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Zusammenfassung

Die elektronischen und magnetischen Freiheitsgrad von α-MnTe, einem antifer-
romagnetischen Halbleiter, wurden betrachtet, um die Kopplung zwischen den
elektronischen und magnetischen Eigenschaften zu untersuchen.

Magnonische Anregungen im magnetischen System wurden mithilfe eines Heisen-
bergmodells berechnet. Verwendet wurde die lineare Spinwellentheorie und die
Holstein-Primakoff-Darstellung. Die zugrunde liegende Annahme ist, dass Laser-
pulse eine zeitliche Änderung der Heisenbergkopplungsparameter bewirken, sodass
Magnonen angeregt werden. Der Einfluss der Stärke, der Frequenz und der Dauer
des treibenden Terms wurden untersucht. Relaxation wurde durch einen phänome-
nologischen Zerfallsterm modelliert. Indem realistische Parameter verwendet wurden,
konnte das Modell auf das Experiment angewendet werden.

Die elektronische Bandstruktur und Zustandsdichte wurden mit einem Tight-Binding-
Modell untersucht. Die entsprechenden Hüpfparameter wurden mit der Dichtefunk-
tionaltheorie bestimmt. Eine Aufspaltung der Mn 3d-Bänder durch Korrelationen
führt zu einer Bandlücke. Mithilfe von Projektionen auf die ursprünglichen Orbitale
wird deutlich, dass das Valenzband Te 5p-Charakter hat, während das Leitungsband
Mn 3d- und Mn 4s-Anteile aufweist.

Ein Ein-Band-Kondo-Hubbard-Modell des Mn 3d-Systems kombiniert die elektron-
ischen und magnetischen Freiheitsgrade. Gelöst wurde es mit der Dynamical Mean
Field-Theorie und der Numerischen Renormierungsgruppenmethode. Gemessen
wurde die Mottlücke in der paramagntischen und magnetisch geordnetetn Phase,
um die Blauverschiebung der Lücke zu quantifizieren, welche durch die schmaler
werdenden Bänder entsteht. Indem die berechnete Selbstenergie in das Multiorbital-
Tight-Binding-Modell miteinbezogen wird, wird die Halbleiter-Bandlücke berechnet.
Im Gegensatz zum Experiment wird die Bandlücke in der vorliegenden Modellierung
kleiner für tiefere Temperaturen. Eine mögliche Erklärung wird diskutiert.

Die Charakterisierung von elektronischen und magnetischen Eigenschaften von α-
MnTe sowie die vorgeschlagenen Modelle können ein Ausgangspunkt für weitere
Analysen des Materials darstellen. Des Weiteren können die vorgestellten Methoden
auf andere antiferromagnetische Halbleitersysteme angewendet werden.
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Abstract

We calculated the electronic and magnetic degrees of freedom of α-MnTe, an
antiferromagnetic semiconductor, to investigate the coupling between the electronic
and magnetic properties.

To calculate magnonic excitations, we described the magnetic system as a Heisenberg
model and solved it within the linear spin wave theory with the Holstein-Primakoff
representation. We assumed that laser pulses change Heisenberg couplings in time,
which induces magnons. We determined the effect of the driving strength, frequency,
and duration. To capture relaxation, we included a phenomenological decay. We
applied our model to experiments by using realistic parameters.

We studied the electronic properties by calculating the band structure and the
density of states with a tight-binding model. To determine the hopping parameters,
we used the density functional theory. By introducing a splitting between the Mn
3d bands induced by correlations, we obtained a band gap. The projections to the
atomic orbitals revealed that the valence band is formed by Te 5p bands while the
conduction band consists of Mn 3d and Mn 4s contributions.

To combine electronic and magnetic degrees of freedom, we calculated the Green’s
function and the spin expection values for a one-band Kondo-Hubbard model
describing the Mn 3d electrons with the dynamical mean field theory and the
numerical renormalization group method. We measured the Mott gap in the
paramagnetic and antiferromagnetic phase to quantify the magnetic blue shift. The
narrowing of the bands causes mainly the increase of the Mott gap. By including
the resulting self-energy into a multi-orbital tight-binding model, we calculated the
semiconductor band gap. The band gap becomes smaller for lower temperatures in
our modeling in contrast to the experimental finding, with the possible explaination
discussed.

The concrete characterization of electronic and magnetic properties of α-MnTe and
the proposed models might be a starting point for further analyses of the material.
The presented methods can be also applied to other antiferromagnetic semiconductor
systems.
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Chapter 1

Introduction

The interaction between light and matter is one of the key research fields in solid state
physics today. Experiments using light offer a deeper understanding of properties of
materials, and light may also be used to control the material properties. Especially,
laser pulses manipulating the magnetic order of a system [1–6] would be a major
part of building spintronic devices, which are electronic devices making use of the
electron’s spin in addition to its charge [7].

Spintronics is a research field which focuses on three main questions concerning
the electron spin in systems [8]: First, how can a system be polarized effectively?
Second, how long does the system remain in this state? And third, what kind of
detection can be used to measure the polarization?

The potential applications of spintronics are vast. To classify them, a distintion
in the Mott type, which focuses on the electron and the hole spin, and the Dirac
type, which deals with spin and orbit moments, is made [9]. Both types evolved in
the last decades and can be divided into different generations: the first generation
uses spin transport; the second generation focuses on spin–orbit effects, electric
field, and electro-magnetic waves to induce spin dynamics, and the third generation
explores three-dimensional structures and quantum engineering, including quantum
computing [9]. An example of different stages of development can be found in data
storage devices. While hard disk drives (HDD) belong to the first generation and
are already widely used, the magnetoresistive random-access memory (MRAM)
technology [10], which is also based on magnetizing a ferromagnetic material but
with using magnetic tunnel junctions, is part of the second generation [9]. Spin
diodes and spin transistors are examples of the third generation of Dirac type
spintronic devices [9].

Spintronic devices could be more efficient concerning energy consumption [11] since
the energy needed to control spins can be smaller than the energy needed to control
the charge. Energy efficiency becomes more and more important since the need
of data processing and storage grows rapidly and some applications, such as video
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Chapter 1 Introduction

streaming, cannot be regulated easily, while work could be done to reduce the energy
consumption of data centers [12].

Before building spintronic devices, the properties of potential materials and the
possibilities to control them have to be investigated. Ultrafast optical switching of
the magnetization in many different materials has been already demonstrated [1, 3],
as well as magnetic phase transitions on the femtosecond time scale [13–15]. The
light-induced coherent generation of magnons was also realized in experiments [2,
16–18].

One potential candidate for spintronic devices is hexagonal manganese telluride
(α-MnTe). The material has strong correlations yielding the nonlinear phononics
[19, 20] and the Kittel mode [21] induced by phonon-magnon coupling. The lifetime
and the frequency of the Raman-active phonon modes change if the material is
magnetically ordered [22]. The material contains a magnetic and an electronic
subsystem: the Mn 3d electrons align to a spin of 5/2 at the Mn sites, while the Te
5p and Mn 3d,4s, p orbitals form bands with a band gap, the typical property of a
semiconductor.

1.1 Experimental findings

The key questions is how the charge subsystem and spin subsystem couple. Two
experiments were performed to address this question. The phononic coupling to
spins and charges was investigated [23], and the magnetic blue shift of the band
gap was measured [24]. As a basis for our work, we will briefly summarize both
experiments.

1.1.1 Phononic coupling to spins and charges

Bossini et al. [23] investigated α-MnTe via pump-probe experiments. The general
idea of pump-probe experiments is to apply a first laser pulse, which excites the
system and pushes it out of equilibrium, and a second one, which probes the system.
By performing the measurement with different temporal distances between the
pulses, the time development of the considered value is accessible.

In a first step, the transient reflectivity of α-MnTe was measured at a temperature
of T = 77K. The linearly polarized pump pulse had 2.4 eV energy, while the
linearly polarized continuum probe pulse covered energies in the spectral range
(1.65 − 2.76) eV. The measurement allows to detect the photodriven transient
evolution of Eg. While the reflectivity is positive well below 1.71 eV, it is negative
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1.1 Experimental findings

well above this energy. For energies near to 1.71 eV, the sign changes with time.
The oscillations have a frequency of ω0 = 5.3THz.

In a second step, the energy of the probe pulse was fixed to 1.72 eV, and the transient
transmissivity was measured. The probe pulse is transmitted through the sample
and changes in general the direction of its polarization. This angle is measured by
splitting the orthogonal parts via a Wollaston prism and performing a balanced
detection. The setup is shown schematically in Fig. 1.1.

sample

Wollaston 
prism

balanced
detection

A

B

probe
pulse

pump
pulse

delay time

Figure 1.1: The scematic setup of a pump-probe experiments measuring the
transmitted light with balanced detection.

It turns out that the applied laser pulse excites optical phonons in α-MnTe. Due to
these coherent lattice vibrations, the Mn and Te ions oscillate with a phase shift to
each other. This oscillation leads to a periodical change of the distances between
these ions.

The measured angle oscillates with the frequency ω0, which can be identified as
the frequency of phonons excited by the laser pulses. In addition, the decreasing
amplitude can be fitted by a combination of exponential decays. The inverse decay
rates describe the lifetime of the excitations.

1.1.2 Magnetic blue shift of the band gap

In another experiment, Bossini et al. [24] determined the band gap Eg of α-MnTe for
the temperature range 25K to 400K by analyzing the phonon assisted absorption
and emission. The band gap is temperature dependent and smaller for higher
temperatures. Its absolute value is Eg = (1.27− 1.46) eV [24].
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The leading order contribution of the temperature dependency of Eg is captured by
the Varshni function [25]. The Varshni functions includes electron-phonon coupling
and fits well the temperature dependence of Eg above the Néel temperature. Below
TN , thus in the magnetically ordered phase, there are significant deviations from
this fit. Here the band gap is larger than expected. This effect is called magnetic
blue shift of the band gap. Since the effect sets in at the Néel temperature, the shift
is a hint that there is an additional magnetic contribution.

Reference [24] shows that this is a mean-field effect, and Refs. [26, 27] confirm this
finding with real-space dynamical mean-field theory (DMFT) calculations with exact
diagonalization (ED) as impurity solver.

1.2 Research objective

The question is how the magnetic and the electronic degrees of freedom in α-MnTe
couple. To approach this problem, we analyze the magnetic excitations, the band
structure, and the band gap in calculations including magnetic and electronic
properties.

We focus on the magnetic excitations in Chap. 2. We model the interactions between
the spins of Mn 3d orbitals with a Heisenberg Hamiltonian. Assuming that the laser
pulses indirectly induce a change in the Heisenberg coupling via the displacements of
the ions, we investigate the resulting magnon excitations with linear spin wave theory.
We use the Holstein-Primakoff representation and the Bogoliubov transformation to
treat the problem. We solve the set of differential equations numerically to calculate
the non-equilibrium magnon dynamics.

We concentrate on the single-particle electronic properties of α-MnTe in Chap. 3. We
calculate its band structure and density of states by using tight-binding Hamiltonians.
To obtain hopping parameters, we use the density functional theory.

In Chap. 4, we combine magnetic and electronic degrees of freedom in an effective
one-band Kondo-Hubbard model for the Mn 3d electrons. We adapt the approach of
Ref. [26, 27] to consider a dynamical mean field theory approach in reciprocal space
and to solve the impurity problem with the numerical renormalization group method.
We calculate the magnetic blue shift of the Mott gap. Furthermore, we included
the resulting self-energy into a multi-orbital tight-binding model to determine the
semiconductor band gap.

Finally, we discuss the different approaches and summarize how our research con-
tributes to the key question in Chap. 5. We also point out how our approach could
be extended in future research.
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1.3 Properties of hexagonal manganese telluride

1.3 Properties of hexagonal manganese telluride

Since we will need the basic properties of α-MnTe in different parts of this thesis,
we will summarize them in this section.

Hexagonal MnTe has an NiAs crystal structure [28] as depicted in Fig. 1.2. The Mn
ions are arranged in triangular layers with lattice constant a, which are stacked on
each other with a distance of half of the lattice constant c. Several measurements
to obtain the lattice constants were performed leading to similar results [29]. We
will use a = 4.1497Å and c = 6.76Å [30, 31] in the following chapters.

(a) (b)(a)(a) (c)

Figure 1.2: Scetch of the unitcell. While panel (a) displays the whole structure,
panel (b) focuses on the antiparallel alignment of the spins of neighboring Mn
layers, and panel (c) shows the triangular lattice structure of the Mn layers. Made
with VESTA [32].

The material is an antiferromagnetic semiconductor with a band gap of Eg = (1.27−
1.46) eV [24]. The antiferromagnetic order is realized below the Néel temperature of
TN ≈ 310K [33].

The electrons in the 3d Mn orbitals form a total spin of 5/2 following the Hund’s rule.
Within the Mn layers, these total spins are oriented parallelly. The spins of different
but neighboring layers are antiparallelly aligned. Experimental measurements have
shown that the spins point in the Mn layer plane [34, 35].

When we want to describe the magnetic phase, we need a unit cell with four atoms:
two Te atoms and two Mn atoms with magnetic moments pointing in opposite
directions. The lattice vectors are:

~a = a

 1/2√
3/2
0

 ,~b = a

 1/2

−
√
3/2
0

 ,~c = c

0
0
1

 . (1.1)
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The atoms are located at

~rMn,1 = ~0, ~rMn,2 =
1

2
~c, ~rTe,1 =

1

3
~a+

2

3
~b+

1

4
~c, ~rTe,2 =

2

3
~a+

1

3
~b+

3

4
~c. (1.2)

Since we aim descriptions in ~k space in the following chapters, we determine also
the reciprocal vectors defining the Brillouin zone:

~kx =
4π

a

 1

−1/
√
3

0

 ,~ky =
4π

a

 1

1/
√
3

0

 ,~kz =
2π

c

0
0
1

 . (1.3)
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Chapter 2

Lattice-driven magnon dynamics

Our aim is to calculate magnetic excitations in α-MnTe. Therefore, we focus on
the spins of the Mn 3d orbitals, which form a total spin of 5/2 at each Mn site. We
model the interaction between these spins with a Heisenberg Hamiltonian. Since
we consider excitations at very low temperatures, we treat the model according the
linear spin wave theory.

The results presented in this chapter were also published in Ref. [36]. Most of the
figures are reprinted with permission from [36], copyright (2021) by the American
Physical Society.

First, we introduce the model in Sec. 2.1 and the methods in Sec. 2.2. In Sec. 2.3,
we examine the porperties in equilibrium. Next, we calculate the dynamics out of
equilibrium in Sec. 2.4.

2.1 Model

The hybridization between Mn-Mn and Mn-Te orbitals leads to hopping between
the orbitals. Due to a large Coulomb repulsion U and the semicondcutor properties
of the material, this hopping can be interpreted as a Heisenberg coupling J = 4t2/U .
We obtain an effective Heisenberg Hamiltonian:

H = J
∑
〈i,j〉

~Si~Sj , (2.1)

which describes the interaction between two neighboring spins ~Si and ~Sj .

As depicted in Fig. 2.1, we consider three different types, which leads to the
Hamiltonian:

H = J1
∑
〈i,j〉c

~Si~Sj + J2
∑
〈i,j〉ab

~Si~Sj + J3
∑
〈〈i,j〉〉

~Si~Sj . (2.2)
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Chapter 2 Lattice-driven magnon dynamics

b

c

a

Figure 2.1: A sketch of the unit cell of MnTe including the considered Heisenberg
couplings J1, J2, and J3. Figure taken from Ref. [36].

Neighboring spins of different layer couple with J1, while J2 is the coulpling
between neighboring spins of the same layer. The interaction corresponding to J3
couples spins that are not direct neighbors. There is always a Te ion between the
correspondig Mn sites.

The laser pulses applied in experiments act on the dipoles formed by the Mn and Te
ions and induce optical phonons. These lattice vibrations imply a change between
the distance of the ions. Since the coupling J3 is mediated via a Te ion, we assume
that the distance change leads to a change of the Heisenberg coupling J3:

J3 → J3(t) = J
(0)
3 + δJ3(t). (2.3)

In addition to the equilibrium value J (0)
3 which is given by the parameter set, we

consider a time-dependent change δJ3(t) that should include all changes induced by
the laser field. The effect of a time-dependent coupling is investigated further in
Sec. 2.4. In general, also other Heisenberg couplings could be time-dependent due
to phonon excitations. This specific aspect is explored in Sec. 2.4.3.

2.2 Methods

We target the description of low lying magnon excitations using the linear spin wave
theory. We represent the spins by the Holstein-Primakoff representation [37]:

Szi = −S + b̃†i b̃i (2.4a)

S+
i = b̃†i

√
2S − b̃†i b̃i ≈

√
2Sb̃†i (2.4b)

S−
i =

√
2S − b̃†i b̃ib̃i ≈

√
2Sb̃i, (2.4c)

8



2.2 Methods

where b̃i (b̃†i ) is the bosonic annihilation (creation) operator. We approximate√
2S − b̃†i b̃i ≈

√
2S by keeping only the first order term of a 1/S expansion, which

is the key property of the linear spin wave theory [38, 39]. This approach is justified
in the antiferromagnetic phase since the spin of S = 5/2 and the number of nearest
neighbors are large. However, we should restrict this modeling to small magnon
occupations 〈b̃†i b̃i〉. Next, we apply a Fourier transform

b̃i =
1√
N

∑
~k

exp
(
i~k ·~li

)
b̃~k (2.5)

to switch from real space into momentum space. We obtain the Hamiltonian

H0

J1S
= Ed +

∑
~k

[
A~k b̃

†
~k
b̃~k +

1

2
B~k

(
b̃†~k
b̃†
−~k

+ h.c.
) ]

(2.6)

with the parameters

A~k :=
1

J1

(
2J1 − 6J2 + 12J3 + J2γ∆(~k)

)
(2.7a)

B~k := 2 cos(ckz)
(
1 + 2

J3
J1
γ∆

(
~k
))

(2.7b)

γ∆

(
~k
)
:= cos(akx) + cos

(
a

2
kx +

√
3a

2
ky

)
+ cos

(
−a
2
kx +

√
3a

2
ky

)

The Hamiltonian (2.6) is almost diagonal in ~k, except of the coupling between ~k and
−~k which corresponds to the creation and annihilition of magnon pairs. Because
of the new representation, the Hamiltonian has a momentum-independent energy
offset

Ed = −NS
(
1− 3

J2
J1

+ 6
J2
J1

)
. (2.8)

The Bogoliubov transformation

b̃~k = b~k cosh θ~k + b†
−~k

sinh θ~k (2.9)

is suitable to obtain the diagonal Hamiltonian

H0

J1S
=
∑
~k

ω~kb
†
~k
b~k + Ed +∆E. (2.10)
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Chapter 2 Lattice-driven magnon dynamics

The Bogoliubov angle θ needs to fulfill the condition

B~k
A~k

= − tanh(θ~k). (2.11)

The transformation generates an additional contributation to the ground state
energy:

∆E =
1

2N

∑
~k

(
ω~k −A~k

)
. (2.12)

Both energy offsets (2.8) and (2.12) do not affect the magnon excitations. The
magnon dispersion in units of J1 is finally given by

ω~k =
√
A2
~k
−B2

~k
≥ 0. (2.13)

This equation can be evaluated for any given set of coupling parameters Ji.

2.3 Equilibrium properties

While Ref. [40] suggests to include three types of nearest neighbors to model our
material, Ref. [41] offers a model with four types of nearest neighbors. The fitted
coupling constants differ within different approaches, but all approaches lead to
similar dispersions, which is the most important for our calculations. We choose the
parameter set suggested by Ref. [40]: J1 = 21.5K, J2 = −0.67K, and J3 = 2.87K1.
The chosen parameter set produces no competing interactions since all spin-spin
interactions favor the actual magnetic order.

We evaluate the magnon dispersion of Eq. (2.13) for given paths through the Brillouin
zone as well as the magnon density of states.

The dispersion is shown as blue lines in Fig. 2.2(a). Near the Γ point, only small
energies are needed to excite magnons, and the dispersion is linear. Near to the edges
of the Brillouin zone maxima are reached. The parameters we use were obtained by
fitting neutron scattering experiments. This experimental data [40] added as black
dots shows a good agreement with our curves. However, subtle details, such as the
dip at the end of path Γ →M , are not capured by our nearest-neighbor description.
Probably this is due to neglecting spin-spin interactions at larger distances. In
addition, we see small but systematic deviations concerning the absolute value of
the energy in the paths Γ → K and Γ → H. But a global factor could not fix that
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Γ→A0

10

20

30

E(
m
eV

)
(a)

Γ→K Γ→H Γ→M Γ→L

0 10 20 30 40 50
ω(ps−1)

0.00

0.02

0.04

ρ(
ω
)

(b)

0 10
ω(ps−1)

0

2.5 ⋅ 10−4

f(ω) = cω2

0

20

40

ω
(p
s−

1 )

0 5 10 15 20 25 30 35
E(meV)

Figure 2.2: The magnon dispersion (a) and the magnon density of states (b). The
DOS shows a quadratic increase for small energies as indicated by the red dashed
curve, which is especially visible in the inset. For energies near to the maximium
energy, two van Hove singularities emerge. Figure taken from Ref. [36].

problem since the deviations in theses paths are in opposite directions, and the
other paths do not show these systematic deviations.

The magnon density of states

ρ(ω) =
1

N

∑
~k

δ(ω − ω~k) (2.14)

with N ~k points is depicted as blue line in panel (b) of Fig. 2.2. We use the analytic
results for a triangluar lattice derived in Ref. [42] for the Mn layers to simplify the
problem. For small frequencies, the DOS grows quadratically

f(ω) = cω2 (2.15)

with c = (9.40± 0.04)× 10−7 ps illustrated as red dashed line, which is typical for
a linear dispersion in three dimensions. The maximum of the magnon dispersion

1Due to a different notation of the Hamiltonian in this thesis compared to Ref. [40], the Heisenberg
couplings have opposite signs and a factor 2 is included.
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Chapter 2 Lattice-driven magnon dynamics

determines the maximum energy h̄ωmax ≈ 35.9meV for the support of the DOS.
The peaks near to this maximum energy correspond to van Hove singularities. Most
of the spectral weight lies close to the maximum energy.

2.4 Dynamics out of equilibrium

Considering the time-dependent change of the Heisenberg couplings

Ji(t) = J
(0)
i + δJi(t) (2.16)

due to phonon osciallations induced by the laser pulses, we expect magnon excitations.
Consequently, we have to extend the Hamiltonian defined in Eq. (2.10) by a time-
dependent pertubation X(t):

H(t) = H0 +X(t). (2.17)

We assume that the pulses change the Heisenberg couplings such that a periodic
change appears with the phonon frequency ω0. Since the phonon excitation decays,
the change of the coupling should also decrease, which we model by an exponential
envelope with decay rate γ. The parameter a0,i governs the strength of the change.
Finally, the change of a Heisenberg coupling is given by

δJi(t)

SJ
(0)
1

= ai(t) = a0,i exp(−γt) cos(ω0t). (2.18)

For several comparisons, a0,i is expressed as relative change:

a0,i = δJi(0)/J
(0)
1 = (Ji/J

(0)
1 )κi. (2.19)

As discussed above, a time-dependent J3(t) is most likely in the system since it
decribes interactions between spins localized on Mn ions between which is a Te ion.
The pertubation X(t) has then the form

X(t) = SδJ3(t)
∑
~k

[
α~kb

†
~k
b~k +

1

2
β~k

(
b†~k
b†~k

+ h.c.
)
+ C~k

]
(2.20)

after the Bogoliubov transformation. The coefficients are

α~k =
A~k
ω~k

(
12− 4

B~k
A~k

cos(kc)γ4(~k)

)
, (2.21a)

β~k =
A~k
ω~k

(
−12

B~k
A~k

+ 4 cos(kc)γ4(~k)

)
. (2.21b)
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2.4 Dynamics out of equilibrium

We abbreviate the appearing expectation values

u~k := 〈n~k〉 = 〈b†~kb~k〉 (2.22a)

v~k := Re 〈b†~kb
†
−~k

〉 (2.22b)

w~k := Im 〈b†~kb
†
−~k

〉. (2.22c)

Via the Heisenberg’s equation, we calculate the resulting closed set of differential
equations

du~k
dt

= 2a(t)β~kw~k − γru~k (2.23a)

dv~k
dt

= −2(ω~k + a(t)α~k)w~k − γrv~k (2.23b)

dw~k
dt

= 2(ω~k + a(t)α~k)v~k + 2a(t)β~k(u~k + 1/2)− γrw~k. (2.23c)

Note that these equations do not couple different ~k modes since we consider only
the linear contributions in the frame of the linear spin wave theory. However, in a
real material, there should be a relaxation mechanism for the magnons. To describe
this relaxation phenomenologically in our model, we introduce γr as decay rate for
the magnons.

2.4.1 Magnon dynamics of a single mode

Analyzing the dynamics of a single mode enables us to understand the effect of the
driving term a(t) before considering the sum of all ~k modes. Let us begin with the
simplest case when the driving term has vanished (a(t) = 0) and the relaxation is
neglected (γr = 0). The magnon occupation just stays constant in this case

du~k(t)

dt
= 0 ⇒ u~k(t) = const., (2.24)

while the Bogoliubov terms describe coherent oscillations

v~k(t) = c0 cos(2ω~kt+ ϕ) (2.25a)
w~k(t) = c0 sin(2ω~kt+ ϕ) (2.25b)

with the frequency 2ωk originated from the magnon pair creation and annihilation.
The initial conditions determine the values of the amplitude c0 and the phase ϕ.
Introducing the damping (γr > 0) yields a decrease by the factor of exp(−γrt) of
the magnon occupation uk as well as of the amplitude of v~k and w~k.

13



Chapter 2 Lattice-driven magnon dynamics

Analytic approximations of Bogoluibov term dynamics

We aim also a more general approximated analytic solutions of the differential
equations by considering ω~k � a(t)α~k, which holds for small driving terms. We
neglect any relaxation, which leads us to the simplified set of differential equations

du~k
dt

= 2a(t)β~kw~k (2.26a)

dv~k
dt

= −2(ω~k + a(t)α~k)w~k (2.26b)

dw~k
dt

= 2(ω~k + a(t)α~k)v~k + f~k(t) (2.26c)

with f~k(t) := 2a(t)β~k(u~k + 1/2). (2.26d)

By introducing z~k(t) = 〈b†~kb
†
−~k

〉 = v~k(t) + iw~k(t), we combine the differential equa-
tions for the Boguliubov terms of Eqs. (2.23b), and (2.23c) in the following way

dz~k
dt

= 2i(ω~k + a(t)α~k)z − γrz + if~k(t) (2.27)

with

f~k(t) = 2a(t)β~k(u~k(t) + 1/2) (2.28a)
a(t) = a0 cos(ω0t) exp(−γt). (2.28b)

After neglecting a(t)α~k, we obtain the simpler equation

dz~k
dt

= (2iω~k − γr)z + if~k(t), (2.29)

which is solved by

z~k(t) = ie(2iω~k−γr)t
∫ t

0
a(t′)β~k(2u~k(t

′) + 1)e−(2iω~k−γr)t
′
dt′. (2.30)

Considering small magnon occupations 2u~k(t
′) � 1 allows us to neclect u~k(t

′) in
the integral, which yields the approximate solution

z~k(t) = ia0β~k

[
e−γt(ω0 sin(ω0t)− (2iω~k + γ − γr) cos(ω0t))

ω2
0 − (2ω~k − i(γ − γr))2

+
(2iω~k + γ − γr)e

2iω~kte−γrt

ω2
0 − (2ω~k − i(γ − γr))2

]
.

(2.31)
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2.4 Dynamics out of equilibrium

This results offers us already a lot of insights. The coherent oscillations with
2ω~k damped by γr can be also found in this solution in the second term. Induced
osciallations with ω0, which are damped by γ, dominate the first term. The resonance
condition ω0 = 2ω~k in absence of any decay can be read in the denominator.

A more detailed analysis is required for the very special case ω0 → 2ω~k when γ = γr.
We reformulate 2ω~k near to the resonance with the small detuning δ: 2ω~k = ω0 + δ.
Next, we consider Eq. (2.31) in the limit δ → 0 and obtain a linearly increasing
amplitude:

z~k(t) =
ia0β~k
2

e−γt
(
teiω0t +

1

ω0
sin(ω0t)

)
. (2.32)

However, the two decay rates in the experiments considered for this work differ
significantly so that this case has no practical importance.
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Figure 2.3: The dynamics of the Bogoliubov term v~k according Eqs. (2.31)
and (2.32) for different representative cases: (a) Off-resonant driving with ω0 =
100ps−1, ω~k = 80 ps−1, γ = 1.0 ps−1, and γ = 0.1 ps−1. Resonant driving for
2ω~k = ω0 = 100 ps−1 with (b) γ = γr = 0.5 ps−1 and (c) γ = γr = 0 (Parameters:
κ = 0.01, β = 1). Figure taken from Ref. [36].
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Chapter 2 Lattice-driven magnon dynamics

Analytic approximations of magnon occupation dynamics

We find also analytic approximations for the magnon occupations. To simplify the
calculations, we omit the relaxation (γr = 0) since we know that this only yields an
exponentially decreasing factor in the result.

We start again with Eq. (2.27) and insert a(t) = a0 cos(ω0t):

dz~k
dt

= 2i(ω~k + a0 cos(ω0t)α~k)z~k + if~k(t).

The general solution is

z~k(t) = ieih~k(t)
∫ t

0
f~k(t

′)e−ih~k(t
′)dt′ (2.33a)

with h~k(t) := 2

∫ t

0
(ω~k + a0α~k cos(ω0t

′))dt′ (2.33b)

= 2ω~kt+ 2
a0α~k
ω0

sin(ω0t). (2.33c)

The integration of Eq. (2.26a) with taking into account w~k = Im(z~k) yields

u~k(t) = 2a0β~k

∫ t

0
cos(ω0t

′)Imz~kdt
′. (2.34)

The solution u~k(t) will show fast oscillations with frequency 2ω0 and a slow devel-
opment. In order to focus on the evolution on a large time scale, we integrate over
one period T0 = 2π/ω0, which includes replacing cos(ω0t)e

−ih~k(t) in Eq. (2.33a) by
its average.

In the resonant case ω0 = 2ω~k, we obtain

φ−1J1(φ) =
1

T0

∫ T0

0
cos(ω0t

′)e−iω0t′−iφ sin(ω0t′)dt′ (2.35)

with φ = 2a0α~k/ω0. The approximation (2.35) is applicable if the osciallations are
much faster than the slow evolution. This depends strongly on the parameters
ω0, γ, and γr. If γ � ω0 and γr � ω0, our procedure is well justified. For the
experimentally reasonable parameters, this is the case.

We obtain

z~k(t) = i
β~kω0

α~k
J1(φ)e

i~kh~k(t)

∫ t

0

(
u~k(t

′) + 1/2
)
dt′ (2.36)
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2.4 Dynamics out of equilibrium

with the Bessel function of the first kind J1(x). Next, we insert Eq. (2.36) into
Eq. (2.34), and we average according Eq. (2.35), which leads to

u~k(t) = Γ2Re
∫ t

0

∫ t′

0
(u~k(t

′′) + 1/2)dt′′dt′ (2.37a)

Γ :=

(
β~kω0

α~k

)
J1(φ). (2.37b)

The simple differential equation

u′′~k(t) = Γ2
(
u~k(t) + 1/2

)
(2.38)

follows by differentiating twice. Solving this differential equations for the initial
condition u~k(t = 0) = 0 yields

u~k(t) =
1

2
(cosh(Γt)− 1) (2.39a)

with

Γ :=
β~kω0

α~k
J1

(2a0α~k
ω0

)
≈ a0β~k. (2.39b)

We have to keep in mind that Eq. (2.39a) is only reliable for small u~k(t) since the
linear spin wave theory is only valid for this case.

Next, we extend the approximation to detuned frequencies and define therefore the
detuning δ := 2ω~k−ω0. If we consider small detuning |δ| � ω0, we are able to apply
similar steps as for resonant driving. We start again with the same replacement
(2.35) of the fast oscillations by the average over one period and obtain

z~k(t) = i
β~kω0

α~k
J1(φ)e

i~kh~k(t)

∫ t

0

(
u~k(t

′) + 1/2
)
e−iδt

′
dt′. (2.40)

We put the expression into Eq. (2.36) and apply the averaging again, which yields

u~k(t) = Γ2Re
∫ t

0
eiδt

′
∫ t′

0
e−iδt

′′
(u~k(t

′′) + 1/2)dt′′dt′. (2.41)

Unforetunately, differentiating twice does not yield a closed differential equation as
for the resonant case because of the factor eiδt. But with a triple differentiation, we
obtain

u′′′~k (t) = (Γ2 − δ2)u′~k(t). (2.42)
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Chapter 2 Lattice-driven magnon dynamics

Taking into account the initial conditions are u~k(t = 0) = 0, u′~k(t = 0) = 0, and
u′′~k

(t = 0) = Γ2/2 yields

(A) Γ > |δ|

u~k(t) =
1

2

Γ2

Γ′2 (cosh(Γ′t)− 1) (2.43a)

with Γ′ :=
√

|Γ2 − δ2| (2.43b)

(B) Γ < |δ|

u~k(t) =
1

2

Γ2

Γ′2 (1− cos(Γ′t)). (2.43c)

The solution depends on the sign of Γ2 − δ2. On the one hand, for Γ2 − δ2 > 0, the
magnon occupation follows cosh(Γ′t) similar to the resonant case since the detuning
is very small. On the other hand, for Γ2 − δ2 < 0, the magnon occupation oscillates
with cos(Γ′t).

Figure 2.4 shows the analytic approximations (dashed lines) in comparison to the
full numerical solution (solid lines) of Eqs. (2.23). While panel (a) focuses on the
slow evolution, the fast osciallations of u~k of the full solution are visible in panel
(b). Since we integrate these oscillations out in the analytic approach, the analytic
curves show only the slow development, which agrees very well with the long-time
evolution of the full solution.

Let us focus on the slow evolution. The resonant driving leads to a constantly
increasing magnon occupation (blue curve). For very small detuning (Γ > |δ|, case
(A)), the curve would look very similar and is therefore not shown. This behavior
is very important for our numerical calculations. Since a discrete grid can easily
overlook the ~k points with perfect resonance, the finite sum over all ~k points needs to
be also accurate by taking into account ~k points near to the resonance. However, for
slightly larger detuning (Γ < |δ|), case (B)), the magnon occupation oscillates with
Γ′ :=

√
|Γ2 − δ2| (red and orange curve). On a very short time scale the magnon

occupation shows a similar development as for resonant driving, but it changes
significantly for larger times. The smaller the frequency Γ′ of the slow osciallations,
the longer similar curve developments appear. However, when Γ > |δ|, the evolution
changes completely entering case (A).

In a second step, we want to include damping of the driving term (γ > 0). In
consequence, the driving term is extended by an exponentional decay : a(t) =
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Figure 2.4: The magnon occupation u~k for a single mode with κ = 0.01,Γ =
0.0753 ps−1,Γ′ = 0.9972 ps−1 for resonant driving (δ = 0, dark and light blue) and
the off-resonant driving (δ = 1 ps−1, red and orange). The solid line represents the
numerical results obtained by solving the differential equations (2.23), while the
dashed lines illustrates the approximate analytical solutions (2.39a) and (2.43c).
Panel (a): full time interval; panel (b): zoom of panel (a) to show the fast
oscillations. Figure taken from Ref. [36].

a0 cos(ω0t) exp(−γt). The solution (2.33a) derived for driving without damping is
still valid if we consider an adapted definition of h~k:

h~k(t) := 2

∫ t

0
(ω~k + a0α~k cos(ω0t

′) exp(−γt))dt′ (2.44a)

= 2ω~kt+ 2
a0α~k
ω2
0 + γ2

[e−γt(ω0 sin(ω0t)− γ cos(ω0t)) + γ] (2.44b)

≈ 2ω~kt. (2.44c)

However, we have to consider the limit of small driving strength a0 → 0. Only by
neglecting the time dependence in φ, we are able to proceed analytically. Although
this conditions excludes several sets of parameters, it is valid for an experimentally
interesting range of parameters. In addition, the following analytical approximations
allow us an insight into the magnon dynamics on a qualitative level. Therefore, we
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Chapter 2 Lattice-driven magnon dynamics

stick to Eq. (2.44c) and the averaging

1/2 =
1

T0

∫ T0

0
cos(ω0t

′)e−iω0t′dt′, (2.45)

and we obtain
z~k(t) = iΓei~kh~k(t)

∫ t

0
e−γt

′ (
u~k(t

′) + 1/2
)
dt′. (2.46)

Inserting this result in

u~k(t) = 2Γ

∫ t

0
cos(ω0t

′)e−γtImz~kdt
′ (2.47)

and averaging over one period yield

u~k(t) = Γ2

∫ t

0
dt′e−γt

′
∫ t′

0
dt′′e−γt

′′
(u~k(t

′′) + 1/2). (2.48)

We can neglect u~k in the integrand if the magnon occupation is very low (2u~k � 1).
By integrating twice, we obtain

u~k(t) =
Γ2

4γ2
(1− exp(−γt))2 →

t→∞

Γ2

4γ2
. (2.49)

A second approach is to derive the differential equation

u′′~k = Γ2e−2γt(u~k + 1/2)− γu′~k (2.50)

by differentiating twice Eq. (2.48). However, the resulting equation has to be solved
numerically taking into account the initial conditions u~k(0) = 0 = u′~k

(0) since there
is no closed expression solving it.

Considering the detuned driving (δ 6= 0), we obtain

u~k(t) = Γ2Re
∫ t

0
dt′e(iδ−γ)t

′
∫ t′

0
dt′′e−(iδ+γ)t′′

(
u~k(t

′′) +
1

2

)
. (2.51)

Similar to the resonant case, we can choose between neglecting u~k in the integrand,
which yields

u~k(t) =
Γ2

4(γ2 + δ2)
| exp(iδt)− exp(−γt)|2 (2.52a)

→
t→∞

Γ2

4(γ2 + δ2)
, (2.52b)
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2.4 Dynamics out of equilibrium

or to differentiate three times to obtain

u′′′~k =
(
Γ2e−2γt − δ2 − γ2

)
u′~k

− 2γu′′~k − γΓ2e−2γt(u~k(t) + 1/2), (2.53)

which can be solved numerically with the initial conditions u~k(0) = 0 = u′~k
(0) and

u′′~k
(0) = Γ2/2.

Figure 2.5 depicts the analytic approximation (2.49) and (2.52) compared to the
numerical solution. While Fig. 2.5(a) shows the full time evolution including the
reaching the limit value, panel (b) focuses on a short time interval, such that the
oscillations of the numeric solution can be seen.

0 2 4 6 8 10
t(ps)

0.0

0.5

1.0

1.5

u
⃗ k/1
0−

3

(a)

δ=0,⃗num.
δ=0,⃗analy.

δ=1ps−1,⃗num.
δ=1ps−1,⃗analy.

1.00 1.05 1.10 1.15 1.20
t(ps)

5.5

6.0

6.5

7.0

u
⃗ k/1
0−

4

(b)

Figure 2.5: The magnon occupation u~k(t) of a single magnon mode with ω~k =
50ps−1, κ = 0.01, β~k = 1,Γ = 0.0753 ps−1,Γ′ = 0.9972 ps−1 for damped resonant
(δ = 0, dark and light blue) and damped off-resonant (δ = 1 ps−1, red and orange)
driving. The solid curves show the full numerical solutions of the Eqs. (2.23), in
contrast to the dashed curves representing the analytical approximations Eqs. (2.49)
and (2.52). Panel (a): full time interval; panel (b): zoom of panel (a) to show the
fast oscillations. Figure adapted from Ref. [36].

Finally, we want to include the phenomenological magnon relaxation (γr > 0). We
already know that it induces an exponentially decreasing amplitude in z~k, and we
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Chapter 2 Lattice-driven magnon dynamics

will see that the effect on the magnon occupation is similar. The general Eqs. (2.23)
and (2.27) serve as a starting point. We obtain

u~k(t) = 2Γe−γrt
∫ t

0
cos(ω0t

′)e(γr−γ)t
′Imz~k(t

′)dt′ (2.54)

by integrating u~k, while integrating Eq. (2.27) leads to

z~k(t) = ieih~k−γrt
∫ t

0
f~k(t

′)e−ih~k+γrt
′
dt′. (2.55)

The steps are equivalent to the procedure presented before: the fast oscillations
in Eq. (2.55) are neglected by averaging over one period (cf. Eq. (2.45) and are
inserted into Eq. (2.54)). After averaging once again, we obtain

u~k(t) = Γ2e−γrt
∫ t

0
dt′e−γt

′
∫ t′

0
dt′′e−γt

′′
(u~k + eγrt

′′
/2) (2.56)

for resonant driving (ω0 = 2ω~k). For convinence, we define

ũ~k(t) := exp(γrt)u~k(t). (2.57)

Next, we differentiate ũ~k(t) twice, which yields

ũ′′~k(t) = −γũ′~k + Γ2e−2γt
(
e−γrtũ~k + eγrt/2

)
. (2.58)

This equation could be solved numerically for the initial conditions ũ~k(t = 0) = 0,=
ũ′~k

(t = 0) = 0.

The second approach is to consider only small magnon occupations u~k, which enables
us to analytically integrate Eq. (2.56):

u~k(t) =
Γ2

2

(γ − γr)e
−γrt + γe−2γt − (2γ − γr)e

−(γ+γr)t

γ(γ − γr)(2γ − γr)
. (2.59)

The magnon occupation firstly grows and decreases after reaching a maximum.
Due to the damping and the relaxation, two exponential decays arise: e−γrt and
e−γt. If γ and γr have clearly differing values, the decays are dominant on different
timescales. Otherwise, they are only recognizable as a combined effect.

At the end, we consider also detuned driving and obtain

u~k(t) = Γ2e−γrt<
∫ t

0
dt′e(iδ−γ)t

′
∫ t′

0
dt′′e−(iδ+γ)t′′(u~k + eγrt

′′
/2). (2.60)
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2.4 Dynamics out of equilibrium

Differentiating three times yields

ũ′′′~k (t) = −2γũ′′~k −
(
δ2 + γ2−Γ2e−(2γ+γr)t

)
ũ′~k − (γ + γr)Γ

2e−(2γ+γr)tũ~k

− (γ − γr)Γ
2e(−2γ+γr)t/2. (2.61)

This equations can once again be solved numerically for the initial conditions
ũ~k(0) = 0 = ũ′~k

(0) and ũ′′~k(0) = Γ2/2, while for small values of u~k, a direct integration
of Eq. (2.60) is possible:

u~k(t) =
Γ2

2

(
(γ − γr)e

−2γt

(2γ − γr)(δ2 + (γ − γr)2)

− [(δ2 − γγr + γ2) cos(δt) + δγr sin(δt)]e−(γ+γr)t

(δ2 + γ2)(δ2 + (γ − γr)2)
(2.62)

+
γe−γrt

(2γ − γr)(δ2 + γ2)

)
.

2.4.2 Dynamics of the sublattice magnetization

The order parameter L of an antiferromagnet is the sublattice magnetization –
also called staggered magnetization. It is defined as the difference between the
magnetizations of the sublattices A and B:

L =MA −MB. (2.63)

In contrast to the total magnetization M =MA +MB, L is finite for the ordered
phase, respectively below the Néel temperature TN . For our calculations, we define
the sublattice magnetization per site considering only by the z componenent:

L =
1

N

∑
i

(−1)δi〈Ŝzi 〉 (2.64)

δi =

{
0 for sublattice A
1 for sublattice B.

By applying the same calculations as for the Hamiltonian, we obtain the sublattice
magnetization

L = L0 − δL, (2.65)
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Chapter 2 Lattice-driven magnon dynamics

which consists of two parts. The first term L0 contains the spin per site S = 5/2
reduced by quantum fluctuations ∆S

L0 = S −∆S (2.66a)

∆S =
1

2N

∑
~k

(
A~k
ω~k

− 1

)
. (2.66b)

Deviations from L0 induced for example by magnon excitations or finite temperature
are described by

δL =
1

N

∑
~k

[
A~k
ω~k

〈n~k〉 −
B~k
ω~k

Re〈b†~kb
†
−~k

〉
]
. (2.67)

In the following, we will mainly concentrate on the low temperature regime (T = 0),
where magnon excitations induced by the laser pulses are the dominant effect, and
neglect any temperature dependence.

Note that we obtain only reliable results for |δL| < L since L = S is the upper
bound. The change of the sublattice magnetization has to be significantly smaller
than the constant contribution L0. In addition, the linear spin wave theory is also
only applicable for small magnon occupations, which leads also to small δL.

The resulting sublattice magnetizations for two different driving frequencies ω0 =
30ps−1 (blue solid line) and ω0 = 100 ps−1 (red curve) are shown in Fig. 2.6. Both
curves show osciallations with ω0. For ω0 = 30 ps−1, we observe an exponentially
decreasing amplitude illustrated as blue dashed line. The amplitude for ω0 =
100ps−1 firstly increases and then decreases. The limit value of δL is clearly finite
for ω0 = 100 ps−1, while this effect is not visible for ω0 = 30 ps−1 because the limit
value of this case is too small to be captured in this plot.

To understand the change of the sublattice magnetization, we split it into two
contributions: δL = u(t) + v(t) with the magnon occupation

u(t) =
∑
~k

A~k
ω~k

〈n~k〉 (2.68)

and the Bogoliubov term

v(t) = −
∑
~k

B~k
ω~k

Re〈b†~kb
†
−~k

〉. (2.69)

For ω0 = 100 ps−1, we illustrate the magnon occupation u(t) as green curve and the
Bogoliubov contribution v(t) as orange line in Fig. 2.6. The magnon occupation
grows and reaches a finite value, which determines L(t→ ∞), while the Bogoliubov
term provides the oscillatory behavior.
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Figure 2.6: The change of the sublattice magnetization in dependence on the
time for ω0 = 30 ps−1 and ω0 = 100 ps−1. For ω0 = 30 ps−1, an envelope f(t) =
±c1 exp(−c2t) of the amplitude is fitted with c1 = (6.7± 0.1)× 10−4, c2 = (1.34±
0.05) ps−1. For ω0 = 100 ps−1, the magnon occupation u(t) and the Bogoliubov
term v(t) are depicted. Parameters: M = 100, κ = 0.01, γ = 1.0 ps−1, γr = 0.
Figure taken from Ref. [36].

Effect of the driving strength a0

The driving strength should depend on the laser intensity applied in the experiment.
However, since the exact relation is not known, we calculate the effect of different
driving amplitudes a0 in a reasonable range of max|δJ3(t)|/J (0)

3 ≤ 0.1 in this
section.

Figure 2.7 shows the numerical results for different values of the relative driving
strengths κ3. As red dots the maximum value max|δL| is illustrated for ω =
50ps−1, as green dots for ω = 100 ps−1. The data for ω = 50 ps−1 follows a linear
development

f(κ) = cκ (2.70)

with c = 0.0909± 0.0004 illustrated as blue line. In contrast, we can describe the
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Chapter 2 Lattice-driven magnon dynamics

data points for ω = 100 ps−1 with a parabolic fit

f(κ) = c1κ+ c2κ
2 (2.71)

with c1 = 3.5± 0.1, c2 = 0.225± 0.006 shown as cyan line.

These different behaviors occur due to the different contributions in δL. The magnon
occupation is quadratic in a0 (respectively in κ, too), while the Bogoliubov terms
depend linearly on a0 as shown in Sec. 2.4.1. It is relevant if u(t) or v(t) dominates
δL. Far away from a maximum of the magnon density of states (e.g. for ω = 50 ps−1),
only a few modes are driven resonantly, and therefore, the Bogoliubov contribution
is most important, which leads to the linear relation. In contrast, when a lot of
modes fulfill (approximately) the resonance condition ω0 = 2ω~k, as for ω = 100 ps−1,
the magnon occupation is large, and its contribution to the change of the sublattice
magnetization is so significant that the a20-relation is reflected in δL.
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Figure 2.7: The maximum absolute value of the change of the sublattice magneti-
zation max|δL| in dependence of the relative strength of driving κ. It follows a linear
or quadratic development depending on how many ~k modes are driven (approxi-
mately) resonantly. Parameters: γ = 1.0 ps−1,M = 100, c = 0.0909± 0.0004, c1 =
3.5± 0.1, c2 = 0.225± 0.006. Figure taken from Ref. [36].
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2.4 Dynamics out of equilibrium

Effect of the damping γ

The damping γ of the driving term causes an exponential decrease of the amplitude of
the sublattice magnetization δL, which is understood by our analytical calculations.
This decrease is for example visible as blue dashed line in Fig. 2.6. We fit the
maxima of δL for different γ with

e(t) = c exp(−b(γ)t) (2.72)

to extract a γ dependent decay rate b(γ). Figure 2.8 shows the results as red dots.
For small γ, we see the expected relation b ≈ γ.
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−1
)

f(γ) = cγγ

Figure 2.8: The decrease of the envelope of the sublattice magnetization depends
on the damping γ of the driving. For small damping, the envelope fit parameter
b matches the damping γ. For larger damping, b is smaller than γ. Parameters:
M = 100, κ = 0.005, ω0 = 30 ps−1. Figure taken from Ref. [36].

To understand the underlying mechanism, we should think of 1/γ as time scale
on which the driving acts. Choosing a large damping γ means that the driving is
effectively applied on a short timescale, and vice versa for small γ. The limit of
γ = 0 describes the case when the driving is not damped at all, while γ → ∞ is
translated to a(t) → 0 for all times t. While the driving acts on the system, the
driving frequency determines the frequency of the magnon dynamics.

For larger values of γ, b is smaller than γ since we expect b to saturate for γ → ∞.
The limit value b∞ = limγ→∞(b(γ)) should be of the order of 2ωmax.
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Chapter 2 Lattice-driven magnon dynamics

Furthermore, we have to consider the case of vanished driving. The magnon
occupation does not grow any more; the Bogoliubov terms v~k and w~k oscillate
according their eigenfrequencies ω~k as shown in Eqs. (2.24) and (2.25). As a result,
the sum over all ~k modes dephases since each ~k mode has its own eigenfrequency
according to the density of states.

All in all, the Bogoliubov contributions sum up to a larger value when they are
coherently driven. When the driving vanishes, the dephasing effect becomes impor-
tant.

To quantify the effect of γ, we introduce

L2
quad :=

∫ ∞

0
(δL(t)− δL∞)2dt. (2.73)

It measures in particular the Bogoliubov part since the limit δL∞ determined by
the magnon occupation is substracted. Due to the integral, L2

quad is also sensitive
to the duration of the osillation.
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Figure 2.9: The integral L2
quad of the square of the sublattice magnetization

decreases approximately with 1/γ. The exact fitting parameters are c2 = 0.850±
0.009 for ω0 = 50 ps−1 and c2 = 1.02 ± 0.01 for ω0 = 100 ps−1. Parameters:
M = 100, κ = 0.005. Figure taken from Ref. [36].
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2.4 Dynamics out of equilibrium

Figure 2.9 shows L2
quad in dependence of the damping γ for ω0 = 50 ps−1 (red dots)

and ω0 = 100 ps−1 (green dots). For better visibility, L2
quad for ω0 = 50 ps−1 is

multiplied by 10. We fit the data with

f(γ) = c1γ
c2 (2.74)

and illustrate these results as blue line. The fitting parameters are c2 = 0.850±0.009
for ω0 = 50 ps−1 and c2 = 1.02 ± 0.01 for ω0 = 100 ps−1. The parameter c2 ≈ 1
reveals that the effective application time 1/γ has a significant effect on L2

quad. Our
fit shows that the energy brought into the system grows linearly with the time the
driving is applied.

In contrast, the effect of γ on the maximum value max|δL| is rather small as depicted
in Fig. 2.10. Again, we show the results for ω0 = 50 ps−1 (multiplied by 2 for better
visibility, red dots) and ω0 = 100 ps−1 (green dots). For ω0 = 50 ps−1, the curve
is almost horizontal, while it decreases for increasing γ for ω0 = 100 ps−1. In the
considered intervall, it takes values between 11× 10−4 and 18× 10−4.
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Figure 2.10: The maximum value of δL depends only barely on the damping
γ. The effect is stronger for ω = 100 ps−1. Here the maximum amplitude is
reached after a build-up phase, while the maximum amplitude for smaller driving
frequencies appears near to t = 0. Near to t = 0, the damping plays a smaller
role than for larger times. Parameters: M = 100, κ = 0.005. Figure taken from
Ref. [36].
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The damping effects the time scale of decrease but not the prefactor of the envelope.
The position of the maximum influences if this effect is clearly visible in max|δL|.
Since the maximum for ω0 = 100 ps−1 is reached significantly later than for ω0 =
50ps−1 (c. f. Fig. 2.6), a dependence of γ on max|δL| is observable.

Effect of the driving frequency ω0

To analyze the effect of the driving frequency, we fix the driving amplitude a0 and
the damping γ, and we calculate the maximum absolute value of the change of the
sublattice magnetization max|δL| as well as the limit

δL(t→ ∞) = lim
t→∞

δL(t). (2.75)

We neglect the relaxation (γr = 0) in these calculations. Figure 2.11 shows the results.
The maximum value max|δL| (red curve) and the offset δL(t→ ∞) (magenta curve)
have a maximum near to ω0 = 100 ps−1. For comparison, the rescaled magnon
density of states ρ(ω0/2) is plotted as blue curve. The maxima of max|δL| and
δL(t→ ∞) appear approximately at the maxima of ρ(ω0/2).

When the resonance condition ω0 = 2ω is (approximately) fulfilled for a ~k point,
the amplitude of v~k and the magnon occupation u~k become large. For large density
of states, a lot of ~k points are driven resonantly, and therefore, max|δL| reaches
a maximum due to the Bogoliubov term and δL(t → ∞) because of the magnon
occupation.

Time evolution of the energy

By driving the system, we change the energy of the spin system. We calculate the
amount of energy as temporal evolution and in dependence of the driving strength
a0.

We define the energy per spin as

E(t) =
1

N
(〈H(t)〉 − J1S(Ed +∆E)) . (2.76)

By substracting the equilibrium expection value 〈H0〉 = J1S(Ed +∆E), we focus
only on the non-equilibrium energy contributions induced by the driving.
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Figure 2.11: The maximum value max|δL| and the offset δL(t→ ∞) compared
to the rescaled density of states ρ(ω0/2). Both show a similar behavior due to the
resonance condition ω0 = 2ω. Parameters: M = 100, κ = 0.01, γ = 1 ps−1. Figure
taken from Ref. [36].

Figure 2.12 shows the time evolution of the energy. The energy E(t) oscillates,
which is in this plot only visible for ω0 = 30 ps−1 and short times. In average, the
energy increases until it reaches a limit value

E(t→ ∞) = lim
t→∞

E(t), (2.77)

when the driving has effectively vanished. Numerically, the saturation value E(t→
∞) can be determined by picking the energy for a large t� 1/γ. By calculating a
so called “running average”

Ē(t) =
1

T0

∫ t+T0/2

t−T0/2
E(t′)dt′ (2.78)

with T0 = 2π/ω0, we focus on the slow development, and we get more precise results
for E(t → ∞). When we average over one period, the oscillations with ω0 vanish
and we obtain more accurate results for Ē(t).

For the same driving strength, the saturation value is larger for ω0 = 100 ps−1 than
for ω0 = 30 ps−1 because more ~k modes are driven (approximately) resonantly for
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Figure 2.12: The energy of the system increases and reaches a finite value, when
the driving has vanished. Oscillations with ω0 appear, but due to their small
amplitude, their effect is in this figure only visible for ω0 = 30 ps−1. The amplitude
is larger, when the driving is stronger (large κ) and when the driving frequency
matches a lot of magnon eigenfrquencies (ω0 = 100 ps−1 corresponds to large
magnon DOS). Parameter: M = 100, γr = 0. Figure taken from Ref. [36].

ω0 = 100 ps−1. If we compare the red and the cyan curve, we see that this effect
compensates even a ten times larger driving strength.

For the same driving frequency, the saturation value is larger if the driving strength
κ is larger, which can be seen for κ = 0.005 in comparison to κ = 0.05. To analyze
this effect quantitatively, the saturation value is calculated for different κ, depicted
in Fig. 2.13.

On a logarithmic scale, E(t→ ∞) depends linearly on the driving strength κ. Via
analyzing the gradient, we see that there is a quadratic relation:

f(κ) = cω0κ
2. (2.79)

While the prefactor cω0 depends on the driving frequency and is larger for ω0 =
100ps−1 than for ω0 = 30 ps−1 as already indicated in Fig. 2.12, the exponent is
independent of ω0.
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Figure 2.13: The energy depends quadratically on the strength of driving κ. The
functional dependence holds for both shown driving frequencies, but the absolute
values differs due to the magnon DOS. Parameters: M = 100, γ = 1.0 ps−1. Figure
taken from Ref. [36].

This finding is consistent with an classical harmonic oscillator, which has an energy
absorption proportional to the square of the driving amplitude. Another approach
would be Fermi’s Golden Rule, which predicts the same relation.

But we can explain this finding also with our analytical approximations. The limits
for t→ ∞ are determined by the magnon occupations. Since we observe a quadratic
relation between u~k and κ, we expect the same dependence between E and κ.

2.4.3 Making contact to experiments

In order to apply our modeling to experiments, we firstly use realistic parameters,
and we secondly investigate the effect of considering another Heisenberg coupling
time-dependent.
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Calculations with experimental parameters

Several parameters defining our model can be determined experimentally. In this
section, we refer always to the experiments performed by Bossini et al. [23]. The
driving frequency is given by the phonon frequency: ω0 = 33.6 ps−1. The decay rates
can be estimated by fitting the envelope of the experimental data: γ = 0.055 ps−1

and γr = 3.9 × 10−3 ps−1. However, the relation between the experimental setup
and the strength of driving in our model is unknown so far. We assume that the
higher the laser intensity the larger the strength of driving. But the exact conversion
remains unclear. In consequence, we assume that the couplings Ji should not change
more than 10%: |δJi/Ji| < 0.1, and we calculate the change of the sublattice
magnetization for different a0,i to cover the case of small and of larger driving.

Figure 2.14 shows the change of the sublattice magnetization for experimentally
reasonable parameters. In panel (a), the short dynamics are illustrated. The coherent
oscillations with ω0, as well as the exponential decrease of the amplitude are visible.
The panels 2.14(b)-(d) focus on the long time dynamics. Since the decay rates in the
experiments are much smaller than the decay rates used in the previous sections, we
need to calculate a longer time interval, which results in a higher number of needed
discretization steps N . However, the curves show a similar development, such as,
the exponentially decreasing amplitude. The magnon occupation u(t) in shown
in Fig. 2.14(c). It increases on a time scale of 1/γ and then decays exponentially
due to the relaxation caused by γr. Note that the absolute value of u(t) is small
compared to |δL|. Furthermore, the magnon occupation and consequently also δL
vanish completely for t→ ∞ because we include a relaxation into the equations.

While panels 2.14(a)-(c) shows results for κ = 0.01, panel (d) depicts the change of
the sublattice magnetization for a large driving amplitude κ = 0.06. The contribution
of the magnon occupation is plotted as magenta line. In contrast to the parameter
sets considered before, we can clearly see that the magnon occupation has now a
significant impact on δL. Because of the quadratic dependence of κ on u(t), the
magnon occupation becomes only clearly visible for larger κ.

Modulating other exchange parameters

In the previous sections, we assumed that the Heisenberg coupling J3 acquires
a time-dependent contribution, which is reasonable due to the indirect coupling
between the Mn ions via a Te ion. Nevertheless, J1 and J2 can in principle also be
modulated by optical phonons [23].
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Figure 2.14: The change of the sublattice magnetization for experimental param-
eters. Panel (a) focuses on the short time dynamics while panels (b)-(d) show a
longer time interval. In addition to the change of the sublattice magnetization
(blue solid lines) and its envelope (red dash lines), panels (c) and (d) also depict
the magnon occupation part as magenta solid lines. Panels (a)-(c) show results
for κ = 0.1, while panel (d) considers a larger driving with κ = 0.06. Parameters:
ω0 = 33.6 ps−1, γ = 0.055 ps−1, γr = 3.9 × 10−3 ps−1,M = 2200. Figure taken
from Ref. [36].

The general structure of the differential equations remains unchanged while the
concrete values of α~k and β~k in the expansion of X(t) in the magnon operators
(Eq. (2.20)) need to be adapted. If we assume a driving via δJ1(t), we obtain

α~k =
A~k
ω~k

(
2− 2

B~k
A~k

cos(k3)
)

(2.80a)

β~k =
A~k
ω~k

(
−2

B~k
A~k

+ 2 cos(k3)
)
, (2.80b)
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and

α~k =
A~k
ω~k

(
6− 2

B~k
A~k

γ∆(~k)

)
(2.81a)

β~k =
A~k
ω~k

(
−6

B~k
A~k

+ 2γ∆(~k)

)
. (2.81b)

when we consider a time-dependent δJ2(t).

Figure 2.15 shows an overview of the change of the sublattice magnetization for time-
dependent (a) J1(t), (b) J2(t), and (c) J3(t), all with a relative driving amplitude
of κi = 0.01. All curves show coherent oscillations with the driving frequency
ω0 = 30 ps−1. We chose a damping of γ = 1.0 ps−1 and neglected relaxation
(γr = 0).

Note the different scales of the y axes. The amplitudes of curves in panel 2.15(a) and
(c) are similar while curve of panel (b) has a significantly smaller amplitude. Two
effects explain this observation. Firstly, the relative change κi = max|δJi|/|J (0)

i | is
equal in the three cases. As a result, the absolute value of the change δJi depends
on the coupling in equilibrium J

(0)
i . Secondly, the number of neighbors coupling

by Ji enters into the overall driving strength. Taking into account both effects, the
effective driving via δJ3(t) is comparable strong as via δJ1(t), although J (0)

1 is more
the seven times larger than J (0)

1 because the number of neighbors coupling via J3 is
six times larger. In contrast, J (0)

2 is the smallest coupling considered, which cannot
be compensated by the number of belonging neighbors.

Furthermore, the sign of the curve in Fig. 2.15(a) has an opposite sign than the
curves in panel 2.15(b) and (c). The product β~kB~k determines this global sign in
Eq. (2.31). For the considered parameter set, this yields to positve sign for δJ1 and
negative sign for δJ2 and δJ3.

To this end, the sublattice magnetizations are very similar because of the same
analytic structure. As a result, the qualitative effects of the driving parameters
onto the sublattice magnetization should be also the same if we consider a time-
dependent J1 or J2 instead of J3. Therefore, the investigation presented in previous
sections covers the essential physical behaviour of the change of the sublattice
magnetization.
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Figure 2.15: The change of the sublattice magnetization shows quantitatively
the same behavior no matter which Heisenberg coupling is time-dependent. Panel
(a) depicts a modulated J1 while panel (b) shows it for J2, and panel (c) for
J3. In each case, the relative change of the amplitude is κi = 0.01. Parameters:
M = 200, ω0 = 30 ps−1, γ = 1.0 ps−1, γr = 0. Figure taken from Ref. [36].

2.5 Summary

We investigated the magnon excitations induced by a time-dependent Heisenberg
coupling modeling the magnetic structure of α-MnTe with a Heisenberg Hamiltonian
subject to an external driving field. Focussing on a single mode, we understand
the dynamics within our analytical approximations. It depends on the strength
of driving, the driving frequency, the damping, and the eigenfrequency of the ~k
point.

The sublattice magnetization compromises a sum over all ~k modes. It increases
with increasing driving strengths, and its envelope decreases exponentially with the
damping parameter of the driving. We understand the relation between the driving
frequency and the eigenfrequencies of the ~k modes by comparing with the magnon
density of states. The amplitude of the sublattice magnetization is proportional
to the magnon density of states ρ(ω0/2). The factor of 2 is due to the resonance
condition ω0 = 2ω~k.
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To describe relaxation, which is not included in a microscopic way in our model, we
added a phenomenological relaxation term. As a result, the sublattice magnetization
vanishes for large times and exhibits two different exponential decays. If the damping
and the phenomenological decay parameters act on different time scales, their effects
can be seen in different time intervals.

We were able to calculate the change of the sublattice magnetization for realistic
parameters. Because of the small damping, the effect of an increasing magnon
occupation is more pronounced than in previous calculations. However, the absolute
contribution to the change of the sublattice magnetization depends a lot on the
strength of driving.

We also included the influence of the change of the other Heisenberg couplings J1
and J2 in our analysis. The general effect on the sublattice magnetization is the
same as for time-dependent J3. Only the absolute values change since we consider
always relative changes and the equilibrium values of the coupling parameters as
well as the belonging number of nearest neighbors differ. Due to the similar form of
differential equations and the resulting sublattice magnetizations, we focussed on
the time-dependent Heisenberg coupling J3 since it is the most likely to be changed
by phonon oscillations because J3 is mediated by the electron hopping process across
a Te ion, whose relative distance to the Mn ions oscillates with the laser induced
lattice vibrations.
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Electronic structure of α-MnTe

The electronic structure of α-MnTe has been already studied in the past (see for
example Refs. [43–46]). The aim of this chapter is to give an overview over the
main features and to provide a minimal tight-binding model that captures these
essential electronic properties. This is the starting point for treating the 3d electrons
as strongly correlated within a dynamical mean field theory approach.

The electronic configurations of atomic manganese and tellure are:

Mn: [Ar]3d5 4s2, Te: [Kr]4d105s25p4. (3.1)

The atomic manganese has in addition to the argon configuration partially filled
3d orbitals and a fully occupied 4s orbital. A tellure atom has completely filled 4d
and 5s orbitals as well as partially occupied 5p orbitals in addition to the krypton
configuration. In α-MnTe, the elements appear as ions: Mn2+ and Te2−. In this
case, in contrast to the atomic configuration, the 4s orbitals of Mn2+ are unoccupied,
and the 5p orbitals of Te2− are completely filled. This ignores hybridization effects
and band formation which will be taken into account below.

For our investigations, the band structure near to the Fermi energy, which implies
the valence and the conduction band, is most important. For the valence band, the
fully occupied Te 5p orbitals are a promising candidate. To form a conduction band,
orbitals have to be unoccupied or only partially filled, which applies to the Mn 3d
and 4s orbitals.

To model α-MnTe with a tight-binding Hamiltonian, we have to determine the
hopping parameters between the considered orbitals. After introducing the general
form of a multi-orbital tight-binding Hamiltonian in Sec. 3.1, we consider the density
functional theory in Sec. 3.2 to determine the model’s parameters.
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Chapter 3 Electronic structure of α-MnTe

3.1 Tight-binding Hamiltonian

The tight-binding approach, which is explained in many solid state textbooks, such
as [47, 48], considers hopping between sites,

H =
∑
〈i,j〉

(tijc
†
icj + h. c.), (3.2)

where 〈ij〉 indicating that the sites are neighboring. This Hamiltonian is diagonalized
by applying the Fourier transformation

cm =
1

N

∑
~k

exp(−i~k~lm)c~k (3.3)

with the position ~lm of site m. The sum runs over the whole first Brillouin zone.
We obtain

H =
∑
~k

ε(~k)c†~k
c~k. (3.4)

The dispersion ε(~k) describes the energy of an electron in dependence of ~k. The
concrete form of ε(~k) is determined by the hoppings tij in real-space and the crystal
structure, which enters in the positions ~lm.

3.1.1 Multi-orbital tight-binding Hamiltonian

In general, a unit cell can consist of several atoms, and these atoms can have several
orbitals that should be taken into account. In this case, we need to extend the
previous Hamiltonian. To understand the extension, we first consider both cases
seperately and second bring them together.

Unit cell with several atoms

If a basis contains more than one atom, we need to distinguish on which atom the
operator act: for example, the operator c†A, creates an electron on atom A while cB
annhilates an electron at atom B. The creation and annihaltion operators for a unit
cell consisting of N atoms are summarized in the vectors:

~ci
† = (c†A,i, c

†
B,i, ..., c

†
N,i)

T , (3.5a)

~cj = (cA,j , cB,j , ..., cN,j)
T . (3.5b)

40



3.1 Tight-binding Hamiltonian

The hopping parameter tij becomes a matrix, and we can write the Hamiltonian as
follows:

H =
∑
〈i,j〉

(
(~c †i )

T t~cj + h. c.
)
. (3.6)

If electrons can only hopp to atoms of other kind, e.g. from atom A to B, but not
from one A atom to another A atom, the diagonal matrix elements are the on-site
energies tLL = εL of atom L. In contrast, the off-diagonal elements describe the
actual hopping.

The Hamiltonian is again transformed into ~k space. The Fourier transformation (3.3)
leads to terms that include the position of the atoms. By combining these terms
with the corresponding hopping element in real-space, the transformed hopping
elements obtain an exponential factor exp(i~k(~lm − ~ln)) containing the difference
of the atoms’ positions ~lm and ~ln. If the positions are the same, the exponential
term is 1, which means that the hopping is ~k independent and describes the on-site
energy.

Atoms with several orbitals

Similar to the tight-binding Hamiltonian in a system with several atoms per unit
cell, including several orbitals leads to a matrix formulation. Assuming one atom
per unit cell with n orbitals enables us to define the vector

~ci
† = (c†a,i, c

†
b,i, ..., c

†
n,i)

T . (3.7)

with operators acting on the orbitals a, b, ..., n and a Hamiltonian equivalent to
Eq. (3.6). The diagonal elements describe the orbital energy tll = εl of the orbital
l.

Basis with several atoms possessing multiple orbitals

The Hamiltonian for a basis with more than one atom is very similar to the
Hamiltonian of a one-atom basis with several orbitals. The general form of the
Hamiltonian (3.6) does not change. Only the definition of the vector ~c~k and the
entries of t change. Combining both approaches leads to a vector

~ci
† = (c†AaA,i, c

†
AbA,i

, ..., c†AnA,i
, c†BaB ,i, ..., c

†
NnN ,i

)T . (3.8)
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The basis has N atoms: A,B, ..., N , and the L-th atom has nL orbitals: aL, bL, ..., nL.
The length of the vector is consequently:

λ =

N∑
L=1

nL∑
l=1

1 (3.9)

with L = 1 considering atom A, as well as l = 2 referring to orbital b, and so on.
The matrix t has the dimension λ× λ, which leads to λ bands.

The diagonal elements tLl,Ll = εLl describe the orbital energy of orbital l at atom
L. Note that one atom can possess different orbital energies. Typically orbitals of
different kinds (s, p, d, ...) differ in their energies. In addition, orbitals of the same
kind can be split for example by a crystal field. To this end, we arrive at the bilinear
form:

H =
∑
~k

~c†~k
t(~k)~c~k. (3.10)

Multi-orbital tight-binding Hamiltonian for α-MnTe

After we have established the generic form of a multi-orbital tight-binding Hamilto-
nian, we have to adjust it to the considered material α-MnTe. Therefore, we have
to ask two questions: How many atoms are in the unit cell? Which orbitals do we
have to take into account? While the first question is easy to answer, the second
one is more challenging.

The unit cell for the magnetically ordered phase of α-MnTe consists of two Mn and
two Te ion. We have two take into account in total these four atoms.

A naive approach answering the second questions would be to include all orbitals.
As a result, we would not miss any important effects. But a lot of the orbitals lie
very low in energy – far below the Fermi energy – and are therefore not relevant for
the physics we are interested in. Additionally, dealing with a large Hamilton matrix
would require an enormous numerical effort.

In consequence, we have to choose an appropriate set of orbitals. It should be as
small as possible, but has to describe the relevant features of α-MnTe. Concerning
the electronic structure, it must be sufficient to obtain a band gap as characteristic
of a semiconductor. Therefore, we need a valence and a conduction band.

Considering the approach of Masek et al., for quantitatively good results, the 5s,p
valence orbitals of Te and the 4s,p and 3d orbitals of Mn have to be included [44].
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3.1 Tight-binding Hamiltonian

In a next step, we have to specify the matrix elements of t. For this purpose, we
use the wanniernization of density functional theory results in Sec. 3.2.

3.1.2 Calculating the band structure

The electronic band structure is calculated by diagonalization of t(~k): The ith
eigenvalue determines ε~k,i of the ith band, and the eigenvectors the mixing of the
different orbitals in this band at the vector ~k.

For plotting the results, we have to choose a path through the Brillouin zone. For
each type of Brillouin zone, there is one path or a few common paths that cover the
most important points in the zone. For the hexagonal structure of α-MnTe, we will
use the path

Γ →M → K → Γ → A→ L→ H → A. (3.11)

While the Γ point lies in the middle of the Wigner-Seitz cell (~k = (0, 0, 0)T ), the
other points lie on different points on the edge of the cell. Between the points, we
define a certain amount of equidistant ~k points.

For example, to illustrate the bands that have Mn 3d character, we need to sum
over all projections on Mn 3d orbitals and to plot the dispersion while encoding the
total overlap as color of the line. In the following, a large overlap is always displayed
with red and a vanishing overlap with blue.

3.1.3 Calculating the density of states

The total density of states is given by

ρ(ε) = lim
δ→0

1

π
Im 1

Nk

∑
~ki

G~k,i(ε− iδ) (3.12)

with the Green’s function G~k,i(z). The sum has to cover the whole Brillouin zone,
and the index i ensures that all eigenenergies are included, which is essential if we
consider more than one band. To normalize the sum, we divide it by the number
N~k of ~k points.

For a free particle with

G~k,i(z) =
1

z − ε~ki
, (3.13)
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the density of states is

ρ(ε) =
1

Nk

∑
~ki

δ(ε~ki − ε). (3.14)

Equation (3.14) can be implemented numerically straightforwardly [49]. The ~k point
component can be distributed equidistant in each ~k direction. Note that the area
should be chosen such that the Γ point lies in the middle [49]. The resulting energies
need to be histogramed. The number of bins, or respectively the width of the bins,
has to be adapted to the number of ~k points in order to obtain a reasonable result.

Starting with Eq. (3.12), it is also possible to calculate the density of states directly
via the Green’s function:

ρ(ε) = lim
δ→0

1

π
Im 1

Nk

∑
~ki

1

ε− ε~ki − iδ
. (3.15)

For energies equal to the eigenenergies, the denominator almost vanishes. Only the
infinitesimal shift into the complex planes regularizes the fraction.

While both Eqs. (3.14) and (3.15) lead to the same results in the simple cases, only
Eq. (3.12) is able to include a complex selfenergy, which can be useful in further
calculations.

3.2 Density functional theory

The density functional theory (DFT) is an approach to calculate the ground state
properties of a system. Although all obtained values, such as energies and states,
are only approximations, the method allows us a deeper insight in many materials,
which was honored with the Nobel prize in chemistry for Walter Kohn in 1998 [50].
In this section, we follow Ref. [51] to outline the method.

We start with the many-body Hamiltonian

H =

N∑
i=1

~p2i
2m

+
e2

2

∑
i6=j

1

|~ri − ~rj |
+

N∑
i=1

V (~ri). (3.16)

The first term describes the kinetic energy of the electrons with momentum ~pi
and mass m. The Coulomb interaction between the electrons at position ~ri and
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3.2 Density functional theory

~rj is captured in the second term. The potential V (~ri) of the third term includes
interactions with the nuclei:

V (~r) = −
∑
I

e2ZI
|~rnuc,I − ~r|

(3.17)

with the position ~rnuc,I of the nuclei and the nuclear charge numbers ZI . Due to the
Born-Oppenheimer approximation, the kinetic energy of the nuclei is not included
in the Hamilitonian.

Defining the many-body Hamiltonian is straightforward, but solving this Hamili-
tonian exactly for a large number of electrons is generally not feasible. The DFT
focuses on the ground state:

EGS = min
ψ
E[ψ] with E[ψ] = 〈ψ|H|ψ〉 and 〈ψ|ψ〉 = 1 (3.18)

with the wavefunction ψ(~r1, ~r2, ..., ~rN ).

The theorem of Hohenberg and Kohn [52] states that the ground state energy can
be written as a functional of the electron density n:

EGS = min
ψ
E[ψ]

DFT−→ EGS = min
n
E[n] (3.19)

with the constraint that the integral over the density is the total number of particles

N =

∫
n(~r)d3r. (3.20)

The Lagrangian

Ω[n, µ] = E[n] + µ(N −
∫
n(~r)d3r) (3.21)

with the Lagrange multiplier µ is introduced to find the minimal energy under the
given constraint concerning the particle number. This problem is simpler than
solving the original Hamilitonian.

Writing the many-body Hamiltonian (3.16) as energy functional leads to:

E[n(~r)] = 〈ψ|
N∑
i=1

~p2i
2m

|ψ〉︸ ︷︷ ︸
T [n(~r)]

+ 〈ψ|e
2

2

∑
i6=j

1

|~ri − ~rj |
|ψ〉

︸ ︷︷ ︸
U [n(~r)]

+ 〈ψ|
N∑
i=1

V (~ri)|ψ〉︸ ︷︷ ︸
V [n(~r)]

. (3.22)
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While the part including the ionic potential can be easily written with the charge
density:

V [n(~r)] =

∫
V (~r)n(~r)d~r, (3.23)

a similar description for the kinetic contribution and the electron-electron interactions
is more difficult to find. Both parts can be summarized as universal Hohenberg and
Kohn functional:

FHK = EGS[ρ]−
∫
V (~r)n(~r)d~r. (3.24)

In contrast to the ionic potentials, this functional does not depend on the specific
system, which explains its universality. Finding suitable functionals for the electron-
electron interaction and the kinetic energy turned out to be difficult. There are
several approaches for the kinetic energy, for example assuming a non-interacting
homogeneous electron gas or starting with the hydrogen atom. Although both
attempts are correct in their specific case, they differ significantly, which means that
neither of them is universally applicable.

Kohn and Sham suggest a different approach [53] to avoid finding a functional for
the kinetic energy. The idea is that electronic states can be determined by one-body
orbitals {φi(~r)} with energies {εi} leading to the kinetic energy

T0 = −1

2

∑
i

∫
φ∗i (~r)∇2φi(~r) and n(~r) =

∑
i

|φi(~r)|2. (3.25)

The idea is to construct a system of a non-interacting electron gas in an effective
external field Veff such that it has the same charge density as the actual interacting
system. In consquence, their Euler-Lagrange equations have to be equal:

∂FHK[n]

∂n(~r)
+ V (~r) =

∂T0
∂n(~r)

+ Veff(~r), (3.26)

which determines the effective potential

Veff(~r) = V (~r) +
∂(FHK[n]− T0)

∂n(~r)
. (3.27)

It can be rewritten
Veff(~r) = V (~r) + VH(~r) +

∂EXC[n]

∂n(~r)
(3.28)

by defining a classical Hartree electron-electron interaction potential

VH(~r) =
∂J [n]

n(~r)
=

∫
n(~r′)

|~r − ~r′|
d~r′ (3.29)
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3.2 Density functional theory

with
J [n] =

1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ (3.30)

and the exchange-correlation energy

EXC = T [n]− T0[n] + Eee[n]− J [n] (3.31)

with the electron-electron interaction energy Eee. The terms T [n] and Eee[n] are
still not exactly determined, but in practice, approximating EXC with a suitable
functional was more succesful than approximating the kinetic energy. Different
approaches were developed, such that the local density approximation [52] or the
generalized gradient approximations with better average accuracy [54].

There are several commercial and non-commercial implementations of the density
functional theory – for example FLEUR [55] or VASP [56] – that share the basic
idea, but have differences in details. For this thesis, Quantum Espresso [57, 58] was
used. The pseudopotentials for Mn and Te were taken from [59] based on Ref. [60]
choosing the PBEsol exchange functional [61, 62], which is a kind of generalized
gradient approximation. The input files were generated with help of two tools of
the Materials Cloud [63]: the ”Quantum ESPRESSO input generator and structure
visualizer” [64] based on [65] and ”SeeK-path: the k-path finder and visualizer” [66]
based on [67] with the software spglib [68] and the parser pymatgen [69].

3.2.1 Wannier functions

In order to obtain hopping matrix elements that we can use in the tight-binding
model, we have to find a description of the electronic band structure based on
Wannier orbitals. The program WANNIER90 [70] offers this functionality. We give
a short overview over Wannier orbitals that is close to Ref. [71].

Due to the lattice structure of crystals, the Hamiltonian has a discrete translational
invariance. This symmetry yields to periodic eigenstates – the Bloch states –

ψ
n~k

= u
n~k
(~r) exp(i~k · ~r), (3.32)

while u
n~k

fulfils the symmetry of the Hamiltonian. These Bloch functions solve
the Hamiltonian, but a localized representation would be beneficial. Therefore,
unitary transformations are applied to obtain a localized set of functions that are
still eigenstates of the Hamiltonian. The new functions are superpositions of Bloch
states. The simplest approach would be to include all ~k of the Brillouin zone and to
consider equal amplitudes of the contributions:

w0~r =
V

(2π)3

∫
BZ
ψ
n~k
d~k (3.33)
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Chapter 3 Electronic structure of α-MnTe

with the volume V of the real-space unit cell. This first function, Eq. (3.33),
describes the atom localized in the origin (at ~R = 0). To calculate other Wannier
functions, the amplitudes are modified by the factor exp(−i~k ~R). In the following,
the states are given in the Dirac notation: the state |~Rn〉 belongs to the wave
functions wn~R in unit cell at real-space lattice vector ~R and band n. Reference [72]
shows that the state can be construrcted as

|~Rn〉 = V

(2π)3

∫
BZ

exp(−i~k ~R)|ψ
n~k
〉d~k. (3.34)

The |~Rn〉 form an orthonormal basis. The inverse transformation

|ψ
n~k
〉 =

∑
~R

exp(i~k ~R)|~Rn〉 (3.35)

builds the original Bloch states starting from the Wannier states.

In general, the Bloch and the Wannier functions are equally good to describe the
system since they are different sets of eigenfunctions for the same eigenenergies.
One set can be obtained by a unitary transformation of the other one. Since we
aim at a tight-binding modeling, the Wannier functions fit better to our targeted
description because they are localized.

The approach for one band is extended to λ bands:

|ψ̃
n~k
〉 =

λ∑
j=1

U
(~k)
jn |ψ

n~k
〉. (3.36)

The matrix U
(~k)
jn has the dimension λ, and is periodic in ~k. Note that these new

states are not longer eigenstates of the Hamiltonian and that the index n does not
refer to a band index in the usual way.

3.2.2 Hopping between different types of orbitals

The wanniernization of the DFT results gives us the hopping parameters between
different types of and distances between the orbitals. Due to the large size of our
unit cell and the large number of neighboring unit that we include, the easiest way
to obtain an overview of the hopping is to look at the resulting Hamiltonian in a
visualized way. In Fig 3.1, we see the real part of the matrix elements illustrated
with colors for ~k = ~0. Since the diagonal elements contain mainly the orbital energy,
which can be shifted by the Fermi energy, the values of these elements are not
displayed.
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Figure 3.1: Illustration of the Hamiltonian matrix for ~k = 0. Each square
represents a hopping matrix element. On the left side and at the top, it is defined
which kind of orbitals belong to the matrix elements. The value of the hopping
is color-coded. The diagonal matrix elements are not shown since their absolute
value can be shifted by an arbitrary energy (for example by the Fermi energy).
While orbitals at the same atom do not couple strongly, which is reasonable since
they are orthogonal in the ideal case, there is hopping between orbitals of different
ions in the unit cell. The wanniernization [70] of the Quantum Espresso [57, 58]
results was used to obtain these hopping parameters.

The Hamilton matrix differs for each ~k point, however, we get a rough idea which
orbitals interact. Orbitals at the same atom do hardly interact, which is shown as
light blue entries for examples for (Mn A 3d)–(Mn A 3d) or (Te B 5p)–(Te B 5p).
The vanishing hopping is understandable since the atomic wavefunctions should be
orthogonal. However, the hopping between orbitals of the same kind on different
sites, such as (Mn A 3d)–(Mn B 3d), does not vanish. We see that hopping between
d orbitals of different sites is rather small, while two specific Te 5p orbitals show
the largest hopping parameter. Each Mn 4s orbital couples to one d orbital of the
other Mn-site and one of each Te orbitals. Depending on the Te site, the hopping
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Chapter 3 Electronic structure of α-MnTe

parameter is positive or negative.

Note that each entry includes not only hopping between the considered orbitals in
one unit cell, but also between neighboring unit cells. We included also next-nearest
unit cells. For ~k = 0, they sum up in a simple way. For arbitrary ~k, each matrix
element has a phase factor exp(i~k∆~R) including the distance ∆~R between the
orbitals. Next-nearest neighbor unit cells should therefore contribute less then the
original unit cell or neighboring unit cells. Due to the decreasing impact when
considering unit cells at large distances, we are able to neglect unit cells that are far
away from the original one.

The orbital energies obtained by the wanniernization are displayed in Tab. 3.1. They
are given relatively to the Fermi energy. Since the DFT results were obtained for
a paramagnetic case without correlations, the orbital energies are equal for both
Mn or Te atoms. The Te 5p orbital energy lie at approximately −2 eV clearly under
the Fermi energy while the Mn 4s orbital energy lies at approximately 1.8 eV and
therefore, significantly above the Fermi energy. The Mn 3d orbital energies lie near,
but slightly under the Fermi energy with values between −0.363 eV and −0.180 eV.
In contrast to the assumption of a splitting in two eg and three t2g states, only one
energy differs from the other four energies.

Table 3.1: Orbital energies in relation to the Fermi energy measured in eV obtained
by the wanniernization of the DFT bands.

εp (Te) −2.106 995 −1.809 514 −1.809 787
εs (Mn) 1.818 969
εd (Mn) −0.362 550 −0.181 645 −0.180 132 −0.180 131 −0.180 166

3.2.3 Dispersion and density of states

Figure 3.2 shows the resulting dispersion obtained by DFT (Quantum Espresso)
method as blue lines. All bands are shifted by the Fermi energy EF = 7.9511 eV.
By applying the wanniernization method for Mn 3d, 4s, and Te 5p bands, we obtain
hopping parameters that we use to build a tight-binding model. We diagonalize
it with a solver of the C++ library Armadillo [73, 74]. These results are depicted
as red dashed lines. While Fig. 3.2(a) includes a large energy window, Fig. 3.2(b)
focuses on the bands around the Fermi energy.
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Figure 3.2: Panel (a) shows a part of the dispersion obtained with Quantum
Espresso [57, 58] as blue line. In addition, it depicts the calculated dispersion using
the hopping parameters gained by Wannernization [70] including Mn 3d, 4s, and
Te 5p orbitals. To focus on the part covered by the wanniernization, we provide a
zoom-in in panel (b). Although there are differences to the dispersion calculated
by the DFT, the tight-binding model reproduces the dispersion well enough.

All in all, the Wannernization captures very well the targeted bands. The inaccuracy
is larger for higher lying bands probably because of neglecting the Mn 4p orbitals.
Although our tight-binding model shows several deviations, it reproduces the band
structure mostly accurately.

The resulting dispersion belongs to a metal as there is no band gap at the Fermi
energy since the Mott physics is not captured in the DFT calculations. In a mean
field theory, the spins will be aligned alternatively. We mimic this effect by applying
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a Hartree shift to the orbital energies in the tight-binding approach:

εd,A → εd,A +
U

2
(3.37a)

εd,B → εd,B − U

2
. (3.37b)

For U = 5 eV, we obtain the dispersion depicted in Fig. 3.3, which has indeed a
band gap.

For better understanding, we illustrate the overlap with the orbitals in Fig. 3.3.
The color indicates the character of the bands: red means high overlap and blue
low overlap with the orginal atomic orbitals. The overlap with the Te 5p orbitals
is shown in panel 3.3(a), the overlap with Mn 3d orbital in panel 3.3(b), and the
overlap with Mn 4s orbitals in panel 3.3(c). The valence band of our model has
mainly Te 5p character while the upper Mn 3d band forms together with the Mn
4s band the conduction band. Especially, at the K point, we see the necessity of
including the Mn 4s bands.

The density of states show very well the appearence of the band gap when applying
the Hartree shift (3.37b). In Fig. 3.4, the blue line shows the density of states in
the metallic case while the red curve depicts the insulator case. For the calculation,
we use Eq. (3.15) with δ = 1× 10−4, and we consider 100× 100× 100 ~k points and
150 ω bins. The resulting indirect band gap measures approximately 0.6 eV, which
is smaller than the experimental value of Eg = (1.27− 1.46) eV [33].

The density of states is shifted by the Fermi energy of the paramagnetic calculation.
Note that the Fermi energy of the system including the Hartree shift should actually
be larger since it should lie in the band gap.
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Figure 3.3: The projections on the original atomic orbitals offer us insight in the
character of the bands. Panel (a) shows the overlap with Te 5p while panel (b)
focuses on the Mn 3d and panel (c) on Mn 4s. In addition to the hopping gained
from the wanniernization, we include a Hartree shift of 5 eV which splits the Mn
3d bands and provides a band gap.
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Figure 3.4: The density of states based on the tight-binding model using the
hopping parameter obtained by the wanniernization of the DFT results (blue line)
shows no band gap at the Fermi energy. When a Hartree shift (3.37b) of U = 5 eV
is included (red line), a gap appears. Note that both curves are shifted by the
Fermi energy in the case without Hartree shift. The actual Fermi energy of the
case with Hartree shift should lie in the band gap.
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3.3 Summary

We built multi-orbital tight-binding models to describe the electronic structure of
α-MnTe. Very important is the choice of included orbitals. Near the Fermi energy
are Mn 4s, p, 3d, and Te 5p bands. Lower in energy, we find Te 5s bands, which do
not hybridize with the other bands, and therefore, can be neglected.

We calculated the band structure with the density functional theory including
the Mn 4s, p, 3d, and Te 5p orbitals. By performing a wanniernization of density
functional theory results, we obtained the hopping parameters between all atoms
including up to next-nearest neighboring unit cells. The resulting dispersions are
very similar to the DFT calculations. By neglecting correlations, the material is
metallic. We do not see a band gap at the Fermi energy because the d bands must
be significantly lower in energy compared to the DFT prediction, and the Mott
physics must be included.

However, since the main feature of a semiconductor is its band gap, we had to
extend the model. We inculded a splitting between the Mn 3d bands. In a one-band
model, the value of this Hartree shift is the Coulomb interaction. In multi-band
model, its value depends also on the Hund’s coupling between the spins. We chose a
shift of 5 eV, which reproduces the known band structure well enough. We obtained
a band gap of 0.6 eV that is smaller than the experimentally measured value of
Eg = (1.27 − 1.46) eV [24]. This underestimation is typical for DFT calculations
and well known. The dispersion reveals that the Te 5p bands form the valence
band, while the Mn 3d and 4s orbitals build the conduction band. Our model is
a suggestion for a minimal tight-binding model that captures the main electronic
properties of α-MnTe.
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The magnetic shift of the band gap

In this chapter, our objective is to combine the electronic and magnetic properties
of α-MnTe in order to calculate the magnetic shift of the band gap observed in
experiments [24] and theoretical models [26, 27]. Our approach utilizes a dynamical
mean field method in ~k space, which we introduce in Sec. 4.1. The impurity problem
is solved using the numerical renormalization group approach, explained in Sec. 4.2.
Due to this choice of impurity solver, in contrast to Ref. [26, 27], we are able to
calculate continuous spectra, which are more similar to experimental measurable
data than discrete spectra. Finally, we perform the numerical calculations in Sec. 4.3
to acquire the spin expectation values and the Green’s functions of the Mn 3d
electrons. The magnetic blue shift of the Mott gap is measured with an appropriate
criterion. Furthermore, we insert the resulting self-energy into a multi-orbital
tight-binding model to analyze the band gap.

4.1 Dynamical mean-field theory

The dynamical mean-field theory (DMFT) allows the calculation of the electronic
structure of strongly correlated materials [75]. For a comprehensive understanding,
Ref. [76] provides a good overview.

The primary objective of mean-field theories is to reduce a complex many-body
problem into an effective one-body problem. Figure 4.1 provides an illustration
of this concept. Solving the resulting equation requires self-consistency, which is
comparatively easier than solving the original problem exactly, which is often not
possible at all.

The first and very prominent application of the mean-field approach was carried
out by Weiss [77]. He calculated the magnetic field of a ferromagnet by defining an
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Chapter 4 The magnetic shift of the band gap

Figure 4.1: Mapping a many-body problem on a one-body problem is the concept
of the mean-field theories. While one particle is taken representatively, the effect
of the others is described effectively, for example as a field acting on the particle.

effective magnetic field – the Weiss field – that summarizes the impact of all other
spins on a single spin: ∑

ij

Jij ~Si~Sj →
∑
j

~Beff,j ~Sj (4.1)

with the effective field ~Beff,j =
∑

i Jij〈~Si〉. Equivalently, the Coulomb interaction
can be transformed in an effective one-particle term:

Un↑n↓ → U
(
n↑〈n↓〉+ 〈n↑〉n↓

)
. (4.2)

A detailed description of the antiferromagnetic Heisenberg model in mean-field
approximation can be found in Sec. 4.3.2.

The dynamical mean-field theory extends the original mean-field approach by
including the local dynamics. The many-body lattice problem is mapped on a
many-body local problem embedded in an effective medium. While this mapping
is exact in infinite dimensions, the approximation which is made in the DMFT
is assuming that the self-energy is local and ~k independent. In contrast to the
conventional mean-field theory, the effective field is time-dependent. The calculation
is done iteratively in DMFT loops until the solution has converged.
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4.1 Dynamical mean-field theory

4.1.1 The DMFT loop

For each iteration, the effective impurity model needs to be solved. In general,
different impurity solvers are available, for example, Quantum Monte Carlo methods
[78, 79] or exact diagonalization [80]. Here, we will use the numerical renormalization
group method (NRG) [81]. An approach for an antiferromagnetic one-band Hubbard
model solved by DMFT and NRG is described in Ref. [82]. The steps are:

1. buildung quantum impurity model, guessing an inital self-energy, and choosing
initial hybridization functions

2. calculating local Green’s function

Gimp
σ =

1

z − εdσ +Σσ(z)−∆σ(z)
(4.3)

and impurity self-energy with NRG

3. calculating bath Green’s function

Glattice
σ (z) =

1

N

∑
~k

1

z − ε~kσ − Σσ(z)
=

∫
ρσ(ω)

z − ω − Σσ(z)
dω (4.4)

4. demanding that
Glattice
σ = Gimp

σ , (4.5)

the complex, energy dependent media ∆σ(z) are calculated

∆σ(z) = −(Glattice
σ )−1 +Σσ(z)− z (4.6)

Steps 2.–4. need to be repeated until the Green’s functions and the media ∆σ(z)
do not change any more significantly. In practice, this is checked by calculating
the maximum of the absolute deviations of the medium of the current and the
previous DMFT iteration. In addition, the same criterion is also applied to the
lattice Green’s functions. If both deviations are smaller than 1× 10−3, we assume
that the calculations have converged.

The characteristic approximation of the DMFT – assuming a local self-energy –
becomes clear in Eq. (4.4). The equation would be exact if the ~k dependence entered
in the self-energy Σσ(z).

Note that there are different approaches to calculate the density of states ρσ entering
in the lattice Green’s function as well as there are different techniques solving an
impurity problem besides the NRG method.
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Chapter 4 The magnetic shift of the band gap

4.1.2 Hubbard-Kondo lattice model

To model the five occupied 3d orbitals with parallely aligned spins due to Hund’s
coupling, we consider the Hubbard-Kondo lattice Hamiltonian proposed in Ref. [26]1.
It treats four of these five Mn 3d spins localized while one spin s = 1/2 remains
itinerant:

H = −
∑
ij,σ

tij(c
†
jσciσ+h.c.)+U

∑
i

ni↓ni,↑−JH
∑
i

~Si~si+
∑
ij

Jij(~Si~sj+ ~Sj~si+ ~Si~Sj).

(4.7)
We replace the last term by the mean field Hamiltonian

HMF = −
∑
i

( ~Bloc
eff,i

~Si + ~Biti
eff,i~si) (4.8)

with the effective magnetic fields

~Bloc
eff,i =

∑
i

Ji〈~Si + ~si〉 (4.9a)

~Biti
eff,i =

∑
i

Ji〈~Si〉, (4.9b)

which leads to the Hamiltonian:

H = −
∑
ij,σ

tij(c
†
jσciσ + h.c.) + U

∑
i

ni↓ni,↑ − JH
∑
i

~Si~si +HMF. (4.10)

The effective magnetic fields defined in Eqs. (4.9a) and (4.9b) need to be determined
self-consistently. Augmented with a selfconsistency condition for the electronic DOS
and the effective Weis fields, we obtain an effective impurity problem which can be
solved with DMFT.

Different sets of coupling parameters Jij can be found in the literature (e.g. in
Ref. [40] and [41]). If the coupling Jij is antiferromagnetic, there is a relation
between Jij and the hopping parameter tij :

Jij =
4t2ij
∆U

(4.11)

with the bare charge gap ∆U = U + 2JH .

1Note that our definition of JH differs by a factor of 2 compared to Ref. [26].
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4.1 Dynamical mean-field theory

4.1.3 DMFT on a bipartite lattice

In general, the self-energies of different sublattices are different (ΣAσ 6= ΣBσ ), and
two impurity problems should be solved. The Green’s function can be written as
matrix:

G~kσ(z) =

(
ζAσ − εAA~k

−εAB~k
−εAB~k ζBσ − εBB~k

)−1

(4.12a)

=
1

(ζAσ − εAA~k
)(ζBσ − εBB~k

)− (εAB~k
)2

(
ζBσ − εBB~k

εAB~k
εAB~k

ζAσ − εAA~k

)
(4.12b)

with ζ
A/B
σ = z − Σ

A/B
σ . However, in the Néel state, the properties of sublattice A

and spin σ are equal to the properties of sublattice B and the opposite spin σ̄. In
particular, that means: ζAσ = ζBσ̄ = ζσ. Therefore, it is sufficient to solve only one
effective impurity problem:

GAloc(z) = GAAii,σ(z) =
1

N

∑
~k

ζσ̄ − εBB~k
(ζσ − εAA~k

)(ζσ̄ − εBB~k
)− (εAB~k

)2
. (4.13)

The dispersions εAA~k = εBB~k
and εAB~k

for α-MnTe include contributions of four
different types of nearest-neighbors and can be calculated in the tight-binding
formalism:

εAB~k = −t1 cos
( c
2
kz

)
− t3γ~k cos

( c
2
kz

)
= −(t1 + t3γ~k) cos

( c
2
kz

)
(4.14a)

εAA~k = εBB~k = −t2γ~k − t4 cos(ckz) (4.14b)

with γ~k = cos(akx) + cos

(
a

2
kx +

√
3a

2
ky

)
+ cos

(
−a
2
kx +

√
3a

2
ky

)
.

(4.14c)

For a simple cubic lattice with lattice including only nearest neighbors, there is
no hopping between sites of the same sublattice (εAA~k = εBB~k

= 0). Equation (4.13)
could be written with εAB = ε as

Gii,σ(z) = ζσ̄

∫ ∞

−∞

ρ(ε)

ζ↑ζ↓ − ε2
dε (4.15)

= ζσ̄

∫ ∞

−∞
dε

ρ(ε)

2
√
ζ↑ζ↓

[
1√

ζ↑ζ↓ − ε
+

1√
ζ↑ζ↓ + ε

]
, (4.16)

61



Chapter 4 The magnetic shift of the band gap

which is derived and evaluated in Ref. [82].

Although in α-MnTe, the contributions εAA~k and εBB~k
do not vanish in general, we

will follow this simplified approach to gain an understanding of the problem. We
will extend the calculations of Ref. [82] by considering a large U and including
local spins in our model. Applying Eq. (4.16) to our system requires addionally an
approximation of the density of states of α-MnTe. However, it offers already a very
good starting point of investigation.

In the paramagnetic case, the sublattices A and B are identical, and the corresponding
Green’s function is:

G(z) =
∑
~k

1

ζ − ε~k
=

∫ ∞

−∞

ρ(ε)

ζ − ε
dε (4.17)

with the density of states

ρ(ε) =
1

N

∑
~k;|ki|≤π

δ(ε− ε~k) (4.18)

with absorbing the lattice constant in ~k. To obtain the same result from two identical
sublattices, we start with Eq. (4.16) and take into account that we do not distinguish
between ↑ and ↓ (ζ↑ = ζ↓):

Gii(z) = ζ

∫ ∞

−∞

ρbip(ε)

2ζ

[
1

ζ − ε
+

1

ζ + ε

]
dε

=
1

2

∫ ∞

−∞
ρbip(ε)

[
1

ζ − ε
+

1

ζ + ε

]
dε

(4.19)

The Brillouin zone of the doubled unit cell is only half as large, which affects the
~k-summation:

ρbip(ε) =
1

N

∑
~k;|ki|≤π/2

δ(ε− ε~k) (4.20)

and the dispersion. In contrast to the single atom per unit cell calculation, we
obtain two bands. The representations are equivalent since folding the band of the
single atom into the smaller Brillouin zone would exactly yield the second band.
In consequence, the resulting density of states ρ(ε) are identical even though the
definitions differ. In summary, the calculations assuming a bipartite lattice are
equivalent to the calculations of a simple lattice when the material is not magnetically
ordered, and therefore, the two sites of the bipartite lattice are equivalent. In the
formalism, this is ensured by taking into account the different sizes of the Brillouin
zones and the different numbers of bands.
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4.2 Numerical renormalization group method

4.1.4 Dealing with five 3d bands

Since a multi-orbital calculation is numerically expensive, we need simplifications to
treat the five 3d-bands. We use in our work a one-band Hamiltonian and a Gaussian
density of states to model the electronic DOS for a Mn 3d band.

A similar, but more accurate way would be to average over all five d-bands to obtain
one effective band (and one effective density of states). In a more elaborate model,
conceptually, also all five bands could be included. In addition, the crystal field
splitting would induce the splitting of the eg and t2g. However, not more than three
bands are feasible numerically with the NRG at the moment.

4.2 Numerical renormalization group method

The numerical renormalization group (NRG) method is a targets quantum impurity
problems. The approach was developed by G. Kenneth Wilson [81], who was honored
with the Nobel prize in physics in 1982 [83]. The introduction given in this section
follows the detailed description of the NRG review by Bulla et al. [84].

A quantum impurity is defined by a few local degrees of freedom coupled to a
fermionic or bosonic bath with a typically continious excitation spectrum. In
consequence, the general Hamiltonian contains three parts:

H = Himp +Hbath +Himp-bath (4.21)

with the Hamiltonian of the impurity Himp, the Hamiltonian of the bath Hbath, and
the Hamiltonian Himp-bath describing the interaction between these subsystems.

It is possible to treat for example strong Coulomb interactions, such as in the single
impurity Anderson model (SIAM) for one orbital:

Himp =
∑
σ

εdd
†
σdσ + Un↑n↓ (4.22)

with the creation (annihaltion) operator d†σ (dσ) that creates (annhilates) an electron
with energy εd. To include both spin orientations, we need to sum over the spin σ.
Two electrons on the same site – measured with the occupation operators nσ = d†σdσ
– increase the energy by U due to Coulomb repulsion.

The bath is represented by a gas of non-interacting fermions (or bosons):

Hbath =
∑
~k,σ

ε~k,σc
†
~k,σ
c~k,σ. (4.23)
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Chapter 4 The magnetic shift of the band gap

The operator c†~k creates a particle in the bath while c~k annhilates one. The impact
of the bath onto the impurity is captured in the bath spectral function

Γσ(ω) = Im∆σ(ω − iδ) = π
∑
~k

V 2
~k
δ(ω − ε~k,σ). (4.24)

The spatial dimension of the bath does not enter into the dynamic function ∆(ω).
The bandwidth D is defined by the interval, in which ∆(ω) lies: [−D,D] with D > 0.
When choosing D = 1, we can interpret it as energy unit.

The interaction between the impurity and the bath is described by the hybridization
V~k:

Himp-bath =
∑
~k,σ

V~k(d
†
σc~k,σ + c†~k,σ

dσ). (4.25)

The Hamiltonian can be reformulated as

H = Himp +
∑
σ

∫ 1

−1
g(ε)a†εσaεσdε+

∑
σ

∫ 1

−1
h(ε)(d†σaεσ + a†εσdσ). (4.26)

This formulation enables a one-dimensional representation of the conduction band
in the intervall [−1, 1]. The dispersion is given by g(ε) and the hybridization by h(ε).
The new band operators obey the Fermi statistics : [a†εσ, aεσ] = δ(ε− ε′)dσσ′ .

The functions g(ε) and h(ε) are related to Γ [85]:

Γ(ω) = π
dε(ω)

dω
h([ε(ω)]2) (4.27)

with g(ε) being the inverse function to ε(ω).

To provide a general overview of the method, we list the steps of the method:

a) Division of the bath spectral function Γ(ω) into a set of logarithmic intervals

b) Reducing of the continuous spectrum to a discrete set of states

c) Mapping of the discretized model onto a semi-infinite chain

d) Iterative diagonalization of this chain

e) Further analysis of the many-particle energies and matrix elements
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4.2 Numerical renormalization group method

4.2.1 Logarithmic discretization

To discretize the Hamiltonian of Eq. (4.26), the discretization points

xn = ±Λn with Λ ∈ N0 (4.28)

are used, where Λ parametrizes the location and width

dn = Λ−n(1− λ−1) (4.29)

of the intervals. The part of the spectrum belonging to a discretization point is
approximated as single state. In consequence, for a discretization parameter Λ → 1,
the method would be exact.

In each interval, an orthonormal basis is defined:

ψ±
n,p(ε)

{
1√
dn

exp(±iωnpε), for xn+1 < ±ε < xn,

0 outside the interval
(4.30)

with the fundamental frequencies ωn = 2π/dn. The index p covers all integer values
between −∞ and ∞.

Next, the conduction band electrons are expanded in this basis:

aεσ =
∑
np

[anpσψ
+
np(ε) + bnpσψ

−
np(ε)]. (4.31)

The structure of the expansion is equivalent to a Fourier transform on each interval.
The inverse transformation is given by

anpσ =

∫ 1

−1
[ψ+
np(ε)]

∗aε,σdε, (4.32a)

bnpσ =

∫ 1

−1
[ψ−
np(ε)]

∗aε,σdε. (4.32b)

The Hamiltonian is now in a discretized form, while a(†)npσ and b(†)npσ obey the fermionic
anticommutator relation.

The discretized form of the hybridization reads∫ 1

−1
h(ε)d†σaεσdε = d†σ

∑
np

[
anpσ

∫ +,n

h(ε)ψ+
np(ε)dε+ bnpσ

∫ −,n
h(ε)ψ−

np(ε)dε
]

(4.33)
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with the abbreviated notation∫ +,n

dε ≡
∫ xn

xn+1

dε,

∫ −,n
dε ≡

∫ −xn+1

−xn
dε. (4.34)

For the special case h(ε) = h = const., only the p = 0 contribution of Eq. (4.33)
contributes, which leads to∫ ±,n

dεhψ±
np(ε) =

√
dnhδp,0. (4.35)

To assume a constant hybridization function in each interval was important for
Wilson’s original argumentation. To deal with non-constant hybridization functions,
a step function is defined. This function is constant in each interval, but can have
different values in different intervals:

h(ε) = h±n , xn+1 < ±ε < xn. (4.36)

The value h±n is defined by the average of the hybridization function in the corre-
sponding interval:

h±2
n =

1

dn

∫ ±,n 1

π
Γ(ε)dε (4.37)

with γ±2
n =

∫ ±,n
Γ(ε).

As a result, the hybridization part of the Hamiltonian reads∫ 1

−1
h(ε)d†σaεσdε =

1√
π
d†σ
∑
n

(γ+n an0σ + γ−n bn0σ). (4.38)

The term describing the conduction band electrons also has to be discretized. We
obtain∫ 1

−1
g(ε)a†εσaεσdε =

∑
np

(ξ+n a
†
npσanpσ + ξ−n b

†
npσbnpσ)

+
∑
n,p6=p′

[α+
n (p, p

′)a†npσanp′σ − α−
n (p, p

′)b†npσbnp′σ]
(4.39)

with

ξ±n =

∫ ±,n
εΓ(ε)dε∫ ±,n
Γ(ε)dε

=
1

2
Λ−n(1 + Λ−1) (4.40)

for the first term, which contains only contributions diagonal in p. In contrast, the
second term covers all off-diagonal elements. A linear dispersion g(ε) = ε yields

α±
n (p, p

′) =
1− Λ−1

2πi

Λ−n

p′ − p
exp

(
2πi(p′ − p)

1− Λ−1

)
. (4.41)
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4.2 Numerical renormalization group method

Neglecting all p 6= 0 contributions and relabeling (index p is omitted) leads to

H = Himp +
∑
nσ

(ξ+n a
†
nσanσ + ξ−n b

†
nσbnσ) +

1√
n

∑
σ

d†σ
∑
n

(γ+n anσ + γ−n bnσ)

+
1√
n

∑
σ

(∑
n

(γ+n a
†
nσ + γ−n b

†
nσ)
)
dσ.

(4.42)

In order to improve the numerical results, it is possible to apply the z-averaging [86–
88]. In this case, the calculation is done several times with modified discretization
points. They are varied slightly via the value z in the exponent of Λ

xn =

{
1, n = 0,

Λ−n+z, n ≥ 1,
(4.43)

and finally, an average over all results is considered.

To overcome the systematic underestimation of the hybridization function [89], a
correction can be introduced. For the constant hybridization, the correction is given
by

AΛ =
1

2

Λ + 1

Λ− 1
ln(Λ). (4.44)

4.2.2 Mapping on a semi-infinite chain

Next, the discretized Hamiltonian is mapped on a semi-infinite chain with first site of
the chain being the impurity. The hopping between the sites decreases exponentially
with distance to the first site due to the logarithmic discretization: tn ∝ Λ−n/2.
Each iteration corresponds to a specific energy scale.

The hybridization can be reformulated as

1√
π
d†σ
∑
n

(γ+n a
†
nσ + γ+n bnσ) =

√
ξ0
π
d†σc0σ (4.45)

by using the definition

c0σ =
1√
ξ0

∑
n

(γ+n anσ + γ−n bnσ) (4.46)

with the renormalization factor

ξ0 =
∑
n

[
(γ+n )

2 + (γ−n )
2
]
=

∫ 1

−1
Γ(ε)dε. (4.47)
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The Hamiltonian can be tranformed to a semi-infinite chain form:

H = Himp +

√
ξ0
π

∑
σ

(d†σc0σ + c†0σdσ)

+
∞∑

σ,n=0

[εnc
†
nσcnσ + tn(c

†
nσcn+1,σ + c†n+1,σcn,σ)].

(4.48)

The operator c†n (cn) creates (annihilates) a fermion on the nth site of the chain.
The previous operators an, bn are related by an orthogonal transformation:

anσ =

∞∑
m=0

umncmσ, bnσ =

∞∑
m=0

vmncmσ, (4.49a)

cnσ =
∞∑
m=0

(unmamσ + vnmbmσ). (4.49b)

The coefficients of the first sum are obtained by the definition of c0σ in Eq.(4.46):

u0m =
γ+m√
ξ0
, v0m =

γ−m√
ξ0
. (4.50)

The other coefficients, gained by exploiting the equivalence of the free conduction
electron parts electron∑

nσ

(ξ+n a
†
nσanσ + ξ−n b

†
nσbnσ)

=
∞∑

σ,n=0

[εnc
†
nσcnσ + tn(c

†
nσcn+1,σ + c†n+1,σcn,σ)],

(4.51)

are given by

εn =
∑
m

(ξ+mu
2
nm + ξ−mv

2
nm), (4.52a)

t2n =
∑
m

[(ξ+m)
2u2nm + (ξ−m)

2v2nm]− t2n−1 − ε2n, (4.52b)

un+1,m =
1

tn
[(ξ+m − εn)unm − tn−1un−1,m], (4.52c)

vn+1,m =
1

tn
[(ξ−m − εn)vnm − tn−1vn−1,m] (4.52d)

68



4.2 Numerical renormalization group method

for n ≥ 1. The initial relations are

ε0 =
1

ξ0

∫ 1

−1
Γ(ε)εdε, (4.53a)

t20 =
1

ξ0

∑
m

[(ξ+m − ε0)
2(γ+m)

2 + (ξ−m − ε0)
2(γ−m)

2], (4.53b)

u1m =
1

t0
(ξ+m − ε0)u0m, (4.53c)

v1m =
1

t0
(ξ−m − ε0)v0m. (4.53d)

While the recursion needs to be solved numerically for arbitary hybridizations,
analytical solutions were found for special cases. Considering a Kondo model with
constant hybridization function in the interval [−1, 1] leads to

tn =
(1 + Λ−1)(1− Λ−n−1)

2
√
1− Λ−2n−1

√
1− Λ−2n−3

Λ−n/2 (4.54)

for example [81]. For large n, the equation simplifies to

tn → 1

2
(1 + Λ−1)Λ−n/2. (4.55)

We see that the the hopping tn decreases exponentially. The sites of the chain can
be interpreted as shells around the impurity.

4.2.3 Iterative diagonalization

The resulting Hamiltonian is solved iteratively. This means that in each step one
site of the chain is added and enlarges therefore the Hilbert space. When a given
maximum number of states N in the Hilbert space is reached, the first N lowest-lying
states are kept while the N + 1st state and all following are discarded. By applying
this procedure, the size of the Hilbert space is constant for all following iterations.

The Hamiltonian (4.48) can interpreted as a series of Hamiltonians, which approaches
the original Hamiltonian in the limit N → ∞, λ→ 1+:

H = lim
Λ→1+

lim
N→∞

Λ−(N−1)/2HN (Λ) (4.56)
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with

HN = Λ(N−1)/2
(
Himp +

√
ξ0
π

∑
σ

(d†σc0σ + c†0σdσ) +
N∑

σ,n=0

εnc
†
nσcnσ

+
N−1∑
σ,n=0

tn(c
†
nσcn+1,σ + (c†n+1,σcnσ)

)
.

(4.57)

The following Hamiltonian HN+1 is connected to HN via

HN+1 =
√
ΛHN+ΛN/2

∑
σ

εN+1c
†
N+1,σcN+1,σ+ΛN/2

∑
σ

tN (c
†
NσcN+1,σ+c

†
N+1,σcN,σ),

(4.58)
with the first Hamiltonian H0 of this sequence is given by

H0 = Λ−1/2
(
Himp +

∑
σ

ε0c
†
0σc0σ +

√
ξ0
π

∑
σ

(d†σc0σ + c†0σdσ)
)
. (4.59)

The recursion to obtain the next Hamiltonian HN+1 can be interpreted as a renor-
malization group transformation R:

HN+1 = R(HN ). (4.60)

In the NRG scheme, we define the Hamiltonian HN directly by the many-particle
eigenenergies EN

HN |r〉N = EN (r)|r〉N , r = 1, ..., Ns (4.61)

with the eigenstates |r〉N and the dimension Ns of the Hamiltonian.

Starting from the eigenstates of Eq. (4.61), the basis of the next Hamiltonian HN+1

is constructed:
|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉. (4.62)

These states are a product state of the basis of HN with a basis for the added site
|s(N + 1)〉.

For a system, with conserved total charge Q and the component Sz of the total spin,
the new basis is

|Q,Sz, r; 1〉N+1 = |Q+ 1, Sz, r〉N , (4.63a)

|Q,Sz, r; 2〉N+1 = c†N+1,↑|Q,Sz −
1

2
, r〉N , (4.63b)

|Q,Sz, r; 3〉N+1 = c†N+1,↓|Q,Sz +
1

2
, r〉N , (4.63c)

|Q,Sz, r; 4〉N+1 = c†N+1,↑c
†
N+1,↓|Q− 1, Sz, r〉N . (4.63d)
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4.2 Numerical renormalization group method

Conservation numbers reduce the size of the calculated matrices, which is favorable
for the numerical run time and in some cases for the feasibility.

With a new basis |r, s〉N+1, the Hamiltonian matrix is

HN+1(r, s, r
′, s′) =N+1 〈r, s|HN+1|r′, s′〉N+1. (4.64)

For further processing, the new Hamiltonian is divided into three parts:

HN+1 =
√
ΛHN + X̂N,N+1 + ŶN+1. (4.65)

Besides the rescaled Hamiltonian HN and the operator ŶN+1 describing the new
site, the interaction X̂N,N+1 between both is included. Diagonalizing the new
Hamiltonian leads to the new eigenenergies and eigenstaates. The later is related
via a unitary transformation to the old eigenstates:

|w〉N+1 =
∑
rs

U(w, rs)|r; s〉N+1. (4.66)

The number of eigenenergies grows exponentially in each step. The spectrum is
shifted such that the lowest energy is 0. Furthermore, due to numerical limitations,
the energy spectrum is truncated, and only the lowest Ns states are kept, and the
computation time only grows linearly with the number of sites. The truncation is
based on the idea that high energies do not affect the properties of the system at
low energies. The exponential decrease of the hopping between the site of the chain
underlines this argument. Since the coupling to an additional bath orbital is of the
order of t, it is a minor correction for the energy that is significantly larger than
t. For the following sites of the chain, these corrections have usually no relevant
effects. However, it is not guaranteed that the effect of the high energy excitations
in neglectable for an arbitary application. In addition, the number of kept states
has to be chosen large enough to capture all necessary excitations.

4.2.4 Calculation of physical properties

The various physical properties of a system depend on the density operator %̂, which
describes the quantum states of the system. Assuming to know the many-body
eigenstates |r〉 and the corresponding eigenvalues Er, the density matrix %(T ) and
the partition function Z(T ) are

%(T ) =
1

Z(T )

∑
r

exp(−βEr)|r〉〈r|, (4.67)

Z(T ) =
∑
r

exp(−βEr) (4.68)
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with the inverse temperature β = 1/(kBT ).

The chain length N determines the inverse temperature:

βNΛ
−(N−1)/2 =: β̄. (4.69)

with the factor β̄. The concrete value of β̄ has to be chosen for calculations,
appropriate values are of the order of 1. By changing β̄ by a small value, it is
possible to calculate the physical properties for a slightly different temperature
TN .

Local properties

While some static properties, such as the entropy, the specific heat, and the suscep-
tibility can be determined directly from the spectra of the Hamiltonian, for other
static properties, such as the local occupancy, the local matrix elements have to be
calculated.

The expectation values for the occupancy nσ = d†σdσ is approximated by

nσ(T ) ≈
1

Z(N)(T )

∑
Q,Sz

∑
r

exp(−βEN (Q,Sz, r))

·N 〈Q,Sz, r|d†σdσ|Q,Sz, r′〉N .
(4.70)

The matrix elements N 〈Q,Sz, r|d†σdσ|Q,Sz, r′〉N of step N are calculated by trans-
forming the matrix elements of step N − 1 with Eq. (4.66).

Dynamic properties

In this thesis, we also aim to calculate dynamical properties of the system: the
Green’s functions

Gσ(ω, T ) =

∫ ∞

−∞
d(t− t′) exp(iω(t− t′))Gσ(t− t′), (4.71)

Gσ(t− t′) = −iθ(t− t′)〈dσ(t), d†σ(t′)〉% (4.72)

with the density matrix %.

The spectral function
Aσ(ω, T ) =

1

π
ImGσ(ω + iδ, T ) (4.73)
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4.2 Numerical renormalization group method

can be written in the Lehmann representation:

Aσ(ω, T ) =
1

Z(T )

∑
rr′

|Mrr′ |2
(

exp
(
− Er
kBT

)
+ exp

(
− Er′

kBT

))
· δ(ω − (Er′ − Er))

(4.74)

with the many-body matrix element Mrr′ = 〈r|dσ|r′〉.

For T = 0, the spectral function is

Aσ(ω, T = 0) =
1

Z(0)

∑
rg

|Mr,g|2δ(ω + (Er − E0))

+
1

Z(0)

∑
rg

|Mg,r′ |2δ(ω − (Er′ − E0))

(4.75)

with the ground state energy E0 and g being one state of the ground state manifold.
In the framework of the NRG, T = 0 implies that we have reached the stable low
temperature fixed point of the system. A fixed point (FP) is invariant under a
renormalization transformation

H∗(FP) = R2[H∗]. (4.76)

Note that the renormalization transformation has to be applied twice for fermions
[84].

Since the energies are always shifted such that E0 = 0, we write Eq.(4.75) as

ANσ (ω, T = 0) =
1

ZN (0)

∑
r

|MN
r,0|2δ(ω + ENr )

+
1

ZN (0)

∑
r

|MN
0,r′ |2δ(ω − ENr′ )

(4.77)

with N iterations.

Considering finite temperatures T > 0, the spectral function is similar to Eq. (4.74).
The temperature is determined by the number of iterations n and Boltzmann factors
have to be included:

Aσ(ω, T ) ≈ Anσ(ω, T )

=
1

Zn(T )

∑
r

|Mn
rr′ |2

(
exp

(
− Enr
kBT

)
+ exp

(
−

Enr′

kBT

))
· δ(ω − (En

r′ − Enr ))

(4.78)

Its calculation is more difficult since excitations of arbitary energies enter.
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Chapter 4 The magnetic shift of the band gap

4.2.5 Broadening of discrete spectra

A true continuum model has continious spectra while the NRG provides discrete
spectra. To compare experiemental and numerical data, the resulting delta peaks
δ(ω±ENr ) are broadened according to distributions P (ω±ENr ). There are different
choices for P , such as a Gaussian broadening distribution

PG(ω ± ENr ) =
1

ηN
√
pi

exp(−[(ω ± ENr )/ηN ]
2) (4.79)

with the width ηN or the logarithmic broadening distribution

PLG(ω ± ENr ) =
e−b

2/4

bENr
√
π

exp(−[(ln(|ω|/EN
r ))/b]2). (4.80)

with the broadening parameter b. The advantage of the logarithmic broadening is
that the distribution preserves the sign of the excitation frequency. However, in
practice, both approaches usually differ only very little. For our application, we
chose the logarithmic broadening, although we expect no spectrum around ω = 0,
which leads to the assumption that the Gaussian broadening should not change the
sign either.

4.2.6 Choice of parameters

We have to choose the parameters Λ and Ns carefully since they determine the
precision of our calculations. If Λ is too large, the intervals summerized to one
state are so large that the approximation is not valid. If we keep not enough states,
we discard states that are still important for the next iterations. Furthermore, to
obtain the same precision if we want to decrease Λ, we have to keep more states in
the truncation scheme. At the end, we need a reasonable set of parameters that
ensures physical results as well as has acceptable numerical costs. In the following
calculations, we set Λ = 1.8 and Ns = 2000 for a single band calculation.

In addition, meshes on which the physical values are calculated are defined during
the numerical procedure. To capture all excitations, they have to be dense enough
in the intervals where excitations appear. Furthermore, they should be fine enough
to depict for example the peaks of the Green’s functions appropiately.

We always choose εd = −U/2. That ensures particle-hole symmetry for the para-
magnetic phase when ∆(ω) = ∆(−ω), and a Mott phase is enforced for large
U .
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4.3 Numerical results

As broadening, we choose b = 0.8 if not stated differently. Since the main effect
of the increasing band gap for lower temperatures is the narrowing of bands, the
broadening of the bands has a major effect on the results and should be chosen
carefully.

4.3 Numerical results

By solving the Hubbard-Kondo model similar to Ref. [26] with the dynamical mean
field theory and the numerical renormalization group method as impurity solver,
we can calculate different physical quantities. The most important ones are the
spectral functions, the self-energy, and the spin expectation values.

After a successful termination of the DMFT loop, the local Green’s function equals
the lattice Green’s function except of small numerical errors depending on the chosen
accuracy. In the following, we will focus on the imaginary parts of the Green’s
functions since they are connected to the spectral functions (c. f. Eq. (4.73)). The
spectral functions contain information about the occupation of the spin channels.
When the spectral functions of ↑ and ↓ are equal and symmetric,

A↑(ω) = A↓(ω), Aσ(ω) = Aσ(−ω), (4.81)

we are in the paramagnetic phase, since the order parameter is zero.

In the magnetically ordered phase, one spectral function has more spectral weight
below ω = 0 and the other one above ω = 0. There is still a symmetry between the
spins A↑(ω) = A↓(−ω), which results in the fact that their sum is still particle-hole
symmetric:

A↑(ω) +A↓(ω) = A↑(−ω) +A↓(−ω). (4.82)

For T = 0 and U → ∞, one spectral function has only spectral weight for ω < 0
and the other for ω > 0, which means that the system is fully polarized.

The self-energy describes corrections to the bare energy of an orbital in the NRG
method. It is calculated via two Green’s functions using the approach of Ref.[90]

Σσ(z) = U
Fσ(z)

Gσ(z)
(4.83a)

with Fσ(z) = 〈dσd†−σd−σ|d†σ〉(z) (4.83b)
Gσ(z) = 〈dσ|d†σ〉(z), (4.83c)

to reduce the broadening dependency. While the imaginary part induces a lifetime
of the quasi-particles, the real part contains information about an energy shift. For
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Chapter 4 The magnetic shift of the band gap

T → 0, this shift is independent of ω and therefore equal to a Hartree shift, while
the imaginary part vanishes. However, for higher temperatures, the self energy has
a more complex structure.

We calculate the spin expectation values of the itinerant electron 〈~sz,iti〉 as well
as of the local spin 〈~Sz,loc〉 by calculating the occupation and multiplying with
the spin length. In addition, the spin polarization of the itinerant spin is also
accessible by calculating the occupation of the majority and minority band via
integrating the spectral function, determining the difference, and multiplying with
1/2. The result becomes even more accurate if the spectral functions are normalized
after the DMFT+NRG procedure. Both methods lead to very similar results. For
consistency reasons, we use the direct expectation values since we can gain the local
spin expectation value only with this method.

The sum of these expectation values 〈~sz,iti〉+ 〈~Sz,loc〉 is the sublattice magnetization
per site – the order parameter of an antiferromagnetic system, determining whether
the system is in the paramagnetic or antiferromagnetic phase by analyzing the spin
expectation values.

Generally, 〈~sz,iti〉+ 〈~Sz,loc〉 = 0 implies the absence of the magnetic order. However,
due to numerical inaccurancies the calculated order parameter can show even above
TN small finite values, which makes the determination of TN less precise.

4.3.1 Effective description with a Gaussian density of states

We consider a one-band Hubbard model with a Gaussian density of states in this
thesis. This simplified approach offers already interesting qualitative insights into the
physics of α-MnTe. We focus only on the Mn 3d subsystem and do not differentiate
between the different d states. Although, we are aware that the real density of states
deviates from a Gaussian, the main results for the magnetization and the band gap
should be similar. Instead of using the hopping term stated in the first term of
Eq.(4.10), our model uses only the density of states. The Gaussian density of states
is obtained in the limit of infinite dimensions (d→ ∞) for a cubic lattice

ε~k = −2t
d∑
i

cos(ki) (4.84)

with absorbing the lattice constant into ki [91]:

ρ(ε) =
1

2t
√
πd

exp
(
− ε

2t
√
d

)
. (4.85)
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A finite kinetic energy is obtained by rescaling the hopping parameter

t =
t∗

2
√
d
, (4.86)

which leads to
ρ(ε) =

1√
π

exp
[(

− ε2

(t∗)2

)2]
. (4.87)

The parameter t∗ determines the unit of energy.

We determine the width of the effective Gaussian density of states with the Heisenberg
couplings Ji, the Coulomb parameter U , and the Hund’s coupling JH . For the
Heisenberg coulpings, we use the same parameter set as Ref. [26], which has used
four different types of Heisenberg couplings of Ref. [41]:

J1 = 3.072meV (4.88a)
J2 = 0.0272meV (4.88b)
J3 = 0.4meV (4.88c)
J4 = 0.16meV. (4.88d)

With a given Coulomb parameter U and Hund’s coupling JH , the corresponding
hopping parameters can be calculated:

Jn =
4t2n

U + 2JH
. (4.89)

Reference [26] has calculated the change of the Mott gap for different sets of {U, JH},
which led all to a similar value. We focus on

U = 5.5 eV and JH = 1.6 eV, (4.90)

which turned out to match well the experimental blue shift in Ref. [26].

We follow the idea that a Gaussian density of states can be adjusted to match ap-
proximately the width of the densities of states obtained by including {J1, J2, J3, J4}
and the actual crystal structure. Therefore, the effective hopping teff [26] has to be
calculated:

teff =
1

2

√
Jeff∆U (4.91)

with Jeff =
∑
i

σiZiJi (4.92)
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with the number of nearest neighbors Z and a sign σi = +1 for antiparallel alignment
und σi = −1 for antiparallel alignment of the spins, which leads to

Jeff = 2J1 − 6J2 + 12J3 − 2J4 (4.93)

for the considered system.

4.3.2 Comparison to a Heisenberg model

In the limit of large U/t and JH/t, the Hubbard-Kondo model can be mapped onto
a Heisenberg model after eliminating the charge fluctuations. In order to compare
our results to the simpler Heisenberg description, we focus briefly on the Heisenberg
model in mean-field approximation as presented in Ref. [47].

The mean field solution of a Heisenberg model

H = −
∑
〈i,j〉

J ~Si~Sj (4.94)

is well known in the ferromagnetic and antiferromagnetic case. Both are very
similar, but for convienience, let us concentrate on antiferromagnetic coupling in
the following to relate to the magnetic order in MnTe.

In the mean field approximation, we focus on a local spin and consider the effect of
the other spins as effective magnetic field:

Heff =
∑
i

~Beff~Si (4.95)

with the effective field
~Beff =

∑
j

J〈~Sj〉 = ZJ〈~Sj〉 (4.96)

with the number of neighbors Z belonging to the coupling J . The magnetization
per site is the expectation value of the spin:

m = 〈~Si〉. (4.97)

This expectation value can be calculated

m = BS(x) (4.98)

with the Brillouin function

BS(x) =
2S + 1

2S
coth

(2S + 1

2S
x
)
− 1

2S
coth

( 1

2S
x
)

(4.99)
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and
x = S

−ZJm
T

(4.100)

while S stands for the spin length.

As a result, we obtain the self-consistent equation (4.98), which has always the
solution m = 0. There is no analytic solution for this equation, but we are able to
solve it numerically or graphically.

The graphical method offers an intuitive comprehension of the possible solutions.
Below the Néel temperature, the Brillouin function and the linear function f(m) = m
cross twice: at m = 0 and at a finite m which means that the self-consistent equation
(4.98) has two solutions. Above TN , there is only one solution: m = 0. As a result,
the Brillouin function and the linear function have the same gradient at m = 0
only for exactly TN . By evaluating Eq. (4.98) with the expansion of the Brillouin
function in first order of x, we obtain

TN = −ZJ S(S + 1)

3
. (4.101)

The approximation x� 1 is valid because the magnetization m is small at T = TN .
Note that the resulting temperature is positive since J is negative in the considered
antiferromagnetic case.

If we consider in addition spins that are aligned parallely due to the crystal structure,
for example Z ′ next-nearest neighbors coupling via J ′, only the sign would change,
and the critical temperature is a sum of both contributions: TN = S(S+1)

3 (−ZJ +
Z ′J ′).

Figure 4.2 shows the magnetization of the Hubbard model on a bipartite lattice with
the Gaussian density of states and realistic parameters as red crosses. In addition,
the spin polarizations for {U = 7 eV, JH = 2 eV} and {U = 3 eV, JH = 0.5 } are
plotted. The grey line depicts the mean field Heisenberg solution with S = 5/2.
Overall, the agreement between the numerical DMFT results for the Hubbard-Kondo
model and the mean field Heisenberg model is good. We will use the Heisenberg
solution can predict the Néel temperature.

Only near the Heisenberg Néel temperature, the numerical data tends to have a
smaller magnetization indicating that the actual Néel temperature is slightly smaller
than the analytical prediction. Furthermore, the magnetization for temperatures
slightly above the Néel temperature is larger than 0. Fitting the Heisenberg solution
to our data would be an alternative ansatz. But first, the numerical results tend to
have systematic errors near to the phase transition, which make the fit procedure
less precise at the Néel temperature. Second, the implementation of the fitting is
not straightforward since there is no closed analytic solution.
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Chapter 4 The magnetic shift of the band gap

Extended Heisenberg model

Although, the Hubbard model behaves as a simple Heisenberg model in the limit
of large U , a more elaborate Heisenberg description is imaginable. In our DMFT
calculations, we consider one itinerant 1/2-spin ~si and one local 2-spin ~Si per site to
model the spin of 5/2 formed in the Mn 3d orbitals. The itinerant and the local spin
are coupled via the Hund’s rule coupling JH . In consequence, the simple Heisenberg
model (HM) is not perfectly suitable to describe our results. An extended, effective
description yields the Hamiltonian

Heff =
∑
〈i,j〉

J(~Si + ~si)(~Sj + ~sj)−
∑
i

JH ~Si~si (4.102)

=
∑
〈i,j〉

J ~Si~Sj︸ ︷︷ ︸
HM with ~S

+
∑
〈i,j〉

J ~Si~sj +
∑
〈i,j〉

J~si~Sj︸ ︷︷ ︸
HMs with different spin lenghts

+
∑
〈i,j〉

J~si~sj︸ ︷︷ ︸
HM with ~s

−
∑
i

JH ~Si~si︸ ︷︷ ︸
energy reduction

. (4.103)
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Figure 4.2: The magnetization follows with good agreement the Heisenberg
solution for S = 5/2.
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This effective description contains two well known Heisenberg terms with equal spins
~S and ~s, two Heisenberg terms that couple spins of different lengths, and a term
describing the energy reduction gained by aligning the itinerant and the local spin
on one site.

Calculating the exact solution of the sums of Heisenberg terms with different spin
lengths becomes more difficult. In general, we have to consider also configurations
with antiparallel ~Si and ~si. We do not follow this approach further since the
agreement of the magnetization and the mean field Heisenberg solution ist already
very good. However, without further calculations, one main effect is already evident:
there is an energy shift due to the Hund’s coupling.

4.3.3 Measuring the band gap via the spectral functions

One of the major goals is to determine the band gap in α-MnTe. In this section,
we will focus on the Mott gap of the Mn 3d bands. It is important to note that
the presented results of ∆g do not display the actual band gap in which we are
interested. The band structure suggests mainly that the Te 5p bands form the
valence band, and the upper Mn 4s and 3d bands are the conduction band. We
follow Ref. [26]: the actual magnetic blue shift is therefore given by half of the total
shift in our model since only the change of one 3d band influences the actual gap.

We need to find a suitable criterion since the spectral functions depending on the
chosen density of states have a pseudo gap.

One approach to calculate the band gap makes use of the Green’s functions. Exam-
plarily, the Green’s functions for the two different spin channels are shown below
and above the Néel temperature in Fig. 4.3. In the paramagnetic phase, the spectral
functions for both spin channels lie on top of each other. In the antiferromagnetic
phase, the Green’s functions differ significantly from each other. Additionally, the
antiferromagnetic Green’s functions are narrower than the paramagntic ones.

To calculate the higher band edge, we can determine the energy ∆g/2 at which a
certain high percentage c of the spectral weight of the occupied part of the electron
spectral function A(ω) is covered:

cAtot =

∫ ∞

∆g/2
A(ω)dω (4.104)

with
Atot =

1

2

∫ ∞

−∞
A(ω)dω. (4.105)

Due to the symmetry, the value of the lower band gap is the same while the sign
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Figure 4.3: Exemplarily, the Green’s functions in the paramagnetic (T ≈ 889K)
and in the antiferromagnetic phase (T ≈ 275K). While above the Néel temperature,
the Green’s functions for the different spin channels coincide, they show significant
differences in the magnetically ordered phase.

changes. The spectral function A(ω) is the average of the majority and minority
band:

A(ω) = A1(ω) +A2(ω). (4.106)

In the antiferromagnetic case, A1 and A2 differ significantly while A1 and A2 are
identical in the paramagnetic phase and therefore coincident with 2·A. Consequently,
the terms majority and minority spin do not fit in the magnetically unordered case.
However, the method itself is suitable in both cases. The paramagnetic spectral
functions evolve to spin polarized functions when decreasing the temperature.

Ideally, we would choose c = 1. However, since the functions have only a pseudogap,
which means that the spectral weight becomes very small for small |ω|, but is
always finite. Consequently, the calculated band gap would always lie at ω = 0.
To overcome this numerical artifact, we consider a slightly smaller cut-off c < 1 to
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obtain more reasonable band gaps, which depend on the temperature.

An illustration of the integral criterion is shown in Fig 4.4. In panel (a), the spectral
functions A1(ω) and A2(ω) are depicted. Their average A(ω) is integrated up to a
cut-off c, which determines ∆g/2 as illustrated in panel (b). For better visibility of
the concept, the cut-off c = 0.9 is chosen for this figure. This cut-off is rather small;
we will consider larger cut-offs in general.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

(a)
A1

A2

A1 +A2

2 3 4 5 6 7 8
(eV

A 1
+
A 2

g/2

(b)

Figure 4.4: Schematic description of the integral criterion. Panel (a) shows the
spectral functions A1 and A2 at T ≈ 275K. To apply the integral criterion, both
spectral functions are added and integrated until the integral reaches a certain
relative amount c of the total integral. The upper bound of this integral determines
the size of the gap ∆g/2 as shown in panel (b).

We determine ∆g/2 for the magnetic and the paramagnetic case. The difference
between the results is defined as the magnetic blue shift (∆g,af −∆g,pm)/2 since the
gap typically increases in the magnetically ordered phase.
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Figure 4.5: The band gaps, the magnetic blue shifts, and the magnetization for
an effective Gaussian DOS and the parameters of Eqs. (4.88) and (4.90). Panel
(c) shows that the magnetization is finite below the Neél temperature. At the
same temperature, the magnetically ordered and the hypothetic paramagnetic
solutions begin to differ as depicted in panel (a). The absolute values of the band
gap depend on the cut-off c. Especially, the band gap of the paramagnetic phase
changes strongly with c. The magnetic blue shift – the difference between the band
gap in the antiferromagnetic and hypothetic paramagnetic phase is shown in panel
(b).
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Even below the Néel temperature, we can model the paramagnetic case by applying
an average of the spin channels of the medium. These curves remain constant when
we lower the temperature. This approach enables us to measure directly for each
temperature the effect of the magnetization.

Figure 4.5(c) depicts the magnetization m/mmax and the mean field Heisenberg
solution in order to compare directly the magnetization to the Mott gaps.

The Mott gaps calculated with Eq. (4.104) for the magnetic solution as well as the
spin-symmetrized solution for different cut-offs c are shown in Fig. 4.5(a). The Mott
gap ∆g/2 in the spin-symmetrized case is independent of the temperature but differs
strongly with the chosen cut-off. The Mott gap of calculations allowing magnetic
order coincide with the spin-symmetrized case above TN and increases below TN .

The magnetic blue shift for different cut-offs c is shown in Fig. 4.5(b). For the
chosen cut-offs, the magnetic blue shift increases when increasing the cut-off.
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Figure 4.6: The magnetic blue shift (∆af − ∆pm)/2 depends strongly on the
chosen cut-off c. While it increases firstly with increasing cut-off, it decreases for
cut-offs near to 1.
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Chapter 4 The magnetic shift of the band gap

To focus more on the dependence of the magnetic blue shift on the cut-off, Fig. 4.6
shows the magnetic blue shift for three temperatures below the Néel temperature,
T ≈ 114K, T ≈ 152K, and T ≈ 205K, in dependence of the cut-off c. We observe
also that there is a dependence between the maximum value of the blue shift and
the cut-off.
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Figure 4.7: The spectral functions for (a) T ≈ 494K and (b) T ≈ 205K in
dependence of the broadening b. Panels (c) and (d) show zoom-ins of (a) and (b)
to focus on the tail of the spectral functions.

First the magnetic blue shift increases with increasing cut-off until a cut-off above
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0.9. The exact position of this maximum depends on the temperature. Next it drops
rapidly. We can understand this by considering two extreme cases. For c = 0.5, we
cover only half of the spectrum of interest. Because the maxima lie at approximately
the same frequency in the paramagnetic and antiferromagnetic case, and only the
width of the peak differs, we obtain the same band gap, and hence, there is no
magnetic blue shift. For c = 1 and Gaussian density of states, we need to integrate
to ω = 0 in both cases since the spectra have only a pseudo gap. In consequence,
the magnetic blue shift vanishes. Only in the intermediate regime, a blue shift can
be measured with this method.

The differences between the considered temperatures can be explained by the width
of the belonging Green’s function. For smaller temperatures, the Green’s functions
are very narrow, which explains rather large Mott gaps. Only if we consider very
large cut-offs, we need to integrate also the spectral weight lying far away from the
maximum in the tail of the function. Since there is only very little spectral weight,
the resulting Mott gap drops more drastically than for broader Green’s functions at
higher temperatures.

For the integral criterion, the width of the spectral functions determines mainly the
resulting Mott gap ∆g. Since the width depends on the broadening b of the NRG
method, we need to have a closer look to its effect. Figure 4.7 shows the spectral
functions for T ≈ 494K (panel (a) and (c)) and T ≈ 205K (panel (b) and (d)).
The panels (c) and (d) show a zoom-in of panels (a) and (b). For both depicted
temperatures, the curves are wider if the broadening is chosen larger. However, the
effect is significantly smaller for lower temperatures.

Figure 4.8 quantifies the effect of the broadening by calculating the Mott gap
∆g/2 for different broadenings between b = 0.7 and b = 1.0 and the temperatures
T ≈ 114K, T ≈ 204K and T ≈ 494K for fixed cut-off b = 0.96. The Mott gaps
become smaller when increasing the broadening. But the smaller the temperature,
the smaller the decrease is, since the Green’s functions do not change so much
depending on the broadening for lower temperatures as shown in Fig. 4.7.

While the magnetic blue shift is well capured qualitatively with this criterion, the
absolute value of the Mott gap for T → ∞ is too small compared to experiments,
which means that the magnetic blue shift of our model is much larger than the blue
shift measured in experiments.

By choosing a smaller broadening, the Mott gap of the paramagnetic phase becomes
larger. Unfortunately, it is not possible to choose arbitary small broadenings since
the convergence of the DMFT loop only works reliably for broadenings that are
not too small. For our case, we chose b = 0.8 for all calculations if not stated
differently.
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Chapter 4 The magnetic shift of the band gap

The most important advange of the integral criterion is that it can be applied in
the magnetic and paramagnetic phase. But unfortunately, the results depend very
much on the choice of the cut-off c and the broadening b.
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Figure 4.8: The ∆g/2 vs the broadening b for different temperatures and c = 0.96.
The effect of a decreasing Mott gap for increasing broadening is stronger for higher
temperatures.

4.3.4 Renormalized band structure

We can include the self-energy in the calculation of the band structure using a
tight-binding Hamiltonian as in Chap. 3. The real part of the self-energy shifts the
oribital energy, while the imaginary part induces a broadening of the bands. This
broadening is reciprocally ascociated to the lifetime of particles.

The self-energy of the d electrons contains information about the band gap in the
magnetic phase. For very low temperatures, T � TN , the real part of the self-energy
Σ is nearly independent of ω shown in Fig. 4.9(c). This constant value differs
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between the majority and the minority spin. The difference between both can define
the band gap.

For higher temperatures which are still below TN , there is a clear ω-dependence
as depicted in Fig. 4.9(b) and (c). The imaginary parts of the spin channels are
symmetric, while the real parts are point symmetric around (0, U/2).

For ω → ±∞, a convergent behaviour of the reals part is visible. The finite value of
the upper self-energy is smaller if the temperature is larger. For the lower self-energy,
the inverse relation holds. As a result, the difference between both limit values
increases when decreasing the temperature.

To analyze the effect of the self-energy of the Mn d electrons, we include it into a
multi-orbital tight-binding model. We consider the Mn 3d, the Mn 4s, and the Te
5p as in Chap. 3. The spectral function includes now multiple orbitals, such that
the following equation holds:

A(ω,~k) = − 1

π
Tr([ω1−H

~k
− Σ(ω)]−1). (4.107)

By calculating the trace, we can visualize the band structure similar to our results
in Chap. 3.

Equation (4.107) needs to be evaluated numerically for each (ω,~k) point. We
consider 600 equally distributed ω points in the interval ω = [−6 eV, 7 eV] and 700
~k points (100 points per path between two high symmetry points). Due to the
imaginary part of Σ, we obtain always finite values. Although, the imaginary part
of Σ(ω) does not vanish in general in our calculations, it can be very small. In order
to obtain numerically useful results, a small shift of ω into the imaginary plane is
used: ω → ω + iδ. We use δ = 1× 10−2.

As a starting point, we show in Fig. 4.10 the resulting band structure without
including any self-energy. Similar to Fig. 3.2 of Chap. 3, we obtain a metallic band
structure.

In the next step, we include the self-energy. Since our DMFT calculations focus on
the Mn 3d system, Σ has only entries for the d orbitals. Furthermore, the entries
are identical for the same spin orientation. That means we are using Σ1(ω) for d
orbitals at one Mn site and Σ2(ω) for the d orbitals at the other Mn site. Note that
Σ has no off-diagonal matrix elements in our modeling.

By adding the self-energy to the orbital energies, we include correlation effects that
are partly covered in the DFT calculations. This double counting problem could
be solved ideally by substracting the double counting energy [92]. Unfortunately,
this energy is not known in general. Therefore, we follow the same approach as
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Figure 4.9: The real and imaginary parts of the self-energy for both spin channels
for {U = 5.5 eV, JH = 1.6 eV} at (a) T ≈ 275K, (b) T ≈ 205K, and (c) ≈ 114K.
The imaginary part of the self-energy is mirrored comparing the different spin
channels. The real part of the spin channels are related by a point symmetry
around (0, U/2). The curves become flatter by decreasing the temperature.
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Figure 4.10: The band structure based on the tight-binding model of Chap. 3
and calculated via Eq. (4.107) without including any self-energy is metallic.

we used when we applied a frequency independent Hartree shift in Chap. 3. In
this desciption, we split the d orbitals by shifting the orbital energies at one site
down and at the other site up by the same absolute value. The absolute difference
between the new orbital energies was given by U . Applying the same idea to the
self-energies of the NRG calculation means that we consider the self-energies relative
to U/2: Σ̃(ω) = Σ(ω)− U/2. In the limit of T → 0, the Hartree shift has a similar
effect as including the self-energy, and the absolute value of the splitting between
the d bands is then approximately given by ∆U (c. f. Fig. 4.9(c)).

We consider different parameter sets U and JH . Reference [44] determined U = 3 eV
and JH = 0.5 eV using a tight-binding approach for a hypothetic cubic crystal struc-
ture, while Ref. [26] assumed larger values, from which we use {U = 5.5 eV, JH =
1.6 eV} and {U = 7 eV, JH = 2 eV}. Except of U and JH , we use the same parame-
ters for the DMFT+NRG calculations as for the calculations presented above for
{U = 5.5 eV, JH = 1.6 eV}.
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Chapter 4 The magnetic shift of the band gap

Figure 4.11 shows the renormalized band structure for {U = 5 eV, JH = 1.6 eV} at
(a) T ≈ 494K, a temperature well above the Néel temperature, and (b) T ≈ 275K,
a temperature belonging to partial polarization, and (c) T ≈ 114K, a temperature
well below the Néel temperature. Since different values for U and JH are suggested in
previous works, we aim to compare the effect of three different parameter sets on the
band structure: Figure 4.12 shows the band structures for {U = 7 eV, JH = 2 eV}
at T ≈ 555K and T ≈ 95K, while Fig. 4.13 depicts it for {U = 3 eV, JH = 0.5 eV}
at T ≈ 450K and T ≈ 103K.

Above and below the Néel temperature, the band structures show band gaps. For
very low temperatures T � TN , the self-energy is almost constant, which leads us
to the already discussed Hartree shift. But also in the magnetically unordered phase
(T > TN ), the 1/ω dependent self-energy induces a band gap.

A broadening is visible in the frequency interval, where the d bands lie, because of
the imaginary part of the self-energy. Since the imaginary parts vanish for T → 0,
the band structure is sharper at lower temperatures. If the imaginary part of the
self-energy is large, as for temperatures well above the Néel temperature, it is even
possible that the bands are broadly smired out.

The exact value of the band gap will be calculated below, but a qualitative look at
the band structure already reveales that the conduction band minimum lies at the
K point, while the valence band maximum lies at the A point for low temperatures
(T < TN ), as in found in Refs. [41] and [46], and at the Γ point for high temperatures
(T > TN ).

Since Ref. [41] and [46] suggest that the upper d bands lie nearer to the Fermi energy
than the lower d bands, an additional calculation with the real part of the self-energy
shifted by 1 eV to lower energies is shown in Fig. 4.14. The band structure is similar
to the structure without additional shift, except of the position of the d bands,
which lie lower in energy as expected.

Since the valence band maxima and conduction band minima seem to be relatively
sharp and not smired out by the imagninary part of the self-energy, we extract
the band gap by finding the maxima of the spectral functions at each ~k point:
max(A~k(ω)). In the band gap, we do not find any maxima, such that we can
determine the value of the band gap in this way. For {U = 5.5 eV, JH = 1.6 eV}, we
find Eg(T ≈ 494K) ≈ 1.17 eV, Eg(T ≈ 275K) ≈ 1.13 eV, Eg(T ≈ 114K) ≈ 0.98 eV.
The band gap becomes smaller when we consider smaller temperatures. The
same effect applies for the other {U, JH} sets: Eg(T ≈ 450K) ≈ 1.00 eV, Eg(T ≈
103K) ≈ 0.39 eV for {U = 3 eV, JH = 0.5 eV} and Eg(T ≈ 555K) ≈ 1.22 eV,
Eg(T ≈ 95K) ≈ 1.09 eV, for {U = 7 eV, JH = 2 eV}. But we note that the change
is less pronounced for larger ∆U = U + 2JH . However, in each of the considered
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Figure 4.11: The band structure by including the self-energy for {U =
5.5 eV, JH = 1.6 eV} at (a) T ≈ 494K, (b) T ≈ 275K, and (c) T ≈ 114K.
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Figure 4.12: The band structure by including the self-energy for {U = 7 eV, JH =
2 eV} at (a) at (a) T ≈ 555K and (b) T ≈ 95K.
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Figure 4.13: The band structure by including the self-energy for {U = 3 eV, JH =
0.5 eV} at (a) T ≈ 450K and (b) T ≈ 103K.
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Figure 4.14: The band structure by including the self-energy for {U =
5.5 eV, JH = 1.6 eV} at (a) T ≈ 494K and (b) T ≈ 114K with an additional
shift of 1 eV of the d bands to lower energies.
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parameter sets, we see a decrease of the band gap for lower temperatures in contrast
to the experimental results.

Furthermore, this approach – defining the band gap via the maxima of the sprectral
functions – needs to be adapted if the bands are not sharp at the valence band
maximum and at the conduction band minimum. Already for {U = 3 eV, JH =
0.5 eV}, the band structure at the conduction band minimum looks slightly smired
out, which would suggest that the band gap could be even smaller than calculated
by only extracting the positions of the maxima of the sprectral functions.

Moreover, we only cosidered specific paths in the Brillouin zone to determine the
band gap. Although we expect to find the valence band maximum and the conduction
band minimum at high symmetry points, the calculation of the density of states to
measure the band gap might be more accurate.
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Figure 4.15: Overview of extracted band gaps: (a) the positions of the conduction
band minima and maxima and (b) band gaps for different parameter sets.

Figure 4.15 summarizes the band gaps of all shown band structures. In addition,
the data points for {U = 5.5 eV, JH = 1.6 eV} at T ≈ 152K are added. Panel
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(a) shows the position ωextr of the extrema: the conduction band minima and the
valence band maxima. The positions of the minima of the conduction band are very
similar for large ∆U without any shift, and they do not change their position. For
{U = 3 eV, JH = 0.5 eV} and {U = 5.5 eV, JH = 1.6 eV} with an additional shift,
their positions shift to lower energies. The positions for the valence band maxima
shift for all considered parameter sets to higher energies. All in all, that leads to
the decrease of the band gap as shown in Fig. 4.15(b).

The shift of the valence band minimum and the conduction band maximum can be
explained by a highly simplified model. First, we focus only on the shift of the p
band representing the valence band. Second, we follow the same idea by calculating
the shift of the s band representing the conduction band.

Starting with the bands below the Fermi energy, let us consider one p band and one
d band, which leads to the 2× 2 Green’s function

G(~k) =

(
z − εp~k

−εpd~k
−εpd~k z − εd~k

− Σ

)
(4.108)

with the dispersion εp~k
of the p band, the dispersion εd~k

of the d band, and the
dispersion εpd~k

describing hopping between the bands. To obtain the bands, we
determine

(ω − εp~k
)(ω − εd~k − Σ)− (εpd~k

)2 = 0. (4.109)

The analytic solution of the upper band

ω+ =
εp~k

+ εd~k
+Σ

2
+

√
(εp~k

− εd~k
− Σ)2

4
+ (εpd~k

)2. (4.110)

is relevant for the band gap. Although the imaginary part of the self-energy is
relevant in general, we consider in this simplified model only a real Σ leading to sharp
bands. For this simplified approach, we assume exemplarily εp~k

= −0.2 eV, εd~k =

0 eV, εpd~k = 0.5 eV because the d band should be at the Fermi level without any
correlations, the p band should be near, but below the the Fermi energy, and Fig. 3.1
suggests the order of magnitude for hopping between the orbitals, while the sign is
not relevant since only the squared hopping parameter enters. Fig. 4.16(b) shows
ω+ in dependence of −Σ since we know that Σ should be negative in this case. The
solution ω+ decreases for increasing |Σ| and approaches a limit value for |Σ| → ∞.
Considering the self-energies obtained in the previous calculations below the Néel
temperatures, which do not have a singularity at ω = 0, we see that the absolute
value of ReΣ1(ω = 0) decreases with decreasing temperature. In consequence,
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Figure 4.16: Conduction band (a) and valence band (b) in the simplified model.
Parameters: (a) εs~k = 1 eV, εd~k = 0 eV, εpd~k = 0.5 eV and (b) εp~k = −0.2 eV, εd~k =

0 eV, εpd~k = 0.5 eV.

this simplified model suggest that the valence band maximum should be at higher
energies for lower temperatures as depicted in Fig. 4.15(a).

A very similar simplified model for one s and one d band representing the bands
above the Fermi energy can be considered. Here the smaller solution

ω− =
εs~k

+ εd~k
+Σ

2
−

√
(εs~k

− εd~k
− Σ)2

4
+ (εsd~k

)2 (4.111)

is relevant for the band gap. Exemplarily, we set εs~k = 1 eV, εd~k = 0 eV, εsd~k = 0.5 eV.
Here again the d band should lie at the Fermi energy if no correlations are included.
The s band lies above the Fermi level; Fig. 4.15(a) shows that εs~k = 1 eV is suitable
in our case. Concerning Fig. 3.1, the order of magnitude of εsd~k = 0.5 eV is realistic.
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For the conduction band, the self-energy should be always positive. Figure 4.16(a)
shows the curve development of ω− in dependence of Σ. For larger Σ, ω− is
also larger. Again the previous calculations show that in the relevant ω interval,
ReΣ2(T1) < ReΣ2(T2) for T1 < T2, which means that the conduction band minimum
lies at smaller energies for lower temperatures.

The simplified model suggests that the band gap becomes smaller at lower tempera-
tures, if the absolute value of Σ increases with increasing temperature. Therefore, it
explains the shift that we observe in the band structures. However, it depends only
on the temperature dependent change of Σ. Future investigation should analyze if a
more elaborate calculation of the self-energy can inverse the effect. Furthermore,
the actual model is much more complex since it includes multiple orbitals and the
full ω dependence of the self-energy.

4.4 Summary

We investigated a one-band Hubbard model with additional local spins and a
Gaussian density of states to model a representative Mn 3d orbital. We calculated
the local Green’s function, the lattice Green’s function, and the expectation values
of the itinerant and the local spins.

The spin expectation values allowed us to distinguish between the paramagnetic
phase at high temperatures and the magnetically ordered phase below the critical
temperature. We were able to predict well the evolution of the magnetization curve
of the analyzed systems, including the Néel temperature, with the results of a
Heisenberg Hamiltonian in mean field approximation.

The Mott gap was measured using the integral criterion. Our observations demon-
strated a larger band gap in the magnetic phase, consistent with the experimental
measurements. We attributed this magnetic blue shift to the d bands becoming
narrower. Moreover, while the Green’s functions in the paramagnetic phase were
identical for ↑ and ↓, with two bands exhibiting temperature-independent width,
they were distinct in the magnetic phase. In the T = 0 and U → ∞ limit, there
should be only a single band situated either above or below the Fermi energy,
depending on the spin. Moreover, the width of these bands reduces with decreasing
temperature in the magnetically ordered phase. Unfortunately, the measurement
of the band gap using the integral criterion depends on the chosen cut-off and the
broadening. Additionally, the resulting magnetic blue shift of the Mott gap of our
model is much larger than in experiments.
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4.4 Summary

We were able to calculate a renormalized band structure by inserting the self-
energy into a tight-binding model for hypothetic metallic α-MnTe obtained by DFT
calculations. The band structure shows a band gap for temperatures below and above
the Néel temperature. Its value (between Eg ≈ 0.39 eV and Eg ≈ 1.22 eV depending
on the parameter set and the temperature) is in the order of the experimentally
measured band gap, but generally smaller. Unfortunately, the band gap is smaller
for lower temperatures in our modeling in contrast to the experimentally observed
magnetic blue shift. For larger bare charge gaps ∆U , the band gap is closer to
the experimental value, and the temperature dependent shift is less prononced.
The concrete value of the band gap depends highly on the parameters U and JH .
Furthermore, a global shift of the bands affects the band gap, even if one band still
remains below and the other above the Fermi energy.
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Conclusion

Experiments showed that the band gap of α-MnTe, an antiferromagntic semiconduc-
tor, has a blue shift in the magnetic phase. In order to understand this phenomenon,
we calculalted the magnetic and the electronic properties of α-MnTe using DMFT
calculations to measure the band gap in the paramagnetic and magnetically ordered
phase. Moreover, we referred to another experiment showing that laser pulses gen-
erates optical phonons in the material. We calculated magnon excitations assuming
that the coherent lattice vibrations lead to a time-dependent Heisenberg coupling
between the spins.

The magnetic system of α-MnTe comprises the magnetic moments of 5/2 localized
at the Mn sites. We modeled this system by a Heisenberg Hamiltonian including
three different kinds of nearest neighbors. We assume that laser pulses induce lattice
vibrations, which modulate the Heisenberg couplings. Due to the geometry, we
assume further that J3, which couples Mn sites via a Te ion, is time-dependent. It
oscillates around an equillibrium value with the optical phonon frequency. The finite
duration is captured by an exponential damping, and the amplitude of the change
is determined by the strength of driving. Using the linear spin wave theory and the
Holstein-Primakoff representation as well as applying the Fourier and Bogliubov
transformation, we obtained a set of differential equation that describes the magnon
excitations induced by the time dependent coupling. We solved the ~k diagonal
differential equations numerically and analyzed the results for a single ~k mode as
well as for the complete sublattice magnetization, which is the sum over all ~k modes.
We investigated the effect of parameters of driving. Increasing the strength of
driving increases the amplitude of the sublattice magnetization. If the effect is linear
or quadratic depends mainly on the question whether the driving is resonant. The
driving frequency determines not only the frequency of the response but has also a
significant effect on the amplitude. If the driving frequency matches the resonance
condition ω0 = 2ω~k for many modes, the amplitude will be large. The duration of
the driving influences the decay of the sublattice magnetization. Their envelopes
are similar. To capture relaxation, we included a phenomenological decay. As a
result, the sublattice magnetization reaches the limit value 0 for large times.
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We calculated the sublattice magnetization for realistic parameters. Since the
damping of the driving and the relaxation rate act on different timescales, we can
see both effects in the results seperately. For large driving strength, the magnon
occupation becomes relevant. Unfortunately, it is not possible to detetermine the
driving strength experimentally so far. A larger laser intensity should produce a
larger driving, but the exact relation is unknown, which leaves us considering the
rough estimation that the change of the Heisenberg coupling should be smaller than
10%.
We investigated also the effect of assuming another Heisenberg coulping to be
time-dependent. The resulting sublattice magnetization is qualitatively the same,
only the value of the amplitude changes. But since a time dependent J3 is most
likely due to the geometry of the unit cell, we focussed on this case mostly.

Knowing the exact relation between the change of the Heisenberg coupling and the
laser intensity could be a goal for future research. Furthermore, the model and the
method can be adapted to other antiferromagntic systems easily, which enables the
calculation of magnonic excitations in a lot of other materials.

By describing α-MnTe with a tight-binding model, we were able to understand the
electronic structure. To calculate the hopping parameters, we used the Wannierniza-
tion of a band structure generated with the density functional theory. Starting with
a given parameter set, we calculated the electronic dispersion and the corresponding
density of states. The resulting band structure is metallic, unless we include a
Hartree shift between the Mn 3d orbitals. When these bands split symmetrically
by 5 eV, a band gap of approximately 0.6 eV occurs. By projecting on the atomic
orbitals, we showed that the valence band has Te 5p character, while the conduction
band can be described with Mn 3d and 4s contributions.

Our tight-binding modeling could be improved by a more sophisticated method of
considering correlations. However, for including the self-energy in the tight-binding
calculations, we need a model without these correlations. But we did not include
the Mn 4p bands in the tight-binding model, although the density functional theory
suggests that these bands could hybridize with the Mn 3d and 4s bands. Future
research could build a model considering also the Mn 4p orbitals.

To capture magnetic and electronic degrees of freedom, we set up an effective
one-band Hubbard-Kondo Hamiltonian, on which we performed DMFT calculations.
In this model, we focus on the Mn 3d spins. We treated only one of the five spins
itinerant and added a local spin of S = 2 at each Mn site. The spins induce an
effective magnetic field on each other due to Heisenberg coupling. We included
four types of nearest neighbors. All interaction strengths are antiferromagnetic. As
impurity solver we used the NRG method. We calculated the Green’s function as
well as the spin expection values.
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The sublattice magnetization, which is the sum of the expection values of the
itinerant and local spins at one Mn site, follows approximately the solution of a
Heisenberg Hamiltonian with S = 5/2.
We calculated half of the Mott gap in the paramagnetic as well as in the magnetically
ordered phase and observed a magnetic blue shift. However, the absolute value of
the shift is larger than in the experiment. The shift occurs due to a narrowing of
the Green’s functions for smaller temperatures.
Futhermore, we calculated the renormalized band structure by inserting the self-
energy obtained in DMFT+NRG calculations into the multi-orbital tight-binding
model. The band structures show band gaps for the magnetically ordered and
unordered phase. The value of the band gap depends strongly on the chosen param-
eters U and JH . It was between Eg ≈ 0.39 eV and Eg ≈ 1.22 eV for the parameters
considered in this thesis. The values are smaller than the band gap measured in
experiment. Moreover, the band gap becomes smaller for lower temperatures in
contrast to the experimentally observed magnetic blue shift.

Altough we could explain our shift with a highly simplified model, future research
should focus on the deeper understanding on these shifts, especially in a multi-orbital
model. Next, it might be possible to adjust the modeling such that it can describe
the actual magnetic blue shift.
Since a global shift of the d bands has an impact of the band gap, determining the
double counting term to know the exact positions of the d bands would be useful.
Instead of using a Gaussian density of states, a more realistic density could be
considered. An average density of states of the d orbitals resulting from the tight-
binding model would be more accurate for example. Moreover, the Hubbard-Kondo
model could be extended in order to include all five bands directly. However, our
implementation of the numerical renormalization group method is designed to handle
not more than three bands.
Moreover, another crystal structure of α-MnTe or a different antiferromagnetic
semiconductor material with comparable electronic and magnetic structure could
be treated similarly as we did for α-MnTe.
Our calculations focussed completely on the bulk material. Experimental methods,
such as ARPES [93], can also detect surface effects. To describe these phenomena,
our model could be modificated such that the dynamical mean field approach treats
a layer. That means that the system would be only translational invariant in two
directions.

Finally, we would like to come back to our starting point. Experiments found that
there is a magnetic blue shift of the band gap in the magnetically ordered phase of α-
MnTe. Another theoretical work [26] showed that in a Hubbard-Kondo model treated
with real space dynamical density functional theory and exact diagonalization, this
shift is a generic effect induced by the narrowing of the bands. We also found this blue
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shift in the d system solved with a DMFT+NRG approach. The advantage of our
procedure is that our Green’s functions are continous, and, therefore, the narrowing
can be seen very illustratively. Calculating the renormalized band structure by
inserting the self-energy into the model leads to a band gap in the system. Our
calculations suggest that the valence band maximum has Te p character, while the
conduction band minimum has Mn s character. Although, the band gap is not equal
to the magnetic shift of the Mott gap, the d bands affect the band gap. Unfortunately,
we observed in our modeling a decrease of the band gap with decreasing temperature,
which is the opposite effect than the experimentally measured magnetic blue shift.
Future research should focus on the reasons for the difference to adjust the model
such that it captures the experimental results.
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