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Abstract
The ability of a production plant to be flexible by adjusting the operating conditions
to changing demands, prices of the products and the raw materials is crucial to
maintain a profitable operation. In this respect, the application of mathematical
optimization techniques is unanimously recognized to be successful to improve the
decision-making process. Typical examples are production planning, scheduling,
real-time optimization and advanced process control. The more information are avail-
able to the optimization approach, the more "optimal" are the resulting decisions: the
"optimal" production strategy cannot reduce the inventory costs if no supply-chain
model is integrated into the production planning optimization. This thesis lies in the
context of Enterprise-wide optimization with the goal of integrating decision layers
and functions while accounting for uncertain information. A stochastic programming
approach is adopted to integrate production scheduling with energy management
and production planning with predictive maintenance. The approaches are analysed
from a formulation perspective and from a computational point of view, which is
necessary to deal with one of the challenges of the presented methods consisting in
the size of the resulting optimization problems.

To reduce the electricity cost that is generated by the uncertain peaks of the day-
ahead price, a two-stage risk-averse optimization is proposed to simultaneously
define the optimal bidding curves for the day-ahead market and the optimal pro-
duction schedule. The large-scale MILP problem is solved with a scenario-based
decomposition technique, the progressive hedging algorithm. Heuristic procedures
are applied to speed up the solution phase and to avoid the oscillatory behaviour due
to the integer variables. Since large electricity consumers rely on Time-Of-Use power
contracts to handle the volatility of the day-ahead price, the two-stage formulation
is expanded into a multi-stage optimization to optimally purchase electricity from
different sources and to generate electric power with a power plant. The unpractical
size of the resulting problem is handled by approximating the multi-stage tree with a
series of two-stage scenario-trees within a rolling horizon procedure. A mixed time
grid handles the multi-scale nature of the problem by making short-term decisions
with a detailed model and catching their effect on the long-term future with an aggre-
gated model.

While the electricity prices introduce exogenous uncertain information into the op-
timization problem, the predictive maintenance optimization carries endogenous
uncertain sources into the production planning problem. Endogenous uncertainties,
contrary to the exogenous ones, are uncertain information that can be modified (in the
probability or in the timing of the realization) by the decision maker. The prognosis
technique of the Cox model is embedded into a multi-stage stochastic program to
consider an uncertain Remaining Useful Life of the equipment when the optimal
operating conditions of the plant are defined. Two modelling approaches (based on
superstructure-scenario trees and on conditional non-anticipativity constraints) are
proposed to formulate the optimization problem with endogenous uncertainties. Two
Benders-like decomposition techniques and several branching priority schemes are
applied to handle the high complexity of the resulting optimization problems.
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Chapter 1

Enterprise Wide Optimization

1.1 The challenges of Enterprise Wide Optimization

Enterprise-wide optimization (EWO) is a new and promising approach emerging
in the process industry with the goal of maintaining profitability in the global mar-
ket by making more efficient decisions (Shapiro, 2001, Grossmann, 2005). The key
idea of EWO is to integrate different decision layers and functions of the decision-
making process to exploit synergies and couplings and avoid possible conflicting
decisions. From the operation perspective, EWO involves planning, scheduling,
real-time optimization and process control. A typical example is the integration
of production planning and scheduling (Maravelias and Sung, 2009). A sequential
approach consists of the planning level making long-term strategic decisions that
represent the set-points of the scheduling level that defines short-term production
sequences. Due to the interconnections and the trade-offs, to achieve a solution that
is globally optimal the synergies between the two levels must be taken into account
to avoid contradictory strategies. However, this leads to much more complicated
optimization problems not only because of the natural increase of the problem size
but also because of the need of accounting for uncertain information. In fact, different
decision layers make decisions at different points in time when some information
might be incomplete or not known. According to (Grossmann, 2005), there are four
major challenges to be addressed to fully exploit the concept of EWO:

• the modelling challenge

• the uncertainty challenge

• the multi-scale challenge

• the algorithmic and computational challenge

The modelling challenge is the hardest challenge to face (and to define) and some-
how it is coupled to all the others. In fact, it does not only pose questions related
to the most suitable mathematical formulations (e.g. continuous time vs discrete
time formulations or precedence-based models vs Resource Task Network (RTN))
but also, and more interestingly, to the necessary level of detail of the modelling
phase to fully exploit concept of EWO. A typical question is whether non-linearities
should be introduced in an EWO problem. In fact, if on one hand the introduction of
non-linear terms would increase the model accuracy, on the other hand it drastically
complicates the solution, forcing, most likely, the decision maker to accept a local
optimum without an estimation of the potential optimality gap. A judicious balance
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between model accuracy and model complexity must be found.

The multi-scale challenge arises inevitably with the integration of different levels of
the decision-making process (e.g. planning and scheduling, scheduling and control)
since decisions across different time-scales (e.g. long-term strategic decisions and
short-term production decisions) must be made simultaneously. The obvious strategy
of extending short-term decisions to the long-term horizon typical of the strategic
layer (e.g. one month) with a fine discretization (e.g. minute or hour) gives rise to
large-scale intractable problems.

Handling uncertainty in the optimization is recognized as a crucial and open chal-
lenge to address. The choice of the optimization approach to edge against uncertainty
is already a difficult step. Common choices rely on stochastic programming (SP)
(Birge and Louveaux, 2011), robust optimization (RO) and chance programming (CP)
(Li, Garcia, and Gunter, 2008) (that however can be reformulated in terms of the
previous two methods). Regardless the preferred optimization approach, handling
uncertainty means increasing the complexity of the optimization problem in terms of
computational time and global optimality of the solution.

Solving large-scale optimization problems is a key point to exploit the concept of
EWO. Many large-scale real-world problems cannot be solved by using off-the-shelf
tools. Therefore, efficient solution methods have to be developed in order to improve
the computational performance and to guarantee global optimality of large scale
Mixed-integer linear Programming (MILP), Non-linear Programming (NLP) and
Mixed-Integer Non-linear Programming (MINLP) problems.

As highlighted in the course of the thesis, the challenges of EWO are interconnected
and coupled to each other and, therefore, multiple challenges have to be faced simul-
taneously to efficiently solve EWO problems. For instance, accounting for uncertain
information not only poses the challenge of formulating an optimization program
that suitably describes the lack of knowledge but also requires a solution tool that is
able to solve the stochastic formulation in a reasonable amount of time according to
the specific application (e.g. from minutes for control problems to hours for planning
problems).

This thesis identifies and addresses an additional challenge of EWO, i.e. the online
nature of these problems. In fact, the environment and the information of EWO prob-
lems change continuously and, therefore, the need of reacting to changing situations
becomes crucial to fully exploit this approach. This challenge is connected to the
four challenges that were previously discussed. In fact, a computational method that
enables the online solution of the problem by adjusting the decisions to new informa-
tion is essential to address the online challenge. Moreover, due to their nature, online
optimization problems are characterized by incomplete or uncertain information.
The connection with the uncertainty challenge would enable robust decisions that
allow to anticipate and optimally react to uncertain information. The interconnection
between the online challenge and the modelling and multi-scale challenges must
also be taken into account to represent the problem. In fact, the online nature of
these problems can influence the level of detail that is needed to provide value. For
example, in an environment that continuously changes, a very detailed model of
the remote future might provide low added value increasing, on the other hand, the
complexity of the problem.
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Outline

Part I places the thesis in the context of EWO, which is already introduced in Chapter
1, for the process industry. Sections 1.2 and 1.3 apply the general concept of EWO
to industrial Demand-Side Management (iDSM) and Condition-Based Maintenance
(CBM), respectively. These topics represent two key approaches to increase the prof-
itability of the process industry by integrating decision functions and levels. The
scope of this work is to provide mathematical formulations and solution methods
that enable the integration of different levels of the decision-making process taking
into account their synergies in order to avoid myopic decisions.

Since this thesis focuses on the uncertainty challenge (and the tightly coupled compu-
tational challenge), Part II presents the theoretical foundations of optimization under
uncertainty on which the rest of the thesis is based. The framework of stochastic
programming is presented from a modelling point of view in Chapter 2.1 covering
the topic of risk-averse optimization in Section 2.1.2 and endogenous uncertainty
in Chapter 2.2. From a solution algorithm perspective, Chapter 2.3 introduces the
mathematical programming decomposition methods that have been adopted in this
thesis. Section 2.3.1 describes the Progressive Hedging Algorithm (PHA) that has
been adopted to solve a large-scale two-stage MILP problem via a scenario-based
approach. Sections 2.3.2 and 2.3.3 describe the primal Benders decomposition and
its generalized version to handle convex MINLP problems. A Benders-like decom-
position that is able to handle non-convex bi-linear NLPs, the Global Optimization
(GOP) algorithm, is introduced in Section 2.3.4. Section 2.3.5 reviews methods and
algorithms that were used in literature to solve stochastic problems with endogenous
uncertainty.

Part III reports the contributions and the applications of the proposed approaches
and algorithms to real-world industrial case studies. Chapter 3 studies the day-ahead
electricity procurement problem from a consumer point of view considering an un-
certain day-ahead electricity price. A bidding process is introduced to model the
day-ahead market. The two-stage MILP program is efficiently solved by adopting
the Progressive Hedging Algorithm. Section 3.2 extends the electricity procurement
options to power contracts covering a medium-term horizon for a real-world indus-
trial combined heat and power plant. Some judicious approximations are proposed
to balance computational time and accuracy of the problem. Chapter 4 proposes two
novel formulations with endogenous uncertainties to integrate production planning,
prognosis and condition-based maintenance. Section 4.1 introduces a stochastic prob-
lem with decision-dependent probabilities to simultaneously optimize the production
level of a single production campaign and the timing of the maintenance activities
according to a prognosis model (the Cox model). This problem is analysed not only
from a modelling point of view, but also from an algorithmic perspective to efficiently
solve this novel class of non-convex MINLP problems. Particular emphasis is given
to the global optimality of this class of optimization problems. Section 4.2 extends the
stochastic formulation with decision-dependent uncertainties to multiple production
campaigns that introduce the features of the decision-dependent structure. In fact,
in this formulation not only the probabilities of the uncertain scenarios are adjusted
according to the decision variables but also the timing of the realization of the un-
certain parameters (and therefore the structure of the scenario tree) is defined by the
decision maker.
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Part IV provides a summary of this thesis by drawing some conclusions and dis-
cussing the outlooks of this work in Chapter 5. All the parameters of the presented
formulations are given in Appendix .1-.4.

1.2 Industrial Demand Side Management

Traditionally, in the process industry production and energy management are han-
dled sequentially. This means that a production schedule is defined and given as
input to the energy management that minimizes the electricity purchasing cost to
realize the given schedule. This sequential approach can easily lead to sub-optimal
solutions since possible synergies are not taken into account. An integrated approach
that considers simultaneously production scheduling and energy management can
be very beneficial since the electricity cost can be further reduced by exploiting the
additional degrees of freedom that are provided by the production decisions or/and
by a power plant (if present) that generates electric power.

This is in fact the goal of industrial Demand-Side Management (iDSM) that aims at
exploiting the financial incentives that are set up by the grid operator by adapting the
production levels to dynamic market or supply conditions, e.g. the time-varying elec-
tricity prices coming from the spot market (Merkert et al., 2014, Siano, 2014, Zhang
and Grossmann, 2015). Apart for the consumer’s perspective, iDSM is expected to
play a crucial role to support operations of the power grid in a more efficient way
coping with the possible drawbacks of the integration of renewable energy sources
(Paulus and Borggrefe, 2011). The difficulties of relying on renewable energy sources
are related to the volatile and largely uncontrollable power feed due to the nature of
the sources, e.g. wind energy, that are not linked to the power needs. This drastically
affects the electricity price in the spot market and generates a supply-demand mis-
match that may compromise the stability of the power grid. From the grid operator’s
perspective, whose main objective is to increase efficiency, operate economically and
ensure stability of the power grid, iDSM is a mean to define financial programs and
incentives (e.g. interruptible loads, ancillary service market) to reduce electricity
demand peaks and quickly react to supply-demand imbalances.

Undoubtedly, adopting an iDSM strategy is beneficial for both the electricity con-
sumers to reduce the electricity cost and the grid operator to stabilize the power grid
by shaping the electricity demand. An overview of advances and challenges in the
area of iDSM can be found in (Zhang and Grossmann, 2015).

1.3 Predictive maintenance

Maintenance activities include all those actions (technical and administrative) aiming
at retaining and restoring an item to a state that is necessary to perform a specific
function (British Standards Institute, 1993). Therefore, maintenance activities include
not only turnarounds that are performed in production plants every 5-10 years, but
also cleaning operations, equipment inspections or substitutions needed to restore
the health of the equipment that degrade over time due to its usage. According to the
way of determining the timing of the maintenance, different maintenance strategies
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can be identified: fixed-interval (or periodic) maintenance policy, reliability-based
maintenance, run-to-failure strategy and condition-based maintenance.

In this thesis, we focus on the Condition-based maintenance (CBM) strategy, also
called predictive maintenance, that is based on the idea of performing the mainte-
nance activities according to the health of the equipment. The core of such a strategy is
a degradation model that is able to estimate and to predict the health of the equipment
according to the operating conditions of the plant. The advantage of a CBM policy
over other maintenance strategies (periodic, reliability-based, run-to-failure) results
from the ability to predict the equipment health and, consequently, its Remaining Use-
ful Life (RUL) according to the plant operations. A fixed-interval maintenance policy
(Tan and Kramer, 1997) based on predetermined maintenance periods in contrast
results in unnecessary costly maintenance activities. Reliability-based approaches
(Dedopoulos and Shah, 1995), (Sanmarti, Espuna, and Puigjaner, 1997), (Rajagopalan
et al., 2017) are based on reliability metrics, as e.g. mean-time-to-failure, but ignore
the influence of the operating conditions on the remaining lifetime. Run-to-failure (or
break-down) policies perform the maintenance activities only after the break-down
of a piece of equipment and, therefore, are mainly adopted for low-cost equipment
that can be repaired quickly.

Therefore, the integration of production planning and CBM aims at capturing and
exploiting the dependency between equipment health and plant operation to find
the best compromise between operating costs and maintenance costs. In fact, a high
production rate might generate high throughput but also high maintenance costs due
to frequent maintenance activities that are necessary because of the fast degradation
rates.

1.4 The challenges addressed in this thesis

The main goal of this thesis is to investigate new approaches for the explicit con-
sideration of uncertainty within the framework of EWO for the process industry.
These approaches should be applicable to complex and industrial-size problems and
should extend the current state of the art by providing optimization formulations
and solution methods that improve the decision making in terms of quality of the
solution and computational effort for systems under the presence of uncertainties.
This thesis focuses on the uncertainty challenge for EWO problems by adopting
the framework of stochastic programming. Within this challenge, this work pro-
poses novel stochastic programming formulations and suitable solution methods
for real-world industrial problems. From an application perspective, the concept of
EWO is brought into the topics of industrial Demand-Side Management (iDSM) and
Condition-Based Maintenance (CBM) that have been approached with mixed-integer
linear and non-linear optimization techniques.

To realize the concept of iDSM, a novel two-stage mixed-integer stochastic formu-
lation is proposed to integrate energy management and production scheduling to
simultaneously optimize the day-ahead electricity procurement and the process op-
erations, accounting for the mechanisms of the electricity markets (e.g. the bidding
process). The advantages of the proposed stochastic formulation are analysed taking
into consideration the additional complexity of the optimization problem compared
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to the deterministic counterpart. While a case of a continuous production plant shows
the benefit of the proposed integration and the need of a risk management strategy to
reduce the electricity purchase during price peaks, the example of a real-world batch
process shows that the large-scale nature of the stochastic programs can be handled
via ad-hoc solution methods. In this case, a scenario-based decomposition technique
has revealed to be the most suitable approach to find good-quality sub-optimal
solutions of the resulting large-scale problem drastically reducing the required com-
putational effort and the optimality loss (that has been estimated a-posteriori).
Following the concept of EWO, the thesis further integrates strategic long-term power
contracts decisions and short-term operations for a combined heat and power (CHP)
production plant by proposing a multi-stage stochastic formulation. The inherit
additional multi-scale challenge has been faced by proposing some judicious approx-
imations. The multi-stage optimization is approximated via a series of two-stage
stochastic programs that are solved in a shrinking-horizon fashion. The multi-scale
nature is modelled by introducing two time grids: a detailed one with an hourly
discretization for the short-term horizon and an aggregated one (defined by the
features of the power contracts) for the long-term future.

While an integration of different functions (i.e. energy management and produc-
tion scheduling) has been realized in the context of iDSM via the framework of
stochastic programming with exogenous uncertainty, the integration of production
planning and condition-based maintenance optimization requires the introduction of
endogenous uncertainties to model the couplings between the two decision levels. To
simultaneously optimize the production levels and the health of the equipment of
a continuous production plant, a multi-stage stochastic program with endogenous
uncertainty (i.e. decision-dependent probabilities) is formulated without assuming
fixed and known probabilities of the scenarios but adjusting the probability of the
realization of the uncertain parameters according to the decisions at one point in time.
Due to the introduction of non-convex terms to describe the endogenous uncertainty,
this approach faces not only the uncertainty challenge but also the computational
challenge that has been tackled by adopting two primal decomposition techniques to
handle the trade-off between global optimality and computational effort.
Furthermore, the extension of the proposed model to a medium term horizon (that is
able to handle multiple production campaigns) leads to a stochastic formulation with
multiple types of endogenous uncertainties (Type-I and Type-II). A similar formula-
tion (with combined types of endogenous uncertainties) has never been presented in
the literature. This work proposes two novel optimization approaches that are able to
simultaneously model the features of the decision-dependent probabilities and the
decision-dependent structure of the scenario-tree. The complexity of the resulting
formulations is analysed in terms of the computational effort needed to reach the
global optimum of the non-convex MINLP problems. A global solver is enhanced
with different custom branching strategies with the goal of temporarily simplify the
non-linear non-convex terms and speed up the solution phase. This novel approach
faces all the challenges of EWO. In fact, by introducing multiple types of endogenous
uncertainties (uncertainty challenge) the proposed formulation requires a modelling
approach that is able to capture these features (modelling challenge) and to enable
the application of advanced decomposition methods to reach the global optimum of
the resulting MINLP problem (computational challenge). Moreover, the optimization
of multiple production campaigns requires to simultaneously consider short-term
and long-term decisions (multi-scale challenge).
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1.4.1 Achievements and contributions of this thesis

Chapter 3 achieves the integration of production and energy management for industrial-
size problems accounting for the uncertainty of the power grid. The major contri-
bution of Section 3.1 is the accurate characterization of the bidding process of the
day-ahead market and its integration into a production scheduling model via a risk-
averse stochastic mixed-integer optimization. The novel formulation is applied to the
industrial size stainless steel-making process and is efficiently solved by adopting a
scenario-based decomposition approach.

Section 3.2 provides an online strategy that allows the simultaneous optimization
of the electricity procurement from different sources of electric power and the short-
term operations of industrial-size combined heat and power plants. The proposed
realistic online strategy enables the application of stochastic integer programming
approaches to real-world industrial problems by solving the stochastic problems in
reasonable amount of time and by handling realizations of the uncertain parameters
there were not included in the set of the defined scenarios. The proposed online
strategy enables the optimization of multi-scale models by combining short-term and
long-term decisions.

Chapter 4 introduces several contributions on the topic of predictive maintenance
optimization. First of all, it couples the concepts of predictive maintenance and
prognosis by embedding for the first time the Cox model into a stochastic program.
The resulting optimization framework that is described in Section 4.1 is based on
endogenous uncertainties and can be applied to any production system that degrades
over time. This section proposes as well different alternatives and insights to solve
this class of problems.

The main contribution of Section 4.2 is the stochastic programming formulation with
endogenous uncertainty where both Type-I and Type-II features are present. A similar
formulation has never been presented in literature. It enables the simultaneous long-
term production planning and predictive maintenance optimization. Additionally,
this section proposes and evaluates two different modelling approaches to build
efficient mathematical formulations of this novel class of optimization problems.
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Chapter 2

Optimization under uncertainty

2.1 Stochastic programming

A stochastic program is a mathematical program (optimization model) where some
of the data is uncertain and can be described by a probability distribution. It is
assumed that the random variables have a countable number of realizations that
are modelled by a discrete set of scenarios s = 1, ..., S. In a stochastic program with
recourse, corrective decisions or recourse actions can be taken after the uncertainty
has partly realized. Each point in time at which a decision is made is called a
stage. Stochastic programming was introduced by (Birge and Louveaux, 1997) with
a multi-stage stochastic formulation. In the two-stage stochastic formulation (Birge
and Louveaux, 2011) the decision maker takes some actions in the first stage, after
which the uncertainties affect the outcome of the first-stage decisions. Recourse
decisions can then be made in the second stage to adapt to the realization of the
uncertainty. A typical example is the planning of a production or distribution facility
under uncertainty of the future market, and the later operation according to the real
demand. The first stage decisions are optimized under the assumption that recourse
decisions will optimally be adapted in the second stage after new information has
become available. Thus the total set of n decisions is divided into two groups:

• Decisions that have to be taken before the uncertainty is realized. These are
called first-stage or here-and-now decisions and they have to be made at the
beginning and cannot be changed over the decision horizon;

• Decisions that can be taken after the uncertainty has been disclosed. These are
called second-stage or wait-and-see decisions and they are a means to react after
the realization of the uncertainty.

Figure 2.1 shows the scenario-tree representation for multi-stage (2.1a) and two-
stage (2.1b) stochastic problems. Each scenario is defined by a path from the root
node to a leaf node. In the more general multi-stage stochastic formulation the
uncertainty is modelled by a scenario tree with N stages that branches at each stage.
The decision process progresses along this scenario tree. In stage i, the decision is
based on the information on the realization of a path in the tree up to this node
whereas the future evolution is only known probabilistically. The decisions at stage i
are optimized under the assumption that the later decisions are optimally adapted
to the information which becomes available after the realization of the uncertainty
(Engell, 2009).
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(a) (b)

FIGURE 2.1: Multi-stage (a) and two-stage (b) stochastic optimization
problems represented by scenario trees. Source: (Leo and Engell,

2019b).

An alternative representation of the scenario tree was introduced in (Ruszczynśki,
1997) using the non-anticipativity constraints (NACs) formulation. In this formu-
lation, as shown in Figure 2.2 for a four-stage problem, each scenario at each stage
is represented by a node. This means that different sets of decision variables are
associated to each scenario. The NACs enforce that the nodes of the same stage have
the same information by forcing the decision variables to be identical. In Figure 2.2b
the NACs are represented by the horizontal lines that connect the nodes of the same
stage.

(a) (b)

FIGURE 2.2: Standard scenario tree (a) and scenario tree of the NACs
formulation (b) for a multi-stage stochastic optimization problem.

2.1.1 Stochastic integer programming

When integrality requirements are present, a stochastic program is called Stochastic
Mixed-Integer Program (SIP). For linear models and a scenario-based representation
of the uncertainties, a deterministic equivalent of a two-stage stochastic integer
program (2-SSIP) can be stated as the following mixed-integer linear program (MILP)
(2.1):
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min
x,ys

f (x, ys) = cTx +
S

∑
s=1

φsqT
s ys (2.1a)

s.t. Ax ≤ b (2.1b)
Tsx + Wsys ≤ hs (2.1c)
x ∈ X, ys ∈ Y, s = 1, ..., S (2.1d)

The objective of a two-stage stochastic mixed-integer linear program (Eq. 2.1a)
consists of the first-stage cost and of the expected value of the second-stage cost. The
first-stage cost and the second-stage costs are calculated as a linear combination of the
first-stage variables x and the second-stage variables ys with cost parameters c and
qs. The expected value of the second-stage costs is calculated by the sum over all the
scenarios of the second-stage costs weighted by the corresponding probabilities φs.
The constraints are divided into two groups: the constraints of the first stage (Eq. 2.1b)
are related only to the first-stage decisions, the constraints of the second-stage (Eq.
2.1c) include variables of the first-stage and of the second-stage. The matrices A and
b describe the first-stage parameters and Ts, Ws, hs represent the parameters of each
scenario s of the second-stage. When a solution of the first stage x is always feasible
in the second-stage, the stochastic problem has complete recourse. The first-stage
variables x and the second-stage variables ys belong to the polyhedral sets X and
Y (Eq. 2.1d). Both the sets X and Y can present integer requirements. In case only
the polyhedral set X of the first-stage variables x presents integer requirements, this
class of problems are called stochastic problems with continuous recourse. When
the polyhedral set Y of the second-stage variables y presents integer requirements,
the problems are called stochastic problems with integer recourse and the solution
becomes harder since the scenario sub-problems lose the property of convexity that is
a crucial property for the application of mathematical programming decomposition
methods.
In a multi-stage program the uncertainty reveals sequentially and the decision maker
can make corrective decisions over a sequence of stages. As in a two-stage stochastic
program, the multi-stage case optimizes the cost of the decisions taken at the first-
stage and the expected cost of the recourse actions.

2.1.2 Risk-averse optimization

Considering the expected value of the second-stage cost implies that the realizations
of the random parameters have no qualitatively different effect. This however is not
always true: even a low probability of large losses may not be acceptable. A remedy
is to integrate the concept of risk into the optimization problem. We distinguish
between two classes of risk measures according to whether they are defined via
quantiles or via deviation measures (Rockafellar, 2015). Quantile risk measures are
based on the quantiles of the probability distributions of the costs. Types of quantile-
based risk-measures include the conditional value-at-risk (CVaR), which measures
the expectation of the worst outcomes for a given fraction of the total outcomes, and
the excess probability (EP), which measures the probability of exceeding a prescribed
target level. Deviation risk measures are given by the expectations of the deviations of
the relevant random variable from its mean or from some prescribed target. Examples
of deviation-based risk-measures include the expected excess (EE), which measures
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the expected value of the excess over a given target, and the semi-deviation (SD),
which measures the expected value of the excess over the mean.

Variance

The most intuitive risk measure is the variance of the scenario costs. The variance is a
measure of how broad the distribution of the scenario costs is. High variance reflects
the chance that the actual costs may largely differ from the expected cost. It is defined
as

σ(Z) = E[(Z− Ẑ)2] (2.2)

where Ẑ is the arithmetic mean of the scenario costs. However, the variance introduces
non-linearities in the optimization problem that then becomes harder to be solved.

Value-at-Risk and Conditional Value-at-Risk

In this thesis, we adopt here the CVaR, since it is a coherent risk measure (it preserves
convexity). Since the definition of CVaR relies on the concept of VaR, it is worth
to first introduce the definition of VaR. Let us consider that Z is a random variable
with the meaning of loss. VaRα is defined as the maximum loss that will not be
exceeded at a given confidence level α (with α ∈ (0, 1)) (Uryasev, 2000). An equivalent
interpretation of VaRα is the α-quantile of the distribution of the random variable Z.
Eq. 2.3 shows the mathematical definition of VaRα

VaRα(Z) := min{c : P(Z ≤ c) ≥ α} (2.3)

Although VaR is a very popular measure of risk (for instance in financial applications),
it has undesirable properties such as non-convexity. CVaR is an alternative measure of
risk, with more attractive mathematical properties (Uryasev, 2017). CVaR is defined
as the expected loss, conditional on the fact that the loss exceeds the VaR at the given
confidence level α. The mathematical definition of CVaR is given by Eq. 2.4.

CVaRα(Z) := E[Z | Z ≥ VARα(Z)] (2.4)

CVaR is a coherent risk measure and it is more conservative than VaR. Most impor-
tantly, CVaR can be expressed by a minimization formula proposed in (Rockafellar
and Uryasev, 2000) and shown by Eqs. 2.5-2.6.

CVaRα(Z) = min
ψ

Fα(Z, ψ) (2.5)

Fα(Z, ψ) = ψ +
1

1− α
E[(Z− ψ)+] (2.6)

where E[·] is the expectation and (Z− ψ)+ = max{0, Z− ψ}. The variable ψ takes
the value of VaRα when the CVaRα is computed by the above formula. Eqs. 2.5-2.6
can be formulated as linear constraints in an optimization problem and this provides
a computationally efficient way to integrate the CVaR into optimization problems.
Figure 2.3 provides a qualitative representation of the CVaRα and VaRα.
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Expected excess

Expected excess (EE) reflects the expected value of the excess over a given target γ
and is defined as:

EE(Z) = E[max{ f (Z(ψ), ψ)− γ, 0}] (2.7)

Semi-deviation

Semi-deviation (SD) is similar to the expected excess, but with the prefixed target
replaced by the mean of the random variable Ẑ, and is defined as:

SD(Z) = E[max{ f (Z(ψ), ψ)− ˆ(Z), 0}] (2.8)

FIGURE 2.3: Illustration of the risk measures CVaRα and VaRα and of
the excess for the scenario with the maximum cost.

Risk measures for multi-stage programs

For two-stage stochastic programs, the risk-averse model extends immediately from
the risk-neutral model by augmenting the expectation of the second stage cost with
a risk measure. When it comes to multistage models, however, there is no natural
way of measuring risk: risk measures can be applied at every stage additively or to a
complete scenario path or be measured in a nested form (Mello and Pagnoncelli, 2016).
The definition of a risk measure for multi-stage problems has to enforce the property
of time-consistency. Intuitively, the property of time-consistency can be defined such
that given the optimal solutions from previous stages, resolving the problem results
in the same solutions for the later stages if the optimal solutions are unique. If the
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optimal solutions are not unique, resolving the problem at the later stages gives the
same optimal objective as computed by the original optimal solutions. Risk-neutral
and two-stage risk-averse stochastic programs are time- consistent. For multistage
risk-averse stochastic programs, however, time-consistency is not guaranteed and
depends on how the risk measure is computed. The risk-averse models with risks
measured at every stage separately or measured for the complete scenario path are
shown to be time-inconsistent (Pflug and Pichler, 2016). In (Mello and Pagnoncelli,
2016) the authors address this drawback by proposing a class of expected conditional
risk measures (ECRMs) which proves to be time-consistent.

2.1.3 The Value of the Stochastic Solution

The value of the stochastic solution (VSS) measures the advantage of using a stochastic
program over using the deterministic counterpart where the stochastic parameters
have been replaced by their mean values. In other words, it measures the advantage
of accounting for the uncertainty and taking into account the recourse decisions. The
VSS and the relative VSS are defined by Eqs. 2.9-2.10 for a minimization problem.

VSS = z∗RP − z∗SP (2.9)

VSS =
z∗EP − z∗SP

z∗RP
(2.10)

where z∗SP is the optimal solution of the stochastic problem and z∗RP is the optimal
solution of the recourse problem (RP) that is defined as the stochastic problem with
first-stage variables obtained by the optimal solution of the Expected Value Problem
(EVP) where the stochastic parameters have been replaced by their mean values.

In risk-averse optimization, the objective is to minimize a weighted sum of the
expected cost and a measure of risk, e.g. the CVaR. Therefore, the VSS is defined by
Eq. 2.11 for a minimization problem.

VSS = η(z∗RP − z∗SP) + (1− η)(CV∗RP − CV∗SP) (2.11)

where CV∗SP, CV∗RP represent the optimal values of the risk measure for the stochastic
problem and the recourse problem (RP). The parameter η is a scalar coefficient that
the decision maker can tune to assign priorities to the expected cost and to the risk
measure. Analogously, Eq. 2.12 defines the relative VSS.

VSS =
η(z∗RP − z∗SP) + (1− η)(CV∗RP − CV∗SP)

ηz∗RP + (1− η)CV∗RP
(2.12)

The VSS for multi-stage programs

The natural extension of the VSS from two-stage to multi-stage programs (MSSP) is
defined in (VSS_MSP) for each stage t for a minimization problem as

VSSt = z∗RPt
− z∗MSSP (2.13)
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where z∗MSSP is the optimal solution of the multi-stage stochastic program and z∗RPt
is

the optimal solution of the recourse problem where all the variables from stage one
until stage t are fixed to the optimal solution of the expected value problem. For each
stage t the following inequality holds:

0 ≤ VSSt ≤ VSSt+1 (2.14)

This sequence of non-negative values represents the cost of ignoring uncertainty until
stage t in the decision making of multistage models.

2.2 Stochastic programming with endogenous uncertainty

The standard stochastic programming formulation with recourse assumes the uncer-
tainty to be exogenous. The uncertainty is modelled by a discrete set of scenarios
with fixed and known scenario probabilities and the decisions are made at different
stages defined by the realization of the uncertainty. The realization of the stochastic
parameters is independent of the decision variables. Endogenous uncertainty prob-
lems are stochastic problems where the decisions at one point in time can impact the
uncertainty realization either in terms of the timing of the realizations or in terms
of the probability of the uncertain parameters. According to the influence of the
decisions, the endogenous uncertainty formulations can be classified into problems of
Type 1, if the decisions can alter the probability distribution by making one uncertain
scenario more likely than others, or problems of Type 2, if the decisions determine the
timing when the uncertainties are resolved (Jonsbraten, Wets, and Woodruff, 1998). In
recent years, the framework of stochastic programming with endogenous uncertainty
has received increasing attention (e.g. Hellemo, Barton, and Tomasgard, 2018).

2.2.1 Decision-dependent probabilities - Type-I

The class of stochastic programs with decision-dependent probabilities includes all
those stochastic formulations where the probabilities of the uncertainty realizations
are affected by the decisions. This includes formulations where the probabilities are
selected from a finite number of sets (Peeta et al., 2010, Escudero et al., 2018), formu-
lations where the probabilities can be set continuously according to mathematical
expressions of the decision variables (Pflug, 1996, Zhan et al., 2016) and formulations
where the parameters of the probability distribution can be modified (Hellemo, Bar-
ton, and Tomasgard, 2018). In (Peeta et al., 2010) the authors consider the robust
design of a transportation network where the links are subject to random failures.
Investments decisions can be made to decrease the probability of a disruptive event.
The probabilities are selected from two a-priori-defined sets according to whether
the investment takes place. Similarly, in (Escudero et al., 2018) the authors solve a
preparedness resource allocation model for the mitigation of natural disasters. A
three-stage stochastic mixed 0-1 bilinear optimization problem is presented where the
outcomes and the probabilities of the scenarios are influenced by first-stage invest-
ment decisions (selection of facilities for commodities storing). In the context of the
unit commitment problem, in (Zhan et al., 2016) the authors assume that the electricity
prices are dependent on the investment decisions on the generation capacity.
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2.2.2 Decision-dependent structure - Type-II

Stochastic programs with decision-dependent structure are optimization models
where the structure of the stochastic process can be modified by the decision maker.
This covers the case where the timing of the revelation of the uncertain parameters can
be altered by the decision variables and the case where stochastic parameters (i.e. the
scenarios) can be added and/or deleted. These features are typically modelled with
conditional non-anticipativity constraints (NACs) that are NACs that are activated
by the decision variables. In (Goel and Grossmann, 2004), the authors optimize the
utilization of natural gas resources. The source of uncertainty lies in the production
parameters of the wells, and therefore the timing of drilling the wells alters the
timing of the revelation of the uncertain parameters (e.g. if the well is not drilled no
revelation takes place). In (Boland, Dumitrescu, and Froyland, 2008) the problem of
the opening of pit mines is analysed. The quality of the mining blocks is uncertain
and therefore its revelation is conditional to the opening of the block (that is a decision
variable of the problem). The authors reduced the number of conditional NACs by
using structural information of the problem under consideration. The stochastic
R&D project portfolio optimization problem for the aviation industry in (Solak et
al., 2010a) also includes sources of endogenous uncertainty. The uncertain project
returns are typically revealed gradually over time according to the decisions on the
resource allocation. In (Colvin and Maravelias, 2008), (Colvin and Maravelias, 2009),
(Colvin and Maravelias, 2010) the authors study the planning of clinical trials for
new drug development where the outcome of the trials represents the uncertain
parameter. All these works show that taking into account a decision-dependent
structure uncertainty can drastically improve the quality of the solution at the cost of
rendering more complex the optimization problem.
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2.3 Solution methods and Implementation

Stochastic programming formulations give rise to large-scale optimization problems
(2.1) and solving the deterministic equivalent problem can be prohibitive. Decompo-
sition algorithms takes advantage of the special structure of the optimization problem
to reduce the computational time. Decomposition methods can be classified into:

• problem-dependent algorithms, which take advantage of the specific properties
of the problem at hand (e.g. bi-level decomposition).

• general algorithms, which target a class of problems with similar structures (e.g.
Progressive Hedging algorithm, Benders decomposition or L-shaped method).

Focusing on general mathematical programming algorithms, they can be further
classified according to the exploitation of complicating constraints or complicating
variables (Conejo et al., 2006), as shown in the Figure 2.4. Complicating constraints
(Figure 2.4a) involve variables from different blocks (e.g. scenarios in a stochastic
formulation with NACs) and complicating variables (Figure 2.4b) link constraints
from different blocks. Complicating constraints methods (e.g. Progressive Hedging,
Lagrangean decomposition) dualize the complicating constraints to decouple the
problem blocks. On the other hand, complicating variables methods (Benders decom-
position) temporary fix the complicating variables to obtain easier sub-problems.

(a) (b)

FIGURE 2.4: Schematic representation of the structure of the opti-
mization problems with complicating constraints (a) and complicating

variables (b).

The following Sections 2.3.1-2.3.4 describe the mathematical decomposition ap-
proaches that were adopted in this thesis and some methods that were used in
literature to solve stochastic problems with endogenous uncertainty.

2.3.1 Progressive Hedging

The Progressive Hedging Algorithm (PHA) is a scenario-wise decomposition tech-
nique that decomposes the deterministic equivalent formulation of a stochastic pro-
gram by scenario dualizing the non-anticipativity constraints (NACs) interpreted
as complicating constraints. The algorithm iteratively solves modified versions of
the sub-problems penalized proportionally to the violation of the dualized NACs
(Rockafellar and Wets, 2006). The PHA is proven to converge to the optimal solution
only under the condition of convexity of the original problem. In the case of integer
variables in the decomposed sub-problems, while convergence to a globally optimal
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solution is not guaranteed, the algorithm can reach high-quality solutions within a
limited number of iterations (Watson and Woodru, 2011). We consider a two-stage
stochastic mixed-integer program of the form

min
x,ys

cTx +
S

∑
s=1

φsqT
s ys (2.15a)

s.t. (x, ys) ∈ X(S) (2.15b)

where x represent a vector of first-stage variables, ys a vector of second-stage variables,
and X(S) a set of constraints defining the feasible region. The set S is the set of
the scenarios describing the uncertainty. The equivalent formulation with NACs
expressed in Problem 2.16 is obtained creating a copy of the first-stage variables into
each scenario.

min
x,ys

S

∑
s=1

φs(cTxs + qT
s ys) (2.16a)

s.t. (xs, ys) ∈ X(S) (2.16b)
xs = xs′ ∀s, s′ ∈ S (2.16c)

where Eq. 2.16c represents the non-anticipativity constraints. The penalized versions
of the subproblems are expressed in Problem 2.17.

min
x,ys

S

∑
s=1

φs(cTxs + qT
s ys + wk

s xs +
ρ

2

∥∥∥xs − x̂k
∥∥∥2
) (2.17a)

s.t. (xs, ys) ∈ X(S) (2.17b)

where ρ is the penalty parameter that weights the violation of the NACs and wk
s are

the Lagrange multipliers associated to the NACs. The algorithm terminates when the
maximum number of iterations (or a time limit) is reached or if the sum of the NAC
violations is less than a predefined tolerance. The statement of the PHA for two-stage
stochastic mixed integer programs is given in Algorithm 1. The convergence of the

Algorithm 1 Progressive Hedging algorithm

1: Initialization: Let k← 0 and wk(s)← 0, ∀s ∈ S. For each s ∈ S solve 2.15a-2.15b
2: Iteration Update:k← k + 1
3: Aggregation: x̂k ← ∑s∈S φsxk

s
4: Dual price Update: wk

s ← wk+1
s + ρ(xk

s − x̂k)
5: Decomposition: For each s ∈ S solve 2.17a-2.17b
6: Convergence test: If all scenario solutions xs are equal, stop. Else, go to step 2.

PHA and the quality of the solution are significantly affected by the choice of the
penalty parameter ρ. Large values of ρ lead to small number of iterations of the PHA
to achieve primal convergence. However, the quality of the final solution can be
relatively poor. In contrast, low values of ρ increase the number of the iterations of the
PHA but the quality of the resulting primal solutions can be significantly improved.
Numerical tested showed that for the problem studied in this thesis (see Section
3.1.5) the convergence is improved when the value of ρ is different for each variable
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involved in the dualized NACs. In other words, the parameter ρ in Eq. 2.17a is
substituted by the set of parameters ρs.

To speed up the convergence of the algorithm, we implemented a heuristic known as
variable slamming (Watson and Woodru, 2011). The heuristic fixes decision variables
once their value has stabilized to a fixed value over the last nslamming iterations. Low
values of nslamming result in an immediate variable fixing with the risk of a poor quality
solution. The same heuristic is applied in case some variables have not converged
when a termination criterium is activated in order to ensure primal feasibility.

Progressive Hedging and CVaR

Introducing a risk measure can increase the complexity of the optimization problem,
not only because of the additional constraints needed to define the risk, but also for
the possible lack of separability of the additional constraints that are needed to model
the risk-measure (Schultz and Tiedemann, 2006). Here we shown how the progressive
hedging algorithm can be applied to solve risk-averse optimization problems with
a Conditional-Value-at-Risk measure. We report in Eqs. 2.18-2.21 the constraints
defining the CVaR according to a non-anticipativity formulation. These constraints
can be separated interpreting the variable ψ as an additional first-stage variable and
a copy ψs is introduced in each scenario s. Consequently, the set of non-anticipativity
constraints (Eq. 2.21) is enlarged to ensure primal feasibility of the solution.

CVaRs = ψs + (1− α)−1 ∑
s

φs ∗ ζs ∀s ∈ S (2.18)

Costs − ψs ≤ ζs ∀s ∈ S (2.19)

ζs ≥ 0 ∀s ∈ S (2.20)

ψs = ψs′ ∀s, s′ ∈ S (2.21)

2.3.2 Benders decomposition

The Benders decomposition was proposed by Benders (Benders, 1962) to solve large-
scale MILP problems with complicating variables that when temporarily fixed give
rise to a problem that is significantly easier to handle. When applied to a two-
stage stochastic program, the Benders decomposition is also called L-shaped method
(Louveaux and Birge, 2008). The complicating variables are the first-stage variables
that when fixed render the scenario sub-problems decoupled. We consider the general
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MILP formulation in Problem 2.22:

min
x,y

cTx + f Ty (2.22a)

s.t. Ax = b (2.22b)
Bx + Dy = d (2.22c)

y ≥ 0 (2.22d)
x ∈ Zn

+ (2.22e)

where x are the integer complicating variables. The continuous variables y must
satisfy along with the complicating variables x the linking constraint in Eq. 2.22c.
When the complicating variables x are fixed, the Problem 2.22 can be separated into
two decoupled optimization problems in the x and y variables. Problem 2.22 can be
re-formulated as:

min
x̂∈X

{
cT x̂ + min

y≥0
{ f Ty : Dy = d− Bx̂}

}
(2.23)

where x̂ are the fixed values of the complicating variables that satisfy the constraint
set X = {x : Ax = b, x ∈ Zn

+}. Since the inner minimization is a continuous linear
program, it can be dualized with the dual variable λ ∈ Rn that is associated to the
constraint Dy = d− Bx̂ as shown in Problem 2.24.

max
λ∈Rn
{λT(d− Bx̂) : λTD ≤ f } (2.24)

The Benders decomposition algorithm exploits the duality theory reformulating
Problem 2.23 into Problem 2.25, where the inner primal optimization problem is
substituted with its equivalent dual formulation.

min
x̂∈X

{
cT x̂ + max

λ∈Rn
{λT(d− Bx̂) : λTD ≤ f }

}
(2.25)

The feasible region of the inner maximization problem (Λ = {λ | λTD ≤ f })
does not depend on the choice of the complicating variables x̂. If Λ is not empty,
the inner maximization problem can be either unbounded or feasible. If the inner
optimization is unbounded, it exists a direction of unboundedness rq, q ∈ Q for which
rT

q (d− bx̂) > 0. The set Q represents the set of the extreme rays of the feasible region
Λ. To avoid an unbounded inner problem (which indicate an infeasible solution
of the complicating variables x̂), Eq. 2.26 can be added to the outer optimization
problem.

rT
q (d− Bx̂) ≤ 0 (2.26)

If the inner optimization problem is feasible, the optimal point is one of the extreme
points λe, e ∈ E (where E is the set of the extreme point of Λ). If all the cuts in Eq.
2.26 are added to the outer minimization problem, the optimal solution of the inner
maximization problem is one of the extreme points. Therefore, Problem 2.25 can be
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re-expressed as the Benders Master Problem 2.27:

min
x,η

cTx + η (2.27a)

s.t. Ax = b (2.27b)

η ≥ λT
e (d− Bx) ∀e ∈ E (2.27c)

0 ≥ rT
q (d− Bx) ∀q ∈ Q (2.27d)

x ∈ Zn
+, η ∈ R1 (2.27e)

where Eq. 2.27c represents the optimality cuts and Eq. 2.27d the feasibility cuts.
Since the enumeration of these cuts is not practical for large-scale problems, the
Benders decomposition proposes a relaxation of the master problem and an iterative
approach. The Benders algorithm solves the relaxed Benders master problem, which
includes only a subset of the optimality (Eq. 2.27c) and feasibility cuts (Eq. 2.27d), to
obtain a first trial value of the complicating variables x̂. Then, it solves the Benders
subproblem that is defined in 2.24, where the complicating variables x are fixed to the
solution of the relaxed Master problem x̂. If the sub-problem is feasible an optimality
cut (Eq. 2.27c) is added to the relaxed master problem, otherwise an infeasibility cut is
generated to exclude the current solution from the relaxed master problem. Since the
relaxed master problem contains fewer constraints than the Benders reformulation in
2.27, its optimal objective function provides a lower bound of the final solution. On
the other side, the optimal objective function of the Benders sub-problem (added to
the term cT x̂) provides an upper bound of the final solution. The algorithm alternates
between the relaxed master and the sub-problem until an optimal solution is found
where the upper- and lower-bounds of the problem coincide.

The application of the Benders decomposition to a stochastic program generates as
many independent sub-problems as the number of scenarios. The solution of the
sub-problems generates the optimality cuts to be inserted into the relaxed master
problem. A single-cut L-shaped method inserts into the relaxed master problem only
one cut at each iteration. A multi-cut version (Birge and Louveaux, 1998) augment the
relaxed master problem with multiple cuts (i.e. one cut per scenario) at each iteration.

The global optimality of the Benders decomposition requires convexity of the original
problem in order to reformulate the inner optimization problem in 2.22 into the
equivalent dual formulation. When the inner optimization in 2.22 presents integer
variables (also called integer recourses for a stochastic program) the property of
convexity is lost and the optimality cuts in Eq. 2.27c might not be valid cuts. A
modification of the cut generation scheme (Laporte and Louveaux, 1993a, Carøe and
Tind, 1998, Sherali and Fraticelli, 2002, Sen and Sherali, 2006, Li and Grossmann,
2019) is needed to handle integer sub-problems. A recent review of the Benders
decomposition with an emphasis on combinatorial optimization can be found in
(Rahmani et al., 2017).
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2.3.3 Generalized Benders Decomposition

The Benders decomposition algorithm was generalized by Geoffrion (Geoffrion, 1972)
to handle non-linear convex problems of the form:

min
x∈X,y∈Y

f (x, y) (2.28a)

s.t. g(x, y) ≤ 0 (2.28b)

where x and y are the decision variables, X and Y the feasible sets of these variables
and g(x, y) a set of inequality constraint functions. As for the Benders decomposition,
the original problem can be reformulated into an inner and outer optimization prob-
lem as shown in Problem 2.29 where the variables x are considered as complicating
variables.

min
x∈X

v(x) (2.29a)

s.t. v(x) = min
y∈Y

f (x, y) s.t. g(x, y) ≤ 0 (2.29b)

x ∈ X ∩V (2.29c)

where
V ≡ {x : g(x, y) ≤ 0 f or some y ∈ Y} (2.30)

The Generalized Benders Decomposition (GBD) assumes that the set Y is convex
and the functions f (x, y), g(x, y) are convex with respect to y. As for the Benders
Decomposition, the GBD invokes the dual problem of v(x) to obtain the Master
Problem 2.31,

min
η∈R1,x∈X

η (2.31a)

s.t. η ≥ inf
y∈Y
{ f (x, y) + λTg(x, y)} ∀λ ≥ 0 (2.31b)

inf
y∈Y
{uTg(x, y) ≤ 0} ∀u ∈ U (2.31c)

and the primal sub-problem 2.32

min
y∈Y

f (x̂, y) (2.32a)

s.t. g(x̂, y) ≤ 0 (2.32b)

where x̂ is a fixed point in X and U = {u ∈ Rm : u ≥ 0 and ∑m
i=1 ui = 1}. Therefore,

if the set Y is not convex or the functions f (x, y), g(x, y) are not convex with respect
to y, a dual gap might exist between the problem v(x) and its dual.
Even when a relaxed master problem is considered by ignoring some of the constraints
in Eqs. 2.31b-2.31c, Problem 2.31 still involves an inner optimization problem that is
parametric in the variables x. For this reason, the GDB assumes that the solution of
the inner optimization problem can be found independently of x.
Therefore, the practical implementation of the GBD solves the sub-problem 2.32 with
an initial guess of the complicating variables x̂. The optimal objective function of the
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primal sub-problem represents an upper-bound of the solution of original problem
2.28. Then, it solves the relaxed master problem 2.33 where the variables yk and
the Lagrange multipliers λk are fixed to the optimal solution of the sub-problem at
iteration k. The optimal objective function η∗ is a lower-bound of the optimal value
of Problem 2.28.

min
η∈R,x∈X

η (2.33a)

s.t. η ≥ f (x, yk) + λkTg(x, yk) k = 1, . . . , i, (2.33b)

ukTg(x, yk) ≤ 0 k = 1, . . . , j (2.33c)

Eqs. 2.33b-2.33c correspond to the optimality and feasibility cuts of the Benders
decomposition, respectively. The right-hand-side of Eq. 2.33b can also be seen as
the Lagrange function of the relaxed master problem L(x, yk, λk) at iteration k. In
terms of global optimality of the solution it is crucial to analyse the Lagrange function
L(x, yk, λk) when non-linear terms are present, as shown in Section 2.3.4. The index i
represents the i-th iteration of the GBD while the index j the iterations where the sub-
problem is infeasible. The algorithm alternates between the relaxed master problem
and the sub-problem with fixed complicating variables until the upper- and lower-
bounds coincide (or differ for a pre-defined tolerance ε > 0). If the sub-problem is
infeasible for some fixed complicating variables x̂, the values of (y, u) that satisfy
uTg(x̂, y) > 0 must be inserted into the relaxed master problem.
The presented version of the GBD differs from the one presented in (Geoffrion, 1972)
since it avoids to solve the inner optimization problem by fixing the variables y and
the Lagrange multipliers λ to the optimal solution of the primal sub-problem. This
is a valid implementation if the original problem is convex and is often adopted in
practice, in particular, when non-convex terms are present (even though it might lead
to a non-optimal point) (Sahinidis and Grossmann, 1991, Floudas and Visweswaran,
1990).

2.3.4 Global Optimization (GOP) algorithm

A crucial assumption of the GBD algorithm to guarantee global optimality is that
the solution of the inner optimization problem in 2.31 can be found independently
on the variables x. Therefore, the GBD fixes the variables y in 2.31 to the solution
of the primal sub-problem yk in order to eliminate the inner optimization. When
non-convex terms are present (e.g. bi-linear terms), this assumption does not hold
and the GBD might lead to a local optimal solution (Sahinidis and Grossmann, 1991).

We focus here on a class of non-convex problems where the assumption of the GBD
on the inner optimization problem (i.e. its solution is independent on the x variables)
is not valid. We introduce the Global Optimization (GOP) algorithm (Floudas and
Visweswaran, 1990) that is able to handle (when particular conditions hold) problems
of the form of 2.28 where non-linear non-convex terms are present in the functions
f (x, y) and/or g(x, y). The GOP is based on a similar algorithmic procedure to the
GBD by alternating between a relaxed master problem that provides a lower-bound of
the final solution, and a sub-problem with fixed-complicating variables that provides
an upper-bound of the final solution. The difference between the two algorithms is
related to the way of handling the inner optimization problem in 2.31: the GOP makes
a series of rigorous simplifications to reformulate the inner optimization problem in



28 Chapter 2. Optimization under uncertainty

2.31 and to guarantee global optimality of the final solution when non-convex terms
are present.

For the case of feasible primal sub-problems (or complete recourse for a stochastic
program), the inner optimization problem in 2.31, also denoted as Inner Relaxed Dual
problem, can be expressed as

min
y∈Y

L(x, y, λk) (2.34a)

s.t. L(x, y, λk) = f (x, y) + λkTg(x, y) (2.34b)

where L(x, y, λk) is the Lagrange function of Problem 2.32 at iteration k. If the original
problem is convex, fixing the variables y to the solution of the primal sub-problem yk

(that defines a local support of v(x) in 2.29 around the point yk) represents a valid
under-estimator for all values of x, and it can be used within the iterative procedure of
the GBD algorithm. However, when non-convexities are present, the linear Lagrange
function with fixed yk (L(x, yk, λk)) does not ensure an under-estimation of v(x) for
all the variables x and, therefore, might lead to local solutions.

The GOP is restricted to the class of non-convex problems where the Lagrange
function L(x, y, λk) is convex in y for x = x and is convex in x for y = ŷ. This is for
example the case of non-convex bi-linear terms that appear in the objective function
of a stochastic program with decision-dependent probabilities. When a variable of the
non-convex bi-linear terms is fixed, the bi-linear terms become linear and therefore
convex. For this class of problems, the linearization of the Lagrange function around
the solution of the primal sub-problem yk (Llin(x, y, λk) |yk ) is therefore a valid under-
estimator when the complicating variables are fixed to x.

min
y

L(x, y, λk) ≥ min
y

Llin(x, y, λk) |yk ∀x (2.35)

The linearization of the Lagrange function around the solution of the primal sub-
problem yk is expressed in Eq. 2.36:

Llin(x, y, λk) |yk= L(x, y, λk) |yk +∑
i
∇yL(x, yi, λk) |yk

i
(yi − yk

i ), (2.36)

where yi is the i-th y variable. When the Lagrange function is replaced by its lineariza-
tion, the authors in (Floudas and Visweswaran, 1990) proved that the solution of the
Inner Relaxed Dual problem depends only on the variables yi that are involved in the
non-convex terms with the variables x. This sub-set of variables is called connected
variables. This property implies that for such problems the computational effort does
not depend on the total number of variables but on the number of connected variables
(which can be limited to a small number).
Moreover, when the Lagrange function is linearized, the optimal solution of the Inner
Relaxed Dual problem lies at the bounds (upper- or lower-bounds) of the connected
variables. According to the definition of the linearized Lagrange function given in Eq.
2.36, it is straightforward to see that for a minimization problem if the gradient of
the Lagrange function is positive (∇yL(x, y, λk) |yk> 0) the solution lies on the lower-
bounds of the connected y variables, and if negative (∇yL(x, y, λk) |yk< 0) on the
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upper-bounds. Therefore, as indicated in 2.37, for the discretized variables x = x the
solution of the inner relaxed dual problem can be obtained by evaluating the Lagrange
function over all the possible combinations of the bounds of the connected variables
with the corresponding constraints on the sign of the gradients∇yL(x, yk, λk) |yk . The
non-negativity and non-positivity of the gradient of the Lagrange function are known
as qualifying constraints of the Lagrange function.

min
y

L(x, y, λk) ≥ min
bj∈B


Llin(x, ybj , λk) |yk

with ∇yL(x, y, λk) |yk≥ 0 ∀y
bj
i = yLB

i

∇yL(x, y, λk) |yk≤ 0 ∀y
bj
i = yUB

i
∀x = x


(2.37)

The set B represents the set of the upper- (yUB
i ) and lower-bounds (yLB

i ) of the con-
nected variables yi. With these rigorous simplifications, the GOP algorithm provides
a way to handle the inner optimization problem in 2.31.
The last step of the GOP algorithm is to determine which Lagrange functions from
the previous iterations can be included into the relaxed master problem. This is
accomplished by evaluating the qualifying constraints of the previous Lagrange
functions at the fixed value of the current (at iteration k) complicating variable xk. If
the qualifying constraint is satisfied, the Lagrange function along with the satisfied
qualifying constraint is added to the current relaxed master problem. Therefore, at
iteration k the relaxed master problem 2.31 can be rigorously reformulated as Problem
2.38 to eliminate the inner optimization problem.

min
bj∈B



min
η∈R1,x∈X

η

s.t.
η ≥ Llin(x, ybj , λk′) |yk′

∇yL(x, y, λk′) |yk′≥ 0 ∀y
bj
i = yLB

i

∇yL(x, y, λk′) |yk′≤ 0 ∀y
bj
i = yUB

i
∀k′ = {1, 2, . . . , k− 1}, k′ ∈ LS(k)

η ≥ Llin(x, ybj , λk) |yk

∇yL(x, y, λk′) |yk′≥ 0 ∀y
bj
i = yLB

i

∇yL(x, y, λk′) |yk′≤ 0 ∀y
bj
i = yUB

i



(2.38)

The set LS(k) is the set of Lagrange functions over the iterations 1, 2, . . . , k− 1 whose
qualifying constraints are satisfied for x = xk. The GOP algorithm can be stated in
the following steps:

• Step 0: Initialization of the complicating variables xk = x0 with k = 0 and of the
upper- and lower-bounds of the final solution UBk = + inf, LBk = − inf

• Step 1: Iteration update k← k + 1

• Step 2: Solution of the sub-problem 2.32 with fixed complicating variables
xk = xk−1 obtaining the optimal Lagrange multipliers λk

• Step 3: Creation of the relaxed master problem 2.38 by adding the Lagrange func-
tion of the previous iterations k′ ∈ {1, . . . , k− 1} if the qualifying constraints
evaluated at xk are satisfied
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• Step 4: Solution of the relaxed master problem 2.38 for each combination of the

bounds of the connected variables y
bj
i . The optimal objective function values

are stored in the vector z∗MP.

• Step 5: Bounds update according to LBk = min{z∗MP}, UBk = min{UBk−1, zSP∗}

• Step 6: Convergence test to verify if the upper- and lower-bounds are sufficiently
close. If UBk − LBk < ε, stop. Else, go to step 3.

2.3.5 Solution methods for stochastic programs with endogenous uncer-

tainty

Stochastic programs with decision-dependent probabilities give rise to non-convex
MINLP problems. Given the complexity of the formulation it is unrealistic to solve
the deterministic equivalent problem up to global optimality. In (Peeta et al., 2010)
the authors approximate the original problem by relaxing the integrality of invest-
ment variables and applying Taylor series expansion with the idea of sacrificing
global optimality to gain tractability for the problem under investigation. In (Zhan
et al., 2016) the authors introduce a quasi-exact solution approach to reformulate
the non-linear multistage stochastic investment model to a mixed-integer linear pro-
gramming (MILP) model. The reformulation-linearization technique is based on the
work proposed in (Meyer and Floudas, 2006). In (Escudero et al., 2018) the authors
present the Cluster Dual Descent Algorithm to solve the stochastic mixed 0-1 bilinear
optimization problem with decision dependent uncertainty. In (Hellemo, Barton,
and Tomasgard, 2018) the authors propose a global solution method combining
McCormick-Based Relaxations of Algorithms (Mitsos, Chachuat, and Barton, 2009)
and Benders decomposition, where the non-convex bi-linear terms are iteratively
under- and over-estimated. However, the algorithm solves the non-convex MINLP
problem as fast as the global solver BARON (Kilinc and Sahinidis, 2018) when a
branching priority scheme is implemented.

Stochastic programs with decision-dependent structure are typically modelled with
conditional non-anticipativity constraints (NACs) that are NACs that are activated
by the decision variables. In (Goel and Grossmann, 2004) the optimization problem
of utilization of natural gas resources is solved locally using a tailored decompo-
sition method that searches in a sub-space of the feasible region of the original
optimization problem by iteratively fixing some investment decisions. The resulting
exogenous multi-stage tree is solved in a shrinking-horizon fashion. This formula-
tion was further extended in (Goel and Grossmann, 2006) to exogenous uncertainty
sources. The authors identify a set of theoretical properties that lead to reduction
in the size of the model and propose a branch and bound algorithm that is based
on Lagrangean duality. In (Solak et al., 2010a) good-quality heuristic solutions of
the multi-stage integer stochastic project portfolio optimization are found by apply-
ing the Lagrangian relaxation and the sample average approximation algorithm. In
(Colvin and Maravelias, 2008), (Colvin and Maravelias, 2009), (Colvin and Maravelias,
2010) the authors reduce the size of the problem by proving the redundancy of a
large number of conditional NACs. In (Apap and Grossmann, 2017) the authors
review existing formulations and solution methods to solve stochastic problems
with decision-dependent structure and propose two solution approaches. The first
approach is a sequential scenario decomposition heuristic that sequentially solves
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endogenous MILP subproblems to determine the decisions that influence the uncer-
tainty revelation, fix these decisions, and then solve the resulting sub-problem to
obtain a feasible solution. The second approach is the Lagrangean decomposition.

From these works, it is evident that endogenous uncertainty sources drastically
increase the complexity of stochastic programs and that custom solution algorithms
that are able to exploit the specific structure of the problem at hand are needed to
reduce the required computational effort.





All models are wrong but some are useful

George Box
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Chapter 3

Integrated electricity procurement

and production scheduling

This chapter studies the challenges faced by large electricity consumers to simultane-
ously determine the optimal production schedule and the electricity procurement.
The electricity purchase options include different types of power contracts (Base
load, Time-of-Use) and different spot markets (day-ahead market, intra-day market,
futures market, Over-the-Counter market). These options mainly differ in the time
shift delay between trading and delivery time:

• Long-term contracts (base load) define a constant price and a constant amount
of electricity delivered over a time horizon of at least one year;

• Time-of-Use contracts (TOU) are characterized by price levels consisting of a
time-dependent component and an amount-dependent component and cover a
period of time between one week and three months. They can include penalties
if they are exceeded and peak load costs;

• The day-ahead market trades electricity for the following day defining daily an
hourly-varying electricity price;

• The intraday market continuously trades electricity to avoid supply-demand
unbalances. The lead time for trading can be down to five minutes.

Integrating electricity procurement and production scheduling enables the simultane-
ous optimization of the electricity purchasing decisions and the adjustment of the
production rates to time-varying price signals. The electricity procurement decisions
must be made at a point in time before the operations. Therefore, accounting for
uncertainty is crucial. Modelling different electricity purchase options within an opti-
mization under uncertainty framework gives rise to different formulations according
to the procurement features. In Section 3.1 we focus on the day-ahead electricity
market and the related bidding process to procure electricity. The inherit uncertainty
of the bidding process is modelled via a two-stage stochastic formulation. Section
3.2 extends the two-stage stochastic formulation to a multi-stage problem to include
TOU power contracts as source of electricity procurement.

Literature review

The importance of the optimal energy procurement for large electricity consumers
is reflected in the large amount of literature on the topic. We review some existing
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works highlighting the differences between an integrated and a sequential approach.

In (Beraldi et al., 2011) the authors focus on the optimal electricity procurement
strategy by solving in a rolling horizon fashion a stochastic program to determine the
amount of electricity purchased from the TOU contracts and from the spot markets.
In (Carrión et al., 2007) the authors define the day-ahead bidding curves for a large
consumer purchasing electricity from the day-ahead market. The same problem is
solved in (Jalal Kazempour, Conejo, and Ruiz, 2015) formulating a complementary
bi-level model. In these works the main aim is to define the optimal electricity pro-
curement plan and the electricity demand of the consumer is considered as a known
or uncertain parameter. The optimizer does not have the capability to exploit the
process flexibility adjusting the production rates to time-varying price signals.

From a process scheduling point of view, a number of contributions emphasized
the importance of adapting the production level to the time-varying price signals
of the spot markets in order to reduce the energy cost. In (Nolde and Morari, 2010),
a scheduling solution for electrical load tracking of a steel plant is proposed. The
schedule is defined such that the total electricity consumption tracks the load curve
as closely as possible while respecting all production constraints. In (Hadera et al.,
2015, Hadera et al., 2019), the authors take into account multiple electricity sources
(day-ahead market and on-site generation) and the load deviation problem to deter-
mine the optimal production schedule for a steel-making plant. Additional works
on scheduling models that take into account the time-varying electricity price can
be found in the literature (Mitra et al., 2013, Ramin, Spinelli, and Brusaferri, 2018,
Wenzel et al., 2019) emphasizing the large potential for load shifting in case of pro-
cess flexibility. In these contributions, the main focus is the process scheduling, and
the electricity procurement decisions are assumed as given and are not optimized.
Toward an integrated formulation, in (Dalle Ave, Harjunkoski, and Engell, 2018)
the authors solve deterministically a two-day horizon problem defining the optimal
energy-aware schedule for the first day (following a predefined commitment) and
the optimal future load prediction for the second day.

The main challenge of the integration of the electricity procurement and the pro-
duction scheduling results from the delay between the decisions. The procurement
decisions must be made before the operations and, therefore, uncertain market condi-
tions (e.g. electricity prices, demand) or uncertain process conditions (e.g. processing
times of tasks) can have an important impact on the energy cost. A pioneering work
integrating electricity procurement and production scheduling is described in (Zhang
et al., 2016). The authors apply stochastic programming to define the optimal elec-
tricity profile purchased from the power contracts and the optimal schedule of an air
separation plant. Considering a medium-term electricity procurement problem, the
authors neglect the day-ahead commitment problem for the day-ahead market.

3.1 Stochastic short-term integrated electricity procurement

and production scheduling for a large consumer

This section is based upon
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• Leo E. and Engell S., Integrated day-ahead energy procurement and production schedul-
ing, Automatisierungtechnik 2019

• Leo E., Dalle Ave G., Harjunkoski I. and Engell S., Stochastic short-term integrated
electricity procurement and production scheduling for a large consumer, Computers &
Chemical Engineering, Volume 145, February 2021.

Here we focus on the day-ahead electricity market and the challenge faced by large
electricity consumers to simultaneously determine the optimal day-ahead electricity
commitment and the optimal energy-aware production schedule. The inherent uncer-
tainty of the problem, due to the bidding process in the day-ahead market, is dealt
with by means of the stochastic programming modelling framework. In particular, a
two-stage problem is formulated with the aim of establishing the optimal bidding
strategy and the optimal production schedule hedging against price uncertainty. The
optimal integrated solution is defined to minimize the overall cost and to control
the risk of high cost scenarios due to uncertain price peaks. The stochastic model is
solved with a scenario-decomposition approach. Extensive numerical experiments
have been carried out to assess the performance of the proposed decision approach.
The results collected when considering an industrial relevant case-study show the su-
periority of the proposed methodology in comparison with a deterministic approach.

The figures and the tables of this section are adapted from (Leo et al., 2021).

3.1.1 Problem statement

We consider an energy-intensive plant that produces a given set of products. The
product demand is assumed to be known for the optimization horizon. The plant pa-
rameters (e.g. batch time, resource consumption) are fixed and known. The operating
cost consists of the electricity purchasing cost. Electricity can be purchased from the
day-ahead market and/or from the balancing market.

The day-ahead electricity purchasing is performed via a bidding process. The plant
has to provide bids a day in advance, before the time when the market is cleared.
A bid consists of the amount of electricity and the corresponding purchasing price.
After the market is cleared, the day-ahead equilibrium prices for every hour of the
following day are announced and participants are informed whether their bids were
accepted or rejected. For each hour of the following day the bids at a price higher
than the clearing price are accepted. The clearing prices represents the hourly rate
charged to the customer, while the accepted bids for every hour represent the con-
sumer load commitment. The problem of submitting bids to the day-ahead market
will be referred to as the bidding problem. Load deviations in the following day are
dealt with by the balancing market.

The goal is to optimally define simultaneously the production scheduling and the
electricity procurement, accounting for electricity market mechanisms and the real-
istic revelation of the market information. Bidding decisions have to be made with
uncertain information on the day-ahead market price, whereas scheduling decisions
can be postponed until complete information on the clearing day-ahead price is fully
available. We consider uncertainty in the clearing price of the day-ahead market and,
therefore, in the proposed formulation the here-and-now decisions are the bidding
decisions since they have to be made before the realization of the price uncertainty.
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The wait-and-see decisions are the scheduling decisions, the actual electricity con-
sumption and the load deviations with respect to the day-ahead commitment since
these decisions can be adjusted in response to the realization of the uncertainty.

The main idea of the energy-aware scheduling formulation is to flatten the electricity
consumption profile according to the electricity price by shifting the consumption
from the price peaks to the price valleys. Since the electricity price is uncertain,
only an estimation of the timing of the price peak is available. To also account for
the uncertain price of the peaks, rather than only average the cost over the price
scenarios, we integrate a risk measure in the optimization problem. Here we adopt
the Conditional Value at Risk (CVaR), since it is a coherent risk measure defined by
convex equations. Namely, the objective function of the proposed formulation is a
linear combination of the total expected cost and the CVaR.

Value of the stochastic solution

The value of the stochastic solution (VSS) measures the advantage of accounting for
uncertainty adopting a two-stage stochastic program over using the deterministic
counterpart where the uncertain parameters have been replaced by their expected
values. In other words, it measures the advantage of taking decisions aware of
possible uncertainty realizations and reacting to the these realizations with recourse
variables. The definition of the VSS and of the relative VSS are given in Eqs. 2.9-2.10.
As already described, in the proposed formulation the first-stage variables are the
electricity volumes and the prices of the hourly bids. Therefore, the computation of
the VSS requires to fix the bids volumes and bids prices of the Recourse Problem (RP)
to the solutions of the EVP that, however, is not aware of price uncertainty and of the
possibility that the bids might not be accepted if the bid price is lower than the price
that realizes. In fact, the bidding strategy of the EVP would propose a bid price equal
to the expected day-ahead price and, therefore, a price realization (scenario) of the
RP higher than the expected day-ahead price would result in a rejected bid and in
high load deviations and high scenario costs. Hence, this computation would show
high but unrealistic values of the VSS. To overcome this issue we define VSSinelastic,
in which the volumes of the bids of the RP are fixed to the volumes obtained from
the EVP, but the prices of the bids of the RP are fixed to the maximum prices. In
other words, the decision maker is willing to accept any possible realization of the
day-ahead price (inelastic bidding). It is straightforward to prove that the following
relation always holds 0 ≤ VSSinelastic ≤ VSS if the load deviation prices are higher
than the day-ahead prices as assumed in this work. The proposed definition of the
VSSinelastic reflects also the common industrial practice of inelastic bidding.

Scenario generation

To generate the set of electricity price scenarios we identify a day-ahead electricity
price model from price data (Gestore Mercati Energetici 2019) applying the ARIMA
methodology as described in (Fleten and Kristoffersen, 2007, Nogales et al., 2002).
More information on the ARIMA identification can be found in (Aggarwal, Saini, and
Kumar, 2009). The scenarios are generated according to the following steps:

• Identification of the ARIMA model from historical data (Fig. 3.1a)
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• Validation of the model against the electricity price data (Fig. 3.1b)

• Monte Carlo simulation to generate a large number of scenarios (Fig. 3.1c)

• Scenario-reduction procedure (Fig. 3.1d).

The different scenario generation steps are carried out with the software MATLAB.
Monte Carlo sampling has been used to simulate 100 scenarios, that however for
the industrial-size case study have been reduced applying the scenario reduction
routine SCENRED in GAMS (Heitsch and Römisch, 2001, Dupačová, Gröwe-Kuska,
and Römisch, 2003). Note that the scenario reduction routine most likely returns a
reduced set of scenarios with different probabilities.

(a) (b)

(c) (d)

FIGURE 3.1: (a) Day-ahead price from 01.01.2018 to 01.04.2018 from the
Italian electricity market (Gestore Mercati Energetici 2019), (b) Validation
of the identified price model against the price data of the 02/04/2018
from the Italian electricity market, (c) Day-ahead electricity price sce-
narios, (d) Reduced set of day-ahead electricity price scenarios. Source:

(Leo et al., 2021).

Features of the electricity markets and modelling assumptions

The features of the considered electricity markets define the structure of the proposed
stochastic formulation. In particular, the timing of the bid submission and the in-
formation on the auction results are key factors that need to be carefully analysed
For the day-ahead market, the trading is executed as a uniform price, double-sided
call auction. Buyers and sellers submit bids (i.e. a combination of volume and price)
for every hour of the following day. All supply and demand curves are aggregated
and the uniform market clearing price is determined. After the market is cleared,
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the participants are informed whether their bids for every hour of the following day
were accepted or rejected. The accepted bids define the amount of electricity that the
buyers commit to purchase and the sellers agree to provide.

The balancing market ensures that the power grid is balanced if short-term imbal-
ances occur because of unforeseen plant outages, incorrect demand predictions or
stochastic feed-in from the renewable energies. Imbalance prices reflect the real-time
system balancing costs and according to the quality of the traded balancing power
(primary control reserve, secondary control reserve and minute reserve) they are
defined after the imbalance has realized.

In this work, the model of the day-ahead market accurately reflects the market
regulations by considering unknown and uncertain clearing prices by the time the
hourly bids have to be submitted. The day-ahead prices become known only after the
market has been cleared. Regarding the balancing market, the proposed formulation
assumes that a certain estimation of the balancing prices (or load deviation prices)
is available. The estimation depends on the uncertain scenario assuming a positive
correlation between the day-ahead prices and the balancing prices. In particular, for
each scenario the imbalance prices are considered to be higher than the uncertain day-
ahead prices. In other words, when a peak of the day-ahead price realizes, we assume
that deviating from the load commitment in the same time step is more expensive. In
fact, a lower value of the balancing prices compared to the day-ahead prices of the
same scenario would drive the optimization solution to drastically deviate from the
load commitment, purchasing more electricity from the balancing market. The load
deviation prices for over- and under- consumption are listed in Table 3 in Appendix
.1.
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Nomenclature

Indices
i products
t, t′ time steps
m, m′ operating modes
s, s′ scenarios
j vertices of the mode production region
h steel heats
u steel production units
k steel production stages
g steel heat groups
r resources

Sets
I products
T time periods
M operating modes
S scenarios
H steel heat
U steel production unit
K steel production stage
G steel heat group
R resources

Parameters
vmjis production of i at vertex j of mode m in scenario s [kg]
θm,m′,t minimum stay time in mode m after transition from mode m′ [h]
δm fix electric power consumption in mode m [kWh]
γmi electric power consumption coefficient for product i in mode m [kWh/kg]
IVmax

it , IVmin
it upper and lower bounds of the inventory level of product i at time period t [kg]

IVinitial
i , IV f inal

i initial and final inventory level of product i [kg]
ym,initial initial active operating mode
Dit demand of product i at time period t [kg]
pday−ahead

t,s day-ahead electricity price for time period t in scenario s [e/kWh]
Pp electricity price at price index p [e/kWh]
φs probability of scenario s
p+st , p−st load deviation penalties for over- and under- electricity consumption at time period t in scenario s [e/kWh]
pi price of purchasing product i [kg]
α quantile in the definition of the CVaR CV
η objectives priorities
µrit structural RTN parameter to define the interaction between resource s and task i at time t
powerhu power consumption to execute the heat h on the unit u
maxtr f uu′/mintr f uu′ maximum/minimum transfer time from unit u to u′

Continuous variables
PRits total production of i at time t in scenario s
PRmits production of i at time t in mode m in scenario s
λmits coefficients for extreme point j of the feasible region in mode m at time period t for scenario s
EUts electric power consumption at time t in scenario s
EUrel ts total electricity consumption (resource rel ) at time t in scenario s for the RTN formulation
ILits amount of inventory of product i at time t in scenario s
SOits amount of product i sold at time t in scenario s
PUits amount of product i purchased at time t in scenario s
BApts day-ahead bid volume accepted at time t, at price level p in scenario s
Bpts day-ahead bid volume at time t, at price level p in scenario s
δe+ts , δe−ts electricity mismatches (over-consumption and under-consumption) at time t in scenario s
z expected second-stage cost
z linear combination of the expected second-stage cost and the CVaR
CVaR conditional value at risk
ψ, ζs auxiliary variables for the definition of CVaR
Rrts non negative continuous variables to define the amount of resource r at time t for scenario s

Binary variables
ymt one if the operating mode m is active in time period t
zm,m′,t one if transition from mode m to mode m′ occurs at time t
Nits one if the task i starts at time t in scenario s
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3.1.2 Illustrative example

MILP formulation

To highlight the features and the advantages of the proposed approach and to discuss
the results independently from the optimization algorithm used, we apply it to
a continuous production plant. The process constraints are described in (Zhang
et al., 2016) and the stochastic programming version for the short-term electricity
procurement was proposed in (Leo and Engell, 2019b). For completeness we describe
here the entire optimization formulation including the bidding model.

Plant model

The plant produces two products i (Pi) and it presents three different operating modes
m: on, off and start-up. The variable PRmits defines the production for each mode m
for each product i at time t of the horizon T for scenario s. The production for each
mode m is computed by Eq. 3.2 as the convex combination of the extreme points vmjis
of the mode feasible region. The sum of the coefficients of the convex combination of
the extreme points vmjis is forced to be equal to the binary variable ymt that defines
whether the mode m is active in time period t. The total hourly production is defined
by Eq. 3.1 as the sum over the operating modes m of PRmits. Only one mode can be
active at each time period t (Eq. 3.4). The possible mode transitions (off to start-up,
start-up to on, and on to off ) are identified by the binary variable zmm′,t that is equal
to one if and only if the plant switches from mode m to mode m′ in time period t.
The mode transition can happen only after fixed periods of time (θmm′) that have
been spent in mode m (Eqs. 3.5-3.6). Note that while the decisions on the operating
modes and on the shut down of the plant (identified by the variables ymt, zm′m,t) have
to be made the day before the operation and, therefore, are classified as first-stage
variables, whereas the production levels (identified by the variables PRits, PRmits) can
be adjusted according to the realization of the uncertain parameters. The electricity
consumption at time period t for scenario s is defined by EUts as the sum of a fixed
term δm for the active mode and a variable term proportional to the hourly production
PRmits. All the data are listed in Appendix .1.

PRits = ∑
m

PRmits ∀i ∈ I, t ∈ T, s ∈ S (3.1)

PRmits = ∑
j

λmjts ∗ vmjis ∀i ∈ I, t ∈ T, s ∈ S, m ∈ M (3.2)

∑
j

λmjts = ymt ∀t ∈ T, s ∈ S (3.3)

∑
m

ymt = 1 ∀t ∈ T (3.4)

∑
m′

zm′m,t−1 −∑
m′

zmm′,t−1 = ymt − ym,t−1 ∀m ∈ M, t ∈ T (3.5)

θmm′

∑
k=1

zmm′,t−k ≤ ym′t ∀(m, m′) ∈ M, m 6= m′, t ∈ T (3.6)
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EUts = ∑
m

(
δm ∗ ymt + ∑

i
γmi ∗ PRmits

)
∀t ∈ T, s ∈ S (3.7)

Inventory balance

The produced products P1 and P2 can be stored independently and the amount of
inventory of product i at time t for each scenario s, ILits, is defined as the amount of
inventory of product i at the previous time step (t− 1) increased by the produced
quantity of product i at time t, represented by PRits, minus the product i sold at
time period t, indicated by SOits. These variables are defined for each scenario s
since they represent the second-stage variables (wait-and-see decisions). The inventory
levels cannot exceed the upper and lower bounds as described in Eq. 3.9. A demand
satisfaction constraint (Eq. 3.10) ensures that the sum of sold product i, SOits, and the
purchased product i, PUits, covers the product demand i. The variable PUits can also
be seen as a penalty for not meeting the demand.

ILits = ILi,t−1,s + PRits − SOits ∀i ∈ I, t ∈ T, s ∈ S (3.8)

ILmin
it ≤ ILits ≤ ILmax

it ∀i ∈ I, t ∈ T, s ∈ S (3.9)

SOits + PUits = Dit ∀i ∈ I, t ∈ T, s ∈ S (3.10)

Initial and final conditions

Eqs. 3.11-3.12 set the plant initial conditions in terms of products inventory and active
operating mode. Eq. 3.14 provides the history of the mode transitions before the
optimization horizon. A terminal constraint is imposed for the inventory levels by
Eq. 3.13.

ILi,0,s = ILinitial
i ∀i ∈ I, s ∈ S (3.11)

ym,0 = ym,initial ∀m ∈ M (3.12)

ILi,t f inal ,s ≥ IL f inal
i ∀i ∈ I, s ∈ S (3.13)

zmm′,t = zinitial
mm′t ∀(m, m′) ∈ M,−θmax + 1 ≤ t ≤ −1 (3.14)

Day-ahead electricity market constraints

The electric power can be purchased from the day-ahead market. To model the
double-sided call trading in the day-ahead electricity market, the bidding model
developed in (Fleten and Kristoffersen, 2007) is adopted. Buyers have to submit step-
wise demand curves for every hour of the following operation day. The consumer is
assumed to act as a price-taker and therefore not able to influence the realization of
the market clearing price. To formulate the bidding model as a linear program, bid
prices are considered to be fixed parameters. Thus, the optimization solution has to
decide which volume to bid for each price. Bid volumes at each price index p and
hour t are represented by the continuous variables Bp,t ≥ 0. Eq. 3.15 enforces that
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the bidding curve is monotonically decreasing according to the operating rules of the
market.

Bp,t ≥ Bp+1,t ∀p ∈ P, t ∈ T (3.15)

Whether a bid is accepted depends on the uncertain day-ahead clearing price at hour
t and scenario s, pday−ahead

t,s . The accepted bids, represented by the variables BAp,t,s,
are defined in Eq. 3.16.

BAp,t,s = Bp,t i f Pp ≤ pday−ahead
t,s ≤ Pp+1 (3.16)

Eq. 3.16 models the realization of the uncertain day-ahead prices by ensuring that the
accepted bid volumes are the bid volumes associated to a bid price Pp equal to the
price realization pday−ahead

t,s for each time t and scenario s. Note that the bid volumes
that are associated to bid prices lower than the price realization are not accepted and,
therefore, no electric power is purchased from the day-ahead market. It is worth to
highlight that the bid prices are modelled as fixed parameters to obtain linear bidding
equations and, consequently, to avoid the introduction of binary variables for the
implementation of the if-statement in Eq. 3.16.

The sum of the accepted bids over the price indexes p identifies the consumer elec-
tricity commitment at each hour t. Electricity over-consumption and electricity
under-consumption, δe+ts , δe−ts , represent the load mismatches respect to the day-ahead
electricity commitment and therefore expressed as the difference between the actual
consumption of electric power, EUts and the accepted bid (see Eqs. 3.17-3.18-3.19).
The load deviations represent the electricity purchased from the balancing market. As
previously discussed, here no uncertainty is considered for the load deviations prices.
No restrictions are imposed on the over-consumption and under-consumption of
electric power. Since the day-ahead electricity commitment has to define the amount
of energy to be purchased for a period of 24 hours one day in advance the actual
day-ahead electricity price is realized, the bidding volume decisions are first-stage
variables and the accepted bids and the load deviations are recourse decisions reacting
to the price realization.

EUt,s −∑
p

BAp,t,s = δe+t,s − δe−t,s ∀t ∈ T, s ∈ S (3.17)

δe+t,s ≥ 0 ∀t ∈ T, s ∈ S (3.18)

δe−t,s ≥ 0 ∀t ∈ T, s ∈ S (3.19)

Objective function

The objective function of the optimization problem is defined by Eq. 3.20 as the
linear combination of total expected cost z and the risk measure Conditional Value at
Risk (CVaR). Since this generates a multi-objective optimization, the scalar parameter
η ∈ [0, 1] implements a scalarization of the objective function prioritizing the two
objectives.

z = η ∗ z + (1− η) ∗ CVaR (3.20)
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Eq. 3.21 defines the total cost, z, as the expected second stage cost since the first
stage (bidding) has no cost. The second stage cost consists of the cost of the accepted
bids (electricity purchasing) on the day-ahead market, the cost of load deviations
(balancing market) and the cost of purchasing products externally at the price pi to
cover the demand.

z = ∑
t

(
∑

s
φs ∗

(
pday−ahead

t,s ∑
p

BAp,t,s + p+st ∗ δe+ts + p−st ∗ δe−ts + ∑
i

pi ∗ PUits

))
(3.21)

where pday−ahead
t,s represents the day-ahead electricity price and p+st , p−st the load devia-

tions costs for over consumption and under consumption; φs represents the probabil-
ity of scenario s.
According to (Rockafellar and Uryasev, 2000), the linear programming constraints
defining the CVaR for the quantile α are reported in Eqs. 3.22-3.24 (see Section 2.1.2
for the definition of the CVaR).

CVaR = ψ + (1− α)−1 ∑
s

φs ∗ ζs (3.22)

∑
t

(
pday−ahead

t,s ∑
p

BAp,t,s + p+st ∗ δe+ts + p−st ∗ δe−ts+

+ ∑
i

pi ∗ PUits

)
− ψ ≤ ζs∀s ∈ S (3.23)

ζs ≥ 0 ∀s ∈ S (3.24)

where ψ, ζs are continuous variables. When the cost of scenario s is greater than the
variable ψ, the difference between the scenario cost and the variable ψ is computed
with the variable ζs; otherwise ζs takes the value of zero.

Solution method

The proposed two-stage stochastic formulation was solved by generating the de-
terministic MILP equivalent problem. The deterministic equivalent has 1 498 113
constraints and 557 284 variables (209 discrete variables).

The proposed formulation was implemented within the algebraic modelling envi-
ronment GAMS and the resulting MILPs were solved using the commercial solver
CPLEX 12.7 on an Intel Core i7-2600 machine at 3.40 GHz with 8 processors and 8 GB
RAM running Windows 7 Professional.

Results

We solve the problem for the original scenario set (100 scenarios) and for the reduced
one (10 scenarios). The original scenario set allows us to analyse the effect of the
risk model on the optimal solution. The introduction of the CVaR defines a multi-
objective optimization problem and therefore the optimal solution lies on the Pareto
front (if the problem is solved to optimality). The Pareto front is shown in Figure 3.2.
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The comparison of the hourly scenario cost distribution for the risk neutral solution
(optimization of the expected second stage cost) and the risk-averse solution is given
in Figure 3.3a. The data above the top edge of the box (dash line and cross marker)
represent the scenario costs over the 75th percentiles. We can see that the risk-averse
solution reduces the probability of high cost scenarios, namely, purchasing electricity
during uncertain price peaks. The shaded area highlights the time between (t = 7
and t = 10) where the influence of the risk measure on the distribution of the hourly
scenario costs is pronounced since in these time steps the uncertain price peaks are
more likely realize (as shown in Figure 3.1d). Figure 3.3b shows the scenario cost
distribution at time t = 8 emphasizing that the probability of purchasing electricity
during a price peak, namely the probability of a cost greater or equal to 220 e, drops
from 8 % for the risk-neutral solution to 0 % for the risk-averse solution.

FIGURE 3.2: Pareto curve of risk-averse stochastic optimization (α =
0.9) for 100 scenarios. Source: (Leo et al., 2021).

(a) (b)

FIGURE 3.3: (a) Distribution of the hourly scenario costs with risk-
neutral and risk-averse stochastic optimization (α = 0.9 and η = 0.5)
for 100 scenarios, (b) Scenario costs distribution with risk-neutral and
risk-averse stochastic optimization (α = 0.9 and η = 0.5) at t = 8 for

100 scenarios. Source: (Leo et al., 2021).

Finally for the case with reduced number of scenarios we compute the relative Value
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of the Stochastic Solution (VSS) to estimate the benefit to adopt a stochastic formu-
lation instead of the deterministic counterpart. Table 3.1 shows that the VSSinelastic

can be quite significant. Note that the recourse problem cost with elastic bidding
is higher than the recourse problem cost with an inelastic bidding zRP

elastic � zRP
inelastic

and therefore the standard computation of the VSS would result is in a larger value
VSS � VSSinelastic

, as already discussed in Section 3.1.1. Therefore, we adopt the
VSSinelastic

to have a conservative and realistic estimation of the potential savings
reachable applying the proposed stochastic formulation.

TABLE 3.1: Relative Value of the Stochastic Solution for 10 scenarios.
Source: (Leo et al., 2021).

zEVP zRP
elastic zRP

inelastic zSP VSSinelastic
η

4 395,854 46 602,3 5 364,7 4 482,8 3,3 % 0,8
32 705,0 5 001,4 4 647,9 7 % 0,5
80 757,1 5 606,9 4 922,4 12,2 % 0

TABLE 3.2: Detailed results of the stochastic solution for 10 scenarios.
Source: (Leo et al., 2021).

CVaRRP E[cost]RP CVaRSP E[cost]SP η

5 606,9 4 395,8 4 934,8 4 369,8 0,8
4 922,6 4 373,5 0,5
4 922,4 4 922,4 0

Bidding curves of a given hour (t = 5) have been drawn in Figure 3.4c. The curves
are shown for the stochastic problem (step-wise curve) and for the expected value
problem (vertical line). The horizontal lines represent the uncertain price realizations.
Figure 3.4c shows that the optimal solution proposes price-elastic bids, namely
different bidding volumes at different prices. Figures 3.4a-3.4b show respectively the
expected electricity consumption of the stochastic solution and of the expected value
problem. Since the stochastic solution is aware of price uncertainty, and therefore
of peak price uncertainty, it is able to better adjust the electricity consumption and
therefore to reduce the electricity cost (see Table 3.2).

3.1.3 Industrial case study

In Section 3.1.2 the efficacy of the proposed approach was shown using a relatively
simple continuous production plant. In this section, the proposed method is applied
to the industrially relevant problem of stainless steel-making in order to analyse
whether the proposed stochastic approach will suffer from the complexity of large-
scale scheduling problem. Steel-making was chosen as a motivating industrial exam-
ple for several reasons. On the one hand, it is recognized as one of the most difficult
industrial processes to schedule as it is a large-scale multi-stage, multi-product batch
process with parallel equipment and critical production-related constraints. On the
other hand, it is a very energy intensive process which stands to greatly benefit from
iDSR.
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(a) (b)

(c)

FIGURE 3.4: (a) Expected electricity consumption stochastic formula-
tion, (b) Electricity consumption expected value problem, (c) Bidding
curve of a given hour (t=5) of the stochastic solution (blue line), inelas-
tric bidding (black line) and price realizations (horizontal red dashed

lines). Source: (Leo et al., 2021).

The first step in steel production is the melt shop, where solid metal scrap is melted,
endowed with its steel characteristics and cast into slabs. The melt shop consists of
four consecutive production stages. The first stage is the electric arc furnace (EAF), in
which electricity is used to melt a batch of metal scrap (also known as a heat). Next,
the heat is transported to an Argon Oxygen Decarburizer (AOD) where the carbon
content of the melt is reduced in order to form steel. The heat is then moved to a
Ladle Furnace (LF) where the heat and chemistry of the heat are further adjusted.
The last step in the process is to cast the heats sequentially, one directly after another,
in a predefined sequence in order to form a slab of steel. This process is performed
by the Continuous Caster (CC). Heats that produce to the same slab are known as
a group of heats. A CC cannot process two heat groups back-to-back but requires a
setup time in between the two.

The scheduling model for this plant is formulated using a Resource-Task Network
(RTN) (Pantelides, 1994). In this work, two identical parallel machines are consid-
ered for the first three stages of production while two unique CCs are modelled.
Between each stage, a heat is transported with some minimum and maximum time
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FIGURE 3.5: The RTN diagram of the steel plant considered. Source:
(Leo et al., 2021).

requirements. An RTN process diagram can be seen in Figure 3.5. The RTN model
implemented here follows the formulation that is presented in (Castro, Sun, and
Harjunkoski, 2013).

In the RTN model, a discrete-time grid is used, which allows for straightforward
modelling of intermediate events (such as a change in electricity pricing or power
availability). In discrete-time scheduling formulations, the scheduling horizon is
divided into t ∈ T slots of size δ (chosen to be equal to 15 minutes).

The RTN formulation represents the entire scheduling model as a set of task (I),
which produce and consume sets of resources (R). Due to the fact that heats in steel
production are discrete-entities, this model only considers the discrete-interaction of
a task with its resources. This discrete interaction is modelled by the binary variable
Ni,t,s, and the discrete-interaction parameter µr,i,t. Ni,t,s assigns the start of a task
i ∈ I to time point t ∈ T, while the parameter µr,i,t, describes the interaction of
the execution of said task with its resources over the duration of the task τi. The
excess value of a resource r ∈ R at time point t ∈ T is accounted for through the
non-negative continuous variables Rr,t,s. The availability of the resources over the
time grid is enforced by the resource balance constraint which can be seen in Eq. 3.25.
In the proposed stochastic formulation, the scheduling decisions represent recourse
decisions and therefore they are defined for each scenario s.
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Rr,t,s = R0
r|t=1,s + Rr/∈rel ,t−1,s + EUrel ,t,s + ∑

i∈I

τi

∑
θ=0

µr,i,θ Ni,t−θ,s

∀r ∈ R, t ∈ T, s ∈ S (3.25)

In this case, the term Rr,t−1,s does not apply to the resource balance for electricity
in order to ensure that energy does not propagate over time. Conversely, the non-
negative continuous variable EUrel ,t,s only applies to the electricity resource and is
used to track the total electricity consumption at any given time.

In order to account for the steel-specific constraints this base-RTN model needs to be
expanded as shown in (Castro, Sun, and Harjunkoski, 2013). Eq. 3.26 ensures that a
heat (h ∈ H) is executed in one unit (u ∈ U) at each stage (k ∈ K). Eq. 3.27 similarly
follows for a group of heat (g ∈ G) in the CCs. Note that the set Ih,u indicates the set
of tasks that process heat h on unit u.

∑
u∈Uk

∑
i∈Ih,u

∑
t

Ni,t,s = 1 ∀h ∈ H, s ∈ S, k = 1, 2, 3 (3.26)

∑
u∈Uk

∑
i∈Ig,u

∑
t

Ni,t,s = 1 ∀g ∈ G, s ∈ S, k = 4 (3.27)

Eq. 3.28 imposes bounds on the execution of transfer tasks in a similar manner to
the processing tasks. In order to approximate the maximum transfer times between
stages, the resource availability for all heats at the exit location of a stage (ROL) is set
to be zero. Therefore, only the heats at the input location (RIL) to a stage are allowed
to exist for multiple time periods. Eq. 3.29 is then used to approximate the maximum
transfer time of a heat by placing restrictions on the lifetime of its inlet intermediate
resources based on the max and min transfer times between the stages (maxtr fu,u′

and mintr fu,u′ respectively).

∑
u∈Uk

∑
u′∈Uk+1

∑
i∈Ih,u,u′

∑
t

Ni,t,s = 1 ∀h ∈ H, s ∈ S, k 6= 4 (3.28)

∑
r∈RIL

h,u′

∑
t

Rr,t,s ≤ d max
u∈Uk

u′∈Uk+1

(maxtr fu,u′ −mintr fu,u′)/δe ∀h ∈ H, s ∈ S, k 6= 4 (3.29)

To re-iterate, the link between the electricity-related concerns and the scheduling
model is described in Eqs. (3.17, 3.18, 3.19). As before, the total electricity consump-
tion must be equal to the amount of electricity actually purchased from the day-ahead
market (based on the accepted bids (BAp,t,s) plus the over- and under-consumption
(δe+t,s and δe−t,s respectively).

The bidding model is the same as described in Section 3.1.2 for the illustrative ex-
ample. It is defined by Eqs. 3.15-3.16. Lastly, the upper bound on the electricity
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consumption is given in Eq. 3.30.

EUrel ,t,s ≤ ∑
u∈U

(max
h∈H

(powerh,u)) ∀t ∈ T, s ∈ S (3.30)

3.1.4 Solution method

The stochastic programming formulation of the industrial size steel-making problem
gives rise to an intractable large-scale deterministic equivalent MILP. To ensure a
reasonable solution time and online feasibility of the solution, the optimization
problem is decomposed by applying the Progressive Hedging algorithm (PHA) as
described in Section 2.3.1. To apply the PHA, a formulation that is based on the NACs
is generated by making a copy of the first-stage variables for each scenario s. For the
steel-making problem, the copies of the first stage variables identify for each scenario
s the bid volumes at price level p and hour t (Bp,t,s) and the continuous variables (ψs)
to define the risk measure CVaR. The NACs couple the scenarios by forcing the copies
of the first-stage variables to be equal to each other (Eq. 3.31 for the bid volumes and
Eq. 2.21 for the NACs of the first-stage variable associated to the risk measure).

Bp,t,s = Bp,t,s′ ∀s, s′ ∈ S (3.31)

The PHA dualizes the non-anticipativity constraints (NACs) that couple the sce-
narios in order to solve the scenario sub-problems independently. The scenario
sub-problems are penalized proportionally to the violation of the dualized NACs
(according to the penalty parameter ρs) and are solved iteratively until a termination
criterium is met.
The convergence of the PHA and the quality of the solution are significantly affected
by the choice of the penalty parameter ρs. Numerical tests showed that for the prob-
lem at hand the convergence is improved when the value of ρs is different for each
variable of the NACs. The chosen value of ρs is equal to the expected day-ahead
electricity price multiplied by a factor of 0.001.
Furthermore, as described in Section 2.3.1, the heuristic known as variable slamming
was implemented to speed up the convergence of the algorithm. The heuristic the
fixes decision variables once their value has stabilized (with a tolerance of 0.5) to a
fixed value over the last nslamming iterations. The best results were obtained with the
value of nslamming equal to 4.

Computational Environment

The progressive hedging algorithm is implemented within the algebraic modelling
language Julia/JuMP. The MILPs and MIQPs models were solved using the com-
mercial solver CPLEX 12.6.3 on an Intel Core i7-2600 machine at 3.40 GHz with 8
processors and 8 GB RAM running Windows 7 Professional. We consider as termina-
tion criteria a maximum time limit equal to 7200 seconds and a maximum number of
iterations equal to 15. The NAC violation tolerance is set to 0.01.
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3.1.5 Results

In this section we discuss the results obtained with the proposed formulation. We
solve the stochastic formulation for different values of the parameter η that weighs
the importance of the expected value cost and the risk measure, as described in sec-
tion 3.1.3. The deterministic equivalent problem has approximately 487 010 variables
(149 760 binary variables) and 2 306 020 linear constraints. The best solution of the
deterministic equivalent problem (α = 0.9 and η = 0.5) is equal to 1 503 610 with a
gap of 60 % after 24 hours of computation time.

Tables 3.3-3.4 shows the improvement that can be achieved by solving the stochastic
model (10 scenarios) instead of the deterministic counterpart in terms of the Value
of the Stochastic Solution (VSSinelastic). In particular, Table 3.3 shows the optimal
objective function value of the stochastic problem (zSP) and of the recourse problem
with inelastic bidding (zRP

inelastic), the absolute and relative Value of the Stochastic

Solution (VSSinelastic, VSSinelastic
) for different values of the scalar parameter η that

prioritizes the expected cost and the risk measure in the objective function. Table 3.4
provides detailed results of the same optimization solutions for the different values of
the parameter η (η = 0 minimizes only the risk measure). The values of the risk mea-
sures and the expected costs are shown for the stochastic problem (CVaRSP, E[cost]SP)
and the recourse problem with inelastic bidding (CVaRRP, E[cost]RP). Moreover, the
computational times and the number of iterations of the Progressive Hedging Algo-
rithm (PHA) are listed. It is worth to highlight that several values of the time limit
termination criterion (up to 24 hours) and of the parameter nslamming (that fixes the
decision variables once their optimal value has been stable over nslamming iterations)
were tested. The best results were obtained with a time limit equal to 7200 [s] and
the value of nslamming equal to four. For larger time limits and larger values of the
parameter nslamming, the solution of the PHA begins to fluctuate over the iterations
due to the presence of integer recourse variables and the algorithm does not converge
to a solution better than the one presented in Tables 3.3-3.4. A solution time larger
than 24 hours is impractical since the day-ahead bids have to be submitted every
day to purchase electric power from the day-ahead market. Lower values of the
parameter nslamming reduce the computational effort but lead the convergence to a
poor quality solution. Additionally, numerical tests showed that for the problem
at hand the convergence is improved when the value of the penalty parameter ρ is
different for each variable involved in the dualized NACs. The chosen value of ρ is
proportional to the expected day-ahead electricity price by a factor of 0.001.
Even though the solution obtained with the PHA cannot be guaranteed to be the
global optimum (in other terms a duality gap might exist), the obtained VSSinelastic

values are quite significant. For this application the VSSinelastic can also be interpreted
as the potential daily savings of the electricity consumer obtainable adopting the SP
formulation instead of the Expected Value Problem (EVP) one. The results of the
SP formulation in Table 3.4 do not lie on the Pareto front since the problems are not
solved to the global optimum. To estimate the loss of optimality, we compare in Table
3.5 the optimal solution obtained with the PHA (zSP) and the best linear programming
relaxation (best LB) obtained by solving the deterministic equivalent with a time limit
of two days. It is worth to highlight that this represent an upper bound of the duality
gap (UBloss), since the best linear programming relaxation is only a lower bound of
the original problem. Table 3.5 shows that the optimality loss resulting with the PHA
is lower than 2.1% if the expected cost is prioritized over the risk measure and lower
than 4.4% if the risk measure has a larger weight in the objective function. The risk
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measure complicates the convergence of the decomposition algorithm.

TABLE 3.3: Value of the Stochastic Solution with 10 scenarios. Source:
(Leo et al., 2021).

zSP zRP
inelastic VSSinelastic VSSinelastic

η

773 567,9 837 648,5 64 080,5 7,6 % 0,7
795 154,1 870 566,4 75 412,3 8,6 % 0,5
830 784,4 910 392,4 79 608,5 8,7 % 0,3
860 668,0 999 532,6 138 864,6 13,8% 0

TABLE 3.4: Detailed results for the stochastic solution with 10 scenarios.
Source: (Leo et al., 2021).

CVaRSP E[cost]SP CVaRRP E[cost]RP CPUs iterations η

849 718,7 740 931,9 1 023 128,8 758 156,9 7 200 11 0,7
850 984 739 342,2 994 928,7 746 204,1 7 200 10 0,5
866 826 746 687,3 979 162,5 749 930,5 7 200 10 0,3

860 668,0 - 999 532,6 - 7 200 8 0

TABLE 3.5: Estimation of the duality gap. Source: (Leo et al., 2021).

zSP best LB UBloss η

773 567,9 758 505,9 1,9 % 0,7
795 154,1 778 641,4 2,1 % 0,5
830 784,4 796 708,6 4,2 % 0,3
860 668,0 824 367,3 4,4 % 0

Interestingly, the PHA solution converges to a inelastic bidding solution, however,
with a different hourly bidding volume compared to the EVP solution as shown in
Figures 3.6a-3.6b. As previously described, the electricity commitment represents the
electricity volume purchased from the accepted bids. To highlight how the stochastic
solution can differ from the corresponding deterministic counterpart solution, Figures
3.7a-3.7b show the energy-aware scheduling solutions for the stochastic programming
formulation for scenario 1 and the expected value problem. The stochastic solution
further reduces the electricity consumption over the time range where the electricity
peak is more likely to happen.
We analyse how the risk measure influences the electricity purchased profile. Figure
3.8 shows different electricity commitment profiles for different values of the parame-
ter η that influences the importance of the risk over the expected value cost. Values
of η close to one mean that the consumer is concerned about the average costs over
the scenarios and willing to take the risk of high cost scenarios. In other words, the
consumer accepts the possibility to not shift electricity during price peaks for some
scenario realizations. On the other hand, values of η close to zero define a completely
risk-averse decision maker that tries to avoid important electricity consumptions
during price peaks for all the scenario realizations. The effect of the risk measure
is particularly visible in Figure 3.8 in the time range between t = 7 h and t = 10 h.
In this time range the solution with high weight of the risk measure in the objective
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(a) (b)

FIGURE 3.6: (a) Comparison of the day-ahead electricity commitments
obtained with the EVP formulation and the SP formulation (η = 0.5),
(b) Bidding curve at a given hour (t = 9) of the stochastic solution
(dashed line) and the EVP solution (continuous line). Source: (Leo

et al., 2021).

(a) (b)

FIGURE 3.7: (a) Energy-aware scheduling Scenario 1, (b) Energy-aware
scheduling EVP. Source: (Leo et al., 2021).

function (η = 0.5, η = 0) reduces the electricity commitment to avoid possible price
peaks and therefore high electricity costs for some price scenarios. On the other
hand, the solution with low weight of the risk measure (η = 0.7) does not account
for scenarios with high costs as long as the expected cost over all the scenarios is
minimized. In fact, the electricity commitment is drastically reduced only at time
t = 10 where the highest price peak might realize accepting the possibility to not shift
the commitment during the remaining possible price peaks.

Discussion

The results presented in Sections 3.1.2-3.1.5 show that considering price uncertainty
drastically impacts the operating costs of the plant. Relatively high values of the
VSSinelastic point at a large potential for cost savings by adopting the proposed stochas-
tic formulation. The results were presented for a relatively small continuous plant
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FIGURE 3.8: Comparison of day-ahead electricity commitment for
different levels of risk aversion. Source: (Leo et al., 2021).

and for an industry-relevant case study.

The introduction of a bidding model, on the other hand, has shown opposite results
for the two case studies. The optimal solution of the continuous plant case-study,
obtained solving the deterministic equivalent problem, showed that price elastic bids
are able to further reduce the electricity cost. On the other hand, the solution of
the decomposition algorithm for the large-scale steel making case-study converged
to inelastic bids. Conceptually, the solution with a bidding model (and therefore
with elastic bids) would never be worse than the solution with inelastic bids since
the bidding model only introduces additional degrees of freedom. However, the
introduction of the bidding model further complicates the optimization problem for
a large-scale industrial case study such that a monolithic solution is impractical. By
decomposing the monolithic problem into scenario subproblems, the bidding model
introduces additional NACs that complicates the convergence of a decomposition
algorithm to a global optimum solution. In other words, the decomposition algorithm
converges to a local optimum or to a feasible solution and therefore the inelastic
solution obtained with the PHA might not be the global optimum. The reason is that
the decomposed subproblems are not convex due to the integrality requirements. It
is worth to mention that a primal decomposition with Lift and Project cuts (Balas,
Ceria, and Cornuéjols, 1993, Carøe and Tind, 1997), that would in theory guarantee
the convergence to the global optimum, has shown very poor convergence perfor-
mances due to the high number of binary variables needed for the RTN scheduling
formulation. Lagrange-like algorithms that are able to close the duality gap of the
Lagrangean relaxation (Carøe and R Schultz, 1999, Kim and Zavala, 2015) could also
be applied to solve the problem to global optimality.
Therefore, we can conclude that the introduction of the bidding model can further
reduce the operating costs in the case the stochastic optimization is solved via the
deterministic equivalent formulation. For a large-scale formulation, whose mono-
lithic solution is impracticable, the required decomposition algorithm might have
difficulties to converge to a better solution than the inelastic one. However, even
without elastic bidding, the solution of a large scale problem can benefit from price
uncertainty awareness. Further work on decomposition algorithms for non-convex
problems is needed to converge to the global optimum and therefore to properly
exploit price-elastic bids.
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3.2 Medium- and short-term electricity procurement

When in addition power contract decisions are optimized, the stochastic formulation
that was proposed in the previous section becomes a multi-stage program. In fact,
while for the day-ahead market the consumer has to commit a day in advance to
the amount of electricity that will be used during the following day, to purchase
electricity from the power contracts the load commitment for the corresponding
contract horizon has to be announced at the beginning of the contract horizon.
To model the electricity procurement from the power contracts and from the day-
ahead market, we propose a multi-stage mixed-integer stochastic programming
approach (Leo and Engell, 2018, Leo and Engell, 2019a). The first-stage represents
the TOU electricity commitment and the following stages model the daily integrated
production scheduling and day-ahead electricity procurement. Due to the size of
the problem and the application of the proposed approach to a real-world industrial
power plant, the resulting multi-stage formulation is approximated via a series of
two-stage programs that are solved in a shrinking horizon fashion. To reduce the
approximation error, at each iteration of the shrinking horizon strategy we combine a
detailed model to make accurate decisions for the short-term future (e.g. day-ahead
commitment) and an aggregated model to account for the long-term future (e.g.
production levels at the end of the time horizon).

This section partly follows Leo E. and Engell S., Applying Stochastic Optimization to
Demand-Side Management of a Combined Heat and Power Plant, ECCE12, The 12th Euro-
pean Congress of Chemical Engineering Florence 15-19 September 2019.

3.2.1 Problem statement

We consider the combined heat and power (CHP) plant that is located at INEOS in
Köln (Rahimi-Adli et al., 2021). The CHP plant consists of a set of plant components
c ∈ C (steam turbines, boilers, pre-heaters and by-pass valves) that can produce the
products p ∈ P: electricity (EL) and steam at different pressure levels (60 bar, 30 bar,
15 bar, 5 bar) and condensate at 1.8 bar. The CHP plant has to satisfy the fixed hourly
demand of electricity and steam coming from the production site. Electricity can be
purchased from the electricity grid by TOU power contracts and on two different
markets (the future-market and the day-ahead market) with different purchasing
conditions. The TOU power contract and the future market have fixed pre-agreed
electricity prices and commitments, while the day-ahead market is subject to the
regulations already introduced in Section 3.1.1. The goal is to maximize the profit of
the CHP plant by making the following decisions over the time horizon of one week:

• the amount of electricity purchased from the power contract and from the
future-market

• a daily day-ahead commitment with hourly discretization to purchase electricity
from the day-ahead market

• the hourly production levels of steam and electricity

• the amount of fuels stored and of off-gases incinerated.

We account for uncertainty in the day-ahead electricity price. Since the electricity
purchased from the TOU contract and the future market must be defined before the
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beginning of the time horizon of interest, they are modelled as first-stage variables.
Note that the profile of electricity purchased from these two options must be defined
for the whole horizon of one week. The uncertain day-ahead electricity price realizes
every day for the following day. Therefore, recourse variables model the day-ahead
hourly electricity commitment, the load deviations of the following day respect to the
load commitment along with the production levels of the CHP plant. We implement
an inelastic bidding strategy for the day-ahead electricity market (see Section 3.1 for
more details on elastic and inelastic bidding) .

3.2.2 MILP formulation of the CHP plant

Production plants are typically equipped with a combined heat and power (CHP)
plant that incinerates wastes to provide steam and electricity. When the energy
content of the waste streams that are used as fuels is not sufficient to satisfy the steam
demand of the production plants, additional fuels as Naphtha and crack-oil are used.
As shown in Figure 3.9, the CHP plant that is considered in this thesis consists of five
boilers and several multi- and single-stage turbines. There are four steam networks
with different pressure headers (60, 30, 15 and 5 bar) that satisfy the demand of steam
coming from the production plants. In addition, the power plant has a condensation
turbine which produces electric power by using steam at 5 bar. For large production
sites, the electricity production of the CHP plant is not able to satisfy the entire electric
power demand of the production plants and additional electricity is purchased from
the public grid.

FIGURE 3.9: The schematic of the CHP plant.

The MILP model of the CHP plant has been developed under the following assump-
tions:
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TABLE 3.6: Nomenclature of the MILP formulation of the CHP

Indices
p plant product (electricity and steam at different levels)
st steam pressure level (60 bar, 30 bar, 15 bar, 5 bar, 1.8 bar)
h, h′ hour
hTOU TOU period
c plant component (steam turbine, boiler, pre-heater)
m, m′ operating mode
f fuel
s scenario
br burner
b boiler
n node
bl contract block
i, îIN , îOUT plant stream

Sets
P Set of products
H time periods
ĤhTOU TOU periods
S scenarios
C plant components
Cturbines steam turbines
Cboilers boilers
Csteam subset of plant components that produce steam
N nodes
BTOU contract blocks
ST steam pressure levels
M operating modes
NACMSSP matrix to describe the structure of the scenario tree for the NACs

Parameters
HMB

n,i Mass Balance matrix
HEB

n,i Energy Balance matrix
UBc,i , LBc,i Upper- and lower-bounds of each mass stream i of component i
hn,i entalphy of stream i at node n
αc , βc parameters of the Willans line for the turbine c
UB f ,b,br , LB f ,br Upper and lower bounds of the mass flow of fuel f to burner br of boiler b
IV0

f , LHVf initial inventory level and lower heating value of fuel f
ηb,br efficiency of burner b of boiler b
N f uels number of fuels
θm,m′ minimum time in mode m′ after switching from m
Dsteam

st,h hourly demand of the steam pressure level st
DEL,h hourly demand of the electricity

priceday−ahead
h,h Clearing day-ahead electricity price at hour h and scenario s

p+,DA
h , p−,DA

h day-ahead penalties for over and under consumption
p+,TOU

h , p−,TOU
h TOU penalties for over and under consumption

ECmax
bl Upper bound of electricity for the TOU block bl

p+, f m
h , p−, f m

h future-market penalties for over and under consumption
pricenaphtha , pricecrack−oil Price of naphtha and crack-oil as fuels
p f eed , p+,st

steam Price of feed water and to purchase externally steam at the pressure level st
pTOU

b l TOU price component for the block bl
α Quantile for the definition of the risk measure CV
η Scalar parameter to define objectives priorities
φs probability of scenarios s

Continuous variables
mn,i,h,s mass flow of stream i at node n at time h for scenario s

m f uel
f ,b,br,h,s mass flow of fuel f to burner br of boiler b at time h for scenario s

IVf ,h,s inventory level of fuel f at time h for scenario s
Pburner

f ,b,br,h,s power generated by the combustion of fuel f at time h for scenario s on the burner br of boiler b

Pboiler
b,h,s power generated by the boiler b at time h for scenario s

ECbl TOU electricity commitment for the block bl
ETOU , Econtract

h total electricity purchased from the TOU contract and hourly TOU commitment
Êcontract

hTOU TOU commitment per TOU period

CTOU TOU quantity component cost
Qh,s , E f m

h , Eday−ahead
h,s total electricity commitment, hourly electricity purchased from the future market and the day-ahead market for scenarios s

PRc,st,h,s , PRc,EL,h,s steam and electricity production for component c scenario s at time h and steam level st
∆steam

st,h,s , ∆steam,−
st,h,s , ∆steam,+

st,h,s total, positive and negative steam deviations for scenario s at time h and steam level st

δel
h,s , δ−,DA

h,s , δ+,DA
h,s total, positive and negative electricity day-ahead deviations for scenario s at time h

δ−,contract
h,s , δ+,contract

h,s , δ
−, f m
h,s , δ

+, f m
h,s positive and negative electricity deviations for scenario s at time h for the TOU contract and the future market

costs , costel
h,s , coststeam

h,s , cost f uel
h,s total cost, electricity cost, steam cost and fuel cost for scenario s and time h

z total expected cost
z weighted sum of the total expected cost and the CVaR
CVaR conditional value at risk
ψ, ζs continuous variables to define CVaR

Binary variables
yc,h,s 1 if the component c is active in time period h for scenario s
yburner

f ,b,br,h,s 1 if the fuel f is allocated to the burner br of the boiler b in time period h for scenario s

y f uel
f ,b,h,s 1 if the fuel f is allocated to the boiler b in time period h for scenario s

zm,m′,t 1 if transition from mode m to mode m′ occurs at time t
xbl 1 if the contract block bl is chosen
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• the process dynamics of the considered components are faster then the chosen
time discretization (one hour) and, therefore, negligible;

• to keep the model linear, the enthalpy of the steam is considered as a fixed
property of the steam streams and the turbine efficiency is considered as a fixed
and known parameter;

• the Lower Heating Value (LHV) of the fuels is a known and fixed parameter.

Mass balance constraints

The mass balance constraints are enforced at a component level and at a network
level. At a component level, the mass balance constraints ensure that the sum of
the inflow streams equals the sum of the outlet streams. The network mass balance
constraints define the interactions among the difference components of the power
plant (e.g. the extraction flows of the steam turbines are used as hot streams in the
pre-heaters of the boilers). For confidentiality reasons the exact layout of the plant
will not be described and the set of the mass balance constraints will be summarized
by Eq. 3.32. The mass balance equations are enforced for each node n ∈ N of the
CHP plant. A node represents a component of the plant c ∈ C, C ⊂ N (pre-heaters of
the boilers, combustion chambers, steam turbines) or any point of the plant where
two or more streams are mixed or divided.

∑
n∈N

∑
i∈I

HMB
n,i ∗mn,i,h,s = 0 ∀h ∈ H, s ∈ S (3.32)

HMB
n,i is an appropriate matrix of Boolean parameters that select the streams of the

plant involved in the mass balances. The continuous variable mn,i,h,s represents the
hourly mass flow of steam for stream i of node n for scenario s. To give an idea of
the size of the plant, 20 plant components have been considered and approximately
1000 streams. For the plant components, the upper- and lower-bounds of the steam
mass flows (UBc,i, LBc,i) are enforced by Eq. 3.33. The binary variable yc,h,s describes
if the component c at time h and scenario s is in operation (yc,h,s = 1) or shut down
(yc,h,s = 0). If the component c at time h is shut down, Eq. 3.33 forces the mass flow of
steam mc,i,h,s to zero.

LBc,i ∗ yc,h,s ≤ mc,i,h,s ≤ UBc,i ∗ yc,h,s ∀h ∈ H, c ∈ C, i ∈ I, s ∈ S (3.33)

Energy balance constraints

Similarly to the mass balance constraints, linear energy balances are enforced at each
node n to describe the change of the enthalpy of the steam flows (e.g. heat-exchangers
of the boilers, mixing of streams with different thermodynamic properties). As
already explained, the enthalpies of the steam flows are considered as fixed and
known parameters.

∑
n∈N

∑
i∈I

HEB
n,i ∗ hn,i ∗mn,i,h,s = 0 ∀h ∈ H, s ∈ S (3.34)
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HEB
n,i is an appropriate matrix of Boolean parameters that select the streams of the

plant involved in the energy balances and hn,i represents the enthalpies that are
associated to the selected streams.

Steam turbines constraints

The steam turbines c ∈ Cturbines, Cturbines ⊂ C (two multi-stage turbines and three
single-stage turbines) are described by the Willans line (Willans, 1888) by Eq. 3.35
that couples the power output (Pc,el,s) and the steam mass flow (mc,i,h,s) via a linear
relation. The model parameters (αc, βc) were identified from plant data. The binary
variable yc,h,s multiplies the constant term βc to force to zero the power output of the
turbines that are not in operation. Figure 3.10 shows the identification of a Willans
line for a single-stage turbine. Multi-stage turbines can be seen as a cascade of Willans
lines.

PRc,EL,h,s = αc ∗mc,i,h,s + βc ∗ yc,h,s ∀c ∈ Cturbines, h ∈ H, s ∈ S (3.35)

It is worth to highlight that the Willans line, although described by a linear equation,
accounts for non-linear variations in the turbine efficiency, assuming that the efficiency
losses are a fixed percentage of the maximum power output (Willans, 1888).

FIGURE 3.10: Model identification of the Willans line for a single-stage
turbine.

Boilers constraints

The power plant consists of five boilers producing steam at different pressure levels.
According to the steam pressure level, the boilers have several pre-heaters to heat
up the feed water before the combustion chamber. The water streams are pre-heated
via the extractions of the steam turbines. Each of the three boilers producing high
pressure steam (60 bar) has seven pre-heaters. As mentioned before, the enthalpies
of the water/steam streams are considered as known and fixed parameters to avoid
non-linear energy balances. Each boiler has several burners to burn the different
fuels (crack-oil, naphtha, waste gases). The variable m f uel

f ,b,br,h,s models the mass flow
of fuel f to the burner br of the boiler b at time h and scenario s. Eq. 3.36 imposes
the upper- and lower-bounds of the mass flow of fuel f to the burner br of boiler b.
The binary variable yburner

f ,b,br,h,s is equal to one if the fuel f is allocated to the burner br
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of the boiler b at time h and scenario s. If a fuel f cannot be burned on the burner
br the corresponding upper- and lower-bounds (UB f ,b,br, LB f ,b,br) are set to zero and

therefore the corresponding fuel mass flow m f uel
f ,b,br,h,s is forced to be zero. Eq. 3.37

computes the inventory level for each fuel f as the inventory level at the precedent
time (IVf ,h−1,s) or an initial inventory value (IV0

f ) if h = 1 minus the amount of fuel

burned by all the burners of the CHP plant (∑b∈Cboilers ∑br∈B m f uel
f ,b,br,h,s).

LB f ,b,br ∗ yburner
f ,b,br,h,s ≤ m f uel

f ,b,br,h,s ≤ UB f ,b,br ∗ yburner
f ,b,br,h,s

∀ f ∈ F, b ∈ Cboilers, br ∈ B, h ∈ H, s ∈ S (3.36)

IVf ,h,s = IV0
f |h=1 + IVf ,h−1,s − ∑

b∈Cboilers
∑

br∈B
m f uel

f ,b,br,h,s f ∈ F, h ∈ H, s ∈ S (3.37)

Eq. 3.38 computes the power generated from the combustion of the fuel f on the
burner br at time h for scenario s. The parameters LHVf , ηb,br represent a constant
lower heating value of the fuel and the efficiency of the burner. For each boiler b, the
power is computed as the sum of the power of the burners of the boiler (Eq. 3.39).
Eq. 3.40 implements for each boiler b and time h and scenario s an energy balance
to enforce that the change of the enthapy of the steam flow over the combustion
chamber of the boiler is due to the power generated by the combustion of the fuels.

Pburner
f ,b,br,h,s = m f uel

f ,b,br,h,s ∗ LHVf ∗ ηb,br ∀ f ∈ F, b ∈ Cboilers, br ∈ B, h ∈ H, s ∈ S (3.38)

Pboiler
b,h,s = ∑

br∈B
∑
f∈F

Pburner
f ,b,br,h,s ∀b ∈ Cboilers, h ∈ H, s ∈ S (3.39)

Pboiler
b,h,s = mb,îOUT ,h,s ∗ hb,îOUT −mb,îIN ,h ∗ hb,îIN ∀h ∈ H, b ∈ Cboilers, s ∈ S (3.40)

The parameters hb,îIN
, hb,îOUT

are the enthalpies of the stream before (îIN) and after
(îOUT) the combustion chamber. Note that the mass flows of the steam mb,îIN ,h,s =
mb,îOUT ,h,s are set equal to each other via the mass balance constraints.

Logic fuels constraints

The following constraints allocate the different fuels ( f ∈ F) to the different burners
(br ∈ B) of the boilers (b ∈ Cboilers, Cboilers ⊂ C). The binary variables y f uel

f ,b,h,s are
equal to one if the fuel f is allocated to the boiler b at time h and scenario s. Eq. 3.41
ensures that at least one fuel f is allocated to the boiler b if the boiler is in operation
(yb,h,s = 1). Eq. 3.42 states that no fuel f must be allocated at time h to a boiler b that
is not in operation (yb,h,s = 0). The parameter N f uels is a big-M parameter identifying
the number of fuels that are considered.

∑
f∈F

y f uel
f ,b,h,s ≥ yb,h,s ∀h ∈ H, b ∈ Cboilers, s ∈ S (3.41)

∑
f∈F

y f uel
f ,b,h,s ≤ N f uelsyb,h,s ∀h ∈ H, b ∈ Cboilers, s ∈ S (3.42)
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If the fuel f is not allocated to the boiler b at time h (y f uel
f ,b,h,s = 0), it cannot be allocated

to any of the burners br of the boiler b (Eq. 3.43). Similarly, if a fuel f is allocated to a
boiler b (y f uel

f ,b,h,s = 1) it must be allocated to one of the burners br of the boiler b (Eq.
3.44).

yburner
f ,b,br,h,s ≤ y f uel

f ,b,h,s ∀h ∈ H, b ∈ Cboilers, br ∈ B, f ∈ F, s ∈ S (3.43)

∑
br∈B

yburner
f ,b,br,h,s ≥ y f uel

f ,b,h,s ∀h ∈ H, b ∈ Cboilers, f ∈ F, s ∈ S (3.44)

At each time step h only one fuel f can be assigned to a burner br as imposed by Eq.
3.45.

∑
f∈F

yburner
f ,b,br,h,s ≤ 1 ∀h ∈ H, b ∈ Cboilers, br ∈ B, s ∈ S (3.45)

Minimum stay constraints

The plant components have two modes of operation m ∈ M (M = {on, o f f }). The
binary variable zc,m,m′,h,s takes value of one if and only if the plant component c
switches from mode m to mode m′ at time period h for scenario s. This is modelled
by Eqs. 3.46-3.49. The mode transitions can happen only after fixed periods of time
that have been spent in the modes. Eqs. 3.50-3.51 restrict the plant component c to
remain in a certain mode m′ for an amount of time equal to θm,m′ after the transition
from mode m (Mitra et al., 2013). For instance, Eqs. 3.50- 3.51 force the boilers to be at
least 24 hours in operation once they are turned on.

zc,o f f ,on,h,s = yc,h,s ∀c ∈ C, h ∈ H, s ∈ S (3.46)

zc,on,o f f ,h,s = 1− yc,h,s ∀c ∈ C, h ∈ H, s ∈ S (3.47)

zc,on,o f f ,h,s − zc,o f f ,on,h,s = yc,h−1,s − yc,h,s ∀c ∈ C, h ∈ H, s ∈ S (3.48)

zc,o f f ,on,h,s − zc,on,o f f ,h,s = yc,h,s − yc,h−1,s ∀c ∈ C, h ∈ H, s ∈ S (3.49)

θo f f ,on−1

∑
k=0

zc,o f f ,on,h−k,s ≤ yc,h,s ∀c ∈ C, h ∈ H, s ∈ S (3.50)

θon,o f f−1

∑
k=0

zc,on,o f f ,h−k,s ≤ 1− yc,h,s ∀c ∈ C, h ∈ H, s ∈ S (3.51)

Power contracts and future markets constraints

The following constraints model the electricity purchasing options of the plant. The
plant can purchase electricity from the TOU contracts Econtract

h , from the future markets
E f m

h and from the day-ahead market Eday−ahead
h . According to the timing of the

decisions, the different purchasing options belong to different stages of the stochastic
formulation: TOU commitment decisions and future market decisions are first-stage
variables and day-ahead commitment decisions are recourse variables. The TOU
contract price depends on the time and on the amount of the electricity that is
purchased from the contract. The more electricity is purchased the lower is the price.
To model the TOU contract discount a set of contract blocks bl is considered and a
Boolean variable xbl is introduced. The amount of electricity to be purchased ECmax

bl
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before reaching the next block bl + 1, which is associated to a lower price βbl , is
associated to each contract block bl. The variable xbl is equal to one if block bl is
chosen. Eq. 3.52 ensures that only one block is chosen. Eqs. 3.53-3.54 impose the
upper- and lower-bounds of electricity (ECmax

bl−1, ECmax
bl ) that can be purchased for the

block bl.
∑

bl∈BTOU

xbl = 1 (3.52)

ECmax
bl−1 ∗ xbl ≤ ECbl ∀bl ∈ BTOU , bl > 1 (3.53)

ECbl ≤ ECmax
bl ∗ xbl ∀bl ∈ BTOU (3.54)

The total electricity purchased from the TOU contact is defined by Eq. 3.55 as the
sum of electricity purchased over the contract blocks. Eq. 3.56 defines the hourly
electricity profile purchased form the TOU contract.

ETOU = ∑
bl∈BTOU

ECbl (3.55)

ETOU = ∑
h∈H

Econtract
h (3.56)

The TOU contracts require a constant electricity commitment over the TOU period
(corresponding to six hours) as imposed by Eq. 3.57. In other words, the TOU
commitment can be defined with a TOU period discretization. We use here an hourly
discretization (Econtract

h ) since we also model the hourly day-ahead commitment.

Econtract
h = Êcontract

hTOU ∀hTOU ∈ HTOU , h ∈ ĤhTOU (3.57)

HTOU represents a set of TOU periods and ĤhTOU a matrix that links hours and TOU
periods. Eq. 3.58 defines the cost of purchasing electricity from the power contract
according to the amount that is purchased.

CTOU = ∑
bl∈BTOU

pTOU
bl ∗ ECbl (3.58)

The parameter pTOU
bl represents the amount-dependent price component. Eq. 3.59

defines the total hourly electricity commitment of the plant. The future-day market
presents a constant price over the whole week and requires an electricity commitment
profile before the beginning of the time horizon of interest. Note that while the TOU
and the future market commitments (Econtract

h , E f m
h ) are first stage decisions (they

do not present a subscript s indicating the scenarios), the day-head commitment
(Eday−ahead

h,s ) is a recourse decision and therefore can be different for each scenario s.

Qh,s = Econtract
h + E f m

h + Eday−ahead
h,s ∀h ∈ H, s ∈ S (3.59)

Steam and electricity demand satisfaction constraints

The plant must satisfy the steam and electricity demands. Eq. 3.60 imposes that
the steam demand Dst,h must be covered by the produced steam (Prc,st,h) or by the
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steam that is purchased from external sources (∆steam,+
st,h,s ≥ 0). The plant has also

the possibility to vent a surplus of steam (∆steam,−
st,h,s ≥ 0). There is no possibility to

purchase externally steam at high pressure level (60 bar) as imposed by Eq. 3.62. The
set ST indicates the different pressure levels of the steam (60 bar, 30 bar, 15 bar, 5 bar
and condensate at 1.8 bar).
Eqs. 3.63-3.64 compute for each scenario s the hourly deviations δel

h,s between the
total electricity commitment Qh,s, the electricity produced by the CHP plant Prc,EL,h,s
and the electricity demand DEL,h. The electricity deviations are the over- and under-
consumption respect to the day-ahead electricity commitment (δ+,DA

h ≥ 0, δ−,DA
h ≥ 0)

and to the power contracts commitment (δ+,contract
h ≥ 0, δ−,contract

h ≥ 0). The deviations
related to the TOU power contracts and to future market are more expensive than
the ones related to the day-ahead market since they are associated to a longer term
commitment. Note that the steam and electricity deviations ∆steam

st,h,s , δel
h,s are continuous

free variables.

∑
c∈Csteam

Prc,st,h,s + ∆steam
st,h,s = Dsteam

st,h ∀h ∈ H, st ∈ ST, s ∈ S (3.60)

∆steam
st,h,s = ∆steam,+

st,h,s − ∆steam,−
st,h,s ∀h ∈ H, st ∈ ST, s ∈ S (3.61)

∆steam
st,h,s = 0 ∀h ∈ H, s ∈ S, st = 60bar (3.62)

∑
c∈Cturbines

Prc,EL,h,s + Qh,s − DEL,h = δel
h,s ∀h ∈ H, s ∈ S (3.63)

δel
h,s = δ+,DA

h,s − δ−,DA
h,s + δ+,contract

h,s − δ−,contract
h,s + δ

+, f m
h,s − δ

−, f m
h,s ∀h ∈ H, s ∈ S (3.64)

∆steam,+
st,h,s , ∆steam,−

st,h,s , δ+,DA
h , δ−,DA

h , δ+,contract
h , δ−,contract

h ≥ 0 ∀h ∈ H, s ∈ S, st ∈ ST
(3.65)

Non-anticipativity constraints

The non-anticipativity constraints (NACs) equate to each other the recourse variables
that belong to the same stage. Note that the first stage variables that are related to the
TOU power contracts and the future market are modelled without creating copies for
the scenarios and, therefore, they do not present an index s ∈ S. As an example of the
implemented constraints, Eq. 3.66 enforces the NACs for the day-ahead electricity
commitment Eday−ahead

h,s

Eday−ahead
h,s = Eday−ahead

h,s′ ∀(s, s′, h) ∈ NACMSSP (3.66)

where NACMSSP is a matrix that defines the structure of the multi-stage tree by
connecting the stages of the stochastic formulation to the scenarios and the time. It is
interesting to highlight that, due to the nature of the problem, variables that refer to
different days belong to the same stage. In fact, as discussed later in Section 3.2.3, the
operational decisions for the current day d and the day-ahead electricity commitment
for the following day d + 1 belong to the same stage.
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Objective function

Since the importance of a risk-averse optimization for iDSM problems has been
shown in Section 3.1, the model minimizes the weighted sum of the expected total
operating cost and the risk measure adopted, the CVaR as shown by Eq. 3.67. The
parameter η priorities for the decision maker the importance of the total expected
cost and risk measure.

z = η ∗ z + (1− η) ∗ CVaR (3.67)

Eq. 3.68 defines for each scenario s the total operating cost of the plant as the sum of
the cost of the electricity purchasing, the cost of the steam and the cost of the fuels.

costs = ∑
h∈H

costel
h,s + coststeam

h,s + cost f uel
h,s ∀s ∈ S (3.68)

Eq. 3.69 computes the electricity cost as the cost of purchasing electricity from the day-
ahead market, the TOU power contracts and the future market plus the corresponding
over- and under-consumptions penalized by the parameters p+DA, p−DA, p+TOU , p−TOU ,
p+f m, p−f m.

costel
h,s = pday−ahead

h,s ∗ Eday−ahead
h,s + p+,DA

h ∗ δ+,DA
h,s + p−,DA

h ∗ δ−,DA
h,s

+ ETOU + pcontract
h ∗ Econtract

h + p+,TOU ∗ δ+,contract
h,s + p−,TOU ∗ δ−,contract

h,s

+ p f m ∗ E f m
h + p+, f m ∗ δ

+, f m
h,s + p−, f m ∗ δ

−, f m
h,s ∀h ∈ H, s ∈ S (3.69)

The parameter pday−ahead
h,s represents the uncertain day-ahead electricity price and

pcontract
h the known time-dependent price component of the TOU power contract.

Note that the TOU power contract present a time-dependent price component pcontract
h

and an amount-dependent price component pTOU
bl . Eq. 3.70 computes the steam cost

as the sum of the cost of the feed water entering the boilers and the cost of purchasing
steam from external sources.

coststeam
h,s = ∑

b∈Cboilers

p f eed ∗mb,in,h,s + ∑
st∈ST

p+,st
steam ∗ ∆steam,+

st,h,s ∀h ∈ H, s ∈ S (3.70)

The fuel cost is defined as the price that the CHP plant must pay to use crack-oil
and naphtha as fuels. The waste gases produced by the production site must be
incinerated and do not generate a cost.

cost f uel
h,s = ∑

b∈Cboilers
∑

br∈B
pnaphtha ∗m f uel

naphtha,b,br,h,s + pcrack−oil ∗m f uel
crack−oil,b,br,h,s

∀h ∈ H, s ∈ S (3.71)

Eq. 3.72 computes the expected total cost z

z = ∑
s∈S

φs ∗ costs (3.72)
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where φs denotes the probability of scenario s. Eqs. 3.73-3.75-3.75 implement the
CVaR for the quantile α by imposing that for each scenario s in which the total cost is
greater than ψ, the variable ζs takes the value of the difference between the total cost
and ψ, otherwise ζs takes the value of zero (see Section 2.1.2 for the definition of the
CVaR).

CVaR = min
ψ,ζs
{ψ + (1− α)−1 ∑

s
φs ∗ ζs} (3.73)

costs − ψ ≤ ζs ∀s ∈ S (3.74)

ζs ≥ 0 ∀s ∈ S (3.75)

3.2.3 Solution strategy

The described formulation gives rise to a large scale mixed-integer multi-stage opti-
mization. The deterministic equivalent problem is intractable and to overcome the
large computational effort, we propose an approximation strategy that consists of
solving a series of two-stage stochastic programs within a shrinking horizon frame-
work. The approximation of a multi-stage problem by a two-stage problem can be
seen as an optimistic assumption about the future: it is implicitly assumed that after
the first-stage decisions have been implemented all the uncertain parameters reveal
and the subsequent decisions are the optimal ones for the scenario that material-
izes. The shrinking horizon framework alleviates this simplification by re-optimizing
when new information is available. The approximation of a multi-stage program via
a two-stage program within a rolling horizon framework has been already studied
in the scientific literature for planning and scheduling problems (Sand et al., 2000,
Balasubramanian and Grossmann, 2004, Cui and Engell, 2010) and for the optimal
electricity procurement strategy (Beraldi et al., 2011) where, however, the operational
decisions of the plant are neglected.

For the integrated medium-term electricity procurement and production scheduling,
Figure 3.11 shows the scenario tree associated to the multi-stage program (Figure
3.11a) and the sequence of two-stage trees that are solved at each iteration of the
shrinking horizon procedure (Figure 3.11b). At each iteration that is defined by
the realization of the uncertain parameter the shrinking horizon algorithm solves a
two-stage program assuming that the future uncertain parameters (associated to the
following stages) are known. Since the uncertain parameters assumed as known may
differ from the values that will later realize, after the two-stage program is solved
only the first-stage variables are implemented and the scenario tree is shifted. The
first-stage variables of the following iteration are the recourse variables of the current
one. The algorithm repeats until the end of the time horizon of interest.

In particular, for the problem under consideration the first iteration solves a two-stage
stochastic problem where the first-stage decisions represent the profile of electricity
purchased from the TOU contract and the future market for the entire time horizon
of interest (one week in this work). The uncertain parameters are the day-ahead elec-
tricity prices for the entire week. In this iteration the approximation of a multi-stage
program via a two-stage optimization is evident: the two-stage problem assumes
that after the TOU contract decisions are made, all the day-ahead prices for the entire
week become known. In reality, only the day-ahead price of the first day realizes.
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The shrinking-horizon methodology reacts to the error of this approximation by re-
optimizing when the electricity price of the first day becomes known and considering
as uncertain the day-head price of the following day. Even though this procedure
generates high-quality solutions, it is not theoretically ensured that the approximation
error will be zero. After the first iteration, each following one solves a two-stage
stochastic program with first-stage variables that model the operations of the CHP
plant for the current day d and the day-head commitment for the following day d + 1.
A set of uncertain day-ahead prices of the following day d + 1 is considered. The
second stage variables describe the operations of the CHP plant in the remaining
horizon {d + 1, . . . , D} (where D represents the number of days of the week). The
day-head prices of the remaining days of the week {d + 2, . . . , D} are considered as
known and they are randomly generated and can differ from their later realizations
in the following iterations. After the two-stage program is solved, the operational
decisions for the current day d and the electricity commitment for the following day
d + 1 are implemented and they are considered as fixed in the following optimiza-
tions. The day-ahead price for the day d + 1 realizes and the following iteration starts.
The shifted scenario tree for the following iteration presents as first stage variables
the operational decisions of the CHP for the day d + 1 and the electricity commitment
for the day d + 2. The day-ahead prices of the day d + 2 represent the uncertain
parameters.

(a)

(b)

FIGURE 3.11: (a) The scenario tree describing the multi-stage formula-
tion, (b) The illustration of the approximation strategy that approxi-
mates a multi-stage program with a series of two-stage problems in a

shrinking horizon fashion.

Even after the application of the proposed approximation strategy, the solution of
the stochastic problems along the iterations remains challenging due to the long time
horizon (1 week) and the fine discretization (1 hour). The time horizon must cover
the horizon of the TOU power contract and the fine discretization is required due to
the requirements of the day-ahead commitment. Therefore, to balance computational
effort and model accuracy, each two-stage model employs two different time grids
(Figure 3.12): a fine one with an hourly discretization for the short term future (two
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days) and a coarse one with a discretization of six hours (corresponding to a TOU
period) for the long term future (i.e. the rest of the week). The implementation of the
two different time grids is straightforward within a discrete time formulation: the
formulation of the model constraints is not affected but some parameters (e.g. the
minimum stay time θm,m′ and the upper- and lower-bounds of the steam mass flow
LBc,i, UBc,i) must be adjusted to the change of time discretization.

A special treatment is required for the first iteration where the first-stage variables are
the decisions regarding the TOU power contract and the future market that define an
electricity profile over the whole week with a TOU period (six hours) discretization.
Since at this stage none of the two purchasing options requires an hourly commitment,
the first iteration solves a two-stage model built only on the coarse time grid (with
a time discretization equal to a TOU-period, namely six hours) for the whole time
horizon. Moreover, since these first-stage decisions have an impact on the entire
remaining week, a bigger scenario tree is considered (40 scenarios) to cope with the
uncertain day-ahead price over the entire time horizon (a week). The generation of
the scenarios follows the procedure described in Section 3.1.1.

FIGURE 3.12: Illustration of the two different time grids used to model
the two-stage stochastic programs. The detailed model is associated to
the fine time grid (one-hour-discretization) while the aggregated one

to the course grid (TOU-period-discretization).

Figure 3.13 depicts the scenario trees of the two-stage programs associated to the first
three iterations of the approximation algorithm highlighting the two-stage and the
time approximations.
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FIGURE 3.13: Illustration of the trees of the two-stage stochastic pro-
grams associated to the first three iterations of the approximation
strategy. The different time grids that define the detailed and aggre-

gated models are highlighted.

3.2.4 Solution method

The solution strategy discussed in Section 3.2.3 approximates the large-scale multi-
stage problem by solving a series of two-stage stochastic programs within a shrinking
horizon framework. From a solution perspective, the two-stage stochastic programs
are solved by generating the deterministic equivalent MILP problem.

Computational Environment

The proposed formulation and approximation were implemented within the algebraic
modelling environment AIMMS and the MILPs were solved using the commercial
solver CPLEX 12.7 on an Intel Core i7-2600 machine at 3.40 GHz with 8 processors
and 8 GB RAM running Windows 7 Professional. We consider as termination criteria
a maximum time limit equal to 7200 seconds and an optimality gap of 1%.

3.2.5 Results

This section shows the results of the proposed solution strategy applied to the power
plant model that was previously described to simultaneously define the optimal elec-
tricity purchasing strategy and the production planning over a medium-term time
horizon hedging again uncertainty of the day-ahead electricity price and adopting a
risk-averse strategy (parameter η = 0.5 to balance risk measure and expected cost
and quantile α = 0.9).

As previously explained, the first iteration of the approximation algorithm that is
based on the shrinking horizon strategy defines for the whole time horizon of interest
the profile of electricity purchased from the TOU power contact and the future market.
Figure 3.14 shows the electricity prices considered in the first iteration: the constant
future market price, the TOU price that presents on-peak and off-peak values and
the uncertain day-ahead prices over the entire week. The first iteration considers 40
scenarios. It is worth to highlight that the TOU prices present an amount-dependent
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discount: the more electricity is purchased from the contract the larger is the price
reduction.

FIGURE 3.14: Known price of the electricity for the TOU power con-
tract and the future market and uncertain price profiles for the day-

ahead (DA) market.

To handle the large number of scenarios needed to describe the uncertain prices over
a long horizon, the process model employs a TOU-period (six hours) discretization.
Figure 3.15 shows the results of the first iteration of the shrinking horizon procedure.
The TOU power contracts are used to hedge against the high variability of the day-
ahead price (e.g. at the beginning and end of the week): the higher is the uncertainty
associated to the day-ahead price the larger is the electricity purchased from the power
contact. Due to the higher price, electricity is not purchased from the future market
but from the TOU power contract and from the day-ahead market, and it is also
generated by the CHP plant. While the first stage variables (TOU and future market
profiles) will not change for the rest of the horizon, the day-ahead commitment and
the generation profile along with the corresponding operational decisions (e.g. steam
mass flows, fuel consumption, . . . ) are recourse variables that will be re-optimized
after the realization of the uncertain parameters. Figure 3.15 shows the expected
profiles over the scenarios for the electricity that is purchased from the day-ahead
(DA) market and is generated by the CHP plant. It is worth to highlight once again
that the two-stage model for this iteration is built on the coarse time grid (with
a discretization equal to a TOU period) according to the requirement of the TOU
contract since no operational decisions from this iterations will be implemented.

FIGURE 3.15: Iteration 1: electricity purchased from the TOU power
contract and expected values of the electricity purchased from the

day-ahead market (DA) and generated by the CHP plant.

The second iteration of the shrinking horizon procedure is shown in Figure 3.16. The
power contract decisions are fixed to the result of the previous iteration, and the
current two-stage stochastic optimization problem models as first-stage decisions the
day-ahead bidding volumes for the next day considering an hourly discretization.
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Figure 3.16 shows the fixed value of the electricity purchased from the TOU power
contract, the day-ahead (inelastic) bidding, the expected electricity generation profile
(since it is a second stage variable) and the uncertain day-ahead price. Each iteration
(apart from the first one) considers ten price scenarios. The rest of the week (that
is not shown here) is modelled adopting the aggregated model with a TOU period
(six hours) discretization. The goal of the aggregated model is to consider the im-
pact of the medium-term predicted future on the first-stage variables: for instance,
the operational decisions of the boilers (if on or o f f ) needs to take in account the
minimum-stay constraints that force the boilers to be in an operational mode for at
least 24 hours (period of time that can exceed the horizon of the detailed model).

FIGURE 3.16: Iteration 2: fixed value of the electricity purchased
from the TOU power contract, the day-ahead (inelastic) bidding, the
expected electricity generation profile and the uncertain day-ahead

price.

After the stochastic program is solved, the day-head price profile realizes. Note
that the realization of the uncertain parameter can differ from the scenarios that
are considered, as shown later in Figure 3.19. The iterations progress sliding the
scenario tree until the whole time horizon of one week is covered. The optimal first-
stage variables of the second iteration are fixed for the third one. Figure 3.17 shows
the results of the third iterations in terms of electricity generation and day-ahead
(inelastic) bidding for the fine time grid (detailed model). The day-ahead biddings
for the hours 1-24 are fixed to the optimal values of the previous iteration while the
same profile for the hours 25-48 models the first stage variables of the third iteration.
Conversely, the generation profile for the hours 1-24 represents the operational first
stage variables of the third iteration while the hours 25-48 show the expected value
over the scenarios.

FIGURE 3.17: Iteration 3: fixed value of the day-ahead market com-
mitment, optimal day-head bidding (first stage variable), optimal
generation profile (first stage variable) and expected generation profile

(recourse variable) over the scenarios.
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The remaining of the week for the same iteration is modelled by adopting the coarser
time grid (TOU discretization). Figure 3.18 depicts the optimal electricity generation
profile for the third iteration with the two different applied discretizations. From hour
1 to 24 the profile shows the optimal values of the first stage variables with an hourly
discretization; from hour 25 to 48 the profile corresponds to the optimal expected
values of the recourse variables with an hourly discretization; for the remaining time
steps it represents the optimal expected values of the recourse variables with a TOU
discretization.

FIGURE 3.18: Iteration 3: optimal first stage variables with an hourly
discretization (detailed model), optimal expected values of the re-
course variables with an hourly discretization (detailed model); opti-
mal expected value of the recourse variables with a TOU discretization

(aggregated model).

The shrinking horizon strategy implements in each iteration only the first-stage deci-
sions being aware of the uncertain day-ahead prices. Collecting the implemented first
stage decisions, Figures 3.19a-3.19b show the profiles of electricity that is purchased
from the day-ahead market and that is generated by the CHP plant. The figures also
show the uncertain day-ahead prices that are considered along the iterations and the
realized prices. It is worth to highlight that the realizations of the uncertain parameter
can differ from the considered scenarios.
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(a)

(b)

FIGURE 3.19: (a) Implemented day-ahead purchase profile, (b) Imple-
mented electricity generation profile. In addition, both figures show
the uncertain day-ahead prices considered over the iterations and the

realized ones.

The proposed approximation strategy enables to solve an intractable large-scale de-
terministic equivalent problem. The computational statistics for the iterations of the
solution procedure of the shrinking horizon algorithm are reported in Table 3.7 in
terms of number of variables (#var), number of constraints (#con), reached optimality
gap of the solution (gap), computational time (CPU), time interval associated to the
first stage ( f irst− stage) and number of scenarios considered (|S|). The average com-
putational time is approximately 17 [min] with a maximum value of approximately
42 [min].



3.2. Medium- and short-term electricity procurement 75

TABLE 3.7: Computational statistics for each iteration of the shrinking
horizon procedure. The first stage variables of the first iteration are
the contract decisions that have to be made a point in time before the

horizon of interest.

it #var #con gap CPU [s] f irst− stage [h] |S|

1 2 700 442 3 557 014 0,02 % 1 402,5 1-148 40

2 1 159 774 1 588 671 0,36 % 202,7 1-24 10

3 1 643 490 4 770 439 0,00 % 91,3 1-48 10

4 1 546 250 5 232 847 0,99 % 693,4 24-72 10

5 1 449 814 5 105 769 0,07 % 2 397,3 48-96 10

6 1 356 562 4 989 779 0,57 % 2 499,4 72-120 10

7 1 256 918 4 851 595 0,6 % 426,3 96-144 10

8 1 160 474 4 724 511 0,0 % 221,7 120-168 10

To evaluate the stochastic formulation we solve the Expected Value Problem (EVP)
and we compute the Value of the Stochastic Solution (VSS) for each iteration. Figure
3.20 compares the results of the stochastic approach (Figure 3.20b) to the optimal
electricity profiles of the EVP obtained by solving the deterministic problem in a
shrinking horizon fashion (Figure 3.20a). In particular, Figure 3.20 shows the optimal
generation profile, the electricity purchased from the day-ahead market and the TOU
power contract, the expected and realized day-ahead price and the (known) TOU
price. The realizations of the uncertain parameter are identical for the stochastic
and deterministic approaches. The expected day-ahead price profile is obtained
by averaging over the scenarios that are considered in the stochastic optimizations.
Compared to the stochastic solution, the EVP optimization purchases electricity from
the TOU power contract only when the TOU price is lower than the expected day-
ahead price (e.g. 1-28 hours). On the other side, the stochastic solution is aware of the
day-ahead price uncertainty and, therefore, uses the TOU power contracts to hedge
against high price variability (e.g. for hours 1-6 and 156-168 of Figure 3.20).
Table 3.8 shows the computation of the absolute (VSS) and relative (VSS) Value of
the Stochastic Solution .
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(a) Optimal solution of the Expected Value Problem

(b) Optimal solution of the stochastic problem

FIGURE 3.20: Electricity profiles: the generation profile, the electricity
purchased from the day-ahead market and the TOU power contract,

the expected and realized day-ahead price and the TOU price

TABLE 3.8: VSS computation.

it VSS VSS

1 73 555,3 9,9 %

2 274 701,3 19,3 %

3 69 113,6 7,1 %

4 73 555,3 9,9 %

5 31 662,8 11,7 %

6 59 103,1 35,2 %

7 27 343,3 21,3 %

8 24 822,8 13,7 %

Due to the nature of the approximation strategy, no theoretical analysis is possible
to estimate a-priori and a-posteriori the (possible) loss of optimality. In fact, since
the proposed algorithm is based on a shrinking horizon procedure that considers
at each iteration the entire remaining time horizon (and not a part of it as for a
rolling horizon procedure) the optimal objective function value of the monolithic
deterministic equivalent problem (or if intractable its linear programming relaxation)
cannot be used to evaluate a-posteriori the quality of the obtained solution. The sum
over the iterations of the optimal total costs cannot be compared to the solution of the
deterministic equivalent problem since at each iteration the total cost is computed over
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the time horizon starting from the point in time of the current iteration to the end of
the week. However, the proposed approximation strategy enables to efficiently solve
large-scale industrial size stochastic MILP problems within reasonable computational
times and to gain important benefits from the awareness of the sources of uncertainty.
Given the generality of the proposed solution strategy, different sources of uncertainty
could be taken into account (e.g. the steam demand that typically represents the need
of production plants). As previously shown, due to the shrinking horizon procedure
the proposed strategy represents an efficient online approach that is also able to react
to the realizations of the uncertain parameters that were not considered in the set of
scenarios. In fact, in this work at each iteration of the shrinking horizon procedure
the realization of the uncertain day-ahead price profile can differ from the scenarios
that are considered for the stochastic problem.
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Chapter 4

Condition-based maintenance via

stochastic programming with

endogenous uncertainty

This chapter is based upon

• Leo E. and Engell S., A novel multi-stage stochastic formulation with decision-dependent
probabilities for condition-based maintenance optimization, European Symposium on
Computer-Aided Process Engineering 2020 (ESCAPE-30), Volume 48, 1795-1800

• Leo E. and Engell S., Condition-based maintenance optimization via stochastic pro-
gramming with endogenous uncertainty, Computers & Chemical Engineering, Volume
156, January 2022.

• Leo E. and Engell S., Handling Type-I and Type-II endogenous uncertainties in si-
multaneous production planning and condition-based maintenance optimization in
continuous production, Computers & Chemical Engineering, submitted July 2022

In this chapter we address the challenge of integrating production planning and
condition-based maintenance optimization, also called predictive maintenance. The
goal of the condition-based maintenance strategy is to reduce the maintenance costs
by performing the maintenance activities only when necessary according to the pre-
diction of the Remaining Useful Life (RUL) of the equipment that is obtained via
a degradation model. The degradation model couples the maintenance decisions
and the operations of the plant: harsher operating conditions increase the plant
throughput and reduce the RUL of the equipment increasing the frequency of the
maintenance activities and the maintenance costs. Therefore, the integration of pro-
duction planning and condition-based maintenance is a necessary step to optimally
balance the plant income, the operating costs and the maintenance costs.
We consider uncertain predictions of the equipment degradation by adopting a
stochastic programming formulation with decision-dependent uncertainty. The prob-
ability of the uncertainty, in this work the RUL of the plant, is adjusted according
to the plant operating conditions by embedding a prognosis model, the Cox model,
into the optimization problem. Section 4.1 proposes a multi-stage stochastic problem
with decision-dependent probabilities to simultaneously optimize the production
planning and the predictive maintenance of a single production campaign. Sec-
tion 4.2 extends this formulation for multiple production campaigns by modelling a
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second class of endogenous uncertainty, the decision-dependent structure uncertainty.

The figures and the tables of Section 4.1 are adapted from (Leo and Engell, 2021).

Literature review on condition-based maintenance optimization

Maintenance is widely recognized as a critical element of asset management to in-
crease profits by avoiding unplanned stoppages and bad quality production (Alsyouf,
2007, De Jonge and Scarf, 2020). The integration of CBM optimization and production
planning is necessary to optimally balance production costs and maintenance costs
and its importance is evident from the wide literature on this topic. Most of the work
in this direction assumes a perfectly known degradation model that is able to predict
the degradation trajectory and the Remaining Useful Life of the equipment according
to the operating conditions. In (Jain and Grossmann, 1998) the authors propose a
cyclic scheduling policy for an ethylene production process that requires mainte-
nance activities to restore the plant operations. The evolution of the degradation is
assumed to be proportional to the running time and not dependent on the operating
conditions. Similarly, in (Xenos et al., 2015) the authors developed a condition-based
maintenance optimization describing the degradation of the compressors as function
of the running time only. In (Biondi, Sand, and Harjunkoski, 2017) the authors present
an optimization-based modeling framework for the integration of maintenance and
short-term production scheduling of multipurpose process plants based on a State
Task Network (STN) formulation. The proposed formulation assumes the reduc-
tion of the RUL as certain and known and models it as a state that results from the
execution of a production task. In (Leo and Engell, 2017) the authors embed in the op-
timization problem a crack-growth model to simulate a virtual crack propagation as
a function of the operating conditions until a critical crack length. The crack-growth
model and the resulting prediction of the RUL are assumed as certain and known.

The number of papers that describe CBM optimization under uncertainty is quite
limited. In (Basciftc et al., 2018) the authors used a degradation model to create
failure scenarios, which then were included into a chance-constraint programming
formulation. Since the degradation model is only used to generate the uncertain
scenarios, the optimization does not consider the coupling between the operating
strategy and the health of the equipment. This is taken into account in (Wiebe, Cecilio,
and Misener, 2018) where the authors consider a parametric uncertainty of the degra-
dation model and adopt an adjustable robust optimization formulation. To avoid
uncertain time-varying parameters, which result in a very conservative solution, a
complete knowledge of the future degradation parameters is assumed after the first
collection of measurements.
In this work we build upon our recently proposed MINLP formulation that integrates
condition-based maintenance, prognosis and production planning in the multi-stage
stochastic programming framework with decision-dependent uncertainty (Leo and
Engell, 2020, Leo and Engell, 2021). A similar direction has been taken also in (Bas-
ciftci, Ahmed, and Gebraeel, 2019) for the generator maintenance scheduling problem.
The authors assume the RULs of the generators to be normally distributed and that
the generator loads modify the mean of the RUL distribution. An MILP chance-
constraint optimization problem is formulated by linearizing the non-linear terms.
From a mathematical formulation perspective, some analogies can be found with the
works on the planning of clinical trials in drug discovery because of the stochastic
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nature of the process: a drug might fail a clinical trial stopping its development, or
it might pass all trials generating a large profit. Thus, these problems are typically
modelled by MILP formulations with endogenous uncertainty of Type-II. The first
formulation of this problem that accounts for uncertainty in R&D project portfolios
was presented in (Colvin and Maravelias, 2008). The authors proposed several ideas
to exploit the logical relationships in the problem structure to reduce the size of the
problem and the solution time. Later, the authors developed solution procedures
to handle larger problem instances proposing relaxation-based heuristic algorithms
(Colvin and Maravelias, 2009) and a branch-and-cut method (Colvin and Maravelias,
2010). The same problem was addressed by (Solak et al., 2010b) proposing a formu-
lation technique that enables the application of scenario decompositions as e.g. the
sample average approximation method. However, it is worth to highlight that while
the planning of clinical trials in drug discovery gives rise to stochastic MILP problems
with conditional non-anticipativity constraints, in this work we address the solution
of MINLP formulations where the probabilities of the scenarios are modelled as deci-
sion variables (Type 1 endogenous uncertainty) and, therefore, introduce non-linear
non-convex terms.

Survival analysis and Cox model

Survival analysis is a set of statistical approaches used to estimate the time it takes for
an event of interest to occur. For this reason, it is also called time-to-event analysis.
Examples of time-to-events are the time until infection or recovery of a disease in
health sciences or the time until failure of a part of a machine in reliability engineering
(Lawless, 2002). Survival data are commonly described by the survival and the hazard
functions. The survival (or survivor) function, S(t), indicates the probability that an
event of interest has not yet occurred by time t.

S(t) = P(T > t) f or t > 0 (4.1)

where T denotes a non-negative random variable representing the time of occurrence
of some event of interest. In this work, the random variable T represents the lifetime
of the plant. The hazard function gives the instantaneous failure rate of an individual
conditioned on the fact that the individual survived until a given time. The hazard
function is defined as:

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t|T ≥ t)
∆t

(4.2)

where ∆t represents an infinitesimally small time span. The hazard function is related
to a probability density function, p(t), and a survival function, S(t), as follows:

h(t) =
p(t)
S(t)

(4.3)

The Cox model, also called Cox proportional hazards model, is a regression model
commonly used to estimate the effect of explanatory variables (or covariates) on the
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hazard function as described by Eq. 4.4.

h(t) = h0(t) ∗ exp(β1x1 + β2x2 + · · ·+ βnxn) (4.4)

where t represents time, h(t) is the hazard function that is determined by a set of
covariates (x1, x2, . . . , xp). The coefficients (β1, β2, . . . , βn) measure the effect of the
covariates. The term h0(t) is called the baseline hazard and it corresponds to the value
of the hazard if all the covariates (x1, x2, . . . , xp) are equal to zero. The baseline hazard
h0(t) can vary over time. Typical applications of the Cox model range from clinical
investigations, where for instance the difference in survival among individuals may
be attributable to genotype or age, to reliability predictions, where the probability of
a failure can be altered by the operating conditions of the equipment (Nikulin and
Wu, 2016).

4.1 Type-1 endogenous uncertainty

Motivation of the work

The ethylene production by steam cracking is the source of motivation of this work.
Steam cracker units produce olefins (ethylene, propylene and heavier hydrocarbons)
by cracking the hydrocarbon feeds like naphtha or LPG with the use of steam. The
cracking process leads to the formation of coke on the inner surface of the coils of
the furnace. The rate of coke deposition depends on the nature of the feed and
the operating conditions of the plant (coil outlet temperature, feed rate, steam to
naphtha ratio). Due to the coke deposition, the performance of the furnaces decreases
over time and, therefore, the furnaces must be shut down for de-coking activities
to afterwards restart the operations. Hence, the timing of the cleaning represents a
compromise between cleaning costs, running costs and lost production. The identifi-
cation of the degradation model (coke deposition model for the ethylene production
plant) represents a crucial step for the deployment of a CBM strategy. In fact, the
degradation depends on complex physical phenomena that evolve on a different time
scale compared to production planning. Figure 4.1 shows the identification of a coke
deposition model for the furnace coils of an ethylene plant. The coke deposition has
a number of negative effects on the performance of the steam cracker. The formed
coke layer causes a reduction of the available cross section of the tubes for the process
gas, leading to a higher pressure drop over the coils. Moreover, the coke deposition
leads to a large increase in the heat transfer resistance across the coil wall and a
carburization of the wall structure. Typical indicators of the degradation are the
pressure difference between the inlet and the outlet of the coils and the coil skin tem-
perature. The identified model in Figure 4.1 represents a data-driven auto-regressive
model with exogenous inputs (ARX). The exogenous inputs that were considered
are the feed quality that was estimated from the feed composition and the operating
conditions of the furnaces that are described by the mass flow of the hydrocarbon
feed, the coil outlet temperature and the steam-to-hydrocarbon ratio. As shown
in Figure 4.1, since the coke layer thickness grows over the production campaign
the degradation indices increase until the furnace is shut down for the de-coking
activities and restarted afterwards. The rapid decrease in the pressure and in the
skin temperature represents the decoking activities. Due to the complexity of the
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degradation phenomenon, a data-driven model with daily discretization is not able
to accurately represent the degradation process and therefore to accurately predict
the Remaining Useful Life of the furnaces. For this reason, in this work we integrate
production planning and CBM considering an uncertain prediction of the RUL.

(a) Coil pressure difference (b) Coil skin temperature

FIGURE 4.1: Identification of two data-driven degradation models for
the coke deposition in a steam cracker with feed quality and operating
conditions of the furnaces (feed mass flow, coil outlet temperature
and steam-to-hydrocarbon ratio) as exogenous inputs. Since the coke
layer thickness grows over the production campaign, the degrada-
tion indices increase until the furnace is shut down for the de-coking

activities and restarted afterwards. Source: (Leo and Engell, 2021).

The process model considered in the simulations in this work is, for confidentiality
reasons, a modified version of a data-driven model that was developed at INEOS
in Köln. The process model is characterized by linear equations with continuous
variables.

While the formulation of the CBM discussed in this work has been developed for
units in the process industry, it is worth to emphasize that it can similarly be applied
to identify e.g. the optimal replacement policy of components for the manufacturing
industry (see e.g. Compare, Baraldi, and Zio, 2020).

4.1.1 Problem statement

In this work, a continuous production plant is considered. The product demand
over the planning horizon is fixed and known. The goal is to minimize the total
production cost, consisting of the feed purchasing cost, the cost of performing the
maintenance activities, the resource consumption cost (i.e. the cost of steam and fuel
consumption assumed proportional to the plant inputs as discussed later in Section
4.1.2) and the cost of producing the products in the next campaign or purchasing
them from external sources if the demand cannot be covered, e.g. due to shutdowns.
The decision variables are:

• the feeds to be purchased

• the plant operating conditions along with the resulting degradation trajectory

• the amount of products to be produced in the next campaign or to be purchased
from external sources

• the timing of the maintenance activities.
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Uncertainty model

In the proposed formulation, the discrete scenarios represent possible realizations
of the uncertain RUL of the equipment, i.e. the predictions of the times when the
degradation trajectory reaches the failure threshold. Since the planning problem
requires a daily time discretization, the uncertain RULs belong to a finite set, here
RULs = {30, . . . , 39}. Figures 4.2-4.3 show the scenario tree of the proposed multi-
stage stochastic program (MSSP) and its rigorous simplification that considers a
reduced set of scenarios. At each stage, the uncertain parameters are revealed and
the information whether the plant reaches the end of the RUL at this stage becomes
available (in other words whether the degradation trajectory has reached the failure
threshold). The red nodes in Figures 4.2-4.3 represent the time steps when the RUL
was exceeded. It is worth to notice that since the uncertainty considered in this work
is discrete (the plant at each time step either fails or does not fail) the representation
of the uncertainty in this problem is exact and there is no discrete approximation
of the probability distribution. When the degradation trajectory reaches the failure
threshold, the plant must be shut down to perform the maintenance activities and
restore the plant operations. Therefore, since the goal is to plan a production campaign
(production time between two consecutive maintenance activities), the scenario tree in
Figure 4.2 can be rigorously simplified in the scenario tree in Figure 4.3. In fact, for the
scenario tree in Figure 4.2 the time steps after the red nodes (that identify that the RUL
has been exceeded) are associated either to further failures of the plant (red nodes)
that cannot happen since the RUL has already been exceeded or to time steps when
the production is resumed (black nodes) but these belong to a consecutive production
campaign that is not considered here. So the decisions associated with these time
steps are not relevant here. The nodes in the dashed boxes in Figure 4.2 can be
neglected and this leads to the scenario tree depicted in Figure 4.3. As a consequence,
the scenarios are associated to different durations of the production campaign and,
therefore, different production amounts. To compare the production costs of the
different scenarios, we introduce a terminal cost that is proportional to the amount of
products needed to cover the demand after the failure has occurred. This terminal
cost estimates the production cost of the beginning of the following campaign that
might be necessary to cover the demand according to the duration of the current
production campaign that differs for each scenario. Another interpretation of the
terminal cost is that the not produced products must be purchased from external
sources. The challenge of considering also the consecutive production campaign
is addressed in Section 4.2. The timing of the realization of the uncertainty of the
second production campaign can be modified by maintenance activities introducing
the Type-II endogenous uncertainty.
The endogenous uncertainty formulation, instead of considering fixed and known
scenario probabilities, adjusts the probabilities of the uncertain RULs according
to the degradation trajectory defined by the operating conditions of the plant. In
fact, a higher degradation, due to harsher operating conditions, makes scenarios
corresponding to shorter RULs more likely. The relation between the probabilities
of the scenarios and the degradation trajectory is described by the survival analysis
equations and the Cox Model (Cox, 1972).
It is worth to highlight that even though the Cox model is a well-known standard
prognosis technique, here for the first time it is integrated into a stochastic program-
ming optimization. Figure 4.4 depicts the multi-stage scenario tree that is associated
to the problem under investigation. We consider 10 scenarios and a time horizon of 39
time steps. The time horizon is divided into T1stage, the subset of time steps belonging
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FIGURE 4.2: Scenario tree of the proposed MSSP formulation consider-
ing all of the possible uncertainty realizations. The decision associated
to the highlighted nodes in the dashed boxes will not be carried out.

Source: (Leo and Engell, 2021).

FIGURE 4.3: Scenario tree with a reduced set of uncertainty realiza-
tions. The probabilities of the scenarios depend on the first stage

variables. Source: (Leo and Engell, 2021).

to the first stage (t ∈ {1, . . . , 29}), and into Ts, the subset of time steps belonging to the
remaining stages (t ∈ {30, . . . , 39}). The first-stage decisions are the feed purchasing
decisions, the maintenance timing decisions and the plant operating conditions along
with the degradation level for the time steps t ∈ T1stage. The recourse variables at
each stage are the plant operating conditions for the time related to the corresponding
stage (t ∈ Ts) and the amount of products that have to be purchased from external
sources to cover the demand. The influencing variable of the Cox model, which
defines the hazard function and the probability of the scenarios, is the degradation
level at the end of the time horizon of the first-stage T1stage (t = 29 and white node in
Figure 4.4). It is worth to highlight that the degradation level at the end of the time
horizon of the first-stage is defined by the operating conditions of the plant from the
beginning of the horizon until the end of time horizon of the first-stage.

4.1.2 MINLP formulation

We describe here the proposed MINLP adopting an NACs formulation to describe
the multi-stage nature of the optimization problem.
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FIGURE 4.4: Scenario tree for the problem under investigation: the red
nodes represent the end of the uncertain RUL and the white node the
point in time where the degradation level influences the Cox model.

Nomenclature

Indices
p products
t, t′ time periods
s, s′ scenarios
i plant inputs
f feed

Sets
P products
T, T1stage , Ts ordered set of time periods
I plant input
S ordered set of scenarios
F feed
RULs uncertain Remaining Useful Lifetime

Parameters
Dp demand of product p
d0 initial degradation value
IC f quality parameter of feed f
d0 , dmax , dmin failure and prognosis threshold
UB f eed

f maximum amount of feed f that can be used over the time horizon

LBinput
i,t,s , UBinput

i,t,s upper and lower bounds of the plant input i at time period t and scenario s
UBy

p,t,s upper bound of production rate of product p at time t and scenario s
γp,i , rp process parameters
αi parameter of the degradation model
M big-M parameter
h0s baseline hazard function of scenario s
price f eed

f purchasing price of feed f

priceproduct
p production cost or purchasing price of product p to satisfy the demand

priceinput
i resource price proportional to the input i

cCBM maintenance cost
β parameter of the Cox model

Continuous variables
ps probability of scenario s
hs hazard function of scenario s
Ss survival function of scenario s
costs , cost f eed total cost of scenario s and feed cost
costmissing demand

s average production cost or product purchasing cost
costinput

s cost of steam and fuel consumption assumed proportional to the plant inputs
cost1stage

s first-stage cost
yp,t,s production of p purchased at time t in scenario s
ui,t,s plant input i at time t in scenario s

m f eed
f ,t,s amount of feed f used at time step t for scenario s

PPp amount of product p produced in the next campaign or purchased externally
for scenario s

dt,s degradation level at time t and scenario s

Binary variables
xCBM

t 1 if the maintenance activities are performed at time t
sCBM
t 1 if the maintenance activities start at time t

x f eed
f 1 if the feed f is purchased

y f eed
f ,t 1 if the feed f is allocated at time t

s f eed
f ,t 1 if the allocation of the feed f starts at time t

xscenario
s 1 if the degradation level is higher than the threshold dmin at t ∈ RULs− 1
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Maintenance constraints

The maintenance constraints implement the maintenance policy. A binary variable
xCBM

t becomes equal to one when the maintenance activities are performed at time
t. Eq. 4.5 ensures that the maintenance activities are started only once over the
considered time horizon. Since the goal of this work is to optimize one production
campaign, the production of the plant is set to zero after the maintenance activities
are performed. For this reason, the binary variable xCBM

t remains equal to one after
the maintenance activities are performed (Eq. 4.5) forcing the production of the plant
to zero (see Eq. 4.12). The maintenance activities must be performed in a specific
time window T̂ (in this work between day 30 and 39 corresponding to the set of
uncertain RULs) as enforced by Eqs. 4.6-4.7. Eqs. 4.8-4.9 define the starting time of
the maintenance activities. The binary variable sCBM

t is equal to one if and only if the
maintenance activities start at time t. Note that the maintenance activities can start at
time t = 30 before any realizations of the end of the uncertain RUL of the plant.

xCBM
t ≥ xCBM

t−1 t ∈ T, t 6= 1 (4.5)

∑
t∈T̂

xCBM
t ≥ 1 (4.6)

∑
t/∈T̂

xCBM
t = 0 (4.7)

sCBM
t ≥ xCBM

t − xCBM
t−1 t ∈ T, t 6= 1 (4.8)

sCBM
t ≤ xCBM

t t ∈ T (4.9)

Process constraints

The plant produces three products p ∈ {P1, P2, P3} to cover fixed and known product
demands Dp. Two plant model inputs (ui,t,s) and the degradation level (dt,s) determine
the production rate according to the plant model (Eq. 4.10). The parameters γp,i, rp
are the result of a linearization procedure to describe the plant behaviour with linear
equations. For each time step t and scenario s the production of the plant is computed
as a linear combination of the model inputs ui,t,s (weighted by the parameter γp,i)
minus the loss of performance due to the degradation level dt,s (multiplied by the
parameter rp). The higher is the degradation level the higher is the loss of performance
in terms of reduction of the production rate. With respect to the ethylene production
plant, the three products represent ethylene, propylene and heavier hydrocarbons.
The plant inputs model the plant operating conditions in terms of the naphtha
mass flow and the severity of the furnaces. The set S represent the ordered set of
scenarios (S = {1, . . . , 10}). We consider 10 scenarios to model the uncertain RULs
of the plant (RULs = {30, . . . , 39}). Eq. 4.11 sets the upper and lower bounds of
the plant inputs. When the maintenance activities are performed, xCBM

t = 1, the
input variables are forced to be zero. The maximum production capacity is limited
by Eq. 4.12. The upper bound UBy

p,t,s is considered to be a function of the time t
to model the realization of the uncertainty. In fact, before the end of the RUL the
parameter (UBy

p,t,s) is equal to the maximum production capacity UBy
p,s. After the

realization of the uncertainty, the parameter UBy
p,t,s is equal to zero. The demand

satisfaction constraint (Eq. 4.13) enforces that the product demand is covered by the



88
Chapter 4. Condition-based maintenance via stochastic programming with

endogenous uncertainty

production in the running campaign (yp,t,s) or by the production in the next campaign
or by purchasing the product from external sources (PPp,s). For each scenario s the
variables PPp,s identify the amount of product p needed to cover the demand after
the failure has occurred.

yp,t,s = ∑
i∈I

γp,i ∗ ui,t,s − rp ∗ dt,s t ∈ T, s ∈ S, p ∈ P (4.10)

LBinput
i,t,s ∗ (1− xCBM

t ) ≤ ui,t,s ≤ UBinput
i,t,s ∗ (1− xCBM

t ) t ∈ T, s ∈ S, i ∈ I (4.11)

yp,t,s ≤ UBy
p,t,s ∗ (1− xCBM

t ) t ∈ T, s ∈ S, p ∈ P (4.12)

∑
t∈T

yp,t,s + PPp,s = Dp p ∈ P, s ∈ S (4.13)

Feed purchasing constraints

The following constraints define the feed purchasing options of the plant and the
allocation of the feeds over the time horizon. The binary variables x f eed

f are set equal
to one if the feed f is purchased, and to zero otherwise. An additional binary variable
y f eed

f ,t becomes equal to one if the feed f is used at the time step t. Eq. 4.14 ensures that
no feed is used if the maintenance activities are performed. When the maintenance
activities are not performed (xCBM

t = 0), Eq. 4.14 imposes that only one feed can be
allocated for each time step t. Eq. 4.15 imposes that the feed f cannot be allocated
to any time step t if the feed is not purchased (x f eed

f = 0). Note that since the binary

variable y f eed
f ,t becomes equal to one if the feed f is used at the time step t, the number

of time steps of the time horizon T (|T|) is a big-M parameter for this constraint. Eqs.
4.16-4.17 define the starting time of the feed utilization for each purchased feed. Eq.
4.17 prevents that different feeds are allocated to consecutive time steps by forcing
the start of the feed allocation to happen at most once. In other words, each feed f
can be used only once for all consecutive time steps. Eq. 4.18 limits the amount of
feed f that can be used over the time horizon T if the feed f is purchased (x f eed

f = 1).

The continuous variable m f eed
f ,t,s models the amount of feed f used at time step t for

scenario s and the parameter UB f eed
f is the maximum amount of feed f that can be

used over the time horizon T. If the feed f is not purchased (x f eed
f = 0) the sum of the

feed utilization over the time horizon T is forced to be zero (Eq. 4.18). Note that while
the binary variables (x f eed

f , y f eed
f ,t ) that are associated to the purchasing and allocation

of the feed are first stage variables, the amount of feed used (m f eed
f ,t,s ) is a recourse

variable. In fact, the amount of feed used is the first input of the plant model (ui=1,t,s)
as already described in Section 4.1.2 and imposed by Eq. 4.20. If the feed f is not
allocated to the time step t, Eq. 4.19 forces the corresponding amount m f eed

f ,t,s to zero.

∑
f∈F

y f eed
f ,t = 1− xCBM

t t ∈ T (4.14)
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∑
t∈T

y f eed
f ,t ≤ |T| ∗ x f eed

f f ∈ F (4.15)

s f eed
f ,t ≥ y f eed

f ,t − y f eed
f ,t−1 f ∈ F, t ∈ {2, ..., |T|} (4.16)

s f eed
f ,t ≤ x f eed

f f ∈ F, t ∈ T (4.17)

∑
t∈T

m f eed
f ,t,s ≤ UB f eed

f ∗ x f eed
f f ∈ F, s ∈ S (4.18)

m f eed
f ,t,s ≤ UB f eed

f ∗ y f eed
f ,t f ∈ F, t ∈ T, s ∈ S (4.19)

∑
f∈F

m f eed
f ,t,s = ui=1,t,s t ∈ T, s ∈ S (4.20)

The quality of the feed f (indicated by the parameter IC f ) influences the degradation
trajectory. In fact, as described by Eqs. 4.21-4.22, the higher is the quality of the
feed the lower is the degradation rate. The degradation reduces the production rate
according to the parameter rp (as described by the plant model Eq. 4.10). Since the
parameter rp varies with the product p the influence of the quality of the feed on the
quality of the products (ethylene, propylene and heavier hydrocarbons) is taken into
account only in terms of loss of production rate. An extension of the plant model
could consider the influence of the feed quality on the product quality also in terms
of nominal production rate (if no degradation was generated). In other words, the
parameter γp,i in Eq. 4.10 then would vary according to the feed quality.

Degradation model

The following constraints compute the degradation trajectory over the time horizon.
The degradation model represents an auto-regressive model with exogenous inputs
(ARX) as shown in Eqs. 4.21-4.22: for each scenario s the degradation trajectory dt,s
depends on previous degradation value dt−1,s, the operating conditions of the plant
ui,t and the feed quality described by a feed indicator IC f . The degradation model
parameters (αi) that describe the influence of the plant operating conditions (ui,t,s)
on the degradation level must be estimated from process data. The parameter d0

represent the initial condition of the degradation trajectory. A maximum allowed
degradation threshold (dmax) is ensured by Eq. 4.23 by forcing the maintenance
activities to take place if the degradation level reaches the failure threshold dmax. In
Eq. 4.24 an indicator Boolean variable xscenario

s describes whether the degradation
level is higher than the threshold dmin (also called prognosis threshold) by the time
step before the end of the corresponding RUL (t ∈ RULs − 1). The constant ε is a
small number (ε = 0.0001) defining the tolerance for the threshold violation. In case
the degradation level is lower than the prognosis threshold dmin (or xscenario

s = 0) no
failure scenario can realize in the following time step. This is modelled by setting
equal to zero the corresponding scenario probability as imposed by Eq. 4.29. In other
words, if the predicted degradation level at time t is too low, we consider not possible
that the plant reaches the end of the RUL in the next time steps. Since the degradation
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is monotonically increasing, Eq. 4.25 can be formulated to tighten the formulation.

dt,s ≥ d0|t=1 + dt−1,s + ∑
i∈I

αi ∗ ui,t,s + ∑
f∈F

IC f ∗ y f eed
f ,t −M ∗ xCBM

t

∀s ∈ S, t ∈ T, t < RULs (4.21)

dt,s ≤ d0|t=1 + dt−1,s + ∑
i∈I

αi ∗ ui,t,s + ∑
f∈F

IC f ∗ y f eed
f ,t + M ∗ xCBM

t

∀s ∈ S, t ∈ T, t < RULs (4.22)

dt,s ≤ dmax
s (1− xCBM

t ) ∀s ∈ S, t ∈ T (4.23)

dt,s ≤ dmin − ε + (M + ε) ∗ xscenario
s ∀s ∈ S, t ∈ RULs − 1 (4.24)

xscenario
s ≤ xscenario

s+1 ∀s ∈ S, t ∈ T (4.25)

Prognosis constraints

The prognosis constraints embed the prognosis model into the production planning
optimization. To describe the prognosis constraints, it is worth to remark that each
scenario is associated to a time step (identified by the set RULs) that defines the point
in time when the uncertain RUL is exceeded. In other words each scenario represents
an uncertain failure time of the plant. Therefore, the probability of the scenario s
represents the probability of realization of the associated RUL of the plant (RULs) or,
equivalently, the probability that the plant fails when the uncertain estimation of the
RUL (RULs) is exceeded. For scenario s the uncertain failure time RULs is associated
to a survival function Ss and to a hazard function hs (Eq. 4.26). The survival function
Ss represents the probability of surviving the uncertain RUL (RULs). In other words,
the survival function of scenario s (Ss) indicates the probability that the failure of
the plant does not occur by the point in time identified by the set RULs. The hazard
function of scenario s (hs) represents the failure rate of the plant at time t equal to
RULs, namely when the RUL associated to the scenario s is exceeded. For discrete
systems, the hazard function is limited between zero and one (Eq. 4.26) and it can be
interpreted as the conditional probability of failure of the plant given that the failure
has not occurred before.

Eq. 4.27 ensures that the sum of the probabilities over the scenarios is equal to one. Eq.
4.28 sets to zero the probabilities of those scenarios corresponding to RULs that realize
after the maintenance activities start. In other words, these scenarios do not realize.
Note that according to Eq. 4.28 the probability of the scenario s is not set to zero
if the maintenance activities are performed on the same time step defining the end
of the corresponding RUL. Similarly, Eq. 4.29 ensures that the scenarios associated
to a degradation level lower than the prognosis threshold dmin (xscenario

s = 0) do not



4.1. Type-1 endogenous uncertainty 91

realize.
0 ≤ ps, Ss, hs ≤ 1 ∀s ∈ S (4.26)

∑
s∈S

ps = 1 (4.27)

ps ≤ 1− xCBM
t ∀s ∈ S, t ∈ RULs − 1 (4.28)

ps ≤ xscenario
s ∀s ∈ S (4.29)

Eqs. 4.30-4.31 link the survival function Ss to the probability ps. For two consecutive
scenarios s, s + 1 (and therefore RULs < RULs+1) Eq. 4.30 defines the probability
of failure at time t equal to RULs (ps) as the probability of surviving the time step
identified by RULs minus the probability of surviving the time step identified by
RULs+1. In other words, the decrease of the probability of surviving a certain point in
time is equal to the probability that the failure occurs at that point in time. Similarly,
Eq. 4.31 defines the probability of surviving the point in time RULs as the sum of the
probabilities that the failure occurs at any time later than RULs. Eq. 4.31 is redundant
but when introduced showed slightly improvements in terms of solution time.

ps = Ss − Ss+1 ∀s ∈ S (4.30)

Ss = ∑
s′>s

ps′ ∀s ∈ S (4.31)

Eq. 4.32 implements the Cox model determining the hazard function of the earliest
uncertain RUL according to the degradation trajectory. The hazard functions of the
remaining scenarios are adjusted linearly (Eqs. 4.33-4.34). According to Eq. 4.32, the
higher is the predicted degradation level the higher is the hazard associated to the
earlier RULs. Note that the covariate of the Cox model is the degradation level at the
end of the time interval associated to the first-stage (|T1stage|).

hs = h0
s ∗ exp(β ∗ (dt − dmin)) ∀s = 1, t = |T1stage| (4.32)

hs ≥ hs=1 +
1− hs=1

MS− 1
− xCBM

t ∀s ∈ S, s 6= 1, t ∈ RULs − 1 (4.33)

hs ≤ hs=1 +
1− hs=1

MS− 1
− xCBM

t ∀s ∈ S, s 6= 1, t ∈ RULs − 1 (4.34)

The baseline hazard (h0
s ) and the parameter β of the Cox model were estimated from

plant data. The parameter β is estimated via the software MATLAB and the function
coxphfit (Statistics and Machine Learning Toolbox 2006) and the parameter MS rep-
resents the number of scenarios. The function coxphfit estimates the coefficient β
by receiving as input the observations on the time-dependent covariate (the degra-
dation level) and the time-to-event data (plant failures). Since the baseline hazard
function h0

s represents the level of the hazard if no covariates are considered, it can
be estimated from the time-to-event data of the plant by using the equations of the
survival analysis introduced by Eqs. 4.1-4.3. The probability of failure for a scenario
s (i.e. for a given time interval) associated to the baseline hazard function h0

s can be
computed by dividing the number of failures happened in the given time interval by
the total number of observed failures.
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Eqs. 4.35-4.36 define the probability of failure for the scenarios that realize (xscenario
s =

1) as the product of the failure rate at the point in time equal to RULs and the
probability of surviving RULs. A high failure rate (hs ≈ 1) at RULs is associated to a
high probability of failure (ps ≈ 1) at RULs only if the probability of surviving until
RULs is high as well (Ss ≈ 1).

ps ≤ hs ∗ Ss + (1− xscenario
s ) ∀s ∈ S (4.35)

ps ≥ hs ∗ Ss − (1− xscenario
s ) ∀s ∈ S (4.36)

Figure 4.5 shows an example to illustrate the variables involved in the prognosis
constraints along with the associated scenario tree. Each node of the scenario tree
represents a time step: the red nodes show the uncertain failure times (RULs =
{4, 5, 6, 7}) while the yellow node is associated to the time step of the degradation
profile that influences the hazard function according to the Cox model. The first
stage of the depicted scenario tree covers the first three time steps (T1stage = {1, 2, 3},
|T1stage| = 3). The maintenance activities are performed at time step six and, therefore,
the RUL of the last scenario is associated to a probability equal to zero since it should
have realized after the maintenance activities are performed (since RULs=4 = 7). The
hazard function of the first scenario that is associated to the uncertain RUL equal
to four (RULs=1 = 4) is computed according to the degradation level at t = 3 that
defines the end of the time interval modelled by the first stage of the stochastic
formulation. Since the degradation model contains an auto-regressive part, the
degradation level at t = 3 depends on the degradation levels at the previous time
steps. The hazard functions of the remaining scenarios are adjusted linearly. Note
that the hazard function of the third scenario is almost equal to one: if the failure
does not occur before, the failure probability at the point in time equal to six (that
defines the RUL of the plant for the third scenario RULs=3 = 6) is almost equal to
one. However, since the survival function decreases with time (and therefore with
the scenarios), the probability of surviving the uncertain RUL associated to the third
scenario is relatively low (almost equal to zero) and, consequently, the probability
that the corresponding RUL realizes is low as well as shown in Figure 4.5. It is
worth to remark that the hazard and the survival functions and the probabilities
do not explicitly depend on time but on the scenarios that, however, are associated
to consecutive points in time. Moreover, we highlight that the prognosis variables
(hazard and survival functions and the probabilities) are not associated to the time
steps of the first stage since, by definition, no uncertain parameters (i.e. the RULs or
equivalently the failure times) realize in the first stage.

Non-anticipativity constraints

The NACs are introduced to set equal to each other all the variables belonging to
the same stage. Defining with xt,s a generic decision variable, the NACs have the
following form

xt,s = xt,s′ ∀(s, s′) ∈ S, s′ = s + 1, t ∈ {1, . . . , RULs − 1} (4.37)

The NACs do not apply for the prognosis variables defining the probability, the
hazard and the survival functions of the scenarios.
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FIGURE 4.5: Illustrative explanation of the variables involved in the
prognosis constraints (degradation, hazard and survival functions and
probabilities of the scenarios) and the associated scenario tree. Source:

(Leo and Engell, 2021).

Objective function

The following constraints compute the total plant cost and define the objective func-
tion (Eq. 4.38) of the stochastic program as the sum of the first-stage cost (cost1stage)
and the expected cost over the scenarios s. The first-stage cost is computed by Eq.
4.39 as the sum of the cost of purchasing the feed, defined by Eq. 4.40, the cost of
performing the maintenance activities and the cost of the resource utilization (steam
and fuel gas) for the time interval associated to the first-stage. The cost of the mainte-
nance is considered only if the maintenance activities are started in the time horizon
T. The cost of the resource utilization (steam and fuel gas) is assumed proportional to
the inputs of the plant ui,t,s according to the parameter priceinput

i . In fact, with respect
to the ethylene production plant the amount of steam consumed depends on the
mass flow of the feed according to the steam-to-hydrocarbon ratio, and the severity
of the furnaces (i.e. the cracking temperature of the furnaces) is linked to the amount
of fuels that are burned. The first-stage variables ui,t,s have a subscript s because a
NAC formulation is described here (the first stage variables related to the feed are
introduced without the subscript s). All the first-stage variables are equated to each
other by the NACs according to Eq. 4.37.

min z = cost1stage + ∑
s∈S

ps ∗ costs (4.38)

cost1stage = cost f eed + cCBM ∗∑
t∈T

sCBM
t + ∑

t∈T1stage
∑
i∈I

priceinput
i ∗ ui,t,s=1 (4.39)

cost f eed = ∑
f∈F

price f eed
f ∗ x f eed

f (4.40)

The scenario costs (costs) are defined by Eq. 4.41 as the sum of resource consumption
cost (i.e. the cost of steam and fuel consumption assumed proportional to the plant
inputs) for the time steps belonging to the corresponding stages and scenarios (Eq.
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4.42) and the cost of producing the products in the next campaign or purchasing them
from external sources (Eq. 4.43).

costs = costmissing demand
s + costinput

s ∀s ∈ S (4.41)

costinput
s = ∑

t∈Ts
∑
i∈I

priceinput
i ∗ ui,t,s ∀s ∈ S (4.42)

costmissing demand
s = ∑

p∈P
priceproduct

p ∗ PPp ∀s ∈ S (4.43)

The variables costmissing demand
s represent the terminal cost that has to be paid for

considering a finite time horizon and for introducing scenarios that are associated
to different durations of the campaign and, therefore, different production costs and
amounts. It represents a fictitious cost that we introduce to take into account the
production cost of the beginning of following campaign (that is not modelled) or the
amount of product to be purchased from external sources to satisfy the demand. This
cost term is necessary to compare the production costs of the different scenarios that
present different durations of the campaign and, therefore, different satisfaction of the
demand (that obviously does not depend on the uncertain duration of the production
campaign). To reiterate, the cost of the missing demand costmissing demand

s is identified
to take into account the influence of the following production campaign on the current
one according to the decisions that are made in the current one (i.e. the duration
of the campaign) without introducing the production decisions of the beginning of
the following campaign that impact the degradation trajectory and, therefore, the
timing of the maintenance activities of the following campaign. As a side effect, this
modelling strategy reduces the size of the problem since some variables (that model
the production after the failure) are set to zero and, therefore, are eliminated from the
optimization problem. It is also worth to highlight that extending the formulation to
a second campaign would not solve this issue. In fact, the same relation between the
second and the third campaigns has to be modelled.

4.1.3 Value of the stochastic solution

The value of the stochastic solution (VSS) measures the advantage of using a stochas-
tic programming formulation over its deterministic counterpart where the stochastic
parameters have been replaced by their mean values. The second problem is also
called the Expected Value Problem (EVP). The EVP for the proposed formulation con-
siders the mean value of the uncertain RULs and therefore a fixed and not optimized
duration of the production campaign. Consequently, the timing of the maintenance
activities that define the duration of the production campaign are also fixed and not
dependent on the degradation level. To avoid this issue, for the calculation of the
VSS we here replace the EVP in the comparison with a deterministic condition-based
optimization where a perfectly known degradation model is embedded into the
optimization problem to define the RUL according to the operating strategy of the
plant, as proposed in many works on CBM optimization (Jain and Grossmann, 1998),
(Xenos et al., 2015), (Leo and Engell, 2017). We call this problem Deterministic CBM
problem (DCBM). The DCBM problem defines the optimal duration of the produc-
tion campaign according to the operating conditions of the plant and the certain
degradation model. Since the DCBM problem contains additional degrees of freedom
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compared to the EVP, the optimal objective function value of the EVP can only be
greater or equal (for a minimization problem) than the optimal objective function
value of the DCBM problem (Eq. 4.44).

z∗DCBM ≤ z∗EVP (4.44)

Therefore, in this work, the VSS is defined as the difference between the optimal
objective function of the stochastic problem with endogenous uncertainty (MSSP),
z∗MSSP, and the optimal solution of the recourse problem (RP), z∗RP, obtained by solving
the stochastic problem with endogenous uncertainty with the first stage variables
fixed to the deterministic solution of the Deterministic CBM problem (DCBM). The
definition of the VSS is given in Eq. 4.45.

VSS =
z∗RP − z∗MSSP

z∗RP
(4.45)

If we define as VSSEVP the VSS obtained with the deterministic solution of the
Expected Value Problem (EVP), the following relation holds

VSS ≤ VSSEVP (4.46)

and therefore the proposed definition of the VSS represents a lower bound of the im-
provement that is achievable by using a stochastic formulation over the deterministic
counterpart. For a multi-stage stochastic program it is possible to compute a VSS for
each stage (Escudero et al., 2007) by fixing in the recourse problem to the deterministic
solution all the variables belonging to the first stage until the corresponding stage. In
this work we will focus on the VSS of the first-stage that represents the lowest VSS.

4.1.4 Solution methods

It is a well known fact that stochastic programming formulations give rise to large-
scale optimization problems. Endogenous uncertainty formulations further compli-
cate the solution due to the introduction of non-linear non-convex bi-linear terms
since the probabilities of the scenarios become decision variables. Therefore, from
the solution perspective the challenge for this class of problems lies not only on the
computational time but also on the global optimality of the solution. In this work we
apply three different solution methods:

• we solve the deterministic equivalent problem with the global solver BARON
enhanced with a branching priority strategy

• we apply the generalized Benders decomposition algorithm (GBD) (Geoffrion,
1972) proposing a judicious partition of the variables

• we adapt the Global Optimization Algorithm (GOP) proposed in (Floudas and
Visweswaran, 1990) to the class of stochastic programs with decision-dependent
uncertainty.

The GOP can be seen as a variant of the GBD to guarantee global optimality for
bi-linear non-convex programs. In fact, the GBD might terminate to a local solution
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in case of non-convex formulations. We applied the proposed variables partition to
both decomposition algorithms as described below.

The problem decomposition

Both the GBD and the GOP belong to the class of primal decomposition methods.
We describe here the two decomposition algorithms as they are implemented in this
work. The general formulation of the stochastic program with decision-dependent
uncertainty is presented in (4.47):

min
x,ys,ps

cTx + ∑
s

ps ∗ fs ∗ ys (4.47a)

s.t. g(x, ys, ps) ≤ 0 (4.47b)
x ∈ X, ys ∈ Y, ps ∈ P (4.47c)

ys ∈ Rn, ps ∈ Rn, x ∈ Rn, x′ ∈ {0, 1}, (4.47d)

where x, x′ represent the continuous and binary first-stage variables, ys the contin-
uous recourse variables, ps the probability of the scenarios. Eq. 4.47a models the
objective function of the problem as the sum of the first-stage cost and the expected
cost over the possible scenarios. Since the the probabilities of the scenarios are deci-
sion variables, the objective function introduces non-convexities in the optimization
problem. Eq. 4.47b represents the problem constraints that couple the first-stage vari-
ables, the recourse variables and the probabilities of the scenarios. Eq. 4.47c describes
additional constraints involving separately the first-stage variables, the recourse vari-
ables and the scenario probabilities. Both applied decomposition algorithms classify
the variables as complicating variables and non-complicating variables in order to
generate a relaxed master problem (4.48) that is obtained by projecting the original
problem (4.47) into the space of the complicating variables, and a primal problem
(4.49), obtained by optimizing only over the non-complicating variables (Laporte and
Louveaux, 1993b), (Geoffrion, 1972).

min
η,x,ps

η (4.48a)

s.t. η ≥ cTx + ∑
s

ps ∗ fs ∗ ŷk
s + λ̂kT

g(x, ŷk
s , ps) (4.48b)

x ∈ X, ps ∈ P (4.48c)

Eq. 4.48b models in the relaxed master problem the Lagrange function where the
Lagrange multipliers λ̂k are obtained from the solution of the primal problem (or
sub-problem) (4.49) at iteration k. Eq. 4.48b is also called Benders cut or optimality
cut.

min
ys

cT x̂ + ∑
s

p̂s ∗ fs ∗ ys (4.49a)

s.t. g(x̂, ys, p̂s) ≤ 0 (4.49b)
ys ∈ Y (4.49c)

The complicating variables appearing in the primal problem (Eqs. 4.49a-4.49b) are
fixed to the solution of the relaxed master problem at the previous iteration (or to an
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initial value for the first iteration).

We propose to decompose the problem into an MINLP relaxed master problem
and an LP primal problem (or sub-problem). The MINLP relaxed master problem
includes the following equations for t ∈ T1stage:

• maintenance constraints Eqs. 4.5-4.9

• process constraints Eqs. 4.10-4.13

• feed purchasing constraints Eqs. 4.14-4.20

• degradation constraints Eqs. 4.21-4.25

• prognosis constraints Eqs. 4.26-4.36

The LP primal problem includes the following equations for t ∈ Ts:

• process constraints Eqs. 4.10-4.13

• degradation constraints Eqs. 4.21-4.25

Figure 4.6 shows the decomposed scenario tree. The key idea of the proposed parti-
tions is to consider the probabilities of the scenarios, ps, as complicating variables in
order to render the objective function (Eq. 4.47a) convex for every fixed ps = p̂s and
ys = ŷs. Algorithms 2 and 3 describe the implementation of the two decomposition
methods. For the GBD (Algorithm 2), we introduce the additional step 4 to adjust
the solution of the primal problem for the scenarios with probability pk

s equal to zero
(defined by the solution of the relaxed master). In fact, in the primal problem the
scenarios with fixed null probabilities generate null Lagrange multipliers (since the
objective function is not sensitive to the right-hand side of the complicating con-
straints due to the null probability) but they might provide non-zero scenario costs
(due to the NACs). This can also be avoided by introducing conditional NACs that,
however, would complicate the formulation because of additional binary variables.

FIGURE 4.6: Decomposed scenario tree. Source: (Leo and Engell,
2021).

Difference between the GBD and the GOP

For a primal decomposition algorithm, the solutions of the primal problem (4.49) and
the relaxed master problem (4.48) provide an upper- and a lower-bound of the original
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problem (4.47) respectively. As described in Algorithm 2 for the GBD decomposition,
at each iteration k the Lagrange function in the relaxed master problem is computed
using the solution of the primal problem, namely the optimal Lagrange multipliers
and the decision variables involved in the complicating constraints. In the case of bi-
linear terms (and in general non-convex constraints) such procedure does not ensure
that the relaxed master problem represents a valid under-estimator of the original
problem. In other words, the solution is not guaranteed to converge to the global
optimum (Sahinidis and Grossmann, 1991). To overcome this issue and to guarantee
global optimality, as described in Algorithm 3, the GOP decomposition solves the
relaxed master problem for each combination of the bounds of the variables of the
relaxed master problem that are involved in the bi-linear terms (instead of fixing them
to the solution of the primal problem). These variables are called connected variables
and in the proposed formulation they model the cost of the uncertain scenarios.
Moreover, the Lagrange function at each iteration is added to the master problem
only if the solution of the primal problem satisfies the qualifying constraints. The
qualifying constraints for the proposed formulation are defined in Eq. 4.50

ps − pk
s ≥ ε i f xs = xLB

s ∀s ∈ S

ps − pk
s ≤ −ε i f xs = xUB

s ∀s ∈ S
(4.50)

where pk
s represent the value of the probability of the scenarios obtained in the previ-

ous iteration k ∈ 1, ..., K and xs the connected variables (i.e. the cost of the uncertain
scenarios in the proposed formulation) of the Lagrange function for the relaxed mas-
ter problems. The parameter ε is a very small positive number to avoid that both the
qualifying constraints in Eq. 4.50 are simultaneously satisfied.
To guarantee global optimality, the GOP at each iteration does not solve the relaxed
master problem only once as the GBD but a number of times equal to all the combina-
tions of the upper and lower bounds of the second-stage variables involved in the
bi-linear terms. Obviously, this additional step increases the computational time.

Algorithm 2 Benders Decomposition algorithm.

1: Initialization: Let k ← 0 and (xk, pk
s) = (x0, p0

s ) the initial values of the com-
plicating variables. Set Upper and Lower bounds UB = + inf, LB = − inf and
ε = 0.001

2: Iteration Update: k← k + 1
3: Primal problem: Solve the LP primal problem (4.49) with the complicating vari-

ables (xk, pk
s) = (xk−1, pk−1

s ). Obtain solution y∗s , z∗SP
4: Adjust scenario costs: set to zero the scenario costs ŷk

s associated to a probability
pk−1

s equal to zero
5: Relaxed master Problem: Solve the relaxed master problem (4.48). Obtain solu-

tion x∗, p∗s , z∗MP
6: Bounds update: Update Upper and Lower bounds according to LBk = η∗, UBk =

min{UBk−1, zSP∗}
7: Convergence test: If Upper and lower bounds are sufficiently close (UBk− LBk <

ε), stop. Else, go to step 3.
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Algorithm 3 GOP algorithm.

1: Initialization: Let k ← 0 and (xk, pk
s) = (x0, p0

s ) the initial values of the com-
plicating variables. Set Upper and Lower bounds UB = + inf, LB = − inf and
ε = 0.001

2: Iteration Update: k← k + 1
3: Sub-problem: Solve the LP sub-problem (4.49) with the complicating variables

(xk, pk
s) = (xk−1, pk−1

s ) obtaining the optimal Lagrange multiplier λk

4: Master Problem: Add the Lagrange function to the relaxed master problem (4.48)
from all the previous iteration k′ ∈ 1, . . . , k if the qualifying constraints (Eq. 4.50)
are satisfied.

5: Master Problem: Solve the relaxed master problem (4.48) for each combination
of the bounds of the variables costs and store the solution in z∗MP

6: Bounds update: Update Upper and Lower bounds according to LBk =
min{z∗MP}, UBk = min{UBk−1, zSP∗}

7: Convergence test: If Upper and lower bounds are sufficiently close (UBk− LBk <
ε), stop. Else, go to step 3.

Generation of the qualifying constraints for the GOP method

The connected variables of the Lagrange function L of the primal sub-problem for the
proposed formulation are the variables costs that identify the cost of the uncertain
scenarios (see Section 2.3.4). Given the gradient of the Lagrange function with respect
to the connected variables (Eq. 4.51), the qualifying constraints are shown by Eq. 4.52.

∇costs L = ps + λk
s ∀s ∈ S (4.51)

∇costs L = ps + λk
s ≥ 0 i f xs = xLB

s ∀s ∈ S

∇costs L = ps + λk
s ≤ 0 i f xs = xUB

s ∀s ∈ S
(4.52)

Using the KKT condition of the proposed formulation that is expressed in Eq. 4.53,
the qualifying constraints at iteration k can be simplified as shown by Eq. 4.54.

∇costs L = pk
s + λs = 0 ∀s ∈ S (4.53)

∇costs L = ps − pk
s ≥ 0 i f xs = xLB

s ∀s ∈ S

∇costs L = ps − pk
s ≤ 0 i f xs = xUB

s ∀s ∈ S
(4.54)

The gradient of the Lagrange function with respect to the connected variables ∇costs L
is set to be greater (lower) than zero when the connected variables are fixed to the
lower (upper) bounds (Floudas and Visweswaran, 1990).

Constraint propagation and feasibility cuts

As described in section 4.1.4, the complicating variables appearing in the primal
problem are fixed to the solution of the relaxed master problem. Since the formulation
described so far does not present full recourse, this might generate an infeasible
primal problem. For instance, the optimal solution of the master problem might
generate a degradation level close to the maximum threshold by the end of the time
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horizon that belong to the first-stage (t = 29) and postpone the maintenance activities
to the end of the entire planning horizon. This solution would obviously be infeasible
for the sub-problem, since the degradation level would overcome the maximum
threshold even with the plant input at the lower bounds. To handle this issues,
feasibility cuts can be added to the master problem to cut off the solution generating
infeasibility. However, since feasibility cuts increase the size of the master problem
without improving the bounds, we exploit the dynamic degradation model adding to
the master problem a redundant constraint (Eq. 4.55) that enhances the formulation
with the feature of full recourse.

dt=|T1stage|,s +
t

∑
t′=30

∑
i∈I

αi ∗ LBinputs
i,t′,s + ∑

f
IC f ∗ y f eed

f ,t ≤ dmax + M ∗ xCBM
t

∀s ∈ S, t ∈ Ts (4.55)

In particular, Eq. 4.55 propagates the computation of the degradation level in the
time set of the primal problem with the lower bound of the plant inputs ensuring
that for any master problem decisions the degradation level of the primal problem
would be under the maximum threshold dmax.

Computational Environment

The GBD and the GOP algorithms were implemented within the algebraic modelling
language Julia/JuMP. The LP models were solved using the commercial solver CPLEX,
and the MINLP models were solved using the global solver BARON version 18.12.26.
All problems were solved on an Intel Core i7-2600 machine at 3.40 GHz with 8
processors and 8 GB RAM running Windows 7 Professional.

4.1.5 Results

Computational results

The proposed endogenous uncertainty formulation gives rise to a non-convex MINLP
due to the bi-linear terms in the prognosis constraints (Eqs. 4.35-4.36-4.32) and in the
objective function (Eq. 4.38). We provide computational results solving the determin-
istic equivalent with the global solver BARON (Kilinc and Sahinidis, 2018) enhanced
with a custom branching priority strategy. We prioritize the variable influencing
the probabilities of the scenarios (degradation variable) along the spatial branch-
and-bound algorithm. Additionally, we show the performance of the decomposition
methods described in section 4.1.4. Tables 4.1-4.2 present the objective functions and
computational results obtained adopting the different solution strategies for two and
ten scenarios. The results are expressed in terms of objective function value z∗, upper-
and lower- bounds of the solution UB/LB and solution time CPU[s]. We also provide
for the solver BARON the time the incumbent solution was found (tinc) and the
number of iterations performed by the decomposition algorithms. The performance
of the decompositions algorithms are presented for the two different initial points x1

0
and x2

0.
Table 4.1 shows that for small instances the BARON solver reaches the global op-
timum (since UB = LB) in a reasonable amount of time and it is faster than the
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decomposition methods. The GBD shows to be faster than the GOP but with per-
formances depending on the initial point. In fact, when the GBD starts from the
initial point x1

0, it reaches the global optimum performing 8 iterations. However, the
second initial point x2

0 leads to a solution with 29 % optimality gap. On the other
hand, the performance of the GOP algorithm does not depend on the initial point but
the computational time is drastically larger than for the solver BARON.

TABLE 4.1: Computational results with 2 scenarios RULs = {30, 39}.
Source: (Leo and Engell, 2021).

|RULs| = 2 z∗ UB/LB CPU [s] tinc / it
DE-BARON 2 610,2 2 610,2 / 2 610,2 159 tinc = 159

GBD (x1
0) 2 610,2 2 610,2 / 2 610,2 427 it = 7

GBD (x2
0) 3 703,6 3 703,6 / 3 703,6 165 it = 3

GOP (x1
0) 2 610,2 2 610,2 / 2 610,2 1 059 it = 7

GOP (x2
0) 2 610,2 2 610,2 / 2 610,2 1 299 it = 12

Figure 4.7 compares the GBD and the GOP for the small-size case-study (two sce-
narios) in terms of upper and lower bounds for the two considered initial points x1

0
and x2

0. The initial point x1
0 (top graphs of Figure 4.7) leads both the algorithms to the

global optimum and the probabilities of the scenarios (p1, p2) to the same optimal
solution (p∗1 = 0, p∗2 = 1). The upper and lower bounds of the two algorithms are
almost identical: this means the intermediate solutions of the GBD always satisfy
the strong duality theory and therefore the qualifying constraints of the Lagrange
function do not need to be enforced. The influence of the qualifying constraints can
be seen in the bottom graphs of Figure 4.7 obtained starting from the initial point x2

0.
Even though the GBD does not converge to the global optimum, the probabilities of
the scenarios converge to the same solution as the GOP (p∗1 = 0, p∗2 = 1).
Table 4.2 shows the computational results obtained with 10 scenarios. The solver
BARON enhanced with the custom branching priorities does not terminate after more
than 15 days of computation even though the incumbent solution is found after circa
12 hours. Without the branching priorities, the solver BARON with a time limit of
circa two days (CPU = 150268 [s]) finds an intermediate solution (UB = 28154.5 with
time of the incumbent solution equal to tinc = 56969) which is significantly worse
compared to the case with the priority strategy. The incumbent solution, when the
branching priorities are implemented, presents an optimality loss of 15.9% compared
to the GBD solution. In fact, the GBD reaches the global optimum independently
on the initial point and it does not require more than 5100 [s] to terminate. The
GOP method reaches the global optimum only after circa 3 days of computation.
The increase of the problem dimension reduces the optimality gap for GBD and
drastically increases the solution time for the GOP. In fact, as described in section
4.1.4, the relaxed master problem in the GOP must be solved for each combination of
the upper- and lower-bounds of the costs of the scenarios. Obviously, increasing the
number of scenarios the number of times the relaxed master problem has to be solved
increases exponentially. Moreover, it is worth to highlight that the GOP requires
the upper- and lower-bounds of the cost of the scenarios appearing in the bi-linear
objective function. Due to the nature of these variables it is not straightforward to
obtain these bounds and it might require the solution of additional optimization
problems.
Since the GBD for the 10-scenario instance represents the best solution method, the
following results discussion is performed only on those obtained with the GBD. Table
4.3 evaluates the proposed stochastic formulation in terms of the VSS as described
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FIGURE 4.7: Upper- and lower-bounds for the GBD and GOP algo-
rithms for the initial points x1

0 (top) and x2
0 (bottom). Source: (Leo and

Engell, 2021).

TABLE 4.2: Computational results with 10 scenarios RULs =
{30 . . . 39}. Source: (Leo and Engell, 2021).

|RULs| = 10 z∗ UB/LB CPU [s] tinc / it
DE-BARON 14 259,4 14 259,4 / 0,0 1 555 200 tinc = 45964

GBD (x1
0) 12 295,0 12 295,0 / 12 295,0 5 100 it = 15

GBD (x2
0) 12 295,0 12 295,0 / 12 295,0 593 it = 8

GOP (x1
0) 12 295,0 12 295,0 / 12 295,0 272 469 it = 7

GOP (x2
0) 12 295,0 12 295,0 / 12 295,0 295 128 it = 9

in section 4.1.3. The optimal objective function of the deterministic formulation
(z∗DCBM), the corresponding recourse problem (z∗RP) and the stochastic programming
counterpart with endogenous uncertainty (z∗MSSP) are listed. We compute the VSS
for different values of the prognosis threshold dmin: a nominal value (dmin = 1220),
a low value (dmin = 1215) and a high value (dmin = 1230). The prognosis threshold
dmin defines the minimum degradation level such that a failure scenario can realize
in the following time step. In case the degradation level is lower than the prognosis
threshold dmin no failure scenario can realize in the following time step. We also
report the computational time and the number of iterations of the GBD algorithm. For
all the instances the stochastic programming clearly outperforms the deterministic
counterpart and the VSS can be quite significant. Reducing the value of the prognosis
threshold means reducing the synergies between the plant operating conditions and
the probability of the uncertain RULs that can be exploited by the optimizer. Even
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though the VSS for the case with lower prognosis threshold (dmin = 1215) is still
largely greater than zero, it is lower than in the other two cases.
Table 4.4 performs the same analysis with modified product demands: a low demand
(reduction of 10 %) and a high demand (increase of 30 %). A reduction of the product
demand generates production flexibility that can be exploited by the optimizer. The
VSS for all the cases is significantly greater than zero.

TABLE 4.3: Value of the Stochastic solution for different values of the
prognosis threshold. Source: (Leo and Engell, 2021).

dmin = 1215 dmin = 1220 dmin = 1230
z∗DCBM 1 691,8 1 691,8 1 691,8

z∗RP 15 478,5 14 508,5 12 970,6
z∗MSSP 14 440,8 12 295,0 8 004,87
VSS 6,7 % 15,2 % 38,2 %

CPU/it 9 745 / 8 477 /6 1 361 /14

TABLE 4.4: Value of the Stochastic solution for different values of the
product demand. Source: (Leo and Engell, 2021).

∆D = −10% ∆ = +30%

z∗DCBM 1 188,9 45 135,8

z∗RP 2 346,8 88 784,5

z∗MSSP 2 035,9 86 760,9

VSS 13,3 % 2,2 %

CPU/it 210 / 8 1 990 /19

Discussion

In this section we investigate how the stochastic and deterministic formulations
impact the optimal production strategy. Figure 4.8a shows the degradation trajec-
tories and the maintenance timing obtained by solving the proposed multi-stage
endogenous formulation (MSSP) and the deterministic counterpart (DCBM). The
degradation profiles are determined by the plant production and the purchased feed
shown in Figures 4.8b-4.8c. Note that the production rate of the plant (Figure 4.8c)
decreases over time due to the increase of the degradation level (as described by the
plant model by Eq. 4.10). To improve the readability of the figure, the continuous
line shows the results of the scenario associated to the longest RUL, while the dashed
lines represent the remaining scenarios. Figure 4.8d shows the amount of products
to be produced in the next campaign or to be purchased from external sources to
cover the demand for the recourse problem and the stochastic formulation. It is
interesting to notice that the stochastic formulation proposes a different operating
strategy compared to the deterministic counterpart. In fact, as shown in Figure
4.8a, the stochastic solution postpones the maintenance activities compared to the
deterministic solution by generating a less steep degradation profile. This is mainly
achieved by purchasing higher quality and more expensive feeds (Figure 4.8b). In
fact, the feeds of type 8-9-10, purchased only by the stochastic solution and not by the
deterministic one, are associated to a low feed degradation index (IC f ) and therefore
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a high price. Additionally, the stochastic feed purchasing strategy allows the plant to
increase the throughput (see Figure 4.8c) compared to the deterministic production
strategy. This results into a reduction of the amount of products needed to cover
the demand after the failure has occurred for the uncertain RULs of the plant that
are associated to the higher probabilities of realization. In fact, as shown in Figure
4.8d, even though the deterministic solution plans to cover the entire demand only
by the production (without producing in the next campaign or purchasing products
externally), the introduction of the uncertainty (Recourse Problem) forces the plant to
satisfy the demand only in the next campaign or to drastically purchase products from
external sources. The stochastic formulation (MSSP), being aware of the uncertainty,
reduces the production shift to the following campaign or the amount of products
that are purchased from external sources for the uncertain scenarios associated to
higher probabilities. Additionally, analysing the optimal prognosis variables shown
in Figure 4.9, it is interesting to highlight that the stochastic formulation sets to zero
the probability of the first scenario (earliest RUL) since the degradation level at time
t = 29 (equal to 1219 ◦C) is lower than the prognosis threshold (1220 ◦C). This
means that the scenario corresponding to the earliest RUL does not realize along
with the associated costs. Figure 4.9 compares the optimal values of the prognosis
variables to the baseline values that represent the hazard and survival functions and
the probabilities of the scenarios if the covariates of the Cox model (the degradation
level in this work) are equal to zero. The comparison shows the important effect that
the degradation level has on the probabilities of the uncertain RULs.
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FIGURE 4.8: Results of the deterministic and stochastic optimizations:
(a) degradation trajectories and timing of the maintenance, (b) feed
parameters and feed purchasing strategy, (c) production profiles, (d)
amount of products to be produced in the next campaign or purchased

from external sources. Source: (Leo and Engell, 2021).
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FIGURE 4.9: Optimal prognosis variables over the uncertain RULs:
(top) hazard function, (middle) survival function, (bottom left) proba-
bilities of the scenarios associated to the baseline hazard function h0

s ,
(bottom right) optimal probabilities of the scenarios. Source: (Leo and

Engell, 2021).

Figure 4.10 shows the trajectory of the input that influences the degradation level
most (naphtha mass flow) for the stochastic and deterministic solutions and the
corresponding optimal probabilities of the scenarios (only for the stochastic solution)
for the different values of the product demands already introduced above (nominal,
low and high). To improve the readability of this figure the scenarios associated to
the uncertain RULs that realize before the maintenance activities are performed are
not shown. Figure 4.10 proves the ability of the proposed stochastic formulation
to exploit the synergies between plant operation, prognosis and condition-based
maintenance. In fact, according to the product demands, the stochastic formulations
modify the plant operation (naphtha mass flow) and the associated probabilities of the
scenarios. For the case with a reduced demand and, therefore, increased production
flexibility (middle in Figure 4.10) the stochastic solution significantly differs from the
deterministic solution, since it is aware of the possibility to reduce the degradation
level to avoid the realization of the more costly scenarios (with earlier RUL).
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4.2 Combined Type-I and Type-II endogenous uncertainties

This section is based upon

• Leo E. and Engell S., Handling Type-I and Type-II endogenous uncertainties in
simultaneous production planning and condition-based maintenance optimization in
continuous production, Computers & Chemical Engineering, volume 174, June
2023

This section extends the formulation of decision-dependent uncertainty that is pre-
sented in Section 4.1 by optimizing two production campaigns (defined as the pro-
duction time between two consecutive maintenance events). The extension of the
formulation to multiple production campaigns is a necessary step to perform medium-
long term production planning. Considering multiple production campaigns further
complicates the optimization problem not only because of the longer time horizon
that must be considered but also because the timing of the realization of the uncer-
tainty is influenced by the decision variables. In fact, according to the timing of the
maintenance activities, and therefore the starting time of the production campaigns,
the structure of the scenario tree can be altered and some scenarios will never realize.
Additionally, as already explained in Section 4.1, the probabilities of the realizing
scenarios are influenced by the degradation trajectory and the operating conditions
of the plant. To model these problem features, we propose a stochastic programming
formulation with endogenous uncertainty where both Type-I and Type-II features are
present. A similar formulation has never been presented in the literature.

The figures and tables of this sections are adapted from (Leo and Engell, 2023).

4.2.1 Problem statement

We consider a continuous production plant with a fixed and known product demand
over the planning horizon. The goal is to minimize the total production cost that
consists of the cost of performing the maintenance activities, the cost of purchasing
the feed, the cost of the steam and fuel consumption (also referred as resource
consumption cost) and the cost of producing the products in the following campaigns
or to purchase them from external sources if the demand is not satisfied by the
production during the campaigns considered in this optimization. We consider the
following decision variables:

• the feeds to be purchased

• the operating conditions of the plant

• the degradation trajectory of the equipment

• the amount of products to be produced in the future campaigns or to be pur-
chased from external sources

• the starting times of the maintenance activities.

The problem statement is similar to the one described in Section 4.1.1 except for the
introduction of multiple production campaigns. This difference is not trivial at all
since it introduces the possibility for the decision maker to modify the timing of the
realization of the uncertain parameters and, therefore, to modify the structure of the
scenario-tree so that also Type-II endogenous uncertainties have to be considered.
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4.2.2 Modelling of the uncertainty

In the proposed formulation, as in the one presented in Section 4.1, the discrete
scenarios represent possible realizations of the uncertain failure times of the plant, i.e.
uncertain predictions of the point in time when the degradation trajectory reaches
the failure threshold and maintenance has to take place. Figure 4.11 shows the
scenario-tree of the proposed multi-stage stochastic program (MSSP) where two
production campaigns are considered and two possible realizations of the failure
times for each campaign are modelled. The failure times are marked by the orange
nodes, the time steps of the first production campaign by black nodes and the time
steps of the second production campaign by green nodes. When the RUL is over
(and therefore the degradation trajectory has reached the failure threshold), the plant
must be shut down to perform the maintenance activities to restore the production
operations. The proposed formulation models the uncertainty by introducing two
types of endogenous uncertainties: decision-dependent probabilities (Type-I) and a
decision-dependent structure of the tree (Type-II).

FIGURE 4.11: Multi-stage breakdown scenario-tree for two production
campaigns (black and green nodes) and two uncertain failure times
and maintenance intervals for each campaign (orange nodes). Source:

(Leo and Engell, 2023)

Decision-dependent structure

To explain how the decisions on the timing of the maintenance activities influence
the structure of the scenario-tree, Figure 4.12 shows different choices of the timing
of the maintenance activities and the resulting scenario-tree. Figure 4.12 shows
two production campaigns and for each campaign two uncertain scenarios (that
represent the uncertain failure times). The orange nodes represent the realizations
of the failures of the plant (i.e. a reactive maintenance activity takes place), while
the white nodes identify the timings of the preventive maintenance activities that do
not let the failures realize. When both breakdown scenarios of the first and second
production campaigns can realize (see Figure 4.12a), the problem gives rise to a multi-
stage tree. If the first maintenance activity takes place before the realization of the
uncertain failure time of the first campaign (white node), as depicted in Figure 4.12b,
the two breakdown scenarios of the first production campaign for the case without
preventive maintenance will not realize and the resulting scenario-tree defines a two-
stage program where only the realization of the breakdown scenarios of the second
campaign can take places. Additionally, the scenarios of the second production
campaign realize earlier since the timing of the maintenance activity has shortened
the duration of the first production campaign. If the maintenance activity of the
second production campaign take place before the realization of the breakdown
scenarios of the second campaign (Figure 4.12c), none of the uncertain failures in
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Figure 4.12a can realize. Figure 4.12 does not show all the possible scenario-trees
but only some possible scenario-trees that realize according to the timing of the
preventive maintenance activity. The full scenario-tree that includes all the possible
timings for reactive maintenance (orange nodes) and predictive maintenance (white
nodes) is represented in Figure 4.13.

(a)

(b)

(c)

FIGURE 4.12: Influence of the timing of the maintenance activities on
the structure of the scenario-tree. (a) A multi-stage tree results if the
breakdown scenarios of the first and second production campaigns
can realize; (b) a two-stage scenario-tree results if the first maintenance
activity takes place before the branching of the scenarios of the first
production campaign can realize; (c) a deterministic problem results if
both the maintenance activities are performed before the branching of

the scenario tree. Source: (Leo and Engell, 2023)
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FIGURE 4.13: Full scenario-tree for the example with two production
campaigns (black and green nodes) and for each campaign two uncer-
tain scenarios: the orange nodes represent the reactive maintenance
activities (i.e. the uncertain failure times realize) and the white nodes
represent the predictive maintenance activities that do not let the un-

certain failures realize. Source: (Leo and Engell, 2023)

From the example that is depicted in Figures 4.12-4.13, it is clear that the decision
maker is able to influence the structure of the scenario-tree by acting on the timing of
the maintenance activities (preventive or reactive maintenance).

4.2.3 Modelling approaches for combined Type-I and Type-II endogenous

uncertainties

We propose here two modelling approaches to formulate a stochastic program that
combines Type-I and Type-II endogenous uncertainties. The goal is to analyse the
influence of the mathematical formulation on the computational effort needed to find
the global optimum of the resulting non-convex problem.

The modelling of the Type-I endogenous uncertainty features (i.e. the dependency
of the probability of the uncertainty on the decision variables) does not differ from
the approach described in Section 4.1. The hazard and the survival functions of the
uncertain RULs, along with the probabilities, are introduced as decision variables.
The relation between the degradation levels, the plant operating conditions and the
probabilities of the scenarios is described by the prognosis technique of the Cox
model (Cox, 1972).

The modelling of the Type-II endogenous uncertainty features (i.e. the dependency
of the structure of the scenario tree on the decision variables) is performed here
adopting two approaches. The first approach creates an augmented scenario tree
(that is called here superstructure scenario-tree) by combining all the possible states
of the system that are defined by possible timings of the maintenance activities. The
second approach implements conditional non-anticipativity constraints defined in
(Apap and Grossmann, 2017) to model the scenarios that do not realize.
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Superstructure scenario-tree approach

This approach builds up a superstructure tree where all the possible structures
of the tree are modelled. The different structures of the tree are defined by the
timing of the maintenance activities and if a structure cannot realize because of
predictive maintenance, the probabilities of the corresponding scenarios are set equal
to zero. This approach is, therefore, targeted to the case of combined Type-I and
Type-II endogenous uncertainties since the probabilities of the scenarios are decision
variables and not parameters. Considering the problem instance with two production
campaigns and two uncertain breakdown scenarios per campaign that was introduced
in Figures 4.12-4.13, Figure 4.14 shows the corresponding superstructure scenario-tree.
Compared to the scenario-tree that is depicted in Figure 4.13, the scenario-tree in
Figure 4.14 is equivalent but it does not show the scenarios that end with the (white)
nodes that are associated to the preventive maintenance activities. In fact, the starting
times of the preventive maintenance activities are identified by the binary variables
xCBM that when activated force to zero the production for the remaining time of the
campaign. The scenarios s1, . . . , s4 model the situation where the breakdown scenarios
of the first and of the second production campaign can realize. The scenarios s5, s6
describe the case where the maintenance activity of the first production campaign
takes place before the realization of the uncertain parameters and, therefore, none of
the breakdown scenarios of the first production campaign can realize. As an example,
Figure 4.14 shows this second case where the probabilities of the scenarios that cannot
realize are set to zero.
In comparison with a standard stochastic formulation with exogenous uncertainty,
this approach increases the number of scenarios that are needed to model the problem
since all the possible structures of the tree must be considered. While the standard
breakdown tree contains four scenarios (see Figure 4.12a), the superstructure scenario-
tree needs six scenarios to integrate the features of the endogenous uncertainty.

FIGURE 4.14: Superstructure scenario-tree: Subtree of the full scenario
tree for the case where preventive maintenance is executed at interval
four. The upper four scenarios are deactivated by setting their proba-

bilities to zero. Source: (Leo and Engell, 2023)

Conditional non-anticipativity approach

The conditional non-anticipativity constraints (NACs) are NACs that are activated
by the decision variables to render some scenarios indistinguishable by forcing the
recourse variables of these scenarios to be equal to each other in case the realization
of the uncertain parameters can not take place. Considering the example that was
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introduced in Figure 4.12a with four possible scenarios s1, . . . , s4, Figure 4.15 depicts
the case where the scenarios of the first production campaign do not realize since the
maintenance activity takes place before their realization. In this case, the scenarios
that do not realize become indistinguishable as shown in Figure 4.15a. Figure 4.15b
shows the equivalent scenario tree modelled via NACs. The vertical lines represent
the permanent NACs, while the dash green curves the conditional NACs that are acti-
vated by the decisions on the maintenance activities. Since the maintenance activities
render the two scenarios of the first campaign indistinguishable, the corresponding
conditional NACs force the recourse variables of these two scenarios to be identical.
In contrast to the approach that creates the superstructure scenario-tree, this method
does not increase the number of scenarios to model the endogenous uncertainty in
comparison to a standard formulation with exogenous uncertainty but requires a
larger number of constraints (i.e. the NACs) and implicit model reformulations to
represent the changes in the RUL due to the maintenance decisions.

(a)

(b)

FIGURE 4.15: (a) Representation of the sub-tree that results if preven-
tive maintenance takes place at interval four; (b) scenario-tree of the
conditional NACs formulation: the vertical lines represent the perma-
nent NACs, while the dashed green curves the conditional NACs that
are activated by the decisions on the maintenance activities. Source:

(Leo and Engell, 2023)
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Nomenclature

Indices
p products
t, t′ time periods
s, s′ scenarios
i plant inputs
f feed
c campaign
r realization of the uncertainty

Sets
P products
T, T1stage , Ts time periods
I plant input
S scenarios
F feed
C campaign
RULs,c uncertain Remaining Useful life
ANCc,r sub-set of scenarios for campaign c and uncertainty realization r

Parameters
Rc number of tree branching for production campaig c
Dp demand of product p
d0 initial degradation value
IC f quality parameter of feed f
d0 , dmax initial and maximum degradation values
UB f eed

f Maximum amount of feed f

LBinput
i,t,s , UBinput

i,t,s upper and lower bounds of the plant input i at time period t and scenario s
UBy

p Upper bound of production rate of product p at time t and scenario s
γ

p
i process parameters

αi parameter of the degradation model
M big-M parameter
dCBM maintenance duration
h0s baseline hazard function of scenario s
price f eed

f purchasing price of feed f

priceproduct
p average cost of producing product p in the next camapign or purchasing it to

satisfy the demand
priceresource

i resource price proportional to the input i
β parameter of the Cox model
LSST

t,c,c′,s′ boolean matrix for the permanent NACs for the superstructure tree formula-
tion

LcNAC
t,c,c′,s′ boolean matrix for the permanent NACs for the conditional NACs formula-

tion

Continuous variables
pMSSP

s probability of scenario s
pRUL

c,s probability of scenario s for campaign c
hc,s hazard function of scenario s for campaign c
Sc,s survival function of scenario s for campaign c
costs , cost f eed total cost of scenario s and feed cost
costmissing demand cost of producing in the next campaign or purchasing products from external

sources
costresource

s , costCBM
s resource purchasing cost and cost of performing the maintenance activities

yp,t,s,c production of p purchased at time t in scenario s
ui,t,s,c plant input i at time t in scenario s
PPp,s product p to be produced in the following campaign or to be purchased to

cover the demand for scenario s
dt,s,c degradation level at time t and scenario s
m f eed

f ,t,s,c amount of feed f used at time t of the campaign c for scenario s

Binary variables
xCBM

t,c,s 1 if the maintenance activities are performed at time t of the campaign c for
scenario s

x f eed
f 1 if the feed f is purchased

y f eed
f ,t,s,c 1 if the feed f is allocated at time t of the campaign c for scenario s

s f eed
f ,t,s,c 1 if the allocation of the feed f starts at time t of the campaign c for scenario s

scampaign
t,s,c 1 if the campaign c starts at time t for scenario s

xcampaign
t,s,c 1 if the campaign c is active at time t for scenario s
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4.2.4 MINLP formulations

We describe here the two MINLP formulations that are obtained by applying the two
proposed modelling approaches. Section 4.2.4 discusses the MINLP model that results
from the application of the approach that is based on the superstructure scenario-tree,
while Section 4.2.4 presents the MINLP that is generated when using conditional
NACs.

MINLP formulation based on the superstructure-tree

Figure 4.16 shows the superstructure tree when two production campaigns and
two uncertain failure times for each campaign are considered. The multi-stage tree
presents in total six scenarios over the time horizon of 10 time intervals. While Figure
4.16a shows a depiction of the scenario-tree where the branching is visible, Figure
4.16b depicts the representation of the monolithic MINLP with NACs. The scenarios
s1, . . . , s4 are associated to the condition that the failures of the first production cam-
paign (black nodes) realize (i.e. breakdowns and subsequent reactive maintenance
take place in the first campaign), the scenarios s5, s6 are associated to the case where
preventive maintenance takes place in interval four. Therefore, it must be modelled
that the subsets of scenarios s1, . . . , s4 and s5, s6 cannot both realize. This is handled
by adjusting the probabilities of the scenarios depending on the decision on preven-
tive maintenance with the subset of the prognosis constraints in Section 4.2.4. As
described before, the scenarios that are associated to the realization of the predictive
maintenance activities are not depicted (white scenarios in Figure 4.13) because a
binary variable is introduced to define the starting times of the maintenance activities
and to set to zero the production amount.

(a) (b)

FIGURE 4.16: Two equivalent versions of the superstructure scenario-
tree: (a) standard and (b) unfolded representation with NACs of the

stochastic problem. Source: (Leo and Engell, 2023)

We first describe the sets and parameters that are needed to model the features of both
types of endogenous uncertainties. A standard (permanent) NAC formulation is used
and s ∈ S labels the scenarios of the multi-stage tree (i.e. path of the tree from the
origin to the leaf node). In Figure 4.16 the set S is defined as S = {s1, s2, s3, s4, s5, s6}.

In addition to the standard NAC formulation, a set of parameters that map the stages
of the system is needed to adjust the probabilities of the branches of the tree since
they depend on a decision variable. The parameter Rc represents the number of
branches of the tree that are present in each stage. In terms of production campaign c,
the parameter Rc identifies how many times the scenario-tree has a branching point
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(e.g. in Figure 4.16 Rc=1 = 1, Rc=2 = 3).

Since for a multi-stage tree as in Figure 4.16 a scenario is defined as the path from
the origin node to the leaf node, the set ANCc,r maps the breakdown scenarios of
each campaign c to the set of multistage scenarios S according to the campaign c
and the scenario r of the previous campaign. In other words, the set ANCc,r maps
the (standard) NAC scenario tree (Figure 4.16b) to the standard scenario tree (Figure
4.16a). In Figure 4.16 the following parameters can be identified: ANCc=2,r=1 = {1, 2},
ANCc=2,r=2 = {3, 4}, ANCc=2,r=3 = {5, 6}. The proposed formulation requires these
parameters to enforce the constraints on the probabilities of the stages of the scenario
tree (e.g. for the first campaign in in Figure 4.16a the sum of the probabilities of the
breakdown scenarios and the scenario that is associated to the predictive maintenance
activities must be equal to one).

The set T̂c,r identifies the interval after which the tree branches for each campaign
c and each breakdown scenario of the previous campaign r (e.g. in Figure 4.16,
T̂c=1,r=1 = 3, T̂c=2,r=2 = 8. Since the first campaign has not a previous campaign, we
assume r = 1).

The set FTc,s contains the uncertain failure times of the plant for each production
campaign c and breakdown scenario s. For example, the tree that is shown in Figure
4.16 is associated to the following failure times: FTc=1,s=1 = 4 and FTc=2,s=1 = 8.
Since each scenario represents an uncertain realization of the failure of the plant and
is associated to a maximum degradation level, we assumed that the first time steps of
each production campaign cannot generate a possible failure since the degradation
trajectory cannot reach the maximum threshold in such short amount of time. We
assumed that the accumulation of the degradation level needs at least three time
intervals to generate a failure.

Maintenance constraints

In this work, we define as production campaign the production time between two
consecutive maintenance events. Therefore, the maintenance constraints define the
start of the maintenance activities and the starting and ending times of the production
campaigns. The binary variable xCBM

t,s,c is equal to one if the maintenance activities

start at time t for scenario s and campaign c, while the variable xcampaign
t,s,c is equal to

one if the production campaign c is active at time t for scenario s. Eq. 4.56 states that
no production campaign is active at time t if the maintenance activities are performed
at time t. Eq. 4.57 enforces that the maintenance activities for the campaign c cannot
start if the production campaign c has not started before. The binary variable scampaign

t,s,c
defines the starting time of the production campaigns and is equal to one if the
campaign c starts at time t for scenario s.

∑
c∈C

xcampaign
t,s,c ≤ 1− ∑

c∈C
xCBM

t,s,c ∀s ∈ S, t ∈ T (4.56)

xCBM
t,s,c ≤ ∑

t′∈{1,...,t}
scampaign

t′,s,c ∀s ∈ S, c ∈ C (4.57)
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Eq. 4.58 imposes that only one production campaign c can be active at time t while
Eq. 4.59 ensures that each campaign c can start only once over the time horizon T.
According to Eq. 4.60, for each time step t at maximum the maintenance activities of
one campaign c can be performed.

∑
c∈C

xcampaign
t,s,c ≤ 1 ∀t ∈ T, s ∈ S (4.58)

∑
t∈T

scampaign
t,s,c ≤ 1 ∀c ∈ C, s ∈ S (4.59)

∑
c∈C

xCBM
t,s,c ≤ 1 ∀t ∈ T, s ∈ S (4.60)

The starting times for each campaign c are defined by Eqs. 4.61-4.62.

scampaign
t,s,c ≥ xcampaign

t,s,c − xcampaign
t−1,s,c ∀t ∈ T, t 6= 1, s ∈ S, c ∈ C (4.61)

scampaign
t,s,c ≤ xcampaign

t,s,c ∀t ∈ T, s ∈ S, c ∈ C (4.62)

Eq. 4.63 determines the initial conditions of the plant by forcing the first production
campaign to start at the first time step.

scampaign
t,s,c = 1 ∀s ∈ S, t = 1, c = 1 (4.63)

Process constraints

The plant produces three products p ∈ {P1, P2, P3} to cover a fixed and known
product demand Dp. The plant model that is implemented by Eq. 4.64 is the result
of a linearization procedure to describe the influence of the model inputs ui,t,s,c on
the production level yp,t,s,c via the parameters γp,i. Note that the degradation level
dt,s,c influences the production rate according to the parameter rp. Eqs. 4.65-4.66
impose the upper and lower bounds to the plant inputs for the active production
campaign. When the production campaign c is not active (i.e. xcampaign

t,c,s = 0) the input
variables are forced to be zero. Eq. 4.67 sets the maximum production capacity, while
Eq. 4.68 ensures that the product demand is satisfied by the production in the current
campaigns (yp,t,s,c) or by producing in the following campaign or purchasing the
products from external sources (PPp,s).

yp,t,s,c = ∑
i

γ
p
i ∗ ui,t,s,c − rp ∗ dt,s,c ∀t ∈ T, s ∈ S, p ∈ P, c ∈ C (4.64)

ui,t,s,c ≤ UBinput
i,t,s ∗ xcampaign

t,s,c ∀t ∈ T, s ∈ S, i ∈ I, c ∈ C (4.65)

LBinput
i,t,s ∗ xcampaign

t,s,c ≤ ui,t,s,c ∀t ∈ T, s ∈ S, i ∈ I, c ∈ C (4.66)

yp,t,s,c ≤ UBy
p ∗ xcampaign

t,s,c ∀t ∈ T, s ∈ S, p ∈ P, c ∈ C (4.67)
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∑
c∈C

∑
t∈T

yp,t,s,c + PPp,s ≥ Dp ∀p ∈ P, s ∈ S (4.68)

Feed purchasing constraints

The following constraints define the feed purchasing strategy of the plant and the
allocation of the feeds over the time horizon. The binary variables x f eed

f ,s,c are set equal
to one if the feed f is purchased for scenario s in campaign c and to zero otherwise.
An additional binary variable y f eed

f ,t,s,c becomes equal to one is the feed f is used at the
time step t during the production campaign c for scenario s. Eq. 4.69 ensures that
no feed is used if the maintenance activities are performed. Eqs. 4.70-4.71 define the
starting time (that is identified by the binary variable s f eed

f ,t,s,c) of the feed utilization
for each feed that is purchased. The quality of the feed f (that is indicated by the
parameter IC f ) influences the degradation trajectory (see Eqs. 4.75-4.76). Eq. 4.72
limits the amount of feed f that can be used over the time horizon T if the feed f is
purchased (x f eed

f = 1). The continuous variable m f eed
f ,t,s,c models the amount of feed

f used at time step t for scenario s and campaign c and the parameter UB f eed
f is the

maximum amount of feed f that can be used over the time horizon T. If the feed f is
not purchased (x f eed

f = 0), its allocation over the time horizon T is forced to be zero
(Eq. 4.72). Similarly, if the feed f is not allocated to the time step t, the amount of feed
used at time t is forced to be zero (Eq. 4.73). Eq. 4.74 imposes that the amount of feed
used at time t is the first input of the plant model (ui=1,t,s,c) as already described for
the process constraints.

From the computational perspective It is important to highlight that the variables
y f eed

f ,t,s,c, s f eed
f ,t,s,c, xCBM

t,s,c represent integer recourse variables.

∑
f∈F

y f eed
f ,t,s,c = 1− xCBM

t,s,c ∀t ∈ T, s ∈ S, c ∈ C (4.69)

s f eed
f ,t,s,c ≥ y f eed

f ,t,s,c − y f eed
f ,t−1,s,c ∀ f ∈ F, s ∈ S, c ∈ C, t ∈ {2, . . . , |T|} (4.70)

s f eed
f ,t,s,c ≤ x f eed

f f ∈ F, s ∈ S, c ∈ C, t ∈ T (4.71)

∑
t∈T

m f eed
f ,t,s,c ≤ UB f eed

f ∗ x f eed
f f ∈ F, s ∈ S, c ∈ C (4.72)

m f eed
f ,t,s,c ≤ UB f eed

f ∗ y f eed
f ,t,s,c f ∈ F, t ∈ T, s ∈ S, c ∈ C (4.73)

∑
f∈F

m f eed
f ,t,s,c = ui=1,t,s,c t ∈ T, s ∈ S, c ∈ C (4.74)
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Degradation model

The degradation constraints implement the degradation model to predict the degra-
dation evolution over the time horizon T. Eqs. 4.75-4.76 predict the degradation
level dt,s,c for each scenario s and campaign c according to the previous degradation
value dt−1,s,c, the operating conditions of the plant ui,t,c and the feed quality that is
described by the feed indicator IC f . It is worth to highlight that the degradation
prediction is extended until the RUL is over (t < FTc,s). The degradation model
parameters (αi) that describe the influence of the plant operating conditions (ui,t,s,c)
on the degradation level must be estimated from process data. The parameter d0 rep-
resents the initial degradation level and the threshold dmax represents the maximum
degradation value before the failure happens (Eq. 4.77).

dt,s,c ≥ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s,c + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c −M ∗ xcampaign
t,s,c

∀c ∈ C, s ∈ S, t ∈ T, t < FTc,s (4.75)

dt,s,c ≤ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s,c + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c + M ∗ xcampaign
t,s,c

∀c ∈ C, s ∈ S, t ∈ T, t < FTc,s (4.76)

where M represent a big-M parameter that is set equal to the maximum degradation
threshold dmax.

dt,s,c ≤ dmax(1− xCBM
t,s,c ) ∀c ∈ C, s ∈ S, t ∈ T (4.77)

Non-anticipativity constraints

The NACs are the main difference between the two formulations that are proposed in
this work. In fact, while the formulation that is based on the superstructure scenario-
tree presents only the (standard) permanent NACs, the formulation that is based
on the conditional NACs presents, in addition, the NACs that are activated by the
decision variables (i.e. the conditional NACs).

For the superstructure tree formulation, Eq. 4.78 describes the permanent NACs for
the continuous variables that model the production of the plant (yp,t,s,c).

yp,t,s,c = yp,t,s′,c ∀p ∈ P, (t, c, s, s′) ∈ LSST
t,c,s,s′ (4.78)

The matrix LSST
t,c,s,s′ is an appropriate matrix of Boolean parameters that describe the

structure of the scenario-tree. For example, in Figure 4.16 the first three time step
of the first production campaign (c = 1) must be identical for all the scenarios and
therefore LSST

t={1,2,3},c=1,s,s′ = 1 ∀(s, s′) ∈ S.
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Realization of the uncertainty

The equations that model the realization of the uncertain parameters describe that the
RUL of the plant is over (t ≥ FTc,s) by forcing to zero the production of the plant (Eq.
4.79). As already discussed, the set FTc,s represents a set of uncertain failure times
of the plant for each campaign c. Since the superstructure scenario-tree formulation
associates a branch of the scenario-tree to each possible branching of the tree (i.e. if the
scenario s realizes or not), the modelling of the realization of the uncertain parameters
results straightforwardly by forcing to zero the production of the structures of the
scenario-tree that do not realize.

yp,t,s,c = 0 ∀c ∈ C, s ∈ S, p ∈ P, t ∈ T, t ≥ FTc,s (4.79)

Prognosis constraints

The prognosis constraints are key for both the proposed formulations since they
integrate the prognosis model within the production planning optimization. The
probabilities of the failures (probabilities of the stages) pFT

s,c , the hazard function hs,c
and the survival function Ss,c for each scenario s and campaign c are modelled as
decision variables by Eq. 4.80 to integrate the Cox model. While the variables pFT

s,c
represent the probability of the failure for the campaign c and scenario s (i.e. the
probability of a single branch of the tree), the variables pMSSP

s that are introduced
by Eq. 4.82 identify the conditional probability of the entire path of the multi-stage
tree (from the origin node to the leaf node). The conditional probabilities of the
scenario s of the multi-stage tree (pMSSP

s ) are computed by Eq. 4.81 by multiplying
the probabilities of the failures (pFT

s,c ) that belong to the same path of the scenario-tree.
Eq. 4.83 forces the sum of the probabilities over the scenarios to one.

0 ≤ pFT
s,c , Sc,s, hc,s ≤ 1 ∀c ∈ C, s ∈ S (4.80)

pMSSP
s = ∏

c∈C
pFT

s,c ∀s ∈ S (4.81)

0 ≤ pMSSP
s ≤ 1 ∀s ∈ S (4.82)

∑
s∈S

pMSSP
s = 1 (4.83)

Eqs. 4.84-4.85 implement the relations between the probabilities of the uncertain
failures and the survival variables by defining the probability of failure at time t
(pFT

s,c ) as the change of the probability of surviving time t (Ss,c − Ss+1,c). Similarly, the
probability of surviving time t (Ss,c) must be equal to the sum of the probabilities of
failing in the future time steps.

pFT
s,c = Ss,c − Ss+1,c ∀c ∈ C, r ∈ Rc, s ∈ ANCc,r, s <| ANCc,r | (4.84)

Ss,c = ∑
s′>s

pRUL
s′,c ∀c ∈ C, r ∈ Rc, (s, s′) ∈ ANCc,r (4.85)

To balance computational complexity and model accuracy, a linearized Cox model is
implemented by Eqs. 4.87-4.88. The Cox model adjusts the hazard function of the
earliest uncertain failures for each production campaign according to the degradation
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level reached at the time step where the tree branches (t ∈ T̂c,r). The earliest uncertain
failure time is identified as the first element of the set ANCc,r (ANCc,r(1)).
To identify the scenarios that realize we introduce a binary variables Zc,s that is equal
to one if the failure (breakdown scenario) s of the production campaign c realizes (Eq.
4.86) or, in other words, if the production campaign c is active at the time step t when
the uncertain parameters realize (t = FTc,s) since the maintenance activities have not
started earlier. It is worth to highlight that the hazard function is computed only for
the scenarios that realize by implementing the big-M constraints in Eqs. 4.87-4.88.

Zc,s = xcampaign
s,c,t ∀c ∈ C, s ∈ S, t = FTc,s (4.86)

hs,c ≥ h0
s,c ∗ β ∗ (dt,s,c − dmin)− (1− Zc,s) ∀c ∈ C, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r

(4.87)
hs,c ≤ h0

s,c ∗ β ∗ (dt,s,c − dmin) + (1− Zc,s) ∀c ∈ C, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r
(4.88)

Eq. 4.89 tightens the formulation by imposing that if the scenarios of the first pro-
duction campaign do not realize, the following scenarios on the same path of the
multi-stage tree cannot realize.

Zc+1,s ≤ Zc,s ∀c = 1, s ∈ S (4.89)

While the hazard function of the first scenario for each campaign is computed accord-
ing to the relations in Eqs. 4.87-4.88, the hazard functions of the remaining scenarios
are adjusted linearly if the scenarios realize according to Eqs. 4.90-4.91. The higher
is the predicted degradation level the higher is the probability of the earlier failure
time. The nominal hazard function h0

s and the parameters β of the Cox model must
be estimated from plant data (e.g. using the software MATLAB and the function
coxphfit (Statistics and Machine Learning Toolbox 2006)).

hs,c ≥ hs,c +
1− hs,c

Nc − 1
− (1− Zc,s) ∀c ∈ C, r ∈ Rc, s = ANCc,r(1), s > s, t ∈ T̂c,r

(4.90)

hs,c ≤ hs,c +
1− hs,c

Nc − 1
+ (1− Zc,s) ∀c ∈ C, r ∈ Rc, , s = ANCc,r(1), s > s, t ∈ T̂c,r,

(4.91)
The parameter Nc represents the number of breakdown scenarios for production
campaign c.

Eqs. 4.92-4.93 compute the probability of the uncertain failure times that realize
according to the non-linear survival relations with the hazard and survival functions.

pFT
s,c ≤ hs,c ∗ Ss,c + (1− Zc,s) ∀c ∈ C, s ∈ S (4.92)

pFT
s,c ≥ hs,c ∗ Ss,c − (1− Zc,s) ∀c ∈ C, s ∈ S (4.93)

For each production campaign c, Eqs. 4.94-4.95 impose that the sum of the probabili-
ties of the uncertain failure times must be equal to one if the scenarios realize (i.e. if
the production campaign is active at the branching time of the scenario-tree).
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∑
s∈ANCc,r

pFT
s,c ≥ 1−M ∗ (1− xcampaign

t,s′,c ) ∀c ∈ C, r ∈ Rc, t ∈ T̂c,r, s′ ∈ ANCc,r(1)

(4.94)

∑
s∈ANCc,r

pFT
s,c ≤ 1 + M ∗ (1− xcampaign

t,s′,c ) ∀c ∈ C, r ∈ Rc, t ∈ T̂c,r, s′ ∈ ANCc,r(1)

(4.95)
For the superstructure tree formulation, the probabilities of the scenarios that do not
realize must be set to zero (Eqs. 4.96-4.97). The subset of scenarios Ŝ = {s1, s2, s3, s4}
are associated to the condition that the scenarios of the first production campaign
realize (i.e. if the first production campaign is active at the time step when the tree
branches). The subset S̃ = {s5, s6} represents the structure of the scenario-tree that is
associated to the opposite condition. For Eq. 4.96, if the variable Zc,s is equal to zero
for the breakdown scenario s in campaign c (i.e. the breakdown scenario does not
realize), the probability of the breakdown scenario s in campaign c is set to zero. The
opposite condition is implemented in Eq. 4.97.

pFT
s,c ≤ Zc,s ∀c ∈ C, s ∈ Ŝ (4.96)

pFT
s,c ≤ 1− Zc,s ∀c = 2, s ∈ S̃ (4.97)

A special consideration must be reserved to the scenarios of the last campaign (sec-
ond in this example, but it would be valid for an arbitrary number of production
campaigns). In fact, if all the scenarios of the last campaign do not realize, setting
to zero their probabilities (pFT

s,c ) implies that the conditional probability of the entire
path of the tree (pMSSP

s ) becomes zero erroneously computing an expected cost equal
to zero (see definition of the expected cost in Eq. 4.103 that multiplies the cost of
scenario costs and the probability of the path of the tree pMSSP

s ). To avoid this issue, if
all the scenarios of the last campaign do not realize, we impose that the probability of
the first of these scenarios is equal to one and all the remaining probabilities are set to
zero (Eqs. 4.98-4.99). Eqs. 4.98-4.99 implement this condition for the last production
campaign (c = 2) according to the value of the binary variable xcampaign

t,s,c at the time
step where the tree branches (t ∈ T̂c,r): if the production campaign is not active when
the tree branches, none of the scenarios will realize.

pFT
s,c ≥ 1− xcampaign

t,s,c ∀c = 2, r ∈ Rc, s = ANCc,r(1), t ∈ T̂c,r (4.98)

pFT
s,c ≤ xcampaign

t,s,c ∀c = 2, r ∈ Rc, s ∈ ANCs,r, s 6= ANCc,r(1), t ∈ T̂c,r (4.99)

Note that since the probabilities of the failure times are dependent on decision
variables they are subject to the (standard) NACs. For the scenario-tree in Figure 4.16,
the NACs in Eqs. 4.100-4.102 must be introduced for the probabilities of the RULs.
Similar equations must be enforced for the hazard and survival variables.

pFT
s,c = pFT

s′,c ∀s = 1, s′ = 2, c = 1 (4.100)

pFT
s,c = pFT

s′,c ∀s = 3, s′ = 4, c = 1 (4.101)

pFT
s,c = pFT

s′,c ∀s = 5, s′ = 6, c = 1 (4.102)
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Objective function

The objective function computes the total plant cost that is defined by Eq. 4.103 as
the sum of the first-stage cost, i.e. the cost of purchasing the feed (cost1stage), and the
expected cost over the scenarios s. The first-stage cost is determined by Eq. 4.104.

min z = cost1stage + ∑
s∈S

pMSSP
s ∗ costs (4.103)

cost1stage = ∑
f∈F

price f eed
f ∗ x f eed

f (4.104)

According to Eq. 4.105, the costs of the scenarios (costs) consist of the cost of the
resource utilization (costresource

s ), the cost of performing the maintenance activities
(costCBM

s ), and the cost of producing the products in the following campaigns or
purchasing them from external sources (costmissing demand

s ) to cover the demand (Eq.
4.107). The cost of the resource utilization (e.g. steam and fuel gas) is defined by Eq.
4.106 and is assumed proportional to the inputs of the plant ui,t,s,c according to the
parameter priceresource

i .

costs = costmissing demand
s + costresource

s + costCBM
s ∀s ∈ S (4.105)

costresource
s = ∑

c∈C
∑
t∈T

∑
i∈I

priceresource
i ∗ ui,t,s,c ∀s ∈ S (4.106)

costmissing demand
s = ∑

p∈P
priceproduct

p ∗ PPp,s ∀s ∈ S (4.107)

costCBM
s = cCBM ∗ ∑

c∈C
∑
t∈T

xCBM
t,s,c ∀s ∈ S (4.108)

MINLP formulation based on conditional NACs

The formulation that is based on the conditional NACs needs a smaller number
of scenarios in comparison to the formulation that is based on the superstructure
scenario-tree. Considering the problem instance with two uncertain failure times for
each production campaign, the superstructure scenario-tree consists of six scenarios
(Figure 4.16) while the scenario-tree with conditional NACs needs only four scenarios
(Figure 4.17).
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FIGURE 4.17: Scenario-tree of the formulation based on the conditional
NACs for the example with two uncertain failure times for each of the
two production campaigns: non-anticipativity representations of the

stochastic program. Source: (Leo and Engell, 2023)

The vertical lines in Figure 4.17 represent the permanent NACs while the dashed
ones identify the conditional NACs that are activated by the variables that identify
the maintenance activities. The activation of the conditional NACs enforces that the
scenarios that are linked by the conditional NACs are indistinguishable since the
associated recourse variables are forced to be identical. As an example, in Figure 4.17
if the maintenance activities of the second production campaign for the scenarios
s1 and s2 are started before the realization of the uncertain failures, the conditional
NACs are activated to render indistinguishable the two scenarios since the uncertain
failures cannot happen. Similarly, for the first production campaign the binary
variable xcampaign

t=3,s,c=1 defines whether the first production campaign (c = 1) is active
at the point in time when the tree branches (t = 3). In fact, if the first production
campaign is not active at the branching time, the conditional NACs must be activated
since the first two uncertain failures (orange nodes at time t = 4 and t = 5) cannot
realize. Moreover, in this formulation the activation of the conditional NACs shifts
the realization of the uncertainties of the following campaigns to earlier points in
time.
The degradation level influences the probabilities of the realizations of the failures
according to the Cox Model. For the sake of readability, we define with K the variable
that identifies if the first production campaign is active when the tree branches (Eq.
4.109). Note that this is a first stage variable and therefore equal for all the scenarios.

K = xcampaign
t,s,c s ∈ S, t = 3, c = 1 (4.109)

It is worth to highlight that when the second campaign is not active at the branching
time, the corresponding recourse variables are set to zero and, therefore, equal to
each other, since no further production campaign is considered.

The sets and parameters that were introduced for the formulation based on the su-
perstructure tree to model the features of both types of endogenous uncertainties
are adopted also for the formulation based on the conditional NACs. In Figure 4.17
the set of scenarios S is defined as S = {s1, s2, s3, s4}. The set FTc,s contains the
uncertain failure times of the plant for each production campaign c and breakdown
scenario s. For example, the tree shown in Figure 4.17 is associated to the follow-
ing failure times for the first scenario: FTc=1,s=1 = 4 and FTc=2,s=1 = 8. To keep
track of the stages, the parameter Rc represents the number of times the scenario
tree branches for production campaign c (Rc=1 = 1, Rc=2 = 2) and the set ANCc,r
associates the multistage scenario set S to the breakdown scenarios of campaign c and



4.2. Combined Type-I and Type-II endogenous uncertainties 125

scenario r of the previous campaign (ANCc=2,r=1 = {1, 2}, ANCc=2,r=2 = {3, 4}). The
set T̂c,r identifies the point in time where the tree branches (T̂c=1,r=1 = 3, T̂c=2,r=2 = 8).

The maintenance constraints (Eqs. 4.56-4.63), the process constraints (Eqs. 4.64-4.68),
the feed purchasing constraints (Eqs. 4.69-4.71), and the definition of the objective
function (Eqs. 4.103-4.107) of the conditional NACs formulation are in common with
the superstructure tree model that is described in Section 4.2.4.

Realization of the uncertainty

As previously described, the uncertain failures realize if the production campaign is
active when the scenario-tree branches. If the scenarios realize, the uncertain failures
realize and the production rate of the plant (that is identified by the continuous
variables yp,t,s,c) is set to zero (see Eqs. 4.110-4.111). The binary variables xcampaign

t,s,c
identify if the production campaign c is active at the branching time t ∈ T̂c,r.

yp,t,s,c ≥ −UBy
p ∗ (1− xcampaign

t′,s,c ) s ∈ S, p ∈ P, c ∈ C, t ≥ FTc,s, r ∈ Rc, t′ ∈ T̂c,r
(4.110)

yp,t,s,c ≤ +UBy
p ∗ (1− xcampaign

t′,s,c ) s ∈ S, p ∈ P, c ∈ C, t ≥ FTc,s, r ∈ Rc, t′ ∈ T̂c,r
(4.111)

The parameter UBy
p represents the big-M parameter that is set equal to the maximum

production capacity for the product p.
If the maintenance activities of the first production campaign c start before the
realization of the uncertain failures (in other words if the production campaign is not
active when the tree branches), the timing of the realizations of the uncertain failures
of the following campaign c + 1 must be modified. Since the time is not a decision
variable in a discrete-time formulation, a shifted set of uncertain failures (FTc,s) is
used to implement this feature. Eqs. 4.112-4.113 impose the shifted realizations of
the uncertainties. In this work, because of the nature of the source of the uncertainty,
the realization of the uncertain parameters can only be shifted to the left and not
postponed.

yp,t,s,c ≥ −UBy
p ∗ K ∀s ∈ S, c = 2, p ∈ P, t ≥ FTc,s (4.112)

yp,t,s,c ≤ +UBy
p ∗ K ∀s ∈ S, c = 2, p ∈ P, t ≥ FTc,s (4.113)

Degradation model

The idea of the degradation model does not change compared to the one that is
implemented for the formulation that is based on the superstructure scenario-tree.
However, its implementation must consider the possible shift of the realization of
the uncertain parameters. Eqs. 4.114-4.115 implement the degradation model (that is
already described in the previous section) if the first production campaign is active at
the branching time of the scenario-tree (K = 1). This condition is implemented with
a big-M formulation and the big-M parameter dmax that represents the maximum
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degradation level.

dt,s,c ≥ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c

− dmax ∗ (2− xcampaign
t,s,c − K) ∀c ∈ C, s ∈ S, t ∈ T, t < FTs,c (4.114)

dt,s,c ≤ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c

+ dmax ∗ (2− xcampaign
t,s,c − K) ∀c ∈ C, s ∈ S, t ∈ T, t < FTs,c (4.115)

Eqs. 4.116-4.117 compute the degradation trajectories if the first production campaign
is not active at the branching time of the scenario-tree (K = 0) and, therefore, con-
sidering a shifted set of uncertain failures (FTc,s). Note that the set of constraints is
enforced only for the second production campaign (c = 2) where the scenarios might
be shifted, in contrast to the scenarios of the first production campaign.

dt,s,c ≥ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c

− dmax ∗ (1− xcampaign
t,s,c + K) ∀c = 2, s ∈ S, t ∈ T, t < FTs,c (4.116)

dt,s,c ≤ d0 ∗ scampaign
t,s,c + dt−1,s,c + ∑

i∈I
αi ∗ ui,t,s + ∑

f∈F
IC f ∗ y f eed

f ,t,s,c

+ dmax ∗ (1− xcampaign
t,s,c + K) ∀c = 2, s ∈ S, t ∈ T, t < FTs,c (4.117)

Eq. 4.77 that is already introduced in Section 4.2.4 to impose the maximum degrada-
tion level must also be enforced for the formulation that is based on the conditional
NACs.

Non-anticipativity constraints

The permanent NACs for the formulation that is based on the conditional NACs are
described by Eq. 4.118. The matrix LcNAC

t,c,c′,s′ describes the scenario-tree that is shown in
Figure 4.17.

yp,t,s,c = yp,t,s′,c ∀p ∈ P, (t, c, s, s′) ∈ LcNACs
t,c,s,s′ (4.118)

Additionally, this formulation has to include the NACs that are activated by the
decision variables to render some scenarios indistinguishable. The conditional NACs
are described by Eqs. 4.119-4.120 for the variables yp,t,c,s (that model the production
levels of the plant).

yp,t,s,c ≤ yp,t,s′,c + UBy
p ∗ K ∀p ∈ P, c = 2, (s, s′) ∈ LcNACs

t,c,s,s′ , s′ > s (4.119)

yp,t,s,c ≥ yp,t,s′,c −UBy
p ∗ K ∀p ∈ P, c = 2, (s, s′) ∈ LcNACs

t,c,s,s′ , s′ > s (4.120)
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The parameter UBy
p represents a big-M parameter to render the constraints redundant

in case the condition that is expressed by the binary variable K is not fulfilled. The idea
behind the conditional NACs is to force the recourse variables of the scenarios that
do not realize (K = 0) to be identical. For example, if the first production campaign is
not active at the point in time when the realizations of the failures take place since
the maintenance activities have started before the bifurcation of the scenario-tree
(xcampaign

t=3,s∈{1,2,3,4},c=1 = 0 and K = 0), the recourse variables of the following campaign
are forced to be identical, since the uncertain RULs do not realize. The conditional
NACs are not applied to the prognosis variables (hazard, survival and probabilities
of the uncertain RULs).

Prognosis constraints

Eqs. 4.80, 4.82, 4.83, 4.84, 4.85 that were described in Section 4.2.4 are enforced also
for the this formulation. They introduce the probabilities of the scenarios, the hazard
functions and the survival functions as decision variables. Eqs. 4.121-4.122 implement
the Cox model computing the hazard variables of the earlier failure times of each
campaign if both the campaigns are active at their branching times. The earliest
uncertain failure time for the campaign c is identified as the first element of the set
ANCc,r (ANCc,r(1)). The term (c − ∑c′∈{1,...,c} xcampaign

t,s,c′ ) implements the condition
that all the campaigns from the first one until campaign c are active at their branching
times to enforce the constraints. In fact, if the first production campaign is not active
at the branching time of the scenario-tree, the failures of the second campaign are
shifted and computed according to the degradation level that is reached at a shifted
point in time.

hs,c ≥ h0
s,c ∗ β ∗ (dt,s,c − dmin)− (c− ∑

c′∈{1,...,c}
xcampaign

t,s,c′ )

∀c ∈ C, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r (4.121)

hs,c ≤ h0
s,c ∗ β ∗ (dt,s,c − dmin) + (c− ∑

c′∈{1,...,c}
xcampaign

t,s,c′ )

∀c ∈ C, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r (4.122)

Eqs. 4.123-4.124 adjust linearly the hazard functions of the remaining scenarios. The
parameter Nc indicates the number of scenarios for production campaign c.

hs,c ≥ hs=1,c +
1− hs=1,c

Nc − 1
− (c− ∑

c′∈{1,...,c}
xcampaign

t,s,c′ )

∀c ∈ C, r ∈ Rc, s 6∈ ANCc,r(1), t ∈ T̂c,r (4.123)
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hs,c ≤ hs=1,c +
1− hs=1,c

Nc − 1
+ (c− ∑

c′∈{1,...,c}
xcampaign

t,s,c′ )

∀c ∈ C, r ∈ Rc, 6∈ ANCc,r(1), t ∈ T̂c,r (4.124)

If the first production campaign is not active at the branching time (K = 0), Eqs.
4.125-4.128 implement the Cox model for the shifted uncertain failure times of the
second production campaign (c = 2) if the production campaign is active (by using
the shifted sets ANCc,r and T̂c,r). Eqs. 4.121-4.124 and 4.125-4.128 implement the
same constraints for two different sets of uncertain failure times.

hs,c ≥ h0
s,c ∗ β ∗ (dt,s,c − dmin)− (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r (4.125)

hs,c ≤ h0
s,c ∗ β ∗ (dt,s,c − dmin) + (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, s ∈ ANCc,r(1), t ∈ T̂c,r (4.126)

hs,c ≥ hs=1,c +
1− hs=1,c

Nc − 1
− (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, s 6∈ ANCc,r(1), t ∈ T̂c,r (4.127)

hs,c ≤ hs=1,c +
1− hs=1,c

Nc − 1
+ (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, 6∈ ANCc,r(1), t ∈ T̂c,r (4.128)

Eqs. 4.129-4.130 compute the probabilities of the scenarios that realize. To identify the
scenarios that realize, Eqs. 4.129-4.130 use the variables xCBM

t,s,c since the production
campaign might be active at the branching time but the maintenance activities might
start before the realization of the uncertain parameter (e.g. at t̂ = FTc,s − 1 and
t̂ > T̂c,r).

pFT
s,c ≤ hs,c ∗ Ss,c + (1− K + xCBM

t,s,c ) ∀c ∈ C, s ∈ S, t ∈ FTc,s − 1 (4.129)

pFT
s,c ≥ hs,c ∗ Ss,c − (1− K + xCBM

t,s,c ) ∀c ∈ C, s ∈ S, t ∈ FTc,s − 1 (4.130)

Eqs. 4.131-4.132 compute the probabilities of the shifted breakdown scenarios accord-
ing to the hazard and survival functions.

pFT
s,c ≤ hs,c ∗ Ss,c + (K + xCBM

t,s,c ) ∀c = 2, s ∈ S, t ∈ FTc,s − 1 (4.131)

pFT
s,c ≥ hs,c ∗ Ss,c − (K + xCBM

t,s,c ) ∀c = 2, s ∈ S, t ∈ FTc,s − 1 (4.132)
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Eqs. 4.133-4.134 force to one the sum of the probabilities of the uncertain failures
for each production campaign. For the second production campaign, the sum of the
probabilities is enforced only if both the campaigns are active at their branching times.
This condition is again enforced with the big-M term (c−∑c′∈{1,...,c} xcampaign

t,s′,c′ ).

∑
s∈ANCc,r

pRUL
s,c ≥ 1− (c− ∑

c′∈{1,...,c}
xcampaign

t,s′,c′ )

∀c ∈ C, r ∈ Rc, t ∈ T̂c,r, s′ ∈ ANCc,r(1) (4.133)

∑
s∈ANCc,r

pRUL
s,c ≤ 1 + (c− ∑

c′∈{1,...,c}
xcampaign

t,s′,c′ )

∀c ∈ C, r ∈ Rc, t ∈ T̂c,r, s′ ∈ ANCc,r(1) (4.134)

Eqs. 4.135-4.136 force the sum of the probabilities of the uncertain failures that
are shifted to be equal to one if the breakdown scenarios realize. This condition is
implemented with the term (1− xcampaign

t,s′,c + K).

∑
s∈ANCc,r

pFT
s,c ≥ 1− (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, t = T̂c,r, s′ ∈ ANCc,r(1) (4.135)

∑
s∈ANCc,r

pFT
s,c ≤ 1 + (1− xcampaign

t,s′,c + K)

∀c = 2, r ∈ Rc, t = T̂c,r, s′ ∈ ANCc,r(1) (4.136)

The scenarios that do not realize are associated to probabilities that are equal to zero.
As described later by Eqs. 4.143-4.144, the conditional probability of a path of the
multi-stage tree is the product of the probabilities of the branches of the tree along the
path. Therefore, to avoid a conditional probability equal to zero, if all the scenarios of
the first production campaign do not realize their probabilities cannot be all set to
zero. In this case, Eq. 4.137-4.138 force to one the probability of the first uncertain
breakdown scenario or in other words of the first failure (s ∈ ANCc,r(1)) and to zero
the remaining ones (s ∈ ANCc,r, s 6∈ ANCc,r(1)).

pFT
s,c ≥ 1− xcampaign

t,s,c ∀c = 1, r ∈ Rc, s ∈ ANCc,r(1), t ∈ FTc,s − 1 (4.137)

pFT
s,c ≤ xcampaign

t,s,c ∀c = 1, r ∈ Rc, s ∈ ANCc,r, s 6∈ ANCc,r(1), t ∈ FTc,s − 1 (4.138)

Similarly, for the second campaign Eqs. 4.139-4.142 force to one the probability of the
earliest failure and to zero the remaining ones if all the scenarios of the campaign
do not realize. In particular, Eqs. 4.139-4.140 cover the case where the scenarios of
the first campaign realize (K = 1) and Eqs. 4.141-4.142 consider the shifted set of
failure times (FTc,s) in case the first campaign is not active at the branching time of
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the scenario-tree (K = 0).

pFT
s,c ≥ 1− xcampaign

t,s,c − (1− K) ∀c = 2, r ∈ Rc, s ∈ ANC(1), t ∈ FTc,s − 1 (4.139)

pFT
s,c ≤ xcampaign

t,s,c + (1− K) ∀c = 2, r ∈ Rc, s ∈ ANC, s 6∈ ANC(1), t ∈ FTc,s − 1
(4.140)

pFT
s,c ≥ 1− xcampaign

t,s,c − K ∀c = 2, r ∈ Rc, s ∈ ANC(1), t ∈ FTc,s − 1 (4.141)

pFT
s,c ≤ xcampaign

t,s,c + K ∀c = 2, r ∈ Rc, s ∈ ANC, s 6∈ ANC(1), t ∈ FTc,s − 1 (4.142)

Eqs. 4.143-4.146 compute the conditional probabilities of the multi-stage scenario-tree
by multiplying the probabilities of the nodes along the path of the scenario tree. The
computation of the conditional probabilities is influenced by the structure of the
scenario-tree and, therefore, by the variable K. If the first production campaign is not
active at the branching time of the scenario-tree (K = 0), the conditional probability of
the multi-stage tree considers only the first scenario of the first production campaign
(s′ ∈ ANSc,r(1)) since it is associated to a probability equal to one (Eqs. 4.145-4.146).

pMSSP
s ≤ ∏

c∈C
pFT

s,c + (1− K) ∀s ∈ S (4.143)

pMSSP
s ≥ ∏

c∈C
pFT

s,c − (1− K) ∀s ∈ S (4.144)

pMSSP
s ≤ pFT

s′,c ∗ pFT
s,c+1 + K ∀c = 1, r ∈ Rc, s ∈ S, s′ ∈ ANSc,r(1) (4.145)

pMSSP
s ≥ pFT

s′,c ∗ pFT
s,c+1 − K ∀c = 1, r ∈ Rc, s ∈ S, s′ ∈ ANSc,r(1) (4.146)

4.2.5 Extension to multiple production campaigns

The extension of the proposed formulations to several production campaigns is a
necessary step to apply a moving horizon strategy that can enable the solution of
large-scale industrial problems. As discussed later in Chapter 5, we foresee a min-
imum of three production campaigns for the application of the moving horizon
strategy in order to take into account the effect of the decisions of the current cam-
paign on the following one without the influence of the terminal costs. The extension
of both formulations to multiple production campaigns is straightforward and does
not require major modifications of the mathematical models that have been presented.

For the superstructure tree formulation, Figure 4.18 depicts the scenario-tree with
three production campaigns and two uncertain failures per campaign. We highlight
once again that the white nodes that in Figure 4.13 represent the preventive main-
tenance actions are not included in the scenario-tree in Figure 4.18 since they are
modelled by the decisions variables xCBM. The adjustment of the sets and parameters
(S, Rc, ANCc,r, T̂c,r, FTc,s) that are described in Section 4.2.4 to the new scenario-tree
is the only modification needed to apply the proposed mathematical formulation to
several production campaigns.
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FIGURE 4.18: Full scenario-tree for three production campaigns (black,
green and blue nodes) and for each campaign two uncertain failure sce-
narios (orange nodes) for the superstructure tree formulation. Source:

(Leo and Engell, 2023)

For the formulation that is based on the conditional NACs, Figure 4.19 depicts
the scenario-tree with three production campaigns and two uncertain failures per
campaign. As for the superstructure tree formulation, the sets and parameters S,
Rc, ANCc,r, T̂c,r, FTc,s must be adjusted to the depicted scenario-tree. Additionally,
for this formulation the extension to multiple production campaigns requires the
identification of the variables that activate the conditional NACs for each production
campaign except for the last one. In the proposed formulation with two production
campaigns, this was enforced by Eq. 4.109. Therefore, for each production campaign
c (except for the last one) the variable Kc must be defined to identify if the campaign
c is active when the tree branches and, therefore, if the conditional NACs must be
activated.

FIGURE 4.19: Full scenario-tree for three production campaigns (black,
green and blue nodes) and for each campaign two uncertain failure
scenarios (orange nodes) for the formulation that is based on the

conditional NACs. Source: (Leo and Engell, 2023)
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4.2.6 Solution method

The proposed formulations were solved by generating the MINLP deterministic
equivalent problem and using the global solver BARON (Kilinc and Sahinidis, 2018)
that was enhanced with several custom branching priority strategies to speed up
the solution phase. The idea behind the branching priority schemes is to assign
high branching priorities to the complicating variables that when temporarily fixed
render the resulting sub-problems much easier to solve. Different branching priority
strategies were tested considering as complicating variables:

• the bilinear terms of the objective function pMSSP
s and costs (branching 1)

• the degradation variables ds,t,c to decouple the probabilities of the scenarios and
the Cox model (branching 2)

• the stage probabilities pRUL
s,c (branching 3).

All the formulations were implemented within the algebraic modelling language
Julia/JuMP and the MINLP models were solved using the solver BARON version
18.12.26 on an Intel Core i7-2600 machine at 3.40 GHz with 8 processors and 8 GB
RAM running Windows 7 Professional.

4.2.7 Results

We present here the results of the two proposed modelling approaches in terms of
computational effort and quality of the solution in comparison with a deterministic
optimization.

Computational results

To analyse the computational results of the two formulations, Figures 4.20-4.21 show
the upper and lower bounds of the global optimum over the solution time.
All the computational results, including the ones that are obtained without a branch-
ing priority strategy, are summarized in Tables 4.5-4.6 in terms of the optimal objective
function value z∗, upper and lower bounds of the solution UB/LB, optimality gap,
and solution time CPU[s].

The case where no branching priority strategy is applied shows that both the formu-
lations are able to reach the global optimum (UB = LB = 1172). The superstructure
scenario-tree formulation outperforms the conditional NACs formulation in terms
of computational time solving the MINLP problem in 3.7 hours against the approxi-
mately 7 hours that are needed by the conditional NACs approach.

The branching priority strategies yield different results for the two formulations. As
shown in Figure 4.20, the implementation of any branching priorities for the super-
structure scenario-tree formulation increases the computational time needed to solve
the MINLP problem to the point that the solver is not able to close the optimality gap
within the given time limit (15 hours). It is worth to notice though that the upper
bound reaches the global optimum solution.

On the other side, Figure 4.21 shows that the implementation of the branching pri-
ority strategies drastically reduces the computational time of the the conditional
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NACs formulation. The lowest computational effort is obtained by prioritizing the
bi-linear terms of the objective function (branching 1). This renders the conditional
NACs formulation (that is solved in approximately 2.8 hours) more efficient than the
superstructure tree formulation (that is solved in approximately 3.7 hours).

FIGURE 4.20: Upper and lower bounds of the global optimum for
the superstructure scenario-tree formulation with different branching

priority strategies. Source: (Leo and Engell, 2023)

FIGURE 4.21: Upper and lower bounds of the global optimum for
the conditional NACs formulation with different branching priority

strategies. Source: (Leo and Engell, 2023)
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TABLE 4.5: Computational results for the formulation that is based on
the conditional NACs. Source: (Leo and Engell, 2023)

z∗ LB Gap CPU [s]

branching 1 1172 1172 0 % 10200
branching 2 1172 1172 0 % 13050
branching 3 1202 777.2 33.6 % > 54000
no priority 1172 1172 0 % 26470

TABLE 4.6: Computational results for the formulation that is based on
the superstructure tree. Source: (Leo and Engell, 2023)

z∗ LB Gap CPU [s]

branching 1 1172 663.5 43.3 % > 54000
branching 2 1172 791.4 32.4 % > 54000
branching 3 1172 616.5 47.3 % > 54000
no priority 1172 1172 0 % 13650

Optimal production and maintenance strategies

The goal of this section is to analyze the differences between the production and
maintenance strategies that are obtained by solving the deterministic and stochas-
tic formulations. The solution of the deterministic problem is shown in Figure
4.22 in terms of the degradation trajectories (with the corresponding timing of the
maintenance activities) and production profiles. We refer here to the deterministic
optimization as a deterministic condition-based model where a perfectly known
degradation model is embedded into the optimization problem to define the RUL
according to the operating conditions of the plant, as proposed in many works on
CBM optimization (Jain and Grossmann, 1998; Xenos et al., 2015; Leo and Engell,
2017). As already described in Section 4.1.3, it is worth to highlight that we consider
a deterministic CBM optimization instead of a standard Expected Value Problem
(where the uncertain parameters are replaced by their mean values) since it generates
more realistic and less conservative results. In fact, a standard Expected Value Prob-
lem would define a fixed duration of the production campaigns loosing the degrees
of freedom that are provided by the relation between operating conditions and RUL
of the plant.
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(a)

(b)

FIGURE 4.22: Results of the deterministic CBM optimization: (a) degra-
dation trajectories and timing of the maintenance activities, (b) pro-

duction profiles. Source: (Leo and Engell, 2023)

The results of the stochastic approach represent the global optimum of the conditional
NACs formulation and are shown for a high (0.004) and a low value (0.001) of the
parameter β of the Cox model. The parameter β influences the hazard function of the
plant for a given degradation level dt,c,s: higher values of the parameter β increase the
probability of realization of the earlier failure times. Low values render more likely
the later uncertain failure times of the plant.

Figure 4.23 shows the resulting scenario tree when the high value of β is considered.
Figure 4.24 shows the trajectory of the degradation, the timing of the maintenance
activities, the production profiles and the optimal probabilities of the scenarios.

FIGURE 4.23: Optimal scenario tree for a high value of β. Source: (Leo
and Engell, 2023)
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Compared to the results of the deterministic CBM optimization, the stochastic model
anticipates the timing of the maintenance activities by increasing the production
levels and, consequently, the degradation rates. The optimal scenario-tree that is
depicted in Figure 4.23 represents a deterministic tree since only one scenario for
each campaign realizes. In fact, for both the production campaigns the maintenance
activities are performed at the time of the earliest realization of the uncertain failure
and, therefore, only the first scenario realizes with a probability equal to one.

(a)

(b)

(c)

FIGURE 4.24: Results of the stochastic problem for β = 0.004: (a)
timing of the maintenance activities and degradation trajectory, (b)
production profiles, (c) probabilities of the scenarios. Source: (Leo and

Engell, 2023)
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Figure 4.25 shows the resulting scenario-tree when a low value of the parameter β
is considered: the timings of the maintenance activities let all the uncertain failure
times realize and therefore the optimal scenario tree represents a multi-stage tree.

FIGURE 4.25: Optimal scenario tree for low value of β. Source: (Leo
and Engell, 2023)

As already described, a low value of β reduces for a given degradation level the
hazard (and in this case also the probability) of the earlier failure. Consequently,
the optimization results increase the probabilities of the later failures since they
are associated to higher production volumes (due to the longer production time
available), and therefore lower costs, by postponing the timing of the maintenance
activities. The results for a low value of the parameter β are shown in Figures 4.26-4.28
in terms of the degradation trajectories, the timing of the maintenance activities, the
optimal probabilities of the scenarios and the production profiles.

(a) (b)

(c) (d)

FIGURE 4.26: Results of the stochastic problem for β = 0.001: (a)
degradation profiles for scenario (a) s1, (b) s2, (c) s3, (d) s4. Source:

(Leo and Engell, 2023)
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FIGURE 4.27: Probabilities of the scenarios. Source: (Leo and Engell,
2023)

(a) (b)

(c) (d)

FIGURE 4.28: Results of the stochastic problem for β = 0.001: produc-
tion profiles for scenario (a) s1, (b) s2, (c) s3, (d) s4. Source: (Leo and

Engell, 2023)
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Chapter 5

Summary, Conclusions and

Discussion

The development and solution of stochastic programming formulations to exploit the
concept of Enterprise-wide optimization was discussed in the thesis. Planning and
scheduling problems with uncertain information were the focus of this work paying
particular attention to the integration of layers of the decision process. The applica-
tions considered in this thesis dealt with the integration of production scheduling
with energy management and of production planning with predictive maintenance
optimization.

In the context of industrial Demand-Side Management, a two-stage stochastic pro-
gram has been proposed to simultaneously define the production schedule and the
day-ahead electricity procurement that is performed via a bidding process. Account-
ing for the inherit uncertainty of the day-ahead bidding, where the electricity price
becomes known only after the electricity commitment is communicated to the elec-
tricity provider, revealed to be crucial to reduce the electricity cost and to adjust
the production schedule to the time-varying price signal. To reduce the electricity
that is purchased during the uncertain price peaks, which are associated to high
electricity costs, the introduction of a risk measure is necessary. We showed the
advantages of a risk-averse optimization in terms of energy cost reduction when the
optimization problem is solved to optimality. However, as often happens, the benefits
come at the price of an increased solution complexity that renders the formulation
not solvable with an off-the-shelf tool. When the proposed approach was applied to a
real-world industrial case study, the progressive hedging algorithm was used to find
good-quality near-optimal solutions of the large-scale MILP formulation.
The same trade-off between formulation benefits and complexity appeared for the
stochastic multi-stage mixed integer optimization problem that is proposed in this
work to optimize the amount of electricity that is purchased from the TOU power con-
tracts and from the day-ahead market and the amount of electricity that is generated
with a real-world industrial combined heat and power plant over a medium-term
time horizon. The complexity of the multi-stage formulation that considers an uncer-
tain day-ahead price rises because of the decisions regarding the power contracts that
must be made at a point in time before the beginning of the considered time horizon
(first-stage) and because of the daily revelation of the uncertain day-ahead price.
The large-scale deterministic equivalent formulation was solved by approximating
the multi-stage optimization in a series of two-stage stochastic programs within a
shrinking horizon procedure. Additionally, to handle the multi-scale nature of the
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problem (i.e. the contract decisions cover a time horizon of one week while the
process decisions only one hour) a detailed model for the short-term future and an
aggregate one for the impact on the long-term horizon were integrated.

The exploitation of the financial incentives that are set up by the grid operator is
unanimously recognized by large electricity consumers as a profitable way to reduce
the electricity cost. Realistic formulations able to capture the significant features of
the electricity purchasing options are still missing. A promising extension of the
proposed work is the integration of the intraday electricity purchasing option to
strategically bid on different spot markets. Intraday power trading refers to the
continuous purchasing and selling of electricity that takes place during the same
day as the power delivery. The intraday trading allows the consumer to adjust
the day-ahead electricity procurement to unforeseen plant conditions (breakdowns,
delays,...) by selling or buying electrical power with short lead times (up to five
minutes). However, since multiple markets have different pricing mechanisms and,
therefore, different revelations of their uncertain prices (e.g. the intraday prices are
assessed in continuous trading based on each transaction that is completed), a multi-
stage mixed-integer formulation would have to be developed. Since a multi-stage
formulation is notoriously hard to solve, the need of realistic formulations comes
with the need of efficient solution algorithms. In particular, large-scale stochastic
integer formulations with integer recourses are still an open challenge due to the
non-convexity that is introduced by the integer variables.

Similar considerations can be made on the computational challenge rising from the
solution of non-convex (stochastic and deterministic) MINLP problems as shown
with the novel stochastic program with endogenous uncertainty that is proposed in
this thesis to integrate production planning, prognosis and condition-based mainte-
nance. In fact, the novel approach proposes a decision-dependent formulation that
models the probabilities of the scenarios as decision variables giving rise to bi-linear
non-convex terms. Since a global solver enhanced with different branching priority
schemes was not able to solve the resulting non-convex MINLP deterministic equiv-
alent problem, two primal decomposition algorithms (a local and global one) were
applied to improve the computational time and the quality of the solution. The high
complexity of the novel formulation is, nonetheless, justified by the advantages that
are obtained respect to the corresponding deterministic counterpart. The advantages
come not only from the awareness of the model about the uncertain parameters, the
Remaining Useful Life of the plant in this case, but also from the additional degrees of
freedom given to the decision maker by defining the probabilities of the scenarios as
decision variables that depend on the plant operations. In particular, the endogenous
uncertainty formulation made possible the integration of a prognosis model, the
Cox model, into an optimization problem to make more profitable maintenance and
production planning decisions.

A further step towards the deployment of the proposed formulation would be the
integration with a monitoring system. In fact, an online application of the proposed
formulation must be able to collect measurements of the degradation process to up-
date the parameters of the degradation model. A more accurate degradation model
would improve the estimation of the probabilities of the scenarios and gradually
resolve the uncertainty. In fact, according to the collected measurements some of the
scenarios that are considered at the beginning of the horizon might become not real-
izable with the additional side effect of reducing the problem size and consequently
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the computational effort required by the optimizer.

The class of stochastic programs with decision-dependent probabilities is a relative
novel class of optimization problems with several open questions from both the
modelling and the solution perspectives. The integration of a risk measure for this
class of problems has not received much attention in the scientific literature. A
deviation-based risk measure, e.g. the Expected Excess, could be integrated with-
out altering the proposed problem decomposition and solution algorithms that are
proposed in this thesis, the Generalized Benders and the Global Optimization de-
compositions. Moreover, with a non-convex MINLP problem emerges also the need
of solution algorithms able to find the global optimum in a reasonable amount of time.

We further extended the proposed approach to a medium-term planning horizon by
modelling a stochastic program with decision-dependent probabilities and a decision
dependent structure of the scenario tree. In particular, the scenario-tree representing
the stochastic optimization problem is characterized not only by the probabilities of
the scenarios that are modelled as decision variables but also by the timing of the
revelation of the uncertainty (and therefore the structure of the scenario tree) that is
influenced by the decision variables (i.e. the timing of the maintenance activities in
the proposed work). This is the first time that such a formulation has been proposed
in the scientific literature. We focused on the formulation perspective by propos-
ing two modelling approaches (the superstructure scenario-tree and the conditional
NACs approach) to systematically construct an optimization program with both types
of endogenous uncertainties. We compared the two resulting (equivalent) models
in terms of the computational time that is needed to solve the problem to global
optimality. From a computational perspective, we analysed the influence of different
branching priority strategies on the lower and upper bounds of the global solution
over the iterations of the solution algorithm. It can be concluded that the conditional
NACs formulation is a more compact and efficient model that can gain advantage
from a suitable branching priority strategy.

The number of open questions and potential future works for this challenging class
of optimization are clearly very large and plentiful. From a modelling perspective,
a continuous-time formulation and, in particular, the application of the disjunctive
programming technique (Grossmann and Ruiz, 2012) (along with the different re-
formulations) may provide suitable alternatives to systematically build up such
optimization models and, at the same time, to reduce the required computational
effort. Moreover, the integration of a risk measure and its impact on the production
strategy and on the computational effort should be analysed. From an algorithmic
perspective, the application of decomposition techniques can enable the solution of
larger problems with an increased number of scenarios.
Furthermore, given the generality of the proposed approach, several industrial case
studies (from continuous and batch production) could be analysed to integrate pro-
duction planning and predictive maintenance. The application to industrial size
problems would pose the computational challenge of finding good quality solutions
in a reasonable amount of time. An efficient approach to handle this challenge is
the adoption of the rolling horizon strategy that defines a moving time window to
solve repetitively the optimization problem. Since this is the first formulation of a
stochastic problem with Type-I and Type-II endogenous uncertainties, the rolling
horizon approach has not been applied to this class of problems. However, we can
foresee that a crucial parameter for the application of this strategy is the number
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of production campaigns (or in other words the length of time horizon of the opti-
mization problem) that are optimized. The number of production campaigns to be
optimized should be chosen such that the effect of the decisions of the near future can
be seen within the horizon of the optimization problem. We suggest that a minimum
number of three campaigns should be considered if the rolling horizon strategy is
applied. By considering three production campaigns for each iteration of the rolling
horizon strategy, the effect of the decisions on the current campaign is taken into
account in the following one leading to a reduced impact of cut-off effects of the
terminal costs but still manageable computation times.
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.1 Data of the illustrative example for stochastic DSM

TABLE 1: Minimum stay time.

θmm′[h] off startup on

8 2 6

TABLE 2: Uncertain day-ahead prices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ps

s1 54 58 60 62 60 66 71 76 81 83 77 69 60 46 45 47 57 66 80 70 62 57 65 76 0.01

s2 57 54 51 54 58 67 77 82 91 99 96 93 83 74 69 67 68 70 58 50 47 48 52 52 0.05

s3 55 50 55 58 67 69 80 76 71 69 67 62 63 65 65 64 61 53 53 58 50 52 52 47 0.01

s4 57 57 64 64 77 85 86 84 80 68 62 48 47 43 45 45 45 43 44 46 56 55 56 55 0.1

s5 52 51 47 48 51 50 52 55 59 62 62 48 56 61 68 70 68 66 60 56 57 61 62 59 0.13

s6 53 59 66 68 63 63 58 50 52 53 53 43 42 48 52 55 57 58 60 63 74 77 77 72 0.05

s7 53 57 65 66 69 79 89 88 86 80 75 68 63 65 61 50 50 41 34 26 32 34 39 46 0.31

s8 49 50 53 63 60 59 57 54 54 53 55 52 48 51 51 53 52 44 46 55 59 64 62 60 0.09

s9 60 55 62 64 63 60 55 55 52 46 51 50 49 36 32 37 44 53 58 55 49 48 43 40 0.1

s10 53 48 52 68 75 73 82 77 71 64 63 61 59 54 57 57 66 64 54 49 38 33 35 36 0.15

TABLE 3: Load deviation prices for over-consumption (p+st ). The prices
for under-consumption are defined as p−st = p+st − 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s1 133.3 137.1 139.1 141 139.6 145 150.7 155.3 160.3 162.3 156.8 148.0 139.7 125.6 124.3 126.3 136.6 145.3 159.9 149.1 141.0 136.3 144.4 155.3

s2 149.5 146.0 143 146.4 150 159 169 174.7 183.9 191 188 185 175 166 161 159 160 162 150 142.4 139.9 140.7 144.9 144

s3 130.1 125 130 133 142 144.4 155 151 146 144 142 137 138.0 140 140 139 136.3 128 128 76.9 127 127 122

s4 135.5 135 142 142 155.9 163 164 162 158.6 146 140 126 125.9 121 123.4 123 123.4 121 122 124 134 133 134 133

s5 120.2 119 115 116 119.6 118 120 123 127.6 130 130 116 124.6 129.3 136.8 138.4 136.6 134 128 124 125 129 130 127

s6 127.2 133 140.6 142 137 137 132 124 126 127 127 117 116 122 126 129 131.6 132 134 137 148 151 151.9 146

s7 138.6 142 150 151 154.6 164 174 173 171 165 160 153 148 150.4 146 135 135 126 119.2 111 117 119 124 131

s8 113.9 114.9 117.9 127.6 124.5 123.1 121.1 118 118 117 119 116 112 115 115.4 117.1 116 108 110.3 119 123 128 126.6 124

s9 114.3 109 116 118.6 117 114.1 109 109 106.1 100 105 104.2 103 90 86 91 98.4 107 112 109 103 102 97 94

s10 131.9 126.4 130.6 146.3 153.6 151.1 160.9 155.9 149.7 142.2 141 139 137 132.6 135 135.3 144 142.6 132 127.9 116.6 111 113.2 114

TABLE 4: Vertices of the mode operating region.

Mode Vertex P1 [kg] P2 [kg]

Off 1 0 0

Startup 1 5 5

On 1 10 10

On 2 50 10

On 3 30 40

On 4 70 40



148

TABLE 5: Coefficients to compute the electricity consumption

Mode δm [kWh] γP1 [kWh/kg] γP2 [kWh/kg]

Off 0 0 0

Startup 500 0 0

On 800 20 30

TABLE 6: Upper and lower bounds of the amount of inventory.

IVmin/IVmax [kg] IVinit/IVf in [kg] Dt

P1 600/6000 1000/1000 65
P2 300/3000 500/500 35

.2 Data of the industrial case study for stochastic DSM

TABLE 7: Steel Heat/Group mapping

group g1 group g2 group g3 group g4 group g5 group g6

H1 − H4 H5 − H8 H9 − H12 H13 − H17 H18 − H20 H21 − H24

TABLE 8: Power Consumption [MW]

EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

85 85 2 2 2 2 7 7

TABLE 9: Maximum waiting time [min]

EAF AOD LF CC1 CC2

0 0 90 60 60
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TABLE 10: Processing times [min]

EAF AOD LF CC1 CC2

H1 − H4 80 75 35 30 30

H5 80 80 45 30 30

H6 85 80 45 30 30

H7 − H8 85 80 20 30 30

H9 − H12 90 95 45 30 30

H13 − H16 85 85 25 60 60

H17 − H18 80 85 25 45 45

H19 − H20 80 95 45 45 45

H21 80 95 30 60 60

H22 − H24 80 80 30 60 60

.3 Data for the stochastic formulations with endogenous un-

certainties

TABLE 11: Feed parameters.

Type IC f [-] price f eed
f [e] UB f eed

f [ton]

1 1 100 3600

2 0.9 200 3600

3 0.8 300 3600

4 0.7 400 3600

5 0.6 500 3600

6 0.5 600 3600

7 0.4 700 3600

8 0.3 800 3600

9 0.2 900 3600

10 0.1 1000 3600

TABLE 12: Degradation model parameters.

α1
i α2

i d0 dmax dCBM dmin p0
s β

150 0 1000 1280 2 1220 0.1 0.04
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TABLE 13: Process model parameters.

γP1,1 γP1,1 γP2,1 γP2,1 γP3,1 γP3,1 rP1 rP2 rP3

TABLE 14: Product demand Dp and maximum production capacity
UBy

p,s.

P1 [ton] P2 [ton] P3 [ton]

3600 1600 5600

4800 2680 7360

TABLE 15: Average production cost in the following campaign or
products purchasing price.

P1 [e/kg] P2 [e/kg] P3 [e/kg]

35 30 15

TABLE 16: Cost parameters.

steam price [e/ton] fuel price [e/ton] cCBM

28 214 1000

TABLE 17: Lower and upper bound plant inputs.

feed flow [ton/day] severity [-] steam 105 bar [ton/day] steam 30 bar [ton/day]

340/450 0.7 / 0.95 40 /120 0/50

.4 Generation of the optimality cuts for the Benders decom-

position

− λ̂1,p,s ∗ (−Dp + ∑
t∈T1stage

yp,t + P̂Pp,s + ∑
t∈Ts

ŷp,t,s) ∀s ∈ S, p ∈ P (1)

− λ̂2,i,t,s ∗ (ûi,t,s −UBinput
i,t,s ∗ (1− xCBM

t ) ∀s ∈ S, i ∈ I, t ∈ Ts (2)

− λ̂3,i,t,s ∗ (−ûi,t,s + LBinput
i,t,s ∗ (1− xCBM

t ) ∀s ∈ S, i ∈ I, t ∈ Ts (3)

− λ̂4,t,s ∗ (d̂t,s − dmax
s ∗ (1− xCBM

t )) ∀s ∈ S, i ∈ I, t ∈ Ts (4)

− λ̂5,p,t,s ∗ (ŷp,t,s −UBy
p,t,s ∗ (1− xCBM

t )) ∀s ∈ S, i ∈ I, t ∈ Ts (5)
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− λ̂6,t,s ∗ (−d̂t,s + dt−1,s + ∑
i∈I

αi ∗ ûi,t + ∑
f∈F

IC f ∗ y f eed
f ,t −M ∗ xCBM

t ) ∀s ∈ S, t = Ts
1

(6)

− λ̂7,t,s ∗ (d̂t,s− dt−1,s−∑
i∈I

αi ∗ ûi,t− ∑
f∈F

IC f ∗ y f eed
f ,t −M ∗ xCBM

t ) ∀s ∈ S, t = Ts
2 (7)

− λ̂8,t,s ∗ (−d̂t,s + d̂t−1,s +∑
i∈I

αi ∗ ûi,t + ∑
f∈F

IC f ∗ y f eed
f ,t −M ∗ xCBM

t ) ∀s ∈ S, t ∈ {Ts
2 , . . . , |Ts|}

(8)

− λ̂9,t,s ∗ (d̂t,s− d̂t−1,s−∑
i∈I

αi ∗ ûi,t−∑
f∈F

IC f ∗ y f eed
f ,t −M ∗ xCBM

t ) ∀s ∈ S, t ∈ {Ts
2 , . . . , |Ts|}

(9)

− λ̂10,s ∗ (d̂t,s − dmin + ε− (M + ε) ∗ xscenario
s ) ∀s ∈ S,∈ Ts (10)
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Dupačová, J, N Gröwe-Kuska, and W Römisch (2003). “Scenario reduction in stochas-

tic programming: An approach using probability metrics”. In: Math. Program.

Ser.A.95, pp. 493–511.

Engell, S (2009). “Uncertainty, decomposition and feedback in batch production

scheduling”. In: 19th European Symposium on Computer Aided Process Engineering –

ESCAPE19, pp. 43–62.

Escudero, LF et al. (2007). “The value of the stochastic solution in multistage prob-

lems”. In: TOP 15, pp. 48–64.

Escudero, LF et al. (2018). “On preparedness resource allocation planning for natural

disaster relief under endogenous uncertainty with time-consistent risk-averse

management”. In: Comput Oper Res 32(4), pp. 84–102.

Fleten, SE and TK Kristoffersen (2007). “Stochastic programming for optimizing

bidding strategies of a Nordic hydropower producer”. In: European Journal of

Operational Research 181, pp. 916–928.

Floudas, CA and V Visweswaran (1990). “A global optimization algorithm (GOP)

for certain classes of nonconvex NLPs: I. Theory”. In: Computers and Chemical

Engineering 14(12), pp. 1397–1417.

Geoffrion, A (1972). “Generalized benders decomposition.” In: J Optim Theory Appl 10

(4), 237–260.

Gestore Mercati Energetici (2019). "https://www.mercatoelettrico.org/it/Mercati/

MercatoElettrico/MPE.aspx".

"https://www.mercatoelettrico.org/it/Mercati/MercatoElettrico/MPE.aspx"
"https://www.mercatoelettrico.org/it/Mercati/MercatoElettrico/MPE.aspx"


156 Bibliography

Goel, V and IE Grossmann (2004). “A stochastic programming approach to planning

of offshore gas field developments under uncertainty in reserves.” In: Comput

Chem Eng 28(8), pp. 1409–1429.

Goel, V and IE Grossmann (2006). “A class of stochastic programs with decision

dependent uncertainty.” In: Math Program 108(2), pp. 355–394.

Grossmann, IE (2005). “Enterprise–wide optimization: a new frontier in process

systems engineering”. In: AIChE J 51, pp. 1846–57.

Grossmann, IE and JP Ruiz (2012). Generalized Disjunctive Programming: A Framework

for Formulation and Alternative Algorithms for MINLP Optimization. Ed. by Leyffer S

(eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics

In: Lee J and New York NY. its Applications Springer. Vol. 154.

Hadera, H et al. (2015). “Optimization of steel production scheduling with com-

plex time–sensitive electricity cost”. In: Computers and Chemical Engineering 76,

pp. 117–136.

Hadera, H et al. (2019). “Integration of production scheduling and energy-cost op-

timization using Mean Value Cross Decomposition”. In: Computers and Chemical

Engineering 129.

Heitsch, H and W Römisch (2001). “Scenario reduction algorithms in stochastic

programming”. In: Institut für Mathematik, Humboldt-Universität zu Berlin 95, 01–08.

Hellemo, L, PI Barton, and A Tomasgard (2018). “Decision-dependent probabilities in

stochastic programs with recourse”. In: Comput Manag Sci 15, pp. 369–395.

Jain, V and IE Grossmann (1998). “Cyclic scheduling of continuous parallel-process

units with decaying performance.” In: AIChE J. 44, pp. 1623–1636.

Jalal Kazempour, S, AJ Conejo, and C Ruiz (2015). “Strategic Bidding for a Large

Consumer”. In: IEEE transactions on power systems 30, NO. 2.

Jonsbraten, TW, RJ Wets, and DL Woodruff (1998). “A Class of Stochastic Programs

with Decision Dependent Random Elements.” In: Annals of Operations Research 82,

pp. 83–106.

Kilinc, M and NV Sahinidis (2018). “Exploiting integrality in the global optimization

of mixed-integer nonlinear programming problems in BARON”. In: Optimization

Methods and Software 33, pp. 540–562.

Kim, K and VM Zavala (2015). “Algorithmic innovations and software for the dual

decomposition method applied to stochastic mixed-integer programs”. In: Opti-

mization Online.



Bibliography 157

Laporte, G and FV Louveaux (1993b). “The integer l-shaped method for stochastic

integer programs with complete recourse”. In: Operations Research Letters 13.3,

pp. 133–142.

Laporte, G and FV Louveaux (1993a). “The integer L-shaped method for stochastic

integer programs with complete recourse.” In: Operations Research Letters 13(3),

133–142.

Lawless, JF (2002). Statistical Models and Methods for Lifetime Data, Hoboken, NJ: Wiley-

Interscience.

Leo, E and S Engell (2017). “Condition-based operational optimization of industrial

combined heat and power plants under time-sensitive electricity prices”. In:

Proceedings of the 27th European Symposium on Computer Aided Process Engineering,

October 1st-5th,Barcelona, Spain 40, pp. 1261–1266.

Leo, E and S Engell (2018). “Multi-stage integrated electricity procurement and

production scheduling”. In: International Symposium on Process Systems Engineering

- PSE 2018. San Diego, California, USA.

Leo, E and S Engell (2019a). “Applying Stochastic Optimization to Demand-Side

Management of a Combined Heat and Power Plant”. In: The 12th European Congress

of Chemical Engineering (ECCE12). Florence.

Leo, E and S Engell (2019b). “Integrated day-ahead energy procurement and produc-

tion scheduling.” In: Automatisierungstechnik 66 (11), pp. 950–963.

Leo, E and S Engell (2020). “A novel multi-stage stochastic formulation with decision-

dependent probabilities for condition-based maintenance optimization”. In: Pro-

ceedings of the 30th European Symposium on Computer Aided Process Engineering, May

24-27, Milano, Italy 48, pp. 1795–1800.

Leo, E and S Engell (2021). “Condition-based maintenance optimization via stochastic

programming with endogenous uncertainty”. In: Computers and Chemical Engineer-

ing, pp. 00–00.

Leo, E and S Engell (2023). “Handling Type-I and Type-II endogenous uncertainties

in simultaneous production planning and condition-based maintenance opti-

mization in continuous production”. In: Computers & Chemical Engineering 174,

p. 108227.

Leo, E et al. (2021). “Stochastic short-term integrated electricity procurement and pro-

duction scheduling for a large consumer”. In: Computers and Chemical Engineering

145, p. 107191.



158 Bibliography

Li, C and I Grossmann (2019). “A finite ε-convergence algorithm for two-stage convex

0-1 mixed-integer nonlinear stochastic programs with mixed-integer first and

second stage variables”. In: Journal of Global Optimization 75, 921–947.

Li, P, H Garcia, and W Gunter (2008). “Chance constrained programming approach to

process optimization under uncertainty”. In: Computer Aided Chemical Engineering

32.1, pp. 1245–1250.

Louveaux, F and JR Birge (2008). “L-shaped Method for Two-stage Stochastic Pro-

grams with Recourse”. In: In: Floudas C., Pardalos P. (eds) Encyclopedia of Optimiza-

tion Springer, Boston, MA.

Maravelias, CT and C Sung (2009). “Integration of production planning and schedul-

ing: Overview, challenges and opportunities”. In: Computers and Chemical Engi-

neering 33.12, pp. 1919 –1930.

Mello, T Homem-de and BK Pagnoncelli (2016). “Risk aversion in multistage stochas-

tic programming: A modeling and algorithmic perspective”. In: European Journal

of Operational Research 249.1, pp. 188 –199.

Merkert, L et al. (2014). “Scheduling and energy - Industrial challenges and opportu-

nities”. In: Comput. Chem. Eng. 72, pp. 183–98.

Meyer, C and C Floudas (2006). “Global optimization of a combinatorially complex

generalized pooling problem.” In: AIChE journal 52, 1027–1037.

Mitra, S et al. (2013). “Optimal scheduling of industrial combined heat and power

plants under time-sensitive electricity prices”. In: Energy 54, pp. 194–211.

Mitsos, A, B Chachuat, and P Barton (2009). “McCormick-based relaxations of algo-

rithms”. In: SIAM J Optim 20, 573–601.

Nikulin, M and H Wu (2016). The Cox Model and Its Applications, Springer Berlin,

Heidelberg.

Nogales, FJ et al. (2002). “Forecasting next-day electricity prices by time series mod-

els”. In: IEE 17(2).1–12, pp. 342–348.

Nolde, K and M Morari (2010). “Electrical load tracking scheduling of a steel plant”.

In: Comput. Chem. Eng. 34 (11), pp. 1899–1903.

Pantelides, CC (1994). “Unified Frameworks for the Optimal Process Planning and

Scheduling”. In: In Proceedings of the Second Conference on Foundations of Computer

Aided Operations 52(36), p. 253.



Bibliography 159

Paulus, M and F Borggrefe (2011). “The potential of demand–side management in

energy–intensive industries for electricity markets in Germany”. In: Appl. Energy

88, p. 432.

Peeta, S et al. (2010). “Pre-disaster investment decisions for strengthening a highway

network”. In: Comput Oper Res 37, pp. 1708–1719.

Pflug, G (1996). Optimization of stochastic models: the interface between simulation and

optimization. Kluwer Academic, Boston.

Pflug, G and A Pichler (2016). “Time-Consistent Decisions and Temporal Decompo-

sition of Coherent Risk Functionals”. In: Mathematics of Operations Research 41.2,

pp. 682–699.

Rahimi-Adli, K et al. (2021). “Optimization of the operation of an industrial power

plant under steam demand uncertainty”. In: Energies 21, p. 7213.

Rahmani, R et al. (2017). “The Benders decomposition algorithm: A literature review”.

In: European Journal of Operational Research 259.3, pp. 801 –817.

Rajagopalan, S et al. (2017). “Risk analysis of turnaround reschedule planning in

integrated chemical sites”. In: Computers and Chemical Engineering, pp. 381–394.

Ramin, D, S Spinelli, and A Brusaferri (2018). “Demand-side management via optimal

production scheduling in power-intensive industries: The case of metal casting

process.” In: Applied Energy 225, pp. 622–636.

Rockafellar, RT (2015). “Coherent Approaches to Risk in Optimization Under Uncer-

tainty”. In: INFORMS Tutorials in Operations Research, pp. 38–61.

Rockafellar, RT and S Uryasev (2000). “Optimization of conditional value-at-risk”. In:

J Risk 2.95, pp. 21–42.

Rockafellar, RT and RJ Wets (2006). “Scenarios and policy aggregation in optimization

under uncertainty”. In: Mathematics of Operations Research 16.1, pp. 203–223.
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