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1 Introduction

There exist several anomalies in short baseline (SBL) neutrino experiments that point towards
one or more sterile neutrinos in the O(1 eV) range [1–4]. Even after the recently published
MicroBooNE data [5–8] had disfavored the excess observed in the MiniBooNE experiment,
sterile neutrinos in this mass range remain an interesting option for Standard Model (SM)
extensions [9, 10].

As has been shown many years ago, the simple solution of just adding a few sterile
neutrino generations in the correct mass range to the SM is not viable, since it solves the
problem only for SBL experiments while long baseline (LBL) and atmospheric neutrino
oscillation experiments do not observe any anomalies [11–16] at the same baseline-energy
ratio L/E.

Therefore, if the SBL anomalies are indeed explained by light sterile neutrinos, the
oscillation probability cannot depend on L/E in the same way as it would be the case in
the standard description. There exist several proposals to resolve this tension (for a recent
review see [10]). One such possibility is to include an additional potential term for sterile
neutrinos in the Hamiltonian that parametrizes possible new physics effects. As a consequence,
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an energy dependent mixing pattern arises between active and sterile neutrinos. In this
work, we mainly concentrate on a model proposed and investigated in refs. [17–23] where the
active-sterile mixing becomes maximal at some resonance energy Eres and nearly vanishes at
higher energies. Such altered dispersion relations (ADRs) for example arise if sterile neutrinos
can take shortcuts through asymmetrically warped extra dimensions that are unaccessible to
particles charged under the SM gauge group [24]. In order to solve the SBL anomalies, one has
to require that Eres is located within the energy ranges probed by these experiments such that
oscillations incorporating the new heavier mass eigenstate associated with the sterile neutrino
can reproduce the observed pattern. At higher energies, the sterile neutrinos decouple from
the active ones due to mixing suppression and the standard oscillation pattern is restored in
the energy ranges typically probed by LBL experiments.

While this modification may help to resolve the tensions encountered between SBL and
LBL experiments, there remains a severe tension with cosmological observations. For example,
the effective number of neutrino generations Neff := 3 + ∆Neff has been shown to be very
close to 3 at the time of recombination according to recent Planck data [25], while it could
be altered dramatically if new, light, sterile degrees of freedom are equilibrated in the early
universe. Furthermore, the helium fraction produced in big bang nucleosynthesis (BBN),
Y4He, is sensitive to two effects. The first and most significant one is the faster expansion
of the universe caused by the presence of additional light degrees of freedom leading to an
earlier freeze out of neutron-proton reactions. The second effect is the possible conversion
of electron neutrinos to sterile neutrinos also resulting in a potentially earlier freeze out
since electron neutrinos are a substantial part of almost all reactions keeping neutrons and
protons in equilibrium with the plasma. Sterile neutrinos with ADRs may also ameliorate
this cosmological tension by suppressing the population of the sterile flavor at high energies
in the early universe, as has been suggested in [20].

Another idea that has been proposed to reconcile light sterile neutrinos with cosmological
data employs an axion-like particle (ALP) coupling to the sterile neutrinos via a Yukawa
interaction term [26–31] (for non-cosmological applications of this particular class of models
see also [32–36]). The additional, ultra-light scalar field ϕ is assumed to be an approximately
homogeneous condensate behaving like a classical field. Its time evolution is governed by
the Klein-Gordon equation in an expanding universe and influences the effective mass of the
sterile neutrino and hence the mixing of the sterile and active neutrino.

Note that similar ideas pursued in the literature [37–43] also involve the coupling of
sterile neutrinos to dark scalars or massive gauge bosons inducing an effective potential in
the oscillation Hamiltonian suppressing the thermalization of sterile degrees of freedom in
the early universe. In the models considered in this work, the νs-ϕ coupling is small and
consequently, the induced matter potential and non-linear self interactions of νs are strongly
suppressed. The additional sterile neutrino mass still remains relevant at early times due to
the large initial amplitude of the classical part of ϕ. Furthermore, the ADR potential included
in the oscillation Hamiltonian is not assumed to be induced by interactions as described
above and can be sufficiently weakly temperature dependent such that this dependence can
be neglected.

In this paper we discuss both, the individual cosmological effects of and the interplay
between altered dispersion relations and a time varying sterile mass induced by a light scalar
field. In order to estimate the influence of the full model on the chosen set of cosmological
quantities, i.e. the effective number of additional neutrino generations ∆Neff and the helium
fraction Y4He, we solve the quantum kinetic equations (QKEs) for the neutrino density matrix
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ϱ. This defines the main task of this work, since from ϱ we can derive the neutrino phase
space distributions and energy densities. In order to simplify our framework for this study,
we only consider a two flavor system of one active and one sterile flavor. Moreover, we take
the active neutrino to be the electron neutrino to be able to draw realistic conclusions about
nucleosynthesis.

This paper is organized as follows: in section 2, we describe the model in detail and
define the parameter space and crucial parameters. Section 3 is concerned with setting up and
numerically solving the Boltzmann equations. Furthermore, we discuss the proper definition
of the density matrix. In section 4, we present results for the final helium abundances and
∆Neff for various benchmark points in the model parameter space. Finally in section 5, we
draw our conclusions.

2 Sterile neutrinos with altered dispersion relations coupling to axion-like
dark matter

2.1 Sterile neutrinos with altered dispersion relations

Assuming that the relativistic dispersion relations of neutrinos are altered by some unspecified
new physics effect such as the presence of asymmetrically warped extra dimensions1 leads to
new terms in the propagation Hamiltonian. Employing the usual ultra-relativistic expansion
of the neutrino dispersion relation yields

H(p) = 1
2p

M †M + Vs(p) , (2.1)

Vs(p) = −bp

2 Ps , (2.2)

where p is the average neutrino momentum, b is the so called ADR parameter controlling
the strength of the ADR effect, Ps is the sterile neutrino projector and M is the neutrino
mass matrix.

In the flavor basis, the last two quantities read

M =
(

mee mes

m∗es mss

)
, (2.3)

Ps =
(

0 0
0 1

)
, (2.4)

for the 2×2 neutrino system under consideration. Furthermore, we choose all mass parameters
to be real valued meaning that there is no CP violation in the active-sterile mixing. To be
specific, we use

mee ≈ 0 eV , mes ≈ 0.12 eV , mss ≈ 1.1 eV , (2.5)

in accordance with ref. [29] and fits to SBL data.
1The asymmetric warping leads to the effect that sterile neutrinos propagating through the extra dimension

between two points x1 and x2 on the SM brane need less time to complete their journey than SM neutrinos
traveling between those points on geodesics bound to the SM brane [17, 24]. An observer located on the brane
will hence come to the conclusion that the usual energy momentum relation does not hold for sterile neutrinos
and needs to incorporate an effective potential into E2 = p2 + m2 in order to describe their behavior using
brane bound quantities.
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Since we consider the system in the early universe, we also have to include a potential for
the electron neutrino induced by elastic scattering processes modifying the effective masses of
the neutrino matter eigenstates. Therefore, the full Hamiltonian reads [44]

H(p) = 1
2p

M †M + Ve(p) + Vs(p) (2.6)

Ve(p) = −8
√

2GF p

3

(
ρe±

m2
W

+ ρνe

m2
Z

)
Pe , (2.7)

with the Fermi coupling GF , the electron and neutrino energy densities ρα and the W, Z-Boson
masses mW,Z . Here, we neglected the usual MSW potential proportional to the particle-
antiparticle asymmetries because we assume them to be small (of the order of the baryon
asymmetry). Thus, Ve only contains the more significant higher order elastic scattering
contributions from the inverse mass expansion of the W, Z boson propagators.

In order to analyze the resonance structure of this two flavor system, we diagonalize the
Hamiltonian with the general ansatz

U(θ(p)) :=
(

cos(θ(p)) sin(θ(p))
− sin(θ(p)) cos(θ(p))

)
(2.8)

and find the following relation for the mixing angle

tan(2θ(p)) = 2mes(mee + mss)
(m2

ss − m2
ee) + 2p(Vs(p) − Ve(p)) . (2.9)

The mixing becomes maximal as soon as θ = π/4 because then electron and sterile neutrinos
equally constitute both mass eigenstates and the mass gap between these two eigenstates is
minimal. This in turn leads to higher transition rates between active and sterile neutrinos in
the energy regime close to the resonance.

From eq. (2.9) we can infer the resonance condition

θ → π

4 ⇔ tan(2θ(p)) → ±∞

⇒ (m2
ss − m2

ee) + 2p(Vs(p) − Ve(p)) → 0± . (2.10)

The momentum pres fulfilling the condition (2.10) is called the resonance momentum. As
follows from eq. (2.10), the interplay of the two appearing potentials and the neutrino masses
determines the resonance structure of the system.

This will become important again as soon as we study the effects of resonant conversion
between sterile and active neutrinos in combination with collisions in the early universe plasma.

2.2 Sterile neutrinos coupling to axion-like dark matter
In addition to the ADR effects, we also introduce an ultra-light, real, scalar field. The
corresponding scalar particles are assumed to be produced non-thermally and to form a
coherent condensate. This condensate behaves like a homogeneous, classical field in an
expanding universe and its time evolution is given by [29]

ϕ(t) = ϕ0η(t) (2.11)

η(t) = 1.08
J 1

4
(mϕt)

4
√

mϕt
with lim

t→0
η(t) = 1 . (2.12)
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Here, J 1
4

is the regular Bessel J function of fractional order 1/4, mϕ is the mass of the scalar
and t is the cosmic time. Moreover, we allow for a feeble2 coupling to sterile neutrinos via a
Yukawa interaction term in its Lagrangian,

L(ϕ, ∂µϕ) = 1
2(∂µϕ)(∂µϕ) −

m2
ϕ

2 ϕ2 − λ

2 ϕν̄sνs . (2.13)

Since we assume the coupling constant λ to be very small, we neglect possible interactions
between νs and ϕ quanta and interactions of νs with itself mediated by ϕ. Nevertheless, we
account for an additional time dependent sterile neutrino mass term

meff(t) = mss + λϕ0η(t) , (2.14)

modifying the mixing between electron and sterile neutrinos. Although this additional mass
term is proportional to λ, it is indeed significant if the amplitude ϕ0 of the classical component
of ϕ is sufficiently large. Assuming ϕ to contribute a substantial amount to the dark matter
density, one can deduce [29]

ϕ0 ∼ 1015 GeV
(

10−15 eV
mϕ

) 1
4

. (2.15)

Thus, for scalar masses on the order of mϕ ∼ 10−10 eV one can still obtain λ · ϕ0 ∼ 100 eV for
λ ∼ 10−21.

At early times, the mass contribution remains approximately constant leading to a
constant sterile neutrino mass meff ≈ mss +λϕ0. If ϕ0 is sufficiently large, the effective mixing
of electron and sterile neutrinos is negligible since tan(2θ) is suppressed by the large mass
gap m2

eff − m2
ee in the denominator of eq. (2.9) with mss replaced by meff . Hence, sterile

neutrinos are not populated via oscillations at these early times.
From the point in time where the Bessel function starts its damped oscillating behavior

(t ∼ 1/mϕ) the effective sterile neutrino mass approaches mss, allowing for significant oscil-
lations again. Therefore, the neutrino oscillation behavior depends on the mass parameter
mϕ, i.e. the smaller mϕ the longer ϕ(t) will remain approximately constant and active-sterile
mixing will be suppressed by ms0.

2.3 Central quantities and parameter space
In the following analysis, we focus on two major quantities:

1. The effective number of additional neutrino generations

∆Neff(t) : = 8
7

(11
4

) 4
3 ∑

k∈V

ρk(t)
ργ(t) − 3 , with V = {e, µ, τ, s} . (2.16)

Here, ρk(t) are the neutrino energy densities at time t and ργ(t) is the corresponding
photon density.3 Moreover, we need to incorporate factors of 8/7 and (11/4)4/3 to
directly compare fermionic and bosonic energy densities with a temperature deviation
of (11/4)1/3 to each other.

2The coupling has to be feeble in order for the scalar field not to thermalize if the sterile neutrinos are
thermalized via oscillations.

3By using the energy density in the definition of ∆Neff we slightly differ from the methods employed in
ref. [29] where the number density is used instead.

– 5 –



J
C
A
P
1
1
(
2
0
2
3
)
0
5
6

2. The helium mass fraction

Y4He := 4nHe
nB

, (2.17)

with the helium and baryon number densities nHe, nB.

In order to compare these quantities with observations, these observables have to be computed
at different times in the cosmic evolution. The value of the number of additional neutrino
generations ∆Neff(t) is inferred from the Hubble rate measurement from the CMB [25] and
thus needs to be known at the time of the last photon scattering, while the value of the helium
fraction Y4He has to be computed shortly after BBN. It is, however, sufficient to evaluate
∆Neff directly after e± annihilation since from there on it remains constant. This is because
after e± annihilation the total neutrino energy density only changes due to the expansion of
the universe4 and by normalizing it to the photon energy density we cancel the dependence
on the scale factor.

The helium fraction remains constant right after BBN, hence it is appropriate to evaluate
Y4He as soon as deuterium dissociation has ceased to be efficient. Hence, our analysis solely
focuses on the era of radiation domination.

Finally, we want to discuss the three dimensional parameter space of the model under
consideration. It is parameterized by

1. The scalar field mass mϕ determining when the scalar field starts to oscillate.

2. The amplitude ms0 := λϕ0 of the additional mass contribution for the sterile neutrino.

3. The ADR parameter b.

In the following, we assume a range for ms0 ∈ [10 eV, 250 eV] in accordance with ref. [29].
Furthermore, for mϕ we choose the interval of possible values to be [10−22 eV, 10−14 eV]
since for mϕ ≤ 10−22 eV the scalar field starts oscillating so late that the effective sterile
neutrino mass remains constant during the considered temperatures. Thus, for mϕ ≲ 10−22 eV
our scenario becomes independent of mϕ and yields the same constraints on ms0 as for
mϕ ∼ 10−22 eV.

At values larger than mϕ = 10−14 eV the addition of the scalar field to the model becomes
meaningless since the sterile neutrino mass already gets close to its bare value at the relevant
temperatures and the sterile species equilibrates.

For the ADR parameter, we choose benchmark values in Ib = [0, ∞), i.e. we consider
anything between zero ADR potential and an arbitrarily large ADR effect. A special point in
this parameter range is b ∼ 10−17, since this is the order of magnitude needed in order to explain
SBL anomalies [21]. The reason why we allow for arbitrarily high (low) ADR parameters in
the early universe is that there might be some mechanism in the extradimensional realization
of ADRs causing the curvature of the extra dimension to change from early times until today
and correspondingly implying the ADR parameter to decrease (increase), accordingly.

4We prove that the total neutrino energy density only changes due to the expansion of the universe after
neutrino decoupling in appendix A using the neutrino density matrix formalism introduced in the next section.
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3 Neutrino quantum kinetic equations and numerical strategy

The density matrix describing the oscillations of neutrinos in the early universe is defined as
the thermal average of creation and annihilation operators, a

(†)
j (p⃗) of neutrino mass eigenstates,

i.e. [44, 45]

(2π)3δ3(p⃗ − q⃗)ϱjk(p⃗) := ⟨ak(p⃗)†aj(p⃗)⟩ (3.1)

where the thermal average of an operator Ô is defined using the density operator5 Π̂ of the
thermal system as usual ⟨Ô⟩ := Tr(Π̂Ô).

Thus, if we consider the diagonal elements (j = k) of the density matrix it simplifies
to the thermal average of the occupation number operator of νk which in turn results in its
phase space distribution function. This already gives some intuition of its physical meaning:
The diagonal of the density matrix contains the information how many νk momentum states
on average are occupied in the system. Moreover, by inspecting the off-diagonal elements
of ϱ, we obtain information about the average correlation between νj(p) and νk(p). Such
correlations arise for example due to neutrino oscillations. This makes the density matrix the
quantity of choice if we want to consider incoherent particle collisions and oscillations in a
thermal environment [46] at the same time.

In the following, we will mainly work in the flavor basis instead of the mass basis because
the collision terms and Hamiltonian potentials are easier to calculate in the flavor basis.
Therefore, we need to transform ϱjk into this basis using the neutrino mixing matrix U from
eq. (2.8) via

ϱf
jk =

2∑
l,m=1

Ujlϱlm(U †)mk . (3.2)

From now on, we will work with ϱf only and drop the superscript f .

3.1 Quantum kinetic equations for the density matrix

The time evolution of ϱ in an expanding, homogeneous and isotropic universe is governed by
a Boltzmann-like, quantum kinetic equation (QKE) [44, 45, 47–49]

(∂t − pH∂p)ϱ(t, p) = −i[H(t, p), ϱ(t, p)] + C[t, p, ϱ] , (3.3)

where p is the modulus of the neutrino momentum, t is the cosmic time, H is the Hubble
rate, H is the Hamiltonian from eq. (2.6) and C is the collison operator.

The convectional derivative operator, ∂t − pH∂p, on the left hand side includes the effect
of the expansion of the universe redshifting the neutrino momentum as p ∝ a−1, where a is the
scale factor of the Robertson Walker metric. Furthermore, the right hand side contains the
commutator of the neutrino Hamiltonian with the density matrix and the collision operator
C. While the commutator part governs the evolution of ρ due to neutrino oscillations, the
collision part determines how many neutrinos are annihilated, created or scattered to other
momentum modes in interactions with the background plasma. Since there are also neutrinos
in the background plasma, this last term is non-linear.

5Despite their very similar names the density operator and density matrix are by no means equivalent
quantities.
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k process
1 νe− ↔ νe−

2 νe+ ↔ νe+

3 νν̄ ↔ e−e+

4 νν ↔ νν
5 νν̄ ↔ νν̄

Table 1. All relevant processes considered in the neutrino collision terms.

The collision operator is the sum of the individual collision operators corresponding to a
scattering process involving neutrinos

C[t, p, ϱ] =
∑
k∈P

Ck[t, p, ϱ] , (3.4)

where the set of all processes P contains the interactions given in table 1. Here we neglect
neutrino-nucleon scattering processes due to strong Boltzmann suppression of the nucleon
distribution functions at temperatures of O(100 MeV) and smaller.

For example, the collision term for the process νe− ↔ νe− is given by

C1[t, p, ϱ] = 8G2
F

p

∫
d3π⃗1 d3π⃗2 d3π⃗3 (2π)4δ4(pµ + pµ

1 − pµ
2 − pµ

3 )

×
{

4g2
l (pαpα

3 )(p1βpβ
2 ) + 4g2

R(pαpα
1 )(p2βpβ

3 ) − 4gLgR(pαpα
2 )m2

e

}
× ϕνe−νe−(t, pµ, pµ

1 , pµ
2 , pµ

3 ) , (3.5)

where d3π⃗j := (2Ej(2π)3)−1d3p⃗j denotes the Lorentz invariant phase space measure, gL =
1/2 + sin2(θW ), gR = sin2(θW ), θW is the Weinberg angle and the statistical factor ϕνe−νe− is
given by

ϕνe−νe−(t, pµ, pµ
1 , pµ

2 , pµ
3 ) := ϕ+

νe−νe−(t, pµ, pµ
1 , pµ

2 , pµ
3 ) − ϕ−νe−νe−(t, pµ, pµ

1 , pµ
2 , pµ

3 ) (3.6)

with

ϕ+
νe−νe−(t, pµ, pµ

1 , pµ
2 , pµ

3 ) := [1 − fe−(t, p1)]fe−(t, p3){Peϱ(t, p2)Pe, I − ϱ(t, p)} ,

ϕ−νe−νe−(t, pµ, pµ
1 , pµ

2 , pµ
3 ) := fe−(t, p1)[1 − fe−(t, p3)]{Pe[I − ϱ(t, p2)]Pe, ϱ(t, p)} .

Furthermore, fe− denotes the electron phase space distribution. The collision terms are
calculated applying the methods described in [48] to the current scenario.

In addition to the density matrix for neutrino states, in principle there is also an
analogous one for antineutrinos which has to be solved at the same time. In the following,
we assume that the lepton-antilepton asymmetry is of the order of the baryon asymmetry
and hence negligible compared to the total phase space densities. This implies that the
antineutrino density matrix behaves the same as the neutrino density matrix and therefore
we just have to consider the QKE for neutrinos.

In order to keep track of the temperature Tγ of the electromagnetic plasma, we need to
solve the continuity equation of the universe

ρ̇ = −3H(ρ + P ) , (3.7)

– 8 –



J
C
A
P
1
1
(
2
0
2
3
)
0
5
6

where ρ and P are the total energy density and total pressure of all radiation species,
respectively. By substituting in the equilibrium expressions for electrons and photons and
assuming these particles to be in thermal equilibrium,6 this equation can be reformulated
into a differential equation for Tγ .

3.2 Numerical solution of the quantum kinetic equations
In order to prepare the numerical solution of the previously introduced QKE (3.3), we define
a new set of dimensionless variables

x(t, p) := m0a(t) , (3.8)
y(t, p) := a(t)p , (3.9)

where we choose m0 = 1 MeV. Therefore, x represents the dimensionless scale factor and y is a
dimensionless momentum variable not being redshifted over time, since p ∝ a−1. Moreover, x
takes the role of the reciprocal of the neutrino temperature which is equal to Tγ at early times
but deviates from it after neutrino decoupling and electron positron annihilation. Transformed
to these new variables eq. (3.3) assumes the form

xH∂xϱ̃(x, y) = −i[H(x, y), ϱ̃(x, y)] + C[x, y, ϱ̃(x, y)] , (3.10)

with ϱ̃ being the density matrix expressed in the new set of variables. From now on, we will
only refer to this quantity and hence drop the tilde, i.e. ϱ̃ → ϱ.

In order to integrate eq. (3.10), in principle we had to start at x0 = 0 and set ϱik(x0, y) ≡ 0.
But since the QKE described in the last section are only valid after the strong phase transition,
we have to find a finite starting point x0 matching all criteria of validity of our equations of
motion which are

1. Active neutrinos are in thermal equilibrium with the electromagnetic plasma.

2. Quarks and gluons are bound into hadrons.

3. Contributions from processes involving muons are negligble.
Furthermore, we assume the sterile neutrino density and correlations between active and
sterile neutrinos to be negligible at x0 such that our initial condition for ϱ is given by

ϱ(x0, y) ≈
(

(exp(y) + 1)−1 0
0 0

)
. (3.11)

We found that x0 = 0.01, i.e. Tγ,0 = 100 MeV, fulfills these criteria. For more discussions see
appendix B.

We terminate the integration at x1 which we require to fulfill the following criteria:
1. Neutrino interactions are completely frozen out

2. All free neutrons are bound into light nuclei

3. The neutrino distribution functions have reached their asymptotic values

4. The relativistic approximation for the oscillation Hamiltonian and collisions is valid
We found x1 = 50 to be a suitable final point fulfilling these criteria while still being located
in radiation domination.

6This assumption is valid due to the rapid electromagnetic interactions between photons and electrons
roughly until the time of last scattering.
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To solve eq. (3.10) in the interval X := [x0, x1], we discretize the momentum space
Ωy = [0, ∞) and integrate the resulting set of ordinary differential equations. To do so, we
choose Ny equidistant points between the minimal and maximal momentum values ymin, ymax
at which we cut off the distribution function. Choosing a minimal value is necessary because
the ultra-relativistic approximation employed within the oscillation Hamiltonian is not valid
for all momentum values, especially not for y = 0. Hence, the minimal y value is chosen to be
ymin = 10−4 in order to still yield a reasonably good approximation for the neutrino energy
density. Furthermore, the maximal momentum value is chosen to be y = 20 since the neutrino
distribution at this y value fulfills

fν(x, y = 20) ≤ feq(x, y = 20) = (exp(y) + 1)−1|y=20 ≈ 2 · 10−9 , (3.12)

which is sufficiently close to zero. Therefore, the total, relative error induced within the
neutrino energy density needed to calculate our central quantities is of the order

ϵrel := |ρapprox
ν − ρν |

ρν
∼ 10−6 .

The discretized version of Ωy then reads

Ω̃y(Ny) :=
{

yk = ymin + k · ∆y
∣∣∣ k ∈ {0, . . . , Ny − 1}, ∆y = ymax − ymin

Ny − 1

}
.

Hence, we arrive at Ny coupled, ordinary, differential equations for the density matrix values
at the chosen momentum nodes plus one equation for the photon temperature. Furthermore,
decomposing the Hermitian density matrix into its 4 independent, real components yields a
total of 4Ny + 1 coupled differential equations which need to be solved.7

3.3 Calculating the helium abundance
In this section, we present how the 4He mass fraction Y4He is estimated from the neutrino
distribution functions. Our explanations and notation closely follow the book [50] by Bernstein
on kinetic theory in an expanding universe.

At first, we define the neutron fraction, i.e.

Xn(t) := nn(t)
nn(t) + np(t) , (3.13)

where nn and np are the neutron and proton number densities, respectively. This choice
greatly simplifies the Boltzmann equation for nn since the a−3 dependence of the number
densities cancel. Furthermore, we find

d
dt

{a3(t)(nn(t) + np(t))} ≡ const. , (3.14)

because the baryon number in a comoving volume, NB ≈ a3(nn + np), is conserved within all
relevant processes shortly before neutron freeze out. These processes are

n + e+ ↔ p + ν̄e (3.15)
n + νe ↔ p + e− (3.16)

n ↔ p + ν̄e + e− . (3.17)
7For the numerical details see appendix C.
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The differential equation governing the evolution of Xn reads [50]

dXn(x)
dx

= λpn(x)
xH

(1 − Xn(x)) − λnp(x)
xH

Xn(x) , (3.18)

in terms of x = m0a(t). Here λnp is the thermal interaction rate of all processes converting
neutrons to protons, while λpn is that of all processes converting protons to neutrons. They
are given and discussed in appendix D.

We solve eq. (3.18) from x(T = 5 MeV) where neutrons and protons are still in thermal
equilibrium up until x(T = 0.07 MeV) where deuterium dissociation ceases to be efficient.
During the solution of this differential equation, we interpolate the neutrino distribution
functions and temperatures obtained on the grid of (x, y) values using the methods described
in the previous subsections.

Finally in order to estimate the produced helium abundance, we convert the neutron
fraction into the helium mass fraction, i.e.

Y4He = 4n4He
nB

= 2nn

nB
= 2Xn , (3.19)

where we used the assumption that approximately all free neutrons are bound into helium-4
nuclei at the end of BBN.

Of course this method is subject to several approximations especially since we neglect
the nuclear reaction rates, hence our estimate cannot be compared directly to observations
from [51]. Nevertheless, we can inspect if the different models lead to a relative deviation
from the expected value which is on the order of experimental uncertainty or if it exceeds this
uncertainty significantly.

4 Predicted effective degrees of freedom and helium abundance

Now, we present the results for different benchmark points within the 3 dimensional parameter
space. In the following, we first discuss our results for the pure ADR scenario, the pure scalar
field scenario and afterwards for the combination of both effects. For each chosen benchmark
point, we calculate the resulting effective, additional number of degrees of freedom ∆Neff and
the estimated helium-4 abundance Y4He. These simulated values for ∆Neff are compared to
bounds obtained by the Planck collaboration, i.e.

• TT + lowE (95% CL): Neff = 3.00+0.57
−0.53 ⇒ ∆Neff ≤ 0.57,

• TT, TE, EE + lowE (95% CL): Neff = 2.92+0.36
−0.37 ⇒ ∆Neff ≤ 0.28,

• TT + lowE + lensing + BAO (95% CL): Neff = 3.11+0.44
−0.43 ⇒ ∆Neff ≤ 0.55,

• TT, TE, EE + lowE + lensing + BAO (95% CL): Neff = 2.99+0.34
−0.33 ⇒ ∆Neff ≤ 0.33.

Here the abbreviations TT, TE, EE, lowE, lensing, BAO refer to different measurement
techniques / features of the CMB data (i.e. TT =̂ intensity (temperature) only, TE =̂
temperature + curl free polarization data, EE =̂ curl free polarization data only, lowE =̂ curl
free polarization data only at low multipole moments, lensing =̂ grav. lensing measurement,
BAO =̂ baryon acoustic oscillations). Afterwards, we turn towards the helium abundance
and compare its deviation for different benchmark points from the expected SM value to the
experimental uncertainties on the helium mass fraction from ref. [51], i.e. σ4He = 0.004.
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b 0 10−17 10−15 10−12 10−6 10−4 10−2

∆Neff 1.36 1.36 1.36 1.38 0.04 0.04 0.04

Table 2. Estimated additional light degrees of freedom ∆Neff at x = 50 for different ADR parameters b.
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Figure 1. Final (x = 50) νs phase space densities (solid) as a function of the comoving momentum y
for various ADR parameters b ∈ {0, 10−17, 10−12, 10−6} compared to the equilibrium density (dashed).

4.1 ∆Neff and Y4He in the pure ADR scenario

The values of ∆Neff obtained after the full integration of QKEs for different ADR parameters
are shown in table 2.

Here, we see that the resulting ∆Neff values for the smallest ADR parameters exceed all
Planck bounds by far while bigger b values lead to excellent agreement with all four bounds
∆Neff < {0.28, 0.33, 0.55, 0.57}. Moreover, we can infer that for small b values the no-ADR
scenario is resembled and sterile neutrinos are equilibrated via oscillations. Turning b up to
much larger values (b ≳ 10−6) leads to a decrease in ∆Neff and sterile neutrinos are not close
to equilibrium anymore. In figure 1, we show the final sterile neutrino distributions compared
to the equilibrium distribution for four b values differing by many orders of magnitude to
emphasize this statement.

The behavior described above can be explained by considering the resonance structure
of each parameter configuration. In figure 2, we show the resonance momentum yres for
multiple ADR parameters in the temperature range Tν ∈ Tν := [3, 100] MeV. For larger
ADR parameters the resonance curve passes through the relevant y region from above
leading to resonantly enhanced νe-νs conversion. Momentum modes located underneath the
respective resonance curve neither experience mixing enhancement nor mixing suppression
and approximately behave as in the no-ADR scenario. On the other hand, momentum modes
well above the resonance curve, i.e. y ≫ yres(Tν) ∀Tν ∈ Tν , are subject to effective mixing
suppression since ν1 ≈ νe and ν2 ≈ νs. Thus, νs remains unpopulated in this regime.

Note that the strength of this suppression/enhancement effect is momentum dependent
since the active as well as the sterile potentials are proportional to y. Hence, the mixing of
neutrinos with small momenta is closer to the vacuum case leading to a faster population
of these modes even if the resonance momentum is much smaller. But since ∆Neff depends
more strongly on the high momentum region, this does not affect its estimate significantly.
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Figure 2. Resonance momentum yres plotted against the neutrino temperature Tν ≈ Tγ for various
ADR parameters b ∈ {10−17, 10−15, 10−12, 10−6, 10−4, 10−2}. The relevant momentum region 10−4 ≤
y ≤ 20 is shown as the green shaded region. All modes above the corresponding resonance curve are
subject to strong mixing suppression.

Now one could ask what happens as soon as multiple (high) momentum modes pass
through one or two resonances, as is the case for e.g. b = 10−15. A sterile y mode can be
strongly populated by passing through a resonance, but it is even more important how big the
long term mixing around this resonance is. If the mixing is sufficiently smaller than vacuum
mixing, the respective sterile mode experiences some enhancement by the resonance, but it will
not reach its equilibrium value. On the other hand, if the mixing is very large already before
or after passing the resonance, the sterile momentum mode will be equilibrated irregardless of
the resonance. Thus what matters is only the fact whether the relevant momentum modes are
subject to mixing suppression for sufficiently long or if they are closer to the (large) vacuum
mixing. This can be seen in figure 3 which shows the temperature evolution of the modulus
|ϱes| :=

√
Re(ϱes)2 + Im(ϱes)2 for y = 5.

The off-diagonal element ϱes is important since it contains information about the energy
transfer from νe to νs. Therefore, the plot shows that shortly after T = O(100 MeV) for
models with vanishing or small ADR parameters a dip occurs in ϱes leading to a significant
enhancement of ρss, afterwards. Considering, the curve for b = 10−15, we see that the
resonance around O(7 MeV) leads to a significant impact in |ϱes| but doesn’t lead to a
significant increase of the sterile neutrino density, since it already reached thermal equilibrium.
Moreover, we see that for b ≥ 10−6 the off-diagonal matrix elements stay much closer to zero
due to sizeable mixing suppression.

Despite the fact that the excess of light degrees of freedom, ∆Neff , is a good estimator
for the degree of population of sterile neutrinos, it is not sufficient to rely on this number
alone. After neutrino decoupling around Tγ = O(3 MeV), the active-sterile oscillations could
lead to a depletion of the density of active neutrinos which has strong impact on the neutron-
proton equilibrium, since fewer νe lead to an early freeze out of n-p reactions and hence to
a larger neutron abundance. This leads to an excess of helium that contradicts the very
good agreement of the predictions from standard cosmology and cosmological observations.
Hence, we need to carefully estimate how much helium is produced for our chosen parameter
configurations. To do so, we now estimate the impact of the νe depletion on nucleosynthesis
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Figure 3. Time evolution of the off-diagonal density matrix element |ϱes(y = 5)| for several ADR
parameters. The y = 5 mode undergoes a resonance at Tν ≈ 7 MeV for b = 10−15 leading to a delayed
increase of |ϱes| afterwards. The temperature at which this resonance occurs is marked by the orange
dashed vertical line.

b 0 10−17 10−15 10−12 10−6 10−4 10−2

Y4He 0.235 0.235 0.235 0.235 0.227 0.227 0.227

Table 3. Estimated helium abundances for different ADR parameters b compared to the standard
value Y SM

4He = 0.227 ± 0.004.

by proceeding as described in section 3.3 and solve the Boltzmann equation for the neutron
fraction Xn = nn/(nn + np). The neutron fraction Xn = nn/(nn + np) can then be translated
into the helium mass fraction Y4He ≃ 2Xn at Tγ ≈ 0.07 MeV.

The final helium abundances for different ADR parameters are shown and compared to
the expected standard value of Y std

4He ≈ 0.227 in table 3. Here, we observe the same consistent
picture as for our ∆Neff observable. Small ADR parameters lead to a deviation ∆Y4He =
O(0.01) from the SM expectation much larger than the experimental uncertainty σ4He ∼ 0.004
of the observable Y4He. On the other hand, very large ADR parameters, i.e. b ≳ 10−6 lead
to discrepancies much smaller than σ4He and hence would be in agreement with experiment.

The argument here is exactly the same as before since the depletion of νe solely follows
from the mixing behavior which in turn is dominantly influenced by the resonance structure.
In figure 4, we compare the temperature evolution of Xn for two different scenarios, i.e. for b =
10−17 and for b = 10−4. Around the temperature of O(1 MeV) Xn departs from equilibrium,
as expected, in each scenario. However, Xn(b = 10−17) leaves equilibrium a little earlier and
adopts a higher value compared to the SM curve after neutron freeze out. At the temperature
when all neutrons are bound into helium nuclei, this leads to a higher helium abundance.

In the large ADR parameter scenario, i.e. b = 10−4, Xn essentially stays in agreement
with the SM curve for the relevant temperatures. Therefore, the corresponding helium
abundance would also be in agreement with the SM expectation within the experimental
margin of error. This is due to the negligible presence of νs and much higher interaction rates
λnp, λpn compared to the previous case caused by the non-dilution of the νe density.
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Figure 4. Evolution of the neutron abundance Xn with respect to the photon temperature Tγ for
two different ADR parameters, i.e. b ∈ {10−17, 10−4}, after neutron freeze out. The dashed black
curve represents the SM expectation while the two solid curves correspond to the benchmark scenarios,
respectively.

ms0 / eV 50 100 250
mϕ / eV 10−20 10−16 10−12 10−20 10−16 10−12 10−20 10−16 10−12

∆Neff 1.23 1.22 1.30 0.80 0.80 0.93 0.26 0.26 0.30

Table 4. Estimated additional light degrees of freedom ∆Neff at x = 50 for different scalar field
parameters.

4.2 ∆Neff and Y4He in the ALP only scenario

Next, we look at the behavior of ALP only models, where we turn off the ADR potential and
turn on the coupling of the ALP field to the sterile neutrino. This results in a time dependent,
additional mass for the sterile neutrino mass matrix element, mss → mss + ms0η(t), where η
is given by eq. (2.12).

We integrate the QKEs for different parameter values shown in table 4. The obtained
results for ∆Neff show the clear pattern that higher ms0 values and lower mϕ values are
favored by experimental observation.

We can explain this by looking at the behavior of the time dependent part ∝ η of the
sterile mass matrix element which is shown in figure 5 and the tan(2θ) of the effective mixing
angle shown in figure 6. The first plot shows that if the scalar field is too heavy, it starts
to oscillate earlier leading to a decrease of the additional mass contribution of the sterile
neutrino. According to the latter figure, smaller sterile masses lead to larger effective mixing
angles which in turn lead to faster population of the sterile species. Therefore, we need a
large ms0 and a small mϕ to reconcile the existence of the sterile species with experimental
observations.

These conjectures are supported by figures 7(a) and 7(b) showing the off-diagonal element
|ϱes(y = 5)|. There we see that after the scalar field has started to oscillate the correlations
between active and sterile neutrinos increase, whereas for an overall smaller ms0 parameter
the correlations are also overall bigger.
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Figure 5. Behavior of the normalized scalar vev η for different ALP mass parameters mϕ at
temperatures in the integration range of the QKEs.
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Figure 6. Effective mixing angle between νe and νs for different values of ms0 at temperatures in
the integration range of the QKEs. Here we fixed mϕ = 10−22 eV so that η remains constant for all
temperatures of interest.

Now, we consider the obtaind helium abundances for the different benchmark points. In
table 5 the resulting values for Y4He are shown. Here the same pattern arises as for ∆Neff
with the difference that our BBN observable is more sensitive to the ALP mass. For masses
mϕ ≳ 10−18 eV the condensate oscillates during or before nucleosynthesis has started resulting
in a depleted electron neutrino density. The earlier this oscillation occurs, the more fνe

is depleted and the bigger the deviation of the final helium abundance from the SM value
becomes as we can see from table 5. Only the benchmark points with mϕ ≳ 10−16 eV and
ms0 ≳ 100 eV are within the uncertainty around the standard value.

To underline this statement we also show the evolution of the neutron fraction for the
benchmark points which are least and most compatible with observations in figure 8. Note
that the red curve deviates more significantly from the SM expectation than the green one
describing the most compatible parameter configuration under consideration. The departure
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(a) mϕ = 10−20 eV.
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(b) ms0 = 250 eV.

Figure 7. As figure 3 for the ALP only scenario, for fixed mϕ (left) and for fixed ms0 (right). Shown
are three different parameter configurations per panel.

ms0 / eV 50 100 250
mϕ / eV 10−20 10−16 10−12 10−20 10−16 10−12 10−20 10−16 10−12

Y4He 0.234 0.234 0.235 0.232 0.232 0.233 0.229 0.229 0.229

Table 5. Estimated helium abundance at x = 50 for different scalar field parameters compared to the
standard value Y SM

4He = 0.227 ± 0.004.
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Figure 8. As figure 4, for ALP only scenarios after neutron freeze out.

of the model curve for the least compatible configuration due to the depletion of electron
neutrinos is more prominent than the almost non-existing one in the most compatible case.

As we have seen, a bigger sterile mass matrix element due to the coupling of a scalar
field suppresses the mixing of νe and νs such that the resulting helium fraction and effective
degrees of freedom become compatible with experimental bounds. Next, we consider the
combined ADR and scalar field scenario.
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Figure 9. Comparison of the evolution of |ϱes(y = 5)| for the ADR only scenarios b ∈ {10−17, 10−6}
versus the combined scenario with mϕ = 10−22 eV, ms0 = 250 eV and b = 10−17. The ADR only plots
are shown as dashed lines, while the line corresponding to the combined scenario is solid. Compare
figures 3 and 7 for the individual ADR and scalar field cases.

b 0 10−17 10−15 10−12

∆Neff 0.25 0.25 0.25 0.26

Table 6. Estimated additional light degrees of freedom ∆Neff at x = 50 for different ADR parameters
b and mϕ ∼ 10−22 eV and ms0 ∼ 250 eV.

4.3 ∆Neff and Y4He in the combined ADR and ALP scenario

In the ADR only case, we have concluded that for sufficiently large ADR parameters b
the equilibration of νs is suppressed. Choosing smaller ADR parameters leads to a strong
population of νs and hence large corrections to Neff that exceed experimental bounds. We
expect that in the combined scenario even small ADR parameters can be brought into
agreement with experiment by invoking the mixing suppression by the scalar field ϕ from
section 2.2. This expectation is further substantiated from inspecting figure 9, which shows a
(on average) smaller |ϱes| than for small b values in the ADR only case.

We confirm this expectation by choosing mϕ ∼ 10−22 eV and ms0 ∼ 250 eV. For this
value of mϕ the scalar field starts oscillating long after nucleosynthesis has ceased and leads
to a constant addition to the sterile neutrino mass during the time of integration. In table 6,
we display the values of ∆Neff again for b ∈ {0, 10−17, 10−15, 10−12} with the addition of the
scalar field.

We see that the values of ∆Neff decrease significantly compared to the pure ADR scenario
which is due to mixing suppression because of the additional sterile mass as discussed in the
last subsection. Now the corrections to Neff are in agreement with all bounds from Planck,
i.e. ∆Neff < {0.28, 0.33, 0.55, 0.57}. Thus, even cases where the ADR scenario alone does not
explain cosmological observation an additional mass contribution for the sterile neutrino can
reconcile them with experiment. For comparison with the pure ADR case, we show the final
neutrino distributions for b = 10−17 and b = 10−12 in figure 10.
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Figure 10. As figure 1 for the combined ADR and ALP scenario, for two different ADR parameters.
The shown b values are excluded in the ADR only scenario but are reconciled with experiment due to
the addition of the scalar field.

Of course this suppression effect disappears if one allows for higher scalar masses such
that the asymptotic sterile mass at O(1 MeV) is reached before BBN or neutrino freeze out
or if ms0 is too small in the first place. Consider for example the benchmark points

p1 := (mϕ, ms0, b) = (10−22 eV, 50 eV, 10−17) , (4.1)
p2 := (mϕ, ms0, b) = (10−12 eV, 250 eV, 10−17) , (4.2)

where we adopted a smaller value for ms0 for p1 and a bigger value for mϕ for p2, respectively.
Integrating the QKEs for the first configuration yields

∆Neff(p1) ≈ 1.23 , (4.3)

which is slightly smaller than the original result ∆Neff(b = 10−17) ≈ 1.36 in the pure ADR
case, but is still much larger than for ms0 = 250 eV. Hence, as expected, a smaller effective
sterile mass contribution leads to a reduced mixing suppression. Increasing the scalar field
mass as specified in eq. (4.2) for the second benchmark point, we get

∆Neff(p2) ≈ 0.30 , (4.4)

which is slightly higher than the value we obtained for mϕ = 10−22 eV but still in agreement
with three out of four Planck bounds. This is because after neutrino freeze out ∆Neff remains
constant and ϕ(t) only starts oscillating shortly before. Thus, we obtain a similar result for
∆Neff(p2) as for mϕ = 10−22 eV. For mϕ ≫ 10−12 eV the scalar field oscillates long enough
before neutrino freeze out to imply ∆Neff(p2) → ∆Neff(b).

After having discussed the combined scenario for ∆Neff , we now turn towards our
estimate of the helium abundance. Here, we expect the same mechanism to apply as in
section 4.2: assuming a scalar field mass of mϕ ≲ 10−18 eV the oscillatory behavior of the scalar
field starts after tBBN ∼ 300 s. Hence, active-sterile oscillations are suppressed depending on
the additional mass ms0 during the process of neutron freeze out.

We can observe this effect in figure 11 showing the evolution of Xn(T ) for mϕ = 10−22 eV,
ms0 = 250 eV and b = 10−17 compared to the evolution in the pure ADR case with the same
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Figure 11. As figure 4 comparing the pure ADR case with b = 10−17 with the combined ADR and
ALP scenario.

b 0 10−17 10−15 10−12

Y4He 0.229 0.229 0.229 0.229

Table 7. Estimated helium abundances for different ADR parameters b and mϕ ∼ 10−22 eV and
ms0 ∼ 250 eV compared to the standard value Y SM

4He = 0.227 ± 0.004.

b value. After adding the scalar field to the pure ADR model, one can no longer distinguish
the SM from the model curve within the given margin of error σ4He = 0.004. This holds for
all chosen ADR parameter configurations with low mϕ and high ms0, c.f table 7. Hence, in
the combined scenario the deviation from the SM value is even smaller than experimental
uncertainties ∆Y4He ∼ 0.002 < σ4He.

This effect gets weaker if we choose a lower ms0 or increase the mass of the scalar field up
to values of mϕ ≫ 10−18 eV. For higher scalar masses, the ALP condensate already oscillates
at times before neutron-proton interactions freeze out and hence active-sterile oscillations are
not suppressed anymore regardless of the value of ms0.

In order to demonstrate this effect, we again consider the benchmark points p1 and p2
as in the ∆Neff analysis. For the first point with lower ms0, we again expect a less efficient
mixing suppression within the whole integration interval. This is indeed what we get after
integrating the QKEs for the neutrino density matrix and the neutron fraction. The final
helium abundance for p1 amounts to

Y4He(p1) ≈ 0.234 > 0.229 , (4.5)

which is larger than the value for ms0 = 250 eV and would be observable in experiments.
For the second benchmark point with lower scalar mass, we again obtain a lower value

Y4He(p2) ≈ 0.229 . (4.6)

By adopting even smaller scalar mass parameters, we expect this value to approach the pure
ADR scenario. As a consequence, we would end up with more helium-4.
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Figure 12. Relative deviations of the νe and νs phase space distribution ∆fνα at p2 and pref =
(10−22 eV, 250 eV, 10−17) for different fixed momentum values (black, red, green). The distributions
are plotted from the onset of scalar field oscillations Tν(t ∼ m−1

ϕ ) down to the final temperature
Tν,1 = 0.02 MeV, with mϕ = 10−12 eV.

This effect can be seen in figure 12. As expected, the νe density decreases after
t ∼ m−1

ϕ = 1014 eV−1 while the sterile neutrino density increases, compared to the benchmark
point pref with mϕ = 10−22 eV and all other parameters equal to those of p2. As a consequence,
the higher νs density leads to an earlier departure of Xn from equilibrium, while the depleted
νe density causes an even bigger discrepancy between the SM curve and the corresponding
model curve due to the smaller n − p reaction rates.

For higher mϕ this happens even earlier leading to a more significant increase in fνs

(and a corresponding decrease in fνe).

5 Conclusions

In this paper we have analyzed the impact of altered dispersion relations (ADRs) and couplings
to an axion-like scalar field on cosmological bounds for sterile neutrinos. Both effects have
the potential to ameliorate such bounds, depending on the concrete choice of parameters. In
particular, we conclude that ADR parameters in the range needed to give an explanation for
short baseline experiments, i.e b = O(10−17), alone are not sufficient to suppress νs population
in the early universe. We show this by calculating the effective number of additional light
degrees of freedom for these parameters and by estimating the amount of helium produced
during BBN. This estimate results in the values

∆Neff(b = 10−17) ≈ 1.36 , (5.1)
Y4He(b = 10−17) ≈ 0.235 . (5.2)

Both quantities adopt values higher than allowed by experimental observations, i.e. ∆Neff
Planck

≤
0.33, 0.57 and Y4He = 0.227SM pred. ± 0.004.

In contrast, much larger ADR parameters, like b ≳ 10−6, can indeed suppress the νs

population sufficiently to make light sterile neutrinos compatible with early universe cosmology.
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For this range of parameters most momentum modes experience mixing suppression because
propagation and flavor eigenstates almost coincide with each other resulting in the absence of
active sterile oscillations. Hence, we obtain

∆Neff(b ≳ 10−6)<0.04 , (5.3)
Y4He(b ≳ 10−6)=0.227 . (5.4)

Considering b-values differing from the short baseline anomaly scenario may be, for example,
motivated by effects making the ADR parameter dependent of the cosmic evolution.

Moreover by adding the influence of an axion-like scalar field ϕ changing the sterile
neutrino mass mss → mss + ms0η(mϕ, t) via a Yukawa coupling, even very small ADR
parameter values can be brought into agreement with experiment. For a scalar field mass
mϕ = 10−22 eV and additional mass amplitude ms0 = 250 eV, we obtain

∆Neff(mϕ = 10−22 eV, ms0 = 250 eV, b = 10−17) ≈ 0.26 , (5.5)
Y4He(mϕ = 10−22 eV, ms0 = 250 eV, b = 10−17) ≈ 0.229 , (5.6)

which is compatible with observations.
While this analysis was carried out for a two neutrino generations framework, i.e. one

active and one sterile neutrino, our findings are expected to hold even in scenarios involving
greater numbers of generations. This expectation is justified as it has been found that the
active-sterile decoupling can be a generic effect of the model [21] at energies higher than the
resonance energies. Also the additional sterile mass from the νs-ϕ coupling is expected to have
the same effect if more neutrino generations are present. Increasing the diagonal elements of
the mass matrix corresponding to the sterile species makes it dominantly diagonal resulting
in suppressed active-sterile mixing.

Furthermore, in this analysis we have neglected parameter configurations leading to an
early equilibrated species, i.e. at around T = O(100 MeV), for which the integration of the
QKEs had to be started much earlier at T = O(1 GeV) as well as finite temperature QED
corrections. The former is justified since the corresponding parameter configurations are not
of interest to us since they violate cosmological bounds by definition and would be excluded
anyway. Moreover, due to our findings described in section 3.2 and 4, we don’t expect that
our conclusions will be different if such an analysis is carried out.

Finite temperature QED corrections are important for precision predictions of the total
number of ultra relativistic degrees of freedom [52] since they can lead to an increase in ∆Neff on
the order of magnitude of ∆Neff = O(0.1). Here we were solely interested in the impact of light
sterile species on the number of additional neutrino generations being mainly influenced by the
oscillation Hamiltonian. Finite temperature QED corrections only have a subleading influence
on sterile neutrinos because they do not interact directly with the electromagnetic plasma.

In summary we find that the ADR-only scenario can only explain cosmological obser-
vations if one assumes b ≳ 10−6. The ALP only scenario works well for ms0 ≳ 100 eV and
mϕ ≲ 10−14 eV, whereas in the combined case also ADR parameters compatible with SBL
anomalies (b ∼ 10−17) can be brought into agreement with experimental data for the same
(mϕ, ms0) configuration as in the ALP only case.

Thus, if sterile neutrinos are discovered at future experiments, ADR effects or a Yukawa
coupling to a scalar condensate provide a promising explanation why they did not reach
thermal equilibrium in the early universe. By choosing sufficiently high ADR parameters,
high ms0 and low mϕ these effects lead to a suppression of νs population regardless of the
strength of vacuum mixing between active and sterile neutrinos.
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A Evolution of the total neutrino density after decoupling

To discuss the behavior of the total neutrino energy density after neutrino decoupling, we
first prove that the trace of the neutrino density matrix, i.e. the sum of neutrino phase space
distributions, is unaffected by neutrino oscillations:

(∂t − pH∂p)Tr(ϱ(t, p)) = −iTr([H(t, p), ϱ(t, p)]) + Tr(C)[t, p, ϱ] (A.1)
⇔ (∂t − pH∂p)Tr(ϱ(t, p)) = Tr(C)[t, p, ϱ] , (A.2)

where we made use of the fact, that the trace of a commutator always vanishes. Thus, the
sum of neutrino distribution functions is only changed by the expansion of the universe and
by neutrino scatterings with the background plasma. After the freeze out of weak interactions,
only the expansion of the universe dilutes the total neutrino density and we get

∂tρν = −4Hρν = −3H(ρν + Pν) , (A.3)

where ρν is the sum of all neutrino energy densities. Thus, we conclude that for a frozen out
neutrino sector the total energy density obeys the cosmic continuity equation, whereas before
neutrino freeze out this equation only holds for the total energy density of all radiation species.

B Choice of the initial scale factor x0

In section 3.2, we state our choice of the initial dimensionless scale factor to be

x0 = 0.01 , (B.1)

corresponding to an initial neutrino and photon temperature of

Tν = Tγ = 100 MeV . (B.2)

At this temperature, interactions between neutrinos and the eletromagnetic plasma are
sufficiently rapid such that Tν = Tγ holds. Furthermore, we know that the plasma at this
temperature is mainly comprised of the following particles

e−, e+, {να}s
α=e, {ν̄α}s

α=e, γ , (B.3)

since the next heavier particles, i.e. muons and pions, are already non relativistic and mainly
decayed into these lighter particles. This dramatically simplifies the collision terms we have
to consider for the neutrino Boltzmann equations. However, in order to verify the validity
of the chosen initial time, we have to integrate the Boltzmann equations at much higher
temperatures T ≫ mµ for a set of representative parameter configurations.

In the following, we present an argument why it is still sufficient to consider only the
reactions listed in section 3.1 for these test runs. To show that, we decompose the Boltzmann
equation for the density matrix

xH
∂ρ

∂x
(x, y) = −i[H(x, y), ρ(x, y)] + C[ρ, x, y] , (B.4)
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using the SU(2) generator basis of H(2), i.e. the space of Hermitian 2 × 2 matrices. Thus, we
expand all appearing matrices using the extended set of scaled Pauli matrices

τ0 = 1
2

(
1 0
0 1

)
, τ1 = 1

2

(
0 1
1 0

)
, (B.5)

τ2 = 1
2

(
0 −i
i 0

)
, τ3 = 1

2

(
1 0
0 −1

)
. (B.6)

Before applying this decomposition, we rewrite the collision term as the difference of gain
and loss terms

C[ρ, x, y] = {Γ+, I − ρ} − {Γ−, ρ} , (B.7)

where Γ+ ∈ H(2) is the matrix valued collision rate for gaining a neutrino from the plasma,
while Γ− ∈ H(2) is the rate for losing a neutrino to the background (or to another momentum
state). Further using the linearity of the anticommutator yields

C[ρ, x, y] = {Γ+, I} − {Γ+, ρ} − {Γ−, ρ} (B.8)
= 2Γ+ − {Γ+ + Γ−, ρ} . (B.9)

Now, we have to find the components of Γ± in our basis. To achieve this, we note that sterile
neutrinos do not interact with the plasma at all which is why Γ± takes the form

Γ± = γ±︸︷︷︸
≥0

Pa , (B.10)

where Pa is the active neutrino projector. For one active and one sterile neutrino flavor, it is
given by

Pa =
(

1 0
0 0

)
= τ0 + τ3 . (B.11)

This automatically gives us the components of Γ±

γ±0 = γ± , γ±1 = 0 , γ±2 = 0 , γ±3 = γ± . (B.12)

In the following, we employ the notation

a := (a0, a⃗) := (a0, a1, a2, a3) , (B.13)

for the vector of components (ak)3
k=0 of a Hermitian matrix A. Moreover, the components of

such a matrix are obtained by taking the scalar product defined on H(2) of the matrix itself
and the corresponding basis matrix, i.e.

ak = ⟨A, τk⟩ := 2Tr(A · τk) . (B.14)

The density matrix and Hamiltonian components are denoted as follows

ρ =
3∑

k=0
ϱkτk , (B.15)

H =
3∑

k=0
hkτk . (B.16)
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Substituting this decomposition into eq. (B.4) yields the 4 coupled equations

xH
∂ϱ0
∂x

= 2γ+ − (γ+ + γ−)(ϱ0 + ϱ3) (B.17)

xH
∂ϱ⃗

∂x
= h⃗ × ϱ⃗ − (γ+ + γ−)ϱ⃗ + (2γ+ − (γ+ + γ−)ϱ0)e⃗3 , (B.18)

with e⃗3 = (0, 0, 1)T .
Now, we are able to argue that taking into account less reactions into our collison terms

yields an upper limit for the starting temperature.8 This becomes appearant by considering
the evolution equations for the real and imaginary parts of the off-diagonal density matrix
element ϱ1, ϱ2 as well as of the sterile neutrino component ρss = (ϱ0 − ϱ3)/2

xH
∂ϱ1
∂x

= (⃗h × ϱ⃗)1 − (γ+ + γ−)ϱ1 , (B.19)

xH
∂ϱ2
∂x

= (⃗h × ϱ⃗)2 − (γ+ + γ−)ϱ2 , (B.20)

xH
∂ρss

∂x
= −(⃗h × ϱ⃗)3 . (B.21)

At T ≫ 100 MeV, the total neutrino interaction rate γ+ +γ− becomes sufficiently large leading
to an exponential dampening of the off-diagonal matrix elements. Consequently, the sterile
neutrino distribution remains constant at these times since ϱ1,2 ≈ 0 implies ∂ρss/∂x ≈ 0. Thus,
if we start with an unpopulated sterile species at high temperatures it will only start being
populated as soon as the interaction rate of νe becomes weak enough such that oscillations
aren’t suppressed anymore.

If we neglect some of the processes contributing to γ± the temperature where γ+ + γ−

is big enough to suppress oscillations gets shifted to higher values, i.e. smaller x. Therefore,
it is safe to estimate a suitable starting temperature (scale factor) using an incomplete set
of interactions since the actual proper estimate will be lower (higher). Of course, in case
this procedure yields a starting temperature Tν > 100 MeV, we need to include the full set of
reactions for the actual integration process or deliver good arguments why x0 = 0.01 is still a
good choice. In the following, we present the results of our test runs.

Solving the set of Boltzmann equations in the high temperature regime is much sim-
pler because active neutrinos are in thermal equilibrium with the electromagnetic plasma.
Therefore, we use

Tν = Tγ = MeV
x

, (B.22)

fνe(x, y) = feq(y) , (B.23)

to precalculate and interpolate the collision terms. Furthermore, we don’t have to solve the
evolution equation for the photon temperature.

In order to ensure that γ+ + γ− is large enough such that oscillations are suppressed, we
choose T = 10 GeV as our initial temperature and integrate until T = 100 MeV. To simplify
the procedure, we use the findings from above and only consider reactions with the particles
given in (B.3).

In figure 13, we show all components of the density matrix at x0 = 0.01 for a set
of different models. Inspecting figure 13(a) shows that the electron neutrino phasespace

8An upper limit on Tν corresponds to a lower limit for the starting scale factor x0.
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Figure 13. Density matrix components at x0 = 0.01 plotted against the dimensionless momentum y
for different models displayed in the legends.

distribution perfectly aligns with its equilibrium value as expected. Furthermore, we observe
that for models with high ADR parameters the sterile neutrino distribution is very close to
0 (cf. 13(d)) such that numerical oscillations below machine precision take over. For much
smaller ADR parameters ρss can get very close to equilibrium especially for small momenta
already at x0 = 0.01 indicating that ρss(x0) ≡ 0 isn’t valid. Turning on the effective sterile
mass contribution from the coupling to the scalar field fixes this issue and ρss is close enough to
0 for our initial assumption to hold. The same conclusions can be drawn from 13(b) and 13(c)
showing the off-diagonal density matrix elements which quantify the correlations between
νe and νs. In figure 14, we compare the final sterile neutrino distribution from the test run at
x0 = 0.01 to the distribution obtained in the full run at x = 0.010001 using the assumption
that the sterile neutrino density vanishes at x0. Here we can see that the sterile density
already approaches and even surpasses the values obtained in the test run at some momenta,
hence we conclude that the error introduced by using the wrong initial value is small.

In conclusion, we see that for sufficiently high ADR parameters or effective sterile masses
the initial condition

ρ(x0 = 0.01, y) ≈
(

feq(y) 0
0 0

)
, (B.24)

is a good approximation.
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1Figure 14. Comparison of the sterile neutrino densities obtained from the test run at x0 = 0.01 (red)
and from the full run after 2 steps at x = x0 + 10−6 (orange).

Only for situations where b is too small or mixing suppression through the additional
sterile mass is not sufficient, we obtain significant sterile neutrino densities already at x0 = 0.01.
Thus, in order to achieve a reliable estimate of the actual sterile neutrino density we need
to start the integration much earlier. However, since these models are already excluded
for the starting point x0 (cf. 4) choosing an earlier x0 would even lead to higher or equal
sterile neutrino densities. This is because oscillations lead to an equilibration of the νe and νs

number, while collisions are pumping new electron neutrinos into the system as long as their
number deviates from the thermal equlibrium values. Therefore, we consider the obtained
sterile neutrino distributions as lower bounds of the actual values. Moreover, it can be seen
by comparing the density matrix components from the test run at x0 to the components
obtained in the full run after a few steps that they almost coincide. Hence, the estimate of
ρ(x, y) obtained using x0 = 0.01 for the problematic models is adequate for our purposes.

C Numerical methodology

We solve this set of differential equations using C++ and the gnu scientific library [53] (GSL).
In detail, a fixed step size Burlisch-Stoer integrator is employed and we take O(104) steps
between the initial (x0 = 0.01) and final time (x1 = 50).

Moreover, the calculation of all numerical integrals is carried out using the closed
Newton-Cotes formula of order 6, which is why we choose Ny = 109. If the density matrix
is evaluated at momenta between the nodes defined by Ω̃y, we interpolate it with a cubic
Steffen Spline9 [54].

9The Steffen Interpolation Method guaranties monotonicity of the cubic function between two neighboring
data points.
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D Thermal interactionrates of neutron-proton processes

The thermal reaction rates needed for the solution of the Boltzmann equation for the neutron
abundance are given by [55]

λnp(x) = λn+e+→p+ν̄e
+ λn+νe→p+e− + λn→p+ν̄e+e− , (D.1)

λpn(x) = λn+e+←p+ν̄e
+ λn+νe←p+e− + λn←p+ν̄e+e− , (D.2)

with the partial rates

λn+νe→p+e−(x) = A

∞∫
0

p2
νpeEe[1 − fe(Ee, T (x))]fνe(x, pνa(x)) dpν , (D.3)

λn+e+→p+ν̄e
(x) = A

∞∫
0

p2
epνEν [1 − fνe(x, pνa(x))]fe(Ee, T (x)) dpe , (D.4)

λn→p+e−+ν̄e
(x) = A

p0∫
0

p2
epνEν(1 − fνe(x, pνa(x)))[1 − fe(Ee, T (x))] dpe , (D.5)

where pν is the electron neutrino momentum, pe and Ee are the electron momentum and
energy, respectively, and the common constant A is determined via the mean lifetime of the
neutron in its rest frame τn, i.e.

A ≈
{

0.0157 · τn(∆m)5
}−1

, with ∆m = mn − mp . (D.6)

The interaction rates for the back reactions are obtained from eqs. (D.3) to (D.5) by replacing
f → 1 − f for all phase space distributrion functions. Furthermore, the upper integration
bound in eq. (D.5) is given by p0 =

√
∆m2 − m2

e and the following energy conservation
relations are imposed:

1. eq. (D.3): Ee = Eν + ∆m ,

2. eq. (D.4): Eν = Ee + ∆m ,

3. eq. (D.5): Eν = ∆m − Ee .
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