and functions listed in table 2.2.
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symbols meaning limit behaviour
�̂�1, . . . , �̂�𝑛, 𝑇 intensive system parameters remain constant

𝐹1, . . . , 𝐹𝑛 external forces continuously approach
their respective limits

𝑢, 𝑠, 𝑓 densities of continuously approach
thermodynamic potentials their respective limits

𝑍, �̂� further variable terms continuously approach
of statistical mechanics their respective limits

𝑉 inverse volume goes to zero

Λ0 auxiliary constant remains constant

𝛿 technical limit parameter 𝛿 → 𝛿∘

Table 2.2: Overview on the components of the models in 𝑀* and 𝑀 ′, and
the expected behaviour of the latter when taking the thermodynamic limit

Thus, for the purposes of application we better decompose

lim
𝛿→𝛿∘

𝑔 (𝑧, 𝛿) = 𝑧 into

⎛
⎜⎜⎜⎜⎜⎜⎝

lim
𝛿→𝛿∘

𝑔�̂�1 (𝑧, 𝛿) = 𝑧�̂�1
...

...
lim
𝛿→𝛿∘

𝑔𝑓 (𝑧, 𝛿) = 𝑧𝑓

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.4.10)

and examine each component separately. The component 𝑧𝑓 simply means the
free energy density of state 𝑧 usually written as 𝑓 (𝑧), a notation which I will
also employ from now on.
The constancy of the quantities listed in the first row of table 2.2 constraints
the thermodynamic limit. We can set out this requirement by

∀𝑧∈𝑀* ∀𝛿∈𝐷𝛿

[︁
�̂�𝑖
(︀
𝑔 (𝑧, 𝛿)

)︀
= �̂�𝑖 (𝑧)

]︁
1 ≤ 𝑖 ≤ 𝑛 (2.4.11)

∀𝑧∈𝑀* ∀𝛿∈𝐷𝛿

[︁
𝑇
(︀
𝑔 (𝑧, 𝛿)

)︀
= 𝑇 (𝑧)

]︁
. (2.4.12)

Thus, we are not interested in any arbitrary limit towards infinite system
extension but in those that keep the intensive functions constant. The dependency
of the thermodynamic limit on the external conditions 𝐹1, . . . , 𝐹𝑛, 𝑇 will later
be of further interest.
The substantious quantities for the thermodynamic limit are those in the third
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row of table 2.2 – the internal energy 𝑢, entropy 𝑠 and free energy 𝑓 density.
The further terms are less relevant: The purport of the partition function 𝑍 and
the state distribution �̂� is primarily to derive 𝑓 , after this has been achieved
they lose relevance. The inverse volume 𝑉 will just automatically decline with
the limit parameter 𝛿 and Λ0 is only an auxiliary constant without physical
significance. But the thermodynamic potentials are such important that the
thermodynamic limit is commonly referred to by the mere 𝑓 -component of the
models 𝑔 (𝑧, 𝛿) and 𝑧

lim
𝛿→𝛿∘

𝑓
(︀
𝑔 (𝑧, 𝛿)

)︀
= 𝑓 (𝑧) . (2.4.13)

The other two potentials will then be derived from 𝑓 (�̂�1, . . . , �̂�𝑛, 𝑇 )

𝑠 = − 𝜕𝑓

𝜕𝑇
𝑢 = 𝑓 + 𝑇𝑠. (2.4.14)

Also the generalised forces 𝐹𝑖 can be derived from the free energy density

𝐹𝑖 = −
(︂
𝜕𝑓

𝜕�̂�𝑖

)︂
. (2.4.15)

This particularly requires the limit function to be differentiable at most points
in phase space.

For the further course, I will assume that �̂�1 is the specific volume 𝑣 = 𝑉/𝑁. This
does not restrict the generality of the approach because, as explained earlier
(see footnote 41), the volume is always among the generalised coordinates. By
its means we can express the particle number 𝑁 , which has been eliminated as
a term of our theory in one of the auxiliary steps, by 𝑁 =

(︀
�̂�1𝑉

)︀−1
as well as

the volume 𝑉 = 1/𝑉 and the particle density 𝜌 = 𝑁/𝑉 or respectively 1/𝑣. Since
it is more convenient to use 𝑁 , 𝜌 and 𝑉 in place of the rather unaccustomed
expression in primitive terms of Σ′, I will henceforth use the former.
Now, let us get started with the proof for the existence of the thermodynamic
limit. I largely follow a presentation with didactic purposes of Fisher (1964,
pp. 152–155). He considers a classical setting with the common form of the
Hamiltonian as a sum of kinetic and potential energy

𝐻 =
𝑁∑︁

𝑖=1

�⃗� 2
𝑖

2𝑚
+ 𝑈𝑁 (�⃗�1, . . . , �⃗�𝑁 ; 𝑎1, . . . , 𝑎𝑚) . (2.4.16)
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The particle mass 𝑚 is one of our microscopic parameters 𝑎𝑗 . The classical parti-
tion function is defined as the integral over the phase space Γ of an exponential
function with the Hamiltonian as exponent and the factor −𝛽 = −1/𝑘𝐵𝑇 (see
equation (2.3.15)). With the Hamiltonian (2.4.16) at hand, we can integrate out
the kinetic term in 𝑍

𝑍 (𝑇,𝑁, �̂�1, . . . , �̂�𝑛,Λ) =
1

𝜆𝑑𝑁 (𝑇 )𝑁 !

∫︁

Λ

𝑑𝑟𝑑𝑁𝑒
−𝑈𝑁 (�⃗�1,...,�⃗�𝑁 )/𝑘𝐵𝑇 . (2.4.17)

The resulting pre-factor is collected in the thermal de Broglie wavelength 𝜆 (𝑇 )

𝜆 (𝑇 ) =
ℎ√

2𝜋𝑚𝑘𝐵𝑇
(2.4.18)

with Planck constant ℎ and dimension 𝑑.
Fisher (1964, pp. 153–154) specifies two constraints on the potential 𝑈𝑁 . The
first is the condition of stability :

∃𝑤∈R ∀𝑁 ∈N ∀�⃗�1∈Λ . . . ∀�⃗�𝑁 ∈Λ
[︀
𝑈𝑁 (�⃗�1, . . . , �⃗�𝑁 ; 𝑎1, . . . , 𝑎𝑚) ≥ −𝑁𝑤

]︀

(C1-Stab)

For every system size and spacial distribution of the particles, the potential
energy per particle 𝑈𝑁/𝑁 has to be larger than some constant 𝑤. The motiva-
tion of this condition is that the interaction among the particles should not be
attractive at any scale. Rather, the particles must be repulsive up from some
distance, as is the case for the common instance of a hard-core repulsion when
atoms or molecules approach the area occupied by another. Though, (C1-Stab)
is more general than requiring a two-particle hard-core repulsion. If 𝑈𝑁/𝑁 were
not bounded from below, the particles might clump together and our system
would implode.
We can use (C1-Stab) to get an inequality for the partition function by re-
placing the potential term accordingly. After calculating the integrals over the
configuration space Λ, we obtain

𝑍 (𝑇,𝑁, �̂�1, . . . , �̂�𝑛,Λ) ≤
𝑉 (Λ)

𝑁

𝜆𝑑𝑁 (𝑇 )𝑁 !
𝑒
𝑁𝑤/𝑘𝐵𝑇 . (2.4.19)

As the free energy density 𝑓 is defined by the logarithm of the partition function

𝑓 (𝑇, 𝜌, �̂�2, . . . , �̂�𝑛,Λ) = −𝑘𝐵𝑇
𝑉

ln𝑍 (𝑇,𝑁, �̂�1, . . . , �̂�𝑛,Λ) , (2.4.20)
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the inequality translates into one for 𝑓 using Stirling’s formula ln𝑁 ! ≥ 𝑁 ln𝑁 −𝑁

𝑓 (𝑇, 𝜌, �̂�2, . . . , �̂�𝑛,Λ) ≥ −𝜌𝑘𝐵𝑇
[︂
1 +

𝑤

𝑘𝐵𝑇
− ln

(︀
𝜌𝜆𝑑 (𝑇 )

)︀]︂
. (C1-f)

The logarithm is a monotonically increasing function and thus maintains the
inequality sign, but we also have to multiply by −𝑘𝐵𝑇 . Hence, the result of the
stability criterion for the potential 𝑈𝑁 is that the free energy density is bounded
from below.

The mathematical formulation of the second condition – the strong tempering –
is slightly more complicated, but the physical interpretation is straightforward.
It basically claims that the interaction between groups of particles in separated
regions of our system is not repulsive if the minimum distance between particles
of different groups is larger than some constant 𝑅0. Hence, we divide the total
configuration space Λ into subregions Λ′ and Λ′′, which do not necessarily have
to cover all of Λ. The subregions are occupied by 𝑁 ′ and 𝑁 ′′ particles. The
intra-group interactions are 𝑈𝑁 ′ and 𝑈𝑁 ′′ . Since the total potential energy
is 𝑈𝑁 ′+𝑁 ′′ , we obtain the inter-group potential by 𝑈𝑁 ′+𝑁 ′′ − 𝑈𝑁 ′ − 𝑈𝑁 ′′ . If this
term was positive, our system would tend to disperse, but since we do not want
it to surpass Λ, it must not.

∃𝑅0∈R+
0 ∀𝑁 ′, 𝑁 ′′∈N ∀�⃗�1∈Λ′ . . . ∀�⃗�𝑁 ′ ∈Λ′ ∀�⃗� ′

1 ∈Λ′′ . . . ∀�⃗� ′
𝑁 ′′ ∈Λ′′

[︂(︂
min
𝑖𝑗

|�⃗�𝑖 − �⃗� ′
𝑗 | ≥ 𝑅0

)︂
→

(︀
𝑈𝑁 ′+𝑁 ′′

(︀
�⃗�1, . . . , �⃗�𝑁 ′ , �⃗� ′

1 , . . . , �⃗�
′
𝑁 ′′

)︀
− 𝑈𝑁 ′(�⃗�1, . . . , �⃗�𝑁 ′)− 𝑈𝑁 ′′

(︀
�⃗� ′
1 , . . . , �⃗�

′
𝑁 ′′

)︀
≤ 0

)︀
]︃

(C2-StrTemp)

Thus, this constraint on the attractive long-range behaviour of 𝑈𝑁 complements
the first requirement on the repulsive short-range interaction. Again, we can
substitute the potential term in equation (2.4.17) to obtain an inequality for
the partition function 𝑍. In order to do so, we have to consider only pairs of
subregions Λ′ and Λ′′ for which the strong tempering condition (C2-StrTemp)
holds, this requires in particular that they are separated by a distance of 𝑅0.
Because the integrand in (2.4.17) is positive, the reduction of the original
domain Λ may only reduce the term value of 𝑍, therefore we estimate the upper
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value by

𝑍(𝑇,𝑁,�̂�1, . . . , �̂�𝑛,Λ) ≥ (2.4.21)

1

𝜆𝑑𝑁 (𝑇 )𝑁 !

𝑁=𝑁 ′+𝑁 ′′∑︁

𝑁 ′,𝑁 ′′

𝑁 !

𝑁 ′!𝑁 ′′!

∫︁

Λ′
𝑑𝑟𝑑𝑁

′
∫︁

Λ′′
𝑑�̃� 𝑑𝑁 ′′

exp

(︂
−𝑈𝑁 ′+𝑁 ′′

𝑘𝐵𝑇

)︂
.

The summation over 𝑁 ′ and 𝑁 ′′ and the factorials take care that every possible
distribution of the 𝑁 total particles over the subregions Λ′ and Λ′′ is taken into
account. This formula is equivalent to

𝑍(𝑇,𝑁, �̂�1, . . . , �̂�𝑛,Λ) ≥
1

𝜆𝑑𝑁 (𝑇 )𝑁 !

𝑁=𝑁 ′+𝑁 ′′∑︁

𝑁 ′,𝑁 ′′

𝑁 !

𝑁 ′!𝑁 ′′!
(2.4.22)

∫︁

Λ′
𝑑𝑟𝑑𝑁

′
∫︁

Λ′′
𝑑�̃� 𝑑𝑁 ′′

exp

(︂
−

[︂
𝑈𝑁 ′+𝑁 ′′

𝑘𝐵𝑇
− 𝑈𝑁 ′

𝑘𝐵𝑇
− 𝑈𝑁 ′′

𝑘𝐵𝑇

]︂
− 𝑈𝑁 ′

𝑘𝐵𝑇
− 𝑈𝑁 ′′

𝑘𝐵𝑇

)︂
,

where only the addends 𝑈𝑁′/𝑘𝐵𝑇 + 𝑈𝑁′′/𝑘𝐵𝑇 − 𝑈𝑁′/𝑘𝐵𝑇 − 𝑈𝑁′′/𝑘𝐵𝑇 of the total
value zero have been inserted into the exponential function. Now, inequal-
ity (C2-StrTemp) states that the term in square brackets is not larger than zero.
Accordingly, the corresponding exponential factor is at least one. Since the
remaining part of the right side of formula (2.4.22) is simply the product of the
partial partition sums 𝑍 (𝑇,𝑁 ′,Λ′) · 𝑍 (𝑇,𝑁 ′′,Λ′′), we obtain the inequality

𝑍 (𝑇,𝑁 ′ +𝑁 ′′,Λ) ≥ 𝑍 (𝑇,𝑁 ′,Λ′) · 𝑍 (𝑇,𝑁 ′′,Λ′′) . (2.4.23)

Thereof, we can take the logarithm and multiply by −𝑘𝐵𝑇/𝑉 , which again switches
the inequality sign

𝑓 (𝑇, 𝜌,Λ) ≤ 𝑉 ′ (Λ′)
𝑉 (Λ)

𝑓 (𝑇, 𝜌′,Λ′) +
𝑉 ′′ (Λ′′)
𝑉 (Λ)

𝑓 (𝑇, 𝜌′′,Λ′′) . (2.4.24)

The respective particle densities are

𝜌 =
𝑁 ′ +𝑁 ′′

𝑉 (Λ)
, 𝜌′ =

𝑁 ′

𝑉 ′ (Λ′)
, 𝜌′′ =

𝑁 ′′

𝑉 ′′ (Λ′′)
. (2.4.25)

Formula (2.4.24) can easily be generalised for an arbitrary number 𝑜 of subdo-
mains Λ𝑙 which of course, have to be separated by at least 𝑅0. The resulting
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inequality for the free energy density is

𝑓 (𝑇, 𝜌,Λ) ≤
𝑜∑︁

𝑙=1

𝑉𝑙 (Λ𝑙)

𝑉 (Λ)
𝑓 (𝑇, 𝜌𝑙,Λ𝑙) , (2.4.26)

whereat holds for the density 𝜌

𝜌 =
𝑜∑︁

𝑙=1

𝑉𝑙 (Λ𝑙)

𝑉 (Λ)
𝜌𝑙. (2.4.27)

At this point, Fisher (1964, pp. 156–157) introduces the thermodynamic limit
in form of a sequence of cubes 𝑘 with increasing domains Λ𝑘 and domain walls
of thickness greater than 𝑅0/2 so that the antecedence in (C2-StrTemp) is true
and hence its consequence is valid. Each iteration doubles the edges of the
previous cube. Thus, Λ𝑘+1 includes eight cubes of Λ𝑘 spaced apart by 𝑅0. In
the thermodynamic limit these microscopic spacers become negligible. Therefore,
we get

𝑓 (𝑇, 𝜌,Λ𝑘+1) ≤
8∑︁

𝑙=1

1

8
𝑓 (𝑇, 𝜌𝑙,Λ𝑘) , (2.4.28)

and for the case that the density is equal in all subdomains 𝜌𝑙 = 𝜌 follows the
momentous inequality

𝑓 (𝑇, 𝜌,Λ𝑘+1) ≤ 𝑓 (𝑇, 𝜌,Λ𝑘) . (C2-f)

When enlarging the configuration space, the free energy density 𝑓 is a non-
increasing series. At the same time, it is bounded from below due to (C1-f).

−𝜌𝑘𝐵𝑇
[︂
1 +

𝑤

𝑘𝐵𝑇
− ln

(︀
𝜌𝜆𝑑 (𝑇 )

)︀]︂
≤ 𝑓 (𝑇, 𝜌,Λ𝑘+1) ≤ 𝑓 (𝑇, 𝜌,Λ𝑘) (2.4.29)

Thus, we have finally proven that the thermodynamic limit of the free energy
density in 𝑘 → ∞ or respectively 𝛿 → 0 with 𝛿 = 1/𝑘 exists.

Though, this is not enough! Our claim (2.4.13) goes beyond the mere existence
of the limit, we demand it to be a model of the infinite version of statistical
mechanics Σ. This is still to be proven. It would be satisfied if the stability
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criteria of canonical ensembles (Nolting, 2014, p. 396)

𝐶𝑉 = 𝑇

(︂
𝜕𝑆

𝜕𝑇

)︂

𝑣

= −𝑇
(︂
𝜕2𝑓

𝜕𝑇 2

)︂

𝑣

≥ 0 (2.4.30)

𝜅𝑇 = −1

𝑣

(︂
𝜕𝑣

𝜕𝑝

)︂

𝑇

=
1

𝑣

(︂
𝜕2𝑓

𝜕𝑣2

)︂−1

𝑇

≥ 0 (2.4.31)

were met. These are however equivalent to

(︂
𝜕2𝑓

𝜕𝑇 2

)︂

𝑣

≤ 0

(︂
𝜕2𝑓

𝜕𝑣2

)︂

𝑇

≥ 0 (2.4.32)

the properties of 𝑓 (𝑇, 𝑣) being concave in 𝑇 and convex in 𝑣. In subsection 1.1.2,
I mentioned the convexity as one of the most important properties of the
thermodynamic potential 𝑈 (𝑆, 𝑞𝑖, 𝑁). Due to the Legendre transformation of
the entropy 𝑆, the free energy became concave in the transformed variable 𝑇 but it
is still convex in its extensive natural variable 𝑉 . We can easily demonstrate that
the limit function of the free energy density 𝑓∞ (𝑇, 𝑣) is convex in 𝑣 by choosing
different densities for some cubes 𝜌1 = . . . = 𝜌4 = 𝜌′ and 𝜌5 = . . . = 𝜌8 = 𝜌′′

in (2.4.28), which results in the limit 𝑘 → ∞ of (Nolting, 2014, p. 397)

𝑓∞

(︂
𝑇,

2𝑣′𝑣′′

𝑣′ + 𝑣′′

)︂
≤ 𝑣′′

𝑣′ + 𝑣′′
𝑓∞ (𝑇, 𝑣′) +

𝑣′

𝑣′ + 𝑣′′
𝑓∞ (𝑇, 𝑣′′) . (2.4.33)

By substituting 𝛼 ≡ 𝑣′′
/𝑣′+𝑣′′, we obtain the defining inequality of convex

functions

𝑓∞ (𝛼𝑣′ + (1− 𝛼) 𝑣′′) ≤ 𝛼𝑓∞ (𝑣′) + (1− 𝛼) 𝑓∞ (𝑣′′) . (2.4.34)

The geometric interpretation is that every chord between any two points lies above
the graph (see figure 2.1). But most importantly, this assures the mechanical
stability of the limit model.
The demonstration of the thermal stability is more difficult. Fisher (1964, p. 159)
points out that the corresponding inequality in terms of the temperature 𝑇 can
be obtained from equation (1.1.20) by applying the Cauchy–Schwarz inequality.
If our theory does not only include the generalised coordinate 𝑞1 = 𝑉 , we have
to prove also stability criteria for the further interactions. For instance, Emch
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Figure 2.1: The free energy 𝑓 (𝑣) is a convex function of the specific
volume 𝑣. The chords between any two points

(︀
𝑣′, 𝑓 (𝑣′)

)︀
and

(︀
𝑣′′, 𝑓 (𝑣′′)

)︀
lie above the graph, exemplarily marked at the centre at 𝛼 = 1/2. This
figure is adapted from Figure A.2 in (Fisher, 1964, p. 158).

and Liu (2002, pp. 398–399) show that the magnetic stability holds

𝜒 =

(︃
𝜕�⃗�

𝜕�⃗�

)︃

𝑇,𝐽

= −
(︂
𝜕2𝑓

𝜕�⃗�
2

)︂

𝑇,𝐽

≥ 0 (2.4.35)

for the thermodynamic limit 𝑓∞
(︁
𝑇, �⃗�, 𝐽

)︁
of the Ising model with spin-spin

interaction 𝐽 .
Besides the fact that these characteristics ensure the stability criteria, convex
and concave functions have quite useful properties:

1. They are continuous on their whole domains (van Tiel, 1984, p. 67).

2. Their left and right directional derivatives exist. These are also convex
and monotonically non-decreasing (van Tiel, 1984, pp. 66–67) or concave
and monotonically non-increasing.

3. Consequently, convex and concave functions are derivable almost every-
where, which includes at most countably many points where the directional
derivatives do not coincide (e.g. at the kink in figure 2.1).

The properties 1. and 2. guarantee that the first derivatives of the free energy
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– like pressure, entropy, magnetisation – can be defined in a meaningful way. The
admitted non-differentiable points result in jump discontinuities, which we know
as phase transitions of first order.
In consequence, the limit function 𝑓∞ (𝑇, �̂�1, . . . , �̂�𝑛) has been derived of an ap-
propriate limit partition function 𝑍, it satisfies the fundamental thermodynamic
relations, and the corresponding state meets all conditions for thermodynamic
stability. Thus, we have ascertained that the thermodynamic limit exists and
that it is a model of the thermo-statistical theory Σ of infinite models. The
proven convergence of the series of free energy densities 𝑓Λ𝛿

(𝑇, �̂�1, . . . , �̂�𝑛) over
an increasing domain Λ𝛿 is pointwise. We were able to demonstrate that the
resulting limit function is concave in 𝑇 and convex in the other relevant parame-
ters �̂�𝑖, and thus mostly well behaving. But this does not suffice to assume that
also the derivatives of 𝑓∞ converge at every configuration.

There are a number of further proofs for the existence of the thermodynamic
limit under different constraints on the Hamiltonian, that include classical and
quantum mechanical settings. Now it turns out to be advantageous that we
have chosen the Hamiltonian to be part of the frame of each theory, as every
proof guarantees that the thermodynamic limit exists for whole theories. Once
its existence has been proven for the particular Hamiltonian, we do not have to
worry about its individual models.
This rather formal section will be concluded by answering the pending question:
How is that going to help with the paradox of phase transitions?

2.5 Implications for phase transitions

We can now return to the topic of phase transitions. In chapter 1 I have
outlined my strategy to resolve the paradox of phase transitions by rejecting the
representation premise that finite real systems may only be represented by finite
models. The results of the preceding subsection substantiate that also infinite
models faithfully represent finite systems. My argument goes as follows:
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Pr1 Models that are indistinguishable represent the same real systems.

Pr2 Some macroscopic real systems are faithfully represented by theoretical
models of statistical mechanics with particle numbers 𝑁 that are close
to infinity.

Pr3 Finite models with a particle number close to infinity are indistinguish-
able from infinite models.

Con Infinite models represent finite real systems.

This argument suffers from two ambiguous relations. In order to make it work, I
have to clarify in which sense different models might be indistinguishable, and
how finite particle numbers 𝑁 can be close to infinity. Since I have addressed
both of them earlier, I can simply summarise the underlying ideas at this point.
Afterwards, I will go into the details of each of the premises.
In section 2.1, I have introduced the concept of admissible blurs to express
the property that some elements of a set are indistinguishable, even though
they are not identical. The motivation for its foundation was the reflection on
the difference between arbitrarily exact mathematical representations and the
structure of the empirical reality that is only known with finite precision. It is
based on the formal definition of uniform structures. Two models of the same
theory 𝑇 are indistinguishable relative to 𝑇 if and only if they form a pair in an
admissible blur of that theory 𝑇 . This has later been generalised to encompass
models of different theories that are elements of a common superset of models
that is equipped with a uniform structure of admissible blurs.
Admissible blurs can be used to define the relation of closeness between two
elements. In subsection 1.2.3 and again in the previous 2.4, I have proposed a
particular choice for appropriate blurs to express the infinite idealisations in the
course of the thermodynamic limit, that takes advantage of the properties of
the arctan-metric. This metric admits finite distances between any pair of real
numbers, including −∞ and ∞, and more importantly it assigns arbitrary small
distances to certain pairs of infinity and large finite values. In this sense, large
finite 𝑁 can be close to infinity.

After these terms have been specified, I may turn to the first premise. It con-
denses Ludwig’s view on the mathematical part of physical theories as a picture
that pretends to exhibit the physical structures at any degree of accuracy. This
preciseness is however not assured, neither by empirical tests of the theory, which
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always have a limited precision, nor by the way theories are developed, that
involves in any case intuitions and assumptions on empirically not accessible
claims. Physical theories do not evolve directly from inductive reasoning, on
the contrary, the fundamental structures of theories are primarily shaped by
conjectures that are not derivable from experimental results. They fill the gaps
of ignorance and yield mathematical interpolations of the structure of reality,
which must not be taken for real. The theoretical task of admissible blurs is to
realise this. They do so by declaring models that only differ by a lesser degree
than the declared imprecision of the theory to be indistinguishable relative to
the respective theory. It is a direct consequence of this line of reasoning that
such indistinguishable models represent the same real systems.
But it is not necessary to share this rather idiosyncratic view on physical theories
in order to affirm premise 1. Scientific realists might oppose, but I think everyone
who accepts idealisations and approximative methods in empirical sciences has
to accede to it. I cannot imagine how such scientific practices might be justified
without granting that exact and appropriately approximated or idealised models
represent the same objects. The predicate “Model . . . is indistinguishable from
the model . . . ” is supposed to denote exactly this relation of appropriate approx-
imations. Due to its linkage to admissible blurs, it is a precisely defined concept,
that may convey its meaning to the otherwise vague expression ‘appropriate
approximation’.
Premise 2 can almost be regarded as a matter of fact about statistical mechanics.
I have quoted some theoretical physicists expressing this claim in chapter 1. It
takes minimal effort to find more such statements. Apparently, it is a rather
common view, that also arises from my formal considerations. One might object
that my very specific reading of ‘close to infinity’ does not meet the cited informal
manner of speaking, but as I have explained in 1.2.3, this is the only way to make
any sense of this assertion. I would also like to point out that this premise does
not presuppose that those finite theoretical models of very large systems can be
suitably evaluated within statistical mechanics without further approximations
or idealisations.
Premise 3 is an immediate consequence of the preceding subsection. This be-
comes the most apparent in formula (LC-6c). It indicates in terms of uniform
structures that every neighbourhood, no matter how small, around infinite mod-
els contains finite models. From the pointwise convergence of the thermodynamic
limit follows that among these finite models close to an infinite one are those that
have the same intensive properties and that only differ in regard to the extension
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variable 𝛿. This topological relationship translates into my descriptive terms as
the acknowledgement that the infinite models and the nearby surrounding finite
models are indistinguishable.
The conclusion finally refutes the implicit thesis 5) of the paradox of phase
transitions, which states that finite systems can only be represented by finite
models. Thus, its hardly contestable explicitly stated theses 1) – 4) can be upheld
without running into any contradiction because the culprit of the paradox has
been found and disproved – problem solved.

I have accompanied my resolution to the paradox by a proposal to define ‘phase
transition’ in light of these results. This definition 1.5, originally presented in
subsection 1.2.3, reads:

A system for whose thermodynamic functions the thermodynamic
limit exists undergoes a phase transition at the thermodynamic
configuration (𝑇𝑐, 𝐹𝑖𝑐) ⇔
(i) the respective limit function 𝑍∞ (𝑇, 𝐹𝑖) = lim𝑡𝑑 𝑍 (𝑇, 𝑞𝑖, 𝑁) be-

comes singular or zero at (𝑇𝑐, 𝐹𝑖𝑐), and
(ii) all of its intensive thermodynamic properties 𝑖𝑁 are at (𝑇𝑐, 𝐹𝑖𝑐)

empirically indistinguishable from the limit properties
lim𝑡𝑑 𝑖𝑁 (𝑇, 𝐹𝑖) ≈𝑈 𝑖𝑁 (𝑇, 𝐹𝑖).

The first condition, which is equivalent to demanding that the limit free energy
density 𝑓∞ becomes singular at (𝑇𝑐, 𝐹𝑖𝑐), is the common way to define phase
transitions of finite systems, as we find it for example in Mainwood (2006, p. 238).
My fluctuation between the variables 𝑞𝑖 and 𝐹𝑖 might cause irritations. The rea-
son is simply that the generalised coordinates 𝑞𝑖, which are the natural variables
of the partition function and the free energy, are usually extensive quantities
and thus to be replaced in order to obtain a consistently comparable model in
the thermodynamic limit either by the intensive correspondents �̂�𝑖 or by the
conjugate generalised forces 𝐹𝑖. It is more customary to state the points of phase
transitions in terms of the latter, e.g. to indicate pressure 𝑝 = 𝐹1 and magnetic
field strength �⃗� = 𝐹2, instead of specific volume 𝑣 = �̂�1 and magnetisation per
particle �⃗�1 = �̂�2, even though it amounts to the same result as ensured by the
equations of state. For this very reason, Gibbs free energy 𝐺 (𝑇, 𝐹𝑖, 𝑁) is usually
preferred for the thermodynamic study of phase transitions, which however lacks
the simple relation to the partition function, the free energy 𝐹 (𝑇, 𝑞𝑖, 𝑁) has in
the statistical mechanical setting.
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The recourse to the limit functions 𝑍∞ and 𝑓∞ is obviously substantiated by the
practices of theoretical physics. The previous subsection 2.4 almost exclusively
deals with the corresponding thermodynamic limit. There we have also seen that
the limit function 𝑓∞ can develop singularities, which I have extensively discussed
from the point of view of theoretical physics in chapter 1. Hence, condition (i)
is well approved by the approach of theoretical physics, the reflections in the
philosophy of physics in regard to phase transitions, as well as by the results of
my own analysis.
Though, does it suffice to claim that every system undergoes phase transitions
at the singular points (𝑇𝑐, 𝐹𝑖𝑐) of its limit free energy density 𝑓∞ if it exists,
no matter how much the actual functions 𝑓𝑁 of the finite system differ from
these limits? I do not think so. Firstly, the recourse to idealisations and approx-
imations does not work for microscopic systems. Thus, the justification that
performs well for macroscopic systems is not applicable, and there is no further
reason at all to assume that the thermodynamic limit may correctly describe the
behaviour of small systems. Secondly, the physical study of phase transition-like
phenomena of nano systems does not back up this claim, as I have shown in
subsection 1.2.2. These phenomena can occur in a considerably different way
than macroscopic phase transitions, including at significantly different points
in phase space. Therefore, condition (i) alone is not sufficient to define ‘phase
transition’, a further condition that ensures that the limit functions entail sub-
stantial information about the actual finite systems is required.
I assert that condition (ii) is the missing link towards an adequate, necessary
and sufficient set of conditions for phase transitions of finite systems. It is closely
related to the first premise of the argument that I have just considered. If
every relevant property of the finite model is captured by the idealised infinite
model within the requisite accuracy, the singularities of the limit free energy
(condition (i)) substantially characterise the finite system. This is due to the
assertion of premise 1 that both models, the finite ⟨𝑇, �̂�𝑖, 𝛿 > 0⟩ and the infi-
nite ⟨𝑇, �̂�𝑖, 𝛿 = 0⟩, faithfully represent the system in question. Condition (ii)
does not only fit into my broader image of physical theories and their mode
of representing physical systems, but it also mirrors the approach of the limit
taking, examined in 2.4. The empirical closeness of finite and infinite models,
that is expressed by condition (ii), is crucial for the convergence of the series of
finite models {𝑀 ′

𝛿}𝛿∈𝐼′ towards the set of infinite ones 𝑀*.

The abruptness that characterises phase transitions seems to stand in contrast
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to the proven convergence. The limit free energy density 𝑓∞ (𝑇, �̂�𝑖) is continuous
and the finite functions 𝑓 (𝑇, �̂�𝑖,Λ𝛿) are even analytic. Thus, their limits towards
transition points

(︀
𝑇𝑐, �̂�𝑖𝑐

)︀
exist

∀𝛿∈𝐷𝛿 ∃𝑥∈R
(︂

lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

𝑓 (𝑇, �̂�𝑖,Λ𝛿) = 𝑥

)︂
, (2.5.1)

which especially entails that left- and right-side limits coincide. What is the
relation between the two limits 𝛿 → 0 and (𝑇, �̂�𝑖) →

(︀
𝑇𝑐, �̂�𝑖𝑐

)︀
, do they commute?

This appears to be generally the case. The Moore-Osgood theorem allows to
exchange the limits if (1) the limit

lim
𝛿→0

𝑓 (𝑇, �̂�𝑖,Λ𝛿) (2.5.2)

converges uniformly for every configuration (𝑇, �̂�𝑖) ̸=
(︀
𝑇𝑐, �̂�𝑖𝑐

)︀
, and (2) the other

limit

lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

𝑓 (𝑇, �̂�𝑖,Λ𝛿) (2.5.3)

converges pointwise for every 𝛿 ≠ 0 (Rudin, 1976, p. 149). The pointwise
convergence of both individual limits is assured by the prior results. Pointwise
convergent series of convex or concave functions on compact domains do also
converge uniformly if the limit function is continuous. All of this is the case for
the free energy densities 𝑓𝛿 (𝑇, �̂�𝑖) as concave functions of 𝑇 and convex in �̂�𝑖,
while the limit function 𝑓∞ (𝑇, �̂�𝑖) is continuous. Hence, it is true that the limits
commute

lim
𝛿→0

lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

𝑓 (𝑇, �̂�𝑖,Λ𝛿)

⏟  ⏞  
(*)

= lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

lim
𝛿→0

𝑓 (𝑇, �̂�𝑖,Λ𝛿)

⏟  ⏞  
(**)

. (2.5.4)

This result might come as a surprise. The limit (*) is absolutely inconspicuous,
as it is a limit towards a point of an analytic function. And since our proof
of the convergence of the thermodynamic limit does not make any exceptions
for transition points

(︀
𝑇𝑐, �̂�𝑖𝑐

)︀
, there is nothing special to be expected from the

left side of (2.5.4). By contrast, the limit (**) approaches a transition point of
an infinite model, this is where we expect something extraordinary to happen.
But whatever happens there, it does not affect the function value of the free
energy density (this result might have been anticipated by taking into account
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the continuous nature of 𝑓∞ (𝑇, �̂�𝑖)). However, we must not forget that the
free energy density 𝑓 is just one component of the models ⟨𝑠, 𝛿⟩ of statistical
mechanics. Some of the other components are derivatives of 𝑓 or functions which
involve those. These are the entities that will be affected by the irregular incidents.
Equation (2.5.4) does not even imply that the derivatives exist, though we know
it for the first derivatives from the convexity of 𝑓∞ (𝑇, �̂�𝑖), which nonetheless
may exhibit discontinuities at countable many points. The same applies to the
response functions, whose existence at almost every point of the phase space is
guaranteed by the stability criteria satisfied by the limit function 𝑓∞ (𝑇, �̂�𝑖). But
due to the discontinuities of the derivatives at the singular points

(︀
𝑇𝑐, �̂�𝑖𝑐

)︀
, we

can conclude that the limits do not commute any more if we consider complete
models ⟨𝑠, 𝛿⟩ ∈𝑀 ′ of theoretical frames with Hamiltonians which feature phase
transitions as defined by definition 1.5

lim
𝛿→0

lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

⟨𝑠, 𝛿⟩
⏟  ⏞  

(*)

̸= lim
𝑇→𝑇𝑐

lim
�̂�𝑖→�̂�𝑖𝑐

lim
𝛿→0

⟨𝑠, 𝛿⟩. (2.5.5)

The limit (*) remains unproblematic, whereas the following thermodynamic
limit 𝛿 → 0 is not unique. There are various infinite limit models – one in
phase I, another in phase II and one for every possible mixed state of both
phases. The inner limit on the right side converges without issues, but the
last limit depends on the way 𝑇𝑐 is approached. This can only lead to the
homogeneous states of either phase I or phase II. Thus the limits on both sides
are irregular but with different outcomes. We should keep this result in mind
for the later discussion on the singular nature of the thermodynamic limit.

The thermodynamic limit is pivotal for my proposed definition for phase transi-
tions, but what about those systems for which the thermodynamic limit is not
applicable

. . . because it does not exist?

We lack the mathematical tools to theoretically investigate their phase dia-
grams pursuant to the general approach of statistical mechanics. Though,
there might exist different, tailor-made methods for their examination.
These are however not subject of my analysis, that is entirely focussed
on resolving the paradox of phase transitions, which directly refers to the
general conception of statistical mechanics. That of course fails in these
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cases where the thermodynamic limit does not exist but phase transitions,
in the pre-theoretical sense, occur.

. . . because the considered systems are not close to the infinite limit models?

In this case the situation is more favourable for my approach because
such systems simply fail to fulfil condition (ii), which is why they do
not undergo phase transitions by definition. In subsection 1.2.2, I have
examined other approaches that admit phase transitions of small systems.
But these accounts do not capture the peculiarities of the phase transition-
like phenomena of small systems in a satisfactory way. In light of the
numerous issues discussed there, I recommend to differentiate between
macroscopic and microscopic phase transitions until a unifying approach
will be well established in theoretical physics.
But even in the meantime, my restricted definition might help in conceptual
considerations concerning microscopic phase transition-like phenomena.
These are primarily characterised by their similarity to macroscopic phase
transitions, and analogical reasoning particularly benefits from clarified
terms in the original domain.

So much for my approach to resolve the paradox of phase transitions. This
section finally set out in detail how the different pieces of my solution fit together.
The precise concept of physical theories helped directly to become clear about
viable representation relations between real systems and theoretical models. In
an instrumental way, it was also indispensable for the thorough analysis of the
technique of the thermodynamic limit. This limit can be largely analysed in
terms of the free energy. But we have to bear in mind that the models are more
than just this function, and the conspicuous peculiarities of phase transitions
appear in the limits of its derivatives.
This solution goes hand in hand with the substantiation of my definition for phase
transitions, as the added condition (ii) is entirely based on my representation
claim. Due to that second condition, the definition is theory-dependent. In
particular, the admissible blurs of the respective theories are decisively involved
in classifying a certain change as a phase transition. This implies that theoretical
considerations of the same system might lead to different decisions on whether
it undergoes phase transitions or not if substantially different blurs are adopted
and the examined system is a borderline case. In such a case, a theoretical
examination with higher standards of accuracy may distinguish the physical
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effects of the finite model from those of an infinite idealisation because finite-
size effects become too significant to be ignored. I do not consider this as a
flaw of my approach. This rather reflects the present uncertainty in regard to
the demarcation between the macroscopic and microscopic regime. Numerical
simulations and experiments on small samples show that system sizes of few
thousands of particles well approximate the infinite limit, though this essentially
depends on the effective interactions. Thus, the scope of my definition is quite
large. But I do not think that it would be right to answer the empirical question
on the minimal size of macroscopic systems from a philosophical perspective.
The appropriateness of the infinite idealisation remains a context-dependent
matter. Though, there are legitimate philosophical questions concerning phase
transitions and the theoretical methods of their investigation. It will be the
purpose of the remainder of my thesis to discuss some of the implications of my
account for the broader philosophical debate.
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Chapter 3

Philosophical issues of phase
transitions

In this chapter, I take a step back and look at the philosophical implications
of my whole analysis. The philosophical discussion on phase transitions is rich,
but it lacks clarity about key concepts like ‘theory’ or ‘reduction’, as well as
some more attention to details of theoretical physics. I claim to help out in
both respects. Every section is devoted to one well defined and precise question,
and each will provide a definite answer resulting from my approach to phase
transitions, which is ultimately motivated by a fundamental view on philosophy
of science.
The philosophical interest in phase transitions does not only arise from the
question why the thermodynamic limit can be applied that successfully to these
phenomena, a question I claim to have answered in the previous sections 2.4
and 2.5, but also why we have to resort to the limiting case in order to correctly
describe them. The answer is plain and simple: Because it does not work without.
Strictly finite statistical mechanics wrongly predicts the non-existence of phase
transitions in finite systems. Alright, that is well known. But why do we need
the thermodynamic limit for this kind of thermodynamic processes in particular?
Commonly, the explanations evolve around the concepts of collective phenomena,
emergence or even self-organisation. In this chapter I will deal with some of
these ideas, but I address this question differently. In line with the previous
thoughts on reduction, I cautiously announce: The reason will be known after
the superseding theory will have been found. By reducing statistical mechanics
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to this prospective theory we will recognise which of the idealisations or as-
sumptions of the present theory have to be adjusted. This answer might appear
somehow underwhelming. Though firstly, my goal is to defend the recourse to
the thermodynamic limit as a legitimate practice in physics, not to ascertain why
it is necessary, and secondly, my assertion that there is an idealisation or basic
assumption at the bottom of statistical mechanics that becomes inappropriate
when it is applied to phase transitions, is far from trivial.

In the following sections, I will address general philosophical issues of phase
transitions. This means that I will not deal with the particular problems of
continuous phase transitions, which arise from advanced techniques, whose ex-
amination goes beyond the scope of my treatise. Though, I claim that these
specific issues do not interfere with my general conclusions. The first problem
that will bother us in section 3.1 is skepticism in regard to the reality of phase
transitions. This thought is not unreasonable considering that they are defined
by recourse to the unreal infinite limit. It might be surprising to doubt the real
existence of phase transitions after having spent so many pages on explaining
these phenomena, but I can reassure the reader, the answer will be affirmative.
The central question of the philosophical debate is whether phase transitions are
a case of an emergent phenomena in physics. It has been the most prominent
example from condensed matter physics for years. As such it plays a key role
in the debate on the limits of reductionism in physics and the autonomy of
non-fundamental theories. The interest into this debate has been greatly revived
by Batterman’s analysis of asymptotic reasoning in physics (2002). In 3.2 I will
briefly present his thoughts on limiting case relations of physical theories, and
his alternative approach to emergence as the results of singular limit relations.
Accordingly, we will be able to rephrase the question of the emergence of phase
transitions to: “Do phase transitions entail that the thermodynamic limit is
singular?” Our proven pointwise convergence of the theoretical models is a
strong argument against. More than that, the semantical perspective on theories
yields an indisputable, negative answer to this question, this is where the current
arguments fail. As we will see in 3.3, there are different proposals for functions
to be investigated in the limit – some of them are singular in the thermodynamic
limit, others regular – but no consensus on how to determine which of them are
the decisive ones. The semantical perspective by contrast, knows one paramount
kind of objects – the models. Consequently, their convergence unambiguously
decides that the limit is not singular.
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The ensuing question discussed in 3.4 will be whether it is at all possible that
phase transitions can be explained by a reduction relation of theories and still be
emergent. We will have to take care when drawing on the previous results because
we have examined the relation between infinite and finite statistical mechanics,
while in the philosophical literature on phase transitions, the attention is usually
on the relation between thermodynamics and statistical mechanics. Afterwards,
we will examine more traditional concepts of emergence in application to phase
transitions in 3.5. The last issue of section 3.6 will deal once again with the
thermodynamic limit and ascertain if it is indispensable for studying phase
transitions within statistical mechanics.

We will see that the answers to many questions will involve the idea that a
certain asymptotic domain in the vicinity of the idealised infinite models plays a
central role in resolving the discussed issues. It is physically characterised by
displaying the signature of phase transitions – singularities of the free energy –
in the weaker form of steep gradients. Interestingly, my definition for phase
transitions mirrors the philosophical significance of this asymptotic regime, as it
is exactly the domain of those finite systems which satisfy the condition (ii) of
empirical closeness to the infinite idealisations.

3.1 Are phase transitions even real?

Considering that we can experience them every day, we might be tempted to
counter: Why should phase transitions not be real? Leo Kadanoff (2009, p. 784),
whom we got to know as an advocate of the view that phase transitions are only
possible in infinite models, reasons: Finite systems, which are the only really
existing ones, cannot undergo proper phase transitions with the essential feature
of singularities. It is even inadequate to claim that such systems are in definite
thermodynamic phases. So when physicists define these theoretical concepts,
they idealise what can be examined in large finite systems, and extrapolate
the outcome to idealised infinite models. Therefore, the resulting concepts are
through and through ideal.

[T]his part of theoretical physics is not a simple result of the direct
examination of Nature, but rather it is a result of the human imagi-
nation applied to an extrapolation of that examination.
(Kadanoff, 2009, p. 784)
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So, are phase transitions only imagined in the minds of theoretical physicists? We
could simply negate Kadanoff’s conclusion as his definition of phase transitions
differs from mine in a significant aspect – mine is expressly applicable to finite
systems – but his allusion to the idealistic nature of the involved infinite limit is
captivating and worth paying attention to. What he describes is the well known
distinction between empirical and rational concepts (von Mises, 1928, pp. 8–9).
The concepts of scientific theories do not evolve by inductive reasoning or simple
abstractions of empirical data, they are intellectual creations (gedankliche Schöp-
fungen) (Cassirer, 1971[1906], p. 3). As such they are however not completely
arbitrary and capricious due to their ties to the empirical reality.

Die Begriffe der Wissenschaft erscheinen jetzt nicht mehr als Nachah-
mungen dinglicher Existenzen, sondern als Symbole für die Ordnun-
gen und funktionalen Verknüpfungen innerhalb des Wirklichen.44

(Cassirer, 1971[1906], p. 3)

Hence, although the theoretical concepts ‘phase’ and ‘phase transition’ are
not empirical, they are closely linked to reality as they concatenate separate
observations to phenomena. Sorin Bangu (2009) argues in the same vein that
phase transitions have no intermediate connection to measurable data but are
interpretations thereof.45 Thus, the concept ‘phase transition’ differs from other
ideal concepts like mathematical ones, e.g. ‘line’ or ‘circle’, and unrealisable
physical concepts as ‘force-free body’ because it refers to a concrete theoretical
interpretation of measurement data. Accordingly, phase transitions are as real
as forces, masses, electrical charges etc. are.

3.2 Phase transitions and a new account of emer-

gence

How did phase transitions come to be the prime example for emergent phenomena
in physics? One root is surely Philip Anderson’s seminal article “More Is Different”
(1972), but the current debate is even more influenced by Batterman’s “The

44“The concepts of science now no longer appear as imitations of material existences, but as
symbols for the ordering and functional relations within the real.” (Translation mine)

45Bangu (2009) applies the distinction of James Bogen and James Woodward (1988) between
data and phenomena. Bogen’s and Woodward’s use of ‘phenomena’ can be roughly grasped as
interpretation of data (p. 306).
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Devil in the Details” (2002), which is probably the most impactful book on the
philosophy of physics of the 2000s. It is an all-out attack against the neo-Nagelian
model of theory reduction and Jaegwon Kim’s predominant account on emergence.
Both rely heavily on deductive notions of scientific explanation. Nagel’s scheme
of reduction is principally based on the deductive-nomological model (Mierau,
2023, sec. 6.1), so are Kim’s concepts of predictability and explanation (1999,
pp. 8, 11–12), which are essential for his definition of ‘emergence’ as higher level
properties that are unpredictable from and irreducible to a basal theoretical level
(1999, p. 21).

3.2.1 Asymptotic reasoning and singular limits

Batterman’s alternative concepts evolve around an essentially different type
of scientific explanation: asymptotic reasoning. He characterises this kind as
an abstraction that gets rid of excessive details and demands on precision in
fundamental theories (2002, pp. 3, 13). By expelling irrelevant details, we
may reveal a certain class of phenomena that are otherwise concealed by the
unmanageable amount of data. What we find there are universalities, these are
general patterns for which microscopic details are widely irrelevant (Batterman,
2002, pp. 4–5, 13). This idea originates from the universality classes of critical
exponents at second order phase transitions. For example the density of coexisting
gaseous and liquid phases has exactly the same temperature-dependence close
to the respective critical point for every fluid, despite of all their microscopic
differences, and what is even more astonishing, it coincides with the behaviour
of the magnetisation of antiferromagnets at the critical temperature and of
ferromagnets close to the Curie point (Goldenfeld, 1992, pp. 8–10). According
to Batterman (2002, p. 4), asymptotic reasoning is the generalisation of the
associated methods of thermo-statistical mechanics that prune the ballast of
microscopic details and disclose the universality classes that finally explain
irreducible higher level properties. Such kinds of irreducibilities form the core
of his new account of emergence. Thus, Batterman turns a concept from the
physics of phase transitions into the decisive criterion of whether a phenomenon
is reducible or emergent. Phase transitions become the paradigmatic case of the
controversy between reductionism and emergentism in the philosophy of science.
Asymptotic reasoning is symbolically expressed by the limit of a fundamental
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theory 𝑇𝑓 towards a coarser theory 𝑇𝑐

lim
𝜖→0

𝑇𝑓 = 𝑇𝑐 (3.2.1)

when some parameter 𝜖 that only appears in 𝑇𝑓 approaches zero. The main
problem of understanding equation (3.2.1) is that Batterman does not tell us
what his concept of theories is. Does he uphold the Syntactic View of theories
as sets of sentences or a Semantic View similar to the outline in section 2.1?
The meaning of (3.2.1) depends on the underlying view. It seems to be meant
similarly to the concept of partial reductions that relate some laws from 𝑇𝑐 to
those of 𝑇𝑓 , such that these of the coarser theory are obtained from those of
the fundamental one when the parameter 𝜖 approaches zero. For Batterman
everything depends on the question whether the limit in equation (3.2.1) is
smooth or singular (2002, pp. 18–19). In the first case, we can say that the
coarse theory 𝑇𝑐 reduces to the fundamental theory 𝑇𝑓 , while the other is a
genuine case of emergence. Thus, we have a clear-cut criterion to distinguish
emergence from reduction, that might finally bring all related philosophical
quarrel and unthriving debates to an end.
But what does it mean that a limit is singular? The notion of ‘smooth limit’
is quite clear, in some sense the solutions of 𝑇𝑓 (𝜖) converge towards those of
𝑇𝑓 (𝜖 = 0) = 𝑇𝑐 as 𝜖 → 0. By contrast, a singular limit is characterised by
the models of 𝑇𝑐 having “a fundamentally different character than the nearby
solutions as 𝜖→ 0” (Italics in the original, Batterman, 2002, p. 19), or in other
words, the limit of 𝑇𝑓 (𝜖) in (3.2.1) does not converge to 𝑇𝑐. Let us examine this
with Batterman’s prime example of critical phenomena (2002, pp. 121–125). In
this case, the fundamental theory 𝑇𝑓 is statistical mechanics of finite systems,
the coarse theory 𝑇𝑐 is thermodynamics (other passages indicate that it might
also be a mean-field approximation of statistical mechanics). Batterman specifies
the limit parameter with 𝜖 = 1/𝑁 → 0, hence we consider the thermodynamic
limit. Though, thermodynamics is not about infinite models, it rather contains a
finite parameter ‘amount of substance’, which is usually reduced to the particle
number 𝑁?! It seems as if we have to condone this point in order to follow
Batterman’s thoughts. He notes that neither finite statistical mechanics 𝑇𝑓 , nor
thermodynamics 𝑇𝑐 can predict and explain the critical exponents. A further
theory in the asymptotic regime is necessary to do the job – renormalisation
group theory.
The necessity of a new theory in the asymptotic domain of singular limits, that
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is in my terms the subset of models of 𝑇𝑓 that are close to models of 𝑇𝑐

𝐷𝐴 =
{︁
𝑚′ | 𝑚′∈𝑀𝑓 : ∃𝑈 ∈𝐴𝑀∘ ∃𝑚∈𝑀𝑐

[︀
𝑈 (𝑚,𝑚′)

]︀}︁
, (3.2.2)

is a general result of Batterman. Much of his and ensuing discussions focus on the
distinctiveness of this domain compared to the actual limit region 𝑀𝑐, and the
non-asymptotic domain of 𝑇𝑓 , which comprises those models that are not close
to the infinite limit, hence 𝑀 ∖𝐷𝐴. According to Batterman, the novel features
of singular limits require the third theory in the asymptotic domain precisely
because they are hidden behind the details of the fundamental theory 𝑇𝑓 and
wrongly captured by the coarse theory 𝑇𝑐 for the very reason that the limit
relation fails. This general idea seems to make sense, but its application to
the example of critical phenomena is problematic. As I have already remarked,
thermodynamics is not the theory that constitutes the limit 1/𝑁 → 0 of statistical
mechanics, but it is valid in the asymptotic domain 𝐷𝐴. Just as true is that the
renormalisation group approach is not a theory of this asymptotic regime, rather
it actually needs the limit of infinite 𝑁 . Hence, the relations of Batterman’s
general picture are reversed here, which implies that the actual asymptotic
reasoning in physics is more versatile than his account indicates.

Yet, not all phase transitions are related to critical phenomena, and I am pri-
marily interested in the general aspects of the thermodynamic limit in regard to
phase transitions. Batterman (2002, p. 123) states: “The thermodynamic limit
does not exist for systems undergoing phase transitions” (Italics in the original).
This is quite surprising after we have proven the opposite in section 2.4. We find
a more detailed examination of phase transitions in a follow-up paper by Batter-
man (2005). There, he draws attention to the distinction between mathematical
and physical singularities. Mathematical discontinuities can be mere artifacts of
the idealised mathematised picture of physical processes, but they might also
correctly portray physical singularities. The first type is physically insignificant,
and if our limit is singular because of such a discontinuity, we do not have to
infer that this is an instance of emergence. Though, phase transitions are clearly
of the second type, where mathematical singularities of the free energy function
represent physical discontinuities.
Now, this does not immediately prove that the limit (3.2.1) is singular. It just
shows that the free energy function on the right side of the equation is so. But
since we know that the functions on the left side are analytic, Batterman seems
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to be justified to conclude that there is a qualitative difference between the
solutions of the asymptotic domain of 𝑇𝑓 and those in the actual limit 𝑇𝑐 if we
assign 𝑇𝑐 by statistical mechanics of infinite models as in my consideration of
the limit relation in the previous section, instead of Batterman’s proposal of
thermodynamics. Accordingly, phase transitions are emergent phenomena, at
least when we acknowledge that there is a qualitative difference between solutions
that have a non-analytic free energy functions to those with an analytic one.
Still, there remains a point of contention. Batterman emphasises that the asymp-
totic regime exhibits novel phenomena that are unpredictable by both 𝑇𝑓 and 𝑇𝑐.
Phase transitions are however not particularly committed to large finite models,
rather they are even more easily describable in the infinite domain, and have
microscopic counterparts up to the nano-scale. This is another discrepancy be-
tween the details of an actual application and Batterman’s general conception.46

In conclusion, it is an interesting and beneficial idea to rephrase the question
“Are phase transitions emergent?” to “Is the thermodynamic limit singular?”.
Batterman’s approach relocates the issue from being an ontological problem
for which no generally accepted methods are available to an epistemic question
which can be answered by analysing scientific theories. But the devil is in the
details: Not all aspects of the elaborate analyses fit into his general scheme.
I think such mistakes like assuming that phenomenological thermodynamics
arises from thermo-statistical mechanics in the limit 1/𝑁 → 0 result from loose
notions of ‘theory’ and ‘reduction’ – though Batterman makes it quite clear
that he acknowledges the intricacies of the relation between both theories and
does not assert a proper reduction. This nicely illustrates the importance of
Scheibe’s differentiation between the kinds of limiting case and asymptotic
reduction (Mierau, 2023, sec. 6.2). Thermodynamics and statistical mechanics
are roughly47 in an asymptotic relation towards the thermodynamic limit. This
means they are both theories of finite systems whose results might considerably
differ for microscopic systems, but as the system size increases, the results are

46Batterman advances the correct prediction of critical exponents in support of his claim,
but (1) all of his claims on the singularity of the limit and emergence are alleged to apply to
phase transitions in general, which are mostly beyond critical points, (2) my argument can
be extended to critical exponents, namely that they are no special feature of the asymptotic
domain, but as well predictable in the infinite limit.

47The relation between thermodynamics and statistical mechanics is too complex for being
captured by an one-step reduction of a single kind of reduction. But the asymptotic relation is
surely a particularly important part.
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approaching, possibly except for special configurations like critical points, where
this asymptotic relation might fail. This is however substantially different from
claiming that thermodynamics is the infinite limit of statistical mechanics, hence
its accumulation point for 1/𝑁 → 0. The proper relation is rather that both
approach the same accumulation point in the thermodynamic limit, which is
neither part of statistical mechanics, nor thermodynamics. This is exactly the
difference between Scheibe’s kinds of limiting case and asymptotic reduction.
Though, Batterman, who follows Thomas Nickles and Michael Berry, which
did not differentiate between the two kinds, confounds both relations and the
resulting confusion causes serious trouble. If he had more precise conceptions of
limit relations between theories, his presentation would have been less equivocal
and he would probably not had made these mistakes.
Batterman’s decision is clear: Phase transitions are emergent phenomena. The
non-commutable limits of equation (2.5.5) might be one reason to justify why
the otherwise regular thermodynamic limit becomes singular at transition points,
but this is not his explanation. He insists on the qualitative difference between
analytic and singular functions:

The idea that we can find analytic partition functions that “approxi-
mate” singularities is mistaken, because the very notion of approxi-
mation required fails to make sense when the limit is singular. The
behavior at the limit (the physical discontinuity, the phase transition)
is qualitatively different from the limiting behavior as that limit is
approached. (Italics in the original, Batterman, 2005)

A couple of years later Jeremy Butterfield (2011) will contest this line of reasoning
that analytic functions cannot approximate singularities. Before I turn towards
his argument, I outline Hooker’s emendation of Batterman’s conception of
emergence.

3.2.2 Hooker’s dynamical account of emergence

One of the earliest critics of Batterman’s theses was Cliff Hooker (2004). From
a generally favourable stance, he criticises Batterman’s focus on formal relations
between theories and his disregard of dynamical aspects. Thus, he shares Bat-
terman’s idea that singular limit relations correspond to emergence – although
Hooker (2004, p. 452) acknowledges that not all emergent phenomena are related
to limit relations between theories – but he modifies it by two conditions.
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For the first condition, Hooker requires the coarse theory 𝑇𝑐 to be a degenerate
idealisation of the fundamental one. This notion of his means that 𝑇𝑐 lacks
significant structure of 𝑇𝑓 that cannot be re-established in the coarse theory 𝑇𝑐
(2004, p. 439). For example, the infinite limit of statistical mechanics considered
before is a theory of entirely intensive quantities. There is no possibility to
construct extensive quantities in this theory, while it has been possible in finite
statistical mechanics. This is precisely what Scheibe’s approximative refinement
(Scheibe, 1999, pp. 107 ff.) does. It is essentially linked to limiting case reduction,
too. The terminological difference between Scheibe’s refinement and Hooker’s
coarsening is due to different perspectives, the refinement occurs in direction of
the reduction, the coarsening against. Thus, Hooker’s first condition is certainly
an advantageous specification of the meaning of ‘coarse theory’. From Hooker’s
further considerations, we can see that it is also a necessary condition for the
occurrence of singular limits.
But he argues that not all singular limits or degenerate idealisations account
for emergence, he additionally requires a top-down constraint formation. This
re-introduces the connection between separate levels in the notion of emergence,
that has been overcome by Batterman. A top-down constraint formation is a
new restriction of the system’s lower level dynamics enforced by the particular
circumstances that are recognisable in the asymptotic and limit domains of 𝑇𝑓 ,
but not on the lower level (2004, pp. 454–455). Hooker illustrates this concept
for the process of solidification where the rigid macroscopic body considerably
restricts the microscopic degrees of freedom of molecular or atomic movements.

Thus according to Hooker, degenerate idealisations in the limit domain of a theory
inhibit reductive relations, and top-down constraint formation is a sufficient
condition for emergence. Hence, reduction and emergence are contrary concepts.
We cannot have both present in the same relation, while there are limit relations
between theories which are neither reductive nor invoking emergence.
If Hooker were right, my analysis of phase transitions would not suffice to decide
whether these are emergent phenomena or not, because I have not studied any
top-down constraint or dynamical aspect whatsoever. This would not impair my
results because this has not been my question, but I also think that Hooker’s
proposal is no improvement of Batterman’s approach to emergence. While the
first condition is a welcome specification, the second remains unclear and is a step
backwards to an ontologically burdened concept. Phase transitions constitute
Hooker’s only positive example of a top-down constraint formation, and whilst
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it appears still somewhat plausible in the case of solidification, it is completely
incomprehensible to me how this might work, for example, for evaporation. I
cannot imagine any top-down constraint formation for these processes. Therefore,
I see Hooker’s account as a deterioration due to an obscure additional condition,
and the obstruction of a decision on the base of a purely formal analysis of
theories, an aspect of Batterman’s concept that I really appreciate.

3.3 Is the thermodynamic limit singular?

Batterman’s specification of emergence as a singular limit relation between
theories was challenged from several sides, quite rightly in my opinion. But
defining an appropriate and general concept of emergence is not my topic. On the
contrary, for my formal reconstructive approach to phase transitions, Batterman’s
proposal provides a convenient framework. Thus, for the restrictive application
to phase transitions, I will grant that their putative emergent nature is closely
related to the question of whether the thermodynamic limit is singular at phase
transitions. Batterman and Hooker affirm this, though there are dissenting
views.

3.3.1 Why the thermodynamic limit might not be singular

Butterfield is one opponent of Batterman’s identification of emergence with
singular limits. He proposes counter-examples that include emergence without
singular limits and singular limits that do not involve emergent phenomena
(2011, p. 1068), this, of course, requires a different account on emergence. Before
I will go into that, I present Butterfield’s argument that the thermodynamic
limit is not singular at phase transitions, which implies that phase transitions
are not emergent in Batterman’s sense anyway.
As a reminder, Batterman’s claim is that the thermodynamic limit is singular
for phase transitions because the limit free energy density differs qualitatively
from any finite free energy density in regard to being non-analytic. Butterfield
(2011, pp. 1078–1080) draws a mathematical analogy argument. He considers a
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series of functions like48

𝑔𝑁 (𝑥) = arctan (𝑥𝑁) . (3.3.1)

In the limit of 1/𝑁 → 0, it converges pointwisely

lim
1/𝑁→0

𝑔𝑁 (𝑥) = 𝑔∞ (𝑥) (3.3.2)

to the limit step function

𝑔∞ (𝑥) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝜋
2 for 𝑥 < 0

0 for 𝑥 = 0

−𝜋
2 for 𝑥 > 0

(3.3.3)

(see figure 3.1). The crucial point is (0, 𝑔𝑁 (0)). There, the functions 𝑔𝑁 are
continuous, while the limit function 𝑔∞ exhibits a discontinuity. This is the
characteristic that we expect of thermodynamic functions at phase transitions.
In order to connect this setting to Batterman’s argument, Butterfield considers
a further series of functions 𝑓𝑁 :

𝑓𝑁 (𝑥) =

⎧
⎨
⎩
1 if 𝑔𝑁 (𝑥) is discontinuous at 𝑔𝑁 (0)

−1 if 𝑔𝑁 (𝑥) is continuous at 𝑔𝑁 (0)
(3.3.4)

The series of functions 𝑓𝑁 converges uniformly but not to 𝑓∞

lim
1/𝑁→0

𝑓𝑁 (𝑥) = −1 ̸= 𝑓∞ (𝑥) = 1, (3.3.5)

which corresponds to a singular limit in Batterman’s terms. This analogy nicely
illustrates the ambiguity of Batterman’s central concept ‘singular limit of a
theory’. While he alleges that we have to consider the limit lim1/𝑁→0 𝑓𝑁 , that
is the quality of being analytic or not, Butterfield counters that we may also
consider lim1/𝑁→0 𝑔𝑁 , which resembles measurable thermodynamic quantities,
and he maintains that we should do this. Though the question remains, why
should we prefer 𝑔𝑁 over 𝑓𝑁?

48The functions 𝑔𝑁 stated here deviate slightly from Butterfield’s original choice. The
advantage of my example functions is that each 𝑔𝑁 (𝑥) is analytic, which renders them similar
to possible thermodynamic functions, that is not the case for Butterfield’s step-wise defined
functions. In regard to their other properties, his and my series of functions are equivalent.

148



fN

f∞

gN

g∞

0
x

y

Figure 3.1: Plot of 𝑔𝑁 (𝑥) and 𝑓𝑁 (𝑥) as described for some selected 𝑁
together with the functions 𝑔∞ (𝑥) and 𝑓∞ (𝑥) for infinite 𝑁 : For increas-
ing 𝑁 the functions 𝑔𝑁 (𝑥) in black become steeper. The series of these
continuous functions converges towards the step function 𝑔∞ in gray, while
all functions 𝑓𝑁 in dark gray have the same constant value, notably different
from the infinite counterpart 𝑓∞ in light gray.

The answer is relatively simple: The functions 𝑔𝑁 are more informative than 𝑓𝑁 .
The only information disclosed by 𝑓𝑁 is the continuity of all 𝑔𝑁 and the discon-
tinuity of its limit function 𝑔∞. But these informations are already included
in the series of 𝑔𝑁 . When we take into account that the series 𝑓𝑁 represents
one property of thermodynamic functions, while 𝑔𝑁 represents these functions
themselves, we recognise that the latter has relevant additional content, namely
it also depicts adequately how thermodynamic functions approach their infinite
limits. This happens continuously and not in a singular way, as insinuated by 𝑓𝑁 .
The functions 𝑔𝑁 have a further advantage: 𝑔∞ (𝑥) suitably approximates the
functions 𝑔𝑁 (𝑥) of sufficiently large 𝑁 , whereas 𝑓∞ (𝑥) is no appropriate ap-
proximation for 𝑓𝑁 (𝑥) of any finite 𝑁 . This point is especially important since
the actual particle number 𝑁 of macroscopically large systems cannot be known
exactly – though it is absolutely sure that it is finite – which renders approxima-
tions as inevitable. In this case 𝑔∞ (𝑥) is both an appropriate approximation
and a mathematical simplification in comparison to 𝑔𝑁 (𝑥). Because of these
reasons, Butterfield (2011, pp. 1079–1080) asserts that the analysis of phase
transitions in terms of the course of thermodynamic functions is superior to one
in terms of their property of being analytic.
But there remains a viable objection that leads back to Batterman’s verdict:
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One might argue that it is best to consider the concatenation of both func-
tions (𝑔𝑁 (𝑥) , 𝑓𝑁 (𝑥)), that is by explicitly taking into account both the thermo-
dynamic functions and the characteristic property of phase transitions. This
results in a singular limit (𝑔∞ (𝑥) , 𝑓∞ (𝑥)) due to the 𝑓 -component.49 As long
as there is no definite criterion of how to determine the decisive functions, the
decision on the singularity of the thermodynamic limit remains disputable.

3.3.2 Why the thermodynamic limit is not singular

I claim that my demonstration of the limiting case reduction of infinite to finite
statistical mechanics in section 2.4 yields an unambiguous answer that disproves
Batterman’s assertion that the thermodynamic limit is singular at critical points
and at phase transitions in general. My argument is extremely simple: The
semantical perspective on theories identifies theories with their models. The
finite models of statistical mechanics do converge to the infinite ones, provided
that the Hamiltonian meets two global conditions – by “global” I mean conditions
that do not depend on the thermodynamic state variables but on the general
form of the Hamiltonian. Thus, if the Hamiltonian satisfies these conditions,
the limit relation between the theories is regular or smooth. In the other cases
it makes no sense to speak of the thermodynamic limit of the theory. Patricia
Palacios’s analysis of the limit relation that identifies the models with complete
sets of macroscopic quantities arrives at the same result (2019).
According to Batterman, precisely this regular limit relation between the theories
rules out that phase transitions are emergent. My analysis explains the prior
dispute between Batterman and Butterfield by the fact that both sides did not
have a clear concept of physical theories. Hence, it had been contentious whether
only the thermodynamic functions are relevant for the classification of the limit
or also their mathematical properties. Though, this can be decided with help
of general philosophy of science. The answer is definite: only the pointwise
convergence of the functions is required. Consequently, the thermodynamic limit
is regular, and phase transitions are not emergent in the sense of Batterman.

49Thus, Butterfield’s assertion that “[t]here only seems to be a mystery if we look solely
at 𝑓𝑁 , and ignore the details about 𝑔𝑁 and 𝑔∞” (Italics mine, 2011, p. 1079) is not entirely
correct. It is rather that his dissolution of the “mystery” only works when we solely look at 𝑔𝑁
and ignore 𝑓𝑁 .
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3.4 On the confluence of reduction and emergence

at phase transitions

Now it is the time to turn to the original claims that Butterfield (2011) advocates
in regard to phase transitions. These are basically that (1) the physics of phase
transitions is one instance of theoretical limit relations that involve both reduction
and emergence, that (2) the emergent aspects of the infinite limit are already
present in a weaker form within the asymptotic realm, and that (3) not only the
infinite limit is unreal, the limiting process already becomes unrealistic when
passing the still finite range of astronomical values for 𝑁 .
I begin with the last point. It is truly noteworthy and possibly terribly threatening
considering that almost all philosophical reflections on phase transitions, mine
included, make their central claims about the asymptotic domain close to the
infinite limit. Thus, it had better be real. Butterfield (2011, p. 1072) notices that
for extremely large particle numbers, say 𝑁 = 10100

100

, our theoretical models
do not become internally contradictory but conflicting with further theoretical
assumptions of physics: The free energy exceeds the total energy of the universe,
and gravitational as well as space-time effects of general relativity, which are
usually neglected in applications of statistical mechanics to macroscopic matter,
become significant. In short, such a finite model is already unrealistic. Consonant
with Kadanoff’s thoughts, we may say that these models are extrapolations of
tangible finite systems to gigantesque finite ones. Their non-reality would only
pose a problem if the crucial asymptotic domain were entirely within that unreal
range, since then all our conclusions would only be valid for physically impossible
systems, hence practically useless. But as I have briefly remarked in section 2.5,
the asymptotic domain already sets in at the range of thousands, way before the
unreal domain of unphysical values of 𝑁 .50 In general, Butterfield remarks that
this point (3) does not conflict with his other theses, though these face more
serious problems than that.
In order to discuss his first thesis, we have to take a look on his definitions
for ‘reduction’ and ‘emergence’. He adopts a Nagelian point of view, and takes

50Palacios (2018, p. 538) notices that for the infinite time limit, which is required in statistical
mechanics to establish the presupposed equivalence of time and ensemble averages, realistic
measurement durations are significantly smaller than the times of the asymptotic regime.
Accordingly, this limit idealisation really gets struck by the problem of an unreal asymptotic
domain, and is confronted by tough problems regarding its empirical justification. These are
problems that fortunately do not challenge our issue.
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reductions as deductions accompanied by coordinating definitions (2011, pp. 1066–
1067). This is an odd choice for limiting case relations. As a deductive model
of reduction, it is not at all capable of dealing with them. Butterfield’s twist
is that he considers statistical mechanics as a theory of both finite and infinite
models, therefore the limit ceases to be an intertheoretical relation and becomes
an intratheoretical operation in statistical mechanics that has nothing to do with
the ensuing reduction (p. 1069). This is a legitimate point of view, but it poses
severe difficulties for Butterfield’s argumentation: If phase transitions are an
example of a reconciliation of reduction and emergence, both of them must play a
role in how the theoretical methods address that kind of phenomena. However in
his conception, reduction does not. My analysis in 2.4 demonstrates that phase
transitions are conceptionally founded on the limit of finite to infinite statistical
mechanics. In Butterfield’s terms, this is entirely internal to the fundamental
theory. No further coarse or tangible theory is necessary. His presentation even
gets by without specifying the reduced theory and the reductive relation. Thus,
his ambition to demonstrate the “amazing power of Nagelian reduction” (p. 1069)
remains an empty promise.
How is the matter concerning emergence? As I have already said, Butterfield
supports a more traditional view on emergence as a robust novelty of the
considered system versus a certain comparison class. In the particular case of
phase transitions, this refers to the properties of the limit models compared to
those of the asymptotic domain (p. 1066). The novel, emergent property of phase
transitions is, according to Butterfield, the non-analyticity of thermodynamic
functions (p. 1129). As discussed repeatedly, these functions are wholly analytic
for finite systems, and can only become non-analytic in the thermodynamic
limit. Hence, it indeed amounts to a novel property. Despite his criticism against
Batterman’s ambiguous concept of singular limits, in this case Butterfield’s
criterion for emergence coincides with the former. As for the first thesis, we can
confirm that phase transitions are emergent in Butterfield’s sense, but his major
point that this coincides with a reductive relation cannot be substantiated because
he keeps the limit relation out of the reduction, which is then a superfluous
appendage.
There still remains his second thesis that we can discover a weaker form of
emergence at the models of the asymptotic realm. Butterfield acknowledges
that this is a rather vague claim (p. 1129), but I think that it is sufficiently
precise to be discussed. Butterfield’s idea is straightforward: The non-analytic
points of limit free energy densities do not arise out of nowhere but evolve from
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ever steeper gradients as the asymptotic domain is passed through towards
the infinite limit (cf. figure 3.1). There is nothing to say against this, but his
wording that this is in some sense similar to emergence (p. 1069)51 entails that
the steep gradients are a specific feature of the asymptotic domain and otherwise
absent. As we know of phase transition-like phenomena of nano-systems (see
subsection 1.2.2), this is not the case. Thus, I do not deny the resemblance of
the singular points by steep gradients of finite systems, but I disagree that this is
only present in the asymptotic domain, and hence a weaker form of emergence.
In general, I have to conclude that Butterfield’s article (2011) cannot substantiate
his philosophical claims in regard to phase transitions. One reason is that he
only outlines a work programme but does not elaborate it in-depth. I rather
agree with Batterman: The devil is in the details. Even the most promising
programme may fail due to unanticipated effects of inconspicuous particulars.
The feasibility can only be evinced by actually carrying it out. In the next
section we will approach the question of the emergent nature of phase transition
from a different angle.

3.5 Are phase transitions emergent?

I have rejected that phase transitions are emergent in the sense of Batterman’s
definition in terms of singular limits. Though, there might be other reasonable
definitions of ‘emergence’ which possibly admit phase transitions. In this section,
we will take a closer look on alternatives.
When examined from the perspective of the philosophy of physics, emergence is
usually associated with an interrelation between a microscopic and a coarser,
macroscopic theory. In the case of phase transitions, the microscopic theory
is evidently statistical mechanics, and it is customary to take thermodynamics
as the second theory, whereas my analysis of the paradox of phase transitions
covers the reduction of the thermodynamic limit of statistical mechanics to the
common, finite version of that theory. It is clear that not all issues of the relation
between thermodynamics and statistical mechanics will also arise in the examined
relation. In particular, the definition of phase transitions in thermodynamics is
broader than the proposed definition 1.5 in statistical mechanics, because the
latter is silent about systems for which the thermodynamic limit does not exist,

51Butterfield’s exact statement is: “[E]mergence, in a weaker yet still vivid sense, occurs
before we get to the limit” (Italics in the original, p. 1069).
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while analyses in terms of thermodynamics may expose singularities of the free
energy and thus phase transitions of such systems (Menon and Callender, 2013,
p. 11). Thus, all of my considerations are restricted to the domain of physical
applications where both definitions overlap. However, the asymptotic approach
of thermodynamics and statistical mechanics in the thermodynamic limit ensures
that the considered theory relation captures most of the relevant aspects.

Whenever we want to answer a question of the form ‘Is 𝑥 emergent?’, we have to
determine first what 𝑥 is. The debate on emergence concentrates on two types
of entities that can be emergent: properties and phenomena. In the light of our
reflections on physical theories, another type will suggest itself: emergent terms.
The basic idea is that terms are emergent if they are universally definable in
a macroscopic theory but not in the corresponding microscopic theory. After
rejecting potential emergent properties, I will defend in line with Tarun Menon’s
and Craig Callender’s reasoning (2013) that phase transitions are not explanatory
irreducible, even though ‘phase transition’ can be regarded as an emergent term
of the infinite limit of statistical mechanics.

As first step I will examine qualitatively distinctive properties of infinite models
that might constitute emergent properties of phase transitions. Though, I
will show that they do not involve the conceptual novelty that is required for
emergence. Our previous discussions have identified two prospective candidates:

1. the non-analyticity of the free energy density,

2. the non-commutability of the thermodynamic limit with the limit towards
transition points.

My preliminary argumentative goal is to evince that the exclusive properties
of infinite models have no physical significance. The completeness of the list
1.–2. of qualitative differences between finite models of the asymptotic domain
and infinite models is arguably the weakest link. I can only reason that to my
knowledge there are no further candidates discussed, and that I cannot think
of any other. If there was a further qualitative difference, one would have to
go through the following considerations, which I discuss for 1. and 2., for that
characteristic again.
In regard to the first aspect, I submit that a thought experiment on measurements
of infinite systems reveals the ideal, non-empirical nature of the singularities.
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Imagine that we could prepare and measure an actual, infinite system. Putting
aside the problems of how to construct an appropriate heat reservoir, and of
the possibly infinite waiting periods until equilibrium states are established, we
still would have to face the problem of finite accuracies of measurements. This
implies that it is impossible to actually measure or observe singularities in the
course of the thermodynamic functions. The only thing that we could measure
on infinite systems are steep gradients, just as in the case of finite systems. The
fact that singularities are an ideal property is completely independent of the
infinite limit. The only empirical characteristic of phase transitions of infinite
systems are steep gradients. These occur also in finite systems. Therefore, this
property is no novel feature of the infinite limit, and no candidate for emergence.

The justification against the novelty of the second point is more challenging.
The fact that the thermodynamic limit does not commute with the limits of the
external conditions tending towards configurations of phase coexistence is due to
the existence of various models for these configurations of thermodynamic state
variables in the infinite theory, while the finite theory has unique solutions. Thus,
we encounter the deeply rooted problem that different thermodynamic phases
can only be defined rigorously for infinite models (Kadanoff, 2009, p. 784). Only
for these systems exist multiple solutions of statistical mechanics along the lines
of phase transition in the phase diagrams, that correspond to the pure phases and
possible mixed states. This seems to be a qualitative difference to finite systems.
But in principle, it is possible to make numerical calculations of the free energy
of finite systems at the transition points and to realise that macroscopically
differently structured systems exhibit minima of the free energy which are nu-
merically equivalent within a sufficient precision. The practical implementation
is, however, for most cases likely to fail due to the lack of reliable and realisable
mathematical techniques. In consideration that numerical techniques always
involve approximations, the marginal numerical differences between the free
energies cannot justify physical differences, and we can conclude that also finite
systems feature different phases, in the sense of different macroscopic ground
states of matter.
One might object that this completely disregards the analytic study of phase
transitions of finite systems, which rules out that the global minimum of the free
energy is not unique. Though since this examination cannot establish that the
difference between the analytic global minimum of the free energy and further
local minima exceeds a definite threshold, I can refer to the fundamental idea
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of my view on physical theories that marginal mathematical variances do not
necessary entail physically meaningful differences. Therefore, the existence of
thermodynamic phases is no peculiarity of infinite models, and does not justify
to conclude that phase transitions are emergent phenomena.

Thus, these exclusive mathematical properties of infinite models do not justify
a classification as emergent. A look at the theoretical term ‘phase transition’
appears more promising. A more specific theory has, in general, a richer terminol-
ogy than its generalisation because of the more homogeneous scope of application
(Scheibe, 2022, p. 126). The infinite limit of statistical mechanics is in a certain
sense more specific than the full theory of finite statistical mechanics, as it
only deals with models of the same (infinite) extension, while proper statistical
mechanics covers the whole range from microscopically small to macroscopically
large systems (Scheibe, 1999, p. 128). Consequently, the infinite limit theory
offers theoretical terms that cannot be defined in the complete finite theory.

Die anfängliche Heterogenität der Begriffe einer makroskopischen
Theorie gegenüber den mikroskopischen Begriffen der Theorie, durch
die sie reduziert werden soll, kann im Prinzip dadurch aufgelöst wer-
den, daß in der makroskopischen Theorie viel speziellere Verhältnisse
herrschen als in der mikroskopischen – Verhältnisse, die die für die
Einführung neuer (‘emergenter’ !) Begriffe nötigen Präsuppositionen
bilden.52 (Scheibe, 1999, p. 128)

We should not be confused by Scheibe’s use of “microscopic theory”. He does
not compare theories of macroscopic objects with theories of their microscopic
parts but the description of macroscopic systems in macroscopic and micro-
scopic terms (Scheibe, 1999, p. 116). A popular example is the macroscopic
term ‘temperature’, which can be expressed by the microscopic term ‘average
kinetic energy’ only under the very specific circumstances that distinguish the
macroscopic theory as a limiting case of the microscopic one.
This is exactly what applies to ‘phase transition’. It is initially restricted to
the “macroscopic” theory – the infinite limit of statistical mechanics – just as

52“The initial heterogeneity of the terms of a macroscopic theory in relation to the microscopic
terms of the theory it is to be reduced to can in principle be resolved by the fact that much more
specific conditions prevail in the macroscopic theory than in the microscopic one – conditions
that form the presuppositions necessary for the introduction of new (‘emergent’ !) terms.”
(Translation mine)
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‘temperature’ is only applicable to systems in thermal equilibrium. Although
the microscopic counterpart, the average kinetic energy, is also defined for non-
equilibrium systems, the coordinating definition does only hold for equilibrium
systems. We can analogously examine singular points of the free energy of finite
models – though we will hardly find any – but we can only connect them to
phase transitions under the specific conditions of the thermodynamic limit. This
is what Scheibe means by “emergent terms”. Put in the words of Menon and
Callender (2013, p. 7), the failure of finite statistical mechanics to distinguish
the type of phase transitions among all states of the phase space – without
referring to the infinite limit – constitutes one instance of conceptual novelty
that might be understood as emergent. My definition for phase transitions of
finite systems circumvents the problem of the insurmountable heterogeneity of
the models of finite statistical mechanics by mimicking the homogeneity of the
infinite limit by means of the second condition that requires closeness to the
infinite idealisation. This is done at the expense of the universal applicability
of the term, but allows to transfer ‘phase transition’ into the more general theory.

However, Menon and Callender (2013, p. 14) point out, and I fully agree with
them, that this conceptual novelty is a very weak notion of emergence, as we
can see from the fact that it likewise applies to the macroscopic functions of
thermodynamics, which most of us would probably not want to consider as
emergent. Accordingly, they require that an additional explanatory irreducibil-
ity accompanies the conceptual novelty. This means that a potent notion of
emergence involves that the specific circumstances under which the identification
of the new macroscopic term works must not be explicable in the microscopic
theory. In the case of phase transitions this comes down to explaining the efficacy
of the thermodynamic limit from the point of view of the finite theory.
This is indeed a demanding task because, as I have mentioned in the intro-
duction to this section, there is a considerable gap between proving that the
thermodynamic limit successfully overcomes the conceptual problems of phase
transitions in statistical mechanics and deriving why it does so effectively. In
terms of Scheibe’s concept of reduction this corresponds to the requirement that
we must not only prove the reduction of the macroscopic to the microscopic
theory but also show that the required vehicle of the reduction can be explained
by means of the microscopic theory. It is an important aspect of this theory of
reduction that the vehicle is commonly a contingent proposition of the reducing
theory. Therefore, most reductions require additional information, as in the case
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of the theory interrelation we are looking at that the thermodynamic limit is the
way to go. This is one reason for Scheibe’s departure from the deductive concept
of reduction. Though, in order to prove that phase transitions are not emergent
in a strong sense, we have to show that the taking of the thermodynamic limit
is already indicated in the microscopic theory.
Following Menon and Callender (2013, p. 16), we can find the wanted explana-
tion in a recently discussed argument. Butterfield’s analogy argument revealed
how the analytic thermodynamic functions 𝑔𝑁 approach the non-analytic limit
functions 𝑔∞. At the points of phase transition, which are the singularities of
the limit functions, the thermodynamic functions of finite 𝑁 become increasingly
steeper with growing 𝑁 . In this way the analytic functions approximate the
singularities and point the way to the characteristic feature of phase transitions
via the thermodynamic limit. Accordingly, we can explain the efficacy of the
thermodynamic limit within finite statistical mechanics by referring (1) to the
more and more notable characteristic feature of phase transitions as we raise 𝑁 ,
(2) the fact that the thermodynamic functions are well approximated by the ther-
modynamic limit – and approximations are necessary anyway since we will never
know the exact value of the particle number of a macroscopic system, (3) which
is further reinforced by the fact that the limit function 𝑔∞ is mathematically
more convenient than the complicated functions 𝑔𝑁 for large particle numbers 𝑁
(Butterfield, 2011, p. 1079).

Thus, everything that we need for the theoretical treatment of phase transitions
is already provided for in finite statistical mechanics. This includes, on the one
hand, the infinite limit of this theory, as our limiting case reduction proved. We
find the infinite idealisations at the outer boundary of the set of finite models.
On the other hand, the stated points (1)–(3) expose the prominent role of the
thermodynamic limit that functions as the requisite vehicle of this reduction.
Accordingly, we can conclude that phase transitions are explanatory reducible
to finite statistical mechanics.
There is still another reason why phase transitions are that peculiar and so
difficult for conventional concepts of reduction in terms of deduction: the
indispensability of the thermodynamic limit. In the next section I will argue
for the indispensability of the thermodynamic limit in order to treat phase
transitions within statistical mechanics.
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3.6 The indispensability of the thermodynamic limit

The idea of the indispensability of the thermodynamic limit is closely connected
to the claim that phase transitions were emergent (Shech, 2018, pp. 1–2), but it
engenders a discussion in its own right. We even find philosophers taking the
same side who are engaged in dispute in regard to the other issues. The basic
idea is that the infinite limit is indispensable in statistical mechanics because
this theory cannot predict and explain phase transitions correctly without that
idealisation, while it does so if the idealisation is employed.
Reviewing the literature on that topic, I found two lines of argumentation against
the indispensability of the thermodynamic limit. John Norton (2012) introduces
the useful distinction between approximations and idealisations. The fundamen-
tal difference between the two is that idealisations are complete systems – real
or fictitious – that imprecisely reproduce a target system, while approximations
are mere propositions which inexactly describe the target (p. 209). Idealisa-
tions have a stronger purport than the corresponding approximations, since
every idealisation can be translated into an approximative description, but not
every approximative description yields a coherent system (p. 211). According
to Norton, this is especially noteworthy for limiting approximations. In these
cases the idealised limit models might exhibit properties that are different from
those generated by limit approximations drawn from the properties of the target
system, and there are even examples of meaningful limit approximations without
corresponding idealisations in form of limit models.
He analyses the taking of the thermodynamic limit as principally an approxima-
tion, and warns of the dangers of promoting it to an idealisation because: “One
cannot assume that the limit of well-behaved finite systems will be a well-behaved
infinite system.” (Norton, 2012, p. 216) Simply taking the thermodynamic limit
does not guarantee that the obtained theoretical construct is indeed a model
of the infinite theory. Our examination of the limit relation between finite and
infinite statistical mechanics proves him partially right. Although Scheibe’s
limiting case relation proceeds on the level of full models, we have dissected them
and analysed the limit of the free energy density separately. This has yielded an
approximation in Norton’s terms. On the other hand, his worry with respect to
the corresponding limit model has been addressed by examining the stability
criteria of the obtained solution. We have assured that it is a well-behaving
infinite model of statistical mechanics. Thus, the concerns that were the only
motivation for Norton’s assertion that “far from being ineliminable, the infinite

159



idealizations can be and should be eliminated” (p. 223) has been dispelled.
The second argument for the eliminable nature of the thermodynamic limit is
based on the alternative approach to phase transitions via the density of zeros
method (see 1.2.2). As discussed there, Menon and Callender (2013), as well
as Ardourel (2017) maintain the dispensability of the thermodynamic limit by
referring to this alternative approach. My reluctance to embrace its definition of
phase transitions was primarily due to its failure to capture the peculiarities of
phase transition-like phenomena of small systems. This is no reason against its
adoption for macroscopic systems, but nothing is gained by this either, because
we would just change infinite system size for complex temperatures, that is
one indispensable unrealistic assumption for another. Thus, I argue that it is
preferable to stick with the established methods, rather than displacing it by
a scarcely used technique that offers no conceptual advantage in regard to the
need for a problematic, counterfactual assumption.
The indispensability claim is probably most forcefully expressed by Batterman:

[D]espite the fact that real systems are finite, our understanding
of them and their behavior requires, in a very strong sense, the
idealization of infinite models and the thermodynamic limit.
(Batterman, 2005)

He asserts that the infinite limit in statistical mechanics is no problematic ideali-
sation that we better get rid of, but actually an improvement of that theory. It
is not only necessary in order to predict and explain phase transitions, it also
equalises the mathematical representation of phase transitions with the physical
properties of these phenomena. According to him, this requires in particular
actual singularities, since he regards physical singularities as the signature of
phase transitions. Consequently, a theoretical description which includes mathe-
matical singularities does better than one without, and since finite statistical
mechanics cannot yield singularities, the infinite limit becomes necessary. Thus,
Batterman’s justification of the essentiality of the infinite limit crucially depends
on the claim that phase transitions involve real physical singularities. Though,
the latter is arguable and there is not much support for it.
Butterfield (2011, p. 1070) defends a more modest account of the epistemical
indispensability of the infinite limit. To his mind, the infinite limit is necessary
to specify the characteristic property of phase transitions in statistical mechanics.
This is not necessarily because every theoretical explanation refers directly to the
infinite limit, but indirectly via the asymptotic regime to which phase transitions

160



are confined. In this regard, I fully agree with him, and think that these thoughts
equally apply to my approach to phase transitions, which involves two require-
ments: the non-analyticity of the limit free energy density, and the closeness
of the actual system to the corresponding idealised infinite model. In Norton’s
terms the first condition can be formulated by using the thermodynamic limit
as an approximation, but the second requires infinite idealisations to compare
the actual systems with. This is however a provisional assessment, that I only
maintain in relation to the current approach of statistical mechanics.
Butterfield’s second claim that the characteristics of phase transitions can already
be observed at finite systems of the asymptotic domain53 is repeatedly inter-
preted to speak against the indispensability of the idealisation. This is, however,
inaccurate. The demarcation of the asymptotic regime essentially depends on
the limit, since it is the domain of systems that are finite and close to the limit
models. Therefore, this claim cannot advocate the dispensability of the infinite
limit.
A third line of argumentation is maintained by Shech (2013), who proposes a
similar solution to the paradox of phase transitions like mine by hinting at the
representation relation between physical systems and theoretical models. But
unlike me, he considers essential idealisations that might conflict with scientific
realism as a problem. In his opinion, this requires the background assumption
of the indispensability of the thermodynamic limit and the reality of physical
discontinuities, otherwise the explanatory efficacy of the infinite limit would
remain miraculous (p. 1176). As said before, I would rather wait for the super-
seding theory to come (and explain), than making such speculative presumptions.

Accordingly, I maintain the epistemic indispensability of the thermodynamic
limit for accounting for phase transitions. This is consistent with my previous
rejection of the emergence of phase transitions. We need the thermodynamic
limit and thus have to transcend finite statistical mechanics but the necessary
basis is already built into finite statistical mechanics.

53Butterfield (2011, p. 1069) labels this claim “Before”, which also indicates that it is relative
to something that occurs later – the infinite limit.
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3.7 Résumé

This chapter is evidence that phase transitions are a fascinating subject for
philosophy of science. Since I focussed on phase transitions in general, I did
not even touch the peculiarities of critical points and renormalisation group
techniques. I close my reflection by summing up my results:

1. Phase transitions are real (see 3.1).

2. The theoretical characteristic of phase transitions can be derived from
finite statistical mechanics by a limiting case reduction, which, of course,
is way more complex than a merely deductive relation (see 2.4).

3. The corresponding limit relation is not singular (see 3.3).

⇒ Phase transitions are not emergent in the sense of Batterman.

4. The thermodynamic limit is indispensable for the study of phase transitions
in statistical mechanics by means of the current standard methods (see 3.6).

5. Phase transitions are a conceptual novelty of the infinite limit of statistical
mechanics, insofar as only in this limit phase transitions coincide with the
singular points of the free energy density. Still, this relation is explanatory
reducible to finite statistical mechanics.

⇒ Phase transitions are at best emergent in a weak sense that is com-
patible with the reducibility of this phenomenon.

All things considered, my approach to phase transitions does not only solve the
paradox of phase transitions, it is also greatly illuminating for these further
philosophical problems.
In the very beginning, I have warned not to expect an ontological solution to
the paradox of phase transitions. My approach has rather been an entirely
epistemical one. It aims at reconciling the theoretical methods of the study
of phase transitions with the principles of philosophy of science by exploiting
the inherent imprecise nature of physical theories. In my view, the principal
objectives of theories are of epistemic nature – to describe, predict, explain,
and guide understanding. The structures of physical theories also delineate
idealised pictures of the empirical reality, but we must not make the mistake
of taking them for real. Therefore, I assert that requirements on theoretical
physics to exactly depict reality cannot be met, and I think that most of the
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philosophical problems associated with the paradox of phase transitions arise
from such demands. In my opinion, the expectation that statistical mechanics
has to provide a realistic description of phase transitions of finite systems is
misguided, an empirically adequate account that coherently fits into the system
of physical theories suffices completely.

My main result is that the paradox of phase transitions can be solved while
maintaining the established practices in theoretical physics. There is no need
for a revision of its approach to phase transitions. The culprit of the paradox is
rather an excessively demanding representation tenet, which might be the reason
why the paradox receives so much more attention from philosophers than from
physicists. I have proposed to replace it by a representation principle that fits
nicely into the Structuralist View on physical theories. According to that, there
is no problem at all with representing finite systems by models in the infinite
limit. The respective theory in which phase transitions are best characterised
– the thermodynamic limit of statistical mechanics – comes without extensive
quantities, so that every comparative quantity is intensive. With this in mind,
the infinite models lose their intimidation as counterfactual idealisations.
Still, this solution goes beyond the physicists’ approach, which I have exemplified
by Kerson Huang’s appeasement that actual particle numbers of macroscopic
systems are quite high, so that the infinite limit is an appropriate idealisation.
This strategy merely conceals the core of the problem and philosophers were
right to raise this issue. Though, it would be extremely harsh to describe this
suppression of the ultimately solvable problem as an act of scientific irrationality.
At the same time, the discussion shows that the popular philosophical criteria of
scientific rationality fall short when they are applied to the paradox. Popperian
falsificationism cannot explain why physicists adhere to statistical mechanics even
though thermodynamics correctly predicts phase transitions of finite systems
and statistical mechanics does not. Nor does the paradox constitute a typical
case of an anomaly of physics in the sense of Thomas Kuhn.It appears in the
classical, just as in the quantum form of statistical mechanics and is more an
issue of philosophical concepts of representation and idealising methods than of
paradigms of physics. It is certainly better to tackle the problem immediately
than to wait for the next scientific revolution. The methods of asymptotic
reasoning may favour an epistemologically pluralistic view of science, but Paul
Feyerabend’s epistemological anarchism does not suit the matter either, as ap-
proximative agreement to established theories is strictly upheld. Hence, I rather
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maintain that the physical treatment of phase transitions constitutes a complex,
multi-faceted reduction problem that can only be dealt with in a biperspective
way that involves the details of theoretical physics, which are inevitably in part
very technical, as well as philosophical analyses.

Robert Batterman, Cliff Hooker and Jeremy Butterfield have rightfully em-
phasised the importance of the asymptotic domain, this is the range of finite
models that are sufficiently close to the infinite idealisations. It constitutes the
realm where we can witness surprising phenomena that are only fully explainable
with the infinite limit in mind. Phase transitions belong to these phenomena.
Accordingly, my definition restricts phase transitions of finite systems to that
asymptotic domain, this is to macroscopic systems. Although I acknowledge the
indispensability of the thermodynamic limit in order to account for phase transi-
tions in statistical mechanics, I maintain that these phenomena are explanatory
reducible to statistical mechanics of finite systems – the crucial point is to include
the information on the limit into the explanans. I have proven that the taking
of the thermodynamic limit can be reconstructed as a limiting case reduction.
Though, it remains to be noted that the concept of reduction advocated here is
in principle compatible with emergence, since especially limiting case reductions
do not require the derivability of the laws of the reduced theory from those of
the reducing one.

The debate on phase transitions clearly illustrates the need for a clarification
of general terms and formal methods of philosophy of science with attention
to detail. Major complications have arisen because the terms ‘reduction’ and
‘emergence’ have not been precisely and unanimously defined. For the concept
‘reduction’, the situation is further exacerbated by an unclear concept of ‘theory’.
The difference between asymptotic and limiting case relations of theories matters,
and equating the two leads to an impoverishment of language that fails to capture
the complex theoretical relationships.
This shows that general philosophy of science is not an end in itself, but it can
be an indispensable tool to cope with the issues of the philosophy of physics.
In order to do this effectively, the accounts of general philosophy of science
have to reflect the complexity of the scientific practice. I can conclude that
Erhard Scheibe’s structuralist concept of physical theories and his conception of
theory reduction have proved very useful for the analysis of the physics of phase
transitions.
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Appendix A

Uniform structures and
admissible blurs

This appendix collects the axioms for uniform structures and admissible blurs.
Following Bourbaki (1971, pp. II.1 ff.), Φ is a uniform structure of entourages
𝑈 ∈ 𝒫 (𝑋 ×𝑋) on a set 𝑋 if and only if the following conditions are met
(𝑈−1 ≡ {(𝑦, 𝑥) | (𝑥, 𝑦) ∈ 𝑈} is the inverse element to an entourage 𝑈):

∀𝑈 ∈Φ ∀𝑥∈𝑋
(︀
(𝑥, 𝑥) ∈ 𝑈

)︀
(US-1)

∀𝑈 ∈Φ
(︀
𝑈−1∈Φ

)︀
(US-2)

∀𝑈 ∈Φ ∀𝑈 ′∈𝒫 (𝑋 ×𝑋) (𝑈 ⊂ 𝑈 ′ → 𝑈 ′∈Φ) (US-3)

∀𝑈,𝑈 ′∈Φ (𝑈 ∩ 𝑈 ′∈Φ) (US-4)

∀𝑈 ∈Φ ∃𝑈 ′∈Φ (𝑈 ′ ∘ 𝑈 ′ ⊆ 𝑈) (US-5)

The ∘-operation in (US-5) is the repeated application of entourages on the first
and the second argument

𝑈 ′ ∘ 𝑈 ′ ≡ {(𝑥, 𝑦) | ∃𝑧 ∈ 𝑋 : (𝑥, 𝑧) ∈ 𝑈 ′ ∧ (𝑧, 𝑦) ∈ 𝑈 ′} . (A.1)

Ludwig (1981) proposed to use uniform structures as formal concept for dealing
with admissible empirical imprecision and as a measure for the accuracy of
theories. A rather obvious problem with this choice is that due to axiom (US-3),
every uniform structure contains the entourage 𝑈𝑚𝑎𝑥 = 𝑋 ×𝑋. If 𝑈𝑚𝑎𝑥 were
allowed to blur the theoretical relations, the empirical claims would be empty
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because every combination of values would then satisfy the theory. This issue has
been addressed by Balzer et al. (1987) in their refinement of Ludwig’s idea. They
introduced the set of admissible blurs 𝐴 as a non-empty subset of entourages
from a uniform structure

𝐴 ⊂ Φ ∧ 𝐴 ̸= ∅. (AB-1)

In order to exclude super-admissible blurs, they define an upper bound of the
coarsest blurs that are still empirically useful

Bound (𝐴) ≡ (A.2)
{︀
𝑈 | 𝑈 ∈Φ ∧ ∀𝑈 ′∈Φ

(︀
(𝑈 ⊂ 𝑈 ′ → 𝑈 ′ ̸∈𝐴) ∧ (𝑈 ′ ⊆ 𝑈 → 𝑈 ′∈𝐴)

)︀}︀
.

and require that every admissible blur from 𝐴 is bounded by Bound (𝐴) (Balzer
et al., 1987, p. 348)

∀𝑈 ∈𝐴 ∃𝑈𝐵∈Bound (𝐴)
(︀
𝑈 ⊆ 𝑈𝐵

)︀
. (A.3)

According to Ludwig (1981) and Balzer et al. (1987), the axioms for uniform struc-
tures, respectively for admissible blurs, meet the following intuitive conditions
on empirical indistinguishability and immunisation of theories by blurs:

1. Axiom (US-1) guarantees the reflexive nature of the relation (every value
is indistinguishable from itself).

2. The symmetry is ensured by (US-2) (if 𝑥 is indistinguishable from 𝑦, then
is 𝑦 from 𝑥).

3. Axiom (US-3) implies the transitivity of empirical success from finer to
coarser blurs (if a blur 𝑈 reconciles a theory with the present experimental
data, then every coarser blur 𝑈 ′ ⊃ 𝑈 does so as well).

4. The axioms (US-4) and (US-5) (there is no border for the highest precision).

I have argued in (Mierau, 2023, sec. 5.2) that there are some errors and inconsis-
tencies in this interpretation. A comparison between the demands for reflexivity
and symmetry by (US-1) and (US-2) shows, that the latter does not implement
the symmetry on the right level. (US-2) acts on the level of the uniform structure,
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not on the particular blurs. The right way to require the symmetry is by

∀𝑈 ∈𝐴
(︀
(𝑥, 𝑦) ∈ 𝑈 → (𝑦, 𝑥) ∈ 𝑈

)︀
. (AB-2)

A similar problem arises between claims 3. and 4. This time the formulae are
analogous, but the interpretations are different. The third claim stresses that
coarser blurs maintain empirical consistency, which is evidently not the case
for finer blurs, about which Ludwig and Balzer only say that their existence is
ensured. But there is no equivalent for this difference in the formulae (US-3)
and (US-4), and it is even impossible to express claim 3. by the formal concepts
that have been introduced by Ludwig and Balzer.
Still, I think that the claim is important and should be incorporated into the
formal conception. This can only be done by introducing new terms. Therefore,
I propose the following extension: A further relation 𝑆 ∈ 𝒫 (𝐼 ×𝐴) has to be
introduced that contains all admissible blurs 𝑈 ∈𝐴 that successfully accommodate
experimental results and the theory with respect to a concrete application of
the theory 𝑖∈𝐼. By means of this relation 𝑆, the transitivity of successful blurs
maybe stipulated by the axiom

∀𝑈,𝑈 ′∈𝐴
(︀
𝑈 ⊆ 𝑈 ′ → ∀𝑖∈𝐼

(︀
𝑆 (𝑖, 𝑈) → 𝑆 (𝑖, 𝑈 ′)

)︀)︀
. (AB-5)

Every coarser blur 𝑈 ′ preserves the agreement between exact theory and imprecise
approximation or experimental result established by a finer blur 𝑈 . (AB-5)
strengthens the axiom (US-3), such that it no includes the substantial claim of
coarser blurs: They transitively transfer empirical adequacy.
By means of 𝑆 a further useful concept can be defined: the lower bound or a
measure of the accuracy of the theory.

LBound (𝐴) ≡ (AB-6)
{︁
𝑈 | 𝑈 ∈𝐴 ∧ ∃𝑖∈𝐼

(︀
𝑆 (𝑖, 𝑈)

)︀
∧ ∀𝑖 ∈ 𝐼

(︁
¬∃𝑈 ′∈Φ

(︀
𝑆 (𝑖, 𝑈 ′) ∧ 𝑈 ′⊂𝑈

)︀)︁}︁
,

LBound (𝐴) ̸= ∅. (AB-7)

While the upper bound determines which are the coarsest blurs for which the
theory is still practically useful, the lower bound LBound represents the least
necessary inaccuracy for saving the theory from falsification in light of the
current available empirical data. The introduction of the lower bound requires a
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reformulation of the upper bound to

UBound (𝐴) ≡
{︁
𝑈 | 𝑈 ∈Φ ∧ ∀𝑈 ′∈Φ

(︁
(𝑈 ⊂ 𝑈 ′ → 𝑈 ′ ̸∈𝐴) ∧

(︀
𝑈 ′ ⊆ 𝑈 ∧

∃𝑈 ′′∈LBound (𝐴) (𝑈 ′′ ⊆ 𝑈 ′) → 𝑈 ′∈𝐴
)︀)︁}︁

, (AB-3)

such that it correctly takes into account the lower bound. Consequently, (A.3)
has to replaced by

∀𝑈 ∈𝐴 ∃𝑈𝐵∈UBound (𝐴)
(︀
𝑈 ⊆ 𝑈𝐵

)︀
. (AB-4)

Ludwig (1978, p. 109) calls for two further conditions to deal with infinite
idealisations. The first is that every uniform structure Φ needs a countable
base 𝐵 (Φ)54

card
(︀
𝐵 (Φ)

)︀
≤ ℵ0. (AB-8)

The second and last requirement is that for every degree of accuracy, only a
finite number of elements of the base set 𝑋 is distinguishable (Ludwig, 1978,
p. 110)

∀𝑈 ∈𝐴 ∃𝑦⊂𝑋
(︁
card (𝑦)<card (N) ∧ ∀𝑥∈𝑋 ∃𝑧∈𝑦

(︀
(𝑥, 𝑧)∈𝑈

)︀)︁
. (AB-9)

In topological terms, this means that the base set 𝑋 can be covered by a finite
collection of finite vicinities, which is equivalent to 𝑋 being relatively compact
and its completion �̂� being compact. This allows to test whether an appropriate
set of admissible blurs has been chosen: It has to compactify the completed base
set �̂�.

In summary, the axioms (AB-1) to (AB-9) define the concept of admissible blurs.
It is based on uniform structures as defined by (US-1)–(US-5).

54A base of a uniform structure Φ is a system 𝐵 of blurs 𝑈 ∈Φ so that each blur 𝑈 ′∈Φ is a
superset of a set from 𝐵 (Bourbaki, 1971, ch. II, § 1). The construction of Φ from its base 𝐵
is ensured by axiom (US-3).
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