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Abstract

Large area manufacturing processes of thin films such as large-area vacuum roll-to-roll coating
of dielectric and gas permeation barrier layers in industry require a precise control of e.g. film
thickness, homogeneity, chemical compositions, crystallinity and surface roughness. In order to
determine these properties in real time, hyperspectral imaging is a novel, cost-efficient, and fast
tool as in-line technology for large-area quality control. We demonstrate the application of
hyperspectral imaging to characterize the thickness of thin films of the multilayer system
ZTO/Ag/ITO produced by roll-to-roll magnetron sputtering on 220 mm wide polyethylene
terephthalate substrate. X-ray reflectivity measurements are used to determine the thickness
gradients of roll-to-roll produced foils with sub nanometer accuracy that serve as ground truth
data to train a machine learning model for the interpretation of the hyperspectral imaging
spectra. Based on the model, the sub-layer thicknesses on the complete substrate foil area were
predicted which demonstrates the capabilities of this approach for large-scale in-line real-time
quality control for industrial applications.
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1. Introduction

Coating is the process of applying a thin layer of mater-
ial to a substrate. This can be realized by deposition of a
liquid-solution, for example in a spin-coating process with
solved metalorganics in solution, or vapor phases, for example
in a sputtering process [l, 2] or atomic layer deposition.
Depending on the application requirements, substrate mater-
ial, coating parameters and coating technology are selected.
In large-area coating techniques, especially in industry applic-
ations, a fast, efficient and very accurate quality control is
necessary but its implementation is challenging.

A widely used coating method is the vacuum roll-to-roll
(R2R) magnetron sputtering process. It is used to coat plastic
substrates with thin films with a thickness in the nanometer
range. For example, it can be applied in manufacturing pro-
cesses for packaging foils with a gas permeation barrier for
protection against water vapor and atmospheric gases, to
manufacture metallic foils for the production of conductive
surfaces [3], lacquer coatings and laminations between two
glasses for low E-coatings for heat reflection and energy sav-
ing, electrochromic smart windows [4], or for flexible per-
ovskite solar cells [5, 6]. Large scale industrial manufacturing
of such functional coatings would benefit from an in-line qual-
ity control with real-time data analysis, requirements that can
be addressed by application of hyperspectral imaging (HSI).

HSI is a method that collects a transmittance and/or reflect-
ance spectrum from an illuminated object at each pixel in the
camera image of a scene, hence it combines digital photo-
graphy and spectroscopy. HSI is often performed in the vis-
ible and near-infrared spectral range (VNIR). HSI is routinely
applied to many remote sensing usages, such as agriculture,
waste sorting and recycling, surveillance, ocean monitoring,
geology and astronomy [7-10]. It is a promising tool to access
fast and accurate data during a manufacturing process in e.g.
food, thin film and pharma industry for cost-efficient qual-
ity control [11-17]. Moreover, HSI has emerged in medical
imaging, for example in detection of cancer tissue [18-20],
Alzheimer disease biomarker [21] or ophthalmology [22, 23]
and further diagnostic approaches [24, 25]. However, the com-
mercial usage of HSI to characterize in-situ and in real-time
large-area thin films during the production process still pos-
sess a major challenge. There is an inherent complexity in
extracting the material’s properties of interest such as e.g. the
layer thickness, homogeneity, and crystallinity from the spec-
tral intensity detected by each pixel.

There are two inherent challenges in the evaluation and use
of HSI data: (i) the complex relationship between HSI spec-
tra and sample properties requires physical modeling. Hence,
evaluation of the measurements to obtain quantitative results

by an expert is needed, i.e. large personnel effort has to be
invested. (ii) Due to the large amount of data, especially for
R2R and in-line applications, a high computational effort has
to be made. This concerns particularly cases where physical
models must be applied to analyze each pixel of an HSIimage.
Here, soft modeling approaches with model training and live
applications on incoming raw data and fast conversion are
the key solutions. Addressing and optimizing such approach
can lead to revolutionizing HSI machine designs for quality
management in very different areas in industry [26], and may
replace or support costly and complex downstream analytics
that often provide no in-line production control.

In this manuscript, we report an approach for large-area
thin film quality control that has the potential for applica-
tion in industrial manufacturing processes for automated in-
line thickness monitoring. We use x-ray reflectivity (XRR) to
produce ground truth data of the layer thickness of a zinc tin
oxide/silver/indium tin oxide (ZTO/Ag/ITO) layer system on
polyethylene terephthalate (PET) manufactured by R2R mag-
netron sputtering in order to develop a prediction model for
HSI spectra. We show how multimodal combination of XRR
and HSI can be used to validate and refine a machine-learning
model based on the partial least squares (PLSs) algorithm for
prediction of film thicknesses.

2. Experimental

2.1 Multilayer fabrication and sample preparation

ZTO/Ag/ITO thin films on PET with a nominal thickness of
70 nm, 5 nm, and 40 nm, respectively, have been produced
at Fraunhofer FEP (Dresden) using a vacuum web coater
[27]. Figures 1(A) and (B) show the foil and a single cut
out, part (C) sketch the multilayer system. The individual
layers are applied to an unheated 125 pm thick PET sub-
strate (Melinex ST504, DuPont) by R2R magnetron sputter-
ing of ceramic mixed targets with the nominal composition
Zn0O/SnO, (50.4/49.6 wt.%) and In,O3/SnO, (97/3 wt.%) in
an Ar/O, mixture. The multilayers were produced over a width
of 220 mm with web lengths up to 300 m. A part of the foil was
extracted after the production process as shown in figure 1(A)
and measured by HSI and XRR. For the XRR investigations,
three pieces of the foil were cut out, laminated onto glass sub-
strates (see colored areas in figure 1(A)) and each measured
at five different positions by XRR. The XRR setup required
a slightly different measurement geometry, i.e. rotation of the
sample by 90°, for the measurements at the sample positions
backward and forward in winding direction (see SI for details
(figure S1)). The HSI measurements were performed on the
full substrate area at ~200 mm width. In the following we
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Figure 1. (A) Sample cut-outs from a part of the R2R foil for XRR sample preparation after HSI measurements of the shadowed gray area.
The colors are used in figure 2 to represent the measurement location of the corresponding cut-out (blue = right, red = center, green = left).
(B) Laminated sample with the black rectangle indicating the XRR measurement position of the central part and the dimensions of the beam

footprint. (C) Schematic representation of the layer system.

will show exemplarily results obtained from the central part
of each cut-out measured with XRR in more detail. This pos-
ition is marked with a black rectangle in figure 1(B) showing
a single laminated XRR sample.

2.2. XRR measurements and data analysis

XRR is an established and widely used technique for invest-
igation of structural properties such as layer thickness, rough-
ness, and electron density. It provides electron density profiles
p(z) perpendicular to the layers’ surface/interface with high
resolution on an angstrom length scale. In such experiments,
the reflected intensity of the sample surface is measured as
a function of the angle of incidence € at specular condition,
i.e. the angle of incidence is equal to the angle of reflection.
Typically, the reflectivity data is presented as a function of
the momentum transfer g, perpendicular to the surface given
by g, = *{-sinf with the wavelength X of incident and reflec-
ted x- rays The reflected intensity can be described by the first
Born approximation [28] via

/ diliZ) exp (ig.z) dz g

1
1(q;) o< —
z qé

Thus this method is highly sensitive to changes of the
electron density perpendicular to the sample surface (<> dpCz )
which allows to determine layer thicknesses of thin multﬂayer
samples with highest precision. Consequently, XRR can be
used to provide ground truth data for the training of machine
learning models for the interpretation of HSI data. The HSI
approach then can be applied to analyze lateral thickness
gradients on a large scale.

The XRR data were measured at beamline BL9 of the
synchrotron radiation source DELTA (Dortmund, Germany)
[29, 30] using a photon energy of 8.048 keV which cor-
responds to wavelength of 1.54 A with a beam size set to
1 x 0.1 mm? (h x v). A Pilatus 100K area detector (Dectris,

Switzerland) was utilized to measure both, the reflected intens-
ity and the diffuse scattering for background subtraction sim-
ultaneously within a g, range between 0.014 to 0.28 A~'. The
area probed by each XRR measurement is given by 1 mm per-
pendicular and on average about 8 mm parallel to the web
winding direction which corresponds to approx. Six pixels and
sixtyfour pixels of a hypercube in the HSI camera, respectively
(see next section).

Each of the three laminated ZTO/Ag/ITO-covered PET
samples (cut-outs) was investigated at five different positions
on the samples, both perpendicular and parallel to the trans-
port direction of the production process; please refer to the
supplementary information (SI) figure S1 for more details.
For data evaluation the XRR curves were normalized by the
intensity of the incident radiation and then corrected by sub-
traction of the diffuse scattered intensity. Finally, the reflectiv-
ity data were evaluated with a combination of the Parratt
algorithm [31] and the effective density model [32] using the
program package LSFit [33]. To minimize the number of fit-
ting parameters, we initially assigned the literature electron
density values [34] of ITO, Ag and ZTO to 1.91 e~ A3,
2.771e~ A=3and 1.642 e~ A~ respectively, as starting para-
meters. Latter refers to a 3:2 Zn:Sn-ratio. The electron dens-
ity of ZTO was determined from a separate XRR analysis of
a ZTO single layer sample to 1.62 & 0.05 e~ A~ and was
fixed during the refinement in order to reduce the amount of
variable fit parameters. The density of the PET substrate was
set to the calculated value of 0.44 e~ A~ and kept constant
during the refinement while its roughness was fitted in the ini-
tial refinement loop and then fixed. We applied a three-layer-
model to analyze the layer system on the PET substrate. A set
of parameters was determined for each layer: the roughness
(o), the thickness (d) and the electron density (p). The exper-
imentally determined reflectivity curves together with the fit
results are shown in figure 2(A) exemplarily for the central
part of the three different cut-outs that are representative for
a potential thickness gradient perpendicular to the transport
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Figure 2. XRR data (A) of ZTO/Ag/ITO-coated PET foils measured at the central position of each extracted sample and corresponding
electron density profiles (B). The XRR data is vertically shifted for clarity.
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Figure 3. Layer gradients of the ZTO, Ag and ITO sublayers for different positions perpendicular to the transport direction. Open symbol
show the layer thickness determined for positions before (diamonds) and behind (circle) the central part of each sample indicative for the
homogeneity of the foil in transport direction. Please refer to the SI, figure S1, for visualization of the measurement positions on the
samples. The errors are estimated via variation of the refinement parameters.

direction. One clearly observes that the reflectivities differ par-
ticularly regarding the oscillation period between the center
sample and the ones extracted from the rims (left, right) of the
foil. This is even more evident if the corresponding density
profiles obtained from the fitting scheme are compared (see
figure 2(B)) which show a significant decrease of the layer
thickness of all sublayers to the rim of the foil. In web wind-
ing direction the sample is homogeneous as the XRR curves
and density profiles hardly change (see figures S2—S4 in the
SI). The thickness gradients of the sublayers are compiled in
figure 3 including all measurements. The open symbols show
the thicknesses determined parallel to the web winding direc-
tion which supports the thickness variation in that direction
being much smaller. In contrast to the ZTO and the ITO lay-
ers, the density of the Ag layer is reduced by about 24% com-
pared to the nominal Ag density. This indicates that the Ag
layer is not fully closed but may show pore-like structure. All

extracted fit parameters are given in the SI (table S1). This
data can be used as ground truth data to train and validate the
machine learning models for interpretation of the HSI images
and is applied in the following to the prediction of the layer
thickness.

2.3. HSI

The HSI measurements were performed at the Fraunhofer
IWS (Dresden, Germany) using a Headwall VNIR HSI camera
(Headwall Photonics, USA) with 1004 x 1002 sensor pixels,
together with a Schneider Xenoplan f/1.4 23 mm objective at
an operating distance of 250 mm to the foil’s surface result-
ing in 100 mm field of view. The wavelengths detected by the
camera range from 400 nm to 1000 nm.

A two times spatial and a four times spectral binning was
used resulting in an effective pixel size of the camera of around
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Figure 4. Schematic of the VNIR-HSI system (A) with the VNIR-HSI camera (HSI), lens (L), diffuse halogen illumination (DF) and

motion unit (MU). Photo of the HSI system used (B).

170 pm and a spectral resolution of around 4 nm. The foil was
illuminated using a diffuse illumination system (Fraunhofer
IWS, Dresden, Germany) with halogen lamps. The measure-
ments were performed with the HSI software Imanto®pro
(Fraunhofer IWS, Dresden, Germany) with a frame rate of
30 Hz and an exposure time of 25 ms. This exposure time at a
given web speed of approximately 2 m min~! results in a foil
translation of less than 1 mm in web winding direction during
one HSI measurement which determines the spatial averaging.
This is in good agreement with the spatial resolution provided
by the XRR measurements. Figure 4 shows a schematic draw-
ing and a photo of the used HSI system.

To avoid irregularities in the lighting and to eliminate the
influence of dark current, a white and a dark correction for each
wavelength was carried out for the VNIR HSI measurement
according to equation (1),

1\ = W el M

where I.()\) is the corrected image intensity, /,(\) the original
image intensity, /4(\) is the dark current recorded with the
light source switched off and the lens covered, and /() is
the intensity of the white reference for the wavelength \. For
the white reference, a plate of optical polytetrafluorethylene
was scanned under the same measuring conditions as the ori-
ginal image. Since the specimen under study is a transparent
film, a highly absorbing material (MaxiBlack Foil, Acktar Ltd,
Israel) was placed under the specimen for the measurement to
minimize a possible background effect. The measurement of
the foil was performed before cutting it for XRR sample pre-
paration. Figure 5 shows the result of the HSI measurement
of the complete sample in terms of the color-coded reflectiv-
ity at a wavelength of 700 nm. The areas probed by the XRR

measurement and used for evaluating the ground truth data
are indicated with blue stripes, each corresponding to around
100 spectra.

To obtain the training data for machine learning, the spec-
tra in the marked stripes were selected and a mean spectrum
was calculated. Because of the sample rotation in the XRR
setup for selected sample positions in web winding direction,
the orientation of the footprint area differs for these meas-
urements as indicated in figure 5. However, inspection of the
results presented in figure 3 shows that the layer thicknesses
are not significantly affected by the footprint orientation so
that we considered all data to train the model. Then, for each
stripe, the most similar spectrum to the respective mean spec-
trum was selected. Figure 5 (right) shows the 15 spectra selec-
ted in this way. These 15 spectra and the corresponding layer
thickness values from the XRR measurement could now be
used in the next step for training machine learning regression
models.

2.4. Training and optimization of the PLS regression model
for HSI thickness prediction

In the next step, a regression model was trained with the selec-
ted HSI spectra and the thicknesses for the Ag, the ITO and
the ZTO layer determined from the XRR measurements in
order to subsequently predict the layer thickness for the com-
plete sample. The PLSs algorithm was chosen as the regression
algorithm [35]. PLS is an algorithm used for regression ana-
lysis and dimensionality reduction. It is a supervised learning
technique that finds a linear relationship between a response
variable and one or more predictor variables by constructing
a set of orthogonal latent variables that explain the maximum
possible variance in both the predictor and response variables.
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PLS is commonly used in fields such as chemistry and biology
to analyze complex data sets and to build predictive models.
Unlike other regression techniques, PLS can handle data sets
with collinearity, missing values, and unbalanced design and
it is particularly useful for modeling relationships between a
response variable and a large number of predictor variables.

Before training the PLS model, optional preprocessing of
the spectra by L1, L2 as spectrum division norm or standard
normal variate normalization was performed. The type of pre-
processing, as well as the number of latent variables (between
1 and 15) for the PLS were performed by automatic hyperpara-
meter optimization using the random search algorithm [36].
For the hyperparameter optimization and the validation of the
obtained models, a nested leave one out (LOO) cross valida-
tion was performed. To determine the quality and to compare
the obtained regression models, the root mean square error
(RMSE), the relative RMSE (rRMSE) and the coefficient of
determination (R2) were analyzed. The RMSE is one of the
most commonly used measures for evaluating the quality of
predictions and shows how far predictions fall from measured
true values using Euclidean distance. The determination was
made for each of the outer cross-validation results. All model
calculations were repeated three times and the mean and stand-
ard deviation for the metrics were determined. The calcula-
tions were performed with Python 3 and the library Scikit-
learn [37].

3. Results and discussion

The results of the PLS regression model for the thickness of
the three layers of the sample are shown in table 1. The res-
ults for the Ag and the ITO layer are comparable and provide
an accurate prediction of the layer thickness confirmed by a

Table 1. Results of the PLS regression model for the prediction of
the three layer thicknesses. All results were calculated by LOO
cross validation. The standard deviation is obtained by repeating the
model calculation three times.

RMSE (nm) RMSE R?
Ag 0.056 =+ 0.001 0.011 =+ 0.000 0.840 =+ 0.003
ITO 0.506 =+ 0.060 0.013 £ 0.002 0.870 =+ 0.023
ZTO 1.204 £ 0.014 0.018 = 0.000 0.515 £ 0.001

low RMSE, rRMSE and a high R?. In contrast, the predictions
of the ZTO layer thicknesses are worse, with an rRMSE more
than double and an R? of only 0.515. This is also reflected in
the regression plots of the three models (see figure 6). The ZTO
model shows the poorest fit, while the other models exhibit a
remarkable correlation between the ground truth and the pre-
dicted thickness values. In order to assess the quality of the
underlying ground truth data, error bars of the measured layer
thicknesses are shown.

The results for the ZTO prediction deviate from the desired
fit much stronger than for the other layers.

We trace this back to an increased model error due to the rel-
atively large error of the ground truth data regarding the thick-
ness determination by fitting the XRR curves. This is accom-
panied by a smaller variation in the training data. Most of the
15 positions investigated show the same ground truth layer
thickness of about 68 nm. This makes a reasonable predic-
tion in case of the ZTO layer questionable. It should also be
noted that the differences between the HSI spectra of the dif-
ferent areas are relatively small and the spectra also have a
low signal-to-noise ratio, which also complicates the training
of the regression models. In addition, the measurement of the
ZTO layer is complicated by the strongly deviating reflectivity
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of the overlying Ag layer. Furthermore, the thicknesses of
the three layers are strongly correlated with each other (see
figure 3) and only a small thickness range is covered for all
three coating materials. It can therefore be assumed that the
models obtained cannot be generalized to arbitrary layer thick-
ness combinations of ZTO/Ag/ITO. As only a few data points
and no independent test samples could be examined in the
present experiment, it can be assumed that the PLS model is
overfitted which prevents a final conclusion on the predictive
accuracy of the model for completely new samples.

Nevertheless, the models obtained were used to predict the
thicknesses for the entire foil sample. For this purpose, the
PLS models were applied to all spectra of the HSI measure-
ment and the predicted film thicknesses were color coded. The
results are shown in figure 7 (bottom). The same irregular-
ities can be observed in all three images. These are artifacts
attributed to substrate imperfections like surface contamina-
tions and dust before coating. In the top part of the figure we
present cross-sections perpendicular to the web-winding dir-
ection at different y-positions of the predicted image in order
to compare the predicted layer gradients for the position where
the ground truth data were measured (111 mm) with the pre-
dictions at other parts of the foil. Again, the strong correlation
of the sub-layer thicknesses can be recognized, with the layer
thickness distribution for the ZTO layer differing slightly from
the distribution of the Ag and ITO layers. However, the model
is capable to provide reasonable thickness gradients for the
complete sample. Despite the deficiencies on predicting the
ZTO layer thickness with highest accuracy compared to the
Ag and ITO layers, the detection of film thicknesses using HSI
over a foil width of 220 mm for such a complex layer system
is remarkable. For evaluation of the HSI data, analysis of one
spectrum using the trained prediction model is in the range of
some milliseconds. The prediction of the whole image takes
below 5 s which provides reasonable reaction times in case
of production failure. These results validate the capabilities of
the presented approach for accurate on-line thickness control
of multilayer coatings although a larger ground truth data base
is required which needs to cover large thickness gradients for
a generalization of such models to various layer systems.

4. Conclusion

In summary, we conclude that the presented method is well
suited for the complete and fast thickness prediction of thin
film samples via HSI using models that are trained using
a relatively small amount of ground truth data obtained by
XRR measurements. In future, a combination of HSI meas-
urements and XRR as ground truth data source could provide
a rapid thickness prediction for various materials by using lib-
raries of pre-trained machine learning models. The present
approach is especially suited to determine thickness variations
of large-area samples which is of utmost relevance for indus-
trial production processes. In fact, we have recently succeeded
to model and predict film thicknesses in the sub-100 nm range
for a web width of 300 mm and a web speed of 2 m min~'. The
concept could also be extended to other layer properties that

are accessible by XRR such as density or roughness or differ-
ent type of ground truth data e.g. the crystallinity and phase
composition of thin films determined by x-ray diffraction.
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