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”The most important step a man can take. It’s not the first one, is it? It’s
the next one. Always the next step.”

– from Oathbringer by Brandon Sanderson



Abstract

Sensitivity and Optimisation of Damage in Forming Processes – Academic
and Industrial Challenges

Manufacturing of engineering components in today’s industry requires a great amount of
knowledge in order to produce components with the desired capabilities. This knowledge
encompasses the material behaviour, the manufacturing process which creates the part, as
well as the loading which the product is subjected to during its intended use. Combination
of those factors allows an engineer to design a product which satisfies the requirements for
the task at hand. While elastic and elasto-plastic effects are well understood nowadays,
damage mechanics take a more leading role in research. Damage can be understood
as an accumulation of defects on the microscale, which leads to a degradation of the
macroscopic behaviour of the material. Including damage modelling into the engineering
process, e.g. by using damage material models for the simulations, it is possible to predict
damage accumulation due to the manufacturing process. This damage can subsequently be
reduced by adjusting process parameters, in order to generate parts which not only show
overall lesser damage accumulation, but also further resistance against damage when in
use. While typically such design processes are done manually, the utilisation of numerical
optimisation allows automatic generation of damage resistant designs. Here, the use of
numerical optimisation enables the automatic generation of damage-tolerant processes
and components.

This thesis deals with numerical damage optimisation and consists of two overarching
parts. The first part covers the academic challenges of an optimisation problem. A
nonlocal ductile damage model is enhanced with sensitivity information to allow for shape
optimisation. Analytical derivation of the gradients enables the application of gradient-
based optimisation strategies which greatly reduce the computation time. While this
approach is computational efficient and is elegant in deriving the sensitivity information, its
scope of application is limited to academic problems. Consequently, the second part of this
thesis deals with the industrial challenges. For this, an additional optimisation framework
approach around a commercial finite element software is derived. This framework allows
damage optimisation of forming processes, such that parameter combinations can be found
which produce parts with less damage accumulation.

Key words: Nonlocal damage, finite element method, variational sensitivity analysis,
structural optimisation, shape optimisation, forming processes, process optimisation,
Abaqus.



Kurzfassung

Sensitivität und Optimierung der Schädigung in Umformprozessen –
Akademische und industrielle Herausforderungen

Die Herstellung technischer Komponenten in der heutigen Industrie erfordert ein großes
Maß an Wissen, um Teile mit den gewünschten Eigenschaften zu produzieren. Dieses
benötige Wissen umfasst das Materialverhalten, den Herstellungsprozess, sowie die Belas-
tung, welche das Bauteil im Einsatz erfährt. Eine Kombination dieser Faktoren ermöglicht
es dem Ingenieur, ein Produkt zu entwerfen, welches den Anforderungen der jeweiligen
Anwendung gerecht wird. Elastische und plastische Materialeigenschaften sind heutzutage
reichlich erforscht. Schädigungsmechanik stellt jedoch weiterhin eine anspruchsvolle Her-
ausforderung dar und nimmt eine wichtige Rolle in der aktuellen Forschung ein. Schädigung
wird als eine Ansammlung von Defekten auf der Mikroskala verstanden, welche zu einer
Verschlechterung des makroskopischen Materialverhaltens führt. Die Berücksichtigung von
Schädigungsmodellierung im Konstruktionsprozess ermöglicht die Vorhersage des Schädi-
gungszustandes, welcher durch den Fertigungsprozess entsteht. Die Schädigung kann
durch Anpassung von Prozessparametern reduziert werden, um Teile zu erzeugen, die eine
geringere Schädigungsanreicherung aufweisen und in der Anwendung schädigungstoleranter
sind. Hier ermöglicht der Einsatz numerischer Optimierung die automatische Generierung
schädigungstoleranter Prozesse und Bauteile.

Diese Arbeit befasst sich mit der numerischen Schädigungsoptimierung und lässt sich
in zwei Bereiche einteilen. Der erste Bereich befasst sich mit den akademischen Her-
ausforderungen eines solchen Optimierungsproblems. Ein nicht-lokales duktiles Schädi-
gungsmodell wird mit Sensitivitätsinformationen angereichert, um Formoptimierung zu
ermöglichen. Die analytische Herleitung der Gradienten erlaubt die Anwendung gradienten-
basierter Optimierungsstrategien, wodurch die Rechenzeit erheblich reduziert wird. Dieser
Ansatz ist zwar rechnerisch effizient und elegant für die Herleitung der Sensitivitätsin-
formationen, der Anwendungsbereich ist jedoch auf akademische Probleme beschränkt.
Daher befasst sich der zweite Bereich dieser Arbeit mit den industriellen Herausforderun-
gen. Dafür wird eine zusätzliche Optimierungsumgebung um eine kommerzielle Finite
Elemente Software herum entwickelt. Diese ermöglicht eine Schädigungsoptimierung von
Umformprozessen, sodass Parameterkombinationen gefunden werden können, die Bauteile
mit geringerer Schädigungsanreicherung erzeugen.

Schlagwörter: Nichtlokale Schädigung, Finite Elemente Methode, Variationelle Sensi-
tivitätsanalyse, Struktur- und Formoptimierung, Umformprozesse, Prozessoptimierung,
Abaqus.
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Chapter 1

Introduction

This chapter introduces the reader to the broad thematic background of the
underlying research and motivates the topic of interest. The concept of damage
in metals is presented and a distinction between different damage mechanisms is
made. The field of structural optimisation is described and process optimisation
is briefly introduced. The overarching goal of this thesis is further specified for
the academic and industrial viewpoints, respectively. Finally, the structure of
this is presented.

1.1 Motivation

Over the recent decades, the demands regarding metals in industrial applications has
increased steadily. This led to specific microstructures or textures of the material being
engineered and improved for their respective scope of application. The utilisation in their
fields of manufacturing in return lead to higher demands on the manufactured parts, such
as formability, lightweight structures, manufacturing cost and safety margins, to name a
few. Together with ever growing concern regarding the environmental impact and therefore
material and energy efficient production, the requirements in modern industry are ever
increasing. This requires engineers to acquire a deep understanding of the underlying
mechanics regarding material mechanics, as well as the considered process.

One of the key mechanisms which govern the efficient utilisation of metals is damage.
If damage evolution is too high during the manufacturing process, macroscopic fracture
may occur and failure of the part is highly likely. This macroscopic fracture is often seen
as the critical factor in a finished product. In turn, microscopic damage accumulation
is often not considered. However, unaccounted induced damage during manufacturing
can negatively influence the behaviour and the lifetime of a given part. Hence, it is
necessary to accurately research damage behaviour and analyse processes regarding the
accumulation of damage during manufacturing. Taking damage effects into consideration
during experiments for example, allows analysis of the influence certain process parameters
have on the microscopic damage evolution during manufacturing. However, only utilising
experimental data is quite cost inefficient.

Nowadays, simulation of physical problems is part of most industrial environments, due

1



2 Chapter 1 Introduction

to ever increasing computational power. Consideration of damage in a given material model
allows its computation in numerical simulations and therefore prediction of the degradation
of material behaviour due to applied loads. Obviously, this is more cost efficient than
relying solely on experimental data. However, modelling of damage behaviour is not
straightforward, as it incorporates additional numerical challenges which require their own
methods to solve.

With a predictive material model and a corresponding simulation environment at hand,
numerical optimisation can be applied to further enhance a given problem. The underlying
results from a process, in either the experimental setup or in simulations, directly depend
on the choice of many process parameters and other design variables. By applying
mathematical optimisation, optimal parameter sets can be generated which reduce the
damage accumulation within the researched process. This motivates the work presented
in this thesis. Combination of mathematical optimisation with ductile damage material
mechanics enables enhancement of structures and forming processes to yield damage
tolerant geometries and processes, respectively. The considered materials are DP800, used
in sheet metal forming, and 16MnCrS5, used in bulk metal forming. Therefore, only
ductile damage is the considered mechanism in this work.

1.1.1 Basics of damage mechanics

One of the most crucial material properties of a part under consideration is its damage
state. Knowing how much damage is present in a product allows better utilisation of
its properties as the limits regarding its load bearing capabilities are better predicted.
Damage as a mechanism has been known in metal manufacturing for about a century. First
investigations were undertaken by [150] in 1926, where tensile tests for aluminium samples
were investigated. Following this early research, later on in 1930 [185] chevron-crack in
wire drawing was discovered and in [42] the influence of hydrostatic pressure on ductile
fracture was highlighted in 1945. First ground breaking innovations in continuum damage
modelling came with the work done by [124] in 1958. In general, a distinction between
three different cases of damage mechanics can be made, i.e. between fatigue, brittle damage
and ductile damage.

Fatigue describes the loss of load bearing capacity due to damage accumulation under
cycling loads [126]. Notably, this loss occurs at a prescribed load that has a lower magnitude
than is observed for failure in non-cycling experiments. Depending on the number of
cycles, it can be further differentiated between low-cycle fatigue and high-cycle fatigue. In
general, fatigue is not explicitly applicable to forming processes for example, as its effects
are only relevant for the later use case of manufactured components.

Brittle damage is a damage mechanism, which occurs without a coupled plastic behaviour.
It is therefore generally observed in brittle and porous structures, which show no plastic
deformations, such as ceramics, concrete or rock [65], or materials at extremely low
temperatures. Generally, brittle damage can be identified by analysing a crack surface.
Since brittle damage occurs without plastic effects, the surface of brittle fracture is
relatively smooth in perpendicular orientation to the crack direction.

However, both of the aforementioned types of damage are not considered in this thesis.
Since metals and forming processes are the choice of material in this work, the coupling of
plasticity with damage effects have to be accounted for. Therefore, the main principle
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damage effect under consideration in this thesis is ductile damage.
Ductile damage describes the combined evolution of plasticity and damage. It is

understood as the nucleation, growth and coalescence of pores or voids on the microscale,
see Fig. 1.1. These generally initiate at micro defects within a given material, such as
inclusions or grain boundaries [195, 219]. Since these voids grow due to plastic deformation
[84], analysis and detection of damage initiation processes within the material are hard to
distinguish. Generally, ductile damage within the microscale of the material results due to
brittle fracture at hard phases in the material, decohesion of interfaces, or micro-cracks
in martensite [66, 137, 242]. Comparing fracture surfaces, in contrast to brittle fracture,
fracture resulting from ductile damage can be identified by a dimpled fracture surface.

Figure 1.1: Sketch of ductile damage evolution under increasing load (based on [186]):
a) The initial, inhomogeneous material, b) void nucleation, c) void growth and coalescence,
and d) macroscopic fracture and failure.

Depending on the field of research, different definitions for damage can be found. In
[114] a definition for damage is proposed that attempts to take into account the most
important properties in the fields of process technologies, characterisation and material
modelling. In this thesis, based on the work within TRR188 [224], damage is understood
as an effect on the microscale, which negatively influences the macroscopic mechanical
properties of the material under consideration. The difference between an undamaged
and damaged material can be observed by their elastic properties under the same load.
Application of new methodology enables decoupling and therefore detailed research of
these mechanics. By means of in-situ methods for example, the underlying mechanisms
can be analysed on the microscale directly [115].

1.1.2 Basics of applied optimisation

Utilisation of mathematical optimisation in numerics, specifically structural problems,
is an established field in structural mechanics. Structural optimisation (SO) captures
many different problem types, see e.g. [12, 27, 199] for a general overview. In this field of
research, the aim is to reduce an objective function by altering the underlying geometry
of the structural problem. Since the structural response of a system inherently depends
on the initial geometry, this approach enables automatic generation of optimal geometric
designs. Depending on the type of design variable, and thereby the possibility to change
the geometry, the field of research can be further specified.

The simplest type of SO to consider, are so-called sizing optimisations. Therein, specific
geometric dimensions of a model are changed, such as thicknesses or cross-sections, cf. [4,
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87]. Due to its simplicity, implementation into industrial environments is straightforward.
One of the most important research topics within SO is the field of topology optimisation.

Therein, within an initial continuous body, holes are added and removed throughout the
optimisation, to generate a new structure. The well-known SIMP (Solid Isotropic Material
with Penalisation) defines elemental densities as the design variables of the optimisation.
By constraining their value between full material (density 1) and no material (density 0),
holes can be placed into a predefined geometry. However, the topology of the structures
considered in this work is continuous and therefore topology optimisation is not a topic of
research here. For an overview, cf. [3, 28, 203, 204].

In contrast, shape optimisation aims to solve the proposed optimisation problem by
changing the general shape of a structure. That is, no holes can be created nor removed,
but instead the surfaces are adjusted to generate a new shape. Basics can be found in
e.g. [17, 27, 35, 52, 125, 208]. The geometry in such cases is often described utilising
Computer Aided Geometric Design (CAGD) [74] to generate smooth surfaces.

Besides SO, other fields of optimisation are also established in research. By applying
optimisation schemes to processes, these can be optimised as well, and are denoted as
process optimisation techniques. Due to the high amount of different forming processes,
the possibilities regarding optimisation problems is extensive. For a small overview see e.g.
[8, 38].

The underlying material description of the structural analysis is of high importance
for the conducted optimisation. As only the simulated results can be optimised, higher
predictive capabilities of the model allow for more accurate representation of the actual
physics during optimisation. This is even more important for the field of parameter
identification (PI). This field aims to correlate data from experiments with simulation
results, such that the simulated data most accurately models the desired material behaviour.
The design variables in these types of optimisations are generally the constitutive material
parameters of the underlying material model. For more on this field of research, cf. [108,
134, 153, 190, 192]. Nonetheless, more complex, nonlinear problems are applied within
existing research, such as elasto-plasticity [127, 145, 146, 233], damage [14, 99, 103, 175],
multi-scale [129, 130], thermal effects [202], viscous effects [241] or finite elements of higher
order [19, 236].

1.2 Goals of this work

The overarching objective of this work is to

Enable the minimisation and control of damage by applying
the concept of mathematical optimisation.

The work presented in this thesis is based on research conducted within TRR188 “Damage
Controlled Forming Processes” [224]. Since the main objective of this collaborative
research centre is the control and minimisation of damage within forming processes, their
consideration is also of vital importance for this work. Application of mathematical
optimisation for damage problems in this work has to be considered from two viewpoints.
First, the academic viewpoint and their challenges and second, the consideration of
forming processes within mathematical optimisation from the industrial viewpoint. These
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challenges, and their respective methodologies, are presented in the two overarching parts
of this work. That is, Part I: Academic challenges and Part II: Industrial challenges
illustrate their own approaches to apply mathematical optimisation to damage problems.
Both challenges and their methodology are graphically depicted in Fig. 1.2.

Mathematical optimisation is utilised to optimise damage in the arising problems of
both viewpoints. Therefore, a generalised formulation for the mathematical optimisation
problem is required which describes the problems in both of these viewpoints. This
prescribed problem consists of an objective and possible constraints, and depends on a set
of design variables which govern the underlying model. Solution strategies are required
to solve the mathematical optimisation within the numerical setting. Gradient-based
optimisation techniques are very efficient to solve such optimisation problems. However,
under certain circumstances, gradient-free methods might be more suitable, hence both
strategies have to be considered.

Mathematical optimisation problem
Define optimisation problem

Academic
viewpoint

Continuum Mechanics

Continuous model
for

structural analysis

Continuous model
for

sensitivity analysis

Numerical
gradients

Numerical
simulationand

Damage optimised
mechanical problems

Industrial
viewpoint

Discrete FEM

Black box
FE solver

Numerical gradients
FDM

Gradient-based
optimisation

Gradient-free
optimisation or

Damage optimised
forming processes

discret.discret.

Figure 1.2: Overview of the academic and industrial viewpoints.

The aim within Part I: Academic challenges is to enhance a continuum mechanical
problem by applying sensitivity analysis. This enhancement, coupled with an efficient
implementation, allows utilisation of gradient-based solution strategies to the optimisation
problem. A macroscopic ductile damage material model has to be implemented to predict
the damage behaviour within numerical simulations. Enhancement of this model in its
continuous description, i.e. prior to discretisation, enables efficient derivation of sensitivity
information. The academic challenges herein are:

Enhancement of the continuum description for the ductile damage model
by means of analytical sensitivity analysis.

Utilising the knowledge from the continuous formulation of the material model, analytical
gradients can be deduced on the continuous level and circumvent application of numerically
derived gradients. This is favourable compared to computation of numerical gradients by
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means of the finite difference method (FDM). Due to the underlying multi-field approach
and the dissipative, history dependent nature of the ductile damage, these effects are also
important for the applied sensitivity analysis. After derivation by hand, these continuous
gradients are discretised for the numerical implementation. They find application within
mathematical optimisation to enable the control and minimisation of damage utilising
numerical methods.

Application of the methodology from the academic viewpoint in Part I, i.e. analytical
derivation of sensitivity information, to the industrial viewpoint in Part II is a very
challenging task. The research within TRR188 is focused on forming processes. Hence,
the methodology of deriving analytical gradient information for these processes, which
inherently require contact formulations to be accurately modelled, is very time intensive.
Therefore, to tackle these industrial forming processes within mathematical optimisation,
another approach is preferred. The objective of in Part II: Industrial challenges and
this second viewpoint, is to generate an optimisation framework which can handle the
arising optimisation problems explicitly considering forming processes. The main task for
the industrial challenges therefore is:

Formulation of an optimisation framework which enables the minimisation and control
of damage within the forming processes of TRR188.

Therefore, this methodology aims to be directly applicable to any process, without prior
deep understanding of the underlying continuum material model. Implicitly, contact
mechanics have to be considered within the optimisation. Furthermore, many different
underlying material models are utilised in the different process, e.g. some processes have
to consider thermo-mechanical material behaviour, while other consider elasto-plastic
behaviour. For this viewpoint, a black-box approach for the material description and
simulation has to be utilised. This means, the underlying continuous description of the
continuum material model is unknown. Hence, the gradients cannot be derived analytically
and have to be computed by means of the FDM. Due to the discontinuous contact
mechanics, these gradients might be insufficient for gradient-based solution strategies,
requiring the additional consideration of gradient-free methods. The considered forming
process within the optimisations are widely utilised in the industry.

1.3 Outline

The work presented in this thesis deals with applying numerical optimisation to two different
fields of research, i.e. an academic viewpoint and a more industrial viewpoint. The thesis is
therefore structured in two parts which consider each respective field of application. Since
both fields utilise numerical optimisation, the concept is briefly introduced to present the
notation used within this work. Solution strategies to solve constrained and unconstrained
optimisation problems are presented, distinguishing between gradient-based and gradient-
free solution schemes. The latter are of more concern regarding the optimisation of
industrial problems, i.e. forming processes.
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Following this introduction, this thesis is structured as follows:
Chapter 2 introduces basic preliminaries of this work, like the mathematical notation.

Additionally, the computational environment, regarding software and hardware utilised in
this thesis, is described.

Chapter 3 briefly introduces mathematical optimisation. An optimisation problem,
with and without constraints, is formulated and solution strategies are outlined. Specifi-
cally, the gradient-free Nelder-Mead simplex, and the gradient-based Sequential Quadratic
Programming are presented. Finally, an overview regarding design choices and its applica-
tion in this thesis is shown.

Part I: Academic challenges encompasses chapters 4-7 and describes the academic
challenges of numerical damage optimisation. A nonlocal continuum ductile damage
model is presented and enhanced regarding sensitivity data for optimisation problems. To
derive the aforementioned gradient information, an efficient method is required, as the
underlying material model is already numerically very taxing. A variational approach is
chosen to perform sensitivity analysis. The derived gradients are discretised and efficiently
implemented into the computational environment and enable gradient-based optimisation.

Chapter 4 summarises the fundamentals of continuum mechanics which are necessary
for the conducted research. An introduction to continuum damage modelling is given and
solution strategies to solve the ill-posed problem of local damage models are presented.
A ductile damage model, using a micromorphic approach to regularise the damage, is
presented. The continuous equations are discretised using a FE approach and other aspects
of the numerical implementation are depicted.

Chapter 5 enhances the material model by deriving gradients with respect to different
design variables. By means of a variational approach, sensitivity analysis is applied in an
efficient mathematical framework. Discretisation allows embedding in the numerical FE
framework. Critical aspects regarding this numerical implementation are presented and
the results from the analytically derived gradients are compared to numerically computed
gradient data.

Chapter 6 applies the derived gradients to selected academic optimisation problems.
Damage tolerant structures can be generated and the benefits regarding damage modelling
within optimisation is highlighted. Additionally, the material sensitivities are used outside
an optimisation environment to analyse identifiability of material parameters in a prototype
material sensitivity study.

Chapter 7 concludes Part I, i.e. the academic challenges, of this work. The theory
and results regarding damage optimisation by means of analytically derived gradients are
discussed. Additionally, the transfer to Part II of this thesis is briefly motivated.

Part II: Industrial challenges encompasses chapters 8-11 and describes the method-
ology utilised to optimise forming processes. The main challenge in this regard are the
inherent discontinuous contact mechanics, which get introduced. This has to be considered
and therefore utilisation of the concept of the previous part gets very challenging. An
optimisation framework is presented, which is able to optimise forming processes and
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consider the discontinuous problems which arise. Furthermore, the processes have to be
directly optimised to predict the damage behaviour of the underlying process as accurately
as possible, which enhances the complexity even further.

Chapter 8 provides a background and the reasoning for the optimisation of forming
processes. A brief introduction to the forming processes in this thesis, and the current
state of the art regarding damage in these fields, is presented. Possible approaches to
numerical optimisation, and the chosen approach in this thesis, are discussed.

Chapter 9 presents the created general optimisation framework. It uses the commercial
software Abaqus as the FE solver, which is briefly described and nomenclature regarding
the software is outlined. The framework, and possible alternative approaches, are described.
A optimisation problem is shown, which highlights the applicability of the framework by
considering many different types of design variables simultaneously.

Chapter 10 provides results from numerical damage optimisation for three different
forming processes. Rod extrusion, bending and deep-drawing are optimised using the
previously presented optimisation framework. Optimal process parameters in the fields
of bulk metal and sheet metal forming can be generated, which in turn reduce damage
accumulation. The framework, depending on the choice of optimiser, enables optimisation
of processes with few and many contact interactions all the same.

Chapter 11 concludes Part II, i.e. the industrial challenges, of this work. The key
aspects regarding forming, the optimisation framework, as well as important statements
due to the results are again highlighted upon.

Chapter 12 finally concludes the complete thesis. The highlights regarding the academic
challenges of Part I and the industrial challenges of Part II are summarised. Additionally,
based on this work, an outlook on further research with the described methodology is given.

In addition, an appendix is added to this work. Therein, precise equations which were
omitted during derivation are depicted. This helps with the readability of this thesis, as
the respective sections only denote the most important equations and are not cluttered
with many additional derivatives. Furthermore, further results from other optimisation
problems are added.

Appendix A derives necessary quantities like the material tangent operator and the
local Jacobi matrix for ductile damage material model. Additionally, the utilised �̄� -method
and remarks regarding implementation are briefly summarised.

Appendix B presents the detailed derivation of the analytically derived gradients for
the sensitivity analysis of the ductile damage model.

Appendix C includes additional results from Part I: Academic challenges, such as
experimental comparison of 3d-printed samples from damage optimised geometries, a
parameter identification for the material model used in this work, and raw data from the
response sensitivity study.

Appendix D consists of additional data from the optimised forming processes, i.e. rod
extrusion, bending and stretch indenting.



Chapter 2

Preliminaries and notations

This chapter presents some preliminaries for this thesis. Different notations for
tensors and matrices, as well as special tensor products, are introduced. Addi-
tionally, an overview regarding the created and utilised optimisation frameworks
and the employed software and hardware are presented.

2.1 Notation

In this thesis, vectors or tensors of first order are denoted as lower-case letters with
bold face, italic font, tensors of second order are denoted as upper-case letters with
bold face, italic font, and tensors of fourth order are denoted as upper-case letters with
blackboard-bold font, e.g.

𝑎 = 𝑎𝑖 𝑒𝑖 (first-order tensor, vector),
𝐴 = 𝐴𝑖𝑗 𝑒𝑖 ⊗ 𝑒𝑗 (second order tensor),
A = 𝐴𝑖𝑗𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙 (fourth-order tensor),

(2.1)

with the fixed orthonormal basis 𝑒{1,2,3}. A single contraction is denoted by a dot product,
e.g.

𝑎 · 𝑏 = 𝑎𝑖 𝑏𝑖, 𝐴 · 𝑏 = 𝐴𝑖𝑗 𝑏𝑗 𝑒𝑖, (2.2)

while double contractions are donated with a colon, e.g.

𝐴 : 𝐵 = 𝐴𝑖𝑗 𝐵𝑖𝑗 , A : 𝐵 = 𝐴𝑖𝑗𝑘𝑙 𝐵𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗 . (2.3)

In addition, two special dyadic products for tensors of second order are defined as

𝐴⊗𝐵 = 𝐴𝑖𝑘 𝐵𝑗𝑙 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙, (2.4)
𝐴⊗𝐵 = 𝐴𝑖𝑙 𝐵𝑗𝑘 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙, (2.5)

9
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as well as the special dyadic product for a tensor of second order and a vector, i.e.

[𝐴⊗𝑎] · 𝑏 = [𝐴𝑖𝑘 𝑎𝑗 ] 𝑏𝑘 𝑒𝑖 ⊗ 𝑒𝑗 . (2.6)

Discrete vectors and matrices are denoted in bold face Roman letters, i.e.

a = [𝑎]𝑖 ∈ R
𝑛 (vector),

A = [𝐴]𝑖𝑗 ∈ R
𝑛×𝑚 (matrix).

(2.7)

Transposed matrices and tensors are denoted with a superscript 𝑡, and their inverse with a
superscript −1. A transposed inverse is denoted with at superscript −𝑡. For a second-order
tensor (2.1) this yields

𝐴𝑡 = 𝐴𝑗𝑖 𝑒𝑖 ⊗ 𝑒𝑗 = 𝐴𝑖𝑗 𝑒𝑗 ⊗ 𝑒𝑖

𝐴−1 = 𝐴−1
𝑖𝑗 𝑒𝑖 ⊗ 𝑒𝑗

𝐴−𝑡 = 𝐴−1
𝑗𝑖 𝑒𝑖 ⊗ 𝑒𝑗 = 𝐴−1

𝑖𝑗 𝑒𝑗 ⊗ 𝑒𝑖.

(2.8)

This notation has been introduced in [99] as it allows a concise presentation of large and
otherwise cumbersome formulae. Utilising this notations allows the formulae in this thesis
to be rewritten without explicitly following index notation in their respective equations
and eases the readability of the presented work.

2.2 Variations and derivatives

In structural analysis, a boundary value problem (BVP) is generally dependent on a set of
state or field variables 𝑤. In the standard elastic case, these are typically the displacements
𝑢. For more complex material models, for example nonlocal damage models, it is possible
to extend this with additional variables, such that the set of field variables consists
of more than one set of variables, which is captured in the variables 𝑤. Furthermore,
material behaviour can be dependent on the loading history, due to prior evolution of
damage or plasticity for example. This introduces history or state dependent variables
ℎ to the functional. Finally, in the case of structural optimisation (SO), the referential
configuration no longer remains fixed, but may change throughout the optimisation. This
change in referential design is captured by the design variables 𝑠. Ultimately, this allows
the definition of a three field functional J(𝑤,𝑠,ℎ). Each respective argument is defined on
an appropriate function space, i.e. 𝑤 ∈ W, 𝑠 ∈ S and ℎ ∈ H. Generally, the functional
is nonlinear in each of the respective arguments. Further remarks on the mathematical
structure are beyond the scope of this thesis, see e.g. [50, 51, 208] for further information.

In this work, the total variations of a functional is denoted with a 𝛿 symbol. The total
variation of the above functional, assuming it is differentiable, reads

𝛿J(𝑤,𝑠,ℎ) := 𝛿𝑤J(𝑤,𝑠,ℎ; 𝛿𝑤) + 𝛿𝑠J(𝑤,𝑠,ℎ; 𝛿𝑠) + 𝛿ℎJ(𝑤,𝑠,ℎ; 𝛿ℎ), (2.9)

where the subscripts in the variational symbol on the right side of the equation denote the
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partial variation w.r.t. their respective variable. The partial variations are defined as

𝛿𝑤J := lim
𝜖→0

1

𝜖
[J(𝑤 + 𝜖𝜂,𝑠,ℎ)− J(𝑤,𝑠,ℎ)] =

d

d𝜖
J(𝑤 + 𝜖𝜂,𝑠,ℎ)

⃒⃒⃒⃒
𝜖=0

𝛿𝑠J := lim
𝜖→0

1

𝜖
[J(𝑤,𝑠+ 𝜖𝜅,ℎ)− J(𝑤,𝑠,ℎ)] =

d

d𝜖
J(𝑤,𝑠+ 𝜖𝜅,ℎ)

⃒⃒⃒⃒
𝜖=0

𝛿ℎJ := lim
𝜖→0

1

𝜖
[J(𝑤,𝑠,ℎ+ 𝜖𝜇)− J(𝑤,𝑠,ℎ)] =

d

d𝜖
J(𝑤,𝑠,ℎ+ 𝜖𝜇)

⃒⃒⃒⃒
𝜖=0

(2.10)

with the test functions 𝜂 ∈W,𝜅 ∈ S and 𝜇 ∈ H. The variations of the three arguments of
the three field functional are thus defined as 𝛿𝑤 = 𝜖𝜂, 𝛿𝑠 = 𝜖𝜅 and 𝛿ℎ = 𝜖𝜇. The above
derivative is also known as the Gâteaux or directional derivative. The resulting partial
variations are linear in their respective direction, while remaining nonlinear w.r.t. the
three initial arguments. This is denoted by the separation with the semicolon in (2.9).
Arguments on the left side of the semicolon are nonlinear, while linear on the right. These
are called semilinear forms. If the arguments are fixed, i.e

{︁
�̂�,�̂�,ℎ̂

}︁
, the resulting partial

variation yields a bilinear form. For more details on the described concept and principals
of variational calculus, see cf. [34, 85, 129, 149, 155].

Remark 2.1 Here the quantity J is introduced. The choice of a fractal symbol, instead
of the symbol 𝐽 , is made to distinguish between objectives and the determinants 𝐽 arising
from the kinematics in Chap. 4 and Chap. 5, as well as the Jacobian matrix J for the
local material model in Appendix A.

2.3 Computational environment

2.3.1 Software environment

In this work, a lot of different software packages and programming environments are
utilised to generate code, compute simulations and visualise data. The main software
regarding the numerical implementation of the presented optimisation problems is achieved
using Matlab. Two optimisation frameworks are created and used within this thesis.

AOPS. The first framework, the Academic Optimisation Problem Solver, is applied
to SO, parameter identification, as well as response sensitivity study. This framework
consists of a self-programmed finite element (FE) environment, which allows incorporation
of own material models and element formulations in Matlab. These element formula-
tions utilise precompiled .mex-functions to speed up computation time, which is further
increased by parallelising the global element assembly. The nonlocal ductile damage
model is implemented in this framework. The FE environment has to account for the
deformation field and nonlocal damage as global field variables. Therefore, it is structured
to solve single or multi-field problems, taking the respective boundary conditions into
consideration. Furthermore, an automatic time step control is implemented, required due
to the complexity of the considered material model. This method automatically adjusts the
global pseudo-time steps, if local iterations fail. With lower pseudo-time steps, the global
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load steps are reduced as well, aiming for the local material model to converge. This code
uses analytically derived sensitivity information for gradient-based optimisation schemes.
The resulting equations from a sensitivity analysis are discretised and incorporated into
the framework to enable efficient computation and hence optimisation problems. Special
treatment is required to incorporate the history dependent sensitivity information.

IOPS. The second framework, the Iundustrial Optimisation Problem Solver, exchanges
the manually adapted FE environment and computation of sensitivity information from
the AOPS, which accounts for the ductile damage behaviour, with the commercial FE
software Abaqus. By adjusting the framework to incorporate an external FE solver,
more variance in material models and BVPs can be considered in the simulations, due
to the more robust implementation and addition of features. This in turn extends to
the optimisation problems. Furthermore, adjustments to the input routine have to be
made, as the files require drastically different input parameters. Since the gradients, if
gradient-based methods are used, within this framework are computed using the finite
difference method, these have to be computed and provided as well. While Matlab controls
the overall optimisation, the data in the FE solver has to be accessed which is achieved
with Python scripting. The specifics are detailed thoroughly in Chap. 9.

An overview for the specifically utilised software environments of both these frameworks
is presented in the following.

Matlab. Matlab [156] is a commercial high-level language provided by MathWorks©, with
its own numeric computing environment. In contrast to other compiler-based languages,
such as C,C++ or Fortran, Matlab is an interpreter based language. Therefore, the code
does not need to be compiled and is interpreted during runtime. However, this generally
leads to a slower computation time. Even though compilation of the code is not required,
it is still possible to convert uncompiled Matlab code into precompiled C or C++ code by
using the Matlab Coder toolbox. This is especially useful if certain functions are called
repeatedly, such as element types in FE simulations, as this can significantly speed up
computation times. Additionally, using the Parallel Computing toolbox allows further
enhancement to the code by enabling parallel computing. This is applied to the FE
assemblies within in the first optimisation framework.

Finally, with respect to optimisation, the Optimisation toolbox is of great use, as it
provides a multitude of solution strategies and solvers for optimisation problems. In this
work, the emphasis lies on fmincon for gradient-based, and fminsearch for gradient-free
solution strategies, see Chap. 3. For the control of external software, such as Abaqus or
Python scripting, the system command is used. An overview of the utilised toolboxes
provided by Matlab, and their used functions, is listed in Table 2.1.

Table 2.1: Utilised Matlab toolboxes.

Toolbox Version Function

Matlab Coder 5.4 codegen
Parallel Computing Toolbox 7.6 parfor

Optimization Toolbox 9.3 fminsearch, fmincon
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Paraview. The open-source software ParaView [1] is used to analyse data and visualise
the results. By generating .vtk-files within Matlab, the results from the structural analy-
sis within each optimisation step is stored in a post-processing step of both frameworks.
Beside the FE mesh, these include data at integration point level, such as stresses, strains
and history variables, as well as nodal data, like displacements or nonlocal damage. Under
specific circumstances, additional data can be stored, to highlight different sections or
material properties. This is used to visualise the results for the generated optimal solutions
in all presented studies within this thesis.

Abaqus. The commercial software Abaqus [58], distributed by Dassault Systèmes Simulia
Corp., is a FE and computer aided engineering (CAE) software. That is, it allows modelling
of the process which is later on submitted to its solver. Thereby, modelling of a problem
with additional CAE software can be avoided. Due to its general applicability with its
many kinds of solvers and material models, it is widely used in academia as well as industry.
Its application within optimisation of forming processes in this work allows consideration
of contact mechanics within an optimisation framework. The software is programmed in
Fortran and Python, and with the latter enables interfacing with the software by Python
scripting, to extract and inject data from or into the simulation, respectively.

Python. The general-purpose programming language Python [226] is well-established
and, similar to Matlab, does not require compilation of its code. It is most known for its
emphasis on code readability by including significant code indention into its implementa-
tion. Due to its popularity, especially nowadays in the fields of machine-learning, a lot
of libraries for special tasks are available to load and use. In the field of mathematics,
NumPy [107] and SciPy [228] are necessary libraries to ease with computation of formulae
and their visualisation. In addition, the libraries provided by Abaqus allow interfacing
with the simulation software and thereby are necessary for the evaluation of simulation
data during the automated optimisation. In this work, due to limitations with Abaqus,
Python 2.7 has to be used.

Blender. The open-source software Blender [55] is generally used to render 3d computer
graphics for animations or visual effects. In this work however, it is used to create 3d sam-
ples of structural optimised geometries for 3d printing and the validation of the numerical
results. The Computer Aided Geometric Design data from the optimisation is loaded and
adapted to create .stl-files for the 3d-printing software.
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2.3.2 Hardware environment

The results in this thesis are achieved within multiple hardware environments, see Table
2.2. The respective operating system is annotated in the description column.

Table 2.2: Hardware environments.

Machine label Description

DWS1
Dell Mobile Precision Workstation 7520 (64 bit Linux OS)
Intel© Core™ i7-7920HQ (quad-core @ 3.1 GHz (4.1 GHz boost))
32 GB DDR4 Memory

DWS2

Dell Mobile Precision Workstation 5570 (64 bit Linux OS)
Intel© Core™ i7-12800H
(Tetradeca-core @ 2.4 GHz (4.8 GHz boost))
32 GB DDR4 Memory

LiDO3

Linux Cluster Dortmund (64 bit Linux OS)
2x Intel© Xeon© E5 2690v4
(Tetradeca-core @ 2.6 GHz base (3.5 GHz boost))
up to 256 GB DDR4 Memory

DPC
Desktop Personal Computer (64 bit Windows 10)
AMD Ryzen™ 7 3700x (Octa-core @ 3.6 GHz (4.4 GHz boost))
16 GB DDR4 Memory



Chapter 3

Optimisation setup overview

In this chapter, the general concept of mathematical optimisation is presented.
The optimisation problems with and without constraints are formulated and
solution strategies to solve such problems are briefly explained. An overview
of the numerical treatment and the computation of gradient information is
given. Finally, the optimisation problems, their denomination and possible design
variables as they arise in this work are categorised and listed.

3.1 Mathematical optimisation

In this chapter, a general overview regarding mathematical optimisation is presented.
In mathematical optimisation a scalar valued function is defined as an objective and
subjected to a minimisation problem. This objective depends on a choice of design
variables. Subsequent changes in these variables lead to changes in the objective value
and are the arguments of the mathematical optimisation problem. Since the concept of
mathematical optimisation is not restrained to e.g. structural optimisation, the algorithms
presented later on can be used for any stated optimisation problem. Furthermore, in
this work the term numerical optimisation is used to describe mathematical optimisation
problems which are solved within a numerical framework and solved using numerical
algorithms and solution strategies.

In mathematical optimisation, many different distinctions are made regarding the type
of optimisation problem at hand, such as

• constrained vs. unconstrained problem,

• convex vs. concave problem,

• smooth vs. nonsmooth problem,

• linear vs. nonlinear problem,

• few vs. many design variables,

to name a few. Depending on the type of optimisation problem, the choice of solution
strategy has to be specifically chosen. This choice greatly effects the outcome of the solution,
or in extreme cases the general convergence rate of the chosen algorithm. For example,

15
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gradient-based methods struggle with nonsmooth problems since the gradient definition
changes depending on the direction in which the discontinuity within the optimisation
problem is approached.

In this work the focus is placed on gradient-based and gradient-free methods, and some
insight is provided. However, as already described, the field of mathematical optimisation
is vast and it is not feasible to present all possible algorithms here. A reader is therefore
referred to standard literature, cf. e.g. [113, 174, 194], for an overview of solution
techniques and their respective fields of optimisation.

3.2 Mathematical optimisation problem formulation

To define an optimisation problem, let J be a scalar valued objective function which
depends on a specifically defined choice of design variables 𝑠 ∈ R𝑛. An unconstrained
optimisation problem reads

minimise
𝑠∈R𝑛

J(𝑠). (3.1)

This problem can be restricted by boxed constraints in the form of upper 𝑠u and lower 𝑠l
bounds, which are applied to the design variables. Furthermore, constraints in the form
of (linear or nonlinear) equality constrains ℎ = 0 and inequality constrains 𝑔 ≤ 0 can be
applied to the problem. A general constrained problem thus reads

minimise
𝑠∈R𝑛

J(𝑠)

subject to ℎ(𝑠) = 0

𝑔(𝑠) ≤ 0

𝑠l ≤ 𝑠 ≤ 𝑠u.

(3.2)

To solve problems (3.1) and (3.2), iterative procedures are required. These aim to find a
solution, often based on an initial guess 𝑠0, in the defined design space according to the
chosen solution strategy. These are discussed in Sect. 3.3 with the focus placed on the
applied methods used in this thesis.

3.3 Solution strategies

As mentioned previously, the choice of solution strategy depends strongly on the type
of optimisation problem at hand. Herein, the focus is placed on the distinction between
gradient-free and gradient-based optimisation strategies, as both of these topics are of vital
concern regarding this thesis. Furthermore, the specific emphasis is put on the Nelder-
Mead simplex for the gradient-free optimisation, and Sequential Quadratic Programming
for the gradient-based optimisation. Both of these algorithms are used within this work.

Another aspect to consider is the distinction between local and global solutions. Gener-
ally, a solution generated by optimisers for nonlinear problems yield local solutions. A
global solution can only be guaranteed in special cases, such as for linear, convex problems
where the local solution is always the global one. Therefore, it is generally advisable to
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use, if possible, multiple initial guesses 𝑠0 in any optimisation. Depending on the type of
problem, that is not always possible. Therein, deflation algorithms, cf. [49, 178, 179], can
be used to generate alternative solutions based the same initial guess.

3.3.1 Gradient-free optimisation

Many methods within the field of gradient-free optimisation exist. Since these methods
only evaluate the objective J, no requirements regarding convexity or smoothness are
required. Therefore, gradient-free methods can generally be applied to any unconstrained
optimisation problem (3.1). Application of these methods to constrained problems (3.2) is
not straightforward and is discussed later. The main drawback for these methods is the
computational cost due to a high number of function evaluations. Therefore, application
of gradient-free methods is generally only advisable to problems with few design variables.
Simple procedures like grid-search methods span an even spaced grid over the design space
and evaluate the objective at intersections of the grid [29]. Another well-known approach
is the Monte-Carlo method, wherein, instead of an even spaced grid, these sample points
are randomly selected throughout the design space [73, 77, 159].

Of specific importance with regard to this thesis is the simplex-reflection method by
Nelder and Mead [170]. Notably, this method is not comparable to the simplex technique
in linear optimisation problems. This method is available within the optimisation toolbox
within Matlab as the function fminsearch. The basic concept is to create a simplex for
the design, which is moved throughout the design space in an efficient manner to find
an optimal solution. A simplex of dimension 𝑛dv + 1, where 𝑛dv is the number of design
variables in the design space, is created from the initial guess 𝑠0. This is achieved by
evaluating the initial guess and additionally computing the objective value by perturbing
each design variable individually. The data from the initial simplex is stored in ascending
order, such that

J(𝑠1) ≤ J(𝑠2) ≤ · · · ≤ J(𝑠𝑛dv+1), (3.3)

resulting in the corresponding ordering of the design variables {𝑠1,𝑠2, . . . ,𝑠𝑛dv+1}. With
this, a reflective centroid is computed, i.e.

�̄� =
1

𝑛dv

𝑛dv∑︁
𝑖=1

𝑠𝑖, (3.4)

which is used to reflect the worst design, i.e. 𝑠𝑛dv+1, using the formula

𝑠𝛾(𝛾) = �̄�+ 𝛾 [�̄�− 𝑠𝑛dv+1] . (3.5)

Depending on the criteria met, the scaling parameter 𝛾 takes on different values, i.e. 𝛾 = 1
in the reflective case, 𝛾 = 2 in the expansive case and 𝛾 = ±0.5 for the outside contraction
or inside contraction, respectively. If neither of these new points generate an improvement
over the function value J(𝑠𝑛dv+1), the simplex is shrunk, while keeping the current optimal
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point 𝑠1 fixed. This remaining new design variables are computed via

𝑠𝑗 = 𝑠1 + 𝛾(𝑠𝑗 − 𝑠1), for 𝑗 = 2,3, . . . ,𝑛dv + 1. (3.6)

The method is sketched in Algorithm 3.1 and an update visualised in Fig. 3.1 for 𝑛dv = 2.

Figure 3.1: Graphical illustration of the Nelder-Mead simplex procedures according to
Algorithm 3.1: a) Current simplex, b) reflection, c) expansion, d) outside contraction, e)
inside contraction, f) shrinkage. The blue area depicts the simplex after each procedure.

Another drawback of gradient-free optimisation is the consideration of constraints, of
either boxed, equal or unequal variety (3.2). A simple strategy for the previously described
method is to penalise the objective J(𝑠) of (3.1), if constraints are violated, e.g.

minimise
𝑠∈R𝑛

Jpen(𝑠) = J(𝑠) +

𝑛g∑︁
𝑖=1

𝛽𝑔 [|𝑔𝑖(𝑠)|+ 𝑔𝑖(𝑠)]
2
+

𝑛h∑︁
𝑗=1

𝛽ℎ

2
[ℎ𝑗(𝑠)]

2
, (3.7)

where 𝑛g is the number of inequality constraints and 𝑛h the number of equality constraints.
The penalty parameters 𝛽∙ are chosen such that the violation of constraints significantly
affect the objective J. This approach however has some significant drawbacks. On the
one hand, the penalisation is only active if constraints are violated. Therefore, solutions
will most likely result in a small violation of a constraint, since an optimal solution is
approached from the direction, where a constraint is violated. This in turn might lead
to convergence problems for the underlying numerical simulation, since those constraints
might be applied due instabilities that may occur if they are exceed too much. On the
other hand, applying many constraints might lead the optimiser to never converge with in
the admissible space. Therefore, application of a penalty method is only advisable when
only a few constraints are considered simultaneously. Inclusion of boxed constraints can
be handled more efficiently. Applying a quadratic or sin(𝑠) transformation to the design
variables, forces them to always be considered in the admissible space, cf. [57].
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Algorithm 3.1 The Nelder-Mead simplex algorithm.
Sort functions values: J(𝑠0) ≤ J(𝑠1) ≤ · · · ≤ J(𝑠𝑛dv+1)
Sort design variables according to function values: {𝑠1,𝑠2, . . . ,𝑠𝑛dv+1}
𝛾 ← 1, compute 𝑠𝛾(1), compute J(𝑠𝛾(1))
//Evaluate reflective solution
if J(𝑠𝛾) ≤ J(𝑠1) then

//Perform expansion
𝛾 ← 2, compute 𝑠𝛾(2) compute J(𝑠𝛾(2))
if J(𝑠𝛾(2)) ≤ J(𝑠𝛾(1)) then

𝑠𝑛dv+1 ← 𝑠𝛾(2)
→ go to next iteration

else
𝑠𝑛dv+1 ← 𝑠𝛾(1)
→ go to next iteration

end if
else

if J(𝑠𝛾(1)) ≤ J(𝑠𝑛dv
) then

𝑠𝑛dv+1 ← 𝑠𝛾(1)
→ go to next iteration

else
//Perform contractions
if J(𝑠𝛾(1)) ≤ J(𝑠𝑛dv+1) then

//Outside contraction
𝛾 ← 0.5, compute 𝑠𝛾(0.5), compute J(𝑠𝛾(0.5))
if J(𝑠𝛾(0.5)) ≤ J(𝑠𝛾(1)) then

𝑠𝑛dv+1 ← 𝑠𝛾(0.5)
→ go to next iteration

else
Perform a shrink

end if
else

//Inside contraction
𝛾 ← −0.5, compute 𝑠𝛾(−0.5), compute J(𝑠𝛾(−0.5))
if J(𝑠𝛾(−0.5)) ≤ J(𝑠𝛾(1)) then

𝑠𝑛dv+1 ← 𝑠𝛾(−0.5)
→ go to next iteration

else
Perform shrinkage

end if
end if
//Shrinkage
𝛾 ← 0.5
𝑠𝑗 = 𝑠1 + 𝛾(𝑠𝑗 − 𝑠1), 𝑗 = 2,3, . . . ,𝑛dv + 1
→ go to next iteration

end if
end if
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3.3.2 Gradient-based optimisation

Gradient-based methods consist of the most efficient optimisation strategies available
and are often recommended, if possible, to be used over gradient-free methods. Due
to the utilisation of additional information by computing the gradient of the objective
and constraints, this can significantly speed up the iterative process and yield results in
fewer iterations. However, gradient-based methods require the considered functions, i.e.
J(𝑠),ℎ(𝑠) and 𝑔(𝑠), to be continuous in 𝑠 up to the order of chosen method.

Due to the efficiency of gradient-based methods, a lot of research is done in this field
leading to many specialised solution strategies for specific cases. The Levenberg-Marquadt
method for example is specifically designed to solve least-squared problems [143, 154].
Other methods such as the interior-point method [81, 92] nowadays sees a lot of research
and application due to its efficient handling of constraints. The method applies a barrier
function to the constraints to solve an unconstrained problem. For a decreasing value in
the barrier parameter 𝜇→ 0, the problem reads

minimise
𝑠∈R𝑛

Jip(𝑠) = J(𝑠)− 𝜇

𝑛g∑︁
𝑖=1

log(𝑐𝑖(𝑠))

subject to ℎ(𝑠) = 0

𝑔(𝑠) + 𝑐 = 0,

(3.8)

where 𝑐𝑖 are the slack variables for inequality constraints 𝑔𝑖. The logarithmic barrier
term prevents the slack variables from reaching negative values and therefore fulfils the
additional slack condition 𝑐 ≥ 0 implicitly. The huge benefit of this method is the approach
of the solution from the admissible interior space within each iteration. It is therefore very
useful if constraint violations lead to convergence problems, such as in crystal plasticity for
example [173], where a highly constrained optimisation problem has to be considered. Due
to its efficiency it also sees a lot of application topology and shape optimisation [116, 189],
and is available in many software like the Matlab toolbox fmincon or open source tools
like Ipopt [229] for the Python environment. The gradient-based method of consideration
for this thesis however is Sequential Quadratic Programming (SQP), which will be briefly
outlined here.

Sequential Quadratic Programming is a very effective method to solve constrained
optimisation problems and outperforms other tested methods in nonlinear programming
[194]. The basic idea is to enhance Newton’s method to take equality and inequality
constraints into consideration. Initially the problem is rewritten into the Lagrange function
L, i.e.

L(𝑠,𝜆,𝜇,𝑐) := J(𝑠) +

𝑛h∑︁
𝑖=1

𝜆𝑖ℎ𝑖(𝑠) +

𝑛g∑︁
𝑗=1

𝜇𝑗

[︀
𝑔𝑗(𝑠) + 𝑐2𝑗

]︀
= L(𝑠,𝜆,𝜇) := J(𝑠) + 𝜆𝑡ℎ(𝑠) + 𝜇𝑡 [𝑔(𝑠) + 𝑐] ,

(3.9)

with the Lagrange parameters, also known as the adjoint variables, 𝜆𝑖 and 𝜇𝑗 with 𝜇𝑗 ≥ 0,
as well as the slack variables 𝑐𝑗 . The necessary condition for a minimum enforces the
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gradient of Lagrange function L to fulfil the optimality criteria, i.e.

∇L !
= 0. (3.10)

Applying Newton’s method, and reordering of the equations, leads to the quadratic
subproblem

minimise
𝛥𝑠

J̃ = ∇J(𝑠𝑘)𝛥𝑠𝑘 +
1

2
(𝛥𝑠𝑘)𝑡∇𝑠𝑠L(𝑠

𝑘,𝜆𝑘𝜇𝑘)𝛥𝑠𝑘

subject to ℎ(𝑠𝑘) + (∇ℎ(𝑠𝑘))𝑡𝛥𝑠𝑘 = 0

𝑔(𝑠𝑘) + (∇𝑔(𝑠𝑘))𝑡𝛥𝑠𝑘 ≤ 0

𝑠𝑙 − 𝑠𝑘 ≤ 𝛥𝑠 ≤ 𝑠𝑢 − 𝑠𝑘,

(3.11)

which is solved in each iterative step to solve the initially stated problem (3.2). The
quadratic problem is computed with solution algorithms derived for this specific problem.
In this thesis, the function fmincon within the Matlab toolbox is used. This implementation
uses an active-set algorithm, cf. [79, 174], to solve the quadratic subproblem [156]. For
more information on SQP in literature, cf. [36, 183, 194].

Since this method is a gradient-based method of second order, the second derivative
of the Lagrange function, and therefore the objective function J and constraints ℎ and
𝑔, is required. Generally, this second derivative is approximated iteratively within a
Quasi-Newton method, for example by the Broyden-Fletcher-Goldfarb-Shanno update
formula (BFGS) [44, 78, 91, 201]. This method approximates the Hessian, from the initial
guess of the identity matrix, and updates it in each subsequent iteration. Notably, this
method converges towards the exact analytical solution with each and provides positive
definite approximation of the Hessian.

Each solution of the quadratic subproblem yields an update 𝛥𝑠𝑘 for the design variables,
such that

𝑠𝑘+1 = 𝑠𝑘 + 𝛼𝑘𝛥𝑠𝑘, (3.12)

with 𝛼𝑘 as the step-size parameter, which can be optimally chosen by means of a line-search
algorithm, cf. [174].

3.4 Numerical treatment

Typically, standard optimisation frameworks follow the same structure. Such a procedure
is depicted in Fig. 3.2. Initially, the optimisation problem has to be defined, i.e. either
problem (3.1) or (3.2), with an explicit dependency on the design variables 𝑠. The
initialisation of the optimisation generally requires an initial guess 𝑠0 as the starting
point of the optimisation. Based from this initial guess, the problem is setup, e.g. by
Computer Aided Geometric Design (CAGD) in shape optimisation. A structural analysis
is computed which returns the resulting structural response due to the initial guess 𝑠0. If
a gradient-based optimisation is chosen as the solution strategy, the gradient information
for the objective and constraints has to be computed. Based on the chosen approach, see



22 Chapter 3 Optimisation setup overview

Sect. 3.4.1, this requires additional implementation on how to compute those gradients
before starting the optimisation. If a gradient-free method is chosen, this additional step is
not necessary and the mathematical optimisation is conducted. This will yield an update
𝛥𝑠 for the design variables, i.e. a new set of design variables 𝑠1 = 𝑠0 +𝛥𝑠. This new
set of design variables is used to generate an updated problem for the structural analysis.
After each new design iteration, a convergence criterium is checked. If this is passed, the
new design is the final optimal design. Otherwise, the process is continued by running a
structural analysis based on the new iterative design values.

3.4.1 Acquisition of gradient information

The acquisition of the gradient information for gradient-based optimisation is of key
importance regarding the computational effectiveness. Here, two approaches to compute
this information are highlighted:

1. Numerically computed gradients by perturbing the design variables,

2. Analytically deriving the gradients and applying discretisation.

Initial design
Define optimisation problem

Structural analysis
FEM

Sensitivity analysis
Gradients of objective
function & constraints

Mathematical
optimisation
Gradient-free/
Gradient-based

New design
generate FEM model

Convergence?

Optimal design

𝑘
+

+

YesNo

Figure 3.2: The general framework of an optimisation procedure. In gradient-free optimi-
sation the sensitivity analysis is omitted.
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Finite difference method: The finite difference method (FDM) is a simple approach
by numerically perturbing functions and generating numerically approximated gradients.
This approach uses a Taylor series approximation

J(𝑠± 𝜖) = J(𝑠)± 𝜖∇𝑠J(𝑠) +𝑂(𝜖2), (3.13)

with perturbation factor 𝜖 ≪ 1. Omitting terms of order 2 and higher 𝑂(𝜖2), leads to
three variants of approximations for the gradient ∇𝑠J

ℎ using the FDM

∇𝑠J
ℎ
FDQ(𝑠) =

J(𝑠+ 𝜖)− J(𝑠)

𝜖
(forward FDM),

∇𝑠J
ℎ
BDQ(𝑠) =

J(𝑠)− J(𝑠− 𝜖)

𝜖
(backward FDM), (3.14)

∇𝑠J
ℎ
CDQ(𝑠) =

J(𝑠+ 𝜖)− J(𝑠− 𝜖)

2𝜖
(central FDM),

where the latter FDM is a combination of the two former ones and generally more accurate,
while requiring significantly more computational effort. The main benefit of this approach
is the easy implementation as only the objective value has to be known and computable.
Even though from a mathematical standpoint, the result approaches the analytical gradient
for 𝜖→ 0, in the numerical environment rounding errors due to computational accuracy
will yield a degradation in accuracy for very small values of 𝜖. From observation, an
optimal perturbation value normally lies in the range of 𝜖 ≈ 1 × 10−5 − 1 × 10−8, cf.
[145]. Another factor to consider is noise within gradients computed with the FDM, cf.
[174], which might lead to inaccurate gradient information, for example in nonsmooth
or discontinuous problems. In fmincon computation of numerical gradients is possible,
wherein the perturbation value for example can be defined beforehand. This is used within
Part II of this work for optimisation using gradient-based methods. In Part I, the FDM is
only used to verify the analytically derived gradients.

In [218] an alternative approach regarding numerically derived gradients was proposed.
This approach perturbs the objective with an imaginary value, which leads to significantly
more accurate results in the numerically derived gradient information. Similarly to the
FDM, using a Taylor-series expansion and negligence of higher order terms finally results
in the complex-step derivative approximation (CSDA)

∇𝑠J
ℎ(𝑠) ≈ Im (J(𝑠+ 𝑖𝜖))

𝜖
, (3.15)

with the imaginary number 𝑖 and Im(∙) as the imaginary part of the function. In contrast to
the typical FDM, CSDA yields more accurate results with increasingly smaller perturbation
values. Application of this method however, is only possible if the perturbed objective
function can treat complex inputs.

Note, that both of these approaches are presented with an exemplary scalar valued
design variable 𝑠 here. Enhancements for multiple design variables 𝑠 therefore require
perturbation of design variable 𝑠𝑖 and hence the computations of gradient information
∇𝑠𝑖J. These partial gradients have to be subsequently assembled into the total gradient
∇𝑠J. Furthermore, the objective J was utilised as an exemplary function or functional.
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The same methodology can also be applied to other functions or functionals, e.g. the
constraints ℎ and 𝑔.

Analytical derivation: A more accurate and computationally efficient, albeit complex,
approach to deriving gradient information is by means of analytical derivation. This, by
hand, derived solution is numerically implemented, allowing computation of the derivative
in the chosen numerical environment. Generally, two approaches can be followed to derive
these gradients. Either, the discretised functions are used as a basis and sensitivity analysis
subsequently applied to these discrete quantities [222]. This method is known as the
discrete approach. While this approach is quite straightforward, its numerical efficiency
is lacking. The other approach utilises the continuous quantities, e.g. the weak form
of equilibrium for the mechanical problem, prior to discretisation. Variation of these
continuous functionals allows computation of continuous sensitivity information. For the
numerical implementation, the discretisation is applied to these continuous sensitivities.
This approach, known as the variational approach, is computationally more efficient, cf.
[16, 17, 130], albeit it requires a deep understanding of the underlying continuous equations.
As is described in Sect. 1.2, this is the chosen approach and its utilisation for the ductile
damage model the main objective of Part I: Academic challenges.

These two approaches find application within this work. Beside the two, other meth-
ods exist. The semi-analytical approach couples numerically computed gradients with
analytically derived ones, when analytical derivation is not possible for the complete
problem. Another important method nowadays, widely used in machine learning [21], is
automatic differentiation [169, 207]. This method computes exact gradient informations
simultaneously within the function evaluation. However, this type of implementation
requires complete redefinition of all used computation formulae to also include gradient
calculation. Therefore, inclusion of this concept into a framework has to be done from
the ground up and initially be considered. Furthermore, a lot of additional computation
time is generated, since each function evaluation also comes with a computation of its
derivative. In the case of ductile damage, an already computationally very complex task,
this would lead to an enormous increase in computational cost.

3.4.2 Overview of optimisation problems

In this thesis, the concept of mathematical optimisation is applied to multiple types of
problems. These are not limited to structural optimisation, as introduced in Chap. 1, but
extended to other fields of research within optimisation.

Shape optimisation is a field of structural optimisation, wherein the utilisation of CAGD
allows free form optimisation of the general shape of a structure [74, 86]. The control points
of the CAGD, or in some cases the nodal coordinates, act as the design variables and their
change throughout the optimisation allows a change in general design. Utilisation of CAGD
data significantly improves the definition of the optimisation problem, as application of
constraints and bounds are easier to define and apply to the problem.

Parameter identification considers optimisations, wherein the constitutive material
parameters from the material model are fitted to experimental data, cf. [146, 152, 190,
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Table 3.1: An overview for the types of optimisations and their design variables.

Optimisation type Design variables Examples

shape optimisation
control points (CAGD),
general geometric description,
nodal coordinates

X,p

parameter identification,
response sensitivity study constitutive/material parameters mp,𝐸,𝜎y0,𝑐d

process optimisation process parameters (geometry,
friction, forces, displacements,...) 𝑟,𝛼,𝜇,𝜀ex

191]. The objective is typically formulated as a least-square problem between simulated
and experimental data. Nowadays with the advancements in technology, more detailed
and accurate fittings further enhance this objective by using digital image correlation from
the experiments. This allows inclusion of displacement data into the objective, which
substantially enhanced the fitted data and therefore the accuracy of the modelling, cf. [187,
192, 215]. Response sensitivity study uses the same data as in a parameter identification,
but instead of optimising a set of material parameters, the sensitivity data is directly
analysed. This enables statements regarding the efficiency of certain geometries and their
effect on identifiability of material parameters.

The term process optimisation in the following describes any optimisation applied to
forming processes. These encompass geometric optimisations similar to within shape
optimisation, but also allow sizing effects applied tools which are present in the considered
forming process. Additionally, boundary conditions like loads or displacements fall under
this category. Generally, the design variables of this type of optimisation consider a
general set of process parameters which impact the chosen objective or constraint of the
optimisation.

For a concise overview, Table 3.1 presents the three discussed types of optimisation,
their design variables and some examples for their respective choices, as they will be
discussed in this thesis.
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Chapter 4

Structural analysis for ductile damage materials

This chapter presents the material model for the underlying structural analysis.
The basic kinematics for large deformations and the underlying balance equations
are briefly summarised. A mesh-independent ductile damage material model is
derived. The damage is regularised by means of a nonlocal micromorphic approach.
The local, constitutive model coupling plasticity and damage is depicted. This
basis has to be provided for the analytical sensitivity analysis in Chap. 5. Since
the chosen methods utilises the continuous equations, they form the foundation of
the upcoming work. Finally, all underlying equations are discretised for the finite
element implementation and an active-set strategy to solve evolution equations
for the local material model is outlined for its implementation into AOPS.

4.1 Continuum damage modelling

To accomplish the objective of this Part I: Academic challenges, as was described in Sect.
1.2, the continuum mechanics ductile damage material model has to be described. This in
return requires a lot of basics, which build the foundation for accurate modelling, which
is required to perform optimisation. While this information is not necessarily new, it is
required to perform the analytical sensitivity analysis in the following chapter, i.e. Chap. 5.
The approach therein requires a detailed derivation of all underlying continuous equations.
Since the sensitivity analysis is performed prior to discretisation, these equations need to
be known and deeply understood. Without this foundation, the sensitivity analysis cannot
be performed. Even though this information is not new, the scientific baseline is required
as a foundation for the enhancements in Chap. 5. Therefore, these fundamentals have to
be provided in this chapter, to be built upon in the following one.

To simulate and predict material behaviour, such as plasticity and damage, the respective
dissipative processes have to be accurately modelled. Since the simulated results shall
predict actual real-life outcomes, the modelling approaches have to satisfy the balance
laws and the thermodynamic laws which govern physics. A differentiation between small
deformations or a finite deformation viewpoint leads to different fundamental kinematics.
Furthermore, depending on the choice of modelling of microscopic or macroscopic effects,
choices regarding accuracy and homogenisation have to be made.

29
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While modelling of plastic effects is well-established, modelling of continuum damage
mechanisms is still a field of current research. Its origin traces back to the works conducted
by [124], who introduced a scalar variable which coincided with either completely intact
material or fully damaged material. Ductile damage, as understood in this work, is the
degradation of the macroscopic elastic material properties in metals due to extensive
loading. Local defects on the microscale, such as microcracks and voids, start to form,
grow, and coalesce, eventually leading to the degradation of the macroscopic behaviour
of a given body, cf. [188]. For an overview of the field of continuum damage mechanics
and extension to phenomenological effects, cf. e.g. [167]. To capture these degradation
effects, typically a [1− 𝑑] approach is utilised, established by [141, 142], which has been
applied in many following modelling methods, e.g. cf. [41, 80, 230]. Another well-known
material model, especially in the context of ductile damage, is the work by Gurson [105]
which is motivated by a micromechanical void volume fraction. This model was extended
by Tvergaard and Needleman [225] and is known as the Gurson–Tvergaard–Needleman
(GTN) model, which is widely used in the simulation of damage processes within industrial
applications. In general, damage is an anisotropic process. To capture this, a tensor valued
function can be introduced to define separate damage evolutions in all three dimensions.
However, in this work damage is simplified and modelled for an isotropic case. For more
information on non-regularised and regularised anisotropic damage, cf. [32, 48, 70, 158]
and [60, 122, 214], respectively. The material model used within this work has been derived
in [215], which couples plasticity with damage to describe the ductile damage behaviour
of the materials considered in this thesis.

To capture the modelling aspect in numerics, the equations have to be discretised.
In this work, the finite element method (FEM), a well-established form of simulation
environment, is used. FEM has been a tool to solve complex numerical problems for many
years and a lot of textbooks exist, which elaborate the concept, cf. e.g. [37, 120, 238].

4.2 Kinematics

Consider a referential body configuration B0 ⊂ R3 in its initial, undeformed state in the
three-dimensional setting. Any point 𝑋 ∈ B0 in this referential position can be mapped
to the point 𝑥 ∈ B𝑡 in the deformed, current configuration B𝑡 ⊂ R3 at time 𝑡 ∈ [0,𝑇 ]. The
nonlinear mapping 𝜙, see Fig. 4.1, is defined as

𝜙 :

{︃
B0 −→ B𝑡

(𝑋,𝑡) ↦→ 𝑥 = 𝜙(𝑋,𝑡)
. (4.1)

Given an arbitrary differentiable function, the gradient and divergence operators w.r.t.
the reference configuration can be defined as

Grad(∙) = ∇𝑋(∙) and Div(∙) = ∇𝑋 · (∙), (4.2)

and with respect to the current configuration

grad(∙) = ∇𝑥(∙) and div(∙) = ∇𝑥 · (∙). (4.3)
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Figure 4.1: Classic nonlinear kinematics with the plastic intermediate configuration.

The deformation gradient can be expressed as

𝐹 := Grad(𝜙) = ∇𝑋𝜙 =
𝜕 (𝑋 + 𝑢)

𝜕𝑋
= ∇𝑋𝑥, (4.4)

with 𝑢 = 𝑥 − 𝑋 as the displacement vector field. Note that, as commonly done in
engineering literature, in (4.4) no specific distinction is made between the gradient of
the function 𝜙 and its value 𝑥 for the derivation of the deformation gradient 𝐹 . This
deformation gradient maps an infinitesimal referential line element d𝑋 to its current
counterpart d𝑥. The corresponding mapping of volumes, i.e. referential volume d𝑉 to its
current counterpart d𝑣, is captured by the Jacobian map 𝐽 , i.e.

𝐽 = det(𝐹 ) =
d𝑣
d𝑉

. (4.5)

Every non-singular second order tensor, such as the deformation gradient, can be
decomposed multiplicatively into an orthogonal rotation tensor 𝑅 ∈ SO(3) and a stretch
tensor, i.e.

𝐹 = 𝑅 ·𝑈 = 𝑣 ·𝑅, with 𝑈 = 𝑈 𝑡 and 𝑣 = 𝑣𝑡. (4.6)

Here, 𝑈 is the right and 𝑣 the left stretch tensor. The first split initially stretches a
body and then applies a rotation, while the second rotates first and applies the stretch
afterwards. Both tensors can be decomposed in their eigenvectors and eigenvalues, called
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a spectral decomposition, such that

𝑈 =

3∑︁
𝑖=1

𝜆𝑖 𝑁 𝑖 ⊗𝑁 𝑖, (4.7)

𝑣 =

3∑︁
𝑖=1

�̃�𝑖 𝑛𝑖 ⊗ 𝑛𝑖, (4.8)

𝑅 =

3∑︁
𝑖=1

𝑛𝑖 ⊗𝑁 𝑖. (4.9)

Based on this, the right and left Cauchy-Green deformation tensors can be defined, i.e.

𝐶 = 𝑈2 = 𝐹 𝑡 · 𝐹 and 𝑏 = 𝑣2 = 𝐹 · 𝐹 𝑡 (4.10)

and their respective spectral decomposition

𝐶 = 𝑈2 =

3∑︁
𝑖=1

𝜆2
𝑖 𝑁 𝑖 ⊗𝑁 𝑖 and 𝑏 = 𝑣2 =

3∑︁
𝑖=1

�̃�2
𝑖 𝑛𝑖 ⊗ 𝑛𝑖. (4.11)

Since the eigenvalues of the deformation gradient and its transpose are equal, the eigenvalues
of the deformation tensors have to be equal as well, i.e. 𝜆𝑖 = �̃�𝑖. This allows the definition
of the Lagrangian strain tensors, defined by [112, 200], i.e.

𝐸𝑚 =

{︃
1
𝑚 [𝑈𝑚 − 𝐼] 𝑚 ̸= 0

ln [𝑈 ] 𝑚 = 0,
(4.12)

with the identity tensor 𝐼. The same concept can be applied to the spatial, Eulerian
counterpart, i.e.

𝑒𝑚 =

{︃
1
𝑚 [𝐼 − 𝑣−𝑚] 𝑚 ̸= 0

ln [𝑣] 𝑚 = 0.
(4.13)

Of special interest in this work are the spatial logarithmic strains, wherein the spectral
decomposition reads

𝜀 =

3∑︁
𝑖=1

ln(𝜆𝑖)𝑛𝑖 ⊗ 𝑛𝑖. (4.14)

Assuming the considered material shows time-dependent behaviour, derivatives w.r.t.
time have to be considered. Time derivatives are indicated by a number of dots above
the symbol, dependent on the order of derivative. Applied to the displacement field, this
yields

�̇� = �̇� =
𝜕𝑥

𝜕𝑡
and �̈� = �̈� =

𝜕2𝑥

𝜕𝑡2
, (4.15)
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i.e. the velocity and acceleration, respectively. This allows the definition of the referential
and spatial velocity gradient, i.e.

Grad(�̇�) = �̇� and grad(�̇�) = ∇𝑥�̇� = �̇� · 𝐹−1 =: 𝑙. (4.16)

The latter can be additively split into a symmetric deformation rate 𝑑 and a skew symmetric
spin 𝑤, such that

𝑑 =
1

2

[︀
𝑙+ 𝑙𝑡

]︀
and 𝑤 =

1

2

[︀
𝑙− 𝑙𝑡

]︀
. (4.17)

In addition to the reference and current configuration in Fig. 4.1, a theoretical plastic
configuration is considered, cf. [71, 206]. Its introduction is very beneficial for modelling
of elasto-plastic materials, as it allows the multiplicative split of the deformation gradient
into an elastic 𝐹 e and a plastic 𝐹 p contribution, i.e.

𝐹 = 𝐹 e · 𝐹 p. (4.18)

Application of this multiplicative split to the deformation tensors (4.10), yields

𝐶p = [𝐹 p]𝑡 · 𝐹 p and 𝑏e = 𝐹 e · [𝐹 e]𝑡. (4.19)

Together with (4.18), this leads to the conversion

𝑏e = 𝐹 ·𝐶p−1 · 𝐹 𝑡 ⇔ 𝐶p−1 = 𝐹−1 · 𝑏e · 𝐹−𝑡. (4.20)

Furthermore, combining the multiplicative split of the deformation gradient (4.18) with
the definition of the velocity gradient, yields the additive split

𝑙 = �̇�
e · �̇� e−1

+ 𝐹 e · �̇� p · 𝐹−1 =: 𝑙e + 𝑙p, (4.21)

with the spatial elastic 𝑙e and spatial plastic velocity gradient 𝑙p.

4.3 Balance laws

In this section, the balance laws as they find application in modern physics are briefly
summarised. More details can be found in e.g. [210, 238].

4.3.1 Balance of mass

In this work, only problems with no mass exchange are considered, i.e. no mass is added
or subtracted to the configurations �̇� = �̇� = 0. In this setting, the mass of a body in
the referential or current configuration can be computed easily by integrating the specific
densities over their respective volume, such that

𝑀 =

�
B0

𝜌0 d𝑉 =

�
B𝑡

𝜌 d𝑣 = 𝑚. (4.22)
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Together with (4.5), the proportion of referential density and current density is equal to
the Jacobi map, i.e.

𝜌0
𝜌

= 𝐽. (4.23)

Combining both of the above equations, allows deriving the rate form of mass continuity
in spatial form, such that

�̇� = 0 = 𝜌0 = ˙𝜌 𝐽 ⇔ �̇� 𝐽 + 𝜌 𝐽 div(�̇�) = 0. (4.24)

4.3.2 Balance of linear and angular momentum

Let 𝐿 be the linear momentum acting on the body under consideration, defined as

𝐿 =

�
B0

𝜌0 �̇� d𝑉 =

�
B𝑡

𝜌 �̇� d𝑣. (4.25)

Using the information from Sect. 4.3.1, its time derivative can be expressed as

�̇� =

�
B𝑡

𝜌 �̈� d𝑣. (4.26)

According to Newton’s second law of motion, the change of momentum of a body is
equal to the sum of all forces acting on it. This statement can thereby by expressed by

�̇� = 𝐹 vol + 𝐹 ext, (4.27)

where 𝐹 vol are the forces within the volume of the body and 𝐹 ext external forces applied
to the surface of the body. These can be represented in integral form according to

𝐹 vol =

�
B𝑡

𝜌 𝑏 d𝑣 and 𝐹 ext =

�
𝜕B𝑡

𝑡d𝑎. (4.28)

Therein, 𝑏 are spatial body forces acting in the body and 𝑡 spatial surface traction forces.
This finally combines into

�
B𝑡

𝜌 �̈� d𝑣 =

�
B𝑡

𝜌 𝑏 d𝑣 +
�
𝜕B𝑡

𝑡d𝑎. (4.29)

Applying Cauchy’s law 𝜎 ·𝑛 = 𝑡 allows reformulating the above equation, where 𝜎 are the
Cauchy stresses and 𝑛 their outward facing normal vector. This law states that pointwise
the forces acting on a surface are equal to the stress tensor of second order times the
normal direction of the considers surface. Besides the Cauchy stresses, many additional
stress definitions exist. The most important for this work is the first Piola-Kirchoff stress
tensor 𝑃K, i.e.

𝑃K = 𝐽 𝜎 · 𝐹−𝑡. (4.30)
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The first Piola-Kirchoff stress tensor has basis in the current and referential configuration,
it measures the stresses in the current configuration according to an infinitesimal volume
element in the reference configuration.

Another measurement important when plasticity is modelled are the so-called Mandel
stresses 𝛴. These are defined within the plastic configuration and are generally used
since they enable the use of invariants to define plastic properties. In addition, the spatial
Mandel stresses 𝑚 are utilised within this work. They are be defined with a push-forward
of the Mandel stresses 𝛴. Both stress measurements read

𝛴 = 𝐹 e · 𝜕𝛹

𝜕𝐹 e and 𝑚 = [𝐹 e]
−𝑡 ·𝛴 · [𝐹 e]

𝑡
. (4.31)

Additionally, combining (4.30) and (4.31), allows definition of the relation

𝑃K = 𝑚 · 𝐹−𝑡, (4.32)

for the First-Piola Kirchhoff stress tensor and the spatial Mandel stresses, which will find
application within the material model presented in this thesis.

Inserting Cauchy’s law into (4.29) and application of the divergence theorem finally
results in the weak form of linear momentum�

B𝑡

𝜌 �̈� d𝑣 =

�
B𝑡

𝜌 𝑏 d𝑣 +
�
B𝑡

𝜎 · 𝑛 d𝑣. (4.33)

In this thesis however, only quasi-static cases are considered. Therefore, the acceleration
is assumed to be zero, i.e. �̈� = 0, which leads to the equilibrium condition which only
considering internal and external forces.

Similarly to the balance of linear momentum, the balance of angular momentum states
that the change of angular momentum of a body w.r.t. a fixed point 𝑥0, is equal to the
sum of all moments exerted on the body, due to external volume of surfaces forces with
respect to the same fixed point. The necessary conclusion of this regarding this work is
the requirement of a symmetric Cauchy stress tensor, i.e. 𝜎 = 𝜎𝑡.

4.3.3 First law of thermodynamics

The first law of thermodynamics postulates the conversation of energy, that is one type
of energy can only be converted into another kind of energy. In the field of continuum
mechanics, the total energy of the system 𝐸 consists of the internal energy 𝑈 and the
kinetic energy 𝐾. A change in energy over time for a considered system can only occur
due to external influence. External sources consist of external applied power 𝑃 and heat
supply 𝑄. This yields

�̇� = 𝑃 +𝑄. (4.34)

The time derivatives of kinetic and internal part are specified as

�̇� =

�
B𝑡

𝜌 �̈� · �̇� d𝑣 and �̇� =

�
B𝑡

𝜌 �̇� d𝑣. (4.35)
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In the field of continuum mechanics, the internal energy contribution 𝑢 is generally specified
in terms of Helmholtz free energy 𝛹 , temperature 𝛩 and entropy 𝑠, such that

𝑢 = 𝛹 +𝛩 𝑠 ⇒ �̇� = �̇� + �̇� 𝑠+𝛩 �̇�. (4.36)

The external contribution includes the heat flux 𝑞 which is applied through the surface of
the body and internal heat source 𝑟, such that

𝑃 =

�
𝜕B𝑡

𝑡 · �̇� d𝑎+

�
B𝑡

𝜌 𝑏 · �̇� d𝑣 and 𝑄 = −
�
𝜕B𝑡

𝑞 · 𝑛d𝑎+

�
B𝑡

𝜌 𝑟 d𝑣. (4.37)

Combination of all quantities and application of the divergence theorem together with
balance of linear momentum finally leads to the local form

�̇� + �̇� 𝑠+𝛩 �̇� = 𝜎 : 𝑑+ 𝜌 𝑟 − div(𝑞), (4.38)

wherein 𝜎 : 𝑑 is the so-called specific stress power.

Remark 4.1 Note, that here 𝑠 denotes the entropy. This is not to be confused with the
quantity 𝑠 which is used describe the design variables of an optimisation.

4.3.4 Second law of thermodynamics

The second law considers the direction of energy flow and the inherent irreversibility of
entropy. It postulates that the entropy rate �̇� is always greater or equal than the external
entropy supply 𝑅ext, i.e. �̇� −𝑅ext ≥ 0. This results in

�
B𝑡

𝜌 �̇�d𝑣 +
�
𝜕B𝑡

1

𝛩
𝑞 · 𝑛d𝑎−

�
B𝑡

𝜌 𝑟

𝛩
d𝑣 ≥ 0. (4.39)

Combining this definition with the first law of thermodynamics (4.38), as well as re-
structuring the equation, leads to the local dissipation inequality, also known as the
Clausius-Duhem inequality

D = 𝜎 : 𝑑− 𝜌
[︁
�̇� + 𝑠 �̇�

]︁
− 1

𝛩
𝑞 · grad(𝛩) ≥ 0. (4.40)

In the context of this work, thermal contributions are neglected and an isothermal process,
𝛩 = const., is assumed. This reduces the inequality to

D = 𝜎 : 𝑑− 𝜌 �̇� ≥ 0. (4.41)

4.4 Nonlocal damage regularisation

The main problem with classical, local damage models, from a mathematical view point,
is the loss of ellipticity of the governing equations, i.e. the mechanical tangent is no
longer positive definite [144]. From a numerics viewpoint, this leads to an inherent mesh-
dependency in the simulation results. That is, the accuracy of the finite element (FE)
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simulation does not increase with higher mesh density [25, 181]. Instead, the local damage
may start to predict damage behaviour to occur in smaller areas of the FE mesh, leading
to mesh-dependent localisation. Due to this background, multiple possible approaches to
solve this problem exist.

Fracture energy concept. One approach to circumvent this problem is by coupling
the numerics, i.e. FE discretisation, with physical data in form of the fracture energy,
cf. [23]. This idea does not solve the underlying mathematical problems of the equations
which lead to the mesh-dependency, but instead adapt the results to be in accordance to
physics. A specific fracture energy is introduced and combination with mesh properties
adjusted, such that the physical fracture energy is reproduced. The main benefit of this
approach is the quick calibration for a given problem. However, in the similar vein, it
is only appropriate for the calibrated mesh-size and requires recalibration if another FE
mesh is considered. While this solves the issues regarding the validity of the computed
results, the damage will still localise in one element row, cf. [123].

Viscous regularisation. This approach, cf. [69], aims to resolve the mesh-dependency
by introducing a rate-dependent damage evolution. If the chosen time discretisation
is appropriate, the resulting mechanics behaviour and damage distribution is mesh-
independent. Furthermore, the mechanical tangent remains positive definite. This approach
has been expanded and applied in further literature for many different fields of application,
cf. [5, 31, 140]. While this approach resolves the dependency of the damage evolution on the
numerical description of geometry, it shifts this dependency into the time space. Therefore,
the results now depend on the chosen time discretisation. If the damage behaviour in
this approach is coupled to other rate-dependent mechanisms, e.g. temperature effects,
interference between the descriptions might occur.

Nonlocal models. Another approach to overcome the mesh-dependency in continuum
damage modelling is by means of nonlocal models. These models introduce nonlocal
damage quantities based on certain concepts, which therefore no longer limits damage
to their respective finite element and take surrounding information into consideration.
In [22, 24], a nonlocal damage variable is defined as an integral value of a pointwise
defined damage quantity. Another, more common, method in nonlocal damage modelling
is the utilisation of gradient information. In this setting, the gradient of the nonlocal
damage variable is introduced as the additional information within the underlying model
description. This concept results from a Taylor-series expansion, excluding information of
order two and higher.

4.4.1 Micromorphic approach

While in theory many different approaches are possible, like moving the local damage
variable to the global scale and solving the constitutive equations there, cf. [103, 144],
nowadays the so-called micromorphic approach is often applied. The basic idea is to
introduce a nonlocal damage variable 𝜑, which is coupled to a local damage quantity 𝑑 by
means of a penalty approach, cf. [63, 80, 180]. This enables regularisation of the nonlocal
variable, while all constitutive equations can be solved on the local scale. The nonlocal
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energy contribution thus reads

𝛹nl =
𝑐d
2
‖∇𝑋𝜑‖2 + 𝛽d

2
[𝜑− 𝑑]

2
, (4.42)

where the first additive term regularises the nonlocal damage and is weighted by the
regularisation parameter 𝑐d. The second term couples the nonlocal damage 𝜑 to the local
damage quantity 𝑑, forcing equilibrium of these two quantities. The above framework
utilises the referential gradient ∇𝑋𝜑. Alternatively, a spatial gradient ∇𝑥𝜑 could also be
employed, see Remark 1 of [215]. This nonlocal energy contribution can be coupled to a
local part, resulting in the total Helmholtz energy

𝛹 = 𝛹 loc(𝐹 ,𝑑) + 𝛹nl(𝐹 ,𝑑,𝜑,∇𝑋𝜑). (4.43)

One benefit of this approach, due to the setup of the energy term, is the choice of a local
contribution 𝛹 loc can, in theory, be of any type. Furthermore, this eases the effort for
the numerical implementation, since this approach does not require solving any of the
resulting Karush-Kuhn-Tucker conditions on the global scale, see [103, 144] where this is
required.

4.4.2 Weak form of equilibrium

The total energy for a quasi-static system splits into an internal and external part and
reads

𝛱 = 𝛱int +𝛱ext = 𝛱 loc
int +𝛱nl

int +𝛱ext

=

�
B0

𝛹 d𝑉 −
�
B0

𝜌0 𝑏0 ·𝜙 d𝑉 −
�
𝜕B0

𝑡0 ·𝜙 d𝐴.
(4.44)

The external energy contribution includes the body forces 𝑏0, which are weighted by the
referential mass density 𝜌0, and the traction forces 𝑡0 applied on the surface 𝜕B0. The
postulate of minimum potential energy, i.e.

𝛿𝜙𝛱 = 0, (4.45)
𝛿𝜑𝛱 = 0, (4.46)

results in the two weak forms for the mechanical and damage part

𝑟𝜙 =

�
B0

𝜕𝛹

𝜕𝐹
: ∇𝑋𝜂𝜙 d𝑉 − 𝜌0

�
B0

𝑏0 · 𝜂𝜙 d𝑉 −
�
𝜕B0

𝑡0 · 𝜂𝜙 d𝐴 = 0, (4.47)

𝑟𝜑 =

�
B0

[︂
𝜕𝛹

𝜕∇𝑋𝜑
· ∇𝑋𝜂𝜑 +

𝜕𝛹

𝜕𝜑
𝜂𝜑

]︂
d𝑉 = 0, (4.48)

and can be combined into

𝑟 =

[︂
𝑟𝜙

𝑟𝜑

]︂
= 0. (4.49)
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To differentiate between the variations in the above equations and in the upcoming ones
in Chap. 5, the test functions 𝜂𝜙 and 𝜂𝜑, using (2.10), are introduced here. These weak
forms are subsequently discretised in Sect. 4.6.1 for the FE implementation. The partial
derivatives in the above equations can be identified as the first Piola-Kirchhoff stress
tensor 𝑃K, as well as the nonlocal damage driving forces 𝑌 and 𝑌 , i.e.

𝑃K :=
𝜕𝛹

𝜕𝐹
, 𝑌 :=

𝜕𝛹

𝜕∇𝑋𝜑
, 𝑌 :=

𝜕𝛹

𝜕𝜑
. (4.50)

4.5 Constitutive model

The local constitutive model utilises the multiplicative split presented in Sect. 4.2.
Combining (4.20) and (4.11), spectral decomposition of the elastic left Cauchy-Green
deformation tensor reads

𝑏e = 𝐹 e · [𝐹 e]
𝑡
=

3∑︁
𝑖=1

[𝜆e
𝑖 ]
2
𝑛𝑖 ⊗ 𝑛𝑖. (4.51)

Using the elastic eigenvalues of this decomposition, and combination with (4.14), yields
the elastic logarithmic strains

𝜀e :=

3∑︁
𝑖=1

ln(𝜆e
𝑖 )𝑛𝑖 ⊗ 𝑛𝑖 =

3∑︁
𝑖=1

𝜀e𝑖 𝑛𝑖 ⊗ 𝑛𝑖, (4.52)

which can be additionally split into a volumetric and an isochoric part, i.e.

𝜀e,vol :=

3∑︁
𝑖=1

𝜀e𝑖 , 𝜀e,iso :=

3∑︁
𝑖=1

[︂
𝜀e𝑖 −

1

3
𝜀e,vol

]︂
𝑛𝑖 ⊗ 𝑛𝑖. (4.53)

With this split in strains, the local Helmholtz energy 𝛹 loc is also split into a volumetric
part 𝛹vol and an isochoric part 𝛹 iso. With the additional plastic contribution 𝛹p, the
local Helmholtz energy is specified as

𝛹 loc(𝜀e,𝑑,𝛼) = 𝛹vol(𝜀e,𝑑) + 𝛹 iso(𝜀e,𝑑) + 𝛹p(𝛼)

=
𝐾

2
𝑓vol(𝑑) [tr(𝜀e)]2 +𝐺𝑓 iso(𝑑) 𝜀e,iso : 𝜀e,iso +

ℎ

𝑛p + 1
𝛼𝑛p+1,

(4.54)

where 𝐾 denotes the compression and 𝐺 the shear modulus. Additionally, the plastic
hardening modulus ℎ and the hardening exponent 𝑛p are introduced and together with
the internal plastic variable 𝛼 form the plastic energy contribution. Both elastic terms
additional introduce the damage functions 𝑓∙. These replace the typical [1− 𝑑] approach
often found in other models in literature, and are defined as

𝑓∙(𝑑) := exp(−𝜂 𝜉∙𝑑) (4.55)
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with the internal damage variable 𝑑 ∈ [0,1[, such that

𝑓∙ :

{︂
R
+
0 →]0,1]

⃒⃒⃒⃒
𝑓∙(0) = 1, lim

𝑑→∞
𝑓∙(𝑑) = 0

}︂
. (4.56)

The parameter 𝜂 influences the rate of degradation in general, which can be further specified
with 𝜉∙ for each respective contribution within the model, e.g. volumetric or isochoric
contribution within (4.54). This approach, in contrast to the [1− 𝑑] definition, does not
limit the damage variable to an upper bound. The local damage quantity 𝑑 is only defined
to be non-negative and its increase throughout loading is unrestricted. This however, has
a slight drawback regarding immediate translation of damage variable to damage state.
Since this quantity no longer correlates 𝑑 = 0 → no damage and 𝑑 = 1 → failure, the
specific damage function or their parameters need to be explicitly known to analyse a
resulting damage evolution. The main benefit of this approach, however, is in its numerical
implementation and the algorithmic framework of the model.

For simplicity, in this work the notation

[𝑓∙]
′
(𝑑) =

𝜕𝑓∙

𝜕𝑑
(4.57)

is additionally introduced here.
The dissipation inequality, following (4.41) and using (4.16), reads

D = 𝑚 : 𝑙− �̇� ≥ 0. (4.58)

Solving the dissipation inequality by applying the postulate of minimum dissipation, as
well as the procedure proposed by Coleman and Noll, cf. [54], the spatial Mandel stresses,
isotropic hardening stress and the local damage driving force can be specified, i.e.

𝑚 := 2
𝜕𝛹

𝜕𝑏e
· 𝑏e, 𝛽 := −𝜕𝛹

𝜕𝛼
, 𝑞 := −𝜕𝛹

𝜕𝑑
, (4.59)

and, using (4.21), leads to the reduced dissipation inequality

Dred = 𝑚 : 𝑙p + 𝛽 �̇�+ 𝑞 𝑑 ≥ 0. (4.60)

To govern the evolution of plasticity and damage, respectively, two separate dissipation
potential 𝛷p and 𝛷d are defined

𝛷p(𝑚,𝛽,𝑑) := ‖dev(𝑚eff)‖ −
√︂

2

3
[𝜎y0 − 𝛽] , (4.61)

𝛷d(𝑞,𝑑,𝛼) := 𝑞eff − 𝑞min [1− 𝑓𝑞(𝑑)]
𝑛d , (4.62)

where dev(∙) = ∙− 1
3 tr(∙) : 𝐼 denotes the deviatoric part of a stress measurement. The

dissipation potential utilises effective driving forces, which introduce strong coupling
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between plastic and damage evolution and are defined as

𝑚eff := 𝑚 𝑓𝑚(𝑑), (4.63)

𝑞eff := 𝑞 𝑓𝛼(𝛼), (4.64)

where modified coupling functions are introduced as

𝑓𝑚(𝑑) =
1 + 𝜖

𝑓𝑚(𝑑) + 𝜖
and 𝑓𝛼(𝛼) =

1 + 𝜖

𝑓𝛼(𝛼) + 𝜖
, (4.65)

with the perturbation value set to 𝜖 = 1× 10−3.
The associative evolution equations are additionally derived as

𝑙p = 𝜆p 𝜕𝛷
p

𝜕𝑚
= 𝜆p𝑓𝑚𝜈,

�̇� = 𝜆p 𝜕𝛷
p

𝜕𝛽
= 𝜆p

√︂
2

3
,

𝑑 = 𝜆d 𝜕𝛷
d

𝜕𝑞
= 𝜆d𝑓𝛼,

(4.66)

where the two Lagrange parameters 𝜆p and 𝜆d are introduced. Together with their
respective dissipation potentials, they combine into the two sets of Karush-Kuhn-Tucker
conditions

𝛷p ≤ 0, 𝜆p ≥ 0, 𝜆p𝛷p = 0, (4.67)

𝛷d ≤ 0, 𝜆d ≥ 0, 𝜆d𝛷d = 0, (4.68)

which, as a physical interpretation, govern initiation and termination of plastic and damage
evolution under loading or unloading, respectively. The plastic dissipation potential is
of classic von Mises type with initial yield stress 𝜎y0. The damage onset in the damage
dissipation potential is governed by a threshold 𝑞min. This quantity is multiplied by the
term in the bracket, which decreases in value with increasing damage accumulation. With
the parameter 𝑛d < 1, this results in higher damage thresholds as damage increases. The
aim of this formulation is to allow for a smoother damage evolution, as well as a more
ductile response of the material, cf. [215]. Of note here, for 𝑛d = 0 the term in the bracket
is disabled, and damage initiates only after the initial, constant threshold value 𝑞min is
surpassed.

4.6 Numerical implementation

For the numerical implementation and computation thereof, the field variables and hence
the weak forms and equations of the constitutive model have to be discretised. The
former is specified, wherein the same discretisation will be again applied in Sect. 5. The
algorithmic treatment of the latter is thoroughly explained and the implementations
sketched. The discrete variables are now denoted, according to Sect. 2.1, as bold faced
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Roman letters. For example, the continuous 𝑋 is now replaced with its discrete counterpart
X. Some of the required equations and their derivations, however, are omitted in this
section for readability purposes. These are listed in Appendix A.1 -A.3, wherein the latter
briefly summarises the �̄� -method utilised. Finally, to verify the correct implementation of
the model, simulation results from the implemented model were compared to data from
the original source [215]. These can be found in Appendix A.4.

4.6.1 Finite element method

For the numerical implementation, a FE discretisation is applied to the weak forms in
(4.47) and (4.48). The domain B0 is discretised by 𝑛el finite elements and 𝑛np nodes, i.e.

B0 ≈ Bℎ
0 =

𝑛el⋃︁
𝑒=1

B𝑒
0. (4.69)

Each finite element 𝑒 is associated with 𝑛𝜙
en nodes with three displacement degrees of

freedom 𝜙, and 𝑛𝜑
en nodes with one nonlocal damage degree of freedom 𝜑. The referential

geometry description 𝑋 is interpolated with shape functions 𝑁𝑋
𝐶 , i.e.

𝑋 ≈𝑋ℎ =

𝑛𝜙
en∑︁

𝐶=1

X𝐶𝑁
𝑋
𝐶 . (4.70)

Application of an isoparametric concept, i.e. 𝑁𝑋 = 𝑁𝜙 = 𝑁𝜑, and the Bubnov-Galerkin
approach, this results in the approximations

𝜙 ≈ 𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

φ𝐴𝑁
𝜙
𝐴 , 𝜂𝜙 ≈ 𝜂𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

η𝜙
𝐴𝑁

𝜙
𝐴 ,

𝜑 ≈ 𝜑ℎ =

𝑛𝜑
en∑︁

𝐵=1

ϕ𝐵𝑁
𝜑
𝐵 , 𝜂𝜑 ≈ 𝜂𝜑ℎ =

𝑛𝜑
en∑︁

𝐵=1

η𝜑𝐵𝑁
𝜑
𝐵 ,

𝛿𝑋 ≈ 𝛿𝑋ℎ =

𝑛𝜙
en∑︁

𝐶=1

𝛿X𝐶𝑁
𝑋
𝐶 ,

(4.71)

for the field variables and test functions, and furthermore

∇𝑋𝜙 ≈ ∇𝑋𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

φ𝐴 ⊗∇𝑋𝑁𝜙
𝐴 , ∇𝑋𝜂𝜙 ≈ ∇𝑋𝜂𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

η𝜙
𝐴 ⊗∇𝑋𝑁𝜙

𝐴 ,

∇𝑋𝜑 ≈ ∇𝑋𝜑ℎ =

𝑛𝜑
en∑︁

𝐵=1

ϕ𝐵∇𝑋𝑁𝜑
𝐵 , ∇𝑋𝜂𝜑 ≈ ∇𝑋𝜂𝜑

ℎ
=

𝑛𝜑
en∑︁

𝐵=1

η𝜑𝐵∇𝑋𝑁𝜑
𝐵 ,

∇𝑋𝑋 ≈ ∇𝑋𝑋ℎ =

𝑛𝜙
en∑︁

𝐶=1

X𝐶 ⊗∇𝑋𝑁𝑋
𝐶 , ∇𝑋𝛿𝑋 ≈ ∇𝑋𝛿𝑋ℎ =

𝑛𝜙
en∑︁

𝐶=1

𝛿X𝐶 ⊗∇𝑋𝑁𝑋
𝐶 ,
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(4.72)

for their gradients. Insertion of these approximations into the weak forms (4.47) and (4.48)
yields

𝛿𝜙𝛱
ℎ
𝑒𝐴 = η𝜙 ·

[︃�
B𝑒

0

PK · ∇𝑋𝑁𝜙
𝐴 d𝑉 − 𝜌0

�
B𝑒

0

b0 𝑁
𝜙
𝐴 d𝑉 −

�
𝜕B𝑒

0

t0 𝑁
𝜙
𝐴 d𝐴

]︃
= 0,

(4.73)

𝛿𝜑𝛱
ℎ
𝑒𝐵 = η𝜑

[︃�
B𝑒

0

[︁
Y · ∇𝑋𝑁𝜑

𝐵 + 𝑌 𝑁𝜑
𝐵

]︁
d𝑉

]︃
= 0. (4.74)

The first integral in (4.73) can be identified as the internal forces with the latter two
representing the external contribution. (4.73) and (4.74) have to be fulfilled for arbitrary
values of the test functions η𝜙 and η𝜑, which subsequently allows the above equations to
be rewritten as the sum of forces, i.e.

r𝑒 =

[︃
r𝜙𝑒𝐴

r𝜑𝑒𝐵

]︃
=

[︃
f int,𝜙𝑒𝐴 − f ext,𝜙𝑒𝐴

f int,𝜑𝑒𝐵

]︃
=

[︃
0

0

]︃
. (4.75)

Assembly of the elemental quantities into a global FE residual consequently leads to

r𝜙 =

𝑛el

A
𝑒
r𝜙𝑒𝐴, r𝜑 =

𝑛el

A
𝑒
r𝜑𝑒𝐵 , r =

𝑛el

A
𝑒
r𝑒. (4.76)

While quasi-static problems are analysed here, which do not explicitly depend on the
time discretisation, the loads are applied by pseudo-time increments, i.e. 𝑡𝑛+1 = 𝑡𝑛 +𝛥𝑡.
To solve the nonlinear system of equations (4.75) at each respective time step 𝑡𝑛+1, the
Newton-Raphson method is utilised. Therefore, the system is linearised by a Taylor series
expansion, i.e.

r𝜙𝑛+1 = r𝜙𝑛 +𝛥r𝜙𝑛 = 0, (4.77)

r𝜑𝑛+1 = r𝜑𝑛 +𝛥r𝜑𝑛 = 0, (4.78)

where terms of higher order are neglected. The respective nodal increments result in

𝛥r𝜙𝑛 =

𝑛𝜙
en∑︁

𝐶=1

dr𝜙𝑛
dφ𝐶

·𝛥φ𝐶 +

𝑛𝜑
en∑︁

𝐷=1

dr𝜙𝑛
dϕ𝐷

𝛥ϕ𝐷, (4.79)

𝛥r𝜑𝑛 =

𝑛𝜑
en∑︁

𝐶=1

dr𝜑𝑛
dφ𝐶

·𝛥φ𝐶 +

𝑛𝜑
en∑︁

𝐷=1

dr𝜑𝑛
dϕ𝐷

𝛥ϕ𝐷, (4.80)

with 𝛥φ𝐶 = φ𝑛+1,𝐶 − φ𝑛,𝐶 and 𝛥ϕ𝐷 = ϕ𝑛+1,𝐷 − ϕ𝑛,𝐷. The total derivatives in
the above equations represent the stiffness terms that are calculated element-wise and
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assembled into the global stiffness matrix K

K𝑒 =

[︂
K𝜙𝜙

𝑒 K𝜙𝜑
𝑒

K𝜑𝜙
𝑒 K𝜑𝜑

𝑒

]︂
, K =

𝑛el

A
𝑒
K𝑒, K ∈ R

𝑛dof×𝑛dof (4.81)

The stiffness matrix has the dimension 𝑛dof × 𝑛dof , where 𝑛dof = [𝑛𝜙
dim + 1] · 𝑛np. Here,

𝑛dof are the total number of degrees of freedom, 𝑛𝜙
dim the number of dimensions for

the deformation field and 𝑛np the number of node points. The element-wise stiffness
contributions thus read

K𝜙𝜙
𝑒𝐴𝐶 =

dr𝜙𝑒𝐴,𝑛

dφ𝐶
=

�
B𝑒

0

[I⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕PK

𝜕F
· ∇𝑋𝑁𝜙

𝐶 d𝑉, (4.82)

K𝜙𝜑
𝑒𝐴𝐷 =

dr𝜙𝑒𝐴,𝑛

dϕ𝐷
=

�
B𝑒

0

[I⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕PK

𝜕ϕ
𝑁𝜑

𝐷 d𝑉, (4.83)

K𝜑𝜙
𝑒𝐵𝐶 =

dr𝜑𝑒𝐵,𝑛

dφ𝐶
=

�
B𝑒

0

𝑁𝜑
𝐵

𝜕𝑌

𝜕F
· ∇𝑋𝑁𝜙

𝐶 d𝑉, (4.84)

K𝜑𝜑
𝑒𝐵𝐷 =

dr𝜑𝑒𝐵,𝑛

dϕ𝐷
=

�
B𝑒

0

𝑁𝜑
𝐵

𝜕𝑌

𝜕ϕ
𝑁𝜑

𝐷 +∇𝑋𝑁𝜑
𝐵 ·

𝜕Y

𝜕∇𝑋ϕ
· ∇𝑋𝑁𝜑

𝐷 d𝑉, (4.85)

where I represents the matrix form of the second order identity tensor. The total derivatives
in their respective stiffness contributions will not be listed here but can be found in
Appendix A.1.

Finally, assembly of the nodal increments

𝛥w𝑒 =

[︂
𝛥φ𝑒𝐶

𝛥ϕ𝑒𝐷

]︂
, 𝛥w =

𝑛el

A
𝑒
w𝑒, (4.86)

results in the global linearised form

r+K ·𝛥w = 0. (4.87)

To solve this linear system of equations, the Dirichlet boundary conditions have to be
considered. The index 𝑎 is introduced to denote the unknown degrees of freedom and
𝑏 for the known, i.e. prescribed, degrees of freedom. Hence, the above system can be
reformulated, such that[︂

r𝑎
r𝑏

]︂
+

[︂
K𝑎𝑎 K𝑎𝑏

K𝑏𝑎 K𝑏𝑏

]︂
·
[︂
w𝑎

w𝑏

]︂
. (4.88)

The resulting submatrix, i.e. reduced tangent stiffness matrix, K𝑎𝑎 is positive definite
and therefore allows computation of its inverse. Finally, this enables solving of the global
linearised problem for the unknown increment 𝛥𝑤𝑎, such that

𝛥w𝑎 = K−1
𝑎𝑎 · [r𝑎 +K𝑎𝑏 ·w𝑏] . (4.89)
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4.6.2 Algorithmic treatment

The evolution equations are algorithmically solved by means of an active-set strategy. For
the algorithmic treatment, a time discretisation is required. The scalar valued evolution
equations for the internal plastic variable 𝛼 and internal damage variable 𝑑 are solved via
an implicit backward-Euler scheme. For the evolution of plastic deformations, an implicit
exponential integration scheme, cf. [210], is required to fulfil the plastic incompressibility
condition det(Fp) = 1. With the pseudo-time increments 𝑡𝑛+1 = 𝑡𝑛 +𝛥𝑡, this yields

Fp = exp
(︁
𝛥𝜆pν0𝑓

𝑚(𝑑)
)︁
· Fp

𝑛, (4.90)

𝛼 = 𝛼𝑛 +

√︂
2

3
𝛥𝜆p, (4.91)

𝑑 = 𝑑𝑛 +𝛥𝜆d𝑓𝛼(𝛼). (4.92)

Therein, ν0 = dev(Σ)/‖dev(Σ)‖ represents the plastic flow direction of the intermediate
Mandel stresses Σ and 𝛥𝜆∙ = 𝛥𝑡𝜆∙ are the incremental Lagrange multipliers.

Remark 4.2 For readability reasons, the subscript 𝑛 + 1 is omitted, e.g. 𝛼 = 𝛼𝑛+1.
Variables from previous time step are still denoted with a subscript 𝑛, e.g. 𝛼𝑛, to allow
specific differentiation if they are required for numerical purposes.

Since the iterative data from a previous time step is required to update the internal
variables (4.90)-(4.92), they have to be stored to be accessed throughout consecutive
iterations. Hence, they are captured in a field of history variables h in vector form, which
encompasses

h =
{︀
Cp−1

𝑛 ,𝛼,𝑑
}︀
. (4.93)

Notably, the inverse of the plastic right Cauchy-Green deformation tensor Cp−1 is stored
instead of the plastic deformation gradient Fp. Since the intermediate plastic configuration
is only defined up to a rigid body motion, cf. [145, 205], utilisation of the plastic
deformation gradient is not feasible. Furthermore, using Cp−1 has benefits in relation
to the algorithmic treatment by exploiting relation (4.20). In (4.90), the plastic flow
direction of the intermediate Mandel stresses are required, however all other quantities
are computed in the principal spatial space. Computation of dev(m) = miso in a spectral
decomposition and the plastic flow direction ν for the spatial Mandel stresses, yields

ν =

3∑︁
𝑖=1

𝜈𝑖 n𝑖 ⊗ n𝑖, 𝜈𝑖 =
𝜀e,iso𝑖√︂∑︀3

𝑛=1

[︁
𝜀e,iso𝑛

]︁2 . (4.94)

The principal directions n𝑖 therein coincide with the principal directions of be since
isotropic plasticity is modelled, and therefore also coincide with the principal directions of
Fe. The transformation of the flow directions is computed via ν = Fe · ν̂ ·Fe−1. Using this,
and the concept within the return-mapping algorithm and its trial step, allows update of
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the left Cauchy-Green tensor, such that

be = Fe,tr · exp
(︁
−2𝛥𝜆pν𝑓𝑚(𝑑)

)︁
·
[︀
Fe,tr

]︀𝑡
. (4.95)

This equation is used for the following implementation and with (4.20) to update the
internal variable Cp−1.

Within the local iteration, a two-step algorithm known as the return-mapping algorithm,
is implemented. In this algorithm, each local initial computed step at 𝑡𝑛+1, denoted as the
trial state, is assumed to be elastic, utilising the stored set of history variables h𝑛 from
time step 𝑡𝑛. This is depicted in Fig. 4.2. Since for the first load step, i.e. 𝑡1, some set
of initial values for 𝑡0 are required, the set of internal variables h0 has to be initialised.
Assuming no initial plasticity and no pre-damage effects have occurred in the material,
these can be initialised to

Cp−1
0 = I, 𝛼0 = 0, 𝑑0 = 0. (4.96)

Since the computations from here on out are done in the principal space, only the the
eigenvalues are necessary. These are stored in n-tuples, which are indicated with ∙̄. The
tensor quantities are recovered using their eigenvectors within the spectral decomposition
in Fig. 4.2 step 7 and onward. The quantities of the elastic predictor step read

𝛼tr = 𝛼𝑛, (4.97)

𝑑tr = 𝑑𝑛, (4.98)

Cp−1,tr = Cp−1
𝑛 (4.99)

be,tr = F ·Cp−1
𝑛 · F𝑡 =

3∑︁
𝑖=1

[︀
𝜆e,tr

]︀2
n𝑖 ⊗ n𝐼 , (4.100)

𝜀𝑖
e,tr = ln(𝜆e,tr

𝑖 ), (4.101)

m̄tr,iso = 2𝐺𝑓 iso(𝑑𝑛)

[︂
ε̄e,tr − 𝜀e,vol

3
Ī

]︂
, (4.102)

where Ī is the corresponding identity tensor for the principal space and εe,tr is computed
using the trial strains and (4.53). Since the plastic deformation is assumed to be isochoric
in nature, the volumetric part of the strain decomposition remains constant throughout the
local iteration, i.e. 𝜀e,vol = 𝜀e,tr,vol. Using these variables, trial values for both dissipation
potentials (4.61) and (4.62) are computed, i.e.

𝛷p,tr = ‖(m̄tr,iso)‖𝑓𝑚(𝑑𝑛)−
√︂

2

3
[𝜎y0 − ℎ𝛼𝑛p

𝑛 ] , (4.103)

𝑞tr = −1

2
𝐾

[︀
𝑓vol(𝑑𝑛)

]︀′ [︀
𝜀e,vol

]︀2 −𝐺
[︀
𝑓 iso(𝑑𝑛)

]︀′ ‖ε̄e,iso,tr‖2 − 𝛽d [𝜑− 𝑑𝑛] (4.104)

𝛷d,tr = 𝑞tr𝑓𝛼(𝑑𝑛)− 𝑞min [1− 𝑓𝑞(𝑑𝑛)]
𝑛d . (4.105)

If neither of those trial quantities are greater than zero, and with the initialised Lagrange
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parameters 𝛥𝜆p = 𝛥𝜆d = 0, the KKT (4.67) and (4.68) are inherently fulfilled and the
assumed elastic case is indeed a valid solution. In this case, the trial quantities are solutions
of the local problem and step 4 in Fig. 4.2 can be skipped. The stresses and driving forces
can be simply updated in a straightforward fashion, see Fig. 4.2. These are consequently
used for the computation of the tangent computations, see Fig. 4.4. No further local
iteration is required. However, if one of those trial values for the dissipations are greater
than zero, a local update of the Lagrangian multipliers is necessary, as the load step is not
elastic.

Remark 4.3 From this point onward, also regarding details in Appendix A and Appendix
B, only the coupled case of damage and plasticity is considered, i.e. 𝛷p,tr > 0 and 𝛷d,tr > 0.
In theory, the uncoupled case can occur, where only plasticity or damage might evolve.
However, this specifically not considered in the derivation here. The case distinctions and
presentation of all additional derivatives would drastically increase the length of this work
and might lead to confusion. However, understanding the concepts of the presented work
allows the derivation of the not specifically mentioned cases.

A non-elastic step means evolution of damage and plasticity and therefore the internal
variables have to be updated accordingly. To fulfil the KKT conditions, the Lagrangian
multipliers have to be adjusted. In this implementation, it is achieved with an active-set
algorithm, cf. [151, 162, 206], and its implementation depicted in Fig. 4.3. For multi-
surface problems, other algorithms can be used as well, like the Fischer-Burmeister and
other NCP methods, cf. [128].

The active set is initialised with 𝑘 = 0 as A0 = ∅. In each iteration the active set is
filled with the parts of the total set P = {p,d}, which violates the constraints the most, i.e.
A𝑘+1 = {𝑝} if 𝛷p > 𝛷d ≥ 0, or A𝑘+1 = {𝑑} if 𝛷d > 𝛷p ≥ 0. In the initial case 𝑘 = 1, these
quantities correlate with the trial values, i.e. 𝛷p = 𝛷p,tr and 𝛷d = 𝛷d,tr. For the active
set, the corresponding Lagrangian multipliers are solved using a local Newton-Raphson
iteration, with

Λ =

[︂
𝛥Λp

𝛥Λd

]︂
, rloc =

[︂
𝛷p

𝛷d

]︂
, J =

⎡⎢⎣ 𝜕𝛷p

𝜕𝛥𝜆p

𝜕𝛷p

𝜕𝛥𝜆d

𝜕𝛷d

𝜕𝛥𝜆p

𝜕𝛷d

𝜕𝛥𝜆d

⎤⎥⎦ . (4.106)

Therein, Λ is the unknown update for the Lagrangian multipliers, rloc the local residual
and J the corresponding Jacobian, which is detailed in Appendix A.2. Each iteration
yields an update for the Lagrangian multipliers

𝛥𝜆p = 𝛥𝜆p
𝑘 +𝛥Λp, (4.107)

𝛥𝜆d = 𝛥𝜆d
𝑘 +𝛥Λd, (4.108)

with

Λ = Λ𝑘 +𝛥Λ, (4.109)

𝛥Λ = −J−1 · rloc. (4.110)
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This local update is computed until the change in update is sufficiently small, i.e. ‖𝛥Λ‖ ≤
tol with a predefined tolerance, which is set to tol = 1× 10−12 in this implementation.

To update the active set, in each iteration the active set from the previous iteration
𝑘 is used as the initial set for 𝑘 + 1, i.e. A𝑘+1 = A𝑘. This set is updated by removing
the smallest incremental Lagrange multiplier 𝑗 and, since it might be negative due to
numerical tolerances, is reset to zero, i.e.

A𝑘+1 = A𝑘+1 ∖ {𝑗}, 𝛥𝜆𝑗 = 0, with 𝛥𝜆𝑗 = min
{︀
𝛥𝜆𝑗 ∈ A𝑘 |𝛥𝜆𝑗 < 0

}︀
. (4.111)

Afterwards, the largest, yet unconsidered constraint 𝑗 which exceeds their bound is added
to the active-set, i.e.

A𝑘+1 = A𝑘+1 ∪ {𝑗}, with 𝛷𝑗 = max
{︀
𝛷𝑗 ∈ P ∖A𝑘 |𝛷𝑗 > 0

}︀
. (4.112)

After these adjustment, if the active set does not change, i.e. A𝑘+1 = A𝑘 still holds, the
algorithm is finished and the update for the Lagrangian multipliers computed, which fulfil
the KKTs. Otherwise, the algorithm continues until 𝑘 = 𝑘max, which limits the maximum
number of local iterations. If this occurs, the local iteration is stopped and the current
global iteration is cancelled as well, since the local material model does not converge for
the current load increment. A time step adjustment is implemented, which alters the
global load and tries the boundary value problem (BVP) again for a reduce load step.

This time step size control is required, as the complexity of the material model might
reach load increments, where a too large step size might not reach a converging solution in
some local element iteration. In this case, the global load application is reduced and the
global BVP computed with smaller load increments. This is more beneficial than initially
setting a constant, very small load increment, as this would require this load step to be
applied throughout the complete simulation. Furthermore, the automatic step size control
is implemented, such that time steps can be increased, if the global problem converges
quickly again, overall speeding up the computation time.
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Local damage model

Input: F,ϕ,∇𝑋ϕ, and previous history field h𝑛=
{︀
Cp−1

𝑛 ,𝛼𝑛,𝑑𝑛
}︀

1. Compute trial left Cauchy-Green tensor and spectral decomposition for trial
Hencky strains

be,tr = F ·Cp−1
𝑛 · F𝑡 =

3∑︁
𝑖=1

[︀
𝜆e,tr

]︀2
n𝑖 ⊗ n𝑖, 𝜀𝑖

e,tr = ln(𝜆e,tr
𝑖 )

2. Compute spatial return direction ν = ‖εe,iso,tr‖−1εe,iso,tr

3. Evaluate trial values of dissipation potentials

𝛷p,tr = ‖m̄tr,iso‖𝑓𝑚(𝑑𝑛)−
√︂

2

3
[𝜎y0 − ℎ𝛼𝑛p

𝑛 ]

𝑞tr = −1

2
𝐾

[︀
𝑓vol(𝑑𝑛)

]︀′ [︀
𝜀e,vol

]︀2 −𝐺
[︀
𝑓 iso(𝑑𝑛)

]︀′ ‖ε̄e,iso,tr‖2 − 𝛽d [𝜑− 𝑑𝑛]

𝛷d = 𝑞tr𝑓𝛼(𝑑𝑛)− 𝑞min [1− 𝑓𝑞(𝑑𝑛)]
𝑛d .

4. Initialise Lagrangian multipliers 𝛥𝜆p = 𝛥𝜆d = 0

5. If 𝛷p,tr > 0 or 𝛷d,tr > 0: Update Lagrange multipliers −→ Fig. 4.3

6. Update internal variables and elastic left Cauchy-Green tensor

𝛼 = 𝛼𝑛 +

√︂
2

3
𝛥𝜆p

𝑑 = 𝑑𝑛 +𝛥𝜆d𝑓𝛼(𝛼)

be =

3∑︁
𝑖=1

exp
(︁
2 𝜀𝑖

e,tr − 2𝛥𝜆p𝑓𝑚(𝑑)𝜈𝑖

)︁
n𝑖 ⊗ n𝑖

Cp−1 = F−1 · be · F−𝑡

7. Compute derivatives for tangent contributions (see Appendix A.1)

8. Compute stresses and driving forces

m =

3∑︁
𝑖=1

𝑚𝑖 n𝑖 ⊗ n𝑖, with 𝑚𝑖 = 𝐾𝑓vol(𝑑) 𝜀e,vol + 2𝐺𝑓 iso(𝑑) 𝜀𝑖
e,iso

PK = m · F−𝑡

𝑌 = 𝛽d [𝜑− 𝑑]

Y = 𝑐d∇𝑋ϕ

9. Compute tangent contributions −→ Fig. 4.4

Figure 4.2: Return-mapping algorithm for the local damage model.
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Active-set procedure

Initialise: 𝑘=0, A0={∅}, 𝛷p=𝛷p,tr, 𝛷d=𝛷d,tr

1. Update active set A𝑘+1 = A𝑘

a) If 𝑘 = 𝑘max −→ Exit active-set environment and reduce global load step

b) Remove smallest active multiplier for inactive constraint 𝛷∙ ≤ 0 from A𝑘+1

c) Add largest inactive constraint with active 𝛷∙ ≥ 0 to A𝑘+1

d) If A𝑘+1 = A𝑘 −→ Exit active-set environment

e) Set 𝑘 = 𝑘 + 1

2. Update active Lagrangian multiplier with local Newton-Raphson scheme

a) Compute local Jacobian J (see Appendix A.2)

b) Update active Lagrangian multipliers

𝛥Λ = −J−1 · rloc

𝛥𝜆d = 𝛥𝜆d
𝑘 +𝛥Λp

𝛥𝜆d = 𝛥𝜆d
𝑘 +𝛥Λd

c) Update variables

𝛼 = 𝛼𝑛 +

√︂
2

3
𝛥𝜆p

𝑑 = 𝑑𝑛 +𝛥𝜆d𝑓𝛼(𝛼)

ε̄e,iso = ε̄e,iso,tr −𝛥𝜆p ¯̊ tr
𝑓𝑚(𝑑)

𝑞 = −𝐾

2
[𝑓vol(𝑑)]′[𝜀e,vol]2 −𝐺 [𝑓 iso(𝑑)]′‖ε̄e,iso‖2 + 𝛽d[𝜑− 𝑑]

d) Compute local residual values

𝑟loc1 = 𝛷p = 2𝐺𝑓 iso(𝑑)𝑓𝑚(𝑑)‖ε̄e,iso‖ −
√︂

2

3
[𝜎y0 + ℎ𝛼𝑛p ] if p ∈ A𝑘

𝑟loc2 = 𝛷d = 𝑞 𝑓𝛼(𝛼)− 𝑞min [1− 𝑓𝑞(𝑑)]
𝑛d if d ∈ A𝑘

e) If ‖𝛥Λ‖ ≥ tol −→ goto 2. a)

3. Additional active-set iteration required −→ goto 1.

Figure 4.3: Active-set algorithm for the computation of the Lagrangian multipliers.
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Tangent contributions

1. Compute tangent operator 𝑐

𝑎𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝑚𝑖 𝑖 = 𝑗
𝑚𝑖[𝜆

e
𝑗 ]
2 −𝑚𝑘[𝜆

e
𝑖 ]
2

[𝜆e
𝑖 ]
2 − [𝜆e

𝑗 ]
2

𝑖 ̸= 𝑗 and 𝜆e
𝑖 ̸= 𝜆e

𝑗

[𝜆e
𝑗 ]
2

[𝜆e
𝑖 ]
2

[︁
1
2
𝜕𝑚𝑖

𝜕𝜀𝑖
−𝑚𝑖

]︁
− 1

2
𝜕𝑚𝑗

𝜕𝜀𝑖
𝑖 ̸= 𝑗 and 𝜆e

𝑖 = 𝜆e
𝑗

c =

3∑︁
𝑖=1

3∑︁
𝑗=1

[︂
𝜕𝑚𝑖

𝜕𝜀𝑗
n𝑖 ⊗ n𝑖 ⊗ n𝑗 ⊗ n𝑗

+ 𝑎𝑖𝑗 [n𝑖 ⊗ n𝑗 ⊗ n𝑖 ⊗ n𝑗 + n𝑖 ⊗ n𝑗 ⊗ n𝑗 ⊗ n𝑖]

]︂

2. Compute derivatives of PK w.r.t. F and ϕ

𝜕PK

𝜕F
=

[︀
I⊗F−1

]︀
: c · F−𝑡 + I⊗

[︁
F−1 ·PK

]︁
𝜕PK

𝜕ϕ
=

𝜕m

𝜕ϕ
· F−𝑡 =

[︃
3∑︁

𝑖=1

𝜕𝑚𝑖

𝜕𝜑
n𝑖 ⊗ n𝑖

]︃
· F−𝑡

3. Compute derivatives of 𝑌 w.r.t F and ϕ

𝜕𝑌

𝜕F
=

[︃
3∑︁

𝑖=1

𝜕𝑌

𝜕𝜀𝑖

1

2[𝜆e
𝑖 ]
2
n𝑖 ⊗ n𝑖

]︃
:
[︀
I⊗F ·Cp−1

𝑛 + F ·Cp−1
𝑛 ⊗ I

]︀
𝜕𝑌

𝜕ϕ
= 𝛽𝑑

[︂
1− 𝜕𝑑

𝜕𝜑

]︂
4. Compute derivative of Y w.r.t. ∇𝑋𝜑

𝜕Y

𝜕∇𝑋ϕ
= 𝑐d I

Figure 4.4: Specific computation of all tangent contributions. Non-specified derivatives are
found in Appendix A.





Chapter 5

Sensitivity analysis for ductile damage materials

This chapter describes the challenging task of enhancing the material model
presented in Chap. 4 with sensitivity information to enable gradient-based
optimisation in Chap. 6. A variational approach is utilised to derive gradients
for geometry as the chosen design variables. For the derivation of the geometrical
gradients, an enhanced kinematic concept is depicted. The derivation of the
gradients is initially applied to the continuous equations and discretised later.
Due to the dissipative material model considered, history fields have to be
included in the gradient derivation and the numerics. Additionally, the above
described developments are further used to derive analytical sensitivities w.r.t.
the constitutive material parameters as the design variables. For the purpose of
easy readability, a large number of detailed derivations and resulting derivatives
are not specified in this chapter and can be found in Appendix B. Remarks and
an overview for the implementation into AOPS given and results from a simple
benchmark example presented.

5.1 Design sensitivity analysis

As presented in Chap. 3, gradient-based optimisation techniques are generally the most
efficient methods when dealing with mathematical optimisation problems. Considering
the underlying complexity of the ductile damage material and the numerical effort in
simulating its physical responses, gradient-based optimisation is best used to efficiently
solve the arising optimisation problems in Chap. 6. However, to employ these solution
techniques, gradient information have to be provided. In Sect. 3.4, possible approaches to
derive these gradient information have been briefly presented. The easiest approach, by
utilising the finite difference method (FDM), comes with a high cost in computational effort.
Since for each design variable at least one additional computation of the boundary value
problem (BVP) is required (or two if the central difference quotient (CDQ) is computed),
this method is not feasible if many design variables are considered with the material model
at hand. The applied method for this work is the analytical derivation of gradient by
means of the variational sensitivity analysis approach, i.e. the analytical derivation of the
gradients on the continuous level and later implementation into the numerical framework.

53
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The ductile damage material model in Chap. 4, from the viewpoint of continuum
mechanics, has been derived on a continuous basis. The discretisation for its application
within the numerical setting has been performed afterwards. As described in Sect. 3.4.1,
two approaches to derive the gradient information for optimisation can be followed. Here,
the choice of utilising the continuous functionals of the material model, i.e. the quantities
prior to discretisation, as the starting point of analytical sensitivity analysis are chosen.
This requires a deeper investigation to derive the quantities, but is more computationally
efficient. This is very important, due to the already high computational cost of the coupled
material model. The continuous equations are used as the starting point and a total
variation of these allows computation of the continuous gradients. While this method
is mathematically very complex, the resulting gradients are available prior to applying
a discretisation scheme. In return, the choice of the applied discretisation technique
can be made freely afterwards, e.g. using a finite element or isogeometric discretisation
method. Finally, after a consistent discretisation, the resulting discrete equations have to
be implemented. Since the same discretisation technique is chosen for both the structural
analysis and the sensitivity analysis, respectively, this can be taken into account for an
efficient implementation into the computational environment.

The variational approach utilised in this thesis is based on the conceptual ideas presented
in [17, 15]. This approach enhances the continuum mechanical descriptions and therefore
can be directly applied to the mechanical problems at hand. In standard nonlinear
kinematics, the deformation is only dependent on the referential geometry 𝑋 and time 𝑡.
Since therein the initial geometry is assumed fixed, changes can only be induced due to
loads which are applied throughout time 𝑡. From the viewpoint of structural optimisation
(SO) however, the design no longer is fixed. As an essential component of SO, it is allowed
to change throughout the optimisation. Therefore, the initial geometry is dependent on
the design variables. The enhanced conceptual approach in [17, 15] introduces a new
manifold, where the reservoir of material resides, which can be mapped to a new referential
configuration or the resulting spatial configuration. This is denoted as the enhanced
kinematics in the following.

The original work considered elastic problems. However, this has to be extended to
include the dissipative behaviour of ductile damage within this work. The main challenges
arsing in this case are a) the additional nonlocal field variable in form of nonlocal damage
𝜑 and its global balance equations, and b) the introduced history variables to capture the
previous dissipative load steps.

Problem a) is comparably straightforward to consider, due to the thorough foundation
provided in the previous chapter. From this, the two weak forms of the described material
model have to be enhanced by means of a sensitivity analysis. Hence, one equation
describes the mechanical problem, i.e. deformation 𝜙, and the other the damage problem,
i.e. nonlocal damage 𝜑. Consequently, all contributions within this work will consist of a
mechanical and a damage part. To the best knowledge of the author, this kind of research,
i.e. analytical sensitivity analysis of regularised nonlocal damage, is novel and has yet to
be conducted in other mediums of literature.

Problem b), i.e. the consideration of history variables, has been successfully dealt with
in literature, mainly in the form of consideration of plastic effects, cf. [145, 146, 147, 233,
234]. The same concept is applied here to derive the history dependent variations and its
implementation into the numerical environment. However, in those works only elasticity
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and elasto-plasticity had to be considered. In this work now the elastic, elasto-plastic,
elasto-damage and elasto-plastic damage, i.e. ductile damage, case can occur during
the loading. Therefore, they all have to be considered in the derivation and subsequent
implementation. In addition, the underlying material model follows a different structure,
which requires additional special care regarding the consideration of history variables.
Generally, the material model is more complex in nature, making derivation of gradient
information more taxing and not straightforward. Hence, most of the derivations of these
detailed derivatives is not specified in their respective sections and instead moved to
Appendix B to ease with readability of this chapter.

Some important aspects regarding these two problems and sensitivity analysis for
nonlocal damage have already been published by the author in [96, 98, 99, 100, 103].

Since the applied approach directly derives the gradient information for the continuous
description, the resulting quantities have to be discretised and implemented into the
finite element (FE) environment afterwards, see e.g. [37, 120, 238] for literature on finite
element methods. Since the underlying geometric description will be generated by means
of Computer Aided Geometric Design (CAGD), cf. [74], this has to be further taken into
account for generation of new geometric shapes. Of special note here is the resulting
adaptations to a standard optimisation framework required for the computation of history
dependent sensitivities, cf. [99, 145, 147, 233].

5.2 Decoupling of implicit dependencies

In standard, nonlinear kinematics, the reference body B0 is assumed to be fixed. Applica-
tion of SO however, introduces a variable reference configuration within each optimisation
step. For the derivation of the sensitivities it is therefore beneficial to enhance the viewpoint

Figure 5.1: Enhanced kinematic concept.
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of the underlying kinematics by the so-called intrinsic formulation, cf. [17, 15]. Beyond
the original works, this method has already been successfully employed in many different
fields. Examples include elasto-plasticity [145], multi-scale physics and FE2 methods [129],
shell structures and singular value decomposition [86], isotropic damage [18], or in porous
media [232], to name a few.

This concept introduces an additional domain B𝜁 with the intrinsic coordinate 𝛩 ∈ B𝜁 ,
see Fig. 5.1. Exploitation of the (sufficiently smooth) mapping between the three
configurations allows the calculation of derivatives w.r.t. the current configuration, without
any dependencies of the referential configuration. The additional mappings read

𝜅 :

{︃
B𝜁 −→ B0

(𝛩,𝑠) ↦→ 𝑋 = 𝜅(𝛩,𝑠)
, (5.1)

and

𝜇 :

{︃
B𝜁 −→ B𝑡

(𝛩,𝑡) ↦→ 𝑥 = 𝜇(𝛩,𝑡)
, (5.2)

for any time 𝑡 and design 𝑠. Here, the design 𝑠 is introduced as a general, scalar design
variables. It parametrises the reference body such that B0 = B0(𝑠). The above mappings
allow the deformation map 𝜙 in (4.1) to be rewritten as a composition, i.e.

𝜙 = 𝜇 ∘ 𝜅−1 with 𝑥 = 𝜙(𝑋) = (𝜇 ∘ 𝜅−1)(𝑋) = 𝜇(𝜅−1(𝑋)), (5.3)

where ∘ is the classically used symbol in mathematics denoting the composition of the
two mappings.

The additional operations

GRAD(∙) = ∇𝛩(∙) and DIV(∙) = ∇𝛩 · (∙), (5.4)

can be defined, which allow derivation of the counterparts to the deformation gradient
and the Jacobian, i.e.

𝐾 := GRAD(𝜅) = ∇𝛩𝜅 = ∇𝛩𝑋 and 𝐽K = det(𝐾),

𝑀 := GRAD(𝜇) = ∇𝛩𝜇 = ∇𝛩𝑥 and 𝐽M = det(𝑀).
(5.5)

Similarly to the definitions of deformation gradient 𝐹 in Sect. 4.2, no specific distinction
between the functions and their function values is made in the derivations of (5.5) above.

Consequently, volume integrals can be mapped between the different configurations,
such that�

B0

d𝑉 =

�
B𝑡

1

𝐽
d𝑣 =

�
B𝜁

𝐽K d𝑉𝜁 . (5.6)
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Using (5.5), it is possible to multiplicatively decompose the deformation gradient, i.e.

𝐹 =
𝜕𝑥

𝜕𝛩
· 𝜕𝛩
𝜕𝑋

= 𝑀 ·𝐾−1. (5.7)

With the above concept, the following variations can be defined

𝛿𝑋(𝑠) = 𝛿𝜅(𝛩,𝑠) and 𝛿𝑥(𝑡) = 𝛿𝜇(𝛩,𝑡) (5.8)

and consequently

𝛿𝐾 = GRAD(𝛿𝜅) and 𝛿𝑀 = GRAD(𝛿𝜇), (5.9)

which allows the derivation of the total variation of the deformation gradient, exploiting
(5.7), such that

𝛿𝐹 = 𝛿Grad(𝑥) = Grad(𝛿𝑥)−Grad(𝑥) ·Grad(𝛿𝑋)

= Grad(𝛿𝑢)−Grad(𝑢) ·Grad(𝛿𝑋).
(5.10)

For more details, see [17, 15, 130].

5.3 Continuous ductile damage sensitivities

To derive the sensitivities for the previously described ductile damage material model in
Chap. 4, a variational approach is applied. While in the environment of the structural
analysis, only the field variables 𝑤 and the history field ℎ are allowed to change, for the
optimisation this now extends to an additional change in design 𝑠. Here, the introduction
of a bold faced design 𝑠, in contrast to the scalar 𝑠 previously, is motivated by its vector
form later on in the implementation of these variables in a discrete setting. The same
motivation is used for the quantity 𝑤 = {𝜙,𝜑} and the history field ℎ =

{︀
𝐶p−1,𝛼,𝑑

}︀
.

According to the introduced notation in Sect. 2.1, both these quantities should described
a vector with a basis system. However, both 𝑤 and ℎ are fields which capture certain sets
of variables which are tensor and scalar valued. This is an exception to the previously
described notation and motivated by the similar utilisation in the discrete environment.
In that setting, w is the vector of field variables, see Sect. 4.6.1, and the discrete history
field h is introduced in (4.93). This helps with a consistent denotation of the quantities
within this chapter. Hence, their variations can be stated as

𝛿𝑤 = {𝛿𝜙, 𝛿𝜑} and 𝛿ℎ =
{︀
𝛿𝐶p−1, 𝛿𝛼, 𝛿𝑑

}︀
. (5.11)

Following the same idea, the test functions from Sect. 4.4.2 are captured identically, i.e.
𝜂 =

{︀
𝜂𝜙,𝜂𝜑

}︀
.

Consequently, the total variation of (4.49), with the assumption of design independent
external forces (𝑟ext = 0), reads

𝛿𝑟 = 𝛿𝑤𝑟 + 𝛿𝑠𝑟 + 𝛿ℎ𝑛
𝑟

= 𝑘(𝑤,𝑠,ℎ𝑛;𝜂,𝛿𝑤) + 𝑝(𝑤,𝑠,ℎ𝑛;𝜂,𝛿𝑠) + ℎ𝑤(𝑤,𝑠,ℎ𝑛;𝜂,𝛿ℎ𝑛) = 0.
(5.12)
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Therein, the first partial variation is identified as the (continuous) tangent stiffness 𝑘.
The other two new terms are the (continuous) pseudo load 𝑝 and the (continuous) history
sensitivity ℎ𝑤. The variable ℎ𝑛 describes the set of history variables ℎ from the previous
time step 𝑡𝑛. This total variation has to vanish to fulfil equilibrium in the newly generated
design, as a change in that design must not violate the equilibrium condition (4.49), cf.
[17, 103, 146, 233].

5.3.1 Pseudo load

The pseudo load term in (5.12) corresponds with the partial variation of the global weak
forms (4.49) w.r.t. an arbitrary design 𝑠. Since this weak form consists of a global
deformation and global damage contribution, the pseudo load terms require this split as
well. Using the previously described enhanced kinematic concept, and therefore transferring
the integrals into the parameter space B𝜁 , the partial variation for the mechanical part
consists of three different partial variations and reads

𝑝𝜙 = 𝛿𝑠𝑟
𝜙 = 𝛿𝑠

[︂�
B0

𝑃K : ∇𝑋𝜂𝜙 d𝑉
]︂

=

�
B𝜁

𝛿𝑠𝑃
K : ∇𝑋𝜂𝜙 𝐽K d𝑉𝜁

+

�
B𝜁

𝑃K : 𝛿𝑠∇𝑋𝜂𝜙 𝐽K d𝑉𝜁

+

�
B𝜁

𝑃K : ∇𝑋𝜂𝜙 𝛿𝑠𝐽K d𝑉𝜁 .

(5.13)

The damage part for an arbitrary design 𝑠 consists of five partial variations and reads

𝑝𝜑 = 𝛿𝑠𝑟
𝜑 = 𝛿𝑠

[︂�
B0

𝑌 · ∇𝑋𝜂𝜑 d𝑉 +

�
B0

𝑌 𝜂𝜑 d𝑉
]︂

=

�
B𝜁

𝛿𝑠𝑌 · ∇𝑋𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

𝑌 · 𝛿𝑠∇𝑋𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

𝑌 · ∇𝑋𝜂𝜑 𝛿𝑠𝐽K d𝑉𝜁

+

�
B𝜁

𝛿𝑠𝑌 𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

𝑌 𝜂𝜑 𝛿𝑠𝐽K d𝑉𝜁 .

(5.14)
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5.3.2 History variation

The underlying material model employs state-dependent history variables to capture
previous dissipative load-cases, i.e. the evolution of damage and plasticity. Even though
the problems considered in this work are quasi-static in nature, for the evolution equa-
tions a time integration has to be employed and the load applied in pseudo-time steps.
Consequently, the history variables form the previous time step 𝑡𝑛 influence the next time
increment 𝑡𝑛+1. They are stored after a converged global iteration and provided for the
next load step. In turn, this has to be considered in the total variation of the global
weak form equilibrium. It is captured in the partial variation w.r.t. the internal history
variables of previous time step 𝑡𝑛, i.e.

𝛿ℎ𝑛𝑟
𝜙 =

�
B0

𝛿ℎ𝑛𝑃
K : ∇𝑋𝜂𝜙 d𝑉 (5.15)

for the mechanical part, and

𝛿ℎ𝑛𝑟
𝜑 =

�
B0

𝛿ℎ𝑛𝑌 𝜂𝜑 d𝑉 (5.16)

for the damage part. Two things are notable here. First of all, the mapping into the
material space is not required for these specific integrals. Since the history variables are
only part of the constitutive model, they are not influenced by the geometric description
and therefore no implicit dependencies have to be considered which require the enhanced
kinematic viewpoint. Secondly, only the scalar valued nonlocal driving force contributes
to the history sensitivities. The gradient contribution 𝑌 only depends on the material
parameter 𝑐d and therefore its variation vanishes, see Fig. 4.4, step 4.

Considering the set of internal variables ℎ =
{︀
𝐶p−1,𝛼,𝑑

}︀
, the variations within the

integrals can be further specified as

𝛿ℎ𝑛
𝑃K =

𝜕𝑃K

𝜕ℎ𝑛
· 𝛿ℎ𝑛 =

𝜕𝑃K

𝜕𝐶p−1
𝑛

: 𝛿𝐶p−1
𝑛 +

𝜕𝑃K

𝜕𝛼𝑛
𝛿𝛼𝑛 +

𝜕𝑃K

𝜕𝑑𝑛
𝛿𝑑𝑛, (5.17)

𝛿ℎ𝑛
𝑌 =

𝜕𝑌

𝜕ℎ𝑛
· 𝛿ℎ𝑛 =

𝜕𝑌

𝜕𝐶p−1
𝑛

: 𝛿𝐶p−1
𝑛 +

𝜕𝑌

𝜕𝛼𝑛
𝛿𝛼𝑛 +

𝜕𝑌

𝜕𝑑𝑛
𝛿𝑑𝑛. (5.18)

The specific derivatives in these equations cannot be easily simplified. Due to the coupled
material model and the complexity of the equations, the resulting derivation thereof
is quite lengthy. Therefore, for readability reasons, further specifications are omitted
here. The detailed breakdown can be found in Appendix B.1. Especially the derivatives
regarding 𝐶p−1 require special attention, since the local material model is defined in the
principal space and therefore requires consideration of derivatives of the eigenvalues and
eigenprojections. Furthermore, the history sensitivities are independent of the chosen
design 𝑠 and therefore applicable for any choice of design.
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5.3.3 History sensitivity update

The internal variables generally change in value throughout the applied loads within a
given simulation. Consequently, the variation of the history variables changes as well.
Specifically, the history sensitivities ℎ𝑤 in (5.15) -(5.18) require the total variation of the
history variables 𝛿ℎ𝑛 from the previous time step 𝑡𝑛. Therefore, the total variation of
internal history variables 𝛿ℎ is necessary to be computed, cf. [146, 147, 233]. It reads

𝛿ℎ = 𝛿𝑤ℎ+ 𝛿𝑠ℎ+ 𝛿ℎ𝑛ℎ

=
𝜕ℎ

𝜕𝑤
· 𝛿𝑤 +

𝜕ℎ

𝜕𝑠
· 𝛿𝑠+

𝜕ℎ

𝜕ℎ𝑛
· 𝛿ℎ𝑛.

(5.19)

This total variation has to be updated after each converged global load step, where a
change in applied load leads to a change in the history variables ℎ. Therefore, special
attention is required within the numerical framework, which is described in detail for the
discretised quantities later on, see Sect. 5.7. Similar to the pseudo load, this total variation
of the history field is design choice dependent and has to be resolved independently for
each specific design variable 𝑠 in their corresponding section.

Considering the above equation, it is useful here to derive the sensitivity operator �̃�,
cf. [129, 145], by restructuring the initial total variation of the weak form equilibrium
(5.12). At a current global equilibrium solution point (𝑤*,�̂�,ℎ*

𝑛), with fixed design �̂�, this
operator reads

𝛿𝑤 = �̃�(𝑤*,�̂�,ℎ*
𝑛; 𝛿𝑠) · 𝛿𝑠, (5.20)

The sensitivity operator �̃� can be further specified for the mechanical and damage part,
i.e.

𝛿𝜙 =: 𝑠𝜙(𝑤*,�̂�,ℎ*
𝑛; 𝛿𝑠) · 𝛿𝑠 and 𝛿𝜑 =: 𝑠𝜑(𝑤*,�̂�,ℎ*

𝑛; 𝛿𝑠) · 𝛿𝑠, (5.21)

respectively. Since this operator is directly dependent on the choice of design variable,
they have to be derived separately. Furthermore, the direct calculation of these sensitivity
operators is only possible after discretisation and are therefore presented in their respective
sections.

This operator enables (5.19) to be rewritten, such that

𝛿ℎ =

[︂
𝜕ℎ

𝜕𝑤
∘ �̃�+

𝜕ℎ

𝜕𝑠

]︂
· 𝛿𝑠+

𝜕ℎ

𝜕ℎ𝑛
· 𝛿ℎ𝑛 =: 𝑧(𝑤*,�̂�,ℎ*

𝑛; 𝛿𝑠) · 𝛿𝑠. (5.22)

Therein, 𝑧 is defined as history sensitivity operator. Since this equation requires the total
variation of the history field form the previous time step 𝑡𝑛, i.e. 𝛿ℎ𝑛 = 𝑧𝑛(𝑤

*,�̂�,ℎ*
𝑛−1; 𝛿𝑠),

this data has to be stored after each iteration to be made available for the next update,
similar to the history variables themself. As a consequence, the total variation of the
history field is reformulated, such that it only depends on the chosen design variables 𝑠,
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i.e.

𝛿ℎ =

[︂
𝜕ℎ

𝜕𝑤
∘ �̃�+

𝜕ℎ

𝜕𝑠
+

𝜕ℎ

𝜕ℎ𝑛
∘ 𝑧𝑛

]︂
· 𝛿𝑠. (5.23)

For the first time step, the variation of the history field for 𝑡 = 𝑡0 is initially assumed to
vanish, i.e. 𝛿ℎ0 = 𝑧0 = 0, such that the initial update simplifies to

𝛿ℎ1 =

[︂
𝜕ℎ

𝜕𝑤
∘ �̃�+

𝜕ℎ

𝜕𝑠

]︂
· 𝛿𝑠. (5.24)

5.3.4 Geometric sensitivities

For general shape optimisation, the underlying geometry of the problem is considered
as the design variables. In the context of the previously applied variational approach to
the ductile damage model of Chap. 4, this means the referential coordinates 𝑋. Their
variation is thereby denoted as 𝛿𝑋. Note that, even though throughout this section
this variation is denoted, actually the variation is reduced to the mapping 𝜅, see (5.8).
However, for ease of reading the aforementioned denotation is chosen instead. Since the
resulting gradients describe the sensitivities w.r.t. the geometry 𝑋, they are also labelled
as geometric sensitivities in this work. Hence, in this section, the previous variations for a
not further specified design 𝑠 are now specifically chosen to be 𝑠 = 𝑋, i.e. the referential
design of a given problem in application for shape optimisation.

Pseudo load. The pseudo load terms can thus be specified as

𝑝𝜙𝑋 = 𝛿𝑋𝑟𝜙 =

�
B𝜁

𝛿𝑋𝑃K : ∇𝑋𝜂𝜙 𝐽K d𝑉𝜁

−
�
B𝜁

𝑃K : 𝛿𝑋∇𝑋𝜂𝜙 𝐽K d𝑉𝜁

+

�
B𝜁

𝑃K : ∇𝑋𝜂𝜙 𝛿𝑋𝐽K d𝑉𝜁 ,

(5.25)

for the mechanical part, and

𝑝𝜑𝑋 = 𝛿𝑋𝑟𝜑 =

�
B𝜁

𝛿𝑋𝑌 · ∇𝑋𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

𝑌 · ∇𝑋𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

𝛿𝑋𝑌 𝜂𝜑 𝐽K d𝑉𝜁

+

�
B𝜁

[︀
𝑌 · ∇𝑋𝜂𝜑 + 𝑌 𝜂𝜑

]︀
𝛿𝑋𝐽K d𝑉𝜁

(5.26)

for the damage part. The enhanced kinematics, detailed in Sect. 5.2, are utilised here to
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separate the implicit dependencies of geometry and deformation. This allows reconstructing
the partial variation of the gradient of the test functions as

𝛿𝑋∇𝑋𝜂𝜙 = −∇𝑋𝜂𝜙 · ∇𝑋𝛿𝑋, (5.27)

𝛿𝑋∇𝑋𝜂𝜑 = −∇𝑋𝜂𝜑 · ∇𝑋𝛿𝑋, (5.28)

cf. e.g. [17, 155], where the general relations within the enhanced kinematic concept are
specified further. Therein, also the partial variation of the determinant of the geometry
gradient is derived

𝛿𝑋𝐽K = 𝐽K∇𝑋 · 𝛿𝑋. (5.29)

Using the information from (5.10) to compute the partial variation of the deformation
gradient, the partial variations 𝛿𝑋𝑃K and 𝛿𝑋𝑌 can be split, such that

𝛿𝑋𝑃K =
𝜕𝑃K

𝜕𝐹
: 𝛿𝑋𝐹 and 𝛿𝑋𝑌 =

𝜕𝑌

𝜕𝐹
: 𝛿𝑋𝐹 , (5.30)

where the arising derivatives are already known as the tangent contribution of the material
model, see Sect. 4.6 and Fig. 4.4.

This finally results in

𝑝𝜙𝑋 =

�
B0

∇𝑋𝜂𝜙 :
𝜕𝑃K

𝜕𝐹
: 𝛿𝑋𝐹 d𝑉

−
�
B0

𝑃K : [∇𝑋𝜂𝜙 · ∇𝑋𝛿𝑋] d𝑉

+

�
B0

𝑃K : ∇𝑋𝜂𝜙 [∇𝑋 · 𝛿𝑋] d𝑉,

(5.31)

for the mechanical part, and

𝑝𝜑𝑋 = −
�
B0

∇𝑋𝜂𝜑 · [𝑌 · ∇𝑋𝛿𝑋] d𝑉

−
�
B0

𝑌 ·
[︀
∇𝑋𝜂𝜑 · ∇𝑋𝛿𝑋

]︀
d𝑉

+

�
B0

𝜂𝜑
𝜕𝑌

𝜕𝐹
: 𝛿𝑋𝐹 d𝑉

+

�
B0

[︀
𝑌 · ∇𝑋𝜂𝜑 + 𝑌 𝜂𝜑

]︀
∇𝑋 · 𝛿𝑋 d𝑉,

(5.32)

for the damage part. In these equations, the integrals are mapped back to the referential
configuration using relation (5.6).

History sensitivity update. The history sensitivity update of (5.19) here takes the
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specific form

𝛿ℎ =
𝜕ℎ

𝜕𝐹
: [𝛿𝜙𝐹 + 𝛿𝑋𝐹 ] +

[︂
𝜕ℎ

𝜕𝜑
∘ 𝑠𝜑𝑋

]︂
· 𝛿𝑋 +

𝜕ℎ

𝜕ℎ𝑛
· 𝛿ℎ𝑛, (5.33)

where the partial variation of the deformation gradient have been specified in (5.10).
Furthermore, the sensitivity operator from (5.21) with the specific design choice 𝑠 = 𝑋 is
required here.

Again, the partial derivatives in this equation are quite lengthy and a concise description
is difficult. For readability reasons, the length formulae can be found in Appendix B.2.

5.4 Discrete ductile damage sensitivities

In order to implement the sensitivities into the numerical FE framework, the derived equa-
tions need to be discretised. Herein, the same discretisation as for the FE implementation
of the material model are used, i.e. (4.70)-(5.34). While not specifically stated here, as it
follows in the same fashion as for the discretisation of the weak forms in Sect. 4.6.1, the
test functions 𝛿φ, 𝛿ϕ and 𝛿X have to be extracted from the resulting discretised integrals,
as the equations have to hold even for arbitrary test values of these test functions. Only
the resulting matrices and their assemblies are listed here. The missing discrete forms are
still required, which read

𝛿𝜙 ≈ 𝛿𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

𝛿φ𝐴𝑁
𝜙
𝐴 and 𝜑 ≈ 𝜑ℎ =

𝑛𝜑
en∑︁

𝐵=1

𝛿ϕ𝐵𝑁
𝜑
𝐵 , (5.34)

for the variation of the field variables, and furthermore

∇𝑋𝛿𝜙 ≈ ∇𝑋𝛿𝜙ℎ =

𝑛𝜙
en∑︁

𝐴=1

𝛿φ𝐴 ⊗∇𝑋𝑁𝜙
𝐴 and ∇𝑋𝛿𝜑 ≈ ∇𝑋𝛿𝜑ℎ =

𝑛𝜑
en∑︁

𝐵=1

𝛿ϕ𝐵∇𝑋𝑁𝜑
𝐵 , (5.35)

for their gradients.

5.4.1 History sensitivity matrix

As stated in Sect. 5.3.2, the presented equations for the history sensitivity are valid for
both choices of design utilised within this work, i.e. nodal coordinates X and later material
parameters mp. Hence, their discretisation into the history sensitivity matrices will be
presented here and read

H𝜙
𝑒𝐴 =

�
B𝑒

0

[I⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕PK

𝜕h𝑛
d𝑉 (5.36)
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for the mechanical part, and

H𝜑
𝑒𝐵 =

�
B𝑒

0

𝑁𝜑
𝐵

𝜕𝑌

𝜕h𝑛
d𝑉, (5.37)

for the damage part. The history sensitivity matrix can be assembled in a standard fashion,
i.e.

H𝑒 =

[︂
H𝜙

𝑒

H𝜑
𝑒

]︂
, H =

𝑛el

A
𝑒
H𝑒, H ∈ R

𝑛dof×𝑛hv , (5.38)

with 𝑛dof as the number of degrees of freedom, see Sect. 4.6.1, and 𝑛hv the number of
history variables. The history matrix H is therefore not quadratic.

5.4.2 Discrete geometric sensitivities

Pseudo load matrix. By applying the discretisation to the continuous pseudo load
terms in (5.31) and (5.32), in addition to extracting the test functions, one obtains

P𝜙
𝑋,𝑒𝐴𝐶 = −

�
B𝑒

0

[I⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕PK

𝜕F
:
[︀
G⊗∇𝑋𝑁𝑋

𝐶

]︀
d𝑉

−
�
B𝑒

0

PK · ∇𝑋𝑁𝑋
𝐶 ⊗∇𝑋𝑁𝜙

𝐴 d𝑉

+

�
B𝑒

0

PK · ∇𝑋𝑁𝜙
𝐴 ⊗∇𝑋𝑁𝑋

𝐶 d𝑉,

(5.39)

for the mechanical contribution, and

P𝜑
𝑋,𝑒𝐵𝐶 = −

�
B𝑒

0

Y · ∇𝑋𝑁𝑋
𝐶 ∇𝑋𝑁𝜑

𝐵 d𝑉

−
�
B𝑒

0

∇𝑋𝑁𝜑
𝐵 · ∇𝑋𝑁𝑋

𝐶 Y d𝑉

−
�
B𝑒

0

𝑁𝜑
𝐵

𝜕𝑌

𝜕F
:
[︀
G⊗∇𝑋𝑁𝑋

𝐶

]︀
d𝑉

+

�
B𝑒

0

[︁
Y · ∇𝑋𝑁𝜑

𝐵 + 𝑌 𝑁𝜑
𝐵

]︁
∇𝑋𝑁𝑋

𝐶 d𝑉,

(5.40)

for the nonlocal damage contribution, where (5.10) has been used for the partial variation
of the deformation gradient and the matrix of the displacement gradient G = ∇𝑋u
is introduced. Note, that normally this quantity is denoted as H. However, in this
work H represents the history sensitivity matrix, hence the chosen variable to depict the
displacement gradient.

Like the stiffness matrix, the pseudo load matrix has to be assembled in a similar
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manner, i.e.

P𝑋,𝑒 =

[︃
P𝜙

𝑋,𝑒

P𝜑
𝑋,𝑒

]︃
, P𝑋 =

𝑛el

A
𝑒
P𝑋,𝑒, P𝑋 ∈ R

𝑛dof×𝑛X . (5.41)

In contrast to the stiffness matrix, the pseudo load matrix P𝑋 is not quadratic, i.e.
𝑛dof ̸= 𝑛X. Here, 𝑛X = 𝑛𝜙

dim · 𝑛np = 𝑛𝑋
dim · 𝑛np encompasses the geometrical three-

dimensional space of the FE simulation. With the addition of the nonlocal damage variable
𝜑, the number of degrees of freedom at each node is larger by one, i.e. 𝑛dof = (𝑛𝜙

dim+1)·𝑛np.
Hence, 𝑛dof > 𝑛X, leading to the non-quadratic nature of the pseudo load matrix.

Sensitivity matrix. The variation of the history variables 𝛿h𝑛, see (5.11), is required
in its discretised form. However, its computation requires the sensitivity matrix S, which
is derived in the following, see (5.47). Therefore, the total variation of the history field is
derived afterwards, see (5.49), and the resulting sub matrices Z∙ assumed to be known
here. Their values are stored in the matrix Z𝑋,𝑒, i.e.

Z𝑋,𝑒 =

⎡⎣Z𝐶
𝑋,𝑒

Z𝛼
𝑋,𝑒

Z𝑑
𝑋,𝑒

⎤⎦ ∈ R
𝑛hv×𝑛X , (5.42)

with the sub-matrices

Z𝐶
𝑋,𝑒 =

[︂
𝜕Cp−1

𝑛

𝜕X

]︂
∈ R

9×𝑛X , Z𝛼
𝑋,𝑒 =

[︂
𝜕𝛼𝑛

𝜕X

]︂
∈ R

1×𝑛X , Z𝑑
𝑋,𝑒 =

[︂
𝜕𝑑𝑛
𝜕X

]︂
∈ R

1×𝑛X .

(5.43)

Note, that the matrix Z𝑋,𝑒 is not assembled in a standard manner. The reasoning is
elaborated on in Sect. 5.7 and not further detailed here.

Combining the history sensitivity matrix H𝑒 as well as the discretised total variation
of the history field Z𝑋,𝑒, according to (5.15) and (5.16), allows their combination into
the elemental matrix Q𝑋,𝑒. This new quantity connects the structural response with the
design changes that affect the history variables. The element-wise contributions for the
mechanical and damage part read

Q𝜙
𝑋,𝑒𝐴𝐶 = H𝜙

𝑒𝐴 · Z𝑋,𝑒𝐶 and Q𝜑
𝑋,𝑒𝐵𝐶 = H𝜑

𝑒𝐵 · Z𝑋,𝑒𝐶 , (5.44)

respectively, which are globally assembly in a standard fashion, i.e.

Q𝑋,𝑒 =

[︃
Q𝜙

𝑋,𝑒

Q𝜑
𝑋,𝑒

]︃
, Q𝑒 =

𝑛el

A
𝑒
Q𝑋,𝑒, Q𝑒 ∈ R

𝑛dof×𝑛hv . (5.45)

Finally, this allows the discrete matrix representation of (5.12), i.e.

𝛿r = K · 𝛿w +P𝑋 · 𝛿X+H · 𝛿h𝑛 = 0. (5.46)
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Reordering of this equation, and using (5.45), leads to

𝛿w = −K−1 · [P𝑋 +Q𝑋 ] · 𝛿X =: S𝑋 · 𝛿X, (5.47)

allowing the definition of the global sensitivity matrix S𝑋 ∈ R𝑛dof×𝑛X . This is the
discretised form of the sensitivity operator �̃�𝑋 , see (5.20). This quantity defines how the
underlying system 𝛿w reacts to a change in design 𝛿X, and is the foundation for the
derivation of gradients for the objectives and constraints within the optimisation problems
described in Sect. 5.6. Similarly to all previous quantities, the sensitivity matrix can be
decomposed into a mechanical and damage part as well, i.e.

S𝑋 =

[︂
S𝜙
𝑋

S𝜑
𝑋

]︂
. (5.48)

Discrete history sensitivity update. In the previous equations, the discrete matrix
description for the total history variation (5.19) is utilised. Since the history variables are
stored for each Gauss point on the element level, the matrices have to be computed and
stored at those levels as well, and afterwards assembled into their corresponding history
sensitivity contribution. The discrete total history variation, by utilising (5.48), thus reads

𝛿h =

[︂
𝜕h

𝜕F
· ∇𝑋𝑁𝜙

𝐴 · S
𝜙
𝑋,𝑒𝐶 +𝑁𝜑

𝐵

𝜕h

𝜕ϕ
· S𝜑

𝑋,𝑒𝐶 −
𝜕h

𝜕F
:
[︀
G⊗∇𝑋𝑁𝑋

𝐶

]︀
+

𝜕h

𝜕h𝑛
· Z𝑛,𝑒𝐶

]︂
· 𝛿X

=: Z𝑋,𝑒𝐶 · 𝛿X.

(5.49)

Additionally, as was already mentioned in Sect. 5.3.3, for the first time step 𝑡 = 𝑡0,
one can assume h0 = 𝛿h0 = 0, hence Z0 = 0 and Q1 = 0, which leads to the simplified
computation of the sensitivity matrix

S1 = −K−1
1 ·P1, (5.50)

for the first pseudo-time increment at 𝑡 = 𝑡1.

Remark 5.1 The split into unknown 𝑎 and known degrees of freedom 𝑏, see (4.88), can
also be applied to the design variables s, the pseudo load matrix P and the matrix Q, i.e.

𝛿s =

[︂
s𝑎
s𝑏

]︂
, P =

[︂
P𝑎𝑎 P𝑎𝑏

P𝑏𝑎 P𝑏𝑏

]︂
, Q =

[︂
Q𝑎𝑎 Q𝑎𝑏

Q𝑏𝑎 Q𝑏𝑏

]︂
. (5.51)

Since the prescribed displacements w𝑏 are known and hence their variation vanishes, i.e.
𝛿w𝑏 = 0, one has to solve the sensitivity matrix for the free, unknown contributions 𝑎.
The reduced sensitivity matrix reads

S𝑎 = −K−1
𝑎𝑎 · [P𝑎 +Q𝑎] , (5.52)
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where ∙𝑎 = [∙𝑎𝑎 ∙𝑎𝑏], resulting in the final split for the sensitivity matrix

S =

[︂
S𝑎

S𝑏

]︂
=

[︂
S𝑎

0

]︂
. (5.53)

5.5 Discrete material sensitivities

In addition to the geometric sensitivities, the ductile damage material model of Chap. 4 is
also enhanced for gradient information w.r.t. the constitutive material parameters mp. In
contrast to the geometric description 𝑋, i.e. the continuous description 𝑋 = 𝜅(𝛩) from
the intrinsic viewpoint of the enhanced kinematics, see (5.8), the constitutive material
parameters are inherently discrete quantities. Therefore, a continuous derivation of the
sensitivities akin to the geometric sensitivities is not possible. Instead, the discrete
functions of the weak form have to be utilised. Nonetheless, these discrete quantities for
the material design s = mp follow a very similar course of derivation compared to the
geometric problem in the previous section.

Due to the complexity of the material model, there are many parameters to consider
and they are summarised here again. The parameters 𝐾 and 𝐺 are the bulk and shear
modulus, respectively, and govern the elastic behaviour of the material. The yield stress
𝜎y0, the hardening modulus ℎ and the hardening exponent 𝑛p control the plastic behaviour.
To control the damage behaviour many more parameters are needed. These encompass the
damage threshold 𝑞min and damage exponent 𝑛d, the damage rate factor 𝜂, the volumetric
and isochoric damage factors 𝜉vol and 𝜉iso, respectively, the threshold factor 𝜉q and effective
stress factor 𝜉m, as well as the coupling factor 𝜂𝛼. Finally, the numerical regularisation is
governed by the penalty factor 𝛽d and the regularisation parameter 𝑐d. While theoretically,
the referential density 𝜌0 could be included, body forces are omitted within this work.
The list of design variables thereby consists of 15 parameters and reads

mp := [𝐸,𝜈;𝜎y0,ℎ,𝑛p; 𝜂,𝜉vol,𝜉iso,𝜉q,𝜉m,𝜂𝛼,𝑞min,𝑛d; 𝑐d,𝛽d] . (5.54)

Since the resulting gradients describe the sensitivities w.r.t. the material behaviour mp,
they are also labelled as material sensitivities in this work.

Pseudo load matrix. Since the constitutive material parameters only have a contribu-
tion within the model description, no implicit dependencies within the integrals of the
weak form arise. Therefore, they reduce in complexity, as only the nonlocal driving forces
are implicitly dependent on this set of design variables. The discrete pseudo load matrix
for the constitutive parameters therefore reads

P𝜙
𝑚,𝑒𝐴𝐶 =

�
B𝑒

0

[I⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕PK

𝜕mp
d𝑉, (5.55)
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for the mechanical contribution, and

P𝜑
𝑚,𝑒𝐵𝐶 = −

�
B𝑒

0

∇𝑋𝑁𝜑
𝐵 ·

𝜕Y

𝜕mp
d𝑉

+

�
B𝑒

0

𝑁𝜑
𝐵

𝜕𝑌

𝜕mp
d𝑉,

(5.56)

for the nonlocal damage contribution. The assembly is achieved in a standard fashion, i.e.

P𝑚,𝑒 =

[︂
P𝜙

𝑚,𝑒

P𝜑
𝑚,𝑒

]︂
, P𝑚 =

𝑛el

A
𝑒
P𝑚,𝑒, P𝑚 ∈ R

𝑛dof×𝑛m . (5.57)

Again, the discretised pseudo load matrix P𝑚 is not quadratic. However, in contrast to
the geometric setting, the dimension 𝑛m is independent of the chosen mesh and instead
material model dependent. For the applied model here, 𝑛m = 15, since the material model
utilises 15 unique constitutive material parameters.

While the resulting integrals are significantly shorter, compared to the geometrical case,
the remaining derivatives cannot be resolved into already known quantities, e.g. quantities
derived for the stiffness contribution, and require additional computation. They are again
not specifically derived here and rather concisely listed in Appendix B.3. Their derivation
is separated into elastic, plastic, damage and regularisation parts. An exception in this
regard within the above integral (5.56), is the partial derivative of the tensorial nonlocal
driving force Y. Since this quantity only depends on the regularisation parameter 𝑐d, the
partial derivative is very easy to compute, i.e.

𝜕Y

𝜕mp,𝑖

=

{︃
∇𝑋𝜑 mp,𝑖 = 𝑐d

0 else.
(5.58)

Sensitivity matrix. Following the same methodology as in the geometrical case, the
history sensitivity update in its discrete form reads

Z𝑚,𝑒 =

⎡⎣Z𝐶
𝑚,𝑒

Z𝛼
𝑚,𝑒

Z𝑑
𝑚,𝑒

⎤⎦ ∈ R
𝑛hv×𝑛m , (5.59)

with the sub-matrices

Z𝐶
𝑚,𝑒 =

[︂
𝜕Cp−1

𝑛

𝜕mp

]︂
∈ R

9×𝑛m , Z𝛼
𝑚,𝑒 =

[︂
𝜕𝛼𝑛

𝜕mp

]︂
∈ R

1×𝑛m ,

Z𝑑
𝑚,𝑒 =

[︂
𝜕𝑑𝑛
𝜕mp

]︂
∈ R

1×𝑛m .

(5.60)

and therefore the matrix Q𝑚,𝑒, which combines the history sensitivity update with the
history sensitivity matrix H𝑒. Since the latter quantity is design independent, as was
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highlighted during its derivation, it can find application without further adjustments here.
Again, a split of mechanical and damage part is made, such that

Q𝜙
𝑚,𝑒𝐴 = H𝜙

𝑒𝐴 · Z𝑚,𝑒 and Q𝜑
𝑚,𝑒𝐵 = H𝜑

𝑒𝐵 · Z𝑚,𝑒, (5.61)

respectively. Both quantities are globally assembly in a standard fashion, i.e.

Q𝑚,𝑒 =

[︂
Q𝜙

𝑚,𝑒

Q𝜑
𝑚,𝑒

]︂
, Q𝑚 =

𝑛el

A
𝑒
Q𝑚,𝑒, Q𝑚 ∈ R

𝑛dof×𝑛m . (5.62)

This Finally allows the derivation for the sensitivity matrix S𝑚 for the material sensitivities
following the same routine as in the previous section, i.e.

𝛿w = −K−1 · [P𝑚 +Q𝑚] · 𝛿mp =: S𝑚 · 𝛿mp, (5.63)

which herein has dimension S𝑚 ∈ R𝑛dof×𝑛m . It describes the change in structural response
𝛿w of a system due to a change of the underlying constitutive material parameters 𝛿mp.

History sensitivity update. The discrete form of the history sensitivity updates for
the constitutive material parameters reads

𝛿h =

[︂
𝜕h

𝜕F
· ∇𝑋𝑁𝜙

𝐴 · S
𝜙
𝑚,𝑒 +𝑁𝜑

𝐵

𝜕h

𝜕ϕ
· S𝜑

𝑚,𝑒 +
𝜕h

𝜕mp
+

𝜕h

𝜕h𝑛
· Z𝑛,𝑒

]︂
· 𝛿mp

=: Z𝑚,𝑒 · 𝛿mp.

(5.64)

Similar to the geometric case, the submatrices S𝜙
𝑚,𝑒 and S𝜑

𝑚,𝑒 are required for the history
update of the material sensitivities. However, since the partial derivatives cannot be
formulated into derivatives w.r.t. the deformation gradient, this history update requires
both submatrices. Furthermore, the first and last partial derivative, i.e. the partial
derivatives w.r.t. F and h𝑛, respectively, are already known as they are required for
the geometrical case as well, see (5.33). New in this regard, are the partial derivatives
w.r.t. the constitutive parameters. Taking information from the pseudo load data in
Appendix B.3 into account, i.e. the derivatives for the Lagrangian multipliers of the local
Newton-Raphson, these remaining derivatives can be easily summarised and therefore are
listed here. They read

𝜕Cp−1

𝜕mp
= − 𝜕ε̄p

𝜕mp
, (5.65)

𝜕𝛼

𝜕mp
=

√︂
2

3

d𝛥𝜆p

dmp
, (5.66)

𝜕𝑑

𝜕mp
=

d𝛥𝜆d

dmp
𝑓𝛼 +𝛥𝜆d 𝜕𝑓𝛼

𝜕mp
+𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

dmp
(5.67)
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with

𝜕ε̄p

𝜕mp
=

d𝛥𝜆p

dmp
𝑓𝑚 ⊗ ν̄tr +𝛥𝜆p 𝜕𝑓

𝑚

𝜕mp
⊗ ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕mp
⊗ ν̄tr, (5.68)

𝜕𝑓𝛼

𝜕mp,𝑖

=

{︃
𝛼 𝑓𝛼 1+𝜖

[𝑓𝛼+𝜖]2
mp,𝑖 = 𝜂𝛼

0 else,
(5.69)

𝜕𝑓𝑚

𝜕mp,𝑖

=

⎧⎪⎨⎪⎩
𝜉m 𝑑 𝑓𝑚 1+𝜖

[𝑓𝑚+𝜖]2
mp,𝑖 = 𝜂

𝜂 𝑑 𝑓𝑚 1+𝜖
[𝑓𝑚+𝜖]2

mp,𝑖 = 𝜉m

0 else.

(5.70)

5.6 Objectives and constraints

For the optimisation problems in Chap. 6, their necessary objective functions and
respective gradients have to be specified. Since different types of objective and constraints
are considered for the geometrical and material sensitivities, respectively, their definitions
and required sensitivities are presented in separate subsections. Note, that the quantity J
here can either take the form of a function, i.e. the objective function of a minimisation
problem (3.1) or (3.2), or a functional which is discretised to be the objective function of
said optimisation problems.

5.6.1 Shape optimisation

In a first example, the damage accumulation within a geometry is directly influenced to
govern the optimisation problem. As such, the damage variables ϕ𝑖 at each elemental
node 𝑛𝜑

np are directly utilised. To capture their values in a scalar objective function J, the
squared vector-norm of the damage vector ϕ is chosen, i.e.

Jd = ‖ϕ(s)‖2 =

𝑛𝜑
np∑︁

𝑖=1

ϕ𝑖(X)2, (5.71)

and

𝛿Jd =
𝜕‖ϕ(s)‖2

𝜕X
· 𝛿X. (5.72)

The gradients of this objective are straightforward to compute. Since the nodal damage
quantities ϕ𝑖 are part of the set of field variables w, their respective gradients consist of
the subset of gradients within the sensitivity matrix S𝑋 , which in this case is the damage
part S𝜑

𝑋 . Application of the chain rule for the norm of the damage vector thus leads to

𝜕‖ϕ(X)‖2

𝜕X
= 2ϕ(X) · S𝜑

𝑋 . (5.73)

Additionally, the nonlocal damage values ϕ𝑖 at each FE node 𝑖 = 1, . . . ,𝑛𝜙
np can be chosen

as constraints within the optimisation. In this case, the norm of the vector is not required,
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as each nodal damage quantity ϕ𝑖(X) leads to an additional constraint, i.e.

ϕ𝑖(X) ≤ 𝜑crit, 𝑖 = 1, . . . ,𝑛𝜑
np. (5.74)

The critical or maximum prescribed damage value 𝜑crit is chosen initially and depends on
the stated problem and chosen set of material parameters. The necessary gradients are
again stored in the damage contribution S𝜑

𝑋 of the sensitivity matrix.
For the second optimisation example, the compliance 𝐶 is chosen as the objective

function. The aim of an optimisation problem with the compliance as the objective
function is to generate a structure, which behaves stiffer under the applied boundary
conditions. Maximisation of the stiffness results in a higher strain energy potential which
the body under consideration can capture for an applied load. Rewriting this into a
minimisation problem thus leads to a minimisation of the negative strain energy potential.
The continuous functional which describes this quantity reads

JC = 𝐶(𝑋) = −𝛱 loc,el(𝑋)

= −
�
B0

𝛹vol(𝑋) + 𝛹 iso(𝑋) d𝑉.
(5.75)

This quantity only takes the elastic part 𝛹 loc,el of the local energy potential into account,
since the nonlocal part 𝛹nl is only required for numerical reasons and cannot be interpreted
physically. Additionally, external contributions for this potential are neglected due to the
choice of boundary conditions in the example.

The gradients can be derived in the same fashion as described in the previous sections.
The total variation, by already incorporating 𝑠𝑋 and 𝑧𝑋,𝑛 for the corresponding variations
of 𝛿𝑤 and 𝛿ℎ𝑛, respectively, therefore reads

𝛿𝐶 =

[︂
𝜕𝐶

𝜕𝑤
∘ 𝑠𝑋 +

𝜕𝐶

𝜕𝑋
+

𝜕𝐶

𝜕ℎ𝑛
∘ 𝑧𝑋,𝑛

]︂
· 𝛿𝑋. (5.76)

Application of the discretisation (4.70)-(5.34) for the total sum of the bracket above leads
to [︂

𝜕𝐶

𝜕X

]︂
𝑒𝐶

= −
�
B𝑒

0

[︂
𝜕𝛹vol

𝜕F
+

𝜕𝛹 iso

𝜕F

]︂
· ∇𝑋𝑁𝜙

𝐶 · S
𝜙
𝑋,𝑒𝐶 d𝑉

−
�
B𝑒

0

𝑁𝜑
𝐶

[︂
𝜕𝛹vol

𝜕ϕ
+

𝜕𝛹 iso

𝜕ϕ

]︂
· S𝜑

𝑋,𝑒𝐶 d𝑉

+

�
B𝑒

0

[︂
𝜕𝛹vol

𝜕F
+

𝜕𝛹 iso

𝜕F

]︂
:
[︀
G⊗∇𝑋𝑁𝑋

𝐶

]︀
d𝑉

−
�
B𝑒

0

[︂
𝜕𝛹vol

𝜕h𝑛
+

𝜕𝛹 iso

𝜕h𝑛

]︂
· Z𝑋,𝑛,𝑒𝐶 d𝑉

−
�
B𝑒

0

[︀
𝛹vol + 𝛹 iso

]︀
∇𝑋𝑁𝑋

𝐶 d𝑉, (5.77)
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which has to be assembled in accordance to the previously described quantities. The
specific partial derivatives within the integrals are derived in Appendix B.4.

Finally, all optimisation problems are subjected to geometric constraints regarding the
volume 𝑉 of the body under consideration. This additional constraint allows for better
comparison since no material is added or subtracted to the geometries. The volume is
computed is the sum of all elemental volumes and as such

𝑉 (X) =

𝑛el∑︁
𝑒=1

�
B𝑒

0

d𝑉, (5.78)

with its straightforward derivative[︂
𝜕𝑉

𝜕X

]︂
𝑒𝐶

=

�
B𝑒

0

∇𝑋𝑁𝑋
𝐶 d𝑉, (5.79)

and assembly in the known fashion.

5.6.2 Reaction force sensitivities

The material parameter sensitivities are considered within the environment of parameter
identification. This field of research aims to utilise experimental data ∙exp and tries to
optimise simulation data ∙sim, such that they match as closely as possible. Generally, the
constitutive material parameters mp of the simulation model are chosen as the design
variables, which directly influence the underlying structural response. A multi objective
function considered in this setting has the following form

JPI = 𝑤FJF
(︀
𝐹 sim(𝑡),𝐹 exp(𝑡)

)︀
+ 𝑤uJu

(︀
𝛥usim(X,𝑡),𝛥uexp(X,𝑡)

)︀
, (5.80)

with the separate objectives

JF =

𝑇∑︁
𝑡=1

𝑤𝑡

[︀
𝐹 sim
𝑡 − 𝐹 exp

𝑡

]︀2
, (5.81)

and

Ju =

𝑇∑︁
𝑡=1

𝑤𝑡

𝑛np

𝑛np∑︁
𝑖=1

‖𝛥usim
𝑖 −𝛥uexp

𝑖 ‖
2
𝑡 , (5.82)

see e.g. [190, 192, 215]. The first objective JF compares simulated reaction forces
with experimentally captured forces. The second objective Ju compares the simulated
displacements with experimentally captured displacements, which can be achieved by
means of digital image correlation (DIC). Instead of utilising the displacements u, the
change in displacement 𝛥u is considered instead. With this method, each investigated
points correlates their displacement with neighbouring points. The benefits of this approach
are touched upon more in the cited literature above and not explicitly discussed here,
since this measurement is not used in the presented work. The variables 𝑤𝑡 allow further
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weighting of specific points within the experiment or simulation, respectively, while 𝑤F

and 𝑤u enable weighting the two separate objectives for their contribution to JPI. Mainly
this has to be considered to adjust their dimensions, as the two objectives JF and Ju

are generally not of same dimension. In this work however, only the first objective JF

is considered since either a) no DIC data for the experiments is available or b) it is not
considered in the specific analysis.

To derive the sensitivities 𝛿JF, wherein only the forces from the simulation depend on
the design, i.e. JF

(︀
𝐹 sim(mp,𝑡),𝐹

exp(𝑡)
)︀
, the total variation of the objective reads

𝛿JF =

𝑇∑︁
𝑡=1

2𝑤𝑡

[︀
𝐹 sim
𝑡 (mp)− 𝐹 exp

𝑡

]︀
𝛿𝐹 sim

𝑡 , (5.83)

with the total variation of the simulated reaction forces

𝛿𝐹 sim
𝑡 = 𝛿𝑤𝐹 sim

𝑡 + 𝛿𝑚p
𝐹 sim
𝑡 + 𝛿ℎ𝑛

𝐹 sim
𝑡 (5.84)

A starting point for the derivation of this variation, recalling (4.75) and (4.88), is the
linearised global equilibrium condition, split into internal and external part for unknown
𝑎 and prescribed 𝑏 contributions, i.e.

r =

[︂
rint𝑎

rint𝑏

]︂
−

[︂
rext𝑎

rext𝑏

]︂
= 0. (5.85)

The reaction forces 𝐹 sim considered in (5.81) for the objective JF are computed at
the prescribed boundary 𝑏 and part of the external residual contribution rext𝑏 . Hence,
combination of (5.12) and (5.85) allows the derivation of the variation, such that

𝛿rext𝑏 =
𝜕rint𝑏

𝜕w
· 𝛿w +

𝜕rint𝑏

𝜕mp
· 𝛿mp +

𝜕rint𝑏

𝜕h𝑛
· 𝛿h𝑛

= [K𝑏𝑎 · S𝑚,𝑎 +P𝑚,𝑏 +H𝑏 · Z𝑚,𝑛] · 𝛿mp.

(5.86)

The simulation forces 𝐹 sim within the objective at each evaluated time step 𝑡 are scalar
valued. Since the forces from the discretised problem are stored at each nodal value, the
scalar valued simulated force quantity 𝐹 sim

𝑡 and its variation 𝛿𝐹 sim
𝑡 for each evaluated

time step 𝑡 can be captured by sum of all considered nodes, i.e.

𝐹 sim
𝑡 =

𝑛fn∑︁
𝑖=1

rext𝑏,𝑖 and 𝛿𝐹 sim
𝑡 =

𝑛fn∑︁
𝑖=1

𝛿rext𝑏,𝑖 , (5.87)

where 𝑛fn are the number of nodes where the forces are taken into account. Generally, the
simulated time steps 𝑡sim and the experimental time steps 𝑡exp do not coincide. Therefore
either result has to be interpolated. In this work, the compared data ∙exp is interpolated,
since the time steps within each simulation might vary due to the applied automatic time
step control.

Note, that the objective JF takes the complete loading history 𝑡 ∈ [0,𝑇 ] into consideration.
Since the sensitivity analysis for each time load step 𝑡 is conducted after each converged
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global Newton iteration, the resulting iterative objective and gradient have to be stored
for post-processing. After the final iteration at 𝑡 = 𝑇 , the final objective and its gradient
have to be assembled accordingly, see (5.81) and (5.83).

5.7 Remarks on the numerical implementation

As was mentioned within the previous chapter, the �̄� -method is utilised within the
structural analysis. Likewise, the adjustments regarding derivatives w.r.t. the deformation
gradient within this chapter have to be considered. See Appendix A.3 regarding the
�̄� -method and its implementation in this work.

Global sensitivity computation

Input: X,mp,K𝑎𝑎,w,Dv,h𝑛,Z𝑛

1. Loop over elements 𝑛el

a) Set sensitivity switch: ssw=’sens’

b) Compute element-wise matrices P𝑒,Q𝑒 −→ Fig. 5.3

2. Assemble: P and Q

3. Compute global sensitivity matrix

S𝑎 = −K−1
𝑎𝑎 · [P𝑎 +Q𝑎] → S =

[︂
S𝑎

0

]︂
4. Loop over elements 𝑛el

a) Set sensitivity switch: ssw=’objConstr ’

b) Compute: J𝑒 and ∇J𝑒 −→Fig. 5.3

c) Set sensitivity switch: ssw=’update’

d) Update history sensitivities Z𝑒,𝑛+1 −→ Fig. 5.3

5. Assemble: J and ∇J
6. Assemble updated history sensitivities in history field Z𝑛+1

Figure 5.2: Sketch of a global sensitivity computation of an arbitrary objective J.

In addition, within the previous section the global history sensitivity matrix H and
elemental history sensitivity update Z𝑒 were introduced. It was described, how an assembly
for the former quantity could be achieved and numerically accounted for, while the latter
was only considered at element level. Their multiplication into the matrix Q𝑒 and its
global assembly Q finally defines the change in structural response 𝛿w due to a change
in history variables of the previous time step 𝛿h𝑛. In the numerical implementation
however, only the matrix Q𝑒 is returned from each element and assembled globally. The
element-wise contributions H𝑒 and Z𝑒 are directly multiplied within each element at
Gauss-point level and assembled into an element quantity Q𝑒. This is more beneficial, as
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only the matrix Q is specifically required for the global computation of the sensitivity
matrix S, see (5.47) and (5.63). This numeric treatment reduces overall computation time
and memory requirements, as fewer variables are needed on the global level.

The numerical implementation is depicted in Fig. 5.2 conceptually, as it was implemented
into AOPS, without direct specification of all the small details. It mostly aims to
contextualise where the derived quantities need to be inserted into the implementation
and refers to the specific equations.

Element sensitivity computations

Input: ssw,optsw,w𝑒,X𝑒,mp,h𝑒,𝑛,Z𝑒,𝑛,D
v
𝑒

Gauss integration loop 𝑛gp

1. Compute material model response −→ Fig. 5.4

2. Compute sensitivity data according to ssw:

a) If ssw=’sens’

i. If optsw=’geom’: Compute Pgp
𝑒 , see (5.39) & (5.40)

ii. If optsw=’mat’: Compute Pgp
𝑒 , see (5.55) & (5.56)

iii. P𝑒 = P𝑒 +Pgp
𝑒

iv. Q𝑒 = Q𝑒 +Hgp
𝑒 · Z

gp
𝑒,𝑛, see (5.44) or (5.61)

b) If ssw=’update’

i. If optsw=’geom’: Zgp
𝑒,𝑛+1 according to (5.49)

ii. If optsw=’mat’: Zgp
𝑒,𝑛+1 according to (5.64)

c) If ssw=’objConstr ’

i. If optsw=’geom’: See e.g. Sect. 5.6.1

ii. If optsw=’mat’: See e.g. Sect. 5.6.2

Figure 5.3: Sketch of the sensitivity computations on the FE level.
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Local constitutive model enhancements

Input: F,ϕ,∇𝑋ϕ,h𝑛

1. Compute spatial damage model−→ Fig. 4.3

a) Compute additional spatial derivatives −→ Appendix B

2. Compute material response−→ Fig. 4.2 & Fig. 4.4

3. If optsw=’mat’: Nonlocal driving forces w.r.t. mp −→ Appendix B.3

4. Compute derivatives w.r.t. history field h𝑛 −→ Appendix B.1

5. Compute derivatives for history sensitivity update

a) history field h w.r.t. F, see Appendix B.2.1

b) history field h w.r.t. ϕ, see Appendix B.2.2

c) history field h w.r.t. h𝑛, see Appendix B.2.3

d) If optsw=’mat’: history field h w.r.t. mp, see (5.65) - (5.67)

Figure 5.4: Additional sensitivity computations within the local constitutive model.

5.7.1 Geometric implementation

In contrast to the notation in this section, the application of these sensitivities for the
presented results in Sect. 6.2 are furthermore enhanced. Instead of using the coordinates
of the initial geometry X as the design variables s of the optimisation, the initial geometry
is defined by means of CAGD. This CAGD is defined by control points p, which govern the
underlying mesh. While in theory, the nodal coordinates of the FE mesh might be used as
the design variables, the resulting challenges within the implementation and optimisation
would be significant. First of all, this would drastically increase the number of design
variables, as the number in the discrete geometrical setting 𝑛X is generally much higher
than the number of control points 𝑛cp of any CAGD, i.e. generally 𝑛X ≫ 𝑛cp holds.
Secondly, it would be very difficult to ensure a smooth and valid mesh in each iteration
of the SO. Many constraints would have to be introduced to ensure this smoothness,
which further complicates the optimisation. Since consideration of the CAGD is very
straightforward, with means of a chain rule, this approach is chosen here. For the sensitivity
matrix derived in (5.47), this results in the simple chain rule

Sopt = S𝑋 ·
𝜕X

𝜕p
= S𝑋 ·Dv. (5.88)

The additional partial derivatives Dv, which correlates the geometrical description the
node points of the CAGD is called the design velocity matrix. In this work, Bézier surfaces
are used to describe the CAGD.

Furthermore, within the implementation, the design velocity matrix is further split into
element-wise contributions Dv

𝑒 which are forwarded to each element computation. This
has highly beneficial impact on the memory requirements of the code. Since the matrices
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for history sensitivity update Z𝑒 have to be stored at each Gauss-point at each element,
reduction in their dimension drastically reduces the required storage. By forwarding a local,
element-wise design velocity field Dv

𝑒 , the mapping of the sensitivities from geometrical
description X to CAGD description p can be achieved on the local scale. Therefore,
the quantities stored at each Gauss-point can be reduced from dimension 𝑛hv × 𝑛X to
𝑛hv × 𝑛cp, which drastically reduces the total memory requirements.

5.7.2 History dependent algorithm

In standard optimisation procedures utilising gradient-based optimisation, e.g. in elastic
problems, the computation of the sensitivity data for objective and constraints is done
sequentially after finishing the complete structural analysis, see Fig. 3.2 in Sect. 3.4. That
is, initially the complete FE problem is computed for the specific BVP over the time
𝑡 = 𝑡0,𝑡1, . . . ,𝑇 . Afterwards, the sensitivity analysis is performed with the information
from the structural analysis at 𝑡 = 𝑇 . For history dependent materials however, this
no longer is sufficient, as was previously presented in this chapter. An iterative update
of the sensitivity data is required after each converged global Newton step 𝑡 ∈ [0,𝑇 ].
This requires an adjusted implementation regarding the calculation of this sensitivity
data. The enhancement regarding the algorithmic treatment is depicted in Fig. 5.5. This
enhancement replaces the sequential Structural analysis and Sensitivity analysis steps in
Fig. 3.2, and replaces them with an alternating update scheme at each time load step 𝑡.

Given: w𝑛,𝛿w𝑛,h𝑛,𝛿h𝑛

Structural response

• local Active-Set, 𝛥h𝑛+1

• Gauss-Point integration

• global Newton solution,
𝛥w𝑛+1

conv.?

Sensitivities

• calculate P𝑛+1,H𝑛+1

• calculate S𝑛+1 with
S𝑛+1 = −K−1

𝑛+1 ·
[︀
P𝑛+1 +Q𝑛+1

]︀
• update history variation Z𝑛+1

Z𝑛+1 =
[︁
𝜕h
𝜕w · S𝑛+1 +

𝜕h
𝜕X + 𝜕h

𝜕h𝑛
· Z𝑛

]︁

𝑡𝑛+1 = 𝑇𝑛++

Mathematical
optimisation

k++

yes

no

no

yes

Figure 5.5: Illustrative flowchart for the updates of sensitivity matrix S and history
sensitivity update Z in prescribed load step 𝑛.
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Given the data from previous time step 𝑡 = 𝑡𝑛, the structural analysis for the BVP
at 𝑡𝑛+1 is iteratively solved for a new update 𝛥w𝑛+1. If the iteration converges, the
sensitivities are computed. This requires initial computation of pseudo load matrix P𝑛+1

and history sensitivity matrix H𝑛+1. Combining the latter with the history sensitivity of
the previous time step 𝑡𝑛, i.e. Q𝑛+1 = H𝑛+1 ·Z𝑛, allows the computation of the Sensitivity
matrix S𝑛+1. This matrix in return is used to update the history sensitivity update Z𝑛+1,
which is stored for the next time increment 𝑡 = 𝑡𝑛+2. If the last time step is reached, i.e.
𝑡 = 𝑇 , the mathematical optimisation can be conducted. Otherwise the counter 𝑛 = 𝑛+ 1
is increased and the procedure continues.

5.8 Numerical verification

To verify the correct derivation and implementation of the analytically derived gradients,
they are compared to numerical gradients by means of the FDM. For this purpose, a cube
is chosen as the test example. This rather simple structure is necessary, as computation of
numerical gradients for even small problems leads to very long computation times. It is
therefore not feasible to compute the numerical gradients for problems of a larger scale
with the underlying code. Furthermore, due to the restrictions and assumptions made
for the derivation of the analytical gradients, see Appendix B.1, an inhomogeneous load
case is necessary for the test example and is depicted in Fig. 5.6. Symmetry conditions
are applied requiring only an eighth of the cube to be computed, i.e. the meshed part
in the figure. It is discretised with 5 elements in all three directions with total edge
length of ℎ = 𝑤 = 𝑡 = 2mm. The prescribed displacements reach 𝑢pre

1 = 0.125mm and
𝑢pre
2 = 𝑢pre

1 /2 at the final load time step. The material parameters for the simulation are
listed in Table 5.1. An unloading procedure is included during the middle of the simulation,
to ensure correct implementation of the history update under these circumstances; this
occurs during steps 9 and 21.

For the test, the CDQ is computed and compared to the analytically derived gradients.
The tolerance for the perturbation value is set to 𝜖 = 1×10−6. The design variables for the
perturbation are the control points when testing the geometric gradients, and all material
parameters when testing the constitutive sensitivities. The compared quantities are the
sensitivity matrix S, as well as the compliance 𝐶(p) in the geometric case the, or the
simulated forces 𝐹 sim(mp) in the material case. Even though throughout this work only
the coupled case is considered during derivation of all quantities, for the implementation
the elastic, plastic and damage case have to be considered. For this purpose, the respective
material parameters are adjusted, such that the corresponding yield conditions are never
exceeded and the chosen material behaviour case enforced. The adapted parameters are
listed in Table 5.2.
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Figure 5.6: The BVP for the numerical
verification of the sensitivity information.

Table 5.1: Set of material parameters for
the simulations.

Symbol Value

𝐸/MPa 207000
𝜈 0.21

𝜎y0/MPa 731.64
ℎ/MPa 14432.08

𝑛p 0.9983
𝜂 2.3509
𝜉vol 1
𝜉iso 0.7806
𝜉q 0.6443
𝜉m 2.3145
𝜂𝛼 0.0188

𝑞min/MPa 17.6545
𝑛d 2/3

𝑐d/N 37.4659
𝛽d/MPa 500

Table 5.2: Necessary adjustments to the material parameters in Table 5.1 for the four
different cases of material behaviour.

material elastic plastic damage coupled
parameter case case case case

𝜎y0/MPa 1× 106 731.64 1× 106 731.64
𝑞min/MPa 1× 106 1× 106 17.6545 17.6545

𝑛d 0 0 2/3 2/3

To quantify the difference between the numerically and analytically derived gradients, a
relative error measurement between both quantities is calculated, i.e.

e∙ =
‖∙num. − ∙analyt.‖

‖∙num.‖
, (5.89)

where the ∙ is the choice of compared quantity, i.e. S or gradient of the objective ∇J.
The superscripts num. and analyt. represent the numerical and analytical quantities,
respectively. The results for both verification procedures are depicted in Fig. 5.7. The data
confirms the correct implementation of the analytically derived sensitivity information as
the relative error remains relatively small, staying below a value of 1×10−6 and sometimes
reaching values of below 1× 10−10.
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Figure 5.7: Numerical verification of sensitivity computation: a) The relative error for the
geometric design variables p and b) for the constitutive design variables mp.



Chapter 6

Damage oriented optimisation

The previous chapter provided the methodology to derive additional gradient
information for the ductile damage material model and employ them in the numer-
ical framework AOPS. The geometric sensitivities are used for shape optimisation
for two different stated problems. First damage is directly optimised during shape
optimisation by choosing the objective as a function directly depending on the
damage variables. This objective computes the accumulated damage within the
considered geometry, and the shape is optimised, such that total damage in the
body is minimised. In a second problem, damage is considered only indirectly
within the objective. A compliance function is optimised and structures with
and without damage modelling are analysed. The material sensitivities are not
used for general numerical optimisation. Instead, they are directly analysed for
geometries used within parameter identification and hence conclusions drawn
regarding identifiability of parameters within given geometries.

6.1 Academic damage optimisation

In this chapter, the gradient information derived in the previous chapter are utilised to
optimise and analyse ductile damage problems. Due to the already existing complexity of
the material model and the addition of optimisation, academic problems are computed
and the numerically optimised structures analysed. The material under consideration is
DP800 steel, with the material parameters successfully having been identified in [215].
The simulation model for a plate with a hole is presented in Sect. 6.2.1. Additionally,
the Computer Aided Geometric Design (CAGD) model is presented, wherein the design
variables and their bounds are specifically highlighted. In Sect. 6.2.2 and Sect. 6.2.3, the
shape of the plate is optimised. In the former, damage optimisation is conducted, where
the objective directly takes damage into account. That is, a least-square function of the
nonlocal damage captures the total accumulated damage in the body and the minimisation
generates shapes with reduced damage accumulation. The latter compares structures from
optimisations with and without considering damage during the simulations, and hence
optimisation. For this, the compliance is minimised, as it is only implicitly dependent on
the damage behaviour. That is, the function can be described independently on the chosen

81
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material parameters and therefore elastic, elasto-plastic and ductile damage behaviour
are modelled and optimised separately. Comparison of the results allows for a generalised
statement regarding utilisation of damage modelling within optimisation problems.

The gradient information w.r.t. the constitutive material parameters are not used for
optimisation. In [215], parameter identification (PI) using gradient-free methods was
already conducted for the implemented material model and it was fitted to behaviour
of DP800. Instead, here the sensitivity data is directly analysed. The models from the
PI are utilised to compute the gradient information, which is directly analysed. This
allows postulating statements regarding identifiability of certain parameters for different
geometries. Since this methodology is only a prototype, this will only be briefly discussed.

Parts of the presented research are already published. In [100, 103] shape optimisation
is applied to a different nonlocal damage models, while in [96, 99] shape optimisation and
parameter sensitivity studies were applied to the material model considered in this thesis.

6.2 Shape optimisation

In this section two optimisation problems are discussed which are applied to the academic
problem of a plate with a hole. Initially, the simulation and optimisation setup are
described and a reference solution presented in Sect. 6.2.1. The following sections detail
the results for damage based optimisation in Sect. 6.2.2 and compliance optimisation
in Sect. 6.2.3. The optimisation problems are solved with the gradient-based method
of Sequential Quadratic Programming (SQP) of the optimisation toolbox in Matlab,
specifically fmincon, with standard parameters, such as the break threshold which
finishes the optimisation.

6.2.1 Simulation model

The academic problem chosen for the following optimisations is that of a plate with a hole,
due to its inhomogeneous deformation and resulting stress state. The material parameters
for the simulation are taken from the source of the model, i.e. [215], and have been listed
in Table 5.1. In order to utilise these parameters accurately, the simulation model is
required to have comparable dimensions to the specimen used in the PI of the cited work.
The simulation problem itself is depicted in Fig. 6.1, wherein, by exploiting the symmetry
of the problem and applying according boundary conditions, only the meshed area is used
for the simulations at hand. The plate has a thickness of 𝑡 = 1mm and height, as well
as width, ℎ = 𝑤 = 10mm. The inner radius of the hole is equal to 𝑟 = 2.5mm. At the
top and bottom of the plate, a prescribed displacement of 𝑢pre = 0.5mm is applied. The
mesh itself consists of 1350 8-noded hexahedron elements, which is a sufficiently fine mesh
to regularise the damage behaviour, cf. [103, 213], while simultaneously reducing overall
computation time by using as small of a mesh as possible.

The mesh itself is generated by CAGD, in this case Bézier-surfaces, cf. [74], and consists
of two separate patches, which conjoin at a 45∘ angle in the reference plate, indicated
by the green line in Fig. 6.1. Certain control points of these patches are chosen as the
subsequent design variables s = p for the following optimisations and are depicted in
Fig. 6.2. The dashed lines therein indicate the possible design space for the respective
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Figure 6.1: The problem definition and the reference damage distribution.

control point within the optimisation and are therefore included as the upper pu and lower
pl bounds, which make up the design space of the optimisation. The geometric design
is based on [98, 103], but includes also the thickness direction as a possible variation
in design by allowing certain control points to vary in thickness direction as well. All
design variables not lying on the symmetry surface in thickness direction are allowed to
vary their coordinate in thickness direction by 𝛥p = 0.25mm from their starting point.
The only exception are the three control points at the right edge, which can double their
thickness by 𝛥pu = 0.5mm, but have the same constraint when reducing the thickness.
Additionally, while not further specified here, certain equality constraints apply to specific
control points, which are required for the Bézier-surfaces to yield valid meshes and uphold
the symmetry conditions exploited before.

The resulting damage distribution throughout the plate is displayed on the right part
of Fig. 6.1 and is used as a point of reference for the following optimisation problems in
Sect. 6.2.2 and Sect. 6.2.3, respectively. The maximum damage value for the reference
state reaches up to 𝜑ref

max = 0.1893 in the lower left corner of the bottom part of the plate.
Additionally, this plate also shows small indications of damage localisation in the lower
left corner of the plate, which will be elaborated on in the following sections.

6.2.2 Damage minimisation

The objective of the first optimisation problem is to reduce the overall damage accumulation
within the body. The total accumulated damage is captured in the norm of the damage
vector ϕ(p), see Sect. 5.6. For sake of comparison regarding the different designs achieved,
an additional constraint is added, taking the volume of the body into account. This
constrains the optimiser to utilise the same amount of material in each generated geometry.
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Figure 6.2: The initial CAGD of the plate with a hole and the design variables as the
control points in red. The dashed lines are potential positions for the optimisation with the
edges their respective bounds.

The optimisation problem therefore reads

minimise
pl≤p≤pu

Jd = ‖ϕ(p)‖2

subject to 𝑉 (p) = 𝑉0.
(6.1)

The geometry generated by the stated problem is depicted in Fig. 6.3a). The optimiser
reduces the cross-section area on the bottom of the plate to its minimal thickness and
width, while compensating the resulting reduction in volume by increasing the thickness
around the area where both CAGD patches are connected. While this solution does
minimise the objective function to a desirable degree, see Fig. 6.4 which depicts the
objective over iterations, it does not necessarily generate the aimed for result. This,
from a mathematical viewpoint, optimal shape leads to an early, geometrically induced,
localisation of damage, compared to the reference design. This would, upon further loading
with appropriate fracture modelling, lead to earlier failure of the specimen, compared to
the reference design. Since the area where the damage localises is rather small, this leads
to a lower objective value overall and hence the resulting design from a mathematical
standpoint. However, this is not the intended (or desired) outcome of the stated, damage
based optimisation problem. More desirable would be a design which not only reduces the
overall accumulated damage throughout the body, but furthermore restricts damage spikes
and thus may delay the localisation of damage upon further loading, which subsequently
could delay failure for such a specimen.

To force the optimiser to generate such a (more desirable) design, optimisation problem
(6.1) is adapted by additional nodal damage constraints, i.e.

minimise
pl≤p≤pu

Jd = ‖ϕ(p)‖2

subject to 𝑉 (p) = 𝑉0

ϕ𝑖 ≤ 𝜑crit.

(6.2)
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With these additional constraints, it is possible to restrict the resulting localisation arising
in the unconstrained problem of (6.1), by restricting the maximum allowed global damage
value ϕ𝑖 each finite element node may accumulate. The results for this optimisation
problem, with varying values of 𝜑crit, are depicted in Fig. 6.3b)-d). The critical values

(a) Unconstrained (b) 𝜑crit = 0.19

(c) 𝜑crit = 0.15 (d) 𝜑crit = 0.12

Figure 6.3: Different optimal shapes resulting from unconstrained (a) and constrained
(b)-(d) damage minimisations.

𝜑crit were lowered from a starting point of 𝜑crit = 0.19 down to 𝜑crit = 0.12, with three
exemplary designs presented here. The lowest achievable solution is that with a constraint
value of 𝜑crit = 0.12, after which the optimiser is not able to generate structures while
simultaneously fulfilling the constraints, mainly due to the chosen limits in design freedom
pl ≤ p ≤ pu, again see Fig. 6.2.

Starting with a constraint value of 𝜑crit = 0.19, the resulting geometry already differs
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strongly from the unconstrained problem (6.1). The lower cross-section gets reshaped by
increasing the overall width, but the overall thickness in this area still gets reduced. To
compensate in volume, the central hole gets reshaped and certain parts of the plate are
varied in thickness. The right side of the plate starts to curve outwards, which is opposite
to the unconstrained problem, where the curvature turns inwards. Of note here, is that this
bounded critical value is higher than the initial maximum value 𝜑ref

max = 0.1893. Still, these
additional constraints nudge the optimiser into a search direction, which leads away from
the (undesirable) solution of the unconstrained problem and into the new (more desirable)
design. Even with these constraints, geometrically induced localisation of damage, while
not as pronounced as in the unconstrained problem, is still detectable on the lower part of
the plate. Reducing the critical damage value further to 𝜑crit = 0.15 leads to a critical
switch in design of the lower part of the plate. The cross-section at the bottom gets even
larger, by further increasing its width which is amplified by additionally increasing the
thickness as well. To compensate in volume, and therefore fulfilling the equality constraint,
the central part of the plate gets thinner. The combination of both these design changes
leads to a shear-like damage zone in a 45∘ angle from the bottom left to the middle right
side of the newly generated plate. All previous designs, including the reference problem,
had this damage zone lying horizontal at the bottom edge of the plate, leading to damage
localising behaviour. Additionally, the right side of the plate has an even more pronounced
curvature, which started to develop in the previous constrained problem. Of note for this
problem is, even though the damage is bounded to 𝜑crit = 0.15, the maximum damage
only reaches a value 𝜑max

0.15 = 0.1241. To further reduce this maximum damage, the upper
bound is further reduced to 𝜑crit = 0.12 in the last design presented in Fig. 6.3d). To
fulfil this new constraint, the optimiser pushes the thinnest area of the plate a bit upward,
just below the area where the two Bézier surfaces are connected. This in turn moves
the aforementioned damage zone upwards as well, which ends just below the top-right
corner of the plate. Additionally, the right side no longer curves inward and, as such,
the leftmost point on the right surface of the plate is at the top right corner of the plate.
This finally leads to a maximised area of the damage zone and with this, it is possible to
bound all damage values to the prescribed critical value of 𝜑crit = 0.12. Due to the broad
area where damage accumulates in those latter two examples, the geometrically induced
localisation of damage can be prevented, which would theoretically allow these specimens
to be subjected to larger deformations, before failure occurs.

With the addition of the damage constraints, as would be expected, the respective
objective values obtainable at the end of each optimisation get significantly increased,
see Fig. 6.4. The unconstrained problem is able to reduce its objective value by 66.7%
from Jd,initunconstr = 14.3414 to Jd,optunconstr = 4.7746. This is possible, as already mentioned,
due to geometrically localising the damage accumulation in a relatively small area. With
the inclusion of the additional constraints in damage, the objective value cannot be
reduced as significantly. For the analysed problems in this work, the lowest achievable
objective reached is Jd,opt0.19 = 7.6292 for the highest damage constraint, and subsequently
Jd,opt0.12 = 9.1196 for the lowest critical damage bound. Nonetheless, this is still the equivalent
of a reduction between 46.8%− 36.4% of accumulated damage in the considered problem.
Furthermore, while the unconstrained problem is able to find an optimum after only 4
iterations, the additional 𝑛𝜑

np = 1350 damage constraints, while not necessarily active at
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all time, in the other problems lead to many further iterations for the optimisation to
converge. In the case of the lowest possible critical damage value of 𝜑crit = 0.12, up to
45 iterations are necessary to finally converge. Of note is the iterative behaviour of the
magenta curve in Fig. 6.4. While the 𝜑crit = 0.12 and 𝜑crit = 0.15 problem end up very
similar in final geometric design, the iterative process for the former is more difficult, as
the optimiser has to take a different path, wherein the more difficult constraint has to
be fulfilled throughout the optimisation. As such, the optimiser steers towards a local
minimum up to iteration 25 which diverges strongly from the final optimum. At that
point a huge shift in shape occurs which steers the optimiser to the final design presented
in Fig. 6.3d).

Additionally depicted in Fig. 6.4 are the resulting load-displacement curves for each
optimisation problem. The red curve depicts the initial, reference design. While all other
designs yield softer responses, even though the accumulated damage throughout the body
is reduced, they still show some interesting characteristics. First of all, the unconstrained
problem shows a significantly softer response. After a load of 𝐹 = 2000N the geometry
starts losing its load-bearing capabilities and a downward trend in its curve is visible; a
result of the geometrically induced damage localisation. This happens after a displacement
of 𝑢 = 0.125mm, while in the reference design this happens only after 𝑢 = 0.33mm
at a maximum force of 𝐹 = 4660N. The constrained problems show a generally more
beneficial behaviour. With a high critical damage bound (orange curve), the design
behaves more like the unconstrained one, due to also showing some localisation behaviour,
but reaches a higher maximum force and at a higher respective displacement. Of interest
are the additional two curves, with 𝜑crit = 0.15 and 𝜑crit = 0.12, respectively. The designs
generated by these optimisations showed a broadened, diagonal damage distribution in
the body. This distribution leads to a slower loss in load-bearing capacity by delaying
the localisation of damage. Moreover, the generated shapes do not show any downward
slope of the load-displacement curve within the analysed area. It is to be expected that,
upon further loading, the latter design surpasses the reference design in its load-bearing
capacity due to delaying the critical damage localisation. However, to generally generate
stiffer components, a compliance-like optimisation would be beneficial, which is focussed
on in Sect. 6.2.3.

Finally, the previously described localisation behaviour of the respective shapes can
also be identified when plotting the accumulated damage, i.e. objective ‖ϕ(p)‖2, over
the applied displacement 𝑢, see Fig. 6.5. The unconstrained shape shows an initially
steep increase in damage accumulation up to approximately ‖ϕ(p)‖2unconstr. = 3.15 at
𝑢 = 0.2mm, after which the accumulation lessens significantly. The same general behaviour
is also present in the constrained problem with 𝜑crit = 0.19, while the significant change
in the slope does not occur. The remaining two problems show a different behaviour in
damage accumulation. The damage evolution starts off with a gentle incline of the curve,
compared to the unconstrained behaviour. At approximately 𝑢 = 0.15mm the slope of
the curve increases slightly and afterwards the accumulation of damage behaves almost
linearly, showing no immediate sign of localisation.
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Figure 6.4: a) Objectives for different damage optimisation problems over iterations and
b) load-displacement curves.

Figure 6.5: Damage accumulation over displacement for each optimised shape.

6.2.3 Compliance optimisation

Following a direct damage optimisation, one could now instead use the damage states simply
as a constraint to limit the damage evolution when conducting a compliance optimisation,
similarly done in [103]. However, this shall not be the aim of the presented research.
Instead, in this second optimisation problem, the potential benefit of the utilised damage
modelling is analysed and reviewed, whether the additional computational complexity
shows sufficient gain in generated results. To allow comparison, a single optimisation
problem is subjected to three different cases for the underlying material model derived in
Chap. 4:

1. A purely elastic case, where the thresholds for damage and plastic initiation are set
arbitrarily high to prevent their respective evolution and enforce elastic behaviour.
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2. An elasto-plastic case, wherein only the damage threshold is manipulated to prohibit
damage evolution.

3. An unaltered case, which leads to the coupled elasto-plastic damage behaviour.

While theoretically a fourth case, i.e. a case where only the plasticity is disabled and
uncoupled damage evolves, is possible, this case is not presented here. Due to the set
of chosen material parameters, the damage variable gets too high in this fourth case,
which in turn leads to the optimiser failing to find a better solution than the initial guess
and therefore results in no change in design. The necessary adjustments to the material
parameters of Table 5.1 are summarised in Table 6.1 for the three analysed cases.

Table 6.1: Necessary adjustments to the material parameters in Table 5.1 for the three
considered cases.

material elastic plastic coupled
parameter case case case

𝜎y0/MPa 1× 106 731.64 731.64
𝑞min/MPa 1× 106 1× 106 17.6545

𝑛d 0 0 2/3

To compare the three cases mentioned above, an objective function is necessary which
not directly depends on the underlying material model in its definition. The previous
damage based objective function in Sect. 6.2.2 is therefore not suitable, as no damage
values are available in the elastic and plastic problem. Subsequently, the compliance 𝐶(p),
as described in Sect. 5.6, is chosen for this comparison instead, leading to the generalised
optimisation problem

minimise
pl≤p≤pu

JC = 𝐶(p)

subject to 𝑉 (p) = 𝑉0.
(6.3)

Due to the choice of objective function, the material model does not directly influence
the stated optimisation problem. However, the underlying material behaviour influences
the resulting values of the compliance and therefore newly generated geometries. After
optimisation, the resulting optimal geometries of the purely elastic and the elasto-plastic
problems are subjected to simulations with the unaltered, coupled material behaviour.
This in turn allows direct comparison regarding their actual stiffness, when accounting
for damage accumulation, as well as their resulting damage distribution. The resulting
optimised geometries and their respective damage distribution are presented in Fig. 6.6.
The results from the purely elastic and the elasto-plastic behaviour are almost identical
and not quite distinguishable to the naked eye. Both geometries reduce the thickness and
overall width of the top-left area in order to shift that material to the lower part of the
plate, resulting in a stiffer behaviour. The hole itself changes into an oval shape with
the lower part being the thickest part of the newly generated structure. When directly
comparing the elastic and the plastic resulting design, while not directly visible in the
figure, the elastic shape is a bit wider on the lower part of the plate, which has to be
compensated by reducing the thickness in the area where both CAGD patches meet. This



90 Chapter 6 Damage oriented optimisation

(a) Elastic (b) Plastic (c) Coupled

Figure 6.6: Damage distribution for the respective shapes of the compliance optimisation.

leads to a slightly higher peak damage value for the plastic shape in the lower left corner
of the cross-section area. The coupled case however yields a completely different, new
design. Instead of widening the bottom cross-section to maximise the overall cross-section
area in loading direction, the material is shifted to overall thicken the new shape in a
general sense. The oval shape of the central hole is more pronounced in this design, as the
top-left area of the plate is reduced to the minimal allowed width as well as thickness, as
defined by the boundaries of the respective control points. Overall, this leads the plate
with the coupled material model to generate a structure, which better homogenises the
damage distribution throughout the body. This prevents the localisation of damage that
arise in the lower left corner in the other designs, which is similar, but not as pronounced,
as in the reference design. Additionally, this design behaves similar to the results of the
damage constrained problem in the previous section. That is, a diagonal like damage zone
is visible in a 45∘ angle going from centre left to top right. It is not as pronounced as in
the previous section for the damage constrained problems, but still detectable. This is not
happening in the other two designs, which show a damage distribution that is more akin
to the reference plate, i.e. high values in the lower left corner and reduction in damage
outward from that point on.

Table 6.2: Initial and optimal compliance values for their respective cases.

elastic plastic coupled

𝐶 init −7081.551 −73.4209 −16.2577
𝐶opt −8563.084 −86.6223 −23.7402
𝐶 init

cpld −16.2577
𝐶opt

cpld −23.2432 −22.9930 −23.7402

The resulting numerical values of the compliance objective are listed in Table 6.2. The
first two rows list the initial and optimal compliance values for their respective, unaltered
cases. As expected, the elastic values are overall the highest, with the plasticity already
reaching lower values by a factor of 100, since the hardening modulus ℎ is significantly
smaller than the elastic modulus 𝐸. With the addition of damage in the coupled case,
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this value is again reduced by a factor of 4, since the accumulation of damage additionally
lowers the overall stiffness of the body and therein the capacity to capture the mechanical
energy. More interesting, for the sake of comparison of these three cases however, is the
coupled compliance values 𝐶cpld. For these values, the coupled material model is applied to
the geometries of the elastic and plastic case and the resulting compliance values calculated.
Since the initial geometry is the same in all cases, the result is equal as well. Unexpectedly,
the optimal values are quite similar, with the variance to the coupled result being only
approximately 2.1% for the elastic result and 3.25% for the plastic case, respectively. First,
this again highlights the similarity of the elastic and plastic design, even though the small,
almost not distinguishable differences have a higher impact onto the objective than would
be expected. Second, these values indicate, that while the coupled case generates a more
pronounced design regarding the damage distribution, the resulting compliance is not
significantly higher than by simply optimising the problem for a purely elastic case.

Figure 6.7: Load-displacement curves for the compliance optimisation. The vertical red
line indicates the maximum applied displacement during the optimisation.

This behaviour is also identifiable when comparing the resulting load-displacement
curves, see Fig. 6.7. As expected, all generated designs outperform the initial reference
problem by a huge margin; able to withstand 1.5 kN more force at the same applied
displacement. However, at the point of optimisation, i.e. 𝑢pre = 0.5mm indicated by the
vertical red line, the differences in the three optimal designs is nearly not distinguishable.
Nonetheless, comparing the three coupled compliance values in the last row of Table 6.2,
the coupled optimisation results in the highest reaction force at 𝐹 react

cpld = 6189N, the
elastic design results in 𝐹 react

el = 6150N and the plastic problem results in the lowest
reaction force at 𝐹 react

pl = 6104N.
However, when looking closely at the slopes of the respective curves, one can see that

while these three curves reach nearly identical values at the point of optimisation, their
underlying behaviour is not necessarily identical. That is, the elastic and plastic curves
reached, or almost reached, their highest point, indicating that localisation of damage
may start to occur. That would indicate a loss in load-bearing capacity and therefore a
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drop in the load-displacement curve is to be expected. This behaviour is not visible in the
curve of the coupled case and its slope is still positive at 𝑢pre = 0.5mm. This prompted
to further load the geometries to a new displacement of 𝑢pre,+ = 1mm to analyse, how
these structures behave under extended loading.

As expected from the mentioned observation, the slope of the curves from the elastic and
plastic problems start to trend downward, while the coupled design is better at handling
further loading. For the latter design, the slope becomes negative at around 𝑢 = 0.63mm
and shows a far less severe downward trend. This highlights the benefit of running
optimisations with a coupled damage material model. While the generated structure
does not vastly outperform the simpler problems, the underlying consideration of damage
results in a more damage tolerant structure, as it accounts for the damage behaviour, and
therefore is able to withstand more loading and therefore damage accumulation. This
knowledge is beneficial when taking into account safety factors that are often applied to
the designing process of parts, in order to handle unforeseen extra loads. Utilising accurate
damage models while conducting optimisation, may allow reduction in these safety factors,
since possible, unforeseen additional loads are better absorbed for these kinds of generated
geometries.

6.3 A prototype response sensitivity study

In this section, the derived sensitivities for the constitutive material parameters are utilised.
However, instead of performing PI, the gradient information are analysed directly. In
the original source of the material model, cf. [215], a thorough PI using digital image
correlation has been conducted. Hence, further identification is not required. The method
presented here is a prototype idea to give additional insight into the problem. With further
research, this might lead to enhancements in effective PI and yield further insight regarding
identifiability of material parameters for considered the boundary value problems (BVP).

For further analysis of the problems solved in [215], sensitivity analysis was applied to
the BVPs of the simulated problems, i.e. the notched plate and the plate with a hole,
see Fig. 6.8. Herein, the same identical BVPs are computed, wherein the data has been
provided by the original authors. Within the PI in the source, the applied load curves
within the BVP included loading and unloading steps. This is required to accurately
identify the parameters which influence damage, since damage evolution has a direct
impact on the elastic material behaviour.

The sensitivities are computed according to (5.84)-(5.86), i.e. the simulated reaction
forces 𝐹 sim are of main concern. Note, that objective JF in (5.81) is not the considered
function in this section, as such (5.87) is not required in this implementation. The
sensitivities of the simulated reaction forces 𝐹 sim

𝑡 are computed for each material parameter
mp at each pseudo time step 𝑡, i.e. each load step. The results are depicted in Fig. 6.9
and Fig. 6.10 for the notched plate and plate with a hole, respectively. Each column
depicts the sensitivity of the respective parameters has onto the simulated forces 𝐹 sim of
the respective load step. Each row correlates with a time load step 𝑡, starting at 𝑡 = 1 at
the top and 𝑡 = 𝑇 at the bottom. Since the absolute values of the sensitivity data very
strongly differ in dimension, the presented data is normalised, i.e. each column is divided
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Figure 6.8: Simulation models from [215] used in the analysis of the response sensitivity
data. a) The notched plat and b) the plate with a hole.

by the absolute maximum value in each column such that

𝛿𝑚𝑖
Fsim,norm =

𝛿𝑚𝑖
Fsim

max(
⃒⃒
𝛿𝑚𝑖F

sim
⃒⃒
)
. (6.4)

The raw data can be found in Appendix C.2. While this normalisation allows the analysis
of the respective parameters onto the simulation, this approach no longer enables direct
comparison between the material parameters, since the qualitative values are no longer
part of the visualised data.

Within the considered and depicted sensitivities, the respective figures only take the
non-elastic parameters into consideration. Since the elastic parameters are rather straight-
forward to identify, they are not a concern in this study. Furthermore, 𝛽d is omitted,
as it only serves as a penalty parameter which couples local and nonlocal damage. The
parameters 𝜉vol and 𝑛d are also omitted, as they are held constant in the original PI, cf.
[215]. The figures additionally depict loading and unloading steps. Horizontal black lines
frame a dashed black line. These are the unloading steps, wherein the first black line is
the start of unloading, the dashed line the end of unloading, i.e. the turning point, and
the second black line is the point where loading starts to surpass the previously applied
max load again. The detailed load paths for the BVP can also be found in Appendix C.2.
Of note is the extended number of load steps for the notched plate. Due to convergence
issues, the time step size within the simulations is reduced drastically, leading to many
iterations with little displacement increments.

Even with these restrictions, and the preliminary nature of this prototype approach,
certain conclusions can be drawn from these results. First of all, some parameters show
drastic sensitivity alterations between the two analysed BVPs. The yield stress 𝜎y0 for
example shows initially very identical, and expected, behaviour. That is, before plastic
yielding the sensitivities are zero and subsequently are at their maximal at the point of



94 Chapter 6 Damage oriented optimisation

 l
o

a
d

 s
te

p

-1

-0.5

0

0.5

1

Figure 6.9: Normalised material sensitivity data for the notched plate. Load steps increasing
from top to bottom.
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Figure 6.10: Normalised material sensitivity data for the plate with a hole. Load steps
increasing from top to bottom.
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initial plastic yielding. Afterwards, their influence on the simulated reaction forces 𝐹 sim is
getting smaller. Due to plastic yielding and the evolution of damage, the sensitivity of
this material parameter decreases with increased load, which is expected too. Herein, the
two BVPs show a different behaviour. The influence of this parameter within the notched
plate gets significantly smaller, i.e. the value is close to zero, while the influence within
the plate with a hole is still not quite insignificantly small at a factor of 0.25. This same
trend is identifiable for the other plastic parameters ℎ and 𝑛p.

The opposite behaviour is observed for the damage threshold 𝑞min, which governs the
onset of damage. This quantity increases with increasing load. Similarly, this is also
expected, since with growing damage this quantity is more important to further govern
the damage onset due to the coupling to the current damage state via the function
[1− 𝑓𝑞(𝑑)]

𝑛d . Generally, an inverse behaviour between 𝜎y0 and 𝑞min is observed for the
plastic and damage threshold in both geometries.

As an early conclusion from these results, it could be more beneficial to utilise early
sections of an experiment for the notched plate to identify the plastic variables and latter
sections for the damage threshold 𝑞min. Using this information and adapting the weight
parameters 𝑤𝑡 for the objective JPI in (5.80) accordingly, identification of these parameters
might yield better results by isolating desired material responses.

Another key parameter in the underlying model is the regularisation parameter 𝑐d.
Generally, this parameter is motivated by the crack width or width of the damage
area within a given problem. However, its consideration within the numerics has a
very pronounced effect on the mesh-independence of the material model. Therefore, its
identification is generally not straightforward, as hinted at in [215]. The results from the
response sensitivity study also show that both geometries depict huge differences in their
results. In the notched plat this parameter shows barely any impact in the first half of the
simulation and only shows drastic increase in sensitivities towards the later half. Within
the plate with a hole, the sensitivities of this parameters start to increase early on and rise
steadily, not showing the sudden change observed in the notched plate. This behaviour
might indicate, that to better identify this regularisation parameter, only considering the
latter half of the notched plate might be generally advised.





Chapter 7

Conclusion of Part I: Academic challenges

In Part I of this thesis, the academic viewpoint of damage optimisation has been considered.
In Chap. 4, a nonlocal damage model and its numerical implementation have been
presented. The necessary assumptions regarding the kinematics in a viewpoint of finite
deformations have been introduced and the balance and thermodynamic laws summarised.
The nonlocal description and implementation of the material model enables a gradient-
enhanced regularisation of the damage evolution, which results in mesh-independent
simulations. These are critical when considering structural optimisation, as therein mesh
sizes might change which could result in inaccurate optimisation results for a mesh-
dependent model. Finally, specific handling of the numerical implementation by means of
the finite element method (FEM), as well as an active-set strategy for the couple behaviour
of the constitutive model have been depicted.

To enable structural optimisation with gradient-based methods, in Chap. 5, the material
model has been enhanced by conducting an analytical sensitivity analysis. A variational
concept has been applied, which enabled an efficient and elegant method to derive
the continuous gradient information without prior discretisation. For the geometrical
description, an enhanced kinematic viewpoint has been utilised, as it allows decoupling
the implicit dependencies of geometry and deformation to ease with derivation of the
gradients. The sensitivity analysis has been applied for geometry and constitutive material
parameters as possible design variables. Since the underlying material model utilises
history dependent variables to store previous dissipative load steps, their contribution
within the sensitivity analysis and numerical implementation had to be considered as well.
This consideration has been emphasised, together with other exemplary implementation
details, in the numerical treatment of the derived gradient information. The discrete
quantities have been incorporated into Academic Optimisation Problem Solver (AOPS) to
enable optimisation of damage. Afterwards, the implemented analytical gradients have
been compared to numerically computed ones, which were gathered by means of the finite
difference method. Finally, the objectives and constraints, which have been used in the
computed results, have been presented.

The methodology has been applied to structural optimisation of a plate with a hole for
two optimisation problem in Chap. 6. A direct damage optimisation has been conducted
and damage tolerant shapes have been generated. By additionally constraining each
respective FE node regarding its damage value, the resulting geometry can be significantly
altered and early damage localisation prohibited. Additionally, a compliance minimisation
has been conducted for different material properties, i.e. elastic, elasto-plastic, and ductile
damage. The results show, that considering damage within said optimisation yield better
and more damage tolerant structures. This emphasises the benefit of using complex
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material models within an optimisation procedure. Finally, the material sensitivities have
been analysed, instead of performing a parameter identification (PI). A gradient-based
PI with these sensitivities can be found in Appendix C.1.1. Utilisation of this method
allows insight onto identifiability of material parameters for a given shape of test specimen.
Most importantly, differences in identifiability of specific parameters like the regularisation
parameter 𝑐d can be made. Certain geometries show a higher sensitivity for this parameter
which might indicate that such a shape is better at identifying said parameter.

Three main conclusions can be drawn, which also apply to other types of optimisations.
These highlight the general novelty of the presented research.

1. One has to be careful stating an optimisation problem, which only considers damage
in the objective. In structural optimisation this might lead to geometrically induced
early damage localisation, generated due to the optimisation. Since from a mathe-
matical viewpoint, high damage in a smaller area might be less in overall quantity
than moderate damage distributed evenly over a moderate area.

2. Consideration of damage within the optimisation allows generating structures, which
initially behave similar to geometries generated from a simpler model description.
However, the resulting geometries allow for more damage tolerance during further
loading. Extrapolating these results to other theoretical applications highlights that
considering damage within the underlying model description might yield significant
benefits, such as additional reserves of damage tolerance during unforeseen loads. In
manufacturing of critical components for example, this allows reduction of safety
margins as the optimisation creates inherently more damage resilient structures.

3. Sensitivity data for a given model has its extended applications beyond its use in
gradient-based optimisation. The data can be analysed directly and conclusions
drawn. For the constitutive sensitivities for example, this allows analysis of geometries
used for PI.

However, even with these results, the outlined method has its drawbacks. Mainly,
these come up if forming processes are considered. These processes require contact
mechanics to accurately model the specific processes. To overcome this shortcoming,
another optimisation environment is motivated and presented in the following. Part II:
Industrial challenges will therefore take a closer look at optimisation of damage within
selected forming processes.



Part II:
Industrial challenges





Chapter 8

Optimisation of forming processes

This chapter gives a brief introduction and motivation for the undertaken optimi-
sation of industrial forming processes. Compared to the problems solved with
AOPS, the boundary conditions, i.e. contact mechanics, within these industrial
applications require an alternative methodology to perform mathematical optimi-
sation, i.e. IOPS. Forming processes are discussed and the necessary background
regarding the specific processes, which are considered in this thesis, is outlined.
Finally, possible approaches to optimise forming processes are presented. The
advantages and disadvantages are highlighted and the final choice is motivated.

8.1 Collaborative research centre TRR188

In the previous Part I of this work, an approach was described which enables the efficient
numerical (shape) optimisation of structures, such that the damage accumulation under the
same load is reduced in the optimised structure. Utilisation of analytically derived gradients
enables an efficient implementation in the numerical framework and, with gradient-based
optimisation methods, a swift generation of new structures. This method was applied
in the presented framework AOPS. However, this derivation of gradients by means of
analytical methods is a significant challenge. This increases further when multiple material
models are considered and the additional complexity of forming processes is added. The
variational approach could swiftly and efficiently handle the presented academic problems.
However, forming processes represent a more difficult challenge, due to the increasing
numerical complexity of the simulations. To resolve this issue the additional framework
IOPS is created, which enables optimisation of forming processes.

One critical factor to consider in the modelling and simulation of forming processes
is the inherent requirement of contact mechanics, i.e. the interaction of two or more
separate bodies within the finite element (FE) environment [235]. While contact mechanics
is an established field in conventional FE environments, their efficient implementation
and hence its robustness are not straightforward to handle in non-commercial code [237].
Additionally, contact mechanics introduce a strict discontinuity into the mathematical
description, making the derivation of analytical gradients more challenging [132, 136, 217].

The requirement of simulating and optimising forming processes is motivated by the
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funding of the research presented within this thesis. The investigations were conducted as
project C05 within TRR188, a collaborative research centre (CRC) funded by the DFG
(Deutsche Forschungsgemeinschaft) [224]. TRR188 is structured such that different fields
of research, i.e. process technology, characterisation and modelling, conduct their own
principal investigations while simultaneously cooperating in their work and supporting
other projects with their results. The aim is to improve the knowledge regarding damage
in forming processes by combining the investigations in these three fields of research.
Consequently, as the modelling project of area C which conducts numerical optimisations,
project C05 had to directly take forming processes into consideration.

Due to time constraints and the desire to cooperate with other projects within TRR188,
the choice was made to follow a different approach, i.e. AOPSis exchanged for IOPS,
when trying to optimise forming processes. Instead of deriving the gradients of a chosen
material model by means of analytical sensitivity analysis, a more hands-on approach is
chosen. While a derivation of analytical gradients for the discontinuous contact problem
is possible, e.g. by means of a subgradient method [182], weak derivatives [72], or using
stochastic modelling [53], these methods are not applied here. A general overview regarding
optimisation of nonsmooth problems can be found in [113]. The alternative choice of
optimisation chosen in this thesis enables the mutual pursuit of the academic challenges
presented in Part I of this work, as well as providing the possibility of directly optimising
the forming process researched within TRR188.

8.2 Introduction to forming processes

This section briefly introduces the reader of this thesis to certain forming processes in
general. According to DIN 8580 [64], manufacturing processes are categorised into six
groups:

1. shaping (e.g. casting),

2. forming (e.g. bending, extrusion),

3. subtractive manufacturing (e.g. milling, machining),

4. additive manufacturing (e.g. welding, 3d-printing),

5. coating,

6. heat treatment.

Forming processes themselves can further be categorised into different subgroups. One
such categorisation is achieved by the choice of the dimension of the manufactured part.
In bulk metal forming like extrusion or swagging a thick-walled structure is reshaped.
In contrast, sheet metal forming like bending, deep-drawing and rolling utilise or create
thin-walled structures. Another categorisation aims to differentiate between the working
temperatures. The three fields are defined as cold forging at room temperature, warm
forming below the recrystallisation temperature and hot forging above the recrystallisation
temperature. One specific highlight is the benefit of work hardening which occurs during
cold forging. The induced plastic deformation below the recrystallisation temperature
leads to an increased density of dislocations and therefore increased stiffness. Under certain
circumstances this can be exploited to improve the quality of the formed part [45, 176].
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In subtractive manufacturing process, like machining for example, the component is
created by the controlled removal of material from an initial larger piece. Therefore, only
a certain percentage of the total material is used to create a desired part. In contrast,
forming processes utilise 100 % of the material during production. Consequently, in the
current environment where reduction of waste in material and energy is a crucial objective,
the prospects of efficient forming processes are more important than ever. In addition
to the efficient utilisation of the material, certain beneficial aspects of forming processes
can be exploited. Since the material within a part is only readjusted, the microscopic
fibres of the material are not cut, as done in machining for example, leading to a better
texture of the metal and the resulting internal stresses can be capitalised on for the
intended application. The important processes in this thesis are the bulk forming process
of extrusion and the two sheet forming processes of bending and deep-drawing which are
briefly described in the following.

Figure 8.1: The three forming processes of interest in this thesis. a) Free air bending,
b) full forward rod extrusion and c) stretch indenting.

Extrusion. The specific extrusion processes of interest in this thesis are full forward
rod extrusion and the more complex adaptation of forward hollow extrusion. The former
is depicted and annotated in Fig. 8.1b). In this type of forming process, a cylindrical
workpiece is reduced from initial cross-section area 𝐴0 to final cross-section area 𝐴1. Since
this is a cold forging process, it is undertaken at room temperature. However, due to the
large plastic deformations, high changes in temperature arise during forming. This has to
be taken into account in the numerical simulations. Due to the rotational symmetry of the
process, 2d simulations are possible by exploiting said symmetry. The deformation during
forming is achieved by pressing a punch into the die, which in turn pushes the workpiece
through the conical forming area of the die. During this transition in geometry, the plastic
deformation occurs. After this plastic deformation, and exit of the die, a steady-state can
be assumed in the formed lower section of the extrudate. These processes allow creation
of a multitude of important components, such as shafts, bolts, nuts, screws and many
more, and therefore is an important forming process to consider regarding optimisation.

The significant process parameters which characterise the process are the shoulder
opening angle 2𝛼, which guides the material towards its final diameter 𝐴1, and the
extrusion strain 𝜀ex given by

𝜀ex = ln

(︂
𝐴0

𝐴1

)︂
. (8.1)
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In the case of full forward rod extrusion, given by the initial diameter 𝑑0 and final diameter
𝑑1 of the workpiece, the above equation can be rewritten as

𝜀ex = 2 ln

(︂
𝑑0
𝑑1

)︂
= 2 ln

(︂
𝑟0
𝑟1

)︂
. (8.2)

Application of the same methodology, and including the initial diameter 𝑑m of the mandrel,
the extrusion strain for the forward hollow extrusion process reads

𝜀ex = ln

(︂
𝑑20 − 𝑑2m
𝑑21 − 𝑑2m

)︂
= ln

(︂
𝑟20 − 𝑟2m
𝑟21 − 𝑟2m

)︂
. (8.3)

In order to quantify the damage state in an analysed extrusion process, if damage
models are not included in the simulation, the well-known stress triaxiality 𝜂 is used. It is
defined as the fraction between the hydrostatic stress 𝜎h and the von Mises equivalent
stresses 𝜎vM, i.e.

𝜂 =
𝜎h

𝜎vM
. (8.4)

By definition, a positive stress triaxiality coincides with a tension dominated stress state,
while a negative stress triaxiality coincides with a compression dominated stress state. A
tensile stress state favours damage accumulation, while a compressive stress state shows
less damage accumulation. As a result, a negative stress triaxiality is favourable regarding
mitigation of damage accumulation. The compressive stresses lead to a closure of the
micro defects during forming and negate additional damage evolution during the forming
process [94]. Since ductile damage only evolves during the plastic forming section of the
extrusion process, lasting from 𝑡0 to 𝑡end, the quantifiable measure

𝜂mean =

� 𝑡end

𝑡0
𝜂(𝜀p(𝑡)) 𝜀p(𝑡)d𝑡� 𝑡end

𝑡0
𝜀p(𝑡)d𝑡

(8.5)

is defined. It takes into account the state-dependent load path and triaxiality values of a
material point over the course of forming. In (8.5) 𝜀p denotes the equivalent plastic strain
as calculated by the material model for the evaluated material point and 𝜀p is the time
increment. The mean triaxiality measure 𝜂mean therefore only considers effects caused by
plastic deformation and is commonly used to characterise non-proportional load paths by
a single scalar value, cf. [47].

Regarding damage in extrusion processes, [221] showed that certain process parameters
have significant impact on the resulting damage in an extruded part. Increasing the
extrusion strain yields lower triaxiality values, which coincides with a higher compressive
stress state in the forming zone. This results in void closure and therefore reduction of
damage. While not as significant, a decrease in shoulder opening angle and friction also
reduce damage accumulation [111]. Fatigue tests and the Charpy impact energy were
used to quantify the simulated results with experimental data. Furthermore, utilisation of
scanning electron microscopy (SEM) together with energy dispersive X-ray spectroscope
(EDX) measurements in [109, 110] enabled quantification of the accumulated damage on
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the microscale, and hence further validation of these results. In [90] the damage behaviour
in an extruded part was further enhanced without adjustments to the geometry of the
formed part. By applying counterpressure to the bottom of the extruded material in
varying strength, the triaxiality value in simulations could be drastically reduced. No
further changes to the remaining process parameters were required. Examination with
SEM measurements of corresponding formed parts showed a significant reduction in pore
size and density, confirming the simulated data. For more general information on rod
extrusion processes, cf. [135, 139].

Bending. In this work, the well-known process of free air bending, and its adapted form
of elastomer bending, are considered for optimisation. The former is depicted in Fig. 8.1a).
This relatively simple sheet metal forming process consists of a plate of sheet metal which
is placed on top of a sheet holder and then pressed down by the punch. No additional
pieces are utilised to keep the sheet in place and only friction between sheet and punch, as
well as between the sheet holder and the sheet restrict lateral sheet movement. In similar
process variations, such as V-die bending, the sheet metal bottoms out during the process,
wherein the punch then presses the sheet into the die. In free air bending, the resulting
bending angle in the sheet at the end of the forming process is defined by the punch and
die geometry, as well as the amount of displacement prescribed onto the punch. Due to its
simplicity, the products of this process are also very straightforward in nature, such as V-
or U-profiles.

The process parameters of note in this process are the width between the two sheet hold-
ers 𝑤, the thickness of the plate 𝑡 and the radius of the punch and die 𝑟p and 𝑟d, respectively.
The adapted process of elastomer bending, cf. [193, 221], places an elastomer cushion
below the sheet. During the forming process the sheet is pressed into this cushion, which
leads to reactive compressive pressure onto the bending area of the sheet. Since this area
is most critical regarding damage accumulation, cf. [2, 160, 161], a superposition of these
compressive stresses enables a closure of voids within the micro structure and therefore
improves the damage state of the formed sheet. Hence, similarly to the previous analysis
of damage in extrusion, the stress triaxiality 𝜂 is also a very good indicator for damage in
bending, if no damage modelling is performed during simulations. Due to the high tensile
stresses in the outer fibre of the bending area, void growth is intensified there as well. This
coincides with a high stress triaxiality, cf. [221]. Superposition of the compressive stresses
leads to a reduction in triaxiality. For more information on bending processes, cf. [135, 138].

Deep-drawing. The forming process of stretch indenting or cupping is considered in this
thesis, see Fig. 8.1c). Similarly to typical deep-drawing, a sheet metal is held fixed between
a die and part holder. The latter puts pressure onto the sheet and therefore restricts
material flow throughout forming. By lowering the punch into the die and therefore
pushing down onto the sheet, the metal takes on the shape of the die. Additional control
over the material flow is achieved by the drawbead, which is part of the process and
situated on the die. This drawbead restricts the material flow of the sheet metal, which in
turn leads to a decrease in material thickness at the bottom of the drawn sheet. Typical
products of this process are cups and similar structures.

An important process parameter in deep-drawing processes is the pressure between
workpiece and the tools, i.e. the part holder force. If these forces are too high, the material
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flow is restricted too much which leads to cracks. If they are too low, flange winkling
will occur. Additionally, specifically for stretch indenting here, the drawbead geometries
impact this behaviour as well. Furthermore, the specific geometries of die and punch are
important. The transition radii 𝑟p and 𝑟d govern the material flow at the edges, while the
combination of diameters 𝑑p and 𝑑d describe the geometry of the formed sheet. Additional
material information often considered in deep-drawing are so-called form limiting curves
(FLC), cf. [118]. They describe the formability of the respective sheet material used, and
allows the engineer to prevent cracks due to high tensile stresses during forming.

Regarding damage in deep-drawing, the main factors are the die radius and the number
of steps to complete the whole forming process. The part holder force does not seem
have a significant impact on the damage behaviour. An increase in die radius adjusts
the load path in the outer flange, which positively affects the tensile stress state and
therefore damage evolution [164, 166, 172]. Production of the same part by using a
single-step or multi-step process can vary significantly, depending on the type chosen. A
simple multi-step approach has a negative impact on damage evolution, while reverse
deep-drawing improves damage behaviour compared to the single-step process [165, 166,
171]. Depending on the type of part which is created within the deep-drawing process, the
significant impact of these parameters differs, but the overall resulting conclusions remain.

In this work, the focus is only set onto the geometry of the drawbead to adjust damage
behaviour, which simplifies the optimisation. Furthermore, the choice to optimise stretch
indenting, instead of typical deep-drawing, is due to the reduction in simulation cost. The
non-symmetrical deep-drawing process analysed within TRR188 could only be resolved in
a 3d-setting, which significantly increased computational effort. To enable optimisation,
the choice of a 2d-problem with stretch indenting was chosen instead, reducing the compu-
tational effort and hence enabling optimisation. For more information on deep drawing
and related processes, cf. [135, 138].

Regarding failure in forming processes, the fundamental configuration of the parameters
for their respective process are generally recognised. Therefore, prevention of chevron
cracks in extrusion, cracks within the bending area for free air bending or the prevention of
cup base fracture in deep-drawing, see Fig. 8.2, is well understood. However, the leading
cause for these macroscopic failure incidents is the accumulation of local, microscopic
damage due to the nucleation of voids during forming.

While the criteria to prevent failure are mostly known, their application generally do
not consider damage. A better understanding of damage in forming allows improvements
on safety margins and better utilisation of the material. This knowledge of how to prevent
damage within a given forming process, by altering certain parameters and not changing
the final geometry of the part, are still not fully understood. Herein, the concept of
numerical optimisation is very beneficial, as it allows the automatic generation of these
parameter sets and thereby damage tolerant formed parts.
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Figure 8.2: Failure in forming due to high accumulation of ductile damage: a) Cracks in
the bending area [212], b) Chevron cracks in rod extrusion [211] and c) cup base fracture in
deep-drawing [10].

8.3 Choice of optimisation approach

Optimisation of forming processes can be conducted in multiple ways. Two approaches
are described in the following. An indirect optimisation and a direct optimisation.

Within the indirect optimisation, the considered process is not simulated as it would be
performed in experiments. Instead, certain assumptions are made to allow the performed
simulation to be reduced in its complexity. That is, the process is simplified such that it
can be modelled and simulated more easily, e.g. by applying boundary conditions such
that contact mechanics can be neglected. The mathematical optimisation is consequently
applied to the function that arises from this simplified modelling approach. Hence, the
optimisation problem can only indirectly optimise the reference process due these applied
simplifications.

The direct optimisation aims to model the forming process with as few simplifications as
possible, aiming to closely capture an experimental setup. That is, contact mechanics for
example are considered and only simplifications such as symmetry or simplified material
models are employed. The boundary conditions are applied according to experimental
setups. Hence, the optimisation problem, i.e. objective and constraints, includes pro-
cess parameters, which directly influence their process simulation and not a simplified
replacement model. Therefore, the reference process can be optimised directly.

However, the field of numerical optimisation of forming processes in literature itself
is difficult to navigate. Often the term "optimisation" is used to describe a general
improvement of a considered forming process in a classical engineering sense. That is,
no numerical optimisation is explicitly applied. Instead, a process is either improved by
experimental data, see e.g. [43, 93], with the approach often called design of experiments
(DOE), or initially simulated and afterwards the optimal set of parameters verified with
experiments, see e.g. [13, 119]. Sometimes, the experiments are omitted and only
simulations computed, see e.g. [75]. In all these cases, the problem is not necessarily
described by a mathematical function. Rather, a single or multiple key performance
factors, such as punch loads, wall thicknesses, sheet springback, bending angle and more,
are manually analysed. While theoretically these types of approaches can be summarised
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as optimisations with a grid-search method, depending on the choice of sampling points,
it will not be included under the possible approaches discussed and considered for the
problems at hand. Nonetheless, numerical optimisation, as understood in this thesis, finds
application in the field of forming processes.

8.3.1 Indirect optimisation

A beneficial approach to optimise complex processes is to simplify said complexity down
to a minimum, while still considering the key deformations and process properties. This
simplified modelling approach, which for example aims to exclude contact mechanics,
can in turn be used within standard optimisation environments. Consequently, since the
process is not depicted in its actual setting, only an indirect optimisation of the considered
process can be performed. For the forming process of free air bending for example, such
a simplification is depicted in Fig. 8.3. Instead of simulating three parts, i.e. the sheet,
the die and the punch, and therefore requiring contact mechanics between those parts,
only the sheet is modelled. The boundary conditions have to be changed accordingly.
One model aims to simulate the process in an inverse manner, clamping the centre of
the plate and applying the load on the outer edge. This central punch is replaced by a
fixed deformation, which is then applied to the outer edges where the sheet would be in
contact with the die, see Fig. 8.3b). The other model exchanges the right part of the die
with a fixed bearing and fixes the horizontal displacements on the symmetry axis. The
load is applied by a prescribed force or displacement in exchange for the punch, see Fig.
8.3c). This approach is commonly utilised in topology optimisation to simplify three point
bending processes, cf. [83, 157, 184].

Figure 8.3: Simplification of a bending process. a) The simulation of free air bending
(exploiting symmetry), b) and c) the simplified models without contact mechanics. In red
the applied displacements.

For simple processes, such as bending, this is straightforward. Model reduction for other
forming processes would be more complex, or nigh impossible. Extrusion processes for
example are heavily governed by the shape of the extrusion die and thus the resulting
contact forces. Therefore, removing this geometry from the simulations and aiming to
replace them with fixed boundary conditions, either of Dirichlet or Neumann type, will
lead to even larger inaccuracies. While simplification example for bending will introduce
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slight variations when compared to the accurate simulation, the simplification of extrusion
will lead to significantly higher deviations when compared to an accurate model. In
addition, friction is completely omitted in such an approach. However, its property might
be a relevant process parameter to consider since lubrication is an important aspect
in many forming processes. While simulations like these are possible, enhancing this
concept further to include optimisation leads to additional difficulties. Since this modelling
approach requires application of loads to replace the contact mechanics, it is therefore
only possible to alter these external loads and boundary conditions to yield changes in
the forming process throughout the optimisation. This further limits the scope of an
applied optimisation as the actual forming process and its parameters cannot be accurately
optimised.

In such a case, it is more beneficial to utilise load paths from a process and apply
these to representative volume elements (RVE), which depict the microstructure of the
considered material. Based on the RVE and the load path, both can be optimised to
generate optimal micro structures or optimal load paths for the process at hand. However,
after optimisation, a link between optimal result and the forming process has to be
re-established in order to apply the optimised results to the forming process itself. Therein
lies an additional challenge, as an optimised solution not necessarily allows to be generated
by the considered forming process. These limitations can be included with constraints into
the original optimisation, but this requires a deep understanding of the process. In [61, 62]
this is realised for example. Topology optimisation is applied to sheets for deep-drawing by
simplifying the forming process. Manufacturing constraints regarding wall thickness of the
sheet and prevention of undercuts are considered. The generated geometries with included
holes can be formed in one step of deep-drawing. They result in light weight structures
wherein the holes are introduced into a geometry before forming which are optimised. Due
to considered constraints in the optimisation, these are able to withstand the forming
process. Since the holes are inserted into the flat sheet before forming, this circumvents the
complex adjustment of topologies for the formed sheets without the additional perforations.
However, they note that certain process parameters such as drawbead or punch geometries
have to be omitted in such an optimisation, because the simplification does not allow their
consideration.

Another approach in sheet metal forming to avoid contact mechanics is the inverse
approach, wherein the final and initial deformation are known beforehand, and the steps in
between are computed based on this knowledge, cf. [20, 59, 168]. These approaches allow
modelling of the considered process without contact, however require precise knowledge of
the boundary conditions which have to be applied.

Another approach to simplify a forming process, is to apply numerical optimisation to
analytical functions. That is, the processes or specific problems at hand are described
with simplified functions, based on analytical and geometrical properties. These are
subsequently minimised without the need for a FE simulation. In [88], the blank holder
force within deep-drawing is optimised by specifying it depending on variables, such as
the bending angle or other geometric variables of the process. The analytically derived
quantity which describes the process, is optimised with numerical optimisation, while
simultaneously subjecting it to constraints which prevent tearing and wrinkling.

A final alternative would be the use of surrogate models. These can allow quick
computations of complex forming processes and do not require computation of contact
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mechanics. One such approach, often used in the experimental field of optimisation of
forming processes is the response surface methodology (RSM), cf. [39, 104]. This approach
fits a polynomial over the conducted DOE with the process variables as inputs. The output
describes the desired objective of the optimisation which can be numerically optimised, cf.
[7, 67, 227, 231] for application in forming.

While these presented approaches are applicable, each have their drawbacks when
multiple different forming processes have to be considered simultaneously. Many of the
presented approaches require a deep understanding and long research while only considering
one forming process. However, in the context of TRR188, multiple forming processes
need to be considered and the derived approach has to be applicable for all respective
processes. Due to the complexity and the huge differences between these considered
processes, assumption regarding simplification and their indirect optimisation cannot be
directly transferred, leading to the next, direct optimisation approach described in the
following.

8.3.2 Direct optimisation

The direct approach aims to use a given forming process, which accurately models the
physical process, and optimises it directly. That is, the process parameters sp which
describe the process in question are the design variables s of the process and altered
during the iterative optimisation. In contrast to the previously described approach, i.e.
indirect optimisation, this allows direct adjustments of these parameters and therefore
the actual process. Consequently, strict control over certain production-specific constrains
that need to be considered is possible. In addition, since many different forming processes
are considered and optimised, the application of a direct optimisation method yields the
benefit to easily and swiftly exchange working simulation models. Furthermore, the main
application for this optimisation framework is the optimisation of damage within a given
process. This property can be optimised due to many different factors within a forming
process. These consist of geometric type, such as radii and die geometries, boundary
conditions, such as external forces or displacements, or the lubrication, i.e. the friction
parameter within the simulation. Therefore, the utilised optimisation framework requires
consideration of many different kinds of design variables simultaneously. Only restricting
itself to one type of optimisation, e.g. structural optimisation, is not feasible in this case.
Since the forming processes are directly optimised, the contact mechanics need to be
included in this approach as well. Therefore, an environment is required, which enables
simulation of contact problems. Consequently, the choice of solution strategy is very critical.
Since contact algorithms introduce a discontinuity into the mathematical formulation, the
application of sensitivity information due to numerical gradients is influenced. A general
application of gradient-based methods is therefore not advisable and slow gradient-free
methods need to be considered as well.

Additionally, this approach comes with other challenges that have to be considered,
and are addressed in the following chapter, see Chap. 9. Most importantly, the contact
mechanics require a robust framework which can handle the requirements, such as friction
effects and multi-body configurations. Additionally, simulation of the complete forming
process takes a lot of computational effort which, combined with the lengthy optimisation,
leads to very long computation times. Another problem that can occur is convergence
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problems within the FE simulations for atypical combinations of process parameters. The
optimisation algorithm can yield, or momentarily iterate into, parameter combinations
which can lead to unsuitable steps, which can prevent the FE simulation from converging.
This has to be considered in the algorithm. Either by throwing a high objective value in
this iteration spot, and therefore diverge the optimiser from this unsuitable location in
the design space, or using many starting guesses for the optimisation, to approach certain
design spaces from multiple angles and circumvent undesirable parameter combinations.

This application of direct optimisation is also applied in literature. In [121] for example,
deep-drawing is numerically optimised by optimising blank holder and drawbead forces.
They also mention the complications regarding quantification of sensitivity data for
problems with contact mechanics. In turn, they choose response surface methodology
to enable optimisation without gradient-based methods. Other applications of direct
optimisation applied to forming process are presented in e.g. [131, 133, 223].





Chapter 9

Optimisation using commercial software (Abaqus)

This chapter describes the developed optimisation framework IOPS using the
commercial finite element software Abaqus. The choice for this software is moti-
vated. The environment for IOPS is briefly described and files and nomenclature
listed, to ease the reader into the presented optimisation framework. IOPS
allows incorporation of already existing simulation models, therefore the neces-
sary adjustments for these is emphasised. Possible approaches to structure an
optimisation framework around Abaqus are outlined, highlighting the benefit
of the chosen approach ofr IOPS. Its general applicability is tested with some
benchmark examples.

9.1 Requirements for the computational environment

In this chapter the additional optimisation framework IOPS is described. It enables a gen-
eral optimisation of arbitrary problems, with the focus on forming processes. As motivated
in Chap. 8, a framework is required, which allows optimisation of forming processes, and
therefore optimisation of nonsmooth problems. Specifically, contact mechanics have to be
considered. While approaches exist, which circumvent the contact simulations, they were
discarded due to certain drawbacks, see Sect. 8.3. In the context of direct optimisation,
this puts two main constraints on the choice of commercial finite element (FE) software at
the core of the optimisation framework:

1. A robust implementation of contact mechanics and,

2. a framework which enables external access to modelling and simulation data.

The first requirement can be easily met in many different commercial software. Contact
mechanics are an established field in numerical continuum mechanics and therefore imple-
mented in many FE environments, e.g. Abaqus, Ansys, Comsol, FEAP and many more
[9, 56, 58, 220]. The second criteria is crucial to provide a gateway for the numerical
optimisation. In order to automatically generate a new design, the iterative data has to
be changed within the simulation without manually accessing it each time. Therefore, an
interface has to be provided by the software to enable automatic design changes.

113
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Based on these criteria, the decision was made to utilise the commercial software Abaqus
[58], around which the optimisation framework was structured. This software is specifically
chosen for three main reasons:

1. It is widely used within TRR188, see Sect. 8.1, allowing easy cooperation with
different projects and the exchange of simulation and material models,

2. it provides a robust implementation of contact mechanics and includes the material
models necessary for the simulation of the considered forming processes and,

3. it allows easy automation via scripting in Python and thereby a good basis for an
optimisation framework.

The concept of using commercial software to simulate forming processes and structuring
an optimisation framework around said commercial software has been discussed in literature
before. In [46] deep-drawing is simulated in Abaqus and optimised based on the simulated
results. Based on the geometrical description for the sheet deformation, a minimisation of
required applied forces is defined as the objective function. To reduce the computation
time, an inverse approach for the simulation is chosen. In [209] the springback for U- and
V-shaped bending geometries is optimised. Therein, using the Python interface, Abaqus
is coupled to an genetic optimisation algorithm written in Fortran. Recently in [106],
vaporizing foil actuator forming was optimised by using Abaqus as the solver. By defining
parameters which govern the pressure distribution as the design variables, optimal charge
setups could be generated to form the desired sheet shapes. The optimisation problem was
solved using Isight with a NSAGA-II algorithm. The optimised results were afterwards
validated in experiments.

Regarding optimisation with Abaqus outside the application of process optimisation, [197,
198] presented a framework around Abaqus to solve a number of parameter identification
(PI) problems. Since the framework only focuses on PI and, the design variables only
take material model parameters into account. These can either be altered in the Fortran
code of said utilised material models or directly in the input files of the simulations. The
general concept finds further application in other fields of research, cf. [6, 240, 243].

However, all these approaches only consider one type of problem at hand and therefore
do not necessarily allow application to other type of problems nor consideration of different
type of design variables simultaneously. This is however required for the problems of
interest in this work and have to be accounted for. IOPS therefore has a modular structure,
allowing the user to prescribe objectives and constraints freely. It is consequently designed
to take any Abaqus simulation model and enables optimisation of many different problems
without being constrained to one type of optimisation problem. Furthermore, many
different types of design variables can be chosen simultaneously.

Due to its modularity, adjustments outside the FE environment do not restrict themselves
to optimisation. In [30] for example, the Python scripts were used to simulate wear on
machining parts. Therein, the scripts are utilised to erase critical elements within a
sheet-bulk metal forming process due to wear on surfaces, resulting from steady friction
between the bodies in contact. The script detects critical elements in a post-processing
step and alters the surface of the tool for the next simulation model based on gathered
simulation data from the previous iteration.
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9.2 Optimisation framework

In this section, the optimisation framework using Abaqus is described in detail. Even
though the presented framework is derived to enable damage optimisation of forming
processes within TRR188, its structure does not limit itself to these kinds of problems.
The choice of design, objective and constrains is freely definable and up to the choice
made by the user. An additional benefit, in contrast to pure structural optimisation
(SO), is the multi-design optimisation possible in this environment. Multiple types of
problems can be optimised simultaneously since the modelling is provided within the FE
software. This enables SO together with other types of optimisations, e.g. boundary
conditions, simultaneously. For an overview regarding possible design variables, objectives
and constraints, see Table 9.1. These benefits are further discussed in the benchmark
examples in Sect. 9.3.

Table 9.1: An exemplary overview regarding possible optimisations with the described
optimisation framework.

optimisation type design variables examples

geometric control points (CAGD),
part dimensions,
nodal coordinates

X,p, 𝑟, 𝑤

parameter identification constitutive/material parameters m,𝐸,𝜈,𝜎y0

displacements displacements, strain u,ε
loads forces, stress 𝐹,σ
interactions/lubrication friction parameter 𝜇
load paths amplitude (boundary conditions) s

9.2.1 Commercial simulation software Abaqus

Abaqus [58] is a commercial FE software, able to compute many different FE problems.
However, in this thesis only the implicit solver Abaqus/Standard for the quasi-static
cases, and the explicit solver Abaqus/Explicit for dynamic problems with complex contact
interactions is taken into account. The software has many inbuilt material models. However,
users are able to provide additional material descriptions with user materials UMAT.
Initially, these had to be provided in Fortran, but nowadays C and C++ implementations
are also possible. The simulation call has to be adjusted accordingly, e.g. for user files
with the addition of "user=UMAT.for".Since Abaqus only provides displacements and
temperature fields, inclusion of nonlocal damage problems requires definition of user
elements UEL. However, these have significant drawbacks, such as loss of parallelisation,
contact mechanics, visualisation and more [230]. For nonlocal damage, [177] presented
a framework which exploits the heat equation and therefore the temperature field to
regularise damage. This allows utilisation of the previously lost features due to the user
element, while still incorporating nonlocal quantities.

To interact with the software, a user generally uses the provided graphical user interface
(GUI) of Abaqus/CAE. This interface allows a user to create, view and adjust simulation
models for a given problem. In addition, Abaqus/CAE is used to analyse the simulation
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data within Abaqus/Viewer. Most importantly regarding automatisation, Abaqus/CAE
can also be prompted to start without the GUI with the "noGUI" parameter. This enables
modification via scripting and therefore is a key aspect when considering application of
scripts within an optimisation framework. These prompts, similarly to running simulations,
can be achieved by command prompts within a command window.

A brief overview over important files and names regarding Abaqus are given, as they are
used within the next section to describe the implementation of the optimisation framework
in detail.
Abaqus model database.cae: This file contains all necessary information of the
simulation model. Generally, this file is accessed only through the GUI to apply changes
to the simulation model. From this model database the input file can be generated to run
the FE simulation. However, scripting with Python also enables changes to this type of
file and its stored data. This data can only be interpreted by using Abaqus/CAE.
Analysis input file.inp: The input file necessary to run simulations with the chosen
FE solver of Abaqus. The data is of plain text and therefore readable and hence directly
interpretable. Simulations can be run with only this file, without the original model data
base being required. This file is created by the model database and stores all necessary
data like the mesh, connectivities, boundary conditions, sets etc.
Abaqus replay file.rpy: The replay file captures all inputs a user performs while
interacting with Abaqus/CAE. The commands stored within this file are stored as plain
text Python prompts. Running this file within Abaqus/CAE will replay the inputs the
user made, including adjustments of view space and camera. Only the five most recent
files are automatically stored within the work directory. Since these files are not associated
with a specific model, but with a session, their content is either incomplete, or a file is
straight out automatically replaced.
Abaqus journal file.jnl: Similarly to the replay file, the journal file stores information
regarding model adjustments made by a user. This file is automatically saved together
with the model data base and therefore associated to this .cae. In contrast to the replay
file, not all inputs the user made are stored. For example, camera and view port changes
are not recorded. The main application for the journal file is the recreation of a model
due to unforeseen crashes of the software. Since the input in the journal file are stored in
plain text Python code, the content is very valuable when considering scripting within the
context of optimisation.
Output database.odb: The output database stores the simulation data for the computed
FE simulations. They get created during the simulation and updated after each converged
global iteration. Therefore, even if the complete simulation does not converge, iterative
data can still be accessed and analysed. The access can either be achieved within the GUI
or by loading the data with Python scripting. The latter access is very important, as it
allows the specific analysis of critical measurements for the optimisation. Both require
interpretation through Abaqus/CAE, similar to the .cae.
Part: Parts are components of a simulation model which are to be simulated. They are
defined individually and combined in the assembly. Material properties have to be chosen
and they have to be meshed with a desired element type. The boundary conditions have
to be applied to each considered part as well.
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Sketch: The model sketch is the Computer Aided Geometric Design (CAGD) model of
a created part. In addition to creating the part, it can be annotated with dimensions.
Changing these dimensions will adjust the model and therefore the part accordingly.
Partition: Partitions are areas within a sketch of a part, where it is separated into smaller
regions. The model is still of one piece from a numerics point of view. For example, use
of partitions allows application of different material properties at different locations of a
given part, e.g. changes in stiffness in a local material model, or changes to allow finer
meshes for important sections of a part. Furthermore, utilisation of partitions allows fine
adjustments regarding specific definition of sets.
Sets: Set are an assembly of nodes, elements or geometry, which the simulation software
can use to locally apply conditions or store data. Utilisation of sets allows specific definition
of areas where quantities shall be evaluated, or in the context of optimisation optimised
or constrained.

9.2.2 Optimisation process

The general optimisation sequence is specified in Fig. 9.1. To solve a defined mathematical
optimisation problem, the framework can either employ gradient-based strategies in the
Matlab function fmincon or the gradient-free method of fminsearch. The latter generally
results in overall better solutions at the added draw-back of a higher computational effort.
The choice is up to the user by selecting the desired method in the pre-processing step. For
the gradient-based optimisation, the function can apply different methods, e.g. Sequential
Quadratic Programming, the Interior-Point Method and more. For an overview and
further options, see the detailed documentation [156]. The gradients have to be computed
numerically, i.e. by means of the Finite Difference Method (FDM). This is due to the
necessity of contact formulations to accurately model forming processes, see Chap. 8.
With the choice of Abaqus [58] as the simulation software for the FE problems, it has to be
inserted into an optimisation procedure. For the specific chosen approach emphasised in
the following, these adjustments regarding incorporation of design changes are highlighted
in red within Fig. 9.1.

In turn, utilisation of numerical gradients has significant drawbacks within the application
of said contact algorithms. Since contact problems are inherently discontinuous, a numerical
gradient by means of the FDM will therefore be derived with significant errors. This topic
of noise within the application of the FDM is discussed in [174]. These gradients may
lead to insufficient or wrong search directions for the optimiser and in turn to bad or
out-right wrong solutions. While this may not always be the case, like in [97, 101], where
contact interactions were considered and still suitable results generated, it should be taken
into account when choosing an optimisation solver. Therefore, it is generally advisable to
use the gradient-free method for problems with many contact interactions, as they are
discussed in the following chapter.

The gradient-free method utilised in the Matlab function fminsearch is a Nelder-Mead
simplex, see Sect. 3.3.1. As was discussed, said algorithm can generally not handle
constraints. To treat constraints nonetheless, the penalty method is applied in two steps.
Constraints can be generalised into two groups. The first type of constraints is simulation
dependent, i.e. the FE simulation has to be conducted until they can be evaluated, e.g.
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Figure 9.1: Optimisation flow chart. In red, the use of Abaqus/CAE to update the model.

stresses, strains or damage variables. These constraints can be included by adapting the
evaluated objective function according to (3.7).

The second group of constraints are simulation independent and can be evaluated before
running the FE simulation. These types of constraints can be for example of geometric
type and evaluated beforehand without the need of simulation data. Since the objective
function is unknown at this point and therefore cannot be directly influenced, instead a
high function value, i.e. Inf, is returned. This forces the optimiser to treat the current
iteration as unsuitable and to try a different step for the current iteration. The approach
is taken from [57], which has been used in this framework.

If those constraints are fulfilled however, a new simulation model can be generated. This
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in turn creates a new input file, which is subsequently called to run the FE simulation.
After computing the new structural analysis with design variables 𝑠𝑘 of iteration 𝑘, the
objective function and additional, non-trivially evaluated constraints are computed. This
process is conducted until a predefined break threshold is met, which in turn means
convergence of the optimisation. Throughout the optimisation the data is stored for the
post-processing routine, see Fig. 9.2.

9.2.3 Optimisation framework with Abaqus

The main problem when dealing with optimisation utilising commercial software is the
choice of how a newly generated design is incorporated and adjusted within the underlying
simulation model. In this case, using the commercial FE software Abaqus [58], there are
multiple approaches when applying the numerical generated changes in design to the FE
model. The most straightforward, here denoted as the IPF approach, is adjusting the
necessary variables in the input files. These files are submitted to the FE solver to run
the job and generate the subsequent results. They can be used to change simple design
problems, e.g. forces and amplitudes like in [97, 101] or changing material parameters
to conduct PI, cf. [198]. Initially, this was the approach that was followed [95, 97, 101].
Altering the input file is easy to accomplish and does not require a lot of insight regarding
internal definitions within Abaqus, like how model data is stored and where to access it.
Additionally, this approach is easier to access, since the data which is adjusted is stored in
plain text format and therefore errors are easy to identify.

However, when dealing with geometric design optimisation, the process of altering
the design can become more complicated using this approach. The mesh outside the
Abaqus/CAE environment must either coincide with the original mesh or a mapping is
required to transfer the generated mesh by the optimiser to the mesh used in the FE
calculation itself, cf. [95]. The overall main drawback with this approach, i.e. changing
the design in the input file, is the required additional definition of said design outside of
the actual Abaqus/CAE model, which is prone to errors when more complex problems are
chosen to be optimised.

To enable optimisation of said more complex geometries, e.g. the geometry of an
extrusion die with variable radii, the framework must be able to handle the aforementioned
problematic design definitions. One approach, denoted as the RPY approach, could be to
use the Python commands which Abaqus saves in the journal and replay-files. While this
may solve the above problem, certain commands executed within the Abaqus/CAE GUI
are not executable outside the GUI. Consequently, these cannot be used when dealing with
the automated process of numerical optimisation. Furthermore, since these replay-files are
not necessarily manually kept track of and saved, they may get overwritten or deleted
when the GUI is closed and reopened. This is even more difficult due to the desired
cooperation with other projects of TRR188. As generally these files are not accounted for
by the user, they are generally not saved and stored for later use.

The final framework of this thesis instead is to directly change necessary parameters
within the model data base for the simulation, denoted as the MDB approach. Changes
within this database, and respectively newly generated input files, allow for an automated
framework for the applied numerical optimisation. While this approach is very effective,
it requires a certain understanding of how the model database is structured and how to
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change certain values within. For this purpose, the reader is directed to the thorough
documentation [58].

In theory, application of the MDB approach in IOPS allows for any kind of definition
for the choice of design variables within the optimisation framework, e.g. geometric design,
material parameters, amplitudes, boundary conditions, general simulation parameters
etc., and thereby depends on the chosen problem, see Table 9.1. In order to change
these parameters, they have to be parametrised within the model to be changed later
on. For geometric process parameters for example, this is accomplished by defining
these parameters as dimensions of the model sketch, which can be changed by means of
Python scripting outside the GUI. The complete concept of this optimisation framework
is summarised in Fig. 9.2, stating the necessary software utilised in each respective step
explicitly. The pre-processing, described in Sect. 9.2.4, mainly requires the Abaqus/CAE
environment and Python coding, with initialisation of the optimisation problem in Matlab.
The optimisation, see Sect. 9.2.5, is called in Matlab which in return calls Abaqus and the
necessary Python scripts. The post-processing, see Sect. 9.2.6, revolves around storing the
iteration data and additional visualisation data in Matlab. The framework is structured
such that all necessary steps are applied in the pre-processing step. The optimisation can
subsequently be conducted without any further input from the user.

Pre-processing (Sect. 9.2.4)

• Abaqus/CAE

• Python

• Matlab

Optimisation (Sect. 9.2.5)

• Matlab

• Python
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Post-processing
(Sect. 9.2.6)

• Matlab
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Figure 9.2: General concept of the complete optimisation framework and the software
utilised within each step.
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9.2.4 Pre-processing

The flow chart for the pre-processing step is depicted in Fig. 9.3. Initially, the FE model
for the simulation has to be defined in Abaqus/CAE. In addition to the definition of
the general FE model, e.g. parts, mesh or boundary conditions, the underlying design
variables have to be parametrised such that they can be changed with dedicated Python
code. Additionally, sets have to be defined where the objective function and possible
constraints are evaluated. These sets coincide with FE nodes and elements, which in turn
store data like stress, strains or displacements. They can be of geometric, elemental or
nodal type and are used within the Python script to ensure the correct evaluation of
objective function and possible constraints. Even though the type of set can be chosen
arbitrarily, the choice of geometric type is advantageous since elemental and nodal sets
may no longer be valid if the mesh of their respective model part changes throughout the
optimisation. This can for example happen, if the thickness of a part changes, resulting
in a necessary remeshing of said part, which in return removes the elements or nodes
from a previously defined set. Choosing to define said geometry by means of a geometric
set still yields usable data even after remeshing, since it is not coupled to a fixed FE
mesh. For this purpose, partitions may be necessary to reduce the size of analysed data.
This however has the disadvantage that the user must ensure that the evaluated data
remains comparable, i.e. an element of the defined geometric set has the same respective
orientation/position in the part even after a change in geometry occurs.

After defining the sets, two Python scripts have to be created:

1. The first script is used to adjust the changes in the .cae model data base, wherein
the newly generated design variables are used as input variables. It is applied to the
Abaqus model database within the optimisation and is called before each simulation
during subsequent optimisation steps.

2. The second script is required to evaluate the data stored in the output database. It
evaluates the results, and outputs the data for the objective function and possible
constraints. It is called after each FE simulation.

The framework is set up in such a way that the problem can be defined modularly, i.e.
the required Python scripts can be defined for a variety of optimisation problems. This
way, the necessary Python scripts can be specified in the problem definition to incorporate
process-oriented output routines and model data base adjusting scripts. As a result, the
optimisation framework is not inherently restricted to geometric problems. Additionally,
it allows for specific inputs, if further prompts are necessary in a given simulation like
user fields or user materials. Finally, the Matlab problem is initialised by prescribing all
required data for the optimisation and the optimisation is initiated.

9.2.5 Remarks on the optimisation procedure

The overall optimisation framework was already discussed in Sect. 9.2.2, which follows the
flow diagram as depicted in Fig. 9.1. Of importance, with regards to the implementation
at hand, is the red coloured box. At that point during the optimisation the Python script
to change the design variables within the Abaqus model database is called. This only
occurs after the simulation independent constraints are fulfilled, see Sect. 9.2.2, ensuring
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Figure 9.3: Pre-processing flow chart of the optimisation framework.

creation of a valid simulation model. The second required Python script is called after
each FE simulation. The data created from this is subsequently used to evaluate the
objective function and additional, simulation dependent constraints. Certain variables
from these simulations, as defined by the user in the pre-processing steps, are also stored
for use in the post-processing step.

To easily analyse results and transfer data between Matlab and Python, the openly
accessible libraries NumPy [107] and SciPy [228] for Python are used. The former allows
structuring of matrices and vectors and enhances Python with additional mathematical
basics, while the latter is mainly used to store the evaluated data in .mat-files. These files
can be directly imported in Matlab without the need of reading .txt-files or similar data.
Similarly, the iterative results from Matlab are stored in .mat-files to be subsequently
loaded using SciPy to adjust Abaqus model data.

9.2.6 Post-processing

The post-processing utilises the evaluated data from the simulations to generate output
data to visualise each optimisation step. Therefore, iterative data like objective function
and constraints are saved for later use. Additionally, .vtk-files are generated within each
iteration step to visualise the geometric changes, as well as the changes of field and state
variables, for a prescribed process afterwards. The data to be stored has to be predefined
within the pre-processing step and needs to be evaluated in the corresponding Python
scripts. This steps uses the same routine as AOPS and allows visualisation with Paraview.
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9.3 Numerical examples

To present the applicability of the framework for forming processes and other types of
problems, some benchmark problems are presented. The process of free air bending is
chosen, as it is rather simple as far as forming processes are considered. The first example
is structured very simply to present some preliminary results. The second problems aims
to emphasise the possibilities by choosing many design variables of different type and
optimisation thereof.

9.3.1 Simulation model

The FE model for this simulation consists of three parts: a deformable sheet plate, a
punch which pushes into the sheet and, together with the die, bends the sheet into the
desired shape. Contact of master-slave type between punch and sheet, as well as die and
sheet are defined, with Coulomb friction and a coefficient of 𝜇 = 0.3. The punch and die
are modelled as rigid bodies. Hence, only the sheet is assumed to be deformable, with
the material parameters for DP800 being provided by IUL, TU Dortmund University and
taken from tensile tests for the chosen material. An elasto-plastic material model is used
to simulate the material behaviour of the sheet. A 2d case is assumed, resulting in a plane
strain case for the simulation. Exploiting symmetry conditions allows modelling of only
half of the complete process, see Fig. D.2, using 2504 elements of type CPE4 to model the
sheet. The mesh is not uniform, instead it is meshed finer at the centre where contact
mechanics are crucial and coarser towards the right boundary. The width between the two
sheet holders of the die is equal to 𝑤 = 24mm with the metal sheet having a thickness
of 𝑡 = 1.2mm. The punch is pressed into the sheet until a prescribed displacement of
𝑢punch = 5mm is achieved. The punch as well as the die have a radius of 𝑟p = 𝑟d = 1mm.

Figure 9.4: Sketch of the simulation for the bending optimisations. By exploiting the
symmetry of the process, the dashed part is not modelled.
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9.3.2 Optimisation of deformation loads in bending

For the first optimisation problem, the bending process is to be recreated from no prior
knowledge on how much the punch is displaced. Hence, the optimisation problem reads

minimise
𝑠l≤𝑠≤𝑠u

Jb = ‖u(𝑠)− upre‖2, (9.1)

with the design variable is only the punch displacement, i.e. 𝑠 = 𝑢punch. The objective of
the optimisation is to recreate a deformation which is prescribed a priori. This displacement
field is taken from a simulation with the same boundary conditions as described in Sect.
9.3.1 and compared to the results from the simulations in each optimisation step. Only
the surface nodes of the sheet are taken into account; the inner mesh is not considered.
Since the prescribed deformation is created with the same model, in theory the optimiser
should be able to find the exact solution for 𝑢punch which yields u = upre.

Figure 9.5: a) The initial (red) and optimal or prescribed (black) deformed sheets for both
solution strategies. b) The objective over iterations.

The problem is solved with the gradient-based optimiser fmincon and the gradient-free
fminsearch. The gradients for the gradient-based solver are provided by means of the
FDM, see Sect. 3.4.1. Since the contact interactions in this forming process are not as
pronounced as for example in extrusion, the gradient-based methodology is able to yield
a converging solution. The results are depicted in Fig. 9.5. The initial guess for both
optimisation problem is set to 𝑢punch,init = 0.01mm, resulting in the initial red, almost flat
sheet in Fig. 9.5. Both solution strategies are able to almost exactly reproduce the result,
i.e. 𝑢fmc

punch,opt = 4.999mm and 𝑢fms
punch,opt = 5.001mm, where the difference stems from the

choice of the break threshold. As expected, both results almost coincide with the black
prescribed mesh. Therefore, no difference in the mesh can be observed and therefore only
the black prescribed mesh is depicted in the figure. Most notably, the gradient-free method
finds a solution in fewer iterations, even though gradients for a nonsmooth problem are
considered, see Fig. 9.5b).
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9.3.3 Optimisation of springback in bending

A well-known effect in bending is the elastic springback due to the elastic relaxation of
the sheet, which happens when it is unloaded by retracting the punch. Due to plastic
deformation during bending, the resulting plastic strains yield the final deformation after
unloading. However, this does not coincide with the total deformation at maximum
displacement 𝑢punch during the bending procedure. Hence, the optimisation problem in
this exemplary benchmark aims to consider the springback property and optimise the
forming simulation, such that the final deformation after unloading is predicted.

The new optimisation problem reads

minimise
sl≤s≤su

Jsb = ‖uun(s)− upre‖2, (9.2)

where the prescribed deformations are the same as in the previous section, i.e. before
unloading. The deformation uun, which are compared to the deformation of the surface
nodes, after the punch is retracted, i.e. the deformation in the sheet is only due to
prior plastic deformation. The design variables in this problem now consider geometric
parameters of the punch radius 𝑟p and half die width 𝑤h, the boundary condition for the
prescribed punch displacement 𝑢punch, and the friction parameter 𝜇. Therefore, the set
of design variables reads s = {𝑟p,𝑤h,𝑢punch,𝜇}. In contrast to the previous problem, here
the set of parameters which can create this deformation is not known, hence an exact
recreation of the deformation field is not guaranteed.

Table 9.2: Overview of the springback optimisation.

s sl su initial optimum optimum optimum optimum
fmincon fminsearch fmincon fminsearch

weighted weighted

𝑟p/mm 0.5 3 1 2.6154 1.1169 1.9167 2.9980
𝑤h/mm 8 20 12 12.0244 12.0201 12.2336 12.2276
𝑢punch/mm 4 8 5 6.2579 6.2685 6.1807 6.1724
𝜇 0.05 0.6 0.3 0.2185 0.2587 0.0661 0.3379

The initial shape of the sheet after unloading, and hence the differences due to the
springback, is depicted in Fig. 9.6a). The black portion of the mesh therein depicts the
prescribed deformation of the sheet, which is the result of the forming process without
unloading and identical to the previous section. An overview regarding the design variables,
their bounds, initial and optimal values are summarised in Table 9.2. The solution to
the optimisation problem described in (9.2) is depicted in Fig. 9.7a). The optimiser is
able to fit the mesh remarkably well. The sheet after unloading almost coincides with the
prescribed deformation. However, a small difference of about the height of 1 element still
is visible for both optimisation strategies at the left-most edge of the sheet. As expected,
the punch has to be displaced more to achieve this result. However, the other process
parameters seem to not affect the outcome significantly more, as both solution strategies
yield quite a variance in results. For example, the gradient-based solution for the punch
geometry more than doubles the radius, while the gradient-free solution only sees a small
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increase. Both solutions however slightly increase the die width.

Figure 9.6: a) The initial deformed sheet after unloading in red and and the prescribed
deformed sheet before unloading in black. b) The objective over iterations for both solution
strategies and both objectives.

Figure 9.7: a) The optimal state after unloading for the springback optimisation. b) The
adjusted problem with the weighted deformation data. The prescribed deformation in black.
In red, the solution from fmincon; in blue the solution from fminsearch.

A drawback of this optimisation problem however, is that all nodes are equally weighted.
Due to the lever length, small adjustments for the design variables have a higher impact
on the mesh on the right side of the sheet. Therefore, the fit there almost matches the
prescribed deformation exactly. However, an accurate match for the central part might be
more desired. For this reason optimisation problem (9.2) is slightly adjusted by weighting
the difference of the displacement data for all nodes on the left side of the die by a factor
of 10. This weighted and adjusted optimisation problem aims to improve the matching of
deformation in the centre of the sheet, knowing that the agreement towards the right edge
will drop significantly. The results for this optimisation are depicted in Fig. 9.7b) and
shows that a better agreement can be found as desired, but with the expected drawback.
The latter can be also observed in the iterative graph, see Fig. 9.6b), as the objective
value is 100 times higher than the previous result due to the added weights for the left
side and hence divergence on the right side of the sheet. To reach this adjusted result, the
punch displacement is slightly reduced and the die width slightly increased, see Fig. 9.2.
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To further enhance this optimisation problem, one could for example add further
parameters such as the die radius or additional forces which could then stand-in for
additional work tools. But since this only aims to present an example for the application of
the presented optimisation framework, this not further pursued. Nonetheless, the data and
results show the applicability of this framework to complex problems with a wide degree
of different design variables. Furthermore, gradient-based methods can be applicable if the
underlying contact interactions are not severely impacting numerically derived gradients.





Chapter 10

Damage controlled forming processes

In this chapter, results of damage controlled process optimisation for three different
forming processes are presented. The results are generated by the optimisation
framework IOPS described in Chap. 9. To initially validate the accuracy of
the applied optimisation framework, it is applied to full forward rod extrusion
and the results compared to ones gathered by normal engineering methods of
optimisation. Afterwards, forward hollow extrusion is optimised with two, in
complexity increasing, optimisation problems. In bending, an optimal setup for
the cushion in elastomer bending is generated by means of a shape optimisation
approach. The last forming process optimised is stretch indenting. The process is
adjusted by changing the drawbead dimensions. Based on a multitude of initial
guesses and subsequent optimisations with two different optimisation problems,
a general conclusion regarding the drawbead geometry is drawn.

10.1 Numerical damage optimisation applied to forming

In Chap. 9, a framework for the general optimisation of problems with the commercial
software Abaqus has been presented. Its creation is motivated by the necessity of optimising
problems with contact mechanics. While the framework itself is not limited to such
problems, see Sect. 9.3, its main application is the field of forming processes.

Engineering type analysis, i.e. parameter study, of forming processes with respect
to their damage behaviour is very time intensive. The chosen process parameters have
to be manually defined and the simulations adapted accordingly, cf. [111, 161, 172].
Applying numerical optimisation allows the automatic generation of process parameters
sets, without further input beyond the setup of the optimisation. In addition, the choice of
the analysed process parameter sets is always subjected to some form of bias, such as for
example choosing sets governed by experimental setups available at the institute where the
experiments are conducted. Utilising numerical optimisation might allow a combination
of parameter sets, which might not be intuitively analysed in this typical approach [102].

As discussed in Chap. 8, many different approaches to optimise or improve processes
by standard engineering approaches exist in literature. Therefore, to the authors best
knowledge, the central aim of this contribution, i.e. the direct optimisation of different
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industrial processes regarding their damage behaviour, has not been thoroughly conducted
in literature. Direct minimisation of damage in forming processes is a very complex and
computational expensive task. Therefore, damage optimisation in forming is sparsely
researched. Specifically, numerical optimisation of extrusion processes has only been rarely
considered in literature, mainly due to the specific complexity of the forming process.
Nonetheless, numerical damage optimisation for forming processes is considered in some
publications.

The most computational taxing approach is to utilise damage modelling to predict the
damage behaviour, done for example in [68, 82], which directly or implicitly influence
the chosen objective function of the optimisation. Application of numerical optimisation
subsequently allows automatic generation of parameter sets which create the desired
part with reduced simulated damage. Due to this high computational cost, alternative
approaches utilise other measurements to quantify damage and therefore can reduce the
modelling cost of the simulation. In [26, 40] for example, the thickness of the sheet
material in both processes is chosen as the quantification of damage, or rather failure
prevention. Prior experimental investigations, and subsequent modelling of the process,
allowed quantifying a threshold variable. Definition of an objective function, allows
generating process parameters, which ensure manufacturing of the parts within save
margins. A final approach sees the combination of accurate modelling of damage with
a meta-models, which are subsequently optimised like in [11, 163]. While this allows
optimisation of damage in forming processes, this is not the desired methodology, as was
discussed in Sect. 8.3.

In this chapter, the first two approaches are applied. The stress-triaxiality 𝜂, see (8.4),
is used to interpret the damage state in a given process, when accurate damage modelling
is not utilised. This has proven applicable for the respective problems, see [109, 110, 145,
160]. The damage state is indirectly adjusted by minimising the triaxiality or incorporating
it as constraint within the optimisation problem. A reduction in triaxiality value leads
to a more compressive dominated stress-state, which is understood to reduce ductile
damage accumulation. In addition, a damage model is implemented and the process
optimised. The evolution and value of the damage variable can therefore be considered in
the optimisation.

Parts of the presented research on numerically optimised forming processes have already
been published in [102], for the optimisation of rod extrusion, and in [95, 97, 101] for the
different optimisations of bending processes.

10.2 Rod extrusion

In this section the results generated by the optimisation framework, described in the
previous chapter Chap. 9, are applied to rod extrusion processes and presented in the
following. After an overview regarding the simulation and optimisation model in Sect.
10.2.1, in Sect. 10.2.2 the results from the optimisation framework are compared to
research data from literature. This aims to validate the applicability of the framework to
bulk forming processes. Following the validation, in Sect. 10.2.3 the framework is used
to optimise the process of forward hollow extrusion with different stated optimisation
problems in order to generate optimal process parameter sets. Additional data, and a
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preliminary validation can be found in Appendix D.1. All solutions in this chapter are
generated using the gradient-free optimisation within fminsearch. The break threshold is
the same for all optimisation and the standard value, i.e. tolX = tolFun = 1× 10−4.

10.2.1 Simulation and optimisation setup

(a) Rod forward extrusion (b) Forward hollow extrusion

Figure 10.1: An illustration of the simulations conducted during the optimisation processes.
For each image respectively, the left part shows the initial configuration with the formed one
on the right.

The Abaqus model for this simulation was provided by Robin Gitschel from IUL, TU
Dortmund University and adapted for the application of the optimisation framework
as described in Chap. 9. The optimisation is applied to both processes of forward rod
extrusion and forward hollow extrusion in the following. Both processes are depicted
in Fig. 10.1. The process of forward rod extrusion consists of five relevant parameters
regarding the optimisation. These are the initial radius 𝑟0, the final radius 𝑟1, the shoulder
angle 2𝛼, the friction parameter 𝜇 and the transition radius 𝑟, as annotated in Fig. 10.1a).
The extrusion strain are computed from both radii, such that 𝜀ex = 𝜀ex(𝑟0,𝑟1), see (8.2).

The simulation within Abaqus itself consists of the workpiece and the die. The former
is modelled with 20330 linear four-noded thermo-mechanically coupled axisymmetric
elements (CAX4RHT). The elasto-plastic material behaviour and its flow curves at 20°C,
200°C and 400°C were obtained in upsetting tests of case hardening steel 16MnCrS5, to
model the plastic behaviour within the simulation accurately. The die is initially meshed
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with 3160 elements (CAX4RT). Since the geometry of the die changes throughout the
optimisation, the choice of mostly constant element size was made, such that the number of
elements within each optimisation step may vary and is not held constant. While this may
lead to small discontinuities in the objective function, no problems were observed while
using the gradient-free method. The load is applied as a prescribed deformation at the
top part of the workpiece. Contact between the die and the workpiece is of master-slave
type, with Coulomb friction, defined by the friction parameter 𝜇 between both parts.

Additionally, Fig. 10.1a) depicts the element location where the objective function
in Sect. 10.2.2 is evaluated. Its approximate position is denoted with 𝑥𝑖 in the initial
configuration and 𝑥𝑓 after the part is formed. This element has to fulfil certain conditions
to allow good comparison with the gathered results in [111]. On the one hand, it has
to lie on the central axis of the workpiece, as this area is the most critical regarding
damage accumulation. On the other hand, it is chosen such that it lies outside the forming
zone at process initiation, transverses the forming area and finally is located within the
steady-state region of the forming process after the simulation is finished. These areas of
the forming process are labelled in Fig. 10.1a) with the letters A, B and C, respectively.

The process of forward hollow extrusion extends the simulation with the addition of
a central mandrel, see Fig. 10.1b). As a result, the set of process parameters for this
process additionally includes the mandrel radius 𝑟m, in which case the extrusion strain
is a function of the three radii, i.e. 𝜀ex = 𝜀ex(𝑟0,𝑟1,𝑟m), see (8.3). The simulation model
itself is generated from the previous process. The mandrel is added as an additional part
within the simulation, using the same element type as for the die (CAX4RT). Contact
between the mandrel and the workpiece is applied in the same fashion as for the die
and the workpiece, i.e. master-slave contact with Coulomb friction. Application of the
displacement load at the top of the workpiece also has to be applied to the mandrel.
Similarly to the previous process, the number of elements within each part may change
throughout the optimisation when altering the design. Consequently, a change in mandrel
radius 𝑟m leads to subsequent changes to the inner radius of the workpiece. This in turn
leads to a remeshing of the parts, and with the aforementioned constant element size, a
change in number of elements. As a result, the problem with choice of sets, stated in Sect.
9.2.3, arises here. Therefore, a geometric set was defined within the workpiece. Within this
set, the element for the evaluation of the objective function was derived by sorting through
the respective elements, until the element in the lower-left corner of the set was found.
This element has to fulfil the previously stated conditions, i.e. it lies outside the forming
area initially, traverses it and is finally located in the steady-state region. However, due to
the additional mandrel, it no longer can lie on the central axis. Instead, it has to lie at
the most central point with respect to the symmetry axis. A graphical illustration for this
location is depicted in Fig. 10.1b). The initial location is denoted with 𝑥𝑖 and the final
formed location with 𝑥𝑓 . All important process parameters with respect to the following
optimisations are summarised in Table 10.1.

10.2.2 Optimisation of forward rod extrusion

In order to validate the optimisation framework, the resulting set of optimal process
parameters are compared to the existing research. To this extent, the first optimisation
problem is to optimise the forming process of forward rod extrusion. The design variables
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Table 10.1: Names and variables of the process parameters for their respective optimisations.

Forward rod extrusion

symbol variable name design variable

𝜀ex extrusion strain yes
2𝛼 shoulder angle yes
𝑟0 initial radius no
𝑟1 final radius no
𝑟 transition radius yes
𝜇 friction parameter yes

Forward hollow extrusion

symbol variable name design variable

𝜀ex extrusion strain yes
2𝛼 shoulder angle yes
𝑟0 initial radius no
𝑟1 final radius yes
𝑟m mandrel radius yes
𝑟 transition radius no
𝜇 friction parameter no

s for this validation encompass the complete set of process parameters of the simulated
process as stated in Sect. 10.2.1, i.e. s = {𝜀ex,2𝛼,𝑟,𝜇}. The optimisation problem solved
for this purpose thus reads

minimise
sl≤s≤su

Jre = 𝜂mean(s). (10.1)

The objective of this problem is to minimise the mean stress-triaxiality 𝜂mean, see (8.5), for
a specified element over the course of the complete simulation, wherein a lower mean stress
triaxiality coincides with lower damage accumulation, see Chap. 8. Since the extrusion
strain 𝜀ex is a function of the initial radius 𝑟0 and final radius 𝑟1, with the former remaining
constant, the change within the framework is achieved by changing the final radius of the
forming process. For better comparison however, the extrusion strain is chosen as a design
variable for the optimisation and subsequent comparison. A general overview of the

Table 10.2: Overview of the optimisation of full forward rod extrusion.

s sl su impact (𝛥𝜂mean) initial intermediate optimum
(k=0) (k=8) (k=93)

𝜀ex 0.3 1.5 high (↓) 0.7 1.279 1.496
2𝛼/∘ 30 150 medium (↑) 60 30.226 35.857
𝑟/mm 2 5 low (↓) 3 3.301 2.036
𝜇 0.04 0.06 very low (↓) 0.046 0.048 0.059

optimisation problem and its results are summarised in Table 10.2. Therein, the design
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Figure 10.2: The iteration process over the objective 𝜂mean for the validation of the
framework by optimising the process of full forward rod extrusion. The boxed in area shows
a zoomed-in depiction for the respective iterations with a rescaled y-axis.

variables s and the lower and upper bounds, sl and su, are listed. These values are chosen
to be in concordance with the analysed experiments in [111]. The fourth column shortly
summarises the results of the cited paper onto the analysed change in mean triaxiality
𝜂mean. Increasing the extrusion strain for example leads to a decreased mean triaxiality
value, denoted by the down-arrow. In contrast, an increase in the shoulder angle increases
the mean triaxiality, denoted by the up-arrow. Furthermore, the extrusion strain has a
"high" impact on the evaluated mean triaxiality, compared to e.g. the "medium" impact
of the shoulder angle, and thus leads to a bigger change in the objective value. The fifth
column lists the chosen initial values for the design variables. The optimal results are
shown in the last column. The optimised parameters show a good accordance with the
research data. The extrusion strain 𝜀ex and the friction parameter 𝜇 are maximised and the
shoulder angle 2𝛼 minimised, which lead to the lower mean triaxiality 𝜂mean

opt = −1.6852,
compared to the initial value of 𝜂mean

init = −0.393. Even though three parameters show
good accordance, the transition radius 𝑟 does not. While throughout the optimisation
the parameter increases, as depicted in the sixth column, the optimiser reduces it when
converging to the optimal solution. Comparing this to the cited research, it should instead
increase in value. However, since the general "low" impact this parameter has on the
objective value overall, the validation of the optimisation framework is deemed successful.
Most importantly, the optimiser initially changes the extrusion strain 𝜀ex and the shoulder
angle 2𝛼, as they are generally of most importance for this process when dealing with
minimised ductile damage accumulation in the formed workpiece. This is represented in
column six, depicting early iteration values of those parameters during the optimisation
procedure.

Additionally, the iteration process is depicted in Fig. 10.2. It shows the rapid change
in objective function due to the previously mentioned initial change of extrusion strain
and shoulder angle. However, since a gradient-free method is used to optimise the process,
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the optimisation takes a long time to converge even for such a small number of design
variables. This is mainly due to the chosen relative tolerances for the parameters and the
objective function, see Sect. 10.2.

10.2.3 Optimisation of forward hollow extrusion

Following the successful validation of the framework, the optimisation is now expanded to
the more complex forming process of forward hollow extrusion. This process includes a
mandrel to produce circular hollowed workpieces. Consequently, the extrusion strain is now
a function of the initial radius 𝑟0, the final radius 𝑟1 and additionally the newly introduced
mandrel radius 𝑟m. However, to ease computation of this more complex forming process,
the transition radius 𝑟 = 1mm and the friction parameter 𝜇 = 0.04 are held constant
throughout and not included as design variables the optimisation, see again Table 10.1.

Optimisation with a constant mandrel radius

For the first optimisation problem, the extrusion strain 𝜀ex and the shoulder angle 2𝛼 are
chosen as design variables. To allow a comparison to the previous process, the mandrel
radius is initially held constant, i.e. 𝑟m = 6.7mm. Therefore, the design variables for this
problem are s1 = {𝜀ex(𝑟1),2𝛼}, leading to the following optimisation problem

minimise
sl≤s1≤su

Jre = 𝜂mean(s1). (10.2)

This first optimisation problem aims to determine whether comparable statements can be
made about the selected process parameters between the hollow and forward rod extrusion
process, i.e. the extrusion strain 𝜀ex and the shoulder angle 2𝛼. The objective function
remains the same as in the validation of forward rod extrusion, i.e. the mean stress
triaxiality 𝜂mean. The optimal result for this process seems to indicate similar behaviour,
see Table 10.3. The extrusion strain gets maximised and the shoulder angle minimised,
leading to swift decrease in objective value. Due to the added mandrel, even for a lower
maximum extrusion strain of 𝜀ex = 1.4, the objective function yields a lower value than
in the forward rod extrusion process, indicating a better behaviour regarding damage
evolution. Looking at the iteration graph in Fig. 10.3, the optimiser swiftly approaches
a value of 𝜂mean = −1.7667, which is close to the optimal solution. However, due to the
choice of solver and the break condition, further 40 iterations are necessary to achieve
convergence, where the change of the process parameters is rather small within those final
steps, see Table 10.3.

Optimisation with a variable mandrel radius

The second optimisation problem now includes a variable mandrel radius 𝑟m. For this
reason, the extrusion strain 𝜀ex is no longer utilised as an explicit design variable. Instead,
the final radius 𝑟1 is now included. The extrusion strain 𝜀ex therefore now enters as an
additional constraint. The design variables for the second optimisation problem thus
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Figure 10.3: Objective function over iterations for the first optimisation problem of forward
hollow extrusion with a constant mandrel radius 𝑟m. The boxed in area shows a zoomed-in
depiction for the respective iterations with a rescaled y-axis.

Table 10.3: The first optimisation problem of forward hollow extrusion with a fixed mandrel
radius 𝑟m.

s dependent fixed sl su initial intermediate optimum
(k=0) (k=8) (k=46)

- - 𝑟0/mm 15.1 15.1 15.1 15.1 15.1
- 𝑟1/mm - 9.484 13.957 13.957 9.491 9.484
- - 𝑟m/mm 6.7 6.7 6.7 6.7 6.7
𝜀ex - - 0.2 1.4 1 1.397 1.399
2𝛼/∘ - - 30∘ 150∘ 90 36.540 36.121

encompass s2 = {𝑟m,𝑟1,2𝛼}, with the subsequent optimisation problem

minimise
sl≤s2≤su

Jre = 𝜂mean(s2)

subject to 0.2 ≤ 𝜀ex(𝑟m,𝑟1) ≤ 1.4.
(10.3)

The resulting, and some intermediate values, are listed in Table 10.4. As expected,
the optimiser tries to maximise the extrusion strain initially, since this has the highest
impact on the objective function. This was already derived in the previous optimisation
problems. Since this value now depends on two possible changes in the chosen design
variables, intermediate results show that at first the final diameter 𝑟1 is decreased, with the
mandrel radius 𝑟m also being increased to achieve a high extrusion strain. The shoulder
angle remains mostly constant at the beginning and only decreases at later stages in the
optimisation, indicating a lower impact on the objective value compared to the radii.
After increasing the extrusion rate, the optimiser again increases the final radius 𝑟1, while
further increasing the mandrel radius 𝑟m in order to remaining at the bounded extrusion
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Figure 10.4: Objective function over iterations for the second optimisation problem of
forward hollow extrusion with a variable mandrel radius 𝑟m. The boxed in area shows a
zoomed-in depiction for the respective iterations with a rescaled y-axis.

rate value of 𝜀ex,u = 1.4. This finally leads to the optimal design stated in Table 10.4.
The iterative process in Fig. 10.4 also shows the described behaviour. Throughout the
optimisation, up to iteration 19, large jumps in the objective function can be seen, mostly
due to the changes in radii. At this point, the design variables are close to the final optimal
values and only small adjustments are made, leading to consequently small modification
of the objective function, depicted in the zoomed-in part of Fig. 10.4.

Table 10.4: The table for the second optimisation of forward hollow extrusion with a
variable mandrel radius 𝑟m.

s dependent fixed sl su initial intermediate optimum
(k=0) (k=12) (k=75)

- - 𝑟0/mm 15.1 15.1 15.1 15.1 15.1
𝑟1/mm - - 9.5 13.9 11.5 11.316 11.815
𝑟m/mm - - 6.7 11.6 9.5 9.703 10.517
- 𝜀ex - 0.2 1.4 1.188 1.373 1.399
2𝛼/∘ - - 30∘ 150∘ 60 58.839 30.012

Of note here is, that the final values of 𝑟1 and 𝑟m are not at either respective boundary,
indicating that it may be beneficial for this forming process to choose tool sets generated
by the optimisation. This behaviour is highlighted in Fig. 10.5, which illustrates the
iterative behaviour of the mandrel radius 𝑟m and the final radius 𝑟1 over the iterations of
the optimisation. Additionally, the respective resulting extrusion strain 𝜀ex is presented
as well. Finally, the upper bounds for the respective radii are indicated to highlight that
these bounds never explicitly apply to their respective design variables throughout the
optimisation. The figure only shows the behaviour up to iteration 42. After that point in
the optimisation, no notable changes in design occur, which is also detectable in the little
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Figure 10.5: An iterative display of the mandrel radius 𝑟m and the final radius 𝑟1 over the
iterations up to iteration 42. Additionally, their respective upper bounds and the resulting
extrusion strain 𝜀ex for each iteration are depicted.

development of the objective function, again see Fig. 10.4. After a few initial iterations,
the optimiser starts to increase the extrusion strain by, at first, reducing the respective
radii. The depicted initial constant design variables, i.e. the constant values of 𝑟m and
𝑟1 for iterations 0 to 2, are a result of the Nelder-Mead simplex algorithm. As for this
implementation, only the current optimal solution of each iterative step is stored. This
might be in turn the initial starting guess as other points of the simplex may yield higher
objective values. The following change to the extrusion strain of 𝜀ex = 1.35 at iteration
3 is achieved by reducing the mandrel and final radius, respectively. After this initial
change, the radii show some positive and negative adjustments up to iteration 12. At this
point in the optimisation, the behaviour regarding the radii changes drastically and their
respective values start to increase in value by up to 1mm. The peak of this behaviour is
reached at iteration 18. From there on the optimiser only makes small changes and again
decreases their respective values. This coincides with the small changes of the objective
function, as was discussed regarding Fig. 10.4. After iteration 26, the radii get reduced
again which in turn increases the extrusion strain. This behaviour repeats until iteration
41, after which a final small increase in design is visible. A few intermediate iterations show
points, where the extrusion strain gets reduced. Most notably this occurs at iterations
12, 15 and 18, respectively. At these iterations the iterative optimal solution showed a
lower shoulder angle, which in turn benefits the triaxiality value. Subsequently, this angle
remains constant for a few iterations while the extrusion strain increases again. A value
close to the optimal, i.e. 2𝛼 = 30.162∘, is finally reached at iteration 18. Afterwards, the
extrusion strain reaches a value of over 𝜀ex = 1.39 again and does not fall below that
threshold throughout the rest of the optimisation.

Additional calculations were performed to underline this result, i.e. the objective
having a lower value between the bounds of the radii rather than at either limit. Further
optimisations with different starting values at the upper boundaries however deemed
difficult since the optimiser often ran into iterative solutions which did not converge
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for the finite element (FE) problem due to high mesh distortions. However, at best,
the possible manual calculations, as well as intermediate results from the additional
optimisations, yielded results in the area of 𝜂mean = −1.999, indicating an overall better
solution generated by the optimisation as described above.

10.3 Bending

In this section, the enhanced bending process of elastomer bending is optimised, cf.
[221]. As introduced in Sect. 8.2, the critical area regarding damage accumulation is the
outer bending fibre of the sheet metal. The inclusion of the elastomer allows to induce
compressive residual stresses in the outer fibre of the sheet and thereby delay the onset of
damage evolution, cf. [160, 161, 221]. Further optimisation results for bending, i.e. load
and load path optimisation, can be found in Appendix D.2. The described process, and
the other approaches followed in the aforementioned appendix, are depicted in Fig. 10.6.

Figure 10.6: The left side shows a) free air bending in its typical configuration and the
advanced b) elastomer bending. Based on these processes, the two right images depict the
approaches for the optimisation in Appendix D.2: c) The load optimisation with external
loads and d) the optimisation of the elastomer cushion with different elastomer types.

10.3.1 Simulation model

The simulation for the optimisation of elastomer bending relies on the same model, as the
one used in the benchmark section of the previous chapter, see Sect. 9.3.1. To summarise,
the sheet has a thickness of 𝑡 = 1.2mm, the die a width of 𝑤 = 24mm and the die and
punch a radius of 𝑟p = 𝑟d = 1mm. The process is performed with a prescribed punch
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displacement of 𝑢punch = 5mm.
New in regard to this section and elastomer bending, is the inclusion of an elastomer

cushion. This is placed inside the die, see Fig. 10.6b), and is modelled as a deformable body.
A hyperelastic material model of Mooney-Rivlin type is assumed for the elastomer, cf.
[58], with the parameters for the two types of elastomer used in the following optimisation
listed in Table 10.5. Therefore, additional contact interactions are included into the
simulation, i.e. elastic-rigid contact between elastomer and die, as well as elastic-elastic
contact between sheet and die. The latter is crucial for the optimisation, as it includes
many more discontinuities into the problem and therefore the mathematical description.
The elastomer is meshed with 3600 elements of type CPS4R. The simulation model has
been provided by the original author from IUL, TU Dortmund University.

Table 10.5: Material parameters for the two types of elastomer.

elastomer 𝐶10 𝐶01 𝐷1

type

Type I (hard) 1.92521389 0.967182642 0
Type II (soft) 1.67336094 14.6497159 0

10.3.2 Elastomer optimisation

In the following, the process of elastomer bending from [221] is directly optimised, by
adjusting the composition of the inserted elastomer layers. For this purpose, the elastomer
cushion within the simulation is split into two separate sections of one hard elastomer
type and one soft elastomer type, i.e. of 75% hard and of 25% soft type, see Fig. 10.7.
The objective of the optimisation is to generate an homogeneous triaxiality distribution in
the outer fibre of the sheet where it is in contact with the elastomer. In the initial case,
the triaxiality gets reduced the most in the middle of the process where the punch pushes
down onto the sheet, i.e. at 𝑥 = 0 for the local coordinate system in Fig. 10.7. Since
the highest vertical displacement of the sheet occurs at that location, this results in the
highest displacement for the elastomer as well. Consequently, the reaction forces due to
the elastomer maximise in this area, and therefore the triaxiality is reduced the most.

A more even distribution of triaxiality allows for lower localisation of damage and
therefore reduces the risk of failure while forming. This is captured by a least-square
problem between the triaxiality values in the selected area, and a prescribed critical
triaxiality value, wherein again 𝜂crit = 0.48 is chosen. Thus, the optimisation problem
reads

minimise
sl≤s≤su

JGeom = ‖𝜂(s)− 𝜂crit‖2. (10.4)

The choice of optimised area within the sheet has to be considered carefully. Since the
reduction of triaxiality due to the elastomer is not evenly distributed over the width and
thickness, the choice of the homogenised area heavily influences the results, similarly to
the discussion of the benchmark springback optimisation in Sect. 9.3.3. Defining the
width and/or thickness of this area too large, will result in unsatisfactory homogenisation,
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as large fluctuations in triaxiality will occur. If the chosen thickness is too high, the
pressure resulting from the optimised elastomer will be higher, resulting in even lower
triaxiality values in the outer fibre of the sheet. Therefore, the desired homogenisation
is not achievable. The same problem occurs when setting the width of the optimisation
area too high. Since the effect of the elastomer gets reduced with higher offset from the
centre of the sheet, large changes in elastomer geometry are necessary to inflict even slight
changes in elastomer. This again has the inverse effect in the centre of the sheet and
therefore the same outcome of bad homogenisation will arise.

Figure 10.7: The initial CAGD with the 75% and 25% split on the left. The right depicts
the chosen area for triaxiality homogenisation within the sheet.

The chosen area for the optimisation has to be pretty small in order for the optimiser
to yield satisfying results. Consequently, it only has a width of 𝑤opt = 0.65mm and
height ℎopt = 0.15mm, see Fig. 10.7. The small chosen height is especially necessary, as
choosing to many elements, in this case 2 in sheet thickness direction, will make it nearly
impossible for the optimiser to converge. The triaxiality has a significantly higher gradient
in thickness direction and therefore setting the objective area to large will significantly
adjust the results. In addition, the initial Computer Aided Geometric Design (CAGD) is
presented showing the split in elastomer distribution. The initial guess is chosen to be of
75% hard elastomer and 25% soft elastomer. Only the five knots which divide the two
elastomer parts are chosen as design variables; the remaining nodes remain fixed.

The simulation model was provided by the authors of [221] from IUL, TU Dortmund
University. With the addition of the elastomer, the contact interactions are extended with
contact between sheet and elastomer, as well as die and elastomer. The friction coefficient
of Coulomb type friction for these interactions is set to 𝜇 = 0.5. To include the geometry
optimisation into the setup, the CAGD was created by a Bézier-surface, using the same
code as in Chap. 6. To transfer data between the Matlab and Abaqus environment, since
a new mesh is generated in Matlab, the model of the elastomer within Abaqus as well as
in Matlab has to coincide. This enables a mapping of the coordinates between the two
simulation software, such that

XAbq = M ·XMat, (10.5)
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where X∙ are the nodal coordinates within each software, and M a mapping matrix that
has to be deduced in the beginning of the optimisation. After each iteration, the new mesh
generated by the CAGD is mapped back to Abaqus, allowing the iterative design to be
incorporated into the optimisation. For sake of simplicity, and to improve the optimisation
behaviour as well as simulation setup, the two types of elastomers are connected as one
body within the simulation. This body is split into two sections with the different material
properties of the respective elastomer type. In reality, the two types of elastomers would
have to be placed on top of each other or glued together. However, simulating this with
contact mechanics for example would increase the computational complexity and might
lead to further convergence issues within the optimisation.

Initially, the optimisation was run with SQP, similarly to the other bending optimisation
problems in this work, see Sect. 9.3 and Appendix D.2. However, the algorithm was
not able to converge to a minimum. Instead, the algorithm was alternating between two
solutions. The reason behind this behaviour is most likely due to the numerically derived
gradients. With the inclusion of the elastomer cushion, and the contact interactions
between elastomer and die, and more importantly the elastic-elastic interaction between
elastomer and sheet, the numerically computed gradients yield too high inaccuracies for the
optimisation procedure. To solve this problem, again the Nelder-Mead simplex is applied.
This enables derivation of a unique solution which is depicted in Fig. 10.8 together with
the initial guess. The results presented show the possible homogenisation of the triaxiality,
and further enhancement of the process. In the beginning, due to the inclusion of softer
elastomer into the process, the triaxiality in the sheet exceeds the critical triaxiality
𝜂crit = 0.48. The optimal elastomer design decreases the maximal triaxiality values and
further homogenises the surrounding area. To achieve this, the initial flat transition area
between hard and soft elastomer gets altered. A wave-like curvature is created, which is
thicker to the left, decreases between the second and third design variable, again creases at
the fourth design variable and then decreases in thickness again. Additionally, the overall
amount of soft elastomer gets reduced and therefore more of the harder elastomer is part
of the cushion.

Figure 10.8: Depicted are the results of the elastomer optimisation. The left shows the
CAGD of the elastomer, the right the simulation results. The elastomer types are depicted
in red (soft) and blue (hard). The zoomed in area shows the homogenised area of the sheet
metal.
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While the presented results are promising, some shortcomings are detectable. The
homogenisation with this optimisation framework is improved, but not yet perfectly even
over the selected area. Additionally, the triaxiality in the centre of the sheet, i.e. at the
symmetry y-axis, is still significantly lower than further to the right. Nonetheless, the
presented results highlight the possibilities of this framework regarding an optimisation of
this process. Enhancements, such as finer discretisation of design variables in the CAGD,
or additional layers of different elastomer types, could enhance the optimisation problem
and allow an even more homogenised stress-state in the sheet.

Furthermore, in Sect. 9.2.3 it was mentioned that this approach of mapping meshes
between external mesh Xmat and the one in Abaqus XAbq in (10.5) can lead to difficulties.
This is detectable in the presented results. Initially, the elements all have the same size,
see Fig. 10.7. However, due to this mapping, the optimal shapes generate a very distorted
mesh in the lower section for Elastomer II, see Fig. 10.8. This further emphasises the
benefit of the MDB approach described in Sect. 9.2.3, as it was later adopted for IOPS.

10.4 Stretch indenting

In this section the last forming process is considered for damage optimisation. Instead
of optimising deep-drawing, the process of stretch indenting is chosen instead. It is very
similar to classical deep-drawing and allows 2d modelling, assuming rotational symmetry.
The material flow within in the process is adjusted by a drawbead, which is optimised
in the following. The drawbead restricts the material flow, leading to a thinning at
the bottom of the drawn cup. Since deep-drawing processes are very quick processes,
the resulting time-dependency has to be taken into consideration within the simulation
environment and the process can no longer be assumed to be quasi-static.

10.4.1 Simulation model

Figure 10.9: The forming process stretch indenting. The dashed part of the process is not
simulated. Additionally, the drawbead model and the necessary parameters for its generation
within the simulation.

The simulation model for the process is sketched in Fig. 10.9, wherein the dotted part
of the process is omitted within the simulation by exploiting the symmetry conditions
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and has been kindly provided by WZL, RWTH Aachen University. The geometries of the
process are as follows: The punch has a diameter of 𝑑p = 25mm, the die a diameter of
𝑑d = 26.8mm and the transition radii of punch and die have a radius of 𝑟p = 𝑟d = 3mm.
Research shows, that these radii have an impact on the damage behaviour, cf. [165,
166], but since the focus is placed onto the drawbead, will be omitted as possible design
variables here and held constant throughout the optimisation. The sheet plate has a
thickness of 𝑡 = 1.5mm. The FE model is run with Abaqus/Explicit, an explicit solver
which enables the calculation of dynamic problems. Since deep-drawing processes cannot
by run accurately for quasi-static cases, as these problems happen in a fraction of a second,
a dynamic solver and setup are necessary.

The simulation model consists of two steps. In the first step, the blank holder is pressed
onto the sheet and therefore restrict vertical movement and initiates a first deformation of
the sheet due to the geometry of the drawbead. The second simulation step is the actual
forming process, wherein the punch presses down onto the sheet metal. A prescribed
velocity of 𝑣punch = 50 mm

s is applied to the punch over 𝑡sim = 0.244 s, resulting in a
displacement of 𝑢punch = 12.2mm. However, the simulation is setup such that initially
the sheet is offset by 6.2mm with respect to the die. Taking this into account, the sheet
only gets drawn for 6mm. Due to the drawbead, the material flow is adjusted, resulting
in different damage behaviour.

The material model used is a local Lemaitre damage model, which has been calibrated
for use in modelling of DP800 in [216]. Due to the nature of the mesh-dependence in local
damage models, the mesh of the sheet has to coincide with the mesh of the calibration
method. As such, the elements for the sheet have an edge-size of 0.5mm and the complete
sheet is meshed with 408 elements of type CAX4R. Similar to the previous processes,
master-slave type contact is assumed between die and sheet, punch and sheet, as well as
blank holder and sheet. The friction is assumed to be Coulomb type with the coefficient
at these contact surfaces set to 𝜇 = 0.05, as these kinds of processes are lubricated and
therefore the parameter is set small.

The most important part of the simulation regarding optimisation is the model of the
drawbead. It is defined with three circles, see Fig. 10.9. A continuos line is drawn between
these circles, which forms geometrical shape of the drawbead in the die. The upper two
radii have the value 𝑟2 and the lower one the radius 𝑟1. The drawbead has a width of 𝑥s

and a height of 𝑦s. Additionally, an offset ℎs for the lower radius 𝑟1 is included, which
increases the design space for the drawbead geometry.

10.4.2 Drawbead optimisation

The objective of the optimisation is to reduce the damage accumulation within the process
after forming, i.e. the prescribed time of 𝑡sim = 0.244 s. Two optimisation problems are
proposed with different objective functions to describe the desired problem of damage
minimisation. The first objective only takes into account the maximal value of nodal
damage data, i.e. Jmax = 𝑑max = max(d(s)). While this objective leads to a discontinuous
optimisation problem, the following optimisations are solved using the gradient-free Nelder-
Mead simplex. Similarly to previous results in rod extrusion and elastomer bending,
optimisation with gradient-based methods is not suitable for this process. Early tests
resulted in non-converging optimisations or optimal solutions being equal to the starting
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guess.
The second optimisation problem uses the damage accumulation captured by the norm of

the nodal damage values. This approach was described in Sect. 5.6 of Part I of this thesis.
This description allows capturing the vector of nodal damage values in a scalar valued
objective function. The second objective therefore reads Jnorm = ‖d(s)‖2. While the local
damage stores the damage quantities at Gauss-point level, Abaqus allows extrapolation of
this data to the nodes and is therefore accessible for the formulation of this objective.

Both optimisation problems are subjected to a set of manufacturing constraints. The
general criteria, based on [33], are that the space between the drawbead and the point
where the die radius 𝑟d initiates, as well as the drawbead and the outer edge of the
sheet metal, must be at least 5mm wide. Applying these conditions, together with the
centre point of the position of the drawbead within the die and the total size of the die,
constrains the available design space for the drawbead width 𝑥s. This ultimately leads
to maximum width of the drawbead of 𝑥s ≤ 22.2mm for the optimisation. In addition,
certain restrictions are placed onto the radii which define the drawbead. The drawbead
must be taller than the sheet metal, which leads to a lower bound of 2mm for the radii and
drawbead height. Additionally the two radii must not exceed the radius of die 𝑟d = 9mm.
Another constraint is the drawbead height must not exceed four times the sheet thickness.
Together, this leads to the bounds and constraints

2 ≤𝑟1 ≤ 9 (10.6)
2 ≤𝑟2 ≤ 9 (10.7)
2 ≤𝑦s ≤ 6 (10.8)

Using this information, another constraint is placed upon the drawbead offset ℎs. First,
the offset must not be negative as this would put the centre of 𝑟1 outside the die and lead
to an undercut of the drawbead. Additionally, the upper limit of the offset is equal to
radius 𝑟1 minus the lower bound of the drawbead height, i.e. 2mm. This leads to the
additional constraint

0 ≤ ℎs ≤ 𝑟1 − 2. (10.9)

The two optimisation problems are thus defined as

minimise
sl≤s≤su

Jmax = 𝑑max(s)

subject to 𝑥s ≤ 22.201

𝑦s ≤ 6

ℎs ≤ 𝑟1 − 2,

(10.10)
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and

minimise
sl≤s≤su

Jnorm = ‖d(s)‖2

subject to 𝑥s ≤ 22.201

𝑦s ≤ 6

ℎs ≤ 𝑟1 − 2.

(10.11)

Notably, both optimisation problems do not include the lower constraint of the drawbead
height 2 ≤ 𝑦s. This is implicitly included in the lower constraint ℎs ≤ 𝑟1 − 2, since

ℎs ≤ 𝑟1 − 2⇔ 2 ≤ 𝑟1 − ℎs ⇔ 2 ≤ 𝑦s, (10.12)

by applying the trigonometric properties of the drawbead model, see Fig. 10.9. Additionally,
these properties allow the computation of the drawbead height and width with the design
variables s = {𝑟1, 𝑟2, ℎs}, such that

𝑥s = 2

√︁
[𝑟1 + 𝑟2]

2 − [𝑟2 + ℎs]
2
, (10.13)

𝑦s = 𝑟1 − ℎs. (10.14)

Even though the drawbead offset ℎs is a design variable of the process, an upper constraint
is applied. Since this constraint is dependent on another design variable, it cannot be
defined in boxed constraints and has to be additionally checked within each iteration
together with the other constraints.

Initially seven initial guess were calculated for each optimisation problem (10.10) and
(10.11). The first four were randomly defined sets of design parameters, while the latter
three describe three different shapes of the drawbead, i.e. a small one, a large one
and an average one. The results for these optimisation problems are depicted in their
iterative graphs in Fig. 10.10. Due to the amount of data, the explicit results from the
computations are found in Appendix D.3. Analysing the data, there is no conclusive
data regard the design variables themselves, i.e. 𝑟1, 𝑟2 and ℎs, neither does the drawbead
width 𝑥s noticeably influence the damage behaviour of the process. However, notably
the drawbead height 𝑦s allows a concise conclusion. In all the computed optimisations,
excluding run x06 for problem (10.10) which most likely ran into a local minimum, the
drawbead height gets reduced close to its minimal value of 𝑦min

s = 2mm. This holds true
regardless of the choice of Jmax or the normed value J𝑛𝑜𝑟𝑚. With this knowledge, the
significant improvement in damage reduction for specimen x04 is obvious. Initially, the
drawbead height for this initial guess is extremely large at 𝑦s = 6mm, see Fig. 10.11.
Due to this, the value of maximal damage can be reduced significantly by 21% from
𝑑initmax = 0.32883 to 𝑑optmax = 0.26003.

Based on this research, a final set of four optimisations were conducted, which used
starting parameters close to the optimal value for 𝑦s = 2mm, aiming to find better a
combination of the other process parameters. However, while a better value for 𝑑max

could be found, the effect was negligible small. Therefore, the general conclusion for
this process regarding damage tolerant behaviour is to minimise the drawbead height in
general. Of course, due to manufacturing constraints this is not always possible but should
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Figure 10.10: Objectives over iterations for both optimisation problems (10.10) and (10.11)
of stretch indenting.

Init

Opt

Figure 10.11: Initial and optimal damage distribution due to a change in drawbead design
for the 𝑑max optimisation for the initial guess x4.

be considered.
Extending this research would naturally include the radii 𝑟d and 𝑟p. Since these

parameters affect the damage evolution during the process, their inclusion as design
variables can benefit the research greatly. This however would significantly increase
computational cost. Even with only currently three design variables, optimisation of this
process takes a lot of computation time due to the complexity and thereby runtime of
each simulation.





Chapter 11

Conclusion of Part II: Industrial challenges

In Chap. 8, the requirements for the approach presented and utilised in Part II: Industrial
challenges has been motivated. The necessity and background for optimisation of forming
processes has been provided, as this work was funded by the DFG within TRR188. Due
to the introduction of contact mechanics for the simulation of forming processes, the
method described in Part I: Academic challenges, i.e. an analytical sensitivity analysis,
could not easily handle the additional challenges. A brief overview regarding the forming
processes optimised in this work, i.e. full forward extrusion, forward hollow extrusion, free
air bending, and stretch indenting, has been provided. Necessary quantities, the working
parts of each process and influences of process parameters regarding damage have been
outlined. Finally, some ideas regarding general optimisation of forming processes has been
presented. Two general concepts to optimise forming processes can in theory be pursued.
By simplifying a process, contact mechanics can be avoided and optimisation in a classical,
indirect sense is applied. However, this simplification always results in loss of accuracy
in the prediction of the simplified process. Hence, in this work the direct optimisation
approach, i.e. the process is simulated without these simplifications, has been chosen.
While it is computationally more complex, it is more accurate and easier to use in the
context of TRR188 with the many forming processes to consider.

Afterwards, in Chap. 9, the optimisation framework Industrial Optimisation Problem
Solver (IOPS) using Abaqus for the direct optimisation of discontinuous contact problems
in forming has been presented. Thereby, the optimisation of forming processes was made
possible. The choice for the simulation software has been motivated by its accessibility
using Python, and thereby the coupling within an automated optimisation framework.
Furthermore its utilisation within TRR188, and hence the ease of cooperation with other
projects has been a key factor for using Abaqus. An overview regarding nomenclature of
Abaqus files has been given, which eases with understanding of the possible approaches
regarding optimisation presented here. The optimisation framework has been described in
detail. The beneficial choice of adapting the Abaqus model data base has been highlighted.
The framework utilises Abaqus to solve the finite element problem, Python to extract and
inject data and Matlab to run the optimisation as a wrapper function. The beneficial
flexibility of this approach has been emphasised as it enables optimisation of multiple types
of problems simultaneously. Furthermore, this concept allows general process optimisation
and thereby is not limited to one type of optimisation problem. This has been proven by
the chosen benchmark problems which show possible applications.

Finally, in Chap. 10, several damage optimised forming processes using IOPS have been
presented. Bulk metal and sheet metal forming processes have been analysed. Utilisation of
the direct optimisation approach enables the easy implementation of process constraints and
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restrictions regarding certain process parameters. This enables the control and reduction
of damage in rod extrusion, bending and stretch indenting. All simulations have been
computed in Abaqus and contact mechanics have been necessary to accurately represent
the forming processes. In contrast to the benchmark optimisations, the problems in this
chapter relied heavily on contact interactions and prevented utilisation of SQP. Instead,
the gradient-free Nelder-Mead simplex has been applied to optimise these processes.

Results from the numerical optimisation of full forward rod extrusion coincided with data
from literature, proving the applicability of the framework to complex forming processes
and damage optimisation. Extending the optimisation to the process of forward hollow
rod extrusion, enabled initial comparison between both processes. They showed the same
characteristics regarding extrusions strain 𝜀ex and shoulder angle 2𝛼. The inclusion of
the central mandrel radius 𝑟m enabled a more complex optimisation of forward hollow
extrusion. Inclusion of this variable in the optimisation, and constraining the extrusion
strain, yielded an interesting combination of parameters: Neither mandrel radius 𝑟m, nor
final radius 𝑟1 reached their respective constrained bound and an optimal solution has
been generated which lied within a non-intuitive region of the design space.

After the optimisation of the bulk metal forming process for 16MnCrS5, sheet metal
forming process for DP800 have been considered. First, elastomer bending has been
optimised, by applying shape optimisation to the elastomer cushion. An optimal elastomer
type distribution allows a homogenisation of the stress triaxiality over a certain area of the
sheet metal. The resulting elastomer shapes might yield a more even damage distribution
in a sheet formed this way. The last optimised process has been stretch indenting, a
deep-drawing process which prohibits material flow using a drawbead within the die. By
optimising the drawbead, the material flow in the process was altered. The geometry has
been controlled with three geometric parameters, which acted as design variables of the
optimisation. The number of manufacturing constraints highlighted the applicability of
the optimisation framework and enabled optimisation of this process without the need to
formulate complex replacement constraints. The optimisation with many different initial
guesses resulted in a simple, yet efficient statement: To reduce damage in stretch indenting,
the drawbead height must be minimised.

Based on the presented work, generalised conclusive remarks can be made from the
data, similarly to the results in Part I. These are:

1. Utilisation of numerical optimisation using a direct approach may yield parameter
combinations which might be unintuitive in nature. In forward hollow extrusion,
a combination of parameters was found which lies between constraint bounds and
therefore might be missed if normal engineering methods are used to test specific
parameter combinations. Furthermore, approximative or simplified methods might
omit such oddities in their reduced computations.

2. Generalised statements can be drawn from optimisations, wherein the design variables
do not necessary generate one optimised set of variables by themselves, but instead
govern other process parameters implicitly, which in turn yield an optimised solution.
For stretch indenting for example, the design variables themselves did not directly
yield an optimised set, but the underlying conclusion regarding the drawbead height
could be drawn.



Chapter 12

Final remarks and outlook

The overall objective of this work was to enable the minimisation and control of damage by
applying the concept of mathematical optimisation. In the presented work, it was utilised
top optimised damage in may different applications. Initially, to provide a basis for to
applied methodology in this work, the concept of mathematical optimisation was briefly
outlined. The two main solution strategies, i.e. the gradient-based Sequential Quadratic
Programming and the gradient-free Nelder-Mead simplex, were presented. After this
general introduction, the work was split in two overarching parts, which tackled different
conceptual problems in damage optimisation.

The goal of Part I: Academic challenges was to enhance the continuum description for
a ductile damage model by means of analytical sensitivity analysis. Therefore, it focused on
the problems that arise when a continuum mechanical material model for ductile damage
is enhanced with sensitivity data and utilised in optimisation. The underlying material
model was able to predict ductile damage, i.e. plasticity coupled to damage, in metal
materials. A nonlocal gradient-enhanced formulation was implemented and considered
for sensitivity analysis. By using a variational approach, the continuous equations were
used to derive the gradient information before discretisation. The geometric description
and the constitutive material parameters were chosen as design variables and the resulting
gradients derived. They were applied to two different fields of optimisation. In shape
optimisation, damage optimised structures were generated. However, the results showed
that an unconstrained damage optimisation might yield geometries, which show early
localisation of damage. This could be prevented by including damage constraints applied
to each finite element (FE) node. Furthermore, a compliance optimisation highlighted the
beneficial inclusion of accurate damage modelling, as resulting structures showed a more
damage tolerant behaviour. The material sensitivities were applied in a prototype response
sensitivity study. Therein, the sensitivity data was directly analysed to give insight into
identifiability of material parameters in different stages of experimental loading.

Based on this work, many different fields of research can be followed. Extending the
work for the response sensitivity study for example could be combined with optimised
shapes for parameter identification (PI). Sensitivity analysis w.r.t. the referential geom-
etry could again be applied to the constitutive material sensitivities. While this a very
challenging task, these sensitivities might give further insight on how applicable certain
geometries are for PI. Another research direction could be to enhance the underlying
material model to incorporate void-closure mechanisms, due to heat treatment for example.
This would allow to optimise temperature curves to reduce the accumulation of damage
within a pre-damaged problem. Another extension could be the consideration of damage
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on the microscale and therefore the optimisation of the micromechanical texture of the
material under consideration. This in turn could be further enhanced by coupling damage
optimisation on the microscale with other forms of optimisation on the macroscale, for
example by means of an FE2 approach [129, 130].

The objective of Part II: Industrial challenges was the formulation of an optimisation
framework to enable the minimisation and control of damage within the forming processes
of TRR188. It presented a methodology to directly optimise these forming processes and
thereby problems with discontinuities due to contact mechanics. The necessity to optimise
damage in forming process directly was motivated due to the contribution to TRR188.
The framework IOPS surrounding the commercial FE software Abaqus was presented.
It allowed simultaneous consideration of different typed of design variables which was
presented by optimising springback in bending. In addition, it was applied to optimise
damage in three different forming processes, i.e. extrusion, bending and stretch indenting.
The results showed, that application of numerical optimisation might yield many significant
results. On the on hand, the resulting parameter sets might be a combination which is
not necessarily analysed in conventional engineering settings. On the other, the results
can allow for generalised statements regarding certain parameter combinations, multiple
optimal results yield a similar outcome with different design variables sets.

Currently, the presented framework was only applied to 2d-problems. A general enhance-
ment regarding 3d problems is therefore natural. However, this comes with a significant
increase in computational complexity. Therefore, either the models have to be setup to
improve computation time, or the numerical optimisation has to be adapted. Furthermore,
other simplified methods were presented in this thesis. Therefore, comparison between
results from direct optimisations and said simplified methods could also be of interest in
future work. Finally, another straightforward extension of the presented work could be
the addition of more processes within the optimisation. Since the presented framework is
not limited forming processes, any type of problems modelled in Abaqus can be subjected
to optimisation.

Finally, merging both parts into one concise framework would be of further interest. It
would enable optimisation of industrial problems from the academic viewpoint. As was
discussed in this work, consideration of contact mechanics for the derivation of gradient
information would be required. While this has been proven possible in literature, a
robust implementation would be required. Circumventing this necessity could be avoided
by utilising surrogate models. This could be structured to enable continuous gradient
derivation while simultaneously predicting the desired industrial problem accurately enough.
Stating optimisation problems based on these surrogate models then yield solutions which
can be applied to the forming process under consideration.
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Appendix A

On the implementation of the ductile damage model

In this appendix, the missing detailed equations regarding the ductile damage model in
Chap. 4 are depicted. Furthermore, remarks on the utilisation of the �̄� -method are given
and supplemental results from computation with the implemented material model are
compared to data from the original authors of [215].

A.1 Consistent material tangent operator

For the implementation of the ductile damage model, the consistent material tangent
operators are required, see Fig. 4.4. Since the model is computed in principal space, see
Sect. 4.6, the same notation regarding n-Tupels is utilised here as well. In addition to the
introduced spatial identity tensor 𝐼, a diagonal matrix diag(1) of size 𝑛× 𝑛 is introduced,
where all diagonal values of are equal to one, with the remaining entries being equal
to zero. Furthermore, the internal principal plastic strains �̄�p = �̄�e,tr − 2𝛥𝜆p𝑓𝑚�̄�tr are
introduced here and utilised to compute the local quantities in principal space.

The total variations for the spatial Mandel stress and nonlocal damage driving forces
resolve into two partial variations, i.e.

𝛿�̄� = 𝛿�̄�e,tr�̄�+ 𝛿𝜑�̄�, (A.1)
𝛿𝑌 = 𝛿�̄�e,tr𝑌 + 𝛿𝜑𝑌. (A.2)

where the partial variations can be identified as the tangent contributions and read

𝛿�̄�e,tr�̄� =
[︀
c̄
el + c̄

pp
]︀
· 𝛿�̄�e,tr = 𝜕�̄�

𝜕�̄�e,tr
· 𝛿�̄�e,tr +

[︂
𝜕�̄�

𝜕�̄�p
· 𝜕�̄�p

𝜕�̄�e,tr
+

𝜕�̄�

𝜕𝑑

𝜕𝑑

𝜕�̄�e,tr

]︂
· 𝛿�̄�e,tr,

(A.3)

𝛿𝜑�̄� = c̄
pd =

[︂
𝜕�̄�

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝜑
+

𝜕�̄�

𝜕𝑑

𝜕𝑑

𝜕𝜑

]︂
𝛿𝜑, (A.4)

𝛿�̄�e,tr𝑌 = c̄
dp =

𝜕𝑌

𝜕𝑑

𝜕𝑑

𝜕�̄�e,tr
· 𝛿�̄�e,tr, (A.5)

𝛿𝜑𝑌 = c̄
dd =

[︂
𝛽d +

𝜕𝑌

𝜕𝑑

𝜕𝑑

𝜕𝜑

]︂
𝛿𝜑. (A.6)
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The partial derivatives read

𝜕�̄�

𝜕�̄�e,tr
= 𝐾𝑓vol(𝑑) 𝐼 ⊗ 𝐼 + 2𝐺𝑓 iso(𝑑)

[︂
diag(1)− 1

3
𝐼 ⊗ 𝐼

]︂
, (A.7)

𝜕�̄�

𝜕�̄�p
= −2𝐺𝑓 iso(𝑑)diag(1), (A.8)

𝜕�̄�

𝜕𝑑
= 𝐾

[︀
𝑓vol(𝑑)

]︀
𝐼 + 2𝐺

[︀
𝑓 iso(𝑑)

]︀
𝜀 �̄�tr, (A.9)

𝜕𝑌

𝜕𝑑
= −𝛽d, (A.10)

𝜕�̄�p

𝜕�̄�e,tr
= 𝑓𝑚�̄�tr ⊗ d𝛥𝜆p

d�̄�e,tr
+𝛥𝜆p

[︁
𝑓𝑚

]︁′
�̄�tr ⊗ d𝑑

d�̄�e,tr
+𝛥𝜆p𝑓𝑚 𝜕�̄�tr

𝜕�̄�e,tr
, (A.11)
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d𝜑
𝑓𝑚�̄�tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑
𝜕𝜑
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3
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, (A.14)

𝜕�̄�tr

𝜕�̄�e,tr
= ‖�̄�e,tr,iso‖−1

[︂
diag(1)− 1

3
𝐼 ⊗ 𝐼 − �̄�tr ⊗ �̄�tr

]︂
. (A.15)

where 𝜀 = ‖�̄�e,iso‖ is introduced as an abbreviation.
To compute the total derivatives of the Lagrangian, the implicit function theorem is

required. Application at a point where the local Newton-Raphson is converged allows the
specification of the required derivatives, such that

d𝛥𝜆p

d�̄�e,tr
= −det(J−1)

[︂
𝐽pd𝑓

𝛼 𝜕�̄�
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+ 2𝐺𝐽dd 𝑓

iso𝑓𝑚�̄�tr

]︂
, (A.16)

d𝛥𝜆d
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= det(J−1)

[︂
𝐽pp𝑓
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]︂
, (A.17)

d𝛥𝜆p

d𝜑
= det(J−1) 𝐽pd𝛽d𝑓

𝛼, (A.18)

d𝛥𝜆d

d𝜑
= −det(J−1) 𝐽pp𝛽d𝑓

𝛼, (A.19)

where the specific Jacobi components are presented in the next section.

A.2 Additional data for local material point iteration

For the implementation of the ductile damage model on the local material point level,
certain information have been omitted with in its respective section, see Sect. 4.5. To
compute the Jacobian within the local Newton-Raphson scheme of the active-set algorithm,
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the Jacobian J is required, see Fig. 4.3. The specific contributions of (4.106) read
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with the additional partial derivatives
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𝜕𝑑

𝜕𝛥𝜆d
= 𝑓𝛼. (A.28)

A.3 Remarks on the F-bar implementation

In [213] it was shown, that the used material model performs better regarding the nonlocal
damage regularisation by implementing the �̄� method [71, 210]. This method is generally
used to prevent volumetric locking in classic finite element (FE) environments to circumvent
the (numerically expensive) use of higher order elements. For plasticity, it is used to
prevent the overestimation in stiffness due to the deviatoric description of plasticity. Due
to its definition, implementation of the �̄� method is relatively simple to incorporate
in a standard FE environment. This method splits the deformation gradient 𝐹 into a
volumetric and isochoric part. The volumetric contribution in this method is exchanged
with its counterpart evaluated at the element centroid, such that

�̄� =

(︂
𝐽0
𝐽

)︂ 1
3

𝐹 (A.29)

with

𝐽 = det(𝐹 ) and 𝐽0 = det(𝐹0). (A.30)
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Consequently, evaluation of local material point data with this input requiring leads to
evaluation of tangent moduli data w.r.t. input �̄� . Since the derivatives w.r.t. the original
deformation gradient 𝐹 are required for the FE implementation, the total variation of �̄�
is required, i.e.
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)︂ 1
3 1

3

[︀
3𝐼 ⊗ 𝐼 − 𝐹 ⊗ 𝐹−𝑡

]︀
: 𝛿𝐹 +

(︂
𝐽0
𝐽

)︂ 1
3 1

3

[︀
𝐹 ⊗ 𝐹 0

−𝑡
]︀
: 𝛿𝐹 0

= C𝐹 : 𝛿𝐹 + C𝐹0
: 𝛿𝐹 0

(A.31)

Applying this for example to (4.82), leads to

𝐾𝜙𝜙
𝑒𝐴𝐶 =

�
B𝑒

0

[𝐼 ⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕𝑃

𝜕𝐹
· ∇𝑋𝑁𝜙

𝐶 d𝑉

+

�
B𝑒

0

[𝐼 ⊗∇𝑋𝑁𝜙
𝐴 ] :

𝜕𝑃

𝜕𝐹 0
· ∇𝑋𝑁𝜙

0,𝐶 d𝑉,

with

𝜕𝑃

𝜕𝐹
=

𝜕𝑃

𝜕𝐹

⃒⃒⃒⃒
𝐹=�̄�

: C𝐹 , (A.32)

𝜕𝑃

𝜕𝐹 0
=

𝜕𝑃

𝜕𝐹

⃒⃒⃒⃒
𝐹=�̄�

: C𝐹0
. (A.33)

Consequently, this applies to all derivatives w.r.t. the deformation gradient, i.e. 𝜕∙
𝜕𝐹 , and is

implicitly assumed, albeit not always directly mentioned. These also apply to the gradient
information derived in Chap. 5 and has been shown to work to be applicable in the field of
variational sensitivity analysis, cf. [99, 145, 146, 147]. The main benefit of this approach
is, that it only requires small adjustments at the element level, which does not alter the
constitutive equations at material point level.

A.4 Verification of the implemented model

To ensure the correct implementation of the presented ductile damage model within the
used FE environment, the simulation data resulting from the implementation within this
thesis is compared to the results from the original author [215]. To ensure the best accuracy,
the same boundary value problem is taken from the original authors, see Fig. 6.8 in Sect.
6.3, and resulting data can be compared in a one-to-one fashion. The force-displacement
curves are presented in Fig. A.1 and Fig. A.2. The results show almost perfect accordance,
indicating correct implementation. The small deviations are a result of slight alterations
in load application due to adjusted time step size.
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Figure A.1: Simulation data from [215] vs. results from the implemented model. The
geometry is the notched plate.
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Figure A.2: Simulation data from [215] vs. results from the implemented model. The
geometry is the plate with a hole.





Appendix B

Detailed derivation of sensitivity information

In this appendix, a detailed breakdown of the arising derivatives, which were omitted in
Chap. 5, are derived in detail.

B.1 History sensitivities

In Chap. 5 the history sensitivities were derived. This term describes how the system
reacts to a change in the history variables from the previous load step. In (5.17) and
(5.18) the derivatives of the first Piola-Kirchhoff stress tensor 𝑃K and the scalar nonlocal
damage driving force 𝑌 w.r.t. the history field ℎ𝑛 are required, which are derived in the
following. The history field consists of the tensor valued quantity 𝐶p−1, as well as the
two scalar valued variables 𝛼 and 𝑑. Since the model is computed in principal space, see
Sect. 4.6, the same notation regarding n-Tuples is utilised here as well.

The first contribution is the partial variation w.r.t. the inverse plastic right Cauchy
green tensor, i.e.

𝛿𝐶p−1
𝑛

𝑃K =
𝜕𝑃K

𝜕𝐶p−1
𝑛

: 𝛿𝐶p−1
𝑛 . (B.1)

To compute the necessary derivative, using the definition of the spatial Mandel stress and
relation (4.32), one can rewrite the above partial derivative, such that

𝜕𝑃K

𝜕𝐶p−1
𝑛

=
[︀
𝐼 ⊗ 𝐹−1

]︀
:

[︂
𝜕�̄�

𝜕𝐶p−1
𝑛

]︂
. (B.2)

Since the Mandel stress �̄� are defined and calculated in the principal space, the above
unknown derivative is split into two components using the chain rule

𝜕�̄�

𝜕𝐶p−1
𝑛

=
𝜕�̄�

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

, (B.3)

where the latter derivative can be specified as

𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

= [𝐼⊗𝐹 ] : [𝐹 · Isym] , (B.4)

189



190 Appendix B Detailed derivation of sensitivity information

with the symmetric 4th-order identity tensor

I
sym =

1

2
[𝐼⊗𝐼 + 𝐼⊗𝐼] . (B.5)

The latter derivative in (B.3) splits into the derivative of the eigenvalues and eigenvectors

𝜕�̄�

𝜕𝑏e,tr
=

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜕𝑚𝑖

𝜕𝑏e,tr𝑗

𝑃 𝑖 ⊗ 𝑃 𝑗 +

3∑︁
𝑖=1

𝑚𝑖
𝜕𝑃 𝑖

𝜕𝑏e,tr
, (B.6)

where the eigenprojections are introduced as

𝑃 𝑖 = 𝑛𝑖 ⊗ 𝑛𝑖. (B.7)

The first, scalar valued derivative can be computed using (A.7), such that

𝜕𝑚𝑖

𝜕𝑏e,tr𝑗

=
𝜕𝑚𝑖

𝜕𝜀e,tr𝑖

1

2
[︀
𝜆e,tr
𝑗

]︀2 . (B.8)

The remaining derivatives of the eigenprojections are purely kinematic and can be
derived by combination of Sylvester’s formula and the Cayley-Hamilton theorem, cf. [117],
which results for an arbitrary tensor 𝑇 with corresponding eigenvalues 𝜆 in

𝜕𝑃 𝑖

𝜕𝑇
=

𝜆𝑖

𝐷𝑖

[︂
I
sym − 𝐼 ⊗ 𝐼 +

1

𝜆𝑖
𝐽𝑇
3

[︀
I
sym
𝑇−1 + 𝑇−1 ⊗ 𝑇−1

]︀
+ 𝐼 ⊗ 𝑃 𝑖 + 𝑃 𝑖 ⊗ 𝐼

− 1

𝜆2
𝑖

𝐽𝑇
3

[︀
𝑇−1 ⊗ 𝑃 𝑖 + 𝑃 𝑖 ⊗ 𝑇−1

]︀
+

1

𝜆𝑖

[︂
1

𝜆𝑖
𝐷𝑖 −𝐷′

𝑖

]︂
𝑃 𝑖 ⊗ 𝑃 𝑖

]︂
,

(B.9)

with the helper terms

𝐷𝑖 = 2𝜆2
𝑖 − 𝜆𝑖 𝐽

𝑇
1 +

1

𝜆𝑖
𝐽𝑇
3 , (B.10)

𝐷′
𝑖 = 4𝜆𝑖 − 𝐽𝑇

1 −
1

𝜆2
𝑖

𝐽𝑇
3 , (B.11)

𝐽𝑇
1 = 𝜆1 + 𝜆2 + 𝜆3 = tr(𝑇 ), (B.12)

𝐽𝑇
3 = 𝜆1 𝜆2 𝜆3 = det(𝑇 ), (B.13)

I
sym
𝑇−1 = −1

2

[︀
𝑇−1⊗𝑇−1 + 𝑇−1⊗𝑇−1

]︀
. (B.14)

For the underlying problem in (B.6), 𝑇 = 𝑏e,tr and 𝜆 = [𝜆e,tr]
2 have to be inserted above.

It has to be noted, that this only holds for three distinctly different eigenvalues 𝜆e,tr
𝑖 . In

the implementation this is enforced by numerically perturbing the eigenvalues, if their
values are too similar. In turn, under certain conditions of the boundary value problem,
this might lead to slight errors in the resulting derivatives.

Following the same approach for the nonlocal scalar valued damage driving force 𝑌 ,
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incorporating (A.5), one gets

𝜕𝑌

𝜕𝐶p−1
𝑛

=

⎡⎣ 3∑︁
𝑖=1

𝜕𝑌

𝜕𝜀e,tr𝑖

1

2
[︀
𝜆e,tr
𝑗

]︀2𝑃 𝑖

⎤⎦ :
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

. (B.15)

Similar to (B.2), the partial variation of 𝑃K w.r.t 𝛼𝑛 reduces to the derivative of the
Mandel stresses, hence

𝜕𝑃K

𝜕𝛼𝑛
=

𝜕�̄�

𝜕𝛼𝑛
· 𝐹−𝑡. (B.16)

The first derivative has to be further split, and computation in principal space yields

𝜕�̄�

𝜕𝛼𝑛
=

𝜕�̄�

𝜕𝑑

𝜕𝑑

𝜕𝛼𝑛
+

𝜕�̄�

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝛼𝑛
, (B.17)

with the partial derivatives from (A.8) and (A.9). The partial derivatives of local damage
and plastic strains result in

𝜕�̄�p

𝜕𝛼𝑛
=

d𝛥𝜆p

d𝛼𝑛
𝑓𝑚�̄�tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝛼𝑛
�̄�tr, (B.18)

𝜕𝑑

𝜕𝛼𝑛
= 𝛥𝜆d

[︁
𝑓𝛼

]︁′ 𝜕𝛼

𝜕𝛼𝑛
+ 𝑓𝛼 d𝛥𝜆d

d𝛼𝑛
, (B.19)

𝜕𝛼

𝜕𝛼𝑛
= 1 +

√︂
2

3

d𝛥𝜆p

d𝛼𝑛
. (B.20)

To calculate the derivatives of the Lagrange multipliers w.r.t. 𝛼𝑛, one has to solve the
following system of equations by using the same implicit function theorem applied to the
converged local Newton-Raphson in Appendix A.2 and its Jacobian J, i.e.⎡⎢⎣

d𝛥𝜆p

d𝛼𝑛

d𝛥𝜆d

d𝛼𝑛

⎤⎥⎦ = − J−1 ·

⎡⎢⎣
𝜕𝛷p

𝜕𝛼𝑛

𝜕𝛷d

𝜕𝛼𝑛

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
𝜆p,𝜆d=const.

. (B.21)



192 Appendix B Detailed derivation of sensitivity information

The required derivatives of the dissipation potentials result in

𝜕𝛷p

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺

[︂
𝜀

[︂[︀
𝑓 iso

]︀′
𝑓𝑚 + 𝑓 iso

[︁
𝑓𝑚

]︁′]︂
−𝑓 iso𝑓𝑚𝛥𝜆p

[︁
𝑓𝑚

]︁′]︂ 𝜕𝑑

𝜕𝛼𝑛
−

√︂
2

3

𝜕𝛽

𝜕𝛼𝑛
, (B.22)

𝜕𝑑

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 𝛥𝜆d
[︁
𝑓𝛼

]︁′
, (B.23)

𝜕𝛽

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= ℎ𝑛p 𝛼
𝑛p−1, (B.24)

and

𝜕𝛷d

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝛼𝑛
𝑓𝛼 + 𝑞

[︁
𝑓𝛼

]︁′
+ 𝑞min [𝑓

𝑞]
′
𝑛d [1− 𝑓𝑞]

𝑛d−1 𝜕𝑑

𝜕𝛼𝑛
, (B.25)

𝜕𝑞

𝜕𝛼𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=

[︂
𝜕𝑞

𝜕𝑑
+ 2𝐺

[︀
𝑓 iso

]︀′
𝜀𝛥𝜆p

[︁
𝑓𝑚

]︁′]︂ 𝜕𝑑

𝜕𝛼𝑛
, (B.26)

𝜕𝑞

𝜕𝑑

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −𝐾

2

[︀
𝑓vol

]︀′′ [︀
𝜀e,vol

]︀2 −𝐺
[︀
𝑓 iso

]︀′′
𝜀2 − 𝛽d, (B.27)

using the partial derivative (A.27). The derivative of the scalar valued nonlocal damage
driving force reduces to

𝜕𝑌

𝜕𝛼𝑛
= −𝛽d

𝜕𝑑

𝜕𝛼𝑛
, (B.28)

using (B.19).
The same line of deduction, i.e. (B.16), is applied for the derivatives w.r.t. 𝑑𝑛, i.e.

𝜕𝑚

𝜕𝑑𝑛
=

𝜕�̄�

𝜕𝑑

𝜕𝑑

𝜕𝑑𝑛
+

𝜕�̄�

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝑑𝑛
, (B.29)

with

𝜕�̄�p

𝜕𝑑𝑛
=

d𝛥𝜆p

d𝑑𝑛
𝑓𝑚�̄�tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝑑𝑛
�̄�tr, (B.30)

𝜕𝑑

𝜕𝑑𝑛
= 1 +

d𝛥𝜆d

d𝑑𝑛
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ 𝜕𝛼

𝜕𝑑𝑛
, (B.31)

𝜕𝛼

𝜕𝑑𝑛
=

√︂
2

3

d𝛥𝜆p

d𝑑𝑛
. (B.32)
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Again, to solve for the derivatives of the Lagrange multipliers, the system of equation⎡⎢⎣
d𝛥𝜆p

d𝑑𝑛
d𝛥𝜆d

d𝑑𝑛

⎤⎥⎦ = − J−1 ·

⎡⎢⎣
𝜕𝛷p

𝜕𝑑𝑛
𝜕𝛷d

𝜕𝑑𝑛

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
𝜆p,𝜆d=const.

, (B.33)

has to be solved. The derivatives of the dissipation potentials herein read

𝜕𝛷p

𝜕𝑑𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺𝜀

[︂[︀
𝑓 iso

]︀′
𝑓𝑚 + 𝑓 iso

[︁
𝑓𝑚

]︁′]︂
− 2𝐺𝑓 iso𝑓𝑚𝛥𝜆p

[︁
𝑓𝑚

]︁′
, (B.34)

𝜕𝛷d

𝜕𝑑𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝑑𝑛
𝑓𝛼 + 𝑞min [𝑓

𝑞]
′
𝑛d [1− 𝑓𝑞]

𝑛d−1
, (B.35)

𝜕𝑞

𝜕𝑑𝑛

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝑑
+ 2𝐺

[︀
𝑓 iso

]︀′
𝜀𝛥𝜆p

[︁
𝑓𝑚

]︁′
. (B.36)

And applying this method to the derivative of 𝑌 , this leads to

𝜕𝑌

𝜕𝑑𝑛
= −𝛽d

𝜕𝑑

𝜕𝑑𝑛
, (B.37)

by using (B.31).

B.2 Geometric history sensitivity update

After computation of the sensitivity matrix S, an update for the history variations is
required. For the derivation of this update in (5.19), the derivatives of the three history
variables ℎ =

{︁
𝐶p−1,𝛼,𝑑

}︁
are required. They are derived and specified in the following

subsections.

B.2.1 Derivatives with respect to the deformation gradient

In order to compute the derivatives w.r.t. the deformation gradient 𝐹 , the chain rule is
applied, since only 𝑏e,tr is explicitly dependant on the deformation gradient. Therefore,
any derivative can be written as

𝜕ℎ

𝜕𝐹
=

𝜕ℎ

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐹
, (B.38)

with the latter resulting in

𝜕𝑏e,tr

𝜕𝐹
= 𝐼 ⊗𝐹 ·𝐶p−1

𝑛 + 𝐹 ·𝐶p−1
𝑛 ⊗ 𝐼, (B.39)

while the first derivative has to be specified for each respective history variable ℎ.
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Starting with the inverse plastic right Cauchy-Green deformation tensor, one obtains

𝜕𝐶p−1

𝜕𝐹
=

[︁
𝐼 ⊗

[︀
𝑏e · 𝐹−𝑡

]︀𝑡]︁
:
𝜕𝐹−1

𝜕𝐹
+ 𝐹−1 · 𝑏e · 𝜕𝐹

−𝑡

𝜕𝐹
+

[︀
𝐹−1⊗𝐹−1

]︀
:
𝜕𝑏e

𝜕𝐹
,

(B.40)

where the derivatives of the inverse, and inverse transposed deformation gradient read

𝜕𝐹−1

𝜕𝐹
= −𝐹−1⊗𝐹−𝑡, (B.41)

𝜕𝐹−𝑡

𝜕𝐹
= −𝐹−𝑡⊗𝐹−1, (B.42)

respectively. For the derivative of the elastic left Cauchy-Green tensor, application of the
chain rule again yields a known deformation gradient dependent quantity, and a quantity
dependant of the local model, i.e.

𝜕𝑏e

𝜕𝐹
=

𝜕𝑏e

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐹
. (B.43)

Application of the concept described in (B.6) regarding eigenvalues and -projections, leads
to

𝜕𝑏e

𝜕𝑏e,tr
=

3∑︁
𝑖=1

3∑︁
𝑗=1

exp(2 𝜀e𝑖 )
𝜕𝜀e𝑖
𝜕𝜀e,tr𝑗

1[︀
𝜆e,tr
𝑗

]︀2𝑃 𝑖 ⊗ 𝑃 𝑗 +

3∑︁
𝑖=1

exp(2 𝜀e𝑖 )
𝜕𝑃 𝑖

𝜕𝑏e,tr
, (B.44)

with

𝜕�̄�e

𝜕�̄�e,tr
= 𝐼 − 𝜕�̄�p

𝜕�̄�e,tr
, (B.45)

and the additional derivative already defined (A.11).
The derivatives of 𝛼 and 𝑑 require their respective evolution equations which in turn

leads to the derivative of the Lagrangian multiplier w.r.t. the trial elastic strains, i.e.

𝜕𝛼

𝜕𝑏e,tr
=

3∑︁
𝑖=1

𝜕𝛼

𝜕𝜀e,tr𝑖

1

2
[︀
𝜆e,tr
𝑖

]︀2𝑃 𝑖, (B.46)

𝜕𝑑

𝜕𝑏e,tr
=

3∑︁
𝑖=1

𝜕𝑑

𝜕𝜀e,tr𝑖

1

2
[︀
𝜆e,tr
𝑖

]︀2𝑃 𝑖, (B.47)

𝜕𝛼

𝜕�̄�e,tr
=

√︂
2

3

d𝛥𝜆p

d�̄�e,tr
, (B.48)

utilising (A.12) and (A.16).

Remark B.1 The line of deduction used in (B.38) can in this sense also be applied to
the material tangent 𝜕𝑃K/𝜕𝐹 within the stiffness contribution K𝜙𝜙

𝑒 , see (4.82). Since
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another derivation is utilised in the original paper to calculate this tangent term, it is
therefore possible to compare both results and verify their correct implementation.

B.2.2 Derivatives with respect to nonlocal damage

Following the same approach for the derivatives w.r.t. the nonlocal damage variable 𝜑,
the derivative for 𝐶p−1 reduces to

𝜕𝐶p−1

𝜕𝜑
= 𝐹−1 · 𝜕𝑏

e

𝜕𝜑
· 𝐹−𝑡, (B.49)

𝜕𝑏e

𝜕𝜑
=

3∑︁
𝑖=1

2 exp(2𝜀e𝑖 )
𝜕𝜀p𝑖
𝜕𝜑

𝑃 𝑖, (B.50)

which requires the derivate of the local principal plastic strains (A.13). The derivative
of local damage w.r.t. nonlocal damage is required for the tangent contributions and
therefore is already defined in (A.14). The derivative of 𝛼 finally reads

𝜕𝛼

𝜕𝜑
=

√︂
2

3

d𝛥𝜆p

d𝜑
, (B.51)

with the derivative of the Lagrangian multiplier (A.18).

B.2.3 Derivatives with respect to the history field

The computation of the derivatives w.r.t the history field from the previous load step
𝑛 follows in the same steps as the previous derivations and thus utilises many already
established quantities. For the derivatives w.r.t. 𝐶p−1

𝑛 , starting with 𝐶p−1, this leads to

𝜕𝐶p−1

𝜕𝐶p−1
𝑛

=
[︀
𝐹−1⊗𝐹−1

]︀
:

𝜕𝑏e

𝜕𝐶p−1
𝑛

. (B.52)

The unknown derivative can be easily computed by using the chain rule

𝜕𝑏e

𝜕𝐶p−1
𝑛

=
𝜕𝑏e

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

, (B.53)

which only consists of known quantities, i.e. (B.4) and (B.44).
The same applies to the internal hardening variable 𝛼 and the local damage 𝑑, i.e.

𝜕𝛼

𝜕𝐶p−1
𝑛

=
𝜕𝛼

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

, (B.54)

𝜕𝑑

𝜕𝐶p−1
𝑛

=
𝜕𝑑

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

, (B.55)

which both combine (B.4) with (B.46) and (B.47), respectively.
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The derivatives w.r.t. 𝛼𝑛 read

𝜕𝐶p−1

𝜕𝛼𝑛
= 𝐹−1 · 𝜕𝑏

e

𝜕𝛼𝑛
· 𝐹−𝑡, (B.56)

with

𝜕𝑏e

𝜕𝛼𝑛
=

3∑︁
𝑖=1

2 exp(2𝜀e𝑖 )
𝜕𝜀e𝑖
𝜕𝛼𝑛

𝑃 𝑖, (B.57)

𝜕�̄�e

𝜕𝛼𝑛
= − 𝜕�̄�p

𝜕𝛼𝑛
, (B.58)

where the latter derivative has been specified in (B.18). The remaining two derivatives
w.r.t. 𝛼𝑛, i.e. 𝜕𝛼/𝜕𝛼𝑛 and 𝜕𝑑/𝜕𝛼𝑛, can be found in (B.20) and (B.19), respectively.

Finally, the derivatives w.r.t. the damage variable from the previous load step result in

𝜕𝐶p−1

𝜕𝑑𝑛
= 𝐹−1 · 𝜕𝑏

e

𝜕𝑑𝑛
· 𝐹−𝑡, (B.59)

with

𝜕𝑏e

𝜕𝑑𝑛
=

3∑︁
𝑖=1

2 exp(2𝜀e𝑖 )
𝜕𝜀e𝑖
𝜕𝑑𝑛

𝑃 𝑖, (B.60)

𝜕�̄�e

𝜕𝑑𝑛
= −𝜕�̄�p

𝜕𝑑𝑛
, (B.61)

which is further specified in (B.30). The remaining two derivatives for the history update,
i.e. d𝛼/𝜕𝑑𝑛 and d𝑑/𝜕𝑑𝑛, can be found in (B.32) and (B.31), respectively.

B.3 Material sensitivity data

In Chap. 5, the derivatives of the nonlocal driving forces w.r.t. the constitutive parameters
mp are required. Due to the excessive number of material parameters within the considered
model, it was not feasible to list all the resulting derivatives in the specific section. Hence,
they are derived here. They are listed in contributing order, i.e. elastic, plastic, damage
and regularising, respectively. Only the pseudo load contributions are derived here, as the
derivation of the history derivatives is straightforward and can be found in its respective
section. The quantities here are listed for sake of completeness and no specific deduction
of applied methodology is made here, as it follows the same concepts as in the previous
section. Therefore, the relation 𝜕PK/𝜕∙ = 𝜕m̄/𝜕∙ · F−𝑡 has to considered as it is not
explicitly stated again in every following subsection. In contrast to the other derivatives in
this appendix, the following quantities in this section are explicitly discrete ones. Since the
material parameters are inherently discrete, the partial derivatives can only be computed
in a discrete manner as well.
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B.3.1 Elastic parameters

As done prior, the starting point is again the correlation between the spatial Mandel stress
and the first Piola-Kichhoff stress tensor, which in return requires the derivatives of the
Mandel stress w.r.t. the elastic material parameters, which read

𝜕m̄

𝜕𝐸
=

𝜕𝐾

𝜕𝐸
𝑓vol𝜀e,volĪ+ 2

𝜕𝐺

𝜕𝐸
𝑓 iso𝜀ν̄tr +

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝐸
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝐸
(B.62)

𝜕m̄

𝜕𝜈
=

𝜕𝐾

𝜕𝜈
𝑓vol𝜀e,volĪ+ 2

𝜕𝐺

𝜕𝜈
𝑓 iso𝜀ν̄tr +

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜈
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜈
, (B.63)

wherein already derived partial derivatives (A.8) and(A.9) are used. The additional partial
derivatives read

𝜕𝐾

𝜕𝐸
=

1

3− 6𝜈
and

𝜕𝐺

𝜕𝐸
=

1

2 [1 + 𝜈]
, (B.64)

𝜕𝐾

𝜕𝜈
=

2𝐸

3(2− 2𝜈)2
and

𝜕𝐺

𝜕𝜈
= − 𝐸

2 [1 + 𝜈]
2 , (B.65)

assuming 0 < 𝜈 < 0.5. The remaining derivatives yield

𝜕𝑑

𝜕𝐸
=

d𝛥𝜆d

d𝐸
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝐸
, (B.66)

𝜕ε̄p

𝜕𝐸
=

d𝛥𝜆p

d𝐸
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑
𝜕𝐸

ν̄tr, (B.67)

𝜕𝑑

𝜕𝜈
=

d𝛥𝜆d

d𝜈
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜈
, (B.68)

𝜕ε̄p

𝜕𝜈
=

d𝛥𝜆p

d𝜈
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑
𝜕𝜈

ν̄tr, (B.69)

The additional derivatives require the Lagrangian multipliers derivatives and hence appli-
cation of the implicit function theorem for the local Newton-Raphson, such that⎡⎢⎣

d𝛥𝜆p

d∙
d𝛥𝜆d

d∙

⎤⎥⎦ = − J−1 ·

⎡⎢⎣
𝜕𝛷p

𝜕∙
𝜕𝛷d

𝜕∙

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
𝜆p,𝜆d=const.

. (B.70)

The derivatives of the dissipation potentials read

𝜕𝛷p

𝜕𝐸

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2
𝜕𝐺

𝜕𝐸
𝑓 iso𝑓𝑚𝜀 and

𝜕𝛷d

𝜕𝐸

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝐸
𝑓𝛼, (B.71)

𝜕𝛷p

𝜕𝜈

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2
𝜕𝐺

𝜕𝜈
𝑓 iso𝑓𝑚𝜀 and

𝜕𝛷d

𝜕𝜈

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝜈
𝑓𝛼. (B.72)
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with the derivatives

𝜕𝑞

𝜕𝐸
= −1

2

𝜕𝐾

𝜕𝐸

[︀
𝑓vol

]︀′ [︀
𝜀e,vol

]︀2 − 𝜕𝐺

𝜕𝐸
𝑓 iso𝜀2, (B.73)

𝜕𝑞

𝜕𝜈
= −1

2

𝜕𝐾

𝜕𝜈

[︀
𝑓vol

]︀′ [︀
𝜀e,vol

]︀2 − 𝜕𝐺

𝜕𝜈
𝑓 iso𝜀2. (B.74)

The derivatives considering the scalar nonlocal driving in return yield

𝜕𝑌

𝜕𝐸
= −𝛽d

𝜕𝑑

𝜕𝐸
and

𝜕𝑌

𝜕𝜈
= −𝛽d

𝜕𝑑

𝜕𝜈
. (B.75)

B.3.2 Plastic parameters

This section considers the derivatives of the three plastic parameters 𝜎y0, ℎ and 𝑛p, i.e.
the yield stress, the hardening modulus and the hardening exponent, respectively. The
derivative of the spatial Mandel stress reads

𝜕m̄

𝜕𝜎y0
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜎y0
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜎y0
, (B.76)

𝜕m̄

𝜕ℎ
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕ℎ
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕ℎ
, (B.77)

𝜕m̄

𝜕𝑛p
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝑛p
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝑛p
, (B.78)

with the additional derivatives

𝜕𝑑

𝜕𝜎y0
=

d𝛥𝜆d

d𝜎y0
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜎y0
, (B.79)

𝜕ε̄p

𝜕𝜎y0
=

d𝛥𝜆p

d𝜎y0
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜎y0
ν̄tr, (B.80)

𝜕𝑑

𝜕ℎ
=

d𝛥𝜆d

dℎ
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

dℎ
, (B.81)

𝜕ε̄p

𝜕ℎ
=

d𝛥𝜆p

dℎ
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑
𝜕ℎ

ν̄tr, (B.82)

𝜕𝑑

𝜕𝑛p
=

d𝛥𝜆d

d𝑛p
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝑛p
, (B.83)

𝜕ε̄p

𝜕𝑛p
=

d𝛥𝜆p

d𝑛p
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝑛p
ν̄tr. (B.84)
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Again, the implicit function theorem is used, wherein the dissipation potentials read

𝜕𝛷p

𝜕𝜎y0

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −
√︂

2

3
and

𝜕𝛷d

𝜕𝜎y0

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0, (B.85)

𝜕𝛷p

𝜕ℎ

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −
√︂

2

3
𝛼𝑛p and

𝜕𝛷d

𝜕ℎ

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0, (B.86)

𝜕𝛷p

𝜕𝑛p

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −
√︂

2

3
ln(𝛼)𝛽 and

𝜕𝛷d

𝜕𝑛p

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0. (B.87)

The derivatives considering the scalar nonlocal driving in return yields

𝜕𝑌

𝜕𝜎y0
= −𝛽d

𝜕𝑑

𝜕𝜎y0
,

𝜕𝑌

𝜕ℎ
= −𝛽d

𝜕𝑑

𝜕ℎ
,

𝜕𝑌

𝜕𝑛p
= −𝛽d

𝜕𝑑

𝜕𝑛p
(B.88)

B.3.3 Damage parameters

The damage parameters make up more than half of the constitutive parameters. Therefore,
this section will be quite lengthy. The considered parameters for the derivatives here
are the damage rate factor 𝜂, the volumetric 𝜉vol and isochoric 𝜉iso damage factors, the
threshold factor 𝜉q, the effective stress factor 𝜉m, the coupling factor 𝜂𝛼, the damage
threshold 𝑞min and the damage exponent 𝑛d. The derivatives of the spatial Mandel stresses
read

𝜕m̄

𝜕𝜂
= −𝐾𝜉vol 𝑑 𝑓

vol𝜀e,volĪ− 2𝐺𝜉iso 𝑑 𝑓
iso𝜀ν̄tr +

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜂
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜂
, (B.89)

𝜕m̄

𝜕𝜉vol
= −𝐾𝜂 𝑑 𝑓vol𝜀e,volĪ+

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜉vol
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜉vol
, (B.90)

𝜕m̄

𝜕𝜉iso
= −2𝐺𝜂 𝑑 𝑓 iso𝜀ν̄tr +

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜉iso
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜉iso
, (B.91)

𝜕m̄

𝜕𝜉q
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜉q
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜉q
, (B.92)

𝜕m̄

𝜕𝜉m
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜉m
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜉m
, (B.93)

𝜕m̄

𝜕𝜂𝛼
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝜂𝛼
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝜂𝛼
, (B.94)

𝜕m̄

𝜕𝑞min
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝑞min
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄p

𝜕𝑞min
, (B.95)

𝜕m̄

𝜕𝑛d
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝑛d
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝑛d
, (B.96)

(B.97)
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with

𝜕𝑑

𝜕𝜂
=

d𝛥𝜆d

d𝜂
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜂
, (B.98)

𝜕ε̄p

𝜕𝜂
= − [𝛥𝜆p]

2
𝜉m 𝑑 𝑓𝑚 1 + 𝜖

[𝑓𝑚 + 𝜖]
2 ν̄

tr +
d𝛥𝜆p

d𝜂
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑
𝜕𝜂

ν̄tr, (B.99)

𝜕𝑑

𝜕𝜉vol
=

d𝛥𝜆d

d𝜉vol
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜉vol
, (B.100)

𝜕ε̄p

𝜕𝜉vol
=

d𝛥𝜆p

d𝜉vol
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜉vol
ν̄tr, (B.101)

𝜕𝑑

𝜕𝜉iso
=

d𝛥𝜆d

d𝜉iso
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜉iso
, (B.102)

𝜕ε̄p

𝜕𝜉iso
=

d𝛥𝜆p

d𝜉iso
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜉iso
ν̄tr, (B.103)

𝜕𝑑

𝜕𝜉q
=

d𝛥𝜆d

d𝜉q
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜉q
, (B.104)

𝜕ε̄p

𝜕𝜉q
=

d𝛥𝜆p

d𝜉q
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜉q
ν̄tr, (B.105)

𝜕𝑑

𝜕𝜉m
=

d𝛥𝜆d

d𝜉m
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜉m
, (B.106)

𝜕ε̄p

𝜕𝜉m
= − [𝛥𝜆p]

2
𝜂 𝑑 𝑓𝑚 1 + 𝜖

[𝑓𝑚 + 𝜖]
2 ν̄

tr +
d𝛥𝜆p

d𝜉m
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜉m
ν̄tr,

(B.107)

𝜕𝑑

𝜕𝜂𝛼
=

[︀
𝛥𝜆d

]︀2
𝑓𝛼 1 + 𝜖

[𝑓𝛼 + 𝜖]
2 +

d𝛥𝜆d

d𝜂𝛼
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝜂𝛼
, (B.108)

𝜕ε̄p

𝜕𝜂𝛼
=

d𝛥𝜆p

d𝜂𝛼
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝜂𝛼
ν̄tr, (B.109)

𝜕𝑑

𝜕𝑞min
=

d𝛥𝜆d

d𝑞min
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝑞min
, (B.110)

𝜕ε̄p

𝜕𝑞min
=

d𝛥𝜆p

d𝑞min
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝑞min
ν̄tr, (B.111)

𝜕𝑑

𝜕𝑛d
=

d𝛥𝜆d

d𝑛d
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝑛d
, (B.112)

𝜕ε̄p

𝜕𝑛d
=

d𝛥𝜆p

d𝑛d
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝑛d
ν̄tr. (B.113)
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For the derivatives of the Lagriangian multipliers, following the implicit function theorem,
the derivatives of the dissipation potentials read

𝜕𝛷p

𝜕𝜂

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺𝜀

[︃
𝜕𝑓 iso

𝜕𝜂
𝑓𝑚 + 𝑓 iso 𝜕𝑓

𝑚

𝜕𝜂

]︃
− 2𝐺𝑓𝑚𝑓 iso𝛥𝜆p 𝜕𝑓

𝑚

𝜕𝜂
, (B.114)

𝜕𝛷d

𝜕𝜂

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −𝜕𝑞

𝜕𝜂
𝑓𝛼 − 𝑞min 𝑛d [1− 𝑓𝑞]

𝑛d−1
𝜉q 𝑑𝑓

𝑞, (B.115)

𝜕𝛷p

𝜕𝜉vol

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0 and
𝜕𝛷d

𝜕𝜉vol

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝜉vol
𝑓𝛼, (B.116)

𝜕𝛷p

𝜕𝜉iso

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −2𝐺𝜂 𝑑 𝑓 iso𝑓𝑚𝜀 and
𝜕𝛷d

𝜕𝜉iso

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=
𝜕𝑞

𝜕𝜉iso
𝑓𝛼,

(B.117)

𝜕𝛷p

𝜕𝜉q

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0 and
𝜕𝛷d

𝜕𝜉q

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −𝑞min𝑛d [1− 𝑓𝑞]
𝑛d−1

𝑑 𝜂𝑓𝑞,

(B.118)

𝜕𝛷p

𝜕𝜉m

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺𝑓 iso
[︁
𝜀− 𝑓𝑚𝛥𝜆p

]︁ 𝜕𝑓𝑚

𝜕𝜉m
, (B.119)

𝜕𝛷d

𝜕𝜉m

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺
[︀
𝑓 iso

]︀′
𝛥𝜆p 𝜕𝑓

𝑚

𝜕𝜉m
𝜀𝑓𝛼, (B.120)

𝜕𝛷p

𝜕𝜂𝛼

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 2𝐺𝛥𝜆p 𝜕𝑓
𝛼

𝜕𝜂𝛼

[︂[︀
𝑓 iso

]︀′
𝑓𝑚𝜀+ 𝑓 iso

[︁
𝑓𝑚

]︁′ [︁
𝜀− 𝑓𝑚𝛥𝜆p

]︁]︂
,

(B.121)

𝜕𝛷d

𝜕𝜂𝛼

⃒⃒⃒⃒
𝜆p,𝜆d=const.

=

[︂
𝑞 − 𝑓𝛼 𝜕𝑞

𝜕𝑑
𝛥𝜆p + 𝑞min 𝑛d [1− 𝑓𝑞]

𝑛d−1
[𝑓𝑞]

′
𝛥𝜆d

]︂
𝜕𝑓𝛼

𝜕𝜂𝛼
,

(B.122)

𝜕𝛷p

𝜕𝑞min

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0 and
𝜕𝛷d

𝜕𝑞min

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= −𝑞min ln(1− 𝑓𝑞) [1− 𝑓𝑞]
𝑛d ,

(B.123)

𝜕𝛷p

𝜕𝑛d

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0 and
𝜕𝛷d

𝜕𝑛d

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= − [1− 𝑓𝑞]
𝑛
d . (B.124)
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with the additional partial derivatives

𝜕𝑞

𝜕𝜂
= −1

2
𝐾

𝜕
[︀
𝑓vol

]︀′
𝜕𝜂

[︀
𝜀e,vol

]︀2 −𝐺
𝜕
[︀
𝑓 iso

]︀′
𝜕𝜂

𝜀2 + 2𝐺
[︀
𝑓 iso

]︀′
𝜀𝛥𝜆p 𝜕𝑓

𝑚

𝜕𝜂
, (B.125)

𝜕𝑓𝑚

𝜕𝜂
= 𝜉m 𝑑 𝑓𝑚 1 + 𝜖

[𝑓𝑚 + 𝜖]
2 , (B.126)

𝜕
[︀
𝑓vol

]︀′
𝜕𝜂

= −𝜉vol 𝑓vol − 𝜉vol 𝑑
[︀
𝑓vol

]︀′
, (B.127)

𝜕
[︀
𝑓 iso

]︀′
𝜕𝜂

= −𝜉iso 𝑓 iso − 𝜉iso 𝑑
[︀
𝑓 iso

]︀′
, (B.128)

𝜕𝑞

𝜕𝜉vol
=

1

2
𝐾𝜂

[︁
𝑓vol + 𝑑

[︀
𝑓vol

]︀′]︁ [︀
𝜀e,vol

]︀2
, (B.129)

𝜕𝑞

𝜕𝜉iso
= 𝐺𝜂

[︁
𝑓 iso + 𝑑

[︀
𝑓 iso

]︀′]︁
𝜀2, (B.130)

𝜕𝑓𝑚

𝜕𝜉m
= 𝜂 𝑑 𝑓𝑚 1 + 𝜖

[𝑓𝑚 + 𝜖]
2 , (B.131)

𝜕𝑓𝛼

𝜕𝜂𝛼
= 𝛼 𝑓𝛼 1 + 𝜖

[𝑓𝛼]
2 . (B.132)

The derivatives for the scalar nonlocal driving force can be computed using the quantities
derived beforehand, such that

𝜕𝑌

𝜕𝜂
= −𝛽d

𝜕𝑑

𝜕𝜂
,

𝜕𝑌

𝜕𝜉vol
= −𝛽d

𝜕𝑑

𝜕𝜉vol
,

𝜕𝑌

𝜕𝜉iso
= −𝛽d

𝜕𝑑

𝜕𝜉iso
, (B.133)

𝜕𝑌

𝜕𝜉q
= −𝛽d

𝜕𝑑

𝜕𝜉q
,

𝜕𝑌

𝜕𝜉m
= −𝛽d

𝜕𝑑

𝜕𝜉m
,

𝜕𝑌

𝜕𝜂𝛼
= −𝛽d

𝜕𝑑

𝜕𝜂𝛼
, (B.134)

𝜕𝑌

𝜕𝑞min
= −𝛽d

𝜕𝑑

𝜕𝑞min
,

𝜕𝑌

𝜕𝑛d
= −𝛽d

𝜕𝑑

𝜕𝑛d
. (B.135)

B.3.4 Regularisation parameters

Finally, the parameters contributing to the nonlocal regularisation have to be considered.
However, the regularisation parameter 𝑐d is only included in the nonlocal damage driving
force 𝑌 and the derivatives already specified in Sect. 5.5. Therefore, only 𝛽d has to be
considered here.

𝜕m̄

𝜕𝛽d
=

𝜕m̄

𝜕𝑑

𝜕𝑑

𝜕𝛽d
+

𝜕m̄

𝜕ε̄p
· 𝜕ε̄

p

𝜕𝛽d
. (B.136)
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with the additional derivatives

𝜕𝑑

𝜕𝛽d
=

d𝛥𝜆d

d𝛽d
𝑓𝛼 +𝛥𝜆d

[︁
𝑓𝛼

]︁′ √︂2

3

d𝛥𝜆p

d𝛽d
, (B.137)

𝜕ε̄p

𝜕𝛽d
=

d𝛥𝜆p

d𝛽d
𝑓𝑚ν̄tr +𝛥𝜆p

[︁
𝑓𝑚

]︁′ 𝜕𝑑

𝜕𝛽d
ν̄tr. (B.138)

Again, the implicit function theorem is used, wherein the derivatives of the dissipation
potentials read

𝜕𝛷p

𝜕𝛽d

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= 0 and
𝜕𝛷d

𝜕𝛽d

⃒⃒⃒⃒
𝜆p,𝜆d=const.

= [𝜑− 𝑑] 𝑓𝛼. (B.139)

The derivative considering the scalar nonlocal driving finally yields

𝜕𝑌

𝜕𝛽d
= 𝜑− 𝑑− 𝛽d

𝜕𝑑

𝜕𝛽d
. (B.140)

B.4 Compliance sensitivities

For the implementation of the compliance 𝐶 into the optimisation process, the gradients
are required and derived by its total variation, see (5.77). Therein, the partial derivatives
of the compliance w.r.t. several quantities are not specified, which are derived here
instead. The two elastic contributions to the local Helmholtz energy are combined into
𝛹 el = 𝛹vol + 𝛹 iso within the following equations. Since many of these upcoming equations
utilise already established derivatives from the previous sections, their computation is
straightforward.

The derivative w.r.t. the deformation gradient 𝐹 is split, like established in (B.38), by
utilising the chain rule, such that

𝜕𝛹 el

𝜕𝐹
=

𝜕𝛹 el

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐹
. (B.141)

The latter derivative has been derived in (B.39), while the former results in

𝜕𝛹 el

𝜕𝑏e,tr
=

3∑︁
𝑖=1

𝜕𝛹 el

𝜕𝜀e,tr𝑖

1

2
[︀
𝜆e,tr
𝑗

]︀2𝑃 𝑖. (B.142)

The derivative therein can be decomposed into three additive terms, i.e.

𝜕𝛹 el

𝜕�̄�e,tr
=

𝜕𝛹 el

𝜕�̄�e,tr
+

𝜕𝛹 el

𝜕𝑑

𝜕𝑑

𝜕�̄�e,tr
+

𝜕𝛹 el

𝜕�̄�p
· 𝜕�̄�p

𝜕�̄�e,tr
(B.143)
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with

𝜕𝛹 el

𝜕�̄�e,tr
= �̄�, (B.144)

𝜕𝛹 el

𝜕𝑑
=

𝐾

2

[︀
𝑓vol

]︀′ [︀
𝜀e,vol

]︀2
+ 2𝐺

[︀
𝑓 iso

]︀′
𝜀e,iso : 𝜀e,iso, (B.145)

𝜕𝛹 el

𝜕�̄�p
= −2𝐺𝑓 iso�̄� �̄�tr, (B.146)

and (A.11) and (A.12). Using these partial derivatives, as well as (A.13) and (A.14), the
total derivative w.r.t. 𝜑 can be written as

𝜕𝛹 el

𝜕𝜑
=

𝜕𝛹 el

𝜕𝑑

𝜕𝑑

𝜕𝜑
+

𝜕𝛹 el

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝜑
. (B.147)

Finally, the derivatives w.r.t. the history variables of the previous load step ℎ𝑛 can be
decomposed into only known quantities, i.e.

𝜕𝛹 el

𝜕𝐶p−1
𝑛

=
𝜕𝛹 el

𝜕𝑏e,tr
:
𝜕𝑏e,tr

𝜕𝐶p−1
𝑛

, (B.148)

𝜕𝛹 el

𝜕𝛼𝑛
=

𝜕𝛹 el

𝜕𝑑

𝜕𝑑

𝜕𝛼𝑛
+

𝜕𝛹 el

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝛼𝑛
, (B.149)

𝜕𝛹 el

𝜕𝑑𝑛
=

𝜕𝛹 el

𝜕𝑑

𝜕𝑑

𝜕𝑑𝑛
+

𝜕𝛹 el

𝜕�̄�p
· 𝜕�̄�

p

𝜕𝑑𝑛
. (B.150)



Appendix C

Additional results related to Part I

In this appendix, additional research results which relate to the academic challenges can
be found.

C.1 Validation for the geometric optimisation

In [103] from the author of this thesis, shape optimisation was applied to a different
regularised nonlocal damage model. The presented model therein is not derived here
for the purpose of coherence. Instead, a parameter identification (PI) for the model in
this thesis is conducted in Appendix C.1.1, which enables reproduction of the results.
Nonetheless, in that work, the generated shapes were 3d printed with PLA and subsequently
tested in micro tensile tests to qualitatively validate the presented work. Application of
this approach to the results in the previous section are difficult. Since the model described
in Sect. 4 is derived for metals, e.g. DP800, in mind and the optimisation conducted with
those respective parameters, 3d-printed specimen with PLA cannot accurately represent
the simulated results. While similar manufacturing methods for metals exist, its application
to validate the previously generated structures is difficult. Selective Laser Melting (SLM)
[89, 239] for example creates components by using metal powder and a laser to melt this
powder at specific points on a 2d surface. After hardening the process is continued in a
3d space by printing further layers in height direction, similar to 3d printing with PLA.
Since in this case the metal powder melts and solidifies, the material characteristics no
longer coincides with the parameters used for sheet metals in this work. So, in theory, a
validation is possible, but a different material model has be considered. Alternatively, the
description by the underlying Computer Aided Geometric Design (CAGD) model could
be simplified to enable machining of the optimised geometries, cf. [145, 146, 147], which
allows further utilisation of the ductile damage model. However, this exceeds the scope of
this work and therefore is not further followed.

C.1.1 Parameter identification

Since the material model in [103] only considers damage, the material model in this work
can closely capture the same effects by disabling plasticity. Utilisation of the material
sensitivities from Chap. 5 allows PI, aiming to reproduce the material behaviour from the
cited work. In theory, the results from the shape optimisation [103] could be reproduced
with this model, using the identified parameters. However, since this is not the aim of this
work as metals are the considered material. The presented PI is only applied to allow a

205
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transfer of the methodology described in this work to the results in [103] and therefore
mainly motivates the next section.

The optimisation problem utilises the objective function described in (5.81) and therefore
reads

minimise
mp,l≤mp≤mp,u

JF =

𝑇∑︁
𝑡=1

𝑤𝑡

[︀
𝐹 sim
𝑡 (mp)− 𝐹 exp

𝑡

]︀2
, (C.1)

where 𝐹 sim
𝑡 (mp) are the forces from the model described in this work, and 𝐹 exp

𝑡 the forces
from the model in [103]. Note, that the "experimental" sample points in this objective
are not gathered from experiments but are the results of simulations with the material
model of the cited work. The boundary value problem is identical, i.e. the plate with a
hole, and the loading is prescribed accordingly. Two different sampling sizes are used and
compared. A fine sampling of 100 load steps, which coincides with the original applied
load steps, and a coarse sampling of only 10 steps are chosen. Since plasticity shall not be
considered within the modelling here, it has to be disabled. How this accomplished for
the model was already presented in Sect. 5.8 and Sect. 6.2.3. The weights 𝑤𝑡 = 1 are
chosen for simplicity.

The specific design variables to be fitted in this PI are listed in Table C.1, together with
lower and upper bounds. The initial guess and optimal solutions for both sampling sizes
are also depicted. The initial guess for this PI uses the parameter set for the model within
[103]. The parameters which coincide with plasticity or the coupling between damage and
plasticity are omitted within the optimisation. The same is true for the penalty parameter
𝛽d = 500, which is held constant. The damage rate factor 𝜂 = 1 is chosen as such a
parameter is not present in the cited work. Finally, the damage function [1 − 𝑓𝑞]𝑛d is
disabled in the damage dissipation potentials by setting 𝑛d = 0. Since the referenced
work does not utilise such an approach, fitting with it enabled is not advisable. The
optimisation is achieved using lsqnonlin, a solver within the Matlab toolbox explicitly
intended to solve nonlinear least-square problems, such as (C.1).

Table C.1: Overview of the parameter identification.

s sl su initial optimum (10) optimum (100)

𝐸/MPa 0.5× 103 1× 103 0.7× 103 0.7166× 103 0.7166× 103

𝜈 0.15 0.3 0.2 0.3 0.3
𝜉vol 0.5 2.0 0.9 0.5 0.5
𝜉iso 0.5 2.0 0.9 1.0924 1.0948
𝑞min/MPa 1 5 2.2 2.4333 2.4378
𝑐d/N 1 5 3 5 5

The resulting load displacement curves are depicted in Fig. C.1, together with the
iterative process. While a perfect match could not be achieved, the results are nonetheless
sufficiently close, resulting in a relative improvement compared to the initial guess of
99.04% for the coarse and 98.96% for the fine sample size. The relatively large remaining
objective value in the fine sampled optimisation is a result of the large number of compared
values, which results in the significantly lower value for the coarse problem. Since the
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coarse sampling leads to large linear segments in the load displacement curve between
each computed load step, the solution is computed again with the same fine time load step
size. However, since both identifications almost yield the same results, see Table C.1, the
curves of the fine sampling and the recalculated solution in the load displacement curves
almost coincide.

Figure C.1: Results of the parameter identification: a) The load displacement curves. b)
The objective over iterations for both sampling sizes.

In addition to the numerical verification within Sect. 5.8, this successful PI with
gradient-based methods further proofs the correct implementation of the derived material
sensitivities. Naturally, the problem could be enhanced. For example, including the
displacements u or simulated nonlocal damage fields ϕ within the objective function could
further enhance the fitting. However, these enhancements are not performed here. This
PI on the one hand only aims to show another application for the material sensitivities
derived in Chap. 5 and on the other acts as a stepping stone to motivate the next section,
and couple the results with the work presented in this thesis.

Remark C.1 The model in [103] uses a Fischer-Burmeister approach [76, 196] to solve
the global KKT conditions due to the introduction of the nonlocal formulation. This
is an alternative to the micromorphic approach presented in Chap. 4 and circumvents
the need for a local damage formulation. This in turn no longer requires the history
variation in Chap. 5 and therefore the updated optimisation framework. However, the
global Fischer-Burmeister approach requires an additional global assembly of its residual.
Even with the reduction in other computational requirements, i.e. the local damage model,
the micromorphic approach is still more efficient than the global Fischer-Burmeister. The
additional assembly of the global Fischer-Burmeister residual is computationally more
expensive than the solving the local damage model.
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C.1.2 Shape optimisation applied to nonlocal damage

For the validation, four optimisation problems are calculated, using the same objectives
described in Sect. 5.6. For a damage optimisation the problems read

minimise
sl≤s≤su

Jd = ‖d(s)‖2

subject to 𝑉 (s) = 𝑉0,
(C.2)

and

minimise
sl≤s≤su

Jd‖d(s)‖2

subject to 𝑉 (s) = 𝑉0

𝑑𝑖(s) ≤ 𝑑crit.

(C.3)

For a compliance optimisation, the problems

minimise
sl≤s≤su

JC = 𝐶(s)

subject to 𝑉 (s) = 𝑉0,
(C.4)

and

minimise
sl≤s≤su

JC = 𝐶(s)

subject to 𝑉 (s) = 𝑉0

𝑑𝑖(s) ≤ 𝑑crit,

(C.5)

are optimised. Since in this model the damage variable 𝑑 is a nonlocal quantity, it
exchanges the 𝜑 in the model presented throughout this work. The CAGD and boundary
value problem are nearly the same as in Fig. 6.1 and Fig. 6.2. However, the design space
in thickness direction is restricted such that a change in thickness is prohibited. This eases
with the 3d-printing of the specimen and therefore the validation. The resulting shapes
are presented in Fig. C.2 for the damage optimisation and Fig. C.3 for the compliance
optimisation.

Comparing the results of the damage optimisation to the ones in Sect. 6.2.2 shows a
large discrepancy for the unconstrained optimisation. The purely damage optimisation
does not show the excessive localisation behaviour of (6.1) in Fig. 6.3a). While a small
amount of localisation of damage occurs in the lower left part of the plate, it is not as
pronounced. The damage constrained optimisation however, is very similar to Fig. 6.3d),
i.e. the lower part of the plate is very large, while the plate gets thinner in the middle.
Furthermore, the right-side edge is curved similarly. Only the left side shows a different
behaviour, wherein the new design has a minimised width on the left edge of the plate.

While no compliance optimisation with damage constrained was computed in Sect. 6.2.3,
the volume constrained optimisation (C.4) is quite similar. Both solutions straighten the
lower part of the plat and remove a lot of curvature in the central hole. This curvature is
pushed upwards, limited by the bounds of the respective design variables. This creates
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an elliptic hole in the centre. The optimisation problem (C.5) includes an additional
nodal damage constraint. The resulting geometry therefore is more akin to the damage
optimisation of (C.3), i.e. the outer and inner edges of the plate are curved. However,
to increase the stiffness, the lower plate is not shifted to the right and additionally the
overall cross-section is maximised.

C.1.3 Experimental data from 3d-printed samples

With the optimised geometries at hand, physical specimens are created by means of 3d
printing with PLA. Thereby, the simulated response is validated with experimental data.
A photo of the specimens is displayed in Fig. C.4a). The physically printed specimens
match the numerically determined geometry, but have a longer section attached to the
discretised domain in order to clamp the specimens in the micro-tension device, see Fig.
C.4b). The specimens are loaded by displacement controlled monotonous tension. Due
to the limitations of the material model considered at this stage, the accurate behaviour
of PLA cannot be reproduced exactly in the simulations. The material parameters used
during the optimisation are manually fitted by using the experimental data of the reference
geometry in such a way that the point of damage initiation and evolution of damage can be
predicted, see Fig. C.5a). The experimental specimens are generated from the optimised
CAGD by exporting .stl-files — a file-format often used in 3d-printing — which are
then used to generate the data for the 3d printer.

During optimisation, the maximum prescribed displacement in the simulation is 𝑢pre =
0.5mm. However, the samples in the experiments are loaded until failure. In order to
enable a proper comparison, the simulations are continued until a prescribed displacement
of 𝑢pre = 1.5mm is reached.

The results for the comparison of the damage optimised sample is presented in Fig. C.5b).
The validation of the geometries obtained from the damage minimisation focuses solely on
the geometry resulting from the optimisation with constrained damage, since both shapes

Figure C.2: Optimised geometries for the two approaches of two objective functions related
to damage minimisation: The volume constrained on the left and the volume and damage
constrained on the right. The contour plots show the undeformed design with the damage
state after load application.
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Figure C.3: Results for the compliance optimisation. The left contour plot shows the
volume constrained problem, whereas the right is based on the objective function that
constrains damage to a maximum value of 𝑑crit = 0.8.

Figure C.4: a) 3d-printed specimens. The geometries from left to right: Reference, damage
optimised with volume and damage constraint, compliance optimised with volume constraint,
and compliance optimised with volume and damage constraint. b) Micro tensile machine
used for the experiments of the 3d-printed specimens.

of the optimised geometries from damage minimisation only differ slightly. Qualitatively,
the response of the simulation shows a good agreement with the experimentally obtained
result. Especially in comparison to the reference geometry, the same trend in the force-
displacement response can be observed. The stiffness is reduced slightly, while the point
of peak force is reached at higher (displacement) loading level. In addition, the force peak
becomes less sharp, albeit not as much as in the experiments. The small force plateau
observed in the experimental data can most likely be attributed to plastic effects which,
however, are not considered in the simulation.

The compliance optimised results in Fig. C.6 show the desired increased stiffness.
The experimental data of the test with the geometry corresponding to the compliance
optimisation without the damage constraint in Fig. C.6a) displays an even higher stiffness
than predicted by the simulation. However, while the maximum reaction forces are
drastically increased, damage seemingly starts to evolve very quickly leading to fracture
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Figure C.5: Experimental results for the validation with the corresponding simulation
displayed in red. a) The results for the reference geometry and b) the results for the damage
optimisation with the additional damage constraints.

Figure C.6: Experimental results for the validation of the compliance optimisation. a)
The results for the minimisation with only a volume constraint and b) with the additional
damage constraints.
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shortly after damage initiation. This cannot be directly predicted by the model, where
only a steady loss of stiffness can be modelled.

Concerning the tendency of the force-displacement response in comparison with the
reference geometry, a good agreement between experiments and simulation for the geometry
with optimised compliance subject to a damage constraint is obtained, see Fig. C.6b).
The initial stiffness of reference and optimised geometry nearly coincide and the maximum
reaction forces also reach a similar value. However, the plateau observed in the experimental
response cannot be predicted with this model. Overall, the comparison between reference
and optimised geometries reveals — with limited applicability of the material model
towards PLA — a good validation of the optimisation response. The analysed optimised
geometries all confirm the tendencies of the simulations.

C.2 Raw material sensitivity data

This section includes additional data for the material parameter study in Sect. 6.3. Fig.
C.7 and Fig. C.8 depict the raw sensitivity data for the notched plate and the plate with
a hole, respectively. Fig. C.9 and Fig. C.10 depict the respective load paths, i.e. load step
over applied external displacement.
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Figure C.7: Raw material sensitivity data for the notched plate. Load steps increasing
from top to bottom.
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Figure C.8: Raw material sensitivity data for the plate with a hole. Load steps increasing
from top to bottom.
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Figure C.9: Applied iterative maximal displacement over time load steps for the notched
plate.
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Figure C.10: Applied iterative maximal displacement over time load steps for the plate
with a hole.
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Additional results related to Part II

In this appendix, further optimisation results for all three optimised forming processes in
Chap. 10 can be found.

D.1 Rod extrusion

In order to validate the results for the optimisation of the forward hollow extrusion process,
experiments are to be conducted. However, due the limited number of available tools
for the underlying process, an additional optimisation problem is stated. Therein, the
extrusion strain is upper bounded by the value of 𝜀ex,u = 1.0, since most of the available
tool sets can achieve comparable extrusion strains close to this value. The optimisation
problem for the experimental validation thus reads

minimise
sl≤s2≤su

Jre = 𝜂mean(s2)

subject to 0.2 ≤ 𝜀ex(𝑟m,𝑟1) ≤ 1.0,
(D.1)

with the same set of design variables as the previous optimisation. The initial parameters
are chosen according to available tool sets, i.e. 𝑟1 = 13.575mm, 𝑟m = 9.5mm and
2𝛼 = 60∘, respectively. The optimal process parameters generated for the above problem
and the given initial value are listed in Table D.1. However, the resulting parameters
are not explicitly convertible to available tool sets. As a result, close sets have to be
chosen for the comparison of the initial and optimal solution within the experiments. The
approximated parameters are listed under "approx." in Table D.1. The shoulder angle 2𝛼
and final extrusion radius 𝑟1 are similar to the generated results. However, the mandrel
radius is significantly larger by 𝑟apprm = 0.8mm, which leads to a larger extrusion strain of
𝜀apprex = 1.076. Nonetheless, since only the optimisation is to be validated qualitatively,
the approximately chosen tool sets should suffice.

The extrusion experiments are performed using a hydraulic press of model HZPUJ
260/160-1000/100 by manufacturer SMG at room temperature, employing a punch velocity
of 10mm/s. Billets made of 16MnCrS5 are machined to an outer diameter 𝑑0 = 30mm,
and the inner hole is drilled to accommodate the mandrel’s diameter. Subsequently, the
billets underwent sandblasting and are coated with a MoS2-containing lubricant Bechem
Beruforge 191. Following extrusion, the produced parts are ejected using an ejector punch.
The manufactured parts are shown in Fig. D.1a).

215



216 Appendix D Additional results related to Part II

Table D.1: The parameters for the optimisation concerning the validation. The last column
depicts the choosen tools which are available and close to the optimised results in column
four.

s dependent fixed initial optimal approx.

- - 𝑟0/mm 15.1 15.1 15.1
𝑟1/mm - - 13.575 12.585 12.9
𝑟m/mm - - 9.5 10.841 11.6
- 𝜀ex - 0.382 0.991 1.076
2𝛼/∘ - - 60 37.855 30

Fig. D.1: (a) Manufactured parts with initial
parameter set as well as the tool set at hand
with values closest to the optimised parameter
set and (b) corresponding void area fractions
measured by SEM investigations.

To quantify void areas, the parts are lon-
gitudinally cut and examined through scan-
ning electron microscopy (SEM). A compre-
hensive approach involving both SEM and
automated energy dispersive X-ray spec-
troscopy (EDX), detailed in [110], is em-
ployed to acquire data on void area frac-
tions. The EDX method facilitates the dif-
ferentiation between voids and materials,
such as Al2O3-particles, which exhibited
similar grayscale values in SEM images. To
ensure statistically significant measurement
areas, a total of 450 individual micrographs
are scanned, resulting in a measurement
area of 1.28mm2 for each measurement.
These areas for measurements are located
at the inner radius of the extrudate, align-
ing with the positions assessed in numerical
investigations, see Fig. 10.1). For the ex-
trudate with the initial parameter set, a
grid of 15 by 30 micrographs is utilized,
while a grid of nine by 50 micrographs was

used for the part representing the optimised parameter set to maintain a proportional
coverage of the wall thickness. These experiments and measurements were conducted by
Robing Gitschel at IUL, TU Dortmund University; for additional details, see [90].

The void area fraction demonstrates a significant reduction, decreasing from 0.0094%
with the initial tool set to 0.00029% for tools representing the optimal parameter set,
as illustrated in Fig D.1b). This reflects a substantial reduction of 96.14% in void area
fraction from the initial to the optimal set. Consequently, it can be concluded that the
optimisation results effectively capture experimental data, underscoring the advantages of
employing the presented framework.
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D.2 Bending

Fig. D.2: Sketch of the simulation model for the bend-
ing optimisations. The red line on the sheet represents
the area of load application. Only the right side of the
process is simulated.

In this section, additional optimi-
sations for the process of free air
bending are presented. These en-
compass load and load path opti-
misation. This requires small ad-
justments to the simulation model
for the same forming process pre-
sented in Sect. 9.3. An area
on the surface has to be defined
where the external loads are ap-
plied. This area for the load ap-
plication has a length of 𝑥load =
1.78mm, starting from 𝑥 = 𝑦 = 0
in the local coordinate system as
depicted in red in Fig. D.2. Only
the nodes on the surface of the
outer bending area of the sheet
are chosen for load application.

D.2.1 Load optimisation

The first additional application of numerical optimisation for the bending process is
external load optimisation. The basic idea is to exchange the elastomer cushion within
elastomer bending, see Fig. 10.6b), and apply external loads to the outer area of the sheet,
see Fig. 10.6c). These external loads can for example simulate the forces resulting from
pressing the sheet into the elastomer cushion.

To apply external loads, two sets of polynomials 𝑓𝑖 = 𝑎𝑖𝑥
2+𝑏𝑖𝑥+𝑐𝑖 in x- and y-direction,

respectively, are defined, cf. [95, 97, 101, 148]. Herein, 𝑥 describes the local coordinate
system for the bending process, originating in the lower left corner of the sheet within
the simulation, see Fig. D.2. The coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 act as design variables s for the
optimisation and hence govern the shape of the external loads. To map the computed
loads to the Abaqus simulation, two force sets representing the x- and y-directional loads
are defined at each of the selected nodes. The values from the polynomials are thus applied
to these nodal force values during each optimisation step, allowing changes to the external
forces in each iteration. While this is the general approach, for the following optimisation
results certain boundary conditions are applied to the utilised polynomials. First of all,
the loads are forced to be perpendicular at the coordinate origin (0,0), i.e. the left-most
area of the simulated sheet. This can easily be implemented by fixing 𝑐𝑥 = 0, which results
in a force of 𝑓𝑥(𝑥 = 0) = 0 and therefore only a force in y-direction can be generated
throughout the optimisation. Additionally, the parabolic parameter 𝑎𝑥 is set to zero to
force a linear force development. The force in y-direction is forced to be parabolic, thereby
restricting the parameter 𝑏𝑦 = 0. These constraints to the variables aim to generate a
smooth force distribution to improve the emulated a reaction force due pressing the sheet
into an elastomer cushion. An overview and the results are displayed in Table D.2.
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Table D.2: An overview of the design and the fixed variables for load optimisation.
Additionally, their initial and optimal values.

s fixed initial optimal

- 𝑎𝑥 0 0
𝑏𝑥 - 0 -3.183

𝑐𝑥 0 0
𝑎𝑦 0 -0.7377
- 𝑏𝑦 0 0
𝑐𝑦 - 0 3.495

Since only an elasto-plastic model is used to simulate the material of the sheet, the
triaxiality measurement (8.4) is chosen to quantify and optimise the damage. Furthermore,
the results from [221] are chosen as a referential experiment. The improvements regarding
triaxiality distribution and damage reduction with elastomer bending are used to define
the optimisation problem. Furthermore, since the basic idea is to form the same part with
reduced damage within the adjusted forming process, the geometry of initial and optimal
shape must coincide, or rather, the difference shall be minimised. With these two criteria,
the optimisation is defined as

minimise
sl≤s≤su

JLoad = ‖u(s)− upre‖2

subject to 𝜂𝑖 ≤ 𝜂crit.
(D.2)

In this problem u(s) represents the nodal displacements of the sheet depending on the
design variables s, upre the nodal displacements of the sheet without application of any
external load and 𝜂𝑖 is the vector of triaxiality values of the nodes which lie within the
selected area of the sheet. The critical triaxiality value 𝜂crit = 0.48 is chosen, based on the
results from [221]. Currently, only the triaxiality stress state after forming is considered
for the optimisation, i.e. after maximal punch displacement 𝑢punch = 5mm. In order
to allow an optimisation with these external loads, the area which is considered within
the following optimisation has to be smaller in width than for the applied loads 𝑥load.
As such, the area where the triaxiality values for the optimisation are evaluated is only
𝑥𝜂 = 1.5mm wide.

The optimisation problem is solved using SQP. Due to the low number of contact
interactions, compared to for example rod extrusion in the previous section, the numerical
gradients are accurate enough to enable a quickly converging solution. This was also
presented to be possible in the benchmark problems in Sect. 9.3. The initial state and
optimal load distribution are depicted in Fig. D.3. Initially, no external loads are applied,
i.e. free air bending like in Fig. 10.6a) is simulated. The triaxiality is largely homogenous
and exceeds the desired threshold considerably, leading values close to 𝜂max = 0.58. In
the optimal setting, the external forces are able to reduce the triaxiality value in the
optimised area below the applied constraint. While at 𝑥 = 0 the forces are perpendicular,
as prescribed in the optimisation problem, the resulting force vector at each node onwards
in x-direction is more slanted towards the left. This is a result of the enforced linear
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nature of the forces in x-direction. The total forces increase when approaching the right
boundary of the surface, see Fig. 10.6. This is expected, since fewer total nodal forces
apply to the nodes on the right and therefore more individual load is necessary to reduce
the triaxiality.

Figure D.3: a) Initial and b) optimal external forces for the load optimisation of free air
bending.

The applied load optimisation is very basic in nature but is thought off as a proof of
concept. Extending the optimisation to enable more complex load forms, or splitting
the loads into different sections which allow more design freedom, could be implemented.
However, this basic optimisation is enhanced in the next section, by controlling not only
the final triaxiality value, but controlling its behaviour throughout the forming process.
Another extension to this concept could be the inclusion of constraints regarding the
direction of external loads, e.g. enforcing perpendicular loads w.r.t. the surface of the
outer sheet.

An important note regarding the choice of initial design within load optimisation has to
emphasised. For certain starting guesses, the optimisation might run into trouble with
application of too high external loads. In this case the external loads will push with
enough force, that the sheet metal will lose contact to the sheet holder on the right side.
This will start a cascading effect which will end up with the force getting larger with each
subsequent iteration. As a consequence, the sheet metal is wrapped around the die and
the simulation is no longer able to converge. Therefore, it is vital to be careful regarding
bounds of the applied loads as well as the initial guess.

D.2.2 Load path optimisation

In the previous optimisation the final triaxiality value in the sheet after forming was
optimised. Consequently, only the last load step of the forming process is taken into
account for the optimal load. However, the simple optimisation in Sect. D.2.1 might not
result in an optimally damage reduced forming process. It is postulated, that the arbitrary
critical triaxiality value 𝜂crit might lead to a unsatisfactory amount of damage evolution.
Consequently, if that value is exceeded during any time step within the process damage
might evolve beyond an acceptable level. To circumvent this shortcoming, in this section,
the intermediate triaxiality values during the forming process, and therefore the load path
itself, are optimised.

The chosen nodes, and the problem exemplary for respective node A, are depicted in D.4.
As can be identified, early during the displacement of the punch the triaxiality exceeds
the critical triaxiality value 𝜂crit = 0.48 in node A. Only after approximately 𝑢 = 2.75mm
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Figure D.4: The motivation for the optimisation of the nodal load paths on the left. The
red area indicates a value of critical triaxiality exceeded. The right shows two different
locations A and B which are optimised.

does the triaxiality value decrease below the threshold. Similar behaviour can be detected
for other nodes. However, only node A and B are of interest in the following. They are
chosen since they lie at either edge of the optimised area regarding force application,
therefore should show a vastly different optimised load path behaviour.

To optimise the respective nodal triaxiality behaviour, the forces are loaded nonlinearly.
This can be achieved in Abaqus by adjusting the respective amplitude values, i.e. the load
application over simulation time. These amplitudes are described by B-splines within the
optimisation setup. The control points of the B-splines then act as the design variables of
the optimisation. For each problem, 6 control points are chosen equidistantly in x-direction,
i.e. on the time-scale. The first control point remains fixed at [0,0], while the remaining
two may reach any value between [0,1] in y-direction. The generated curves are inserted
into the amplitude values of the simulation. Since a pseudo-time interval 𝑡 = [0,1] is chosen,
the respective amplitudes have to be restricted to this time interval. The optimisation
problem is similar to the previous one, i.e. the nodal displacements u(s) after prescribed
punch displacement upre are compared. In addition, now the constraints are triaxiality
values throughout the process for the respective chosen node. The optimisation problem
thus reads

minimise
sl≤s≤su

JAmp = ‖u(s)− upre‖2

subject to 𝜂
𝐴/𝐵
𝑗 (𝑡) ≤ 𝜂crit.

(D.3)

While this optimisation problem reads very similar to (D.2), in the above the nodal
triaxiality values 𝜂

𝐴/𝐵
𝑗 only take one node, either A or B, into consideration. However,

they now span a vector of nodal values over the simulation time 𝑡, with 𝑗 = 1, . . . ,𝑛lstp

and 𝑛lstp the number of load steps.
The results for the two different nodes are depicted in Fig. D.5. Each column illustrates

the initial, linear, as well as the optimised, nonlinear amplitude and the resulting initial
and optimal triaxiality history for their respective node. The optimisation allows the nodal
triaxiality values to stay below the critical threshold throughout the whole process. While
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Figure D.5: Initial and optimal load paths for both nodes in the top, and below the
respective triaxiality over the punch displacement.

node A reaches a triaxiality value below the threshold early during the linear loading,
i.e. at an approximate punch displacement 𝑢punch = 2.75mm, node B only just achieves
this value shortly before forming is finished, i.e. 𝑢punch = 4.5mm. With the adjusted
load paths both nodes stay below the critical threshold throughout the complete process.
Since the forces from the external loads in the previous section are not perpendicular with
respect to the bended sheet, but instead steer more towards the left, node A requires
a lower total force to reduce the triaxiality load path. More total force is applied to
this node, which in turn reduces the triaxiality further. Consequently, the incremental
multiplier for node A can be significantly reduced overall, with it reaching a value of 0.6
at the end of the forming process for example. For node B, since the total force applied
to this node is lower, the multiplier is increased significantly more throughout the whole
process, reaching a value of 0.9 at the end of the forming process.

Currently the presented method is only applied to each node individually, i.e. one node
is chosen and the load path is optimised for the chosen node and therefore the complete
applied forces are adjusted by the amplitude changes. An extension of this concept should
allow the optimisation of multiple nodal behaviours. Additionally, the triaxiality curves
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show a very winding behaviour. While this is only significant for node B in the beginning,
after which the curve flattens out, this is very noticeable for node A. This could be fixed
by increasing the amount of control points which govern the B-spline, or by segmenting
the complete amplitude into multiple B-splines, which allows for more design freedom
within the optimisation. In [161], a process was developed which emulates this kind of
behaviour. Instead of applying a constant load on the outer bending area, the external
forces are time and process dependent, which is similar to the loads optimised above.

D.3 Stretch indenting

This section lists the explicit values for the optimisation of stretch indenting. Due to the
size of the data, their explicit listing was omitted in Sect. 10.4

Table D.3: The initial parameters for stretch indenting and resulting geometries of the
drawbead. Additionally, they are categorised according to the description Sect. 10.4.

label 𝑟1 𝑟2 ℎs 𝑦s 𝑥s type

x01 7 9 4.00 3.00 18.65 random value
x02 4 5 1.00 3 13.42 random value
x03 9 2 6.90 2.1 12.93 random value
x04 9 3 3.00 6 20.78 random value
x05 2.01 2 0 2.009 6.95 smallest bead
x06 9 9 5.20 3.8 22.12 largest bead
x07 5 7 0.50 4.5 18.73 average bead
x08 9 5 6.99 2.01 14.46 improved guess
x09 7 5 4.99 2.01 13.30 improved guess
x10 4 5 1.99 2.01 11.34 improved guess
x11 2.5 5 0.49 2.01 10.22 improved guess

Table D.4: The optimal design variables for stretch indenting and resulting parameters for
optimisation (10.10). Additionally, the initial and optimal objectives.

label 𝑟1 𝑟2 ℎs 𝑦s 𝑥s Jmax
init Jmax

opt

x01 6.3541 8.9946 4.35 15.17 2.0041 0.29196 0.25926
x02 3.0777 5.0903 1.077 10.71 2.0007 0.29201 0.26267
x03 8.9946 2 6.9844 12.67 2.0102 0.26849 0.26009
x04 8.8608 2.1132 6.8517 12.66 2.0091 0.32883 0.26003
x05 2.0163 2.0074 0.001 6.97 2.0153 0.26927 0.26696
x06 8.9925 8.9997 5.3177 21.79 3.6748 0.30052 0.29507
x07 2.5144 8.9622 0.5093 12.96 2.0051 0.30883 0.26165
x08 8.9999 5.2602 6.9842 14.62 2.0157 0.26109 0.25971
x09 4.0008 5.4862 1.9899 11.68 2.0109 0.26478 0.26028
x11 2.4937 5.3442 0.4909 10.47 2.0028 0.26438 0.26182
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Table D.5: The optimal design variables for stretch indenting and resulting parameters for
optimisation (10.11). Additionally, the initial and optimal objectives.

label 𝑟1 𝑟2 ℎs 𝑦s 𝑥s Jnorminit Jnormopt

x01 6.6569 8.9972 4.6163 15.46 2.0406 0.94187 0.81964
x02 3.0145 5.2091 1.0062 10.77 2.0083 0.94452 0.81988
x03 8.9918 2.0083 6.9569 12.75 2.0349 0.8486 0.81651
x04 8.9411 3.0115 6.9342 13.26 2.0069 1.20318 0.81195
x05 2.0029 2.0026 0.001 6.94 2.0019 0.84948 0.84565
x06 8.9572 8.965 6.9464 16.5 2.0108 0.98137 0.81329
x07 2.5238 8.9453 0.5158 12.97 2.008 1.0217 0.82258
x08 9 5.3444 6.9886 14.65 2.0114 0.81681 0.81205
x09 7.0075 5.7347 4.9884 13.77 2.0191 0.82016 0.81369
x10 4.0049 7.5068 1.9895 13.01 2.0154 0.82837 0.81853
x11 2.4962 5.3983 0.4907 10.52 2.0055 0.82983 0.82326
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