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INF-SUP THEORY FOR THE QUASI-STATIC

BIOT’S EQUATIONS IN POROELASTICITY

CHRISTIAN KREUZER AND PIETRO ZANOTTI

Abstract. We analyze the two-field formulation of the quasi-static Biot’s

equations by means of the inf-sup theory. For this purpose, we exploit an
equivalent four-field formulation of the equations, introducing the so-called

total pressure and total fluid content as independent variables. We establish

existence, uniqueness and stability of the solution. Our stability estimate is
two-sided and robust, meaning that the regularity established for the solution

matches the regularity requirements for the data and the involved constants

are independent of all material parameters. We prove also that additional reg-
ularity in space of the data implies, in some cases, corresponding additional

regularity in space of the solution. These results are instrumental to the de-

sign and the analysis of discretizations enjoying accurate stability and error
estimates.

1. Introduction

The analysis and the discretization of the quasi-static Biot’s equations have been
the subject of several studies in recent years. The equations arise in the theory of
poroelasticity and model the flow of a fluid inside an elastic medium. They fit into
the abstract framework

(1.1) By = `

for a linear operator B, with y and ` denoting the solution and the load, respectively;
see (2.1) for the specific definitions.

In this paper, we develop some analytical results to be used in a follow-up paper
[17] regarding the discretization of the Biot’s equations. More precisely, we establish
existence, uniqueness, two-sided stability and regularity in space of the solution by
means of the inf-sup theory, i.e., via the so-called Banach-Nec̆as theorem, cf. [23].
This approach and various aspects of our results are new to our best knowledge.
The main advantage stemming from the use of the inf-sup theory is that we obtain
a two-sided stability estimate in the form

(1.2) ‖y‖1 h ‖`‖2,∗.

In other words, differently from previous works, we are able to prove that the
operator B in (1.1) establishes an isomorphism between the space for the solution
and the one for the load. Hence, the regularity established for the solution matches
the regularity requirements for the data. In passing, we relax also the assumption
made on the regularity of the load in previous references.
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2 C. KREUZER AND P. ZANOTTI

A major challenge in our analysis consists in selecting the norms in (1.2), i.e., in
characterizing the regularity of the solution and of the load in the equations. The
difficulty hinges on the action of the differential operator B in (1.1), which couples
the two components of the solution (the displacement of the elastic medium and
the pressure of the fluid) in a highly nontrivial way, cf. (2.1a) below. We deal with
this issue by considering an equivalent four-field formulation of the Biot’s equations
from [16], that is obtained by introducing the so-called total pressure and total fluid
content as independent variables. The new formulation motivates the definition of
the norm ‖ · ‖2,∗ as a product norm. The definition of the norm ‖ · ‖1 is more
involved, as it still couples the regularity of two components of the solution. This
coupling of the regularity is indeed necessary.

Once the norms are selected, we establish the above-mentioned results by the
inf-sup theory. This technique, differently from other ones, always implies a two-
sided stability estimate, like (1.2), when it can be applied. For this purpose, one
has to verify that the bilinear form induced by the operator B in (1.1) fulfills three
properties: boundedness, inf-sup stability and nondegeneracy. The use of the inf-
sup theory was made popular in numerical analysis by the pioneering works of
Babuška [2] and Brezzi [9], who proposed the technique to obtain accurate stability
and a priori error estimates for a linear equation and its discretization. Later
on inf-sup stability has been noticed to be important also for a posteriori error
estimation [30] and for the convergence of adaptive discretizations [14, 20]. Still,
for some reason, the use of the inf-sup theory has been mostly confined to stationary
equations and only recently there have been attempts to apply it to evolutionary
ones, see [13, 28, 29].

This paper aims at further contributing to the development of the infs-sup the-
ory for evolution equations, developing tools to be later used for the numerical
analysis in [17] as well. We intend also to highlight the benefits of our technique in
comparison with other ones. In addtion to the early contribution [1] (restricted to
a rather specific case), we are aware of two other approaches to the analysis of the
Biot’s equations.

Žeńı̌sek [33] used the so-called Faedo-Galerkin (Rothe’s) method, in combination
with a ingenious way of testing the equations, in order to infer stability. This
technique is quite popular also in numerical analysis for the derivation of error
estimates, see e.g. [26]. Other results in this flavor can be found in [7, 18, 24].
Another possible technique is the one of Showalter [27], who studied both strong
and weak solutions by the theory of implicit evolution equations. Both approaches
assume more regular data than our one and do not establish an equivalence like
(1.2). Extensions to nonlinear problems in poromechanics are found, e.g., in [3, 4,
5, 10, 11].

Finally, motivated by the numerical analysis in [17], we are interested also in
shift theorems, i.e., in determining if more regular data give rise to more regular
solutions. We give a positive answer for the regularity in space, under a set of
relatively restrictive assumptions, by using again the inf-sup theory. The relaxation
of our assumptions and the regularity in time are more challenging tasks and we
do not discuss them here. For instance, it is known that the time derivative of the
solution can be singular at the initial time, cf. [22, section 2] and [27, section 3].
We are aware of only few other regularity results, see [7, 32].
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Contribution. Summarizing, we propose a new approach to the analysis of the
Biot’s equation, which is used to establish both well-posedness and additional regu-
larity in space. Differently from previous contributions, we make a weaker regularity
assumption on the data and we make sure that it matches with the regularity guar-
anteed for the solution by establishing two-sided stability estimates like (1.2). All
constants in our bounds are robust with respect to the material parameters in the
equations. In particular, we treat at the same time the critical case of vanishing and
nonvanishing specific storage coefficient, also in combination with general boundary
conditions.

Organization. In section 2 we recall the Biot’s equations and introduce the setting
for their analysis. In section 3 we establish existence, uniqueness and two-sided
stability of the solution. In section 4 we investigate the stability estimate more
extensively. In section 5 we establish additional regularity in space.

Notation. We denote by L2(X), H1(X) and C0(X) the spaces of all L2, H1 and
C0 functions mapping the time interval [0, T ] into a Banach space X, equipped
with the norm ‖ · ‖X. The symbol 〈·, ·〉X indicates the duality of X and X∗. For
X = L2(Ω), Ω ⊆ Rd, we use the abbreviations ‖ · ‖Ω for the norm and (·, ·)Ω for the
corresponding scalar product. We write a . b and a h b when there are constants
0 < c ≤ c such that a ≤ c b and c b ≤ a ≤ c b, respectively. As a rule of thumb,
the hidden constants are independent of the material parameters involved in the
equations. The dependence on other relevant quantities is addressed case by case.

2. Biot’s equations and abstract formulation

In this section we introduce the Biot’s equations and propose a framework for
analyzing them by the inf-sup theory.

2.1. Two-field formulation. Let Ω ⊆ Rd, d ∈ N, be a bounded domain (i.e. a
bounded, open and connected set) whose boundary can be locally represented as
the graph of a Lipschitz-continuous function. The quasi-static Biot’s equations in
Ω× (0, T ), T > 0, read as

(2.1a)
−div(2µ∇Su+ (λdivu− αp)I) = fu in Ω× (0, T )

∂t(αdivu+ σp)− div(κ∇p) = fp in Ω× (0, T ).

The equations model the flow of a Newtonian fluid inside a linear elastic porous
medium. The first one states the momentum balance, the second one states the
mass balance. The unknowns are the displacement u : Ω × (0, T ) → Rd of the
medium and the pressure p : Ω × (0, T ) → R of the fluid. The symbols ∇S and
I denote the symmetric part of the gradient and the d × d identity tensor respec-
tively. Moreover, the following material parameters are involved: the Lamé con-
stants µ, λ > 0, the Biot-Willis constant α > 0, the constrained specific storage
coefficient σ ≥ 0 and the hydraulic conductivity κ > 0. For simplicity, we assume
that

all parameters are constant in Ω× (0, T ).

Remark 2.1 (Parameters). Our subsequent analysis could be applied, up to minor
modifications, under the assumption that the material parameters are bounded by
positive constants from above and from below in Ω × [0, T ]. Of course, the ratio
of the upper and the lower bound would affect the constants in our estimates.
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In addition, we should require that α is constant in space, because we sometimes
commute it with space derivatives. Similarly, κ should be constant in time. In
general, the case with time-dependent κ is known to be delicate, see [4, section 2.3].
Finally, although we can treat also the case σ = 0, it is unclear to us whether this
parameter can be zero and nonzero in different regions of Ω× (0, T ).

We complement the Biot’s equations (2.1a) by the initial condition

(2.1b) (αdivu+ σp)|t=0 = `0 in Ω

and by the boundary conditions

(2.1c)

u = 0 on Γu,E × (0, T )

(2µ∇Su+ (λdivu− αp)I)n = gu on Γu,N × (0, T )

p = 0 on Γp,E × (0, T )

κ∇p · n = gp on Γp,N × (0, T )

where Γu,E ∪ Γu,N = ∂Ω = Γp,E ∪ Γp,N and Γu,E ∩ Γu,N = ∅ = Γp,E ∩ Γp,N . The
letter n denotes the outward unit normal vector on ∂Ω. The subscripts ‘E’ and ‘N ’
indicate essential and natural boundary conditions, respectively. Inhomogeneous
essential boundary conditions can be treated as usual, by modifying the data in the
equations (2.1a).

Remark 2.2 (Initial condition). The time derivative acts in (2.1a) only on a com-
bination of u and p, namely αdivu+ σp, thus suggesting that only the initial value
of such auxiliary variable should be prescribed as done, e.g., in [27, sections 3-
4]. Still, different formulations are sometimes encountered in numerical analysis.
Phillips and Wheeler [26] suggest to set p(0) equal to the hydrostatic pressure.
Then, they evaluate the first equation in (2.1a) at t = 0 and solve a linear elasticity
problem for u(0). Other authors, see e.g. [21], assume σ = 0 and set divu(0) = 0
(that is equivalent to (2.1b) with `0 = 0). Then, they evaluate the first equation in
(2.1a) at t = 0 and solve a Stokes problem for u(0) and p(0). In other references,
the values of u(0) and p(0) are just prescribed, see e.g. [18]. In this case, the com-
patibility of the prescribed initial values with the other data can be problematic
and give rise to irregular behaviors, see [31].

Remark 2.3 (Boundary conditions). The boundary conditions considered in [27]
are slightly more sophisticated than (2.1c) in that they allow for a coupling on the
intersection of the nonessential parts of the boundary Γu,N ∩ Γp,N , which requires
additional regularity of the data and compatibility conditions on the initial values.
In all other references we are aware of (from both the analytical and the numerical
side), the boundary conditions (2.1c) (see [26, 33]) or simplified versions thereof are
considered.

2.2. Four-field formulation. Our starting point for the analysis of the initial-
boundary value problem (2.1) are the results established in [16]. In that reference,
the stationary equations obtained after a time semi-discretization of (2.1a) are
considered. The inf-sup theory developed in [16, section 2] reveals that, in the
stationary case, it is possible to control two auxiliary variables, in addition to the
displacement u and the pressure p, namely the total pressure

(2.2a) ptot := αdivu− αPDp
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and the total fluid content

(2.2b) m := PP(αdivu) + σp.

The operators PD and PP are L2(Ω)-orthogonal projections, whose specific defini-
tion can be found in section 2.3 below. Treating these variables as independent
unknowns leads to the following formulation of the Biot’s equations (2.1a)

(2.3)

−div(2µ∇Su+ ptotI) = fu in Ω× (0, T )

λdivu− ptot − αPDp = 0 in Ω× (0, T )

αPPdivu+ σp−m = 0 in Ω× (0, T )

∂tm− div(κ∇p) = fp in Ω× (0, T ).

Our use of the projections PD and PP is motivated by our subsequent choice of the
test functions for the equations. Similarly to [16], the analysis in the next sections
equivalently applies to the original two-field formulation (2.1a) or to the above four-
field formulation of the Biot’s equations. We find working with the latter one more
convenient, because the definition of the trial space is less involved, cf. Remark 2.7
below.

Remark 2.4 (Auxiliary variables). Introducing auxiliary variables as independent
unknowns is a common practice in numerical analysis, which can foster the con-
struction of discretizations with specific stability and/or approximation properties.
To our best knowledge, the idea of introducing the total pressure ptot is relatively
recent and dates back to [19, 25]. In contrast, we are not aware of any reference
paying specific attention to the approximation of the total fluid content m, although
this is a relevant variable, as pointed out by the formulation (2.3), the initial con-
dition (2.1b) and also previous theoretical results like those in [27, sections 3-4].

2.3. Weak formulation. We propose the weak formulation of the equations (2.3),
with the initial and boundary conditions (2.1b) and (2.1c), that is the subject of our
analysis in the next sections. Some minor differences are possible in the definition
of the function spaces involved in such formulation, depending on the boundary
conditions and on whether the constrained specific storage coefficient σ vanishes or
not. Therefore, we introduce an abstract setting in order to treat all possible cases
simultaneously.

The second-order elliptic operators involved in (2.3) and the boundary conditions
(2.1c) suggest that u and p should be functions with values in the spaces

U :=

{
H1(Ω)d/RM if Γu,N = ∂Ω

H1
Γu,E

(Ω)d otherwise
(2.4a)

and

P :=


H1(Ω) ∩ L2

0(Ω) if Γp,N = ∂Ω

H1
Γp,E

(Ω) ∩ L2
0(Ω) if Γp,N 6= ∂Ω,Γu,E = ∂Ω, σ = 0

H1
Γp,E

(Ω) otherwise.

(2.4b)

The quotient in the definition of U is taken with respect to rigid body motions. The
definition of P involves also the space of the functions in L2(Ω) with zero integral
mean in Ω, i.e., L2

0(Ω) = {q ∈ L2(Ω) |
∫

Ω
q = 0}.
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Remark 2.5 (Pressure space). The second case in (2.4b) is nonstandard, because it
prescribes both the essential condition on a portion of the boundary and the zero
integral mean in Ω. In previous approaches, like e.g. [33], the boundedness of the
pressure in the L2(H1(Ω))-norm is established under a regularity assumption on
the load. Thus, the L2(L2(Ω))-norm can be controlled by a Poincaré inequality. In
our approach, we assume less regularity of the load, therefore we do not control the
L2(H1(Ω))-norm of the pressure, cf. Proposition 4.4. Hence, it appears for Γu,E =
∂Ω and σ = 0, that we can only bound the L2(L2(Ω))-norm of the pressure up to
constant functions in space and thus the restriction to mean value free functions is
needed. This informal guess is confirmed by Proposition 4.1.

Owing to (2.2), we regard ptot and m as functions with values in the following
closed subspaces of L2(Ω):

D := div(U) =

{
L2

0(Ω) if Γu,E = ∂Ω

L2(Ω) otherwise
(2.5a)

and

P :=

{
L2

0(Ω) if Γp,N = ∂Ω or Γu,E = ∂Ω, σ = 0

L2(Ω) otherwise.
(2.5b)

The closure in the definition of P is taken with respect to the L2(Ω)-norm. We
denote by PD and PP the L2-orthogonal projections onto D and P, respectively.

We equip the spaces U and P with H1(Ω)-like-norms scaled by
√

2µ and
√
κ,

respectively, and the spaces D and P with the L2(Ω)-norm. More precisely, we set

(2.6) ‖ · ‖U := ‖
√

2µ∇S · ‖Ω and ‖ · ‖P := ‖
√
κ∇ · ‖Ω.

Note that by Korn’s and Poincarè-Friedrichs inequalities these are indeed norms on
their respective spaces. By standard functional analysis arguments, we have that

P ⊆ P is a dense compact subspace.

We identify P with P∗ via the L2(Ω)-scalar product. Hence, P ⊆ P ≡ P∗ ⊆ P∗ is
a Hilbert triplet and the duality 〈·, ·〉P coincides with (·, ·)Ω when both arguments

are in P.
We introduce an abstract notation also for the (weak form of) the differential

operators involved in the Biot’s equations, so as to make many formulae more
compact. We denote by E : U → U∗ and L : P → P∗ the elliptic operators acting
on u and p, respectively, and by D : U→ D the divergence, namely

(2.7) E := −div(2µ∇S) D := div L := −div(κ∇).

Note that we can regard the adjoint D∗ of D as an operator acting on D upon
identifying also this space with its dual D∗ via the L2(Ω)-scalar product. Figure 1
summarizes the relation between the abstract spaces and operators.

By comparing (2.7) with the definition of the norms (2.6), we readily infer the
identities

(2.8) ‖ · ‖2U = 〈E·, ·〉U and ‖ · ‖2P = 〈L·, ·〉P .

Then, by duality, we obtain

(2.9) ‖ · ‖2U∗ =
〈
·, E−1·

〉
U and ‖ · ‖2P∗ =

〈
·, L−1·

〉
P .
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U∗ oo E
OO

D∗
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D

��

L2(Ω)

PD

~~

PP

  

P L //

i

��

P∗OO

i∗

D∗ D P P∗

Figure 1. Spaces and operators describing the regularity in
space for the weak formulation (2.11) of the Biot’s equations. The
symbol ‘≡’ denotes the identification via the L2(Ω)-scalar product
and i is the embedding operator.

Furthermore, the surjectivity of the divergence and the open mapping theorem [12,
Lemma 53.9] imply

(2.10)
c

µ
‖ · ‖2Ω ≤ ‖D∗ · ‖2U∗ ≤

C

µ
‖ · ‖2Ω in D

with constants 0 < c ≤ C depending only on Ω.
After this preparation, we are in position to state the abstract weak formulation

of the equations (2.3), with (2.1b) and (2.1c), as follows

(2.11)

Eu+D∗ptot = `u in L2(U∗)
λDu− ptot − αPDp = 0 in L2(D)

αPPDu+ σp−m = 0 in L2(P)

∂tm+ Lp = `p in L2(P∗)
m(0) = `0 in P∗.

The loads `u and `p result from the data in the equations (2.3) and in the boundary
conditions (2.1c). More precisely, they are obtained as

(2.12)

`u(v) =

∫ T

0

(
〈fu, v〉U + 〈gu, v〉H1/2(Γu,N )

)
`p(n) =

∫ T

0

(
〈fp, n〉P + 〈gp, n〉H1/2(Γp,N )

)
for all v ∈ L2(U) and n ∈ L2(P).

We search for a solution of the equations (2.11) in the trial space Y1, with

(2.13) Y1 := L2(U)× L2(D)× L2(P)×
(
L2(P) ∩H1(P∗)

)
.

The closure is taken with respect to the norm

‖(ũ, p̃tot, p̃, m̃)‖21 :=∫ T

0

(
‖ũ‖2U +

1

µ
‖p̃tot‖2Ω + ‖∂tm̃+ Lp̃‖2P∗

)
+ ‖m̃(0)‖2P∗

+

∫ T

0

(
1

µ+ λ
‖λDũ− p̃tot − αPDp̃‖2Ω + γ‖αPPDũ+ σp̃− m̃‖2Ω

)(2.14)
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where

γ =



min

{
µ+ λ

α2
,

1

σ

}
if σ > 0 and P ⊆ D

µ+ λ

α2
+

1

σ
if σ > 0 and P * D

µ+ λ

α2
if σ = 0

.(2.15)

We verify in Proposition 4.4 below that taking the closure in the definition of the
trial space is indeed necessary. Hereafter, we use the superscript ‘∼’ to distinguish
a general trial function in Y1 from the solution of the Biot’s equations.

Remark 2.6 (Definition of γ). The reason for distinguishing three different cases in
the definition of γ is made clear in the proof of the inf-sup stability in Lemma 3.2

below. The first two cases are actually equivalent under the condition σ h α2

µ+λ ,

which is justified in [19, section 2.2], arguing by physical principles. The condition
characterizing the second case is equivalent to prescribing σ > 0, Γu,E = ∂Ω and

Γp,N 6= ∂Ω. This is, in a sense, the most critical case, because the space P changes
from L2(Ω) to L2

0(Ω) when passing from σ > 0 to σ = 0. The unboundedness of
γ in the limit σ → 0 reflects the lack of uniform control on the mean value of the
pressure.

The corresponding test space, i.e., the space of all functions used to test the
equations, is just the pre-dual of the product of the spaces on the rightmost column
in (2.11), namely

Y2 := L2(U)× L2(D)× L2(P)× L2(P)× P.

We equip Y2 with the norm

‖(v, qtot, q, n, n0)‖22 :=

∫ T

0

(
‖v‖2U + ‖n‖2P

)
+ ‖n0‖2P

+

∫ T

0

(
(µ+ λ)‖qtot‖2Ω + γ−1‖q‖2Ω

)
.

(2.16)

The dual of ‖ · ‖2 is the norm ‖ · ‖2,∗ mentioned in (1.2) in the introduction, i.e.
our measure of the regularity of the data. It is defined as

‖(˜̀u, ˜̀ptot
, ˜̀m, ˜̀p, ˜̀0)‖22,∗ :=

∫ T

0

(
‖˜̀u‖2U∗ + ‖˜̀p‖2P∗)+ ‖˜̀0‖2P∗

+

∫ T

0

(
1

µ+ λ
‖˜̀ptot

‖2Ω + γ‖˜̀m‖2Ω)(2.17)

for (˜̀u, ˜̀ptot
, ˜̀m, ˜̀p, ˜̀0) ∈ Y∗2. In (2.11), the data components ˜̀ptot

and ˜̀m of the
second and third equation vanish, but they may be nonzero, e.g. in a discretization
method.

Remark 2.7 (Two-field formulation). As mentioned before, we could equivalently
consider the original two-field formulation (2.1a) of the Biot’s equations in place of
(2.3). In this case, the trial space to be used for the abstract weak formulation is
the closure of {

(ũ, p̃) ∈ L2(U)× L2(P) | (αPPDũ+ σp̃) ∈ H1(P∗)
}
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with respect to the norm∫ T

0

(
‖ũ‖2U +

1

µ
‖λDũ− αPDp̃‖2Ω + ‖∂t(αPPDũ+ σp̃) + Lp̃‖2P∗

)
+ ‖(αPPDũ+ σp̃)|t=0‖2P∗ .

(2.18)

The corresponding test space is

(2.19) L2(U)× L2(P)× P

equipped with the norm

(2.20)

∫ T

0

(
‖v‖2U + ‖n‖2P

)
+ ‖n0‖2P.

The relatively involved definition of the trial space motivates our use of the four-
field formulation, which appears to be especially convenient for the proof of the
nondegeneracy in section 3.2.

Remark 2.8 (Norms). The definition of the trial and test norms deserves some
justification. For this purpose, it is useful starting from the two-field formulation
discussed in Remark 2.7. The test norm (2.20) is simply the product norm on
the test space (2.19). Prescribing it corresponds to prescribing the regularity of
the data. Then, the expression of the trial norm (2.18) is not at our disposal,
because it is determined (up to norm equivalence) by requiring that the trial space
is isomorphic to the dual of the test space through the weak formulation (2.11),
cf. (1.2). When passing from the two- to the four-field formulation, two additional
terms must be included in the definition of the norms, because inhomogeneous data
`ptot

and `m are in principle allowed in the second and third equations of (2.11).
The scaling of such terms is motivated by the inf-sup theory (see, in particular, the
proof of Lemma 3.2) and it is not much relevant in a priori stability estimates since
the solution of (2.11) annihilates those two terms, cf. Theorem 3.5. Still, this may
play a role in the numerical analysis, if the solution is approximated by a function
not satisfying the second and third equations exactly.

Remark 2.9 (Regularity of `u). Owing to the definition of the norm ‖ ·‖2,∗ in (2.17)
we assume that the load in the first equation of the weak formulation (2.11) is such
that `u ∈ L2(U∗), cf. Theorem 3.5 below. To our best knowledge, this relaxes the
regularity assumption `u ∈ H1(U∗) made in all previous references, see e.g. [27, 33].

3. Well-posedness of the weak formulation

In this section we prove that the equations (2.11) are well-posed by means of the
inf-sup theory. To this end, it is convenient rewriting the equations in the following
variational form: find y1 ∈ Y1 such that

(3.1) b(y1, y2) = `(y2) ∀y2 ∈ Y2.

The bilinear form b : Y1 × Y2 → R and the load ` : Y2 → R are defined as

b(ỹ1, y2) =

∫ T

0

(
〈E ũ+D∗p̃tot, v〉U + 〈∂tm̃+ Lp̃, n〉P

)
+ 〈m̃(0), n0〉P

+

∫ T

0

(
(λDũ− p̃tot − αPDp̃, qtot)Ω +

(
αPPDũ+ σp̃− m̃, q

)
Ω

)(3.2)
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and

(3.3) `(y2) = `u(v) + `p(n) + 〈`0, n0〉P
for ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1 and y2 = (v, qtot, q, n, n0) ∈ Y2. The projections
PD and PP could be neglected in the definition of b, because they are tested with
functions from their respective range.

According to the so-called Banach-Nec̆as theorem, the well-posedness of the
problem (3.1) is equivalent to the three properties verified in the next lemmas.

Lemma 3.1 (Boundedness). The bilinear form b in (3.2) is such that

(3.4) sup
y2∈Y2

b(ỹ1, y2)

‖y2‖2
. ‖ỹ1‖1

for all ỹ1 ∈ Y1. The hidden constant depends only on the domain Ω.

Proof. The claimed bound readily follows from the Cauchy-Schwartz inequality, the
identities in (2.8) and the upper bound in (2.10). �

Lemma 3.2 (Inf-sup stability). The bilinear form b in (3.2) is such that

sup
y2∈Y2

b(ỹ1, y2)

‖y2‖2
&

(1 + T )−
1
2

(
‖ỹ1‖21 + ‖m̃‖2L∞(P∗) +

∫ T

0

(
λ‖Dũ‖2Ω + σ‖p̃‖2Ω

)) 1
2

(3.5)

for all ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1. The hidden constant depends only on the domain Ω.

Proof. See section 3.1. �

The combination of the Lemmas 3.1 and 3.2 points out that the trial norm ‖ · ‖1
is actually equivalent to the (stronger) norm on the right-hand side of (3.5). We
deduce a first relevant consequence of this observation in the following remark.

Remark 3.3 (Continuity of the total fluid content). The inclusion H1(P∗) ⊆ C0(P∗)
reveals that the linear operator

Y1 3 ỹ1 = (ũ, p̃tot, p̃, m̃) 7→ m̃ ∈ C0(P∗)

is well-defined. The combination of Lemmas 3.1 and 3.2 further implies that this
operator is bounded with respect to the norm ‖ · ‖1. Therefore we can extend it
from Y1 to Y1 by density. This observation is important to guarantee that the
initial condition in (2.11) is meaningful.

Lemma 3.4 (Nondegeneracy). Let the bilinear form b be as in (3.2) and assume

(3.6) b(ỹ1, y2) = 0

for all ỹ1 ∈ Y1 and for some y2 ∈ Y2. Then, we have y2 = 0.

Proof. See section 3.2. �

The combination of the above lemmas implies our main result, stating existence,
uniqueness and two-sided stability of the solution of the equations (2.11), in the
sense of (1.2). In particular, the latter property ensures that the regularity estab-
lished for the solution matches the regularity requirements for the data.
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Theorem 3.5 (Well-posedness). For all (`u, `p, `0) ∈ L2(U∗) × L2(P∗) × P∗, the

equations (2.11) have a unique solution y1 = (u, ptot, p,m) ∈ Y1, which fulfills the
two-sided stability bound∫ T

0

(
‖u‖2U + λ‖Du‖2Ω +

1

µ
‖ptot‖2Ω + σ‖p‖2Ω + ‖∂tm+ Lp‖2P∗

)
+ ‖m‖2L∞(P∗)

h
∫ T

0

(
‖`u‖2U∗ + ‖`p‖2P∗

)
+ ‖`0‖2P∗ .

(3.7)

The hidden constants depend only on the domain Ω and the final time T . Moreover,
we have m ∈ C0(P∗).

Proof. The existence and the uniqueness of the solution result from the combination
of the Banach-Nec̆as theorem [12, Theorem 25.9] with the Lemmas 3.1, 3.2 and 3.4.
The same argument [12, Remark 25.12] yields

‖(u, ptot, p,m)‖1 h ‖(`u, 0, 0, `p, `0)‖2,∗
where the hidden constants depend only on the constants in (3.4) and (3.5). Then,
the claimed two-sided stability bound follows by the definitions (2.14) and (2.17)
of the norms ‖ · ‖1 and ‖ · ‖2,∗ and the equivalence of ‖ · ‖1 with the stronger norm
on the right-hand side of (3.5) and by recalling that (u, ptot, p,m) solves (2.11).
Finally, the continuity in time of the component m of the solution is guaranteed by
Remark 3.3. �

Before examining the proof of Lemmas 3.2-3.4, it is worth comparing Theo-
rem 3.5 with related results in the literature.

Remark 3.6 (Comparison with [16]). The stability bound in Theorem 3.5 is consis-
tent with the one established in [16, section 2] for the stationary equations obtained
from (2.1a) by semi-discretization in time with the backward Euler scheme. Indeed,
in that context, the stability estimate involves the trial norm

τ(‖u‖2U + λ‖Du‖2Ω +
1

µ
‖ptot‖2Ω + σ‖p‖2Ω + τ‖p‖2P) + ‖m‖2P∗

where τ denotes the time step. By interpreting the multiplication by τ as a kind of
time integration, we see that each term here has a corresponding one on the left-
hand side of (3.7). The only exception is the P-norm of p, which is multiplied by an
additional factor τ . Hence, we cannot expect a uniform control on the L2(P)-norm
of p in terms of the left-hand side of (3.7) in the limit τ → 0, i.e., when passing
from the time-semidiscretization to the original equations. In Proposition 4.4 below
we verify our expectation by means of a counterexample.

Remark 3.7 (Comparison with [33]). The technique introduced by Žeńı̌sek [33] con-
sists in applying the so-called Feado-Galerkin scheme and in establishing a stability
estimate that serves to infer the existence and the uniqueness of the solution by
testing the equations in (2.1a) with (∂tu, p). This ultimately provides a one-sided
stability bound involving the following norm of the solution

‖u‖2L∞(U) + λ‖Du‖2L∞(L2(Ω)) + σ‖p‖2L∞(L2(Ω)) +

∫ T

0

‖p‖2P;

see [33, Theorem 1] (the estimate is only established in the proof). The scaling
with respect to the parameters is the same as in (3.7). Each term is measured
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in a stronger norm because of the higher regularity assumption `u ∈ H1(U∗), cf.
Remark 2.9. Still, in contrast to (3.7), the bound in [33] (and similar ones) cannot
be reversed, meaning that the regularity established for the solution does not match
the regularity requirement for the data.

Remark 3.8 (Comparison with [18]). Li and Zikatanov [18] assume even more reg-
ular data than in [33], namely `u ∈ H1(U∗) and `p ∈ L2(L2(Ω)), as well as smooth
and compatible initial data, cf. Remark 2.2. Then, by improving on the original
technique of Žeńı̌sek, they are able to establish the regularity

u ∈ H1(U) and p ∈ H1(P) ∩ L2(L)

where L = {p̃ ∈ P | Lp̃ ∈ P}. They establish also a corresponding stability estimate,
where the scaling with respect to the material parameters is similar as in the above-
mentioned results. Remarkably, such estimate is accurate, in the sense that it fulfills
an equivalence like (1.2).

3.1. Inf-sup stability. This section is devoted to the proof of Lemma 3.2. For this
purpose, let ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1. We shall construct a test function y2 ∈ Y2

such that

(3.8) b(ỹ1, y2) & ‖ỹ1‖21 + ‖m̃‖2L∞(P∗) +

∫ T

0

(
λ‖Dũ‖2Ω + σ‖p̃‖2Ω

)
as well as

(3.9) ‖y2‖22 . (1 + T )
(
‖ỹ1‖21 + ‖m̃‖2L∞(P∗)

)
.

The combination of these inequalities with a density argument implies (3.5). Taking
ỹ1 in Y1 (and not directly in Y1) simplifies the derivation of (3.8) and, in particular,
the lower bound of the term I2 below.

Let s ∈ [0, T ] be a value to be specified later. We denote by χs : [0, T ]→ R the
indicator function on [0, s]. In other words, χs(t) equals 1 for t ≤ s and it vanishes
for t > s. We consider the test function

y2,s :=
(

(ũ+ E−1D∗p̃tot)χs,
4 max{1, C}

µ+ λ
(λDũ− p̃tot − αPDp̃)χs,

4γ

min{1, c}
(αPPDũ+ σp̃− m̃)χs,

L−1(2m̃+ ∂tm̃+ Lp̃)χs, 2L−1m̃(0)
)

with the constants c and C from (2.10) and γ as in (2.15).

Remark 3.9 (Motivating the test function). The definition (3.2) of the form b con-
sists of five summands. Roughly speaking, the test function y2,s is designed so as to
obtain a positive contribution (i.e., a squared norm) from each summand. The sec-
ond and the third components of y2,s are additionally scaled by ‘sufficiently large’
constants, so as to compensate negative contributions arising from the analysis of
the other terms. Furthermore, the function L−1m̃ in the fourth component of y2,s is
meant to control the point values of m̃. The choice of the fourth and the fifth com-
ponents is in line with the one that is typically made in the derivation of the inf-sup
stability for scalar parabolic equations, see e.g. the proof of [13, Lemma 71.2].
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First of all, it is worth noticing that we indeed have y2,s ∈ Y2. This can be
verified by recalling the setting in section 2.3. In particular, we mention that the
operator E−1D∗ maps D into U and that the inclusion m̃(0) ∈ P∗ follows from
the inclusion m̃ ∈ H1(P∗) ⊆ C0(P∗). Then, the multiplication of all components
(except the last one) by χs is admissible, because the test space Y2 involves only
L2 regularity in time.

In order to establish (3.8) for a suitable test function y2, we investigate the action
of the form b onto the pair (ỹ1, y2,s). By recalling the definition (3.2) of b, we infer

(3.10)

b(ỹ1, y2,s) =

∫ s

0

〈
E ũ+D∗p̃tot, ũ+ E−1D∗p̃tot

〉
U (=: I1)

+ 2

∫ s

0

〈
∂tm̃+ Lp̃, L−1m̃

〉
P (=: I2)

+

∫ s

0

〈
∂tm̃+ Lp̃, L−1(∂tm̃+ Lp̃)

〉
P (=: I3)

+ 2
〈
m̃(0), L−1m̃(0)

〉
P (=: I4)

+
4 max{1, C}

µ+ λ

∫ s

0

‖λDũ− p̃tot − αPDp̃‖2Ω

+
4γ

min{1, c}

∫ s

0

‖αPPDũ+ σp̃− m̃‖2Ω.

We further investigate the four terms I1, . . . ,I4 on the right-hand side. According
to the second identity in (2.9), we rewrite the third and the fourth terms as

I3 =

∫ s

0

‖∂tm̃+ Lp̃‖2P∗ and I4 = 2‖m̃(0)‖2P∗ .

The first parts of (2.8) and (2.9) imply

I1 =

∫ s

0

(
‖ũ‖2U + 2 〈D∗p̃tot, ũ〉U + ‖D∗p̃tot‖2U∗

)
.

Regarding the second summand on the right-hand side, we have

〈D∗p̃tot, ũ〉U = (Dũ, p̃tot − λDũ+ αPDp̃)Ω + λ‖Dũ‖2Ω − α(Dũ,PDp̃)Ω

≥ 3λ

4
‖Dũ‖2Ω −

1

4
‖ũ‖2U −

max{1, C}
µ+ λ

‖λDũ− p̃tot − αPDp̃‖2Ω − α(Dũ, p̃)Ω

according to the upper bound in (2.10) and the Young’s inequality. Notice that
we could neglect the projection PD in the last summand, because of the inclusion
Dũ ∈ D. We insert this lower bound into the previous identity. By invoking also
the lower bound in (2.10), we obtain

I1 ≥
∫ s

0

(
1

2
‖ũ‖2U +

3λ

2
‖Dũ‖2Ω +

c

µ
‖p̃tot‖2Ω

− 2 max{1, C}
µ+ λ

‖λDũ− p̃tot − αPDp̃‖2Ω − 2α(Dũ, p̃)Ω

)
.

The last term to be considered is

I2 = 2

∫ s

0

( 〈
∂tm̃, L−1m̃

〉
P + (m̃, p̃)Ω

)
.
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The second part of (2.9) and an integration by parts [13, Lemma 64.40] reveal∫ s

0

〈
∂tm̃, L−1m̃

〉
P∗ =

1

2
‖m̃(s)‖2P∗ −

1

2
‖m̃(0)‖2P∗ .

To investigate the other summand in I2, we set h̃ := m̃− αPPDũ− σp̃ ∈ L2(P) for
shortness. For σ > 0, elementary manipulations and Young’s inequality reveal

(m̃, p̃)Ω = (h̃, p̃)Ω + α(Dũ, p̃)Ω + σ‖p̃‖2Ω

≥ α(Dũ, p̃)Ω +
σ

2
‖p̃‖2Ω −

1

2σ
‖h̃‖2Ω.

Alternatively, for general σ ≥ 0, it holds that

(m̃, p̃)Ω = (h̃, p̃)Ω + α(Dũ, p̃)Ω + σ‖p̃‖2Ω

=
1

α
(h̃, αPDp̃− λDũ+ p̃tot)Ω +

λ

α
(h̃, D̃ũ)Ω −

1

α
(h̃, p̃tot)Ω

+ (h̃, p̃− PDp̃)Ω + α(Dũ, p̃)Ω + σ‖p̃‖2Ω.

The term H := (h̃, p̃ − PDp̃)Ω deserves some specialized comments. For P ⊆ D,
we have PDp̃ = p̃, hence H vanishes. This covers, in particular, the case σ = 0,
cf. (2.5). When the above inclusion fails, we have σ > 0. Then, we apply Young’s

inequality to obtain H ≤ ‖h̃‖2Ω/(2σ) +σ‖p̃‖2Ω/2. We combine this observation with
(2.10) and other applications of Young’s inequality. It results

(m̃, p̃)Ω ≥−
max{1, C}
2(µ+ λ)

‖λDũ− p̃tot − αPDp̃‖2Ω −
c

4µ
‖p̃tot‖2Ω −

λ

2
‖Dũ‖2Ω

+
σ

2
‖p̃‖2Ω −

3γ

2 min{1, c}
‖h̃‖2Ω + α(Dũ, p̃)Ω.

(3.11)

Thus, recalling h̃ = m̃− αPPDũ− σp̃, we infer

I2 ≥ ‖m̃(s)‖2P∗ − ‖m̃(0)‖2P∗

+

∫ s

0

(
− max{1, C}

(µ+ λ)
‖λDũ− p̃tot − αPDp̃‖2Ω −

c

2µ
‖p̃tot‖2Ω −

λ

2
‖Dũ‖2Ω

+ σ‖p̃‖2Ω −
3γ

min{1, c}
‖αPPDũ+ σp̃− m̃‖2Ω + 2α(Dũ, p̃)Ω

)
.

Remark 3.10 (Critical terms). It is worth noticing that the (non necessarily posi-
tive) term 2α 〈Dũ, p̃〉Ω in the lower bound of I2 is compensated by the corresponding
term −2α 〈Dũ, p̃〉Ω in the lower bound of I1. A similar compensation, obtained by
a different test function, underlines the proof of the stability estimate established
by Žeńı̌sek [33] and later used by several other authors.

We insert the identities for I3 and I4 and the lower bounds for I1 and I2 into
(3.10) and obtain

b(ỹ1, y2,s) ≥
∫ s

0

(
1

2
‖ũ‖2U +

λ

2
‖Dũ‖2Ω +

c

2µ
‖p̃tot‖2Ω + σ‖p̃‖2Ω + ‖∂tm̃+ Lp̃‖2P∗

)
+ ‖m̃(s)‖2P∗ + ‖m̃(0)‖2P∗

+

∫ s

0

( 1

µ+ λ
‖λDũ− p̃tot − αPDp̃‖2Ω + γ‖αPPDũ+ σp̃− m̃‖2Ω

)
.
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We conclude that the lower bound (3.8) holds true and the hidden constant depends
only on Ω, provided that we select the test function

(3.12) y2 = y2,T + y2,s

where s ∈ [0, T ] is chosen so that ‖m̃(s)‖P∗ = ‖m̃‖L∞(P∗).
The last step of the proof consists in bounding the norm of the test function

y2 in (3.12), in order to verify (3.9). To this end, we establish a corresponding
upper bound for the norm of any function y2,s, that is uniform with respect to the
parameter s ∈ [0, T ]. According to the definition (2.16) of the test norm, we have

‖y2,s‖22 =

∫ s

0

(
‖ũ+ E−1D∗p̃tot‖2U + ‖L−1(2m̃+ ∂tm̃+ Lp̃)‖2P

)
+ ‖L−1m̃(0)‖2P

+

∫ s

0

(16 max{1, C2}
µ+ λ

‖λDũ− p̃tot − αPDp̃‖2Ω +
16γ

min{1, c2}
‖αPPDũ+ σp̃− m̃‖2Ω

)
.

We first exploit the identities (2.8) and (2.9) and the second part of (2.10). Then,
we extend the integration from (0, s) to (0, T ). This results in

‖y2,s‖22 .
∫ T

0

(
‖ũ‖2U +

1

µ
‖p̃tot‖2Ω + ‖m̃‖2P∗ + ‖∂tm̃+ Lp̃‖2P∗

)
+ ‖m̃(0)‖2P∗

+

∫ T

0

( 1

µ+ λ
‖λDũ− p̃tot − αPDp̃‖2Ω + γ‖αPPDũ+ σp̃− m̃‖2Ω

)
= ‖ỹ1‖21 +

∫ T

0

‖m̃‖2P∗ .

Notice that the hidden constant depends only on Ω. Estimating the L2(P∗)-norm
of m̃ in terms of the L∞(P∗)-norm yields the desired bound

‖y2,s‖2 . (1 + T )
(
‖ỹ1‖21 + ‖m̃‖2L∞(P∗)

)
.

We conclude that (3.9) holds true by combining this with (3.12).

3.2. Nondegeneracy. This section is devoted to the proof of Lemma 3.4. To this
end, let y2 = (v, qtot, q, n, n0) ∈ Y2 be such that (3.6) holds true for all ỹ1 ∈ Y1.
We aim at showing

(3.13) y2 = 0.

First, we use trial functions in the form ỹ1 = (0, p̃tot, 0, 0) in (3.6). We obtain∫ T

0

(p̃tot, Dv − qtot)Ω = 0

for all p̃tot ∈ L2(D). Since both Dv and qtot are in L2(D), we infer

(3.14) qtot = Dv in L2(D).

Second, we use trial functions in the form ỹ1 = (ũ, 0, 0, 0) in (3.6). We obtain∫ T

0

(〈E ũ, v〉U + λ(Dũ, qtot)Ω + α(Dũ, PDq)Ω) = 0

for all u ∈ L2(U). We rearrange terms and use (3.14). It results∫ T

0

〈ũ, Ev + λD∗Dv + αD∗PDq〉U = 0.
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The operator Q : U → U∗ defined as Q = E + λD∗D is the one involved in the
displacement formulation of the linear elasticity equations. In particular, it is self-
adjoint and invertible. Since both Qv and D∗PDq are in L2(U∗), we infer

(3.15) v = −αQ−1D∗PDq in L2(U).

Third, we use trial functions in the form ỹ1 = (0, 0, p̃, 0) in (3.6) to obtain∫ T

0

(
−α(p̃, PPqtot)Ω + σ(p̃, q)Ω + 〈Lp̃, n〉P

)
= 0

for all p̃ ∈ L2(P). Rearranging terms and using (3.14) and (3.15) results in∫ T

0

(p̃, α2PPDQ
−1D∗PDq + σq)Ω = −

∫ T

0

〈p̃, Ln〉P .

Recall that P ⊆ P ≡ P∗ ⊆ P∗ is a Hilbert triplet. Since both PPDQ−1D∗PDq and

q are in L2(P), we infer the inclusion Ln ∈ L2(P) with

(3.16) Ln = −α2PPDQ
−1D∗PDq − σq in L2(P).

Finally, we use trial functions in the form ỹ1 = (0, 0, 0, m̃) in (3.6). We obtain∫ T

0

(
− (m̃, q)Ω + 〈∂tm̃, n〉P

)
+ 〈m̃(0), n0〉P = 0

for all m̃ ∈ L2(P) ∩ H1(P∗). Considering first m̃ = φw̃ with φ ∈ C∞0 (0, T ) and
w̃ ∈ P reveals ∫ T

0

φ(w̃, q)Ω =

∫ T

0

∂tφ 〈w̃, n〉P .

By [13, Proposition 64.33], we infer n ∈ L2(P) ∩H1(P) with

(3.17) ∂tn = −q in L2(P).

Then, assuming φ ∈ C∞(0, T ) with φ(0) = 1 and φ(T ) = 0 or, respectively, φ(1) = 0
and φ(T ) = 1, it follows that n(0), n(T ) ∈ P with

(3.18) n(0) = n0 and n(T ) = 0 in P.

According to (3.16), (3.17) and (3.18), it holds that

−1

2
‖n0‖2P =

1

2
‖n(T )‖2P −

1

2
‖n(0)‖2P =

∫ T

0

(∂tn, Ln)Ω

= α2

∫ T

0

〈Q−1D∗PDq, D∗PDq〉U + σ

∫ T

0

‖q‖2Ω.

Therefore, we have n0 = 0, PDq = 0 and σq = 0 in the respective spaces. This
implies q = 0 because we have P ⊆ D (hence PDq = q) for σ = 0, cf. (2.5). Then,
the identities (3.15), (3.16) and (3.14) imply v = 0, n = 0 and qtot = 0, respectively.
This verifies (3.13) and completes the proof.
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4. Further stability estimates

The definition of the trial norm ‖ · ‖1 in (2.14) is, in a sense, minimal, because
it includes only the terms that are necessary for an immediate proof of the bound-
edness of the form b in (3.2), cf. Lemma 3.1. Lemma 3.2 reveals that we could
equivalently augment ‖ · ‖1 with other terms, namely the L2(L2(Ω))-norm of the
total pressure and of the pressure as well as the L∞(P∗)-norm of the total fluid
content. This section aims at determining if we can control other relevant terms
by the trial norm. In particular, we are interested in understanding whether Y1 is
closed with respect to ‖ · ‖1. Indeed, for ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1, we have

‖ỹ1‖21 ≥
∫ T

0

‖∂tm̃+ Lp̃‖2P∗

but it is not clear whether ‖ỹ1‖1 controls ‖∂tm̃‖2P∗+‖p̃‖2P. Thus, the question arises

if Y1 is indeed larger than Y1 and, if yes, how much larger it is. We establish
some results, showing that the two spaces are actually different but the difference
is somehow subtle.

4.1. Positive results. Let us first recall that the combination of Lemmas 3.1 and
3.2 with the definition of the norm ‖ ·‖1 in (2.14) implies some control on the single
components of a trial function ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1. Indeed, we have

(4.1) (1 + T )‖ỹ1‖21 &
∫ T

0

(
‖ũ‖2U + λ‖Dũ‖2Ω +

1

µ
‖p̃tot‖2Ω + σ‖p̃‖2Ω

)
+ ‖m̃‖2L∞(P∗)

and the hidden constant depends only on Ω. The control on the L2(L2(Ω))-norm
of the third component p̃ can be improved as follows.

Proposition 4.1 (L2(L2(Ω))-norm of the pressure). For ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1,
we have

(1 + T )‖ỹ1‖21 &
∫ T

0

(
α2

µ+ λ
‖PDp̃‖2Ω + σ‖p̃‖2Ω

)
≥ γ−1

∫ T

0

‖p̃‖2Ω,

where the hidden constant depends only on the domain Ω and γ is as (2.15).

Proof. The combination of Lemmas 3.1 and 3.2 implies

(1 + T )‖ỹ1‖21 &∫ T

0

(
C

µ+ λ
‖λDũ− p̃tot − αPDp̃‖2Ω +

1

µ
‖p̃tot‖2Ω + λ‖Dũ‖2Ω + σ‖p̃‖2Ω

)
.

for all constants C ∈ [0, 1]. The first summand on the right-hand side gives rise
to six terms. By applying Young’s inequality to the ones that are not necessarily
positive, we obtain

(1 + T )‖ỹ1‖21 &∫ T

0

(
1− 4C

µ
‖p̃tot‖2Ω + (1− 4C)λ‖Dũ‖2Ω +

Cα2

2(µ+ λ)
‖PDp̃‖Ω + σ‖p̃‖Ω

)
.

We choose C = 1/4 and notice that PDp̃ = p̃ whenever P ⊆ D. This holds true, in
particular, for σ = 0. Then, we conclude by recalling the definition of γ. �
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Next, we show that we can control the L2(P)-norm of an approximation of the
the third component p̃ of a trial function, namely the L2-orthogonal projection
onto P-valued polynomials of any degree r ∈ N0. Unfortunately, the control is not
uniform with respect to r.

The space of P-valued polynomials of degree r is defined as

Pr(P) :=

q ∈ L2(P) | q(t) =

r∑
j=0

wjt
j with (wj)

r
j=0 ⊆ P

 .

The L2-orthogonal projection Pr : L2(P)→ Pr(P) is obtained via the condition

(4.2)

∫ T

0

〈LPrp̃, q〉P =

∫ T

0

〈Lp̃, q〉P

for p̃ ∈ L2(P) and for all q ∈ Pr(P). Recall that 〈L·, ·〉P is the scalar product
inducing the norm ‖ · ‖P on P, cf. (2.8).

The next proposition shows that the mapping

(ũ, p̃tot, p̃, m̃) 7→ Prp̃

defines a bounded linear operator on Y1 with respect to the norm ‖ · ‖1. Hence,
we can extend such operator to the trial space Y1 by density. In other words,
the L2-orthogonal projection of the fluid pressure p̃ onto Pr(P) is well-defined and
bounded on Y1.

Proposition 4.2 (Polynomial-in-time projection of the pressure). Let r ∈ N0. For
ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1, it holds that∫ T

0

‖Prp̃‖2P . ‖ỹ1‖21.

The hidden constant depends only on the domain Ω, the final time T and the de-
gree r.

Proof. Recall the boundedness of the form b stated in Lemma 3.1. Using the test
function y2 = (0, 0, 0,Prp̃, 0) ∈ Y2 reveals

(4.3)

∫ T

0

〈∂tm̃+ Lp̃,Prp̃〉P . ‖ỹ1‖1

(∫ T

0

‖Prp̃‖2P

) 1
2

where the hidden constant depends only on Ω. The inclusion Pr(P) ⊆ H1(P), the
second identity in (2.8) and (4.2) entail that we have∫ T

0

〈∂tm̃+ Lp̃,Prp̃〉P =

∫ T

0

‖Prp̃‖2P −
∫ T

0

〈m̃, ∂tPrp̃〉P

+ 〈m̃(T ),Prp̃(T )〉P − 〈m̃(0),Prp̃(0)〉P .

Note that the space Pr(P) is complete with respect to both the L∞(P)- and the
L2(P)-norm. Therefore, the open mapping theorem implies

〈m̃(T ),Prp̃(T )〉P − 〈m̃(0),Prp̃(0)〉P . ‖m̃‖L∞(P∗)

(∫ T

0

‖Prp̃‖2P

) 1
2
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with hidden constants depending on Pr(P) itself, hence on Ω, T and r. A Hölder
estimate and a similar argument entail also∫ T

0

〈m̃, ∂tPrp̃〉P ≤
√
T‖m̃‖L∞(P∗)

(∫ T

0

‖∂tPrp̃‖2P

) 1
2

. ‖m̃‖L∞(P∗)

(∫ T

0

‖Prp̃‖2P

) 1
2

.

We combine these bounds and the previous identity with (4.3) to obtain∫ T

0

‖Prp̃‖2P . ‖ỹ1‖21 + ‖m̃‖2L∞(P∗).

We conclude by recalling the estimate ‖m̃‖L∞(P∗) . ‖ỹ1‖1 from (4.1), with the
hidden constant depending only on Ω and T . �

Finally, the estimate (4.1) controls the L∞(P∗)-norm of m̃, that is the anti-
derivative of ∂tm̃. This readily implies that we can control the L∞(P)-norm of the
anti-derivative of p̃.

Proposition 4.3 (Anti-derivative of the pressure). For ỹ1 = (ũ, p̃tot, p̃, m̃) ∈ Y1,
we have

sup
t∈[0,T ]

∥∥∥∥∫ t

0

p̃

∥∥∥∥
P
. ‖ỹ1‖1.

The hidden constant depends only on the domain Ω and the final time T .

Proof. We observe first that
∫ t

0
∂tm̃ = m̃(t)− m̃(0) on P∗. Therefore, by applying

a triangle and a Hölder inequality, we obtain∥∥∥∥∫ t

0

p̃ dt

∥∥∥∥2

P
.

∥∥∥∥∫ t

0

(
∂tm̃+ Lp̃

) ∥∥∥∥2

P∗
+ ‖m̃(t)‖2P∗ + ‖m̃(0)‖2P∗

.
∫ T

0

‖∂tm̃+ Lp̃‖2P∗ + ‖m̃‖2L∞(P∗).

The claimed estimate follows from (4.1) and the definition of ‖ · ‖1. �

4.2. Negative results. Roughly speaking, the results in section 4.1 state that, if
the space Y1 differs from its closure Y1, then the difference is somehow subtle. On
the other hand, the next result confirms that indeed the two spaces are different. In
view of Proposition 4.2, the proof builds upon the construction of a function in Y1,
so that the third and the fourth components are polynomials in time of arbitrarily
high degree.

Proposition 4.4 (Existence of ‘rough’ trial functions). It holds that

sup
ỹ1=(ũ,p̃tot,p̃,m̃)∈Y1

∫ T

0

(
‖∂tm̃‖2P∗ + ‖p̃‖2P

)
‖ỹ1‖21

= +∞.

Proof. Recall that P ⊆ P ≡ P∗ ⊆ P∗ is a Hilbert triplet. Then by the theory of
self-adjoint coercive operators we have for the eigenvalues (λk)k≥1 ⊆ (0,+∞) of
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the operator L that λk ↗ +∞ as k → +∞. Let (wk)k≥1 ⊆ P be the associated
eigenfunctions. Hence, we have Lwk = λkwk as well as

(4.4) ‖wk‖2Ω = 1 and ‖wk‖2P = λk, k ≥ 1.

Denote by rk := dλke the ceiling function applied to λk, i.e., the smallest integer
larger than or equal to λk. We define p̃(k) ∈ L2(P) and m̃(k) ∈ L2(P) ∩H1(P∗) by

p̃(k)(t) :=
wk
T rk

trk and m̃(k)(t) := − λkwk
T rk(rk + 1)

trk+1.

By construction, we have

(4.5) ∂tm̃
(k) + Lp̃(k) = 0 and m̃(k)(0) = 0.

Moreover, elementary computations reveal∫ T

0

‖p̃(k)‖2Ω =
T

2rk + 1
and

∫ T

0

‖m̃(k)‖2Ω =
T 3λ2

k

(rk + 1)2(2rk + 3)
.

Thus, for ỹ
(k)
1 = (0, 0, p̃(k), m̃(k)) ∈ Y1, the definition (2.14) of the trial norm implies

‖ỹ(k)
1 ‖21 → 0 as k → +∞.

On the other hand, it holds that∫ T

0

‖∂tm̃(k)‖2P∗ =

∫ T

0

‖p̃(k)‖2P =
λkT

2rk + 1
→ T

2
as k → +∞.

Comparing this limit with the previous one concludes the proof. �

Remark 4.5 (‘Rough’ trial functions). The elements of the sequence (ỹ
(k)
1 )k≥1 in

the poof of Proposition 4.4 are in Y1 but do not solve the weak formulation (2.11)
of the Biot’s equations. Indeed, they do not fulfill the constraints in the second
and in the third lines of (2.11). Still, we might modify the first component of ỹ1

by choosing it (more precisely, its divergence) so as to fulfill the constraint in the
third line. Then, we might modify also the second component according to the
second line in (2.11). This observation reveals a remarkable difference between our
analysis and former ones: we do not control the L2(P)-norm of the pressure, due
to the weaker regularity assumption on the load `u in (2.11), cf. Remark 2.9.

Remark 4.6 (Time regularity). Some results in the spirit of Propositions 4.3-4.4
are proved by Murad, Thomée and Loula [22, section 2] under the assumption
`u ∈ H1(U∗) in (2.11). Indeed, a bound on the L∞(P)-norm of the anti-derivative
of the pressure is established and it is observed that the same bound does not hold
true for the pressure itself, because of a singularity at t = 0. Numerical evidence
of the latter observation can be found also in [3]. As in Remark 3.7, the higher
integrability in time, compared to our approach, follows from the higher regularity
of `u, cf. Remark 2.9.

We conclude this section by recalling that, in the analysis of scalar parabolic
equations, the L∞ control in time over the point values of the solution is obtained
by combining some L2 control over the solution itself and on its time derivative.
Here, in contrast, Proposition 4.4 states that we do not have a L2 control over the
time derivative of the total fluid content. Hence, it is remarkable that we could
nevertheless establish the embedding of such variable into C0(P∗), cf. Remark 3.3.
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5. Shift of the regularity in space

In addition to the well-posedness of the weak formulation (2.11), we are inter-
ested also in shift theorems, i.e. the question, whether more regular data than
in Theorem 3.5 give rise to correspondingly more regular solutions. In fact, the
regularity of the solution is a necessary ingredient to justify the error decay for the
discretization we propose and analyze in [17]. Still, it is known that the regularity
theory for the Biot’s equations is subtle. For instance, Murad, Thomée and Loula
[22] observed that the regularity in time is limited at t = 0 and also Showalter [27]
came to a similar conclusion.

Due to the complexity of the subject, we do not attempt at establishing a com-
prehensive result here. We confine our discussion to a rather specific case, where
no singularity occurs. More precisely, we investigate only the regularity in space
under the set of assumptions detailed below. What is more relevant for us is that
we can use inf-sup theory once more to this end. This appears to be an innova-
tive technique not only for the Biot’s equations but also in the general framework
of coupled problems. In fact, we introduce another variational formulation of the
initial-boundary value problem (2.1) for the Biot’s equations. Compared to the
weak formulation (2.11), we prescribe additional regularity in space of the trial
functions. Therefore, any solution of the new ‘strong’ formulation solves also the
weak one. We verify the well-posedness again by applying the Banach-Nec̆as theo-
rem. In this way, we establish a two-sided estimate, in the vein of (3.7), ensuring
that the regularity guaranteed for the solution matches the regularity requirement
for the data.

Our first assumption concerns the domain Ω. We require

(5.1a) Ω ⊆ R2 is a convex polygon.

Alternatively, we could work with ∂Ω smooth, but (5.1a) is more relevant for the
discretization analyzed in [17]. Second, we assume pure essential boundary condi-
tions for the displacement and pure natural boundary conditions for the pressure

(5.1b) Γu,E = ∂Ω = Γp,N .

Third, we restrict ourselves to the usually more critical case for the Lamé constants

(5.1c) µ� λ

meaning that we have Cµ ≤ λ for some constant C (depending only on the domain
Ω) that is as large as necessary for the arguments in sections 5.3 and 5.4.

Remark 5.1 (Justification of the assumptions). Linear elasticity is one of the build-
ing blocks in the Biot’s equations. Therefore, we use arguments introduced by
Brenner and Sung [8, section 2] for that problem. This motivates the assumptions
(5.1a) and (5.1c), as well as the first part of (5.1b). Note that [8] covers also pure
natural boundary conditions. The second part of (5.1b) implies that we can use the
same space for the total pressure and the total fluid content (cf. Figure 2), and an
important relation between the differential operators, see (5.3). Our proof heavily
exploits both properties.

5.1. Strong formulation in space. First of all, we introduce dedicated symbols
for the most frequently used spaces, in the vein of section 2.3. According to the
assumptions (5.1), we use

E := H2(Ω)2 ∩ U = H2(Ω)2 ∩H1
0 (Ω)2
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for the regularity in space of the displacement. For the total pressure and the total
fluid content, we recall the space P, which reads

P = H1(Ω) ∩ L2
0(Ω)

in this case. For the pressure, we recall the space L from Remark 3.8, namely

L = {p̃ ∈ P | Lp̃ ∈ P} = {p̃ ∈ P | Lp̃ ∈ L2
0(Ω)}

where the closure of P is taken with respect to the L2(Ω)-norm.
The interplay between these spaces and (the restriction of) the differential op-

erators in (2.7) is summarized in Figure 2. Note the different structure compared
to the weak formulation (Figure 1) and that, in the left part of the diagram, P and
L2(Ω)2 are identified with subspaces of D∗ and U∗ via the L2(Ω)-scalar product.
Upon this identification, we have

(5.2) D∗ = −∇ in P

as well as

(5.3) 〈L·, ·〉P = κ(D∗·, D∗·)Ω in P× P.

E

D

!!

E

��

L

i

��

L

��

L2(Ω)2 P
D∗

oo
i

// P

Figure 2. Spaces and operators describing the regularity in
space for the strong formulation (5.6) of the Biot’s equations. Note
that i denotes the embedding operator.

Following [6, section 2.1], we define H
1
2 (∂Ω) as the image of P via the trace

operator on ∂Ω. We equip this space with the quotient norm

(5.4) ‖g‖2
H

1
2 (∂Ω)

:=
1

κ
inf

p̃∈P, p̃|∂Ω=g
‖p̃‖2P = inf

p̃∈P, p̃|∂Ω=g
‖D∗p̃‖2Ω.

Let H−
1
2 (∂Ω) be the dual of H

1
2 (∂Ω). For simplicity, we denote by 〈·, ·〉1/2 the

corresponding duality. By comparing (5.2) with the definitions (2.7) and (5.1) of

L and L, respectively, we infer that the normal derivative ∂n : L → H−
1
2 (∂Ω) is

well-defined and we have

(5.5) 〈L·, ·〉P = (L·, ·)Ω + κ 〈∂n·, ·〉1/2 in L× P.
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After this preparation, we are in position to state the announced strong formu-
lation of (2.3), with (2.1b) and (2.1c), as follows

(5.6)

Eu+D∗ptot = fu in L2(L2(Ω)2)

λDu− ptot − αp = 0 in L2(P)

αDu+ σp−m = 0 in L2(P)

∂tm+ Lp = fp in L2(P)

∂np = gp in L2(H−
1
2 (∂Ω))

m(0) = `0 in P.

Note that, compared to the weak formulation (2.11), the data are assumed to
be more regular in space and the boundary condition for the pressure is satisfied in
the sense of traces. We look for a solution of (5.6) in the trial space X1, with

X1 := L2(E)× L2(P)× L2(L)×
(
L2(P) ∩H1(P)

)
where the closure is taken with respect to the norm

|||(ũ, p̃tot, p̃, m̃)|||21 :=

∫ T

0

(
µ‖D2ũ‖2Ω +

1

µ
‖D∗p̃tot‖2Ω +

1

κ
‖∂tm̃+ Lp̃‖2Ω

)
+

∫ T

0

(
1

λ
‖D∗(λDũ− p̃tot − αp̃)‖2Ω + γ‖D∗(αDũ+ σp̃− m̃)‖2Ω

)
+

∫ T

0

1

γ
‖∂np̃‖2

H−
1
2 (∂Ω)

+
1

κ
‖m̃(0)‖2Ω.

According to the additional regularity of the data, each component of X1 is more
regular in space compared to the corresponding one of the space Y1 for the weak
formulation (2.13).

The corresponding test space is

X2 := L2(L2(Ω)2)× L2(P)× L2(P)× L2(P)× L2(H
1
2 (∂Ω))× P

equipped with the norm

|||(v, qtot, q, n, n∂ , n0)|||22 :=

∫ T

0

(
µ‖v‖2Ω + κ‖n‖2Ω + γ‖n∂‖2

H
1
2 (∂Ω)

)
+ κ‖n0‖2Ω

+

∫ T

0

(
λ‖D∗qtot‖2Ω + γ−1‖D∗q‖2Ω

)
.

(5.7)

Remark 5.2 (Closure of X1). Like the trial space Y1 for the weak formulation, the
space X1 is not closed with respect to the norm defined on it. This can be verified
by exactly the same argument as in the proof of Proposition 4.4. Indeed, the
eigenfunctions of L are actually in L. Note that, in analogy with the observation
in Remark 3.7, the L2(L)-norm of the pressure can be controlled upon assuming
that the load fu in the first equation of (5.6) is weakly differentiable in time, cf.
Remark 3.8. This approach is widely used in connection with mixed formulations
of the Biot’s equations, introducing the Darcy velocity as an independent variable,
see e.g. [18].

Before discussing further properties of (5.6), it is worth noticing that this is
indeed a stronger formulation of the Biot’s equations than (2.11).
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Lemma 5.3 (Strong vs weak formulation). Assume x1 ∈ X1 solves (5.6) with data

(5.8) fu ∈ L2(L2(Ω)2), fp ∈ L2(P), gp ∈ L2(H−
1
2 (∂Ω)), `0 ∈ P.

Then x1 solves also (2.11) with the data defined by (2.12).

Proof. The inclusion X1 ⊆ Y1 and the bound ‖ · ‖1 . |||·|||1 imply X1 ⊆ Y1. Thus,
if x1 = (u, ptot, p,m) ∈ X1 solves (5.6), it is an admissible trial function also for
the weak formulation. The assumptions (5.1) entail that, in this case, we have
D = L2

0(Ω) = P, cf. (2.5). Then x1 fulfills the second, third and fifth equations in
(2.11). The first equation is fulfilled as well because of the inclusion L2(Ω)2 ⊆ U∗
and the identity ∫ T

0

(Eu+D∗ptot, v)Ω =

∫ T

0

〈Eu+D∗ptot, v〉U

where v ∈ L2(U) is arbitrary. Finally, for the fourth equation, we notice that (5.5)
implies ∫ T

0

(
(∂tm+ Lp, n)Ω + κ 〈∂np, n〉1/2

)
=

∫ T

0

〈∂tm+ Lp, n〉P

for all n ∈ L2(P). �

5.2. Well-posedness and regularity. As mentioned before, the assumptions in
(5.1) prevent from any unexpected singularity of the solution of (5.6). Therefore,
the well-posedness can be verified by mimicking the argument in section 3. Also in
this case, we postpone most of the details of the proof to the next sections.

Theorem 5.4 (Well-posedness). For (fu, fp, gp, `0) as in (5.8), the equations (5.6)

have a unique solution x1 = (u, ptot, p,m) ∈ X1, which fulfills the two-sided stability
bound ∫ T

0

(
µ‖D2u‖2Ω +

1

µ
‖D∗ptot‖2Ω +

1

κ
‖∂tm+ Lp‖2Ω

)
+

∫ T

0

(
λ‖D∗Du‖2Ω +

1

γ
‖D∗p‖2Ω

)
+

1

κ
‖m‖2

L∞(P)

h
∫ T

0

(
1

µ
‖fu‖2Ω +

1

κ
‖fp‖2Ω +

1

γ
‖gp‖2

H−
1
2 (∂Ω)

)
+

1

κ
‖`0‖2Ω.

(5.9)

The hidden constants depend only on the domain Ω, the final time T and the con-
stant in (5.1c). Moreover, we have m ∈ C0(P).

Proof. The equations (5.6) are equivalent to a linear variational problem like (3.1)
with the bilinear form b : X1 × X2 → R

b(x̃1, x2) =

∫ T

0

(
(E ũ+D∗p̃tot, v)Ω + (∂tm̃+ Lp̃, n)Ω

)
+

∫ T

0

(
(D∗(λDũ− p̃tot − αp̃), D∗qtot)Ω + (D∗(αDũ+ σp̃− m̃), D∗q)Ω

)
+

∫ T

0

〈∂np̃, n∂〉1/2 + (m̃(0), n0)Ω

(5.10)
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and the load ` : X2 → R

(5.11) `(x2) =

∫ T

0

(
(fu, v)Ω + (fp, n)Ω + 〈gp, n∂〉1/2

)
+ (`0, n0)Ω

for x̃1 = (ũ, p̃tot, p̃, m̃) ∈ X1 and x2 = (v, qtot, q, n, n∂ , n0) ∈ X2. The boundedness
of the bilinear form with respect to the norm |||·|||1 and |||·|||2 follows from Cauchy-
Schwartz inequalities. Section 5.3 establishes the (strengthened) inf-sup stability

sup
x2∈X2

b(x̃1, x2)

|||x2|||2
&

(1 + T )−
1
2

(
|||x̃1|||21 +

1

κ
‖m̃‖2

L∞(P)
+

∫ T

0

(
λ‖D∗Dũ‖2Ω + γ−1‖D∗p̃‖2Ω

)) 1
2

(5.12)

for x̃1 ∈ X1. Section 5.4 further verifies the nondegeneracy of b. The combination
of these properties implies the well-posedness of the equations (5.6) by the Banach-
Nec̆as theorem [12, theorem 25.9]. The estimate (5.4) then follows by combining
boundedness and inf-sup stability with the definitions (5.11) and (5.7) of the load
and of the test norm |||·|||2. Finally, the continuity in time of m can be verified by
arguing as in Remark 3.3. �

The combination of Theorem 5.4 with Lemma 5.3 implies the main result in this
section, which establishes additional regularity in space of the solution of the weak
formulation (2.11) with correspondingly more regular data.

Corollary 5.5 (Regularity in space). Let (fu, fp, gp, `0) be as in (5.8). Denote by

y1 = (u, ptot, p,m) ∈ Y1 the solution of the equations (2.11) with the data `u and
`p defined by (2.12). Then we have y1 ∈ X1 and y1 fulfills (5.9).

Proof. Owing to Theorem 5.4, the equations (5.6), with the given data, admit a
unique solution x1 ∈ X1. By Lemma 5.3, x1 solves also the equations (2.11). Then,
we have x1 = y1 according to Theorem 3.5. This confirms that y1 is in X1 and
fulfills the estimate (5.9) in Theorem 5.4. �

5.3. Inf-sup stability. This section establishes the inf-sup stability (5.12) of the
bilinear form b in (5.10). For this purpose, let x̃1 = (ũ, p̃tot, p̃, m̃) ∈ X1. We
proceed analogously to section 3.1, therefore, we mention only the main aspects of
the argument.

Let s ∈ [0, T ] be arbitrary and denote by χs : [0, T ] → R the indicator function
on [0, s]. We consider the test function x2,s = (v, qtot, q, n, n∂ , n0) ∈ X2 defined by

(5.13)

v =
C

µ

(
E ũ+D∗p̃tot

)
χs ∈ L2(L2(Ω)2)

qtot =
3

λ

(
λDũ− p̃tot − αp̃

)
χs ∈ L2(P)

q = 9γ
(
αDũ+ σp̃− m̃

)
χs ∈ L2(P)

n =
1

κ

(
∂tm̃+ Lp̃+ 2m̃

)
χs ∈ L2(P)

n∂Ω =
9

γ

(
R−1
∂ ∂np̃

)
χs ∈ L2(H−

1
2 (∂Ω))

n0 =
2

κ
m̃(0) ∈ P
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with the constant C to be determined later andR∂ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) denoting

the Riesz isometry.
Using this test function in (5.10) yields

(5.14)

b(x̃1, x2,s) =
C

µ

∫ s

0

‖E ũ+D∗p̃tot‖2Ω =: I1

+
3

λ

∫ s

0

‖D∗(λDũ− p̃tot − αp̃)‖2Ω

+ 9γ

∫ s

0

‖D∗(αDũ+ σp̃− m̃)‖2Ω

+
1

κ

∫ s

0

‖∂tm̃+ Lp̃‖2Ω

+
2

κ

∫ s

0

(∂tm̃+ Lp̃, m̃)Ω =: I2

+
9

γ

∫ s

0

‖∂np̃‖2
H−

1
2 (∂Ω)

+
2

κ
‖m̃(0)‖2Ω.

We aim bounding I1 and I2 from below. For the first one, we mimic the argument
in the proof of [8, Lemma 2.2]. By [8, Lemma 2.1], there is v′ ∈ L2(E) such that

(5.15) Dv′ = Dũ in L2(P) and ‖D2v′‖Ω . ‖D∗Dũ‖Ω

with the hidden constant depending only on Ω. The identity E = −µ(∆ +∇div) in
E and simple manipulations reveal

−µ∆(ũ− v′) +D∗(p̃tot + µDũ) = f̃ + µ∆v′ in L2([0, s], L2(Ω)2)

D(ũ− v′) = 0 in L2([0, s], P).

with f̃ := E ũ + D∗p̃tot. By the regularity theory for the Stokes equations [15,
Theorem 2] a triangle inequality and (5.15), we have∫ s

0

(
µ2‖D2ũ‖2Ω + ‖D∗(p̃tot + µDũ)‖2Ω

)
.
∫ s

0

(
‖f̃‖2Ω + µ2‖D∗Dũ‖2Ω

)
.

Again, the hidden constant depends only on Ω. For the second term on the left-hand
side, we use triangle and Young’s inequalities

‖D∗(p̃tot + µDũ)‖2Ω = ‖D∗p̃tot‖2Ω + µ2‖D∗Dũ‖2Ω + 2µ(D∗p̃tot, D∗Dũ)Ω

≥ ‖D∗p̃tot‖2Ω + µ(µ+ λ)‖D∗Dũ‖2Ω − 2αµ(D∗p̃, D∗Dũ)Ω

− µ

λ
‖D∗(λDũ− p̃tot − αp̃)‖2Ω.

We insert this estimate into the previous one and exploit the assumption (5.1c).
Then, assuming that C in (5.13) is sufficiently large, we conclude

I1 ≥
∫ s

0

(
− 2α(D∗Dũ, D∗p̃)Ω + µ‖D2ũ‖2Ω + (µ+ λ)‖D∗Dũ‖2Ω

)
+

∫ s

0

( 1

µ
‖D∗p̃tot‖2Ω −

1

λ
‖D∗(λDũ− p̃tot − αp̃)‖2Ω

)
.
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Regarding I2, the integration by parts rule [13, Lemma 64.40] and the identities
(5.3) and (5.5) reveal

I2 =
1

κ
‖m̃(s)‖2Ω −

1

κ
‖m̃(0)‖2Ω + 2

∫ s

0

(
(D∗p̃, D∗m̃)Ω − 〈∂np̃, m̃〉1/2

)
.

We bound the last term on the right-hand side, using (2.15), (5.4) and various
Young’s inequalities, by

〈∂np̃, m̃〉1/2 ≤
σ

4
‖D∗p̃‖2Ω +

µ+ λ

8
‖D∗Dũ‖2Ω

+
4

γ
‖∂np̃‖2

H−
1
2 (∂Ω)

+
γ

4
‖D∗(αDũ+ σp̃− m̃)‖2Ω.

Next, we perform the same steps as for the derivation of (3.11) in section 3.1

(D∗p̃, D∗m̃)Ω ≥
σ

2
‖D∗p̃‖2Ω + α(D∗Dũ, D∗p̃)Ω −

µ+ λ

8
‖D∗Dũ‖2Ω

− 1

4µ
‖D∗p̃tot‖2Ω −

1

2λ
‖D∗(λDũ− p̃tot − αp̃)‖2Ω −

7γ

2
‖D∗(αDũ+ σp̃− m̃)‖2Ω.

By inserting these bounds into the previous identity, it results

I2 ≥
1

κ
‖m̃(s)‖2Ω −

1

κ
‖m̃(0)‖2Ω +

∫ s

0

(σ
2
‖D∗p̃‖2Ω + 2α(D∗Dũ, D∗p̃)Ω

)
−
∫ s

0

(µ+ λ

2
‖D∗Dũ‖2Ω +

1

2µ
‖D∗p̃tot‖2Ω +

8

γ
‖∂np̃‖2

H−
1
2 (∂Ω)

)
−
∫ s

0

( 1

λ
‖D∗(λDũ− p̃tot − αp̃)‖2Ω + 8γ‖D∗(αDũ+ σp̃− m̃)‖2Ω

)
.

The combination of the lower bounds for I1 and I2 with (5.14) yields

2b(x̃1, x2,s) ≥ |||x̃1|||21 +
1

κ
‖m̃(s)‖2Ω +

∫ s

0

(
λ‖D∗Dũ‖2Ω + σ‖D∗p̃‖2Ω

)
.

Replacing σ by γ−1 can be done as in the proof of Proposition 4.1. This establishes
(5.12) upon taking the test function x2 = x2,s+x2,T , where s is such that ‖m̃(s)‖Ω =
‖m̃‖L∞(P).

Finally, for all s ∈ [0, T ], the norm of x2,s is bounded by

|||x2,s|||22 . |||x̃1|||21 + T‖m̃‖2
L∞(P)

and the hidden constant does not depend on s. The proof is identical to the
corresponding one at the end of section 3.1. The combination of this estimate with
the previous lower bound establishes (5.12).

5.4. Nondegeneracy. This section establishes the nondegeneracy of the bilinear
form b in (5.10). For this purpose, assume

(5.16) b(x̃1, x2) = 0

for all x̃1 ∈ X1 and for some x2 = (v, qtot, q, n, n∂ , n0) ∈ X2. We proceed in analogy
with section 3.2 in order to verify x2 = 0. Therefore, we mention only the main
aspects of the argument.

Taking x̃1 = (0, p̃tot, 0, 0), the identity (5.16) implies

(5.17)

∫ T

0

(D∗p̃tot, v)Ω =

∫ T

0

(D∗p̃tot, D∗qtot)Ω
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for all p̃tot ∈ L2(P).
Taking x̃1 = (ũ, 0, 0, 0), the identity (5.16), the inclusion Dũ ∈ L2(P) and (5.17)

imply ∫ T

0

(Qũ, v)Ω = −
∫ T

0

α(D∗Dũ, D∗q)Ω

for all ũ ∈ L2(E), with Q = E + λD∗D the operator involved in the displacement
formulation of the linear elasticity equations. According to [8, Lemma 2.2], Q is
a one-to-one mapping from E to L2(Ω)2. Thus, the adjoint Q? : L2(Ω)2 → E∗ is
invertible. Here ‘?’ denotes the ajoint with respect to the L2(Ω)-scalar product,
while ‘∗’ indicates the one with respect to the duality 〈·, ·〉U. Thus,

(5.18) v = −αQ−?(D∗D)?D∗q in L2(L2(Ω)2).

Taking x̃1 = (0, 0, p̃, 0), the identities (5.3), (5.5) and (5.16) imply∫ T

0

(
(Lp̃, κn− αqtot + σq)Ω + κ 〈∂np̃, n∂ − αqtot + σq〉1/2

)
= 0

for all p̃ ∈ L2(L). We consider, in particular, the solution p̃ of the Neumann problem

Lp̃ = κn− αqtot + σq in L2(P)

∂np̃ = R∂(n∂ − αqtot + σq) in L2(H−
1
2 (∂Ω))

where R∂ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) is the Riesz isometry. We infer n ∈ L2(P) with

(5.19) κn = αqtot − σq in L2(P) and κn|∂Ω = n∂ in L2(H
1
2 (Ω)).

Finally, taking x̃1 = (0, 0, 0, m̃), the identities (5.3) and (5.16) imply∫ T

0

(
− 1

κ
〈m̃, Lq〉P + 〈∂tm̃, n〉P

)
+ (m̃(0), n0)Ω = 0

for all m̃ ∈ L2(P) ∩H1(P). Thus, arguing as in the derivation of (3.17)-(3.18), we
infer n ∈ H1(P∗) with

(5.20) ∂tn = − 1

κ
Lq in L2(P∗) and n(0) = n0, n(T ) = 0 in P.

We combine (5.19) with (5.20), and exploit also (5.3), (5.17) as well as (5.18)

−κ
2
‖n0‖2Ω = κ

∫ T

0

〈∂tn, n〉P =
1

κ

∫ T

0

〈Lq, σq − αqtot〉P

=

∫ T

0

(
σ‖D∗q‖2Ω + α2(D∗DQ−1D∗q, D∗q)Ω

)
.

(5.21)

We deal with the second term on the right-hand side by following once again the
proof of [8, Lemma 2.2]. Recalling Q = −µ∆ + (µ+ λ)D∗D in E, it follows that

(5.22)

∫ T

0

(D∗DQ−1D∗q, D∗q)Ω =
1

µ+ λ

∫ T

0

(
‖D∗q‖2Ω + µ(∆u′, D∗q)Ω

)
with u′ := Q−1D∗q ∈ L2(E). By [8, Lemma 2.1], there is v′ ∈ L2(E) such that

Dv′ = Du′ in L2(P) and ‖D2v′‖Ω . ‖D∗Du′‖Ω
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with the hidden constant depending only on Ω. Then, the expression of Q recalled
above and simple manipulations reveal

−µ∆(u′ − v′) +D∗((µ+ λ)Du′ − q) = µ∆v′ in L2(L2(Ω)2)

D(u′ − v′) = 0 in L2(P).

By the regularity theory for the Stokes equations [15, Theorem 2] and a triangle
inequality, we have

µ‖D2u′‖Ω + ‖D∗((µ+ λ)Du′ − q)‖Ω . µ‖D∗Du′‖Ω

≤ µ

µ+ λ

(
‖D∗q‖+ ‖D∗((µ+ λ)Du′ − q)‖Ω

)
.

Again, the hidden constant depends only on Ω. By virtue of (5.1c), this actually
implies µ‖∆u′‖Ω . µ

µ+λ‖D
∗q‖Ω. We insert this bound and (5.22) into (5.21).

Hence, recalling again assumption (5.1c), we obtain(
σ +

Cα2

µ+ λ

)∫ T

0

‖D∗q‖2Ω +
κ

2
‖n0‖2Ω = 0.

for some positive constant C > 0. We conclude x2 = 0 in (5.16) by this identity
and (5.18)-(5.20).

6. Conclusions and outlook

We have proposed a new approach and a corresponding setting for the analysis
of the quasi-static Biot’s equations in poroelasticity. In passing, we have relaxed
the regularity assumptions on the data formulated in previous references. The
results here are instrumental and tailored to our main goals, that are the design
and the analysis of discretizations enjoying accurate and robust error bounds. To
this end, we propose in [17] a class of discretizations inspired by the four-field
formulation (2.3) and prove its stability by mimicking the technique introduced
in section 3. The stability estimates in Theorem 3.5 and Proposition 4.1 provide
a possible starting point for the a posteriori error analysis. The regularity result
in section 5 is instrumental to the a priori error analysis in [17], as it establishes
the regularity that is needed to infer first-order convergence in space. Both the a
posteriori analysis and the derivation of further regularity results, e.g. relaxing the
assumptions (5.1) or addressing the regularity in time, may be the subject of future
investigation.
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[25] R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM
J. Numer. Anal., 54 (2016), pp. 2951–2973.



INF-SUP THEORY FOR THE QUASI-STATIC BIOT’S EQUATIONS 31

[26] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite

element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11 (2007),

pp. 131–144.
[27] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), pp. 310–

340.

[28] O. Steinbach and M. Zank, A generalized inf-sup stable variational formulation for the
wave equation, J. Math. Anal. Appl., 505 (2022), pp. Paper No. 125457, 24.

[29] F. Tantardini and A. Veeser, The L2-projection and quasi-optimality of Galerkin methods

for parabolic equations, SIAM J. Numer. Anal., 54 (2016), pp. 317–340.
[30] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Nu-

merical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.

[31] M. Verri, G. Guidoboni, L. Bociu, and R. Sacco, The role of structural viscoelasticity
in deformable porous media with incompressible constituents: applications in biomechanics,

Math. Biosci. Eng., 15 (2018), pp. 933–959
[32] S.-Y. Yi, A study of two modes of locking in poroelasticity, SIAM J. Numer. Anal., 55 (2017),

pp. 1915–1936.
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