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A multimodal driver monitoring 
benchmark dataset for driver 
modeling in assisted driving 
automation
Khazar Dargahi Nobari    ✉ & Torsten Bertram   

In driver monitoring various data types are collected from drivers and used for interpreting, modeling, 
and predicting driver behavior, and designing interactions. Aim of this contribution is to introduce 
manD 1.0, a multimodal dataset that can be used as a benchmark for driver monitoring in the context 
of automated driving. manD is the short form of human dimension in automated driving. manD 1.0 
refers to a dataset that contains data from multiple driver monitoring sensors collected from 50 
participants, gender-balanced, aged between 21 to 65 years. They drove through five different driving 
scenarios in a static driving simulator under controlled laboratory conditions. The automation level (SAE 
International, Standard J3016) ranged from SAE L0 (no automation, manual) to SAE L3 (conditional 
automation, temporal). To capture data reflecting various mental and physical states of the subjects, 
the scenarios encompassed a range of distinct driving events and conditions. manD 1.0 includes 
environmental data such as traffic and weather conditions, vehicle data like the SAE level and driving 
parameters, and driver state that covers physiology, body movements, activities, gaze, and facial 
information, all synchronized. This dataset supports applications like data-driven modeling, prediction 
of driver reactions, crafting of interaction strategies, and research into motion sickness.

Background & Summary
The first problem with machine analysis of human state is the collection of data that encompasses the entire 
scene1. Therefore, a robust dataset about the driver is crucial for an accurate estimation of driver state. Such a 
dataset should be sufficiently large to yield statistically significant conclusions, be comprehensive by encompass-
ing all pertinent information about the driver and the driving environment, maintain accuracy in its details, and 
be highly reliable.

For several decades, literature has addressed the concept of driver monitoring. Initially, the primary objective 
of driver monitoring was to study human driving behavior in manual driving modes across various situations. 
As a result, datasets gathered for this purpose mainly encompassed vehicle-related information, such as the 
status of the pedals, steering wheel, and overall vehicle dynamics2. However, as the focus evolved, monitoring 
the driver state within the vehicle gained significance. This shift recognized that driver state factors, such as 
fatigue, could profoundly influence behavior during manual driving3–5. Consequently, datasets began to incor-
porate factors like attention and distraction, which hold relevance in both manual and automated driving con-
texts. While some datasets include merely RGB (color space, combination of red, green, and blue colors) images 
with corresponding labels6–9, others offer a more comprehensive view, integrating IR (infrared) or depth images 
alongside RGB images10. These visuals facilitate the extraction of insights like gaze direction, drowsiness indica-
tors, hand-wheel interactions, and other contextual data, all of which help in assessing driver attention. A signif-
icant distraction source while driving is preoccupation with a non-driving-related task (NDRT), leading some 
datasets to categorize driver activities during both manual and automated driving phases11–14. Beyond camera 
footage, physiological data from the driver can furnish further insights, particularly about their cognitive and 
emotional states15–19. It’s essential to consider not just data about the driver but also about the vehicle, its driving 
dynamics, and environment to capture a holistic understanding of both the driver and the driving situation20.
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Table 1 gives an overview of the characteristics of the frequently cited datasets for driver monitoring and 
the introduced dataset. Most datasets have notably been created to identify specific, limited factors, such as 
drowsiness. However, various driver state factors, including attention, workload, and emotion, can interplay and 
influence driving behavior. These should be assessed collectively. A comprehensive dataset should encapsulate 
multiple driver state factors. Additionally, elements like driving dynamics and environmental shifts, including 
traffic and weather conditions, can influence the driver state and should be mentioned in the dataset synchro-
nized with other data points. These elements are invaluable for a deeper understanding and interpretation of the 
driver’s behavior. Hence, it’s not only beneficial but sometimes essential to incorporate these elements into the 
monitoring dataset. Furthermore, data should be obtained from a diverse sample, encompassing a broad range 
of driving scenarios and driver states, ensuring subsequent analyses and findings are holistic and representative. 
While creating the manD 1.0 dataset, all of the mentioned aspects are taken into account to obtain a comprehen-
sive dataset for driver monitoring.

In the literature, a large number of varying factors are attributed to the driver state, depending on the 
research focus or data availability. However, many of these factors either overlap with one another or are 
context-dependent, rendering them not universally representative and well structured. In determining the most 
pertinent factors to depict the driver state for this dataset, we took into account established driver models and 
cognitive architectures. Adaptive Control of Thought-Rational (ACT-R)21, Queueing Network-Model Human 
Processor (QN-MHP)22, and CLARION23 are a few models recurrently employed for both qualitative and com-
putational research24. ACT-R is a cognitive architecture that designates multiple modules to the driver, encom-
passing the goal, memory, perceptual, and motor functions. Conversely, QN-MHP offers a framework for the 
mathematical modeling of the driver, defining an array of interconnected queues that denote varied cognitive 
levels. These queues are categorized as perceptual, motor, or central, with the central queue enveloping cognitive 
processes like attention, memory, and decision-making. CLARION, on the other hand, outlines a cognitive 
architecture where modules for perception, action, motor functions, emotion, and goal synergistically interact 
to shape driver behavior. Considering insights from all three models results in a driver model that underpins the 
selection of pertinent driver state factors25. Human information processing takes place in three stages: sensory 
perception, decision-making, and motor response. The factors that determine the driver state are visual atten-
tion for sensory perception, emotion, attention, and workload for decision-making, and the driver’s activity and 
the position of body parts for motor response25. Table 2 offers a comprehensive overview of these driver state 
factors, the associated measuring sensors, and potential scaling features.

Dataset Size Objective measures Subjective measures Available labels Further included data

FDUDrivers8 100 RGB image — — Environment, vehicle

Vehicle driving behavior2 — Acceleration, angular velocity — Driving intention —

Driver behavior dataset11 — RGB image — 5 activities —

Howdrive 3D6 9 RGB image — 10 activities —

Distracted driver dataset9 44 RGB image — 10 activities —

State farm distracted driver 
detection7 — RGB image — 10 activities —

DAD46 31 Depth, IR images — Anomalous action —

DMD10 37 RGB, depth, IR images — 13 activities —

3MDAD13 50 RGB, IR iimages — 16 activities —

Drive&Act14 15 RGB, depth, IR videos, 3D body pose — 83 activities —

NITYMED3 21 Video — Yawning, microsleep —

YAWDD4 107 Video — Yawning —

Driver drowsiness dataset5 28 RGB image — Drowsiness —

DriverMVT18 9 HR, video — Drowsiness Vehicle

Driving fatigue dataset47 20 RGB image, HR 3-point fatigue self-report Fatigue —

DriveAHead12 20 Depth, IR images, head pose — — —

MDM20 59 Video, head pose, gaze behavior, 
RGB, depth images — — Environment, vehicle

Physiological and emotional 
states15 10 HR, EDA 5-point stress self-report Stress level Vehicle

Warwick-JLR17 20 ECG,EDA Workload Vehicle

Detecting stress during real-
world driving16 24 Respiration, ECG, EMG, EDA 5-point & 7-point stress self-report Driving stress —

DEFE48 60 Video DES, SAM49 Emotion —

A Multimodal Dataset for Various 
Forms of Distracted Driving19 68 Thermal, RGB images, EDA, 

respiration, HR, gaze behavior — Distraction, emotion Vehicle

manD 1.026 50 EDA, PPG, ECG, EEG, seat pressure, 
RGB image, gaze behavior DES Activity, emotional effect, 

environmental event Environment, vehicle

Table 1.  Overview of the characteristics of the frequently cited datasets for driver monitoring compared to 
manD 1.0.
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Fig. 1 shows a schema of the study and the employed sensors. The experiment was conducted using a static 
driving simulator in the laboratory under controlled conditions. Out of the 50 subjects who participated in the 
study, 11 experienced motion sickness, and their data has been reported separately in the dataset. The other 
participants drove through five predefined scenarios. Data related to the driver, the (simulated) vehicle, and the 
environment were recorded throughout the driving sessions and have been included in the presented dataset 
after appropriate preprocessing.

manD 1.026 can support a variety of research topics concerning human drivers. These include modeling 
driver state factors and driving behavior, predicting reaction time and type, and exploring the correlations and 
interrelationships among different driver state factors, for drivers with or without motion sickness.

Methods
Experimental setup.  The experiment is conducted in a driving simulator under controlled laboratory con-
ditions at a constant temperature of 22. The driver’s cabin is separated from the rest of the environment to sim-
ulate the vehicle cabin, and distractions and disturbances have been kept to the minimum. The ambient light is 
turned off, but in the simulator a light is available to the driver that mimics the light source in the vehicle. The 
equipment used is explained below.

Driving simulator.  The static driving simulator consists of a driving mockup with three 55″ displays. The dis-
plays are situated in front of the driver’s seat, each angled at 120 from one another, providing the driver perspec-
tive. The entire mockup is separated from its surroundings to reinforce the sense of presence. Automatic mode 
during manual driving is facilitated, obviating the need for gear and clutch engagement. During the simulation, 
in addition to manual driving (SAE L0), automated driving in SAE L1 to L3 is offered as well. Beside the driving 
equipment, an extra pedal is attached to the right of the gas pedal that serves as a communication interface to 
the automated system. With this pedal, drivers can robustly answer the automated system’s yes-no questions. A 
tablet is placed to the right of the steering wheel, providing a gaming interface as NDRT. Additionally, an extra 
display is positioned on the driver’s right side, playing videos to invoke specific emotional states in drivers before 
they embark on their ride, thus contributing to the psychological aspects of the simulation. Furthermore, a book, 
a bottle of water, and cookies are placed within easy reach of the drivers.

The simulator employs the SCANeR studio 2021 software (AVSimulation, Boulogne-Billancourt, France) as a 
real-time simulation platform. SCANeR’s connectivity with external sensors is enabled by application program-
ming interfaces (APIs) developed using the Python programming language.

Driver state factors Sensors Features

Sensory Visual Eye tracker Gaze direction

Decision-making

Emotion Camera  
Physiological sensors

HR50,51

HRV52

SCL50,51

Skin temperature53

EEG54

Attention Eye tracker  
Physiological sensors

EEG55

Blink rate56

Horizontal gaze deviation57

Eye-off-road time58

Workload Eye tracker  
Physiological sensors

Pupillary59

HR59

Skin resistance59

Nose temperature60

Blink latency61

PERCLOS61

Fixation duration61

Blink duration and rate61

Horizontal gaze dispersion62

Percent road center (PRC)62

Distribution of eye fixation63

Motor Position
Activity

Camera
Seat-pressure-sensors Pressure distribution64,65

Table 2.  Overview of driver state factors, which are extracted from the driver’s cognitive architecture and 
mental functions as the most pertinent factors; sensors, which are mainly employed in the literature to measure 
the corresponding driver state factor; and scaling features, which are the computed features extracted from 
sensor data.
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Intel RealSense: camera.  An Intel RealSense D435 camera (Intel Corporation, Santa Clara, California, U.S.) is 
mounted on top of the front display 1.5 away from the driver to capture the facial behavior of the participants. 
RGB images are captured by the camera at a frame rate of 30 FPS and a resolution of 1920 × 1080 px.

SmartEye: eye tracking system.  A SmartEye Aurora eye tracking system (SmartEye AB, Gothenburg, Sweden) 
is fixed on the driving mockup on top of the dashboard directly in front of the driver at a distance of about 0.7 
from driver’s eyes. The system utilizes the dark pupil and corneal reflection as an eye tracking principle and has 
a sampling rate of 120. A SmartEye Pro 9.3 software is supplied with the eye tracker system, which receives data 
from the eye tracker via a cable and communicates the data with the SCANeR software in real time.

Empatica E4: photoplethysmogram/electrodermal activity sensor/3-axis accelerometer.  In this study, a wearable 
Empatica E4 (Empatica Inc., Boston, Massachusetts, U.S.) wristband is applied to collect physiological data from 
drivers. The wristband is equipped with a photoplethysmogram (PPG) sensor to measure blood volume pulse 
(BVP), from which the interbeat interval (IBI), heart rate (HR), and heart rate variability (HRV) can be derived. 
In addition, the constantly fluctuating changes in the electrical properties of the skin can be monitored via an 
electrodermal activity (EDA) sensor placed in the wristband. EDA value depends on material of electrodes, 
position of the sensor, and environmental conditions such as temperature and humidity. Furthermore, the inte-
grated 3-axis accelerometer and infrared thermopile record participants’ arm movement and peripheral skin 
temperature. The collected data from the Empatica E4 are transmitted via Bluetooth v.4.0 to the E4 Streaming 
Server software and from there to the SCANeR software via a Python API in real time.

BIOPAC: electroencephalogram/electrocardiogram.  Participants are also asked to wear a B-ALERT X10 wireless 
electroencephalogram (EEG) sensor (BIOPAC, Goleta, California, U.S.) to record their brain activity during 
the experiment. The sensor has nine wet EEG channels (Poz, Fz, Cz, C3, C4, F3, F4, P3, P4) and an electrocar-
diogram (ECG) channel to capture heart activity as well. Fig. 2 illustrates the distribution of the EEG electrodes 
color coded according to the lobes of the brain. Two mastoid electrodes are placed behind the ears. The sensor 
delivers measurements via Bluetooth to AcqKnowledge 4 software and subsequently to the SCANeR in real time.

BodiTrak: seat-pressure-sensor mats.  Two BodiTrak2 Pro seat-pressure-sensor mats (Vista Medical Ltd, 
Winnipeg, Manitoba, Canada) are integrated into the acquisition system: one is placed on the driver’s seat and 
the other on the driver’s backrest. Each mat comprises 1,024 pressure sensors (arranged in a 32 × 32 grid) and 
spans an area of 0.45 × 0.45. For optimal performance and precision, the seat mat is calibrated to 200, while the 
backrest mat is set at 100. With each calibration, accuracy at the midpoint of the calibration range is maintained 
at 10% of the calibration maximum. Thus, for example, for the backrest mat, the highest measurable pressure 
stands at 100, and the accuracy at the 50 level is 10. Pressure readings are transmitted to a computer via a USB 
2.0 connection, with a frequency reaching up to 150, and then forwarded to SCANeR through a Python API in 
real time.

Experimental procedure.  The study is first approved by the ethics commission of TU Dortmund 
University. An informed consent is also obtained from the participants before start of the experiment. The pre-
requisite for participation in the experiment is basic English knowledge and the possession of a driver’s license. 
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Fig. 1  Schema of the study and the employed sensors.

https://doi.org/10.1038/s41597-024-03137-y


5Scientific Data |          (2024) 11:327  | https://doi.org/10.1038/s41597-024-03137-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

A couple of the participants got motion sickness during the experiment, especially right at the beginning of the 
experiment. Thus, they were asked to terminate the experiment. The data collected from this group are provided 
separately in the dataset for the case of motion sickness research.

The study lasts about two hours for each participation. As first part of the experiment, participants are ade-
quately informed about the goals of the experiment, the procedure, and the data collection by the sensors and 
the signed consent form is collected. The sensors are then connected and calibrated for each driver. Next, the 
drivers have the opportunity to drive in the simulator, familiarize themselves with the driving and automated 
functions, and get used to driving in the virtual environment. Subjects drive once manually with automatic 
setting and then in automated mode from SAE L1 to SAE L3. They are free to drive as many times as they want 
until they feel comfortable with driving in the simulator. During the familiarization drive, participants experi-
ence takeover request (TOR) and familiarize themselves with the available NDRTs. The TOR has, in addition 
to the acoustic modality composed of warning beeps and speech, also visual modality in the form of text on 
the main screen and color effects on the dashboard (see Fig. 3a,b). Three activities are selected as NDRT: the 
auditory digit-span task27 requested by the automated system during the experiment, the n-back game28, and the 
Subway Surfers game (co-developed by Kiloo and SYBO Games, released 2012), which are available on the fixed 
tablet for the driver at any time and reminded by the automated system only on predefined occasions. Drivers 
are asked to drive realistic and consider the experiment as a real driving situation. Afterwards, they drive five 
predefined driving scenarios one after the other in alternating order with breaks in between. Before and after 
scenarios participants fill Differential Emotions Scale (DES)29 questionnaire to subjectively assess their emotions 
and they are instructed to rate their current feelings. They are also asked verbally by automated system about 
their emotions during the scenarios to ensure that certain previously evoked emotions are faded. Before some of 
the scenarios, a video clip is played to the drivers to evoke emotions in the drivers. During the driving scenarios, 
subjects receive instructions or cues from the automated system about the driving situation and available fea-
tures, but drivers are free to accept the instructions and choose their preferred response and activity.

Design of experiment.  This study aims to create a statistically reliable, multimodal dataset from drivers. 
A synchronized multi-sensor system is utilized to monitor the drivers, capturing an expansive set of driver state 
factors across diverse driving situations. This comprehensive approach guarantees a profound understanding 
of the driver, vehicle, and environment states. Besides, the design’s meticulous structure enhances the statistical 
reliability of the acquired data.

Participants are briefed on the study’s general objectives and procedures. However, the details and focus 
points are not disclosed until after the experiment concludes, to maximize the validity of the gathered data.

The research design incorporates various factors, including driver, vehicle, and environment states’ factors. 
These factors manifest in several types, spanning both qualitative (ordinal/nominal) and quantitative (contin-
uous/discrete) variables. Covariates and potential confounding variables are accounted for as much as possible 
within the experiment. Age and gender, as two characteristics of the participants are considered covariates and 
are addressed via stratification30. Other characteristics, such as height and body mass index (BMI), are reported 
in the dataset but not considered as covariates, as these variables were unknown before the study. Laboratory 
conditions such as ambient light, noise, and temperature are control variables, which are kept constant during the 
experiment for all participants. The assumption is that the variables under consideration have correlations and 
interrelationships and that these may be modeled if a sufficient volume of data is collected in an efficient manner.

Fig. 2  Distribution of the EEG electrodes based on International 10-10 system66.
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From a design perspective, the study implements a repeated measures approach. Each participant is planned 
to drive five scenarios, efficiently capturing varied data from the same individual across different conditions. 
This dual-layered approach encompasses both within-subject and between-subject variations. The dataset’s tar-
get demographic comprises licensed drivers in Germany. Of the 50 initial participants, those prone to motion 
sickness are excluded from the test group, however their data are separately available. The test group consists 
of 39 participants. Balancing the sample size and covariates is deemed crucial, especially for small trials. The 
covariates age and gender are handled through the stratification method, assigning two levels to each (female or 
male and under or over 30 years old), resulting in four blocks based on these combinations, as shown in Fig. 4. 
To prevent carryover effects such as learning or practice effect, fatigue effect, and context effect, counterbalanc-
ing is applied across blocks. Given the substantial participant count needed for full counterbalancing, a partial 
counterbalancing approach is adopted. This ensures equal representation of each scenario in the first two or 
last three driven scenarios in every block. Each participant goes through the experiment only once, eliminating 
repetition. In summary, the experimental design is methodically constructed, addressing various factors and 
potential confounding variables, ensuring the validity and reliability of the gathered data.

Driving scenarios.  In the simulation, one familiarization drive and five unique driving scenarios are cre-
ated. The primary aim of the familiarization drive is to give participants an opportunity to practice driving in the 
simulator, adjusting to the virtual environment before moving on to the main part. The objective of the main five 
driving scenarios is to induce different driver states, including the elicitation of distinct emotions. All of the main 
driving scenarios are composed of a sequence of events, subtly differentiated from each other to avoid learning 
effect. This variance among scenarios provides a rich spectrum of driver state factors for study. Tables 3–7 give 
an overview of the sequence of events for each scenario, including a duration range specified for each event. 
The duration of each event is different for each driver, depending on their manual driving speed, the time they 
change from manual to automated mode, and vice versa. The duration of the takeover event is a maximum of 10 s, 
which is the time budget of the TOR, and if the drivers do not react, an accident occurs and the scenario ends. 
The n-back games are set to have 30 s duration at each round, however this can also increase or decrease based on 

(a) On the main screen. (b) On dashboard.

(c) On the main screen with reaction clues.

Fig. 3  Visual modalities of TOR.

Stratification: Biological gender

Female Male

Age

Under 30 9 12

Others 8 10

Partial counterbalancing: combinations for 10 participants in group (male,others)

1 2 3 4 5 6 7 8 9 10

12 13 14 15 23 42 25 43 35 45

� � � � � � � � � �

345 245 235 234 541 513 134 125 124 123

Fig. 4  Handling covariates age and gender by stratified randomization.
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engagement of the drivers to the game. Some of the events are not present in the data collected from some partic-
ipants because the conditions for the events are not met. For example, if the drivers do not switch to automated 
mode, they are not offered n-back games and data on these events are missing. In general, with the exception of 
the takeover situations, drivers were not forced to complete the specified tasks in order to create a more realistic 
ride, resulting in differences in the duration of task completion between individuals.

Each of the five specialized scenarios are designed to evoke a specific emotion, namely: no emotion, anger, 
surprise, sadness, and fear. Except the scenario with no emotion induction, the other four scenarios are divided 
into two segments. In the first segment, a particular emotion - anger, surprise, sadness, or fear - is evoked and 

Event label SAE Level NDRT Event explanation Duration range [s]

Attention objects 0 None

While driving, the following objects come one after the other: 
person/s standing on the right side of the road, a car coming from the 
opposite side on the opposite lane with the same speed as ego-vehicle, 
a bicycle coming from the opposite side on the opposite lane with 
25% of the speed of the ego-vehicle, and a person crossing the road in 
front of the ego-vehicle, with TTC = 4 s.

0–60

3 2-back game N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. 0–60

Car-following 2 None
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–190

Car-following 2 Auditory digit-span level 1
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–190

2 None Automated system is at SAE L2, and drivers are expected to monitor 
what is happening on the road and intervene when necessary. 0–40

3 None Automated system is at SAE L3, and drivers can relax. 0–40

Dog on the road 3 None A dog is loose on the opposite side of the road. The automated system 
detects this and reports it to the driver. 0–60

Sound/scene from outside 3 1-back game
N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. Meanwhile, sound of fans cheering on 
their team in stadium can be heard from outside in the distance.

0–50

Takeover situation 3 → 0 1-back game
Drivers play the game on their tablet while exposed to TOR due to a 
cat playing in front of ego-vehicle on the road and the system being 
unable to respond. The visual modality of TOR includes a clue to 
brake.

0–5

0 Auditory digit-span with 
varying difficulty level

System prompts drivers to solve the auditory digit-span task while 
driving manually. 0–60

Table 3.  Sequence of events in the scenario where no emotion is evoked.

Event label SAE Level NDRT Event explanation Duration range [s]

Attention objects 0 None

While driving, the following objects come one after the other: 
person/s standing on the right side of the road, a car coming from the 
opposite side on the opposite lane with the same speed as ego-vehicle, 
a bicycle coming from the opposite side on the opposite lane with 
25% of the speed of the ego-vehicle, and a person crossing the road in 
front of the ego-vehicle, with TTC = 4 s.

0–110

Car-following 2 None
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–276

3 2-back game N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. 0–30

Sound/scene from outside 3 None The police are looking for a blue car. The automated system reports 
this and asks the driver if the blue car can be seen in the vicinity. 0–257

3 None Automated system is at SAE L3, and drivers can relax. 0–60

Takeover situation 3 → 0 None
Drivers exposed to TOR due to a cow standing in front of ego-vehicle 
on the road and the system being unable to respond. The visual 
modality of TOR includes a clue to steer right.

0–10

0 None Manual driving in an empty road. 50–180

Sound/scene from outside 3 2-back game
N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. Meanwhile, a police car with active siren 
approaches the ego-vehicle and overtakes it from the left and drives 
on.

0–257

Car-following 2 Auditory digit-span level 2
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–276

Takeover situation 3 → 0 Subway surfers game Drivers play game on the tablet while exposed to TOR due to a 
construction on the road and the system being unable to respond. 0–10

Table 4.  Sequence of events in the scenario where anger is evoked.
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maintained. The first segment of all scenarios starts in manual driving mode, where a pedestrian on the road-
side, a car and a bicycle coming from the opposite side, and a person crossing the road are included as attention 
objects in the design. The other planned events in the emotional segment of the scenarios are car-following in 
SAE L2 with a slow car driving ahead, automated driving in SAE L3 with no task for the driver, SAE L3 com-
bined with playing a 2-back game on the NDRT tablet, and playing auditory stimuli from outside the vehicle to 
attract drivers’ attention. The sequence of these events is selected based on the characteristics of the road in the 
simulation map, and with the exception of the attention objects at the beginning, the order of the other events is 
not the same in the different scenarios.

Event label SAE Level NDRT Event explanation Duration range [s]

Attention objects 0 None

While driving, the following objects come one after the other: 
person/s standing on the right side of the road, a car coming from the 
opposite side on the opposite lane with the same speed as ego-vehicle, 
a bicycle coming from the opposite side on the opposite lane with 
25% of the speed of the ego-vehicle, and a person crossing the road in 
front of the ego-vehicle, with TTC = 4 s.

0–120

3 2-back game N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. 0–60

Sound/scene from outside 3 None A tollgate is ahead without any officers. The automated system reports 
this to the driver and announces that he will drive through the gate. 0–298

Car-following 2 None
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–93

3 None Automated system is at SAE L3, and drivers can relax. 0–60

Takeover situation 3 → 0 None Drivers exposed to TOR due to lane marking recognition errors 
resulting in possible crashes with roadway structures. 0–10

Car-following 2 Auditory digit-span level 3
A vehicle from behind comes in front of the ego-vehicle and brakes 
three times with different situation criticalities, the TTC being 5.04 s, 
10.08 s, and 15.12 s, respectively.

0–93

Sound/scene from outside 3 3-back game
N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. Meanwhile, a police siren can be heard as 
an accident has occurred on the opposite side of the road and police 
cars are on the scene.

0–585

Takeover situation 3 → 0 3-back game
Drivers play the game on their tablet while exposed to TOR due to a 
live accident happening directly in front of the ego-vehicle. The visual 
modality of TOR includes a clue to steer left.

0–10

0 None Manual driving with low traffic density. 0–60

Table 5.  Sequence of events in the scenario where surprise is evoked.

Event label SAE Level NDRT Event explanation Duration range [s]

Attention objects 0 None

While driving, the following objects come one after the other: 
person/s standing on the right side of the road, a car coming from the 
opposite side on the opposite lane with the same speed as ego-vehicle, 
a bicycle coming from the opposite side on the opposite lane with 
25% of the speed of the ego-vehicle, and a person crossing the road in 
front of the ego-vehicle, with TTC = 4 s.

0–90

Sound/scene from outside 3 None
Some containers are placed on the right side of the road, which are 
not recognized by the sensors of the automated system. The system 
reports this to the driver and continues the journey.

0–298

3 None Automated system is at SAE L3, and drivers can relax. 0–30

3 2-back game N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. 0–30

Car-following 2 None
A slow vehicle in front of the ego-vehicle brakes three times with 
different situation criticalities, the TTC being 5.04 s, 10.08 s, and 
15.12 s, respectively.

0–202

Takeover situation 3 → 0 Reading book
Drivers are reading a book they are holding while exposed to the 
TOR due to a group of horses crossing the road and the system being 
unable to respond.

0–7

0 None
Manual driving at an intersection where the ego vehicle has the right 
of way. The vehicle in the opposite lane turns (its) left and the vehicle 
on the right turns (its) right, both before the ego vehicle arrives.

0–60

0 None Manual driving in an empty road. 0–60

Car-following 2 Auditory digit-span level 4
A slow vehicle in front of the ego-vehicle brakes three times with 
different situation criticalities, the TTC being 5.04 s, 10.08 s, and 
15.12 s, respectively.

0–202

Sound/scene from outside 3 4-back game
N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. Meanwhile, music can be heard from 
outside as a group camps on the roadside.

0–298

Table 6.  Sequence of events in the scenario where sadness is evoked.
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The second segment of each scenario is designed to create an emotionally neutral setting where no explicit 
emotional provocation occurs. This segment includes additional events such as TOR, playing auditory digit-span 
task, and speaking on the phone. Each scenario has been carefully designed with its own unique characteristics 
yet maintaining enough similarities with the other scenarios to ensure comparability of the gathered data. The 
“no emotion” scenario serves as a control, with no specific emotional state being induced, thereby establishing a 
baseline. On the other hand, the remaining four scenarios seek to elicit varying emotional states through differ-
ent means. For instance, the use of emotional video clips prior to the start of the drive, as well as the implemen-
tation of monotonous and even-driven methods during the drives, have been employed to trigger the desired 
emotional responses31. Details on the design of each scenario are described below. The scenarios are named after 
the emotions that are to be evoked by emotional elements in the scenarios.

Familiarization.  The familiarization drive is set along a loop of serene country roads, devoid of traffic lights or 
other traffic members, thereby ensuring an accident-free practice environment. The virtual drive takes place in 
the midday hours to provide clear visibility and allow participants to focus solely on mastering the operation of 
the simulator.

No emotion.  In this scenario, no specific emotion is elicited from the participants. This drive also takes place 
during the midday, providing a neutral environment. During this scenario, participants are initially provided 
with 2-back game, which then reduces to 1-back game, giving them an activity that requires low cognitive load. 
When a TOR is presented in this scenario, it is supplemented with a visual reaction cue for drivers: a text reading 
“Brake” appears in red on the lower left side of the main display, near the navigation instructions, serving as an 

Event label SAE Level NDRT Event explanation Duration range [s]

Attention objects 0 None

While driving, the following objects come one after the other: 
person/s standing on the right side of the road, a car coming from the 
opposite side on the opposite lane with the same speed as ego-vehicle, 
a bicycle coming from the opposite side on the opposite lane with 
25% of the speed of the ego-vehicle, and a person crossing the road in 
front of the ego-vehicle, with TTC = 4 s.

0–70

3 None Automated system is at SAE L3, and drivers can relax. 0–60

Car-following 2 None
A vehicle in front of the ego-vehicle brakes three times with different 
situation criticalities, the TTC being 5.04 s, 10.08 s, and 15.12 s, 
respectively.

0–99

Sound/scene from outside 3 None A tree has fallen on the road and is blocking the way for road users. 
The system reports this to the driver and changes the route. 0–255

3 2-back game N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. 0–30

Car-following 2 Auditory digit-span level 5
A slow vehicle in front of the ego-vehicle brakes three times with 
different situation criticalities, the TTC being 5.04 s, 10.08 s, and 
15.12 s, respectively.

0–99

Sound/scene from outside 3 5-back game
N-Back game on tablet ready to be played if desired, with auditory 
and visual announcement. Meanwhile, the flying wild night birds can 
be heard from outside.

0–255

Takeover situation 3 → 0 Pressing communication 
pedal with right foot

Drivers are asked to press a communication pedal near their right foot 
when they see deer, as they are exposed to the TOR due to a group of 
horses crossing the road and the system being unable to respond.

0–7

0 Answering phone on loud 
speaker Manual driving in an empty road while speaking on the phone. 0–40

Table 7.  Sequence of events in the scenario where fear is evoked.

Video

Evoked emotions

Enjoyment Sadness Anger Disgust Contempt Fear

(No emotion as reference)
m: 1.66 m: −0.60 m: −0.60 m: −0.60 m: −0.60 m: −0.51

SD: 0.96 SD: 0.21 SD: 0.35 SD: 0.93 SD: 0.20 SD: 0.29

Seven

m: 0.39 m: 0.04 m: −0.10 m: 0.50 m: −0.23

SD: 0.99 SD: 0.74 SD: 0.62 SD: 1.11 SD: 0.57

P: 7.1E-06 P: 1.8E-04 P: 2.5E-04 P: 3.8E-05 P: 5.8E-03

City of angels

m: 0.28 m: 0.49

SD: 0.84 SD: 0.96

P: 3.0E-07 P: 2.0E-06

The shining

m: 0.29 m: 0.42 m: 0.04

SD: 0.88 SD: 0.89 SD: 0.98

P: 4.7E-07 P: 1.3E-06 P: 1.4E-02

Table 8.  Post-hoc analysis of significant emotions evoked by video clips. m: mean, SD: standard deviation.
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additional prompt for the driver (see Fig. 3c). Lastly, an auditory digit-span task is played towards the conclusion 
of the scenario, with its difficulty level fluctuating between one and five.

Anger.  The scenario is designed to be driven with anger emotion. To induce this emotion, before the driving 
session commences, drivers watch a short clip (6′ 7″) from the film “Seven” selected from FilmStim database32 
which is assumed to evoke anger feeling. The scenario is set in midday. Throughout the drive, participants are 
given n-back game and auditory digit-span task at difficulty level 2. TOR is exposed to drivers two times within 
this scenario. First time TOR has also a reaction clue in the form of a red arrow to right (see Fig. 3c). Second 
time, in the last part of the drive, the drivers are asked to play the Subway Surfers game when a simple TOR is 
exposed to them.

Surprise.  The driving scenario is specifically designed to elicit a state of surprise in its first part. To accomplish 
this, several unexpected events are planned at the beginning of the drive. These include a sudden snowfall during 
sunny weather, a pedestrian who abruptly crosses the road and immediately retraces their steps, followed by 
an abrupt end of the snowfall31. This sequence of unexpected and rapidly changing events helps create a sense 
of surprise. As for cognitive tasks, the n-back game begins at difficulty level 2 and then escalates to level 3. The 
auditory digit-span task played during the drive has difficulty level 3. In the last part a TOR is presented, supple-
mented with a visual clue in the form of a red arrow pointing to the left, positioned on the lower left side of the 
main display near the navigation instructions (see Fig. 3c).

Sadness.  This scenario is crafted to evoke and sustain a feeling of sadness in the participants in its first part. 
To instigate this emotion, a short clip (4′ 25″) from the film “City of angels” selected from FilmStim database32 
is played for the drivers before the drive commences, which has been identified as effective in eliciting sadness. 
In addition, the music piece “Adagio for Organ and Strings in G Minor” plays during the first part of the drive 
until end of first car-following event, to help maintain the induced emotional state33,34. Furthermore, the rainy 
weather and dark clouds serve to augment the melancholy atmosphere. As for cognitive challenges, the n-back 
game begins at difficulty level 2 and then escalates to a more demanding level 4, and the auditory digit-span task 
is also presented at difficulty level 4. In some part of the scenario drivers are asked to read a book aloud. As the 
drivers’ hands are engaged with holding the book, a simple TOR is introduced due to a group of horses crossing 
the road.

Fear.  To trigger fear, a short clip (4′ 25″) from the film “The shining” selected from FilmStim database32 is 
played to the drivers before the drive begins. This clip has been identified as effective in eliciting the sense of 
fear. The setting is further enhanced by playing “A night on the bare mountain” music during the initial part of 
the drive until beginning of second car-following to sustain the induced fear33. To intensify the fearful ambi-
ance, the drive is set under dark daytime conditions, compelling drivers to switch on the vehicle’s headlights to 
navigate their path. As for cognitive tasks, the n-back game initiates at difficulty level 2 and then progresses to 
an advanced level 5, and the auditory digit-span task is held at difficulty level 5, providing high cognitive load. 
A unique task in this scenario requires drivers to press a communication pedal every time they spot a deer. 
Simultaneously, a simple TOR is issued when a deer stands in the path of the vehicle.

Computational processing.  All data except videos are provided at a sampling rate of 256. However, if the 
data from a particular sensor is to be used separately, it can be downsampled to the acquisition frequency of the 
sensor. The videos provided have a sampling rate of 30 FPS.

Synchronization is carried out directly during data recording using the SCANeR studio real-time simulation 
software. This software has specific interfaces for the BIOPAC sensor, camera, and SmartEye system that ena-
ble reliable connection and data synchronization. In addition, the simulation software offers a communication 
package for self-defined communication with other sensors, which is used in this work to realize the synchro-
nized data stream of Empatica E4 wristband and BodiTrak seat-pressure-sensor mats.

Environment data.  Data from the driving environment is collected by SCANeR studio real-time software that 
initially captures this information at a rate of 20 and resamples to 256 to enhance synchronization. A vital part of 
the data assessment focuses on the immediate vicinity of the ego-vehicle. When an object is detected in the same 
lane ahead of the ego-vehicle, distance to object (DTO) is calculated as

= − + −DTO x x y y( ) ( ) [m], (1)ego front
2

ego front
2

where (xego, yego) and (xfront, yfront) denote position of the ego-vehicle and the object ahead, respectively. 
Furthermore, the time to collision (TTC) with any approaching object or pedestrian is determined as

TTC DTO [s],
(2)ego frontν ν

=
−

where vego and vfront are speed of ego-vehicle and front vehicle, respectively.
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Video.  The video data is recorded using an Intel RealSense D435 camera connected to the video module of 
the SCANeR software, to ensure synchronization with the remaining data. The videos are captured at a frame 
rate of 30 FPS. While the original frames are recorded at a size of 640 × 480 px and encompass a larger area, the 
provided videos in the dataset have been cropped to focus specifically on the face. These cropped frames have a 
smaller dimension of 200 × 200 px using the OpenCV library35. The resulting videos, centered on facial expres-
sions and reactions, are then saved in the widely compatible MP4 format, facilitating convenient viewing and 
analysis. The illumination of the driving scenarios is not the same, i.e. three of the scenarios take place during the 
day, one at night, and one in the rain, resulting in different lighting conditions in the captured videos. However, 
the data is not preprocessed further to keep it as much raw as possible.

Eye tracking.  Eye tracking data is collected at frequency of 120. It encompasses the Percentage of Eyelid Closure 
(PERCLOS), which is determined from

=
…

∗PERCLOS EO
EO EO EOmax{ , , , }

100 [%],
(3)n1 2

where EO denotes eyelid opening and n in the length of the data. To ensure that the eye tracking information 
aligns seamlessly with remaining data, it is subsequently resampled to 256. During the resampling transition, the 
previous sensor readings are held constant until the new reading arrives to maintain continuity of data.

PPG/EDA.  The Empatica E4 wristband sensor, worn on the participant’s dominant arm, collects data regard-
ing wrist acceleration and various physiological indicators. The gathered data is preprocessed, resampled at a 
rate of 256, and provided in text files.

Acceleration data from the Empatica device is measured within a range of ±2 g, and the sensor’s output is 
quantified in units of 1/64 g. However, the acceleration data in manD 1.026 is already converted, rendering the 
unit of acceleration data as m/s2. The original sampling rate of the acceleration data is 32.

BVP is captured with units in nanoWatt (nW) at a sampling rate of 64. The Empatica measures BVP within 
a range of 500. From this BVP data, the instantaneous HR is calculated and presented under the column 
“Empatica/HR”. This is achieved by identifying the peaks in the BVP using the scipy.signal package36, taking 240 
BPM as the maximum acceptable HR. The HR is then calculated following

HR
BVP BVP

60
Samplingrate

[BPM],
(4)

i i
peak peak

1= ∗
− −

where the sampling rate is 256 and BVP i
peak shows the ith peak of the BVP. EDA is sampled at 4, with the unit of 

measurement being microSiemens (S). The EDA data is then used to derive skin conductance level (SCL) and 
skin conductance response (SCR) values using the neurokit2 library37. These calculated values are included in 
the dataset under the columns “Empatica/SCL” and “Empatica/SCR”.
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Fig. 5  Structure of the provided dataset.
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The sensor also captures peripheral skin temperature data of the participants, sampled at 4 and provided in 
degrees Celsius (°C).

EEG/ECG.  The BIOPAC sensor system captures data through nine EEG channels and a single ECG channel, 
offering dynamic range of 1000. The system operates at a sampling rate of 256. According to the manufactur-
er’s specifications, the BIOPAC system provides a reported accuracy and resolution of 3.0 peak-to-peak and 
0.038 resolution for EEG signals, and 3.0 peak-to-peak with a resolution of 0.06 for ECG signals. Initial sig-
nal processing is performed using the AcqKnowledge 4 software, which applies a 0.1 highpass filter and a 67 
lowpass filter. Upon acquisition, a data preprocessing step is implemented to correct bad channels; channels 

Seat/Back_1
Seat/Back_33

Seat/Back_32

Seat/Back_1024

Fig. 6  Numbering of seat-pressure sensors.

Fig. 7  Sample event sequences for the driving scenarios. 0: no event; 1: attention objects; 2: car-following; 3: 
sound/scene from outside; 4: dog on the road; 5: takeover situation.
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presenting extreme average values are detected and interpolated using the average of neighboring channels. If 
all neighboring channels are similarly compromised, the defective channel is removed. Channels which exhibit 
a frozen (constant) value are also detected, and these unchanging segments are interpolated using the average 
of neighboring channels. In cases where all neighboring channels are similarly frozen, the unchanging segment 
of the channel is removed. In all readings, the initial 6000 steps (about 24 seconds) are discarded as the sensor 
requires this time to begin accurate data capture. No further preprocessing is applied to the data to keep them 
as much row as possible and allow the users of the dataset to apply their own data analysis and artifact removal 
techniques.

Instantaneous HR is also estimated based on ECG data by first calculating the IBI by identifying peaks in the 
ECG signal using the scipy.signal package, with a defined maximum HR of 240. HR is then computed accord-
ing to Eq. 4. The “BIOPAC/HR” column demonstrates the calculated HR at a sampling rate of 256; each time a 
heartbeat is detected, the HR value is updated accordingly. The HR obtained from the ECG data of the BIOPAC 
sensor can be used as a reference compared to the instantaneous HR obtained by Empatica, because the ECG 
is acquired with electrodes placed directly on the heart area, so the data is acquired with less delay and noise.

Seat pressure distribution.  The BodiTrak2 Pro seat-pressure-sensor mats employ pressure sensors for data 
acquisition at a sampling rate of 15 FPS. Despite the initial acquisition rate, the provided data is structured in an 
excel file at a higher sampling rate of 256 FPS synchronized with other provided data. Following data acquisition, 
a preprocessing phase is implemented to correct any misrecordings. Frames that are entirely zero, potentially 
due to network failure, are corrected by refilling them with the values from the preceding frame. Beyond the 
excel data file, heatmaps illustrating pressure distributions on the seat and backrest of drivers are separately pro-
vided as images and videos in PNG and MP4 formats, respectively. In creating these videos, the data are initially 
downsampled to 30, and a Gaussian filter is applied to smooth the data utilizing the scipy.ndimage package. 

Fig. 8  Example sequence of interaction signals. 0: no signal; 1: I don’t know; 2: autonomous mode available; 3: 
TOR; 4: engagement of communication pedal; 5: read the book; 6: looking for a car; 7: car found; 8: a dog on the 
road; 9: unknown object on the road; 10: a tollgate ahead; 11: unknown objects on the road side; 12: end of the 
ride; 13: an accident detected; 14: game available on the iPad; 15: phone call; 16: auditory digit-span task.
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Fig. 9  BVP [μV] data collected from all participants using Empatica E4 during five driving scenarios.

Fig. 10  SCL [μS] data of all participants during five driving scenarios extracted from the EDA.
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Subsequently, images are plotted based on the smoothed data, and the OpenCV library is used to create videos 
from these images. As a result, videos of heatmaps that depict the pressure on the seat and backrest of drivers 
are supplied separately in MP4 format, providing a visual representation of the pressure dynamics over time.

Fig. 11  Skin temperature [°C] of all participants measured with Empatica E4 during five driving scenarios.

Interested        Enjoyment Surprise       Sadness        Anger       Disgust       Contempt       Fear       Shame  Guilt

Fig. 12  Z-Score [] of participants’ subjectively rated emotions (DES) immediately before the start of the driving 
scenarios.
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NDRT.  During the experiment, data related to NDRTs are gathered to provide comprehensive insights. 
Specifically, n-back data are collected separately using PsyToolkit38, a specialized toolkit tailored for the demon-
stration, programming, and execution of cognitive-psychological experiments. Ensuring congruence across 
datasets, the n-back data is then synchronized with other information at a consistent sampling rate of 256. 
Similarly, data derived from the digit-span task and the Subway Surfers game are also synchronized, matching 
the same sampling rate.

Data Records
The open access data is available for all researchers via the Harvard Dataverse repository manD 1.026. The entire 
dataset can be downloaded either in full or partially, according to the researcher’s requirements. The data is 
organized into different levels, as depicted in Fig. 5. At the root of the repository, four spreadsheets, a BIDS 
structure, and a python file are available:

•	 “AvailableData.xlsx”, contains a report on the data availability in relation to the participant, the driving sce-
nario, and the sensor. In addition, this file contains information about the sequence of scenarios driven by 
the participants.

•	 “DataInfoSheet.xlsx”, gives information about the data points contained in each file, including explanation, 
unit, range, and interpretation of the values.

•	 “DESResults.xlsx”, outlines the Z-Score of the DES assessments completed by participants before and after 
driving each scenario.

•	 “ParticipantsCharacteristics.xlsx”, contains information about the characteristics of the participants, includ-
ing biological gender, age, height, BMI, sight correction, years of driving experience, annual driving distance, 
and experience with assistance systems.

•	 “EEG-BIDS.7z” provides the EEG data gathered from all participants in a single brain imaging data structure 
(BIDS)39,40. BIDS is a standard format for brain imaging data, the use of which is promoted by the neuroim-
aging community.

•	 “DataExtraction.py” consists of functions for the extraction of files with 7z format, the derivation of HR from 
ECG and BVP, and the creation of heatmaps from pressure sensor readings.

Data gathered from participants who experienced motion sickness during the experiment (withMS) and 
those who did not (withoutMS) are provided in two separate directories, each having the same structure. 
However, the number of participants who experienced motion sickness is lower and the data gathered from 
them is very limited, e.g., only data gathered during the familiarization drive until they clearly felt symptoms of 
motion sickness such as nausea and dizziness.

Each of the directories includes zipped folders of related participants (P1.7z, P2.7z, …). Each subject com-
prises one or more familiarization drives and five driving scenarios, which are also compressed in the dataset. 
Lastly, the data from each scenario is organized into three modules: “EnvironmentState”, which contains data 
about the surrounding situation and other traffic members provided by the simulation software; “VehicleState”, 
which contains data about the driving dynamics of the ego-vehicle, again given by the simulation software; and 
“DriverState”, which contains data about the driver gathered from all sensors.

Data in the DriverState module is further detailed into data gathered from each sensor, including physiologi-
cal data, seat pressure distributions, eye tracking information, camera videos, NDRT performances, and activity 
labels. Below is a brief explanation of the data files included in the dataset.

xxxMS/Pxxx/<Scenario_Name>/ EnvironmentState/EnvironmentState.txt.  This file pro-
vides a comprehensive snapshot of various parameters associated with the driving environment. This file cap-
tures information on prevailing weather conditions, specifics of the road including speed limits, and the relative 
distance to surrounding vehicles. The file also details the lateral shift, speed, and acceleration metrics of nearby 
vehicles. Additionally, it registers lane-crossing actions of front vehicles and provides crucial data about any 
objects or pedestrians ahead, including their distance and speed. Another metric included is the TTC which gives 
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Fig. 13  Verbal emotion rating of drivers immediately after surprising events and later on in surprise scenario.
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information about situation criticality. Beyond these data points “EnvironmentalEvent” column categorizes and 
labels the environmental scenarios, ranging from “no event” situations to specific events like attention objects, 
car-following, sound/scene from outside, dog on the road, takeover situation, and accident of ego-vehicle. This 
file ensures that every aspect of the driving environment is meticulously documented for comprehensive analysis.

xxxMS/Pxxx /<Scenario_Name > / VehicleState/VehicleState.txt.  The VehicleState.txt file con-
tains the recorded essential dynamics data, like speed, acceleration, lateral shifts, and lane crossing informa-
tion. The file also provides insights into the SAE automation level of the vehicle, logs background music being 
played, and any interaction signals presented to the driver, which might influence their driving behavior or 
decision-making.

xxxMS/Pxxx /< Scenario_Name > / DriverState/Face_cropped.mp4.  Face_cropped.mp4 serves as 
a visual record of drivers’ facial expressions during their driving experience. Captured from a camera directed at 
driver’s face, this file offers insights into the real-time emotional and cognitive facial responses of drivers as they 
navigate various road situations. Each video clip has a resolution of 200 × 200 px and is recorded at a rate of 30 FPS.

xxxMS/Pxxx /< Scenario_Name>/ DriverState/ActivityLabels.txt.  The ActivityLabels.txt file 
stands as a detailed record of both driving and non-driving activities undertaken by drivers throughout the exper-
iment. Generated using simulator markings, this file depicts the spectrum of actions and behaviors exhibited by 
drivers, providing a foundation for understanding their engagement and responses during the study. It is planned 
to refine and enhance the granularity of these labels in future works.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/EyeTracking.txt.  The EyeTracking.txt file delves 
into the dynamics of drivers’ ocular movements and focus during driving. A range of parameters is recorded in 
this file, beginning with the driver’s head position and rotation, offering insights into their overall orientation, 
specific eye movements like fixations (periods when the eyes are relatively stationary and gather information) and 
saccades (rapid eye movements between fixation points)41. Furthermore, it registers instances of blinks, providing 
data on the PERCLOS. The file also contains the pupil diameter, a potential indicator of cognitive load or emo-
tional state. Additionally, the file identifies and logs the specific object or point the driver is looking at, offering a 
direct glimpse into their focus and attention. This combination of data helps to understanding the driver’s alert-
ness, engagement, and possible distractions.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/PhysiologicalData/PPG_EDA.txt.  This file con-
sists of physiological data captured using the Empatica E4 wristband, which drivers put on their dominant hand’s 
wrist. The file captures the acceleration of the wrist, giving insights into the driver’s hand movements, which can 
be used to improve data filtering or estimate possible gestures. Moreover, BVP and EDA, two pivotal markers 
of physiological arousal are recorded in this file. From these raw data, other crucial metrics are derived: HR is 
extracted from the BVP, while SCL and SCR are deduced from the EDA. Additionally, the file logs the skin tem-
perature, potentially shedding light on stress levels and comfort.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/PhysiologicalData/EEG_ECG.txt.  The EEG_
ECG.txt file provides an insight into the neural and cardiac activities of individuals, captured using the BIOPAC 
sensor system. This file primarily encompasses data from nine EEG channels - namely Poz, Fz, Cz, C3, C4, F3, F4, 
P3, and P4 - each of which maps to specific regions of the brain. These channels record the electrical activity of 
the brain, shedding light on cognitive processes and states of arousal. Complementing the EEG data is the ECG 
information, which charts the electrical activity of the heart. Also from the ECG data the HR is extracted, offer-
ing a direct measure of cardiac activity. The EEG_ECG.txt file, with its combination of neural and cardiac data, 
stands as a precise tool and reference for understanding both cognitive and physiological responses in real-time 
scenarios.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/SeatPressureDistribution.
txt.  SeatPressureDistribution.txt file consists of time-stamped pressure-sensor readings from both the seat and 
backrest of drivers. Each frame contains 2048 readings per frame (structured as 2 × 32 × 32), to represent data 
from distinct pressure sensors. The columns within the file are distinctly labeled as Seat_xxx and Back_xxx for 
seat and backrest readings, respectively. The numbering and positioning of these sensors are visually illustrated 
in the Fig. 6.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/Media/seat_xxx.png and 
back_xxx.png.  The files seat_xxx.png and back_xxx.png offer a visual representation of pressure distribu-
tion on the two dedicated seat-pressure-sensor mats. These images, sampled at a frequency of 30 FPS, provide a 
real-time snapshot of how drivers adjust and shift their weight, allowing for an intuitive understanding of their 
comfort, positioning, and movements.

xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/Media/seat_heatmap.
mp4 and back_heatmap.mp4.  Last components of pressure distribution are the video files seat_heatmap.
mp4 and back_heatmap.mp4 with 30 FPS, visualizing the pressure distribution on the seat and backrest over time. 
These videos are compiled directly from the pressure distribution images housed in the same folder, offering a 
sequential visualization of driver’s posture and movements throughout the driving experience.
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xxxMS/Pxxx /<Scenario_Name>/ DriverState/NDRT/NDRT_xxx.txt.  Three NDRT_xxx.txt files 
provide detailed information, all timestamped, about NDRTs centered around various games. The NDRT_nback.
txt captures data on the n-back game. It details the block number ranging from one to four, with each block 
containing between 25 to 30 digit exposures. Alongside, it records the user’s performance metrics such as score, 
matches, misses, false alarms, and reaction time. Additionally, the game difficulty level is also documented. The 
NDRT_Digit_Span.txt file is a report of the digit-span task. It captures timestamps, the playing status marked as 
‘Digit_Span_Playing’ column (which turns 1 when the user is actively engaged in the game), the game difficulty 
level, and user responses which are marked 1 for correct answers and −1 for incorrect ones. Lastly, the NDRT_
SubwaySurfers.txt is more streamlined, noting timestamps and the user’s playing status for the game Subway 
Surfers. Here, 1 indicates active gameplay, while 0 signifies inactivity. This file doesn’t delve into the performance 
metrics of the game, focusing solely on play engagement.

Technical Validation
In the present contribution, the technical validation included two steps: quality control to check the availability 
and reliability of the data and experimental validation to check the scope of the data.

Quality control of collected dataset.  In the dataset, certain data points are absent due to technical 
problems. To provide clarity on this, the “DataAvailability.xlsx” file offers an overview of the available data. For 
environmental data, both the range of data and the sequence of the recorded environmental events are rigidly 
monitored. Fig. 7 shows example sequences of events for the 5 scenarios.

The vehicle data has also undergone the validation. Specifically, the order of interaction signals (see Fig. 8), 
automation mode, and plots of specific vehicle dynamics parameters, such as travelled distance, have been 
verified.

One of the unique attributes of the driver activity data is its multi-labeling feature, signifying that multiple 
activities can occur simultaneously. Within the validation process the plausibility of these overlaps are examined.

A few participants opted not to include their videos in the dataset. To further ensure the dataset’s integrity, 
both face videos and pressure heatmap videos are played back to confirm that they are correctly encoded, con-
tain the requisite information, and are free from playback issues.

In the realm of eye tracking data, any unavailable column is excised. Supplementary columns are provided 
for the confidence of the head position, head rotation, and pupil diameter. These columns represent the average 
data quality, with values spanning from zero to one, given directly from the sensor.

The physiological data, procured using the Empatica E4, has been validated by checking the data range for 
parameters such as BVP, SCL, and Skin temperature. Figs. 9–11 depict the range of gathered data.

When collecting EEG data, before start of the study the resistance between each electrode and scalp of each 
participant is checked to be less than 80, which shows good quality of connection and data collection according 
to the manufacturer. After the experiment, for the EEG and ECG datasets, the availability of channels has been 
confirmed and the pattern of the ECG data is controlled. The primary check was visual observation to ensure 
that the heartbeats are recognizable and clear anomalies such as constant values or white noise are removed. 
Later, during the extraction of the HR from the ECG data, the data is checked again by means of a code to make 
the same corrections if required.

The seat-pressure-sensor mats data is investigated for pressure reading ranges, and any void frames have been 
populated with preceding frame values.

Engagement with infotainment is confined to either the n-back task or the Subway Surfers game. Thorough 
checks are implemented to ensure the “Infotainment_Engagement” activity label accurately covers the times-
tamps when these games are in play, and that there’s no overlapping between the two.

By leveraging video data and following detailed noted protocols, there’s an ambition to craft more nuanced 
and refined activity labels in the future. This evolution aims to allow future analyses to delve deeper, offering 
richer insights into behavioral patterns.

Experimental validation.  A variety of effects and events were incorporated into the driving scenarios to 
vary the driver state. One element to elicit different emotions in participants was to play emotional video clips 
before the start of the three scenarios to elicit the emotions of anger, sadness, and fear. Participants were instructed 
to watch the video clips, then complete the DES, and drive off. After a one-way ANOVA test42, significant dif-
ferences were found regarding the average of the rated emotions, enjoyment (F(4, 145) = 11.008, P = 7.9 E-08), 
surprise (F(4, 145) = 4.88, P = 1.0E-03), sadness (F(4, 145) = 13.86, P = 1.3E-09), anger (F(4, 145) = 9.17, P = 1.2E-
06), disgust (F(4, 145) = 18.93, P = 1.5E-12), contempt (F(4, 145) = 4.44, P = 2.1E-03), and fear (F(4, 145) = 5.16, 
P = 6.4E-04), across all driving scenarios, where F denotes the ratio of between group variation and within group 
variation and P is the probability of obtaining an F-ratio as large or larger than the one observed, assuming that 
the null hypothesis of no difference amongst group means is true. Fig. 12 shows subjective ratings of participants. 
Post hoc analyses (T-test43) reveal that all three video clips evoked intended emotions as well as other emotions. 
Table 8 shows the significant (P < 0.05) emotions elicited by each video clip. This analysis does not control for the 
increase in the familywise error rate in the reported statistical analyses. Therefore, replication is recommended.

To capture drivers by surprise, unexpected events happen right at the beginning of the respective scenario. 
The system then verbally asks the drivers about their feelings. The subjects are free whether or not to answer 
the question with any word of their own choice. Later, when the drivers’ surprise has completely worn off, they 
are asked again about their feelings. Here again, subjects are free not to answer or to answer with any word they 
choose. Fig. 13 shows the drivers’ ratings of these two verbal questions. The initial χ2 test44 shows no significant 
difference between the two ratings (χ2 = 7.23, P = 0.20), however replication is encouraged.
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Usage Notes
The dataset comprises about 600. To facilitate the upload and download process, the dataset has been com-
pressed to almost 45 in the 7z format. Files with the 7z extension are compressed archive files created with 7-Zip 
software, which reduces the file size while preserving quality. Most common file archiving software, such as 
WinRAR or 7-Zip, can unpack these files. Also, in the DataExtraction.py file, the function find_and_extract_7z_
files() can be used to extract the zipped files.

The scope of the dataset is provided in *.txt format, which is suitable for most text viewing programs that can 
process large files and analyze the data. All data files have header and time stamps. By integrating this dataset 
with any other dataset the used sensor for collection of the data and the sampling rate should be considered.

The broad coverage of the manD 1.0 dataset makes it suitable for various research questions. The dataset 
can be used to train driving behavior models using data collected from drivers during manual driving. It can be 
used to predict the reaction time and type of drivers in critical situations by using the data from takeover situ-
ations. Since all participants go through the same driving scenarios, the differences between individuals can be 
investigated. There are also some similarities between the scenarios, which provides the opportunity to compare 
the effects of different emotions on individuals’ driving behavior. In addition, the dataset contains data from 
multiple sensors that allow for the measurement of several synchronized psychophysiological factors. These 
measurements, along with vehicle and environmental state data, can be used to develop and train cognitive 
architectures and mental state models. In addition, the scenarios contain various interaction signals whose effect 
on the participants’ behavior can be investigated and evaluated for the development of new interaction concepts. 
The inclusion of data collected from participants with motion sickness experience during the experiment may be 
helpful for research towards this concept in the simulator. The data is mainly collected in manual driving mode 
and includes all sensor readings. Some examples of research questions that can be investigated using this part of 
dataset are the research on similarities in driving behavior of drivers with motion sickness, and the early detec-
tion of motion sickness based on physiological and behavioral data before the onset of the annoying symptoms 
such as headache and dizziness.

Code availability
The custom code “DataExtraction.py” is available26 from the same repository, (https://doi.org/10.7910/DVN/
SG9TMD). The code consists of functions to generate HR from BVP and ECG as well as functions to create images 
and videos of seat pressure distribution heatmaps. It also includes functions for extracting zipped files of the 
dataset. The code is tested and run with Python 3.1145.

Received: 8 November 2023; Accepted: 11 March 2024;
Published: xx xx xxxx

References
	 1.	 Vinciarelli, A., Pantic, M. & Bourlard, H. Social signal processing: survey of an emerging domain. Image and Vision Computing 27, 

1743–1759, https://doi.org/10.1016/j.imavis.2008.11.007 (2009).
	 2.	 Zhang, Y., Li, J. & Guo, Y. Vehicle driving behavior. IEEE Dataport https://doi.org/10.21227/qzf7-sj04 (2018).
	 3.	 Petrellis, N. et al. Nitymed. IEEE Dataport https://doi.org/10.21227/85xe-3f88 (2022).
	 4.	 Abtahi, S., Omidyeganeh, M., Shirmohammadi, S. & Hariri, B. Yawdd: Yawning detection dataset. IEEE Dataport https://doi.

org/10.21227/e1qm-hb90 (2020).
	 5.	 Nasri, I., Karrouchi, M., Snoussi, H., Kassmi, K. & Messaoudi, A. Detection and prediction of driver drowsiness for the prevention 

of road accidents using deep neural networks techniques. In Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A. & Khamlichi, Y. 
(eds.) WITS 2020, 57–64, https://doi.org/10.1007/978-981-33-6893-4_6 (Springer, Singapore, 2022).

	 6.	 Ezzouhri, A., Charouh, Z., Ghogho, M. & Guennoun, Z. Howdrive 3d: driver distraction dataset. IEEE Dataport https://doi.
org/10.21227/f9z3-0438 (2021).

	 7.	 Montoya, A., Holman, D., SF_data_science, Smith, T. & Kan, W. State farm distracted driver detection. Kaggle https://kaggle.com/
competitions/state-farm-distracted-driver-detection (2016).

	 8.	 Yang, D. et al. All in one network for driver attention monitoring. In 2020 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), 2258–2262, https://doi.org/10.1109/ICASSP40776.2020.9053659 (2020).

	 9.	 Eraqi, H. M., Abouelnaga, Y., Saad, M. H. & Moustafa, M. N. Driver distraction identification with an ensemble of convolutional 
neural networks. Journal of Advanced Transportation 2019, https://doi.org/10.1155/2019/4125865 (2019).

	10.	 Ortega, J. D. et al. Dmd: A large-scale multi-modal driver monitoring dataset for attention and alertness analysis. In Bartoli, A. & 
Fusiello, A. (eds.) Computer Vision – ECCV 2020 Workshops, 387–405, https://doi.org/10.1007/978-3-030-66823-5_23 (Springer 
International Publishing, Cham, 2020).

	11.	 Yuksel, A. S. & Atmaca, S. Driving behavior dataset. Mendeley Data https://doi.org/10.17632/jj3tw8kj6h.2 (2020).
	12.	 Schwarz, A., Haurilet, M., Martinez, M. & Stiefelhagen, R. Driveahead - a large-scale driver head pose dataset. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 1–10, https://doi.org/10.1109/cvprw.2017.155 
(2017).

	13.	 Jegham, I., Ben Khalifa, A., Alouani, I. & Mahjoub, M. A. A novel public dataset for multimodal multiview and multispectral driver 
distraction analysis: 3mdad. Signal Processing: Image Communication 88, https://doi.org/10.1016/j.image.2020.115960 (2020).

	14.	 Martin, M. et al. Drive & Act: A multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles. In 
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), https://doi.org/10.1109/iccv.2019.00289 (2019).

	15.	 Abril, J. D., Castillo-Castaneda, E. & Avilés, O. F. Physiological and emotional states during virtual driving. IEEE Dataport https://
doi.org/10.21227/9fmc-nw22 (2022).

	16.	 Healey, J. & Picard, R. Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent 
Transportation Systems 6, 156–166, https://doi.org/10.1109/TITS.2005.848368 (2005).

	17.	 Taylor, P. et al. Warwick-jlr driver monitoring dataset (dmd): statistics and early findings. In Proceedings of the 7th International 
Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ‘15, 89–92, https://doi.
org/10.1145/2799250.2799286 (Association for Computing Machinery, New York, NY, USA, 2015).

	18.	 Othman, W., Kashevnik, A., Ali, A. & Shilov, N. Drivermvt: in-cabin dataset for driver monitoring including video and vehicle 
telemetry information. Data 7, https://doi.org/10.3390/data7050062 (2022).

https://doi.org/10.1038/s41597-024-03137-y
https://doi.org/10.7910/DVN/SG9TMD
https://doi.org/10.7910/DVN/SG9TMD
https://doi.org/10.1016/j.imavis.2008.11.007
https://doi.org/10.21227/qzf7-sj04
https://doi.org/10.21227/85xe-3f88
https://doi.org/10.21227/e1qm-hb90
https://doi.org/10.21227/e1qm-hb90
https://doi.org/10.1007/978-981-33-6893-4_6
https://doi.org/10.21227/f9z3-0438
https://doi.org/10.21227/f9z3-0438
https://kaggle.com/competitions/state-farm-distracted-driver-detection
https://kaggle.com/competitions/state-farm-distracted-driver-detection
https://doi.org/10.1109/ICASSP40776.2020.9053659
https://doi.org/10.1155/2019/4125865
https://doi.org/10.1007/978-3-030-66823-5_23
https://doi.org/10.17632/jj3tw8kj6h.2
https://doi.org/10.1109/cvprw.2017.155
https://doi.org/10.1016/j.image.2020.115960
https://doi.org/10.1109/iccv.2019.00289
https://doi.org/10.21227/9fmc-nw22
https://doi.org/10.21227/9fmc-nw22
https://doi.org/10.1109/TITS.2005.848368
https://doi.org/10.1145/2799250.2799286
https://doi.org/10.1145/2799250.2799286
https://doi.org/10.3390/data7050062


20Scientific Data |          (2024) 11:327  | https://doi.org/10.1038/s41597-024-03137-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	19.	 Dcosta, M. Simulator study i: a multimodal dataset for various forms of distracted driving. OSF https://doi.org/10.17605/OSF.IO/
C42CN (2017).

	20.	 Jha, S. et al. The multimodal driver monitoring database: a naturalistic corpus to study driver attention. IEEE Transactions on 
Intelligent Transportation Systems 23, 10736–10752, https://doi.org/10.1109/TITS.2021.3095462 (2022).

	21.	 Anderson, J. R. & Lebiere, C. J. The Atomic Components of Thought (Psychology Press, 2014).
	22.	 Liu, Y., Feyen, R. & Tsimhoni, O. Queueing network-model human processor (qn-mhp): a computational architecture for multitask 

performance in human-machine systems. ACM Trans. Comput.-Hum. Interact. 13, 37–70, https://doi.org/10.1145/1143518.1143520 
(2006).

	23.	 Sun, R. Anatomy of the Mind: Exploring Psychological Mechanisms and Processes with the Clarion Cognitive Architecture (Oxford 
University Press, 2016).

	24.	 Park, J. & Zahabi, M. A review of human performance models for prediction of driver behavior and interactions with in-vehicle 
technology. Human Factors 0, https://doi.org/10.1177/00187208221132740. PMID: 36259529 (2022).

	25.	 Dargahi Nobari, K., Albers, F., Bartsch, K., Braun, J. & Bertram, T. Modeling driver-vehicle interaction in automated driving. 
Forschung im Ingenieurwesen 86, 65–79, https://doi.org/10.1007/s10010-021-00576-6 (2022).

	26.	 Dargahi Nobari, K. & Bertram, T. manD 1.0. Harvard Dataverse https://doi.org/10.7910/DVN/SG9TMD (2023).
	27.	 Daneman, M. & Merikle, P. M. Working memory and language comprehension: a meta-analysis. Psychonomic Bulletin & Review 3, 

422–433, https://doi.org/10.3758/bf03214546 (1996).
	28.	 Kirchner, W. K. Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology 55, 

352–358, https://doi.org/10.1037/h0043688 (1958).
	29.	 Izard, C., Dougherty, F., Bloxom, B. & Kotsch, N. The differential emotions scale: a method of measuring the subjective experience 

of discrete emotions. Nashville (1974).
	30.	 Kernan, W. N., Viscoli, C. M., Makuch, R. W., Brass, L. M. & Horwitz, R. I. Stratified randomization for clinical trials. Journal of 

Clinical Epidemiology 52, 19–26, https://doi.org/10.1016/s0895-4356(98)00138-3 (1999).
	31.	 Dargahi Nobari, K., Velasquez, C. & Bertram, T. Emotion induction strategies in driving simulator for validated experiments. In 

Human Systems Engineering and Design (IHSED2021) Future Trends and Applications, https://doi.org/10.54941/ahfe1001156 (AHFE 
International, 2021).

	32.	 Schaefer, A., Nils, F., Sanchez, X. & Philippot, P. Assessing the effectiveness of a large database of emotion-eliciting films: a new tool 
for emotion researchers. Cognition & Emotion 24, 1153–1172, https://doi.org/10.1080/02699930903274322 (2010).

	33.	 Krumhansl, C. L. An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology/
Revue canadienne de psychologie expérimentale 51, 336–353, https://doi.org/10.1037/1196-1961.51.4.336 (1997).

	34.	 Peretz, I. Music and emotion: perceptual determinants, immediacy, and isolation after brain damage. Cognition 68, 111–141, https://
doi.org/10.1016/s0010-0277(98)00043-2 (1998).

	35.	 Bradski, G. The OpenCV Library. Dr. Dobb’s Journal: software tools for the professional programmer 25, 120–123 (2000).
	36.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods 17, 261–272, https://doi.

org/10.1038/s41592-019-0686-2 (2020).
	37.	 Makowski, D. et al. NeuroKit2: a python toolbox for neurophysiological signal processing. Behavior Research Methods 53, 

1689–1696, https://doi.org/10.3758/s13428-020-01516-y (2021).
	38.	 Stoet, G. PsyToolkit. Teaching of Psychology 44, 24–31, https://doi.org/10.1177/0098628316677643 (2016).
	39.	 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging 

experiments. Scientific Data 3, https://doi.org/10.1038/sdata.2016.44 (2016).
	40.	 Pernet, C. R. et al. Eeg-bids, an extension to the brain imaging data structure for electroencephalography. Scientific Data 6, https://

doi.org/10.1038/s41597-019-0104-8 (2019).
	41.	 Fischer, B. & Weber, H. Express saccades and visual attention. Behavioral and Brain Sciences 16, 553–567, https://doi.org/10.1017/

s0140525x00031575 (1993).
	42.	 Girden, E. R. ANOVA: Repeated Measures. 84 (Sage Publications, Inc., 1992).
	43.	 Student. The probable error of a mean. Biometrika 6, 1–25 (1908).
	44.	 Pearson, K. X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is 

such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical 
Magazine and Journal of Science 50, 157–175, https://doi.org/10.1080/14786440009463897 (1900).

	45.	 Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).
	46.	 Kopuklu, O., Zheng, J., Xu, H. & Rigoll, G. Driver anomaly detection: A dataset and contrastive learning approach. In Proceedings of 

the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 91–100, https://doi.org/10.1109/
WACV48630.2021.00014 (2021).

	47.	 Li, L. & Zhang, W. A driving fatigue dataset of driver’s facial features and heart rate features. 2020 IEEE International Conference on 
Information Technology,Big Data and Artificial Intelligence (ICIBA) 1, 293–298, https://doi.org/10.1109/ICIBA50161.2020.9277178 
(2020).

	48.	 Li, W. et al. A spontaneous driver emotion facial expression (defe) dataset for intelligent vehicles: Emotions triggered by video-audio 
clips in driving scenarios. IEEE Transactions on Affective Computing 14, 747–760, https://doi.org/10.1109/TAFFC.2021.3063387 
(2023).

	49.	 Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior 
Therapy and Experimental Psychiatry 25, 49–59, https://doi.org/10.1016/0005-7916(94)90063-9 (1994).

	50.	 Solovey, E. T., Zec, M., Perez, E. A. G., Reimer, B. & Mehler, B. Classifying driver workload using physiological and driving 
performance data. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, https://doi.
org/10.1145/2556288.2557068 (ACM, 2014).

	51.	 Gable, T. M., Kun, A. L., Walker, B. N. & Winton, R. J. Comparing heart rate and pupil size as objective measures of workload in the 
driving context. In Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular 
Applications, https://doi.org/10.1145/2809730.2809745 (ACM, 2015).

	52.	 Lee, H. B. et al. Nonintrusive biosignal measurement system in a vehicle. In 2007 29th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, https://doi.org/10.1109/iembs.2007.4352786 (IEEE, 2007).

	53.	 Yamakoshi, T. et al. A preliminary study on driver’s stress index using a new method based on differential skin temperature 
measurement. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 722–725, 
https://doi.org/10.1109/IEMBS.2007.4352392 (IEEE, 2007).

	54.	 Hassib, M., Pfeiffer, M., Schneegass, S., Rohs, M. & Alt, F. Emotion actuator. In Proceedings of the 2017 CHI Conference on Human 
Factors in Computing Systems, https://doi.org/10.1145/3025453.3025953 (ACM, 2017).

	55.	 Dong, Y., Hu, Z., Uchimura, K. & Murayama, N. Driver inattention monitoring system for intelligent vehicles: a review. IEEE 
Transactions on Intelligent Transportation Systems 12, 596–614, https://doi.org/10.1109/tits.2010.2092770 (2011).

	56.	 Recarte, M. Á., Pérez, E., Conchillo, Á. & Nunes, L. M. Mental workload and visual impairment: differences between pupil, blink, 
and subjective rating. The Spanish Journal of Psychology 11, 374–385, https://doi.org/10.1017/s1138741600004406 (2008).

	57.	 Victor, T. W., Harbluk, J. L. & Engström, J. A. Sensitivity of eye-movement measures to in-vehicle task difficulty. Transportation 
Research Part F: Traffic Psychology and Behaviour 8, 167–190, https://doi.org/10.1016/j.trf.2005.04.014 (2005).

	58.	 Young, K. & Regan, M. Driver distraction: a review of the literature. Distracted driving 2007, 379–405 (2007).

https://doi.org/10.1038/s41597-024-03137-y
https://doi.org/10.17605/OSF.IO/C42CN
https://doi.org/10.17605/OSF.IO/C42CN
https://doi.org/10.1109/TITS.2021.3095462
https://doi.org/10.1145/1143518.1143520
https://doi.org/10.1177/00187208221132740
https://doi.org/10.1007/s10010-021-00576-6
https://doi.org/10.7910/DVN/SG9TMD
https://doi.org/10.3758/bf03214546
https://doi.org/10.1037/h0043688
https://doi.org/10.1016/s0895-4356(98)00138-3
https://doi.org/10.54941/ahfe1001156
https://doi.org/10.1080/02699930903274322
https://doi.org/10.1037/1196-1961.51.4.336
https://doi.org/10.1016/s0010-0277(98)00043-2
https://doi.org/10.1016/s0010-0277(98)00043-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1177/0098628316677643
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.1017/s0140525x00031575
https://doi.org/10.1017/s0140525x00031575
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/WACV48630.2021.00014
https://doi.org/10.1109/WACV48630.2021.00014
https://doi.org/10.1109/ICIBA50161.2020.9277178
https://doi.org/10.1109/TAFFC.2021.3063387
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1145/2556288.2557068
https://doi.org/10.1145/2556288.2557068
https://doi.org/10.1145/2809730.2809745
https://doi.org/10.1109/iembs.2007.4352786
https://doi.org/10.1109/IEMBS.2007.4352392
https://doi.org/10.1145/3025453.3025953
https://doi.org/10.1109/tits.2010.2092770
https://doi.org/10.1017/s1138741600004406
https://doi.org/10.1016/j.trf.2005.04.014


2 1Scientific Data |          (2024) 11:327  | https://doi.org/10.1038/s41597-024-03137-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	59.	 Kahneman, D., Tursky, B., Shapiro, D. & Crider, A. Pupillary, heart rate, and skin resistance changes during a mental task. Journal of 
Experimental Psychology 79, 164–167, https://doi.org/10.1037/h0026952 (1969).

	60.	 Itoh, M. Individual differences in effects of secondary cognitive activity during driving on temperature at the nose tip. In 2009 
International Conference on Mechatronics and Automation, https://doi.org/10.1109/icma.2009.5246188 (IEEE, 2009).

	61.	 Marquart, G., Cabrall, C. & de Winter, J. Review of eye-related measures of drivers’ mental workload. Procedia Manufacturing 3, 
2854–2861, https://doi.org/10.1016/j.promfg.2015.07.783 (2015).

	62.	 Wang, Y., Reimer, B., Dobres, J. & Mehler, B. The sensitivity of different methodologies for characterizing drivers’ gaze concentration 
under increased cognitive demand. Transportation Research Part F: Traffic Psychology and Behaviour 26, 227–237, https://doi.
org/10.1016/j.trf.2014.08.003 (2014).

	63.	 Nocera, F. D., Camilli, M. & Terenzi, M. Using the distribution of eye fixations to assess pilots’ mental workload. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting 50, 63–65, https://doi.org/10.1177/154193120605000114 (2006).

	64.	 Dargahi Nobari, K., Hugenroth, A. & Bertram, T. Position classification and in-vehicle activity detection using seat-pressure-sensor 
in automated driving. In AmE 2022-Automotive meets Electronics; 13. GMM-Symposium, 1–6 (VDE, 2022).

	65.	 Dargahi Nobari, K. & Bertram, T. Generalized model for driver activity recognition in automated vehicles using pressure sensor 
array. In AHFE International, https://doi.org/10.54941/ahfe1002733 (AHFE International, 2022).

	66.	 Chatrian, G. E., Lettich, E. & Nelson, P. L. Ten percent electrode system for topographic studies of spontaneous and evoked EEG 
activities. American Journal of EEG Technology 25, 83–92, https://doi.org/10.1080/00029238.1985.11080163 (1985).

Author contributions
K.D.N. and T.B. discussed and conceived the experiment. K.D.N. conducted the experiment and analyzed the 
results. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.D.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03137-y
https://doi.org/10.1037/h0026952
https://doi.org/10.1109/icma.2009.5246188
https://doi.org/10.1016/j.promfg.2015.07.783
https://doi.org/10.1016/j.trf.2014.08.003
https://doi.org/10.1016/j.trf.2014.08.003
https://doi.org/10.1177/154193120605000114
https://doi.org/10.54941/ahfe1002733
https://doi.org/10.1080/00029238.1985.11080163
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A multimodal driver monitoring benchmark dataset for driver modeling in assisted driving automation

	Background & Summary

	Methods

	Experimental setup. 
	Driving simulator. 
	Intel RealSense: camera. 
	SmartEye: eye tracking system. 
	Empatica E4: photoplethysmogram/electrodermal activity sensor/3-axis accelerometer. 
	BIOPAC: electroencephalogram/electrocardiogram. 
	BodiTrak: seat-pressure-sensor mats. 

	Experimental procedure. 
	Design of experiment. 
	Driving scenarios. 
	Familiarization. 
	No emotion. 
	Anger. 
	Surprise. 
	Sadness. 
	Fear. 

	Computational processing. 
	Environment data. 
	Video. 
	Eye tracking. 
	PPG/EDA. 
	EEG/ECG. 
	Seat pressure distribution. 
	NDRT. 


	Data Records

	xxxMS/Pxxx/<Scenario_Name>/ EnvironmentState/EnvironmentState.txt. 
	xxxMS/Pxxx /<Scenario_Name > / VehicleState/VehicleState.txt. 
	xxxMS/Pxxx /< Scenario_Name > / DriverState/Face_cropped.mp4. 
	xxxMS/Pxxx /< Scenario_Name>/ DriverState/ActivityLabels.txt. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/EyeTracking.txt. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/PhysiologicalData/PPG_EDA.txt. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/PhysiologicalData/EEG_ECG.txt. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/SeatPressureDistribution.txt. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/Media/seat_xxx.png and back_xxx.png. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/SeatPressureSensor/Media/seat_heatmap.mp4 and back_heatmap.mp4. 
	xxxMS/Pxxx /<Scenario_Name>/ DriverState/NDRT/NDRT_xxx.txt. 

	Technical Validation

	Quality control of collected dataset. 
	Experimental validation. 

	Usage Notes

	Fig. 1 Schema of the study and the employed sensors.
	Fig. 2 Distribution of the EEG electrodes based on International 10-10 system66.
	Fig. 3 Visual modalities of TOR.
	Fig. 4 Handling covariates age and gender by stratified randomization.
	Fig. 5 Structure of the provided dataset.
	Fig. 6 Numbering of seat-pressure sensors.
	Fig. 7 Sample event sequences for the driving scenarios.
	Fig. 8 Example sequence of interaction signals.
	﻿Fig. 9 BVP [μV] data collected from all participants using Empatica E4 during five driving scenarios.
	Fig. 10 SCL [μS] data of all participants during five driving scenarios extracted from the EDA.
	Fig. 11 Skin temperature [°C] of all participants measured with Empatica E4 during five driving scenarios.
	Fig. 12 Z-Score [] of participants’ subjectively rated emotions (DES) immediately before the start of the driving scenarios.
	Fig. 13 Verbal emotion rating of drivers immediately after surprising events and later on in surprise scenario.
	Table 1 Overview of the characteristics of the frequently cited datasets for driver monitoring compared to manD 1.
	﻿Table 2 Overview of driver state factors, which are extracted from the driver’s cognitive architecture and mental functions as the most pertinent factors sensors, which are mainly employed in the literature to measure the corresponding driver state facto
	﻿Table 3 Sequence of events in the scenario where no emotion is evoked.
	Table 4 Sequence of events in the scenario where anger is evoked.
	Table 5 Sequence of events in the scenario where surprise is evoked.
	Table 6 Sequence of events in the scenario where sadness is evoked.
	Table 7 Sequence of events in the scenario where fear is evoked.
	Table 8 Post-hoc analysis of significant emotions evoked by video clips.




