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Abstract

Capsules and their properties have provoked an increasing interest in several fields of the sciences
and industry. In the sciences, several relevant biological system are modeled as a liquid core
encapsulated by a skin of some sort, e.g. red blood cells. In industry, capsules are usually used
the other way around – not to model nature, but rather to design for functionality, e.g. in medical
application or the food industry. Given their ubiquitous application, we discuss and investigate the
solution of shape equations for freely pendant droplets, capsules and derive a method to incorporate
viscous dissipation for time dependent deformation sequences. These theoretical investigations
are supplemented with a novel numerical framework which allows us to solve the shape equations,
fit them to experimental images, and therefore infer information from experiments. We apply
the theoretical and numerical insights gained during the course of this work to investigate the
properties of complex interfaces, such as multi-layer systems.

While an individual capsule has interesting applications, the reality often is that a capsule can not
be isolated from other capsules or some constraining boundaries. We therefore investigate – for the
first time in literature – the contact problem of a pressurized, bending-stiff, adhesive, elastic capsule
under an external force both with a solid wall and with another capsule of this kind. The resulting
shape equations give us access to the shape-parameter diagram and allow us to understand the
contact problem without performing any experiment. We rather integrate the shape equations
numerically and find the solutions nature realizes, together with all relevant derived quantities,
such as the contact force. Additionally, we design a meta-material (theoretically) from an elastic
capsule unit-cell by extending the contact theory to a columnar structure.

Several problems encountered in physics, especially in inverse problems, can be considered ill-
conditioned. An ill-conditioned problem reacts sensitive to perturbations of the input data and
usually needs to be regularized or otherwise constrained to produce stable predictions or results.
In this thesis we explore the potential of machine learning approaches for exactly this task. With
liquid droplet and elastic capsule shape fitting, as well as traction force microscopy, as example
problems, we convincingly show that machine learning approaches for these ill-conditioned problems
are suitable and outperform conventional methods by orders of magnitude in speed, allowing for a
entirely new applications.
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Introduction and motivation

Interfaces between two or more phases are ubiquitously found in nature. They are fundamental
for the function of cells [1], [2], transport processes [3], [4] and the respiratory system [5], [6], only
to name a few – life could not exist without them.

Interfaces are in-fact so common that their properties are intuitive to most humans, without a
deeper understanding of the underlying physics. For example, when using a straw to drink from a
container, we intuitively exploit the surface tension of the liquid in combination with an under-
pressure generated by our mouth to draw the liquid up the straw, overcoming the gravitational
pull exerted onto the liquid. This is a complicated process from a physicist’s point-of-view, but
considered trivial, or obvious, from the perspective of the person intuitively enjoying a tasty
beverage. While it is implausible that a deeper theoretical understanding of the underlying physics
would improve the straw-drinking-technique of a human, it is indeed very likely that we are able to
provide insight for the straw manufacturer. Parameters such as the straw width, material, height
are all accessible in a theoretical description of the system. Moreover, unleashing the analytic
tool-set of a physicist allows us to identify and prove optimal parameters and stability thresholds
for a set of carefully selected and agree-able assumptions.

What makes the physics of fluids and interfaces challenging is that on a microscopic level there are a
multitude of effects at play. For example, a microscopic description of the liquid-air interface needs
to account for the complex interactions between the vast number of liquid and air molecules. For
example, there are electrostatic interactions induced by the charge distribution in the liquid and
air molecules, leading to a plethora of effects such as hydrogen bonds or van-der-Waals interactions.
Properly retaining all of the microscopic detail in a description of the liquid-air-interface is
thus simply not feasible. We can, however, similar to the approach of Ludwig Boltzmann to
thermodynamics, define macro-observables, describing the system accurately on a macro-scale,
while coarsening the description such that individual molecule interaction is not relevant. The
property that emerges from such approach is exactly the surface tension of the interface, as
commonly denoted by the symbol 𝛾. It sufficiently captures the manifestations of the microscopic
effects and provides a suitable proxy to describe the system on a macro-scale. The first theoretical
treatment of the interface between fluids goes back to Thomas Young in 1805 [7]. Combined with
the work of Pierre-Simon Laplace in 1806 and James Clerk Maxwell in 1830 [8] a breakthrough in
the theoretical description of static interfaces is achieved as the Young-Laplace-equation, which
connects the pressure difference across the interface with the radii of curvature and the surface
tension – i.e. connects the geometry of the interface with the forces acting on it via an algebraic
equation, as we will rediscover in the following chapter.

For some applications, such as oxygen transport through the body 1 or drug delivery, the properties
of simple liquid-liquid interfaces are exhausted by the required specifications [1], [9]–[11]. Luckily,
there are ways to further enhance these interfaces, for example, to allow for larger deformations or
reduce/increase adhesion. What we will be focusing on in this thesis is the use of interfacial skins
produced at the interface of two phases for exactly these means.

There are several ways to produce interfacial skins, a popularly known approach is to pre-
manufacture an elastic skin and retroactively fill it with one phase, while keeping it embedded
in another phase – just like a balloon for a birthday party. While the theory presented in this
thesis also describes interfacial skins produced this way, we want to focus on a particular reference
geometry of the elastic skin, i.e. a particular geometry of the skin where no elastic stresses are

1Red blood cells (erythrocytes) in particular.
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Introduction and motivation

present. The reference geometry of the elastic skin is essentially arbitrary, however, a common
technique in experiments is to let the skin form on an already existing interface, e.g. a droplet
[12]–[15]. The general idea is that transport processes from the bulk to the interface are able to
accumulate enough polymeric material at the interface to start a cross-linking process. Over time,
or with the right external stimulus, such as light exposure [16], a skin develops at the interface.
This makes the reference geometry of the interfacial skin akin to the liquid-liquid interface shape,
such that it is possible to accurately tune the response to external loads by modifying the structure
of the cross-linked network, while maintaining the same reference geometry.

Of course, we will use a model system for the cross-linked interfacial network, as an accurate
simulation of such network on the length scale of a single polymer would be too resource intensive.
Instead, we reduce the complexity of our description by providing a suitable approximation and
are then able to fully describe the interface via an algebraic constitutive law, connecting the
applied stress with a deformation response. The free parameters appearing in the constitutive
laws are the elastic and viscoelastic effective moduli of the interfacial skin. The full theoretical
treatment of the problem is presented in Chap. 1. Determining the constitutive parameters from an
experiment purely by shape analysis is discussed in Chap. 2. Finally, we demonstrate our approach
in-action for two experiments graciously provided to us by our collaborators from the groups of W.
Drenckhan and F. Mugele in Chap. 3, where we are able to make quantitative statements about
the nature of the experimental system.

Furthermore, we will provide a detailed discussion of the contact behavior between interfacial
skins, e.g. two air balloons pressed together, in Chap. 4.

Finally, we investigate novel approaches for the determination of the constitutive parameters from
pendant droplets and capsules using machine learning. This is a classic inverse problem, where we
have access to the solution of a set of ordinary differential equations and want to determine the
respective control parameters of the problem from this solution. We show that machine learning
can accelerate these inverse problems tremendously in Chap. 5.

Additionally, we investigate another elastic inverse problem, which has a distinctly different nature.
Here, we want to determine cell forces 2 from deformation information in a linear elastic substrate
with known material parameters. The challenge encountered here stems from the fact that this
problem is mathematically ill-conditioned, once noise enters the displacement field. We show that
machine learning is able to outperform conventional approaches by orders of magnitude in any
metric in Chap. 5.

2More accurately, we want to determine the cell tractions.
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1 Axisymmetric interfaces attached to capillaries

Figure 1.1: Visualisation of an axi-
symmetric droplet suspended from a
capillary, parametrized in arc length co-
ordinates 𝑠 and 𝛹. The pressure differ-
ence across the interface 𝛥𝑝 is propor-
tional to the mean local curvature.

In this section we want to study the properties of inter-
faces between two phases which have a particular symmetry.
Namely, we want to limit our view to axi-symmetric inter-
faces, where the shape of the interface is symmetric with
respect to a rotation about the symmetry-axis 1.

Keeping axi-symmetry allows us to describe the interfacial
geometry without resorting to finite element methods, as the
entire interface is uniquely determined by a single arc 𝐶 (see
the black outline in Fig. 1.1 as an example). A rotation of
the arc 𝐶 about the axis of symmetry then reveals the entire
interfacial geometry. This reduces the effective interface
geometry from a two dimensional manifold embedded in
three dimensional space to a one dimensional line segment
embedded in two dimensional space 2. We will be able to
generate a set of first order ordinary differential equations,
which entirely characterize the shape of the interface – the
shape equations. Importantly, this will be possible for ar-
bitrarily complex interfaces, as long as the symmetry of the
problem is preserved. The following sections are determined
to derive exactly these shape equations for interfaces ranging
from purely liquid to interfaces with complex viscoelastic
properties.

Furthermore, we want to study such interfaces in a state, where they are attached to a capillary
in this section. This geometry is mainly motivated by the fact that it is easily attainable and
alterable in an experiment [12]–[15], [17]. The geometry of the capillary will, however, merely
enter as a boundary condition3, such that the theory presented here can also be used to study
interfaces in other axi-symmetric geometries, for example closed interfaces as studied in Ref. [18]
in the context of buckling instabilities, or as in Ref. [14] in the context of capsules at liquid-liquid
interfaces and in Ref. [19] for capsules in a magnetic field. Importantly, this also means, that some
experimental aspects of the capillary are not fully accounted for. For example, if the interface is
not pinned at the capillary, but is able to freely slide along the capillary wall, additional balance
equations at the capillary arise 4. While this geometry seems simple, the experimental realization
of such a geometry is severely complex [12]. Here, we will not discuss the immense effort required
to properly prepare and manufacture the capillary for experiments using this geometry, and rather
limit ourselves to the theoretical description of such systems, where we assume ideal conditions.
More detailed information about the experiment preparation of capillaries can be found in the
experiment literature [12], [20]–[22].

1Without loss of generality, we always choose the 𝑧-axis as the axis of symmetry for all of our considerations.
2From the mathematical description point-of-view the radial component 𝑟 of the cylindrical coordinates is

independent from the angle of rotation about the cylindrical axis 𝜙.
3Mathematically, the capillary attachment is only a boundary condition. However, enforcing this boundary condition

yields several non-trivial effects, such as stress concentration around the capillary.
4Because the radial and vertical variations at the capillary no longer vanish trivially.
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1 Axisymmetric interfaces attached to capillaries

One particularly convenient parametrization of the arc 𝐶 is found as the arc-length parametrization,
where the parametrization parameter of the curve 𝐶 is chosen to be the integrated arc length 𝑠, as
shown in Fig. 1.1. At any arc length 𝑠, the tangent of the arc has an angle 𝛹 relative to a reference
tangent. We will always measure 𝛹 with respect to the 𝑟-axis, as seen in Fig. 1.1. Knowledge
of the function 𝛹(𝑠) at every arc length 𝑠 along the arc 𝐶 is sufficient to construct the entire
interface geometry. This is obvious once we construct the coordinate transformation to cylindrical
coordinates (𝑟, 𝑧) as

d𝑟
d𝑠

= cos 𝛹 , and d𝑧
d𝑠

= sin 𝛹 . (1.1)

Our efforts will thus be aimed at determining the function 𝛹(𝑠), or a derivative of this function. We
use Eqns. (1.1) in the following to transform from arc-length coordinates to cylindrical coordinates.
In a sense, Eqns. (1.1) are the first two shape equations present for any of our problems and arise
purely from the coordinate transformation, we thus call them the geometric shape equations in the
following.

The two principal curvatures of the interface are the circumferential and meridional curvatures as
defined purely by geometry

𝜅𝜙 = sin 𝛹/𝑟 , and 𝜅𝑠 = d𝛹/d𝑠 . (1.2)

While the meridional curvature measures the inverse radius of curvature along the arc-length
coordinate 𝑠, the circumferential curvature measures the inverse radius of curvature of the direction
orthogonal to the arc. Finally, the appropriate 5 geometric boundary conditions for an interface
attached to a capillary with diameter 𝑎 are given by

𝑟(𝑠 = 0) = 𝑧(𝑠 = 0) = 0 and 𝑟(𝑠 = 𝐿) = 𝑎
2

, (1.3)

where 𝐿 is the total length of the arc 𝐶. The boundary conditions at 𝑠 = 0 describe the apex
of the interface, where the radius, the arc angle and the height are fixed to zero. Finally, the
last boundary condition in Eqns. (1.3) at 𝑠 = 𝐿 describes the attachment to the capillary. The
boundary conditions Eqns. (1.3) will be universally used for all further problems where we attach
an interface to a capillary. Altough the connection to the capillary might still be accompanied
by additional boundary/ initial conditions stemming from material response functions, as we
will discuss. These prerequisites set the stage for the discussion of actual interfaces, where the
physical properties of the interface will dictate the interface shape via additional shape equations,
finally yielding the function 𝛹(𝑠). Determining the shape equations, dictated by the interface
properties, requires us to use the appropriate mathematical tools along with the laws of nature.
While there are many (mostly equivalent) ways to derive those shape equations, we will discuss
the derivation in terms of variational calculus, simply because of its elegance. While the shape
equations for liquid and elastic interfaces are known in literature [8], [18], [23], we want to provide
a complete derivation here for completeness sake and as a pre-requisite for the derivation of the
shape equations for the contact problem in Chap. 4. An overview of the mathematical framework
of calculus of variations required for the discussion of the problems encountered during this thesis
is provided in the Appendix A.1.

We start our discussion with a simple case, where the interface only has a constant surface tension
and then progressively generalize the theory until we arrive at the time-dependent shape equations
of visco-elastic capsules.

5Appropriate in the sense that the boundary conditions for the apex of the interface should eliminate the translational
degrees of freedom in the 𝑧 coordinate and fix the rotational axis to be the 𝑧-axis. The missing boundary
condition for 𝛹(𝑠 = 0) is actually not trivial and must emerge from the variation/force balance at the apex,
hence it is not yet listed here, although we will show that 𝛹(𝑠 = 0) = 0 is recovered in most cases.
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1 Axisymmetric interfaces attached to capillaries

1.1 Liquid interfaces

Notice – A full discussion of the shape space of liquid droplets can be found
in the author’s master thesis and the author’s publication [24]. The discussion
presented here extends those results for inverted gravity (𝛥 ̃𝜌 < 0). This is a relevant
pre-requisite for the contact problem discussed in Chap. 4.

At liquid-liquid interfaces two distinct phases meet. Due to the change in the interaction potential
across the interface, an energetic penalty proportional to an infinitesimal interface area patch
is incurred. The proportionality constant of this energetic penalty is called surface tension
and denoted by 𝛾. It is not universal, but differs for every set of two phases. The effective
surface tension at any point of the interface can account for several different physical effects,
which all generate/inhibit an energy penalty proportional to the surface area patch d𝐴, such as
an energy difference between cohesion and adhesion, surfactant concentration, material density
inhomogeneities and more. Effectively, the surface tension encountered at the interface is a force
per length, which acts tangential to the interface, in order to reduce the interface area and subsumes
several microscopic effects. In the following, we will not discuss non-uniform surface tensions
and area dependent surface tensions, although it would be possible to generalize the following
description to exactly these cases, e.g. we could imagine that the surfactant concentration is
affected by gravity, i.e. 𝛾 = 𝛾(𝑧), or directly dependent on the surface area of the interface 𝐴, over
which a fixed number of surface active molecules spreads uniformly 6 and thereby modifies the
surfactant concentration. An effective elastic response to area changes based on the redistribution
of surfactants could also be described as a Gibbs elasticity, as detailed in Ref. [25].

In order to derive the shape equation for 𝛹(𝑠), we can choose between several equivalent approaches.
As we have shown in Ref. [24], balancing all forces acting on a horizontal slice of the liquid droplet
is sufficient to derive the required shape equation. Here, however, we perform the first variation of
the free energy in order to obtain the shape equations, because we can reuse the derivation for
several later chapters 7.

Thus, we express the energy for a purely liquid droplet with uniform surface tension 𝛾 at the
interface with surface area 𝐴, uniformly loaded with gravitational acceleration 𝑔 along the 𝑧-axis 8

as
𝐸 = ∫ d𝐴 𝛾 + ∫ d𝑉 𝛥𝜌𝑔𝑧 (1.4)

where the first term is the energetic penalty of the interface, while the second term is the
gravitational potential energy of the fluid with density contrast to the surrounding medium 𝛥𝜌. The
influence of small perturbations of the gravity-capillary alignment is studied phenomenologically
in Ref. [17] and motivated by the general sensitivity of axisymmetric solutions to perturbations
in the control parameters, as we show in Ref. [24]. It is vital to keep the intrinsic limitation of
assuming axi-symmetry for the resulting extremal shape equations in mind.

The trivial solution, minimizing the energy functional Eqn. (1.4), is obviously given as a droplet
with no surface and no volume, as then 𝐸 = 0. This solution is of course not the desired one.
Hence we want to employ an additional constraint, namely, we want to prescribe the volume of the
droplet and only allow solutions with this volume, i.e. we want to search for the optimal surface
geometry at a given internal volume. To achieve this we perform a Legendre transformation of
Eqn. (1.4) with the conjugate pair of the prescribed volume 𝑉 and its Lagrange multiplier, which

6Because of Marangoni flow of the surfactants at the interface.
7Specifically, the variational approach will come in really useful in the discussion of contacting elastic interfaces.
8The axis of gravity must coincide with the symmetry axis chosen in our parametrization.
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1 Axisymmetric interfaces attached to capillaries

is the pressure difference between inside and outside of the drop 𝑝𝐿 = 𝛥𝑝(𝑠 = 0), measured at the
apex of the drop at 𝑠 = 0.

We want to emphasize the actual interpretation of the Lagrange multiplier 𝑝𝐿 – the gradient of
the inner energy of the droplet 𝐸 produces forces, which drive the droplet into the minimum of the
inner energy 𝐸. The global minimum of the inner energy 𝐸 has no surface area and no volume. By
performing the Legendre transformation from 𝐸 to a modified energy 𝐹 = 𝐸 −𝑉 𝑝𝐿, we modify the
energetic landscape in such a way that the extremum of the function 𝐹 is achieved at a particular
volume 𝑉 of the droplet 9 given the appropriate choice of Lagrange multiplier 𝑝𝐿. In terms of
a force balance, this means that the conjugate parameter 𝑝𝐿 counteracts the contraction of the
droplet due to the gradient in the inner energy 𝐸 and thus indeed quantifies an over-pressure
inside of the droplet. The pressure 𝑝𝐿 thus gives a measure of the slope of the inner energy 𝐸
with respect to volume changes. If the sign of the pressure 𝑝𝐿 is positive, the system is forced (by
the volume constraint) into a state which could reduce the inner energy 𝐸 by a decrease in volume
𝑉 10. If, however, the pressure is negative 11 the inner energy is forced into a state, from which it
could (without the volume constraint) reduce its inner energy 𝐸 by increasing the volume.

We finally arrive at the appropriate functional we want to subject to extremization as

𝐹 = ∫ d𝐴 𝛾 + ∫ d𝑉 𝛥𝜌𝑔𝑧 − ∫ d𝑉 𝑝𝐿 = 𝜋 ∫
𝐿

0
d𝑠

⎧{
⎨{⎩

2𝑟𝛾 − (𝑝𝐿 − 𝛥𝜌𝑔𝑧)⏟⏟⏟⏟⏟
𝑝(𝑧)

𝑟2 sin 𝛹
⎫}
⎬}⎭

, (1.5)

where we parametrize the drop in arc length parametrization and write out the area and volume
elements in terms of the infinitesimal arc length element d𝑠, such that d𝐴 = d𝑠 2𝜋𝑟 and d𝑉 =
d𝑠 𝜋𝑟2 sin 𝛹 .

As formally derived in the Appendix A.1.1, we can determine the shapes which are realized in
nature from the energy functional Eqn. (1.5) by analysing the first variation of the functional.
These extremal solutions are a super-set of the solutions with minimum overall energy 𝐹. As also
discussed in the Appendix A.1, the Euler-Lagrange equations are a conceptualization of the results
obtained from the first variation. It is important to properly discuss all resulting boundary terms,
as they are easily forgotten when simply applying the Euler-Lagrange equations to a functional
such as Eqn. (1.5). For the purpose of a later derivation (namely for the contact problem in
Chap. 4) we want to make use of a particular choice of an explicit shape variation. Hence we will
not use the Euler-Lagrange formalism here.

Figure 1.2: Normal
and tangential shape
variations.

Specifically, we want to subject the shape of the droplet to normal and
tangential variations 𝛿𝑛 and 𝛿𝑡. Those geometric shape variations can be
expressed in terms of the more attainable geometric variations in 𝑟 and 𝑧
components through the purely geometric relations [18], [26], as depicted
in Fig. 1.2:

𝛿𝑟 = sin 𝛹𝛿𝑛 + cos 𝛹𝛿𝑡 , 𝛿𝑛 = sin 𝛹𝛿𝑟 − cos 𝛹𝛿𝑧
𝛿𝑧 = sin 𝛹𝛿𝑡 − cos 𝛹𝛿𝑛 , 𝛿𝑡 = cos 𝛹𝛿𝑟 + sin 𝛹𝛿𝑧

(1.6)

with the defining geometric relation d𝑠2 = d𝑟2 + d𝑧2. Conceptually, we are
allowing two independent functions 𝛿𝑛(𝑠) and 𝛿𝑡(𝑠) to deform the shape everywhere along the

9In the following, we will refer to this as ”volume control”.
10The positive pressure 𝑝𝐿 means that the inner energy 𝐸 produces contractive forces, which need to be countered

by the Lagrange multiplier 𝑝𝐿.
11The pressure can not be negative for a liquid droplet, but it can be negative for elastic shells, where we will reuse

these considerations.
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1 Axisymmetric interfaces attached to capillaries

arc. The shape variations need to respect the geometric requirements, e.g. the clamping at the
capillary, and must conserve a continuous shape, such that 𝛿𝑟(𝑠) and 𝛿𝑧(𝑠) must be continuous at
every point of the solution.

Finally, when properly performing the variation of Eqn. (1.5), we arrive at the resulting extremal
identity:

𝛿𝐹/𝜋 = [2𝑟𝛾𝛿𝑡 − 𝑝(𝑧)𝑟2𝛿𝑧]𝐿
0

+ ∫
𝐿

0
d𝑠 {2𝛿𝑛 [𝛾 (sin 𝛹 + 𝑟d𝛹

d𝑠
) − 𝑝(𝑧)𝑟]} . (1.7)

The variations 𝛿𝑛 and 𝛿𝑡 are arbitrary for the points 𝑠 ∈ (0, 𝐿), hence if we demand that 𝛿𝐹 = 0,
we can directly conclude how the arc angle 𝛹 changes along the arc 𝑠 on the domain (0, 𝐿), which
is the well known Young-Laplace equation [7], [8]:

𝑝(𝑧) = 𝑝𝐿 − 𝛥𝜌𝑔𝑧 = 𝛾 (sin 𝛹
𝑟

+ d𝛹
d𝑠

) = 𝛾 (𝜅𝜙 + 𝜅𝑠) . (1.8)

The boundary terms encountered at 𝑠 = 𝐿 in Eqn. (1.7) are zero, because the variations 𝛿𝑛 and
𝛿𝑡 are zero at 𝑠 = 𝐿 12. The total height of the droplet is free, such that the variation at 𝑠 = 0
is only partially clamped. The droplet has to connect to itself, such that 𝑟(𝑠 = 0) = 0, where
𝛿𝑟(𝑠 = 0) = 0 in order to not rip the droplet open at the apex. However, 𝛿𝑧(𝑠 = 0) ≠ 0 in general
13, such that another equation arises at the apex of the drop, where we find

2𝛾 sin 𝛹(𝑠 = 0) = 𝑝𝐿𝑟(𝑠 = 0) . (1.9)

Eqn. (1.9) gives access to the curvature at the apex of the droplet and hence the missing initial
condition for 𝛹(𝑠 = 0). Because 𝑟(𝑠 = 0) = 0, we immediately recover 𝛹(𝑠 = 0) = 0. Furthermore,
Eqn. (1.9) is otherwise equivalent to the Young-Laplace Eqn. (1.8), once we enforce isotropy at the
apex with 𝜅𝜙(𝑠 = 0) = 𝜅𝑠(𝑠 = 0). In principle, the length 𝐿 in Eqn. (1.5) is allowed to vary as well,
however, the variation of the length 𝐿 yields no additional equation, because the transversality
condition at the apex yields 2𝛾𝑟(𝑠 = 0) = 0, which is always fulfilled by our boundary condition,
imposed by symmetry, 𝑟(𝑠 = 0) = 0 14

A first integral of the Young-Laplace equation Eqn. (1.8) can easily be found by utilizing Noethers
theorem (see Appendix A.1.4 for an overview of the results and implications) as the resultant of
the conserved quantity belonging to the translational invariance in the 𝑧-coordinate, which gives
exactly the force balance in 𝑧-direction:

2𝜋𝑟𝛾 sin 𝛹 − 𝑝(𝑧)𝑟2 = 𝛥𝜌𝑔 ∫ d𝑉 . (1.10)

The force balance Eqn. (1.10) states that the surface tension forces along the circumference of
the drop act against the internal pressure and self weight of the drop. This is exactly the force
balance used in our derivation of the Young-Laplace equation in Ref. [24].

Even though the energetic constituents are so simple, we find a complex and rich shape space even
for purely liquid droplets.

12They are zero at 𝑠 = 𝐿, because the shape is clamped to the capillary here, which forbids any variations of the
normal and tangential components.

13Our parametrization places the apex at 𝑠 = 0 with 𝑟 = 𝑧 = 0, however, the droplet is actually suspended from
the capillary, such that it is in order to not clamp the vertical variation 𝛿𝑧(𝑠 = 0) here.

14The transversality condition gives an equation at 𝑠 = 0, because the endpoint at the apex of the drop is the one
that is free and not the one at the capillary.
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1 Axisymmetric interfaces attached to capillaries

Figure 1.3: The shape space of liquid
droplets contains several characteristic re-
gions. The blue shaded area where 𝛺 = 1
is the region, where only shallow droplets
can exist. These droplets have no neck or
bulge and present the most stable configu-
ration for the liquid droplets because they
are stable both with volume and pressure
control, as we have shown in Ref. [24]. The
solutions with 𝛺 = 1 extend further to the
green shaded area, where 𝛺 = 1, 2. In this
region, however, also shapes of class 2 are
available as solutions to the shape equations.
Shapes with 𝛺 = 2 are only stable when
subjected to volume control and unstable
otherwise. Stable solutions of class 𝛺 = 3
(under volume control only) are also found in
a small region (pink shaded region), which is
bounded by the maximum volume line (blue
line) towards higher pressures.

The three shape equations, retrieved for the shapes of purely liquid droplets, expose three dimen-
sionless control parameters – the dimensionless pressure difference ̃𝑝𝐿 ≡ 𝑝𝐿𝑎/𝛾, the dimensionless
density contrast 𝛥 ̃𝜌 ≡ 𝛥𝜌𝑎2/𝛾 and the shape class 𝛺. The shape class 𝛺 appears, because the
shape equations have multiple solutions for a prescribed boundary condition 𝑟(𝐿) = 𝑎/2 and it is
defined to count the number of bulges and necks of the shape, as we introduce in Ref. [24]:

𝛺 ≡ 1 + #necks + #bulges . (1.11)

A neck can be found exactly at each local minimum of the function 𝑟(𝑠), and a bulge can be
found at each local maximum of the function 𝑟(𝑠). Because the function 𝑟(𝑠) is continuous, it is
guaranteed that the shape class 𝛺 properly classifies all possible shapes.

Finally, we can attain a parameter diagram of the liquid droplet shape space by choosing the
continuous control parameters (i.e. ̃𝑝𝐿 and 𝛥 ̃𝜌) as the respective axis of the parameter space and
by coloring the associated allowed discrete values of 𝛺, as shown in Fig. 1.3. Possible solutions
found in this parameter diagram include shapes from various shape classes. Shapes of class 𝛺 = 1
(blue and green regions of Fig. 1.3) correspond to shallow spherical caps and are always stable
because d𝑝𝐿/d𝑉 > 0 [24]. These solutions are ultimately limited in volume, since, by definition,
no bulge or neck is possible along the entire shape. The shape transition 𝛺 = 1 → 2 (green line
at the right boundary of the 𝛺 = 1, 2 region in Fig. 1.3) is accompanied by an inversion of the
pressure-volume slope d𝑝𝐿/d𝑉 < 0 as we show in Ref. [24]. This also means that shapes from
class 𝛺 = 2 can only be stable if the volume is directly controlled, while they are always unstable
if the pressure is controlled [24]. Some specific solutions of class 𝛺 = 3 are stable (see Fig. 1.3 pink
regions) when controlling the volume, those are rarely subjected to experiments however, because
of their sensitivity to pressure and density fluctuations [24] and collapse. All further solution
classes 𝛺 > 3 are always unstable and are not realized in nature [24].

The solutions found for 𝛥 ̃𝜌 < 0 only contain shapes with shape classes 𝛺 = 1 and 𝛺 = 2, as can
be seen in Fig. 1.3. We can understand this by realizing that the transition from 𝛺 = 2 → 3
would require a neck to appear along the shape, however, a neck can not be stable with the
gravitational force acting to compress the shape against the capillary. This fact becomes obvious
when consulting the force balance Eqn. (1.10).
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1 Axisymmetric interfaces attached to capillaries

1.2 Elastic interfaces

The next generalization from the Young-Laplace equation (while keeping strict axisymmetry) is
to allow for anisotropic and in-homogeneous stress contributions at the interface, i.e. we allow
stretching of the interface material with a certain prescribed stress response to the stretching load
– a constitutive law.

We will now re-discover the results from literature [14], [15], [23] and derive the appropriate shape
equations for such elastic skin from a variational calculation. We will later re-use this derivation
for the elastic contact problem in Chap. 4, which is why it is included here.

For now, we want to assume that the stretching of the material does not dissipate energy, however,
we will in a later section (see Sec. 1.3) consider materials which dissipate energy during deformation.
With the assumption of a conservative material, it is possible to define a surface energy density of
the interface 𝑤𝑆0

, measured relative to the undeformed surface area 𝐴0 of the interface

𝐹 = ∫ d𝐴0 𝑤𝑆0
− ∫ d𝑉 (𝑝𝑎 − 𝛥𝜌𝑔𝑧) = 𝜋 ∫

𝐿0

0
d𝑠0 {2𝑟0𝑤𝑆0

− 𝜆𝑠𝑟2 sin 𝛹(𝑝𝑎 − 𝛥𝜌𝑔𝑧)} , (1.12)

where the volumetric term constitutes the gravitational potential energy and the volume
constraint enforced by the Lagrange multiplier 𝑝𝑎. While 𝑝𝑎 also quantifies the pressure at the
apex of the capsule, just as 𝑝𝐿, it is only equal to the pressure of the reference liquid droplet 𝑝𝐿, if
the deformation of the capsule is zero. Hence, we need to differentiate between the apex pressure of
the (deformed) capsule 𝑝𝑎 and the pressure of the reference liquid droplet 𝑝𝐿. The transformations
from undeformed coordinates (𝑠0, 𝑟0, 𝑧0) to deformed coordinates (𝑠, 𝑟, 𝑧) are given by the two
stretching ratios 𝜆𝑠 ≡ d𝑠/d𝑠0 and 𝜆𝜙 = 𝑟/𝑟0, with d𝑧2 = 𝜆2

𝑠d𝑠2
0 − 𝜆2

𝜙d𝑟2
0. A deformed element of

the surface area is thus given by d𝐴 = 𝜆𝑠𝜆𝜙d𝐴0. Additionally, we have a well defined reference
arc length 𝐿0 = ∫ d𝑠0, which is fixed. Thus, if we are able to express the functional in terms of
the undeformed arc-length coordinate 𝑠0, we will have a simple variational problem with fixed
endpoints on our hands (exactly as described in Appendix A.1.1). Using the stretches 𝜆𝑠 and 𝜆𝜙
allows us to express the functional as such that we obtain the r.h.s of Eqn. (1.12), just as in the
literature [18].

At this point we are able to perform the variation, once we specify on which parameters the
surface energy density shall depend. We will neglect bending effects for now, which makes the
surface energy density a function exclusively of the surface stretches 𝜆𝑠 and 𝜆𝜙. Including bending
effects is as simple as respecting that the surface energy density should additionally depend on the
bending strains, we detail this in the Appendix A.2.1.

As before, we perform a partial integration for all terms with variations of geometric derivatives
and use Eqn. (1.6) to express all encountered variations via the normal and tangential shape
variations, finally resulting in

𝛿𝐹 = 𝜋 [2 𝑟
𝜆𝜙

∂𝑤𝑆0

∂𝜆𝑠
𝛿𝑡 − (𝑝𝑎 − 𝛥𝜌𝑔𝑧)𝑟2𝛿𝑧]

𝐿

0

+ 2𝜋 ∫
𝐿

0
d𝑠 𝑟 {𝛿𝑛 [−(𝑝𝑎 − 𝛥𝜌𝑔𝑧) + 1

𝜆𝜙

∂𝑤𝑆0

∂𝜆𝑠

d𝛹
d𝑠

+ sin 𝛹
𝑟

1
𝜆𝑠

∂𝑤𝑆0

∂𝜆𝜙
]

+𝛿𝑡 [− 1
𝜆𝜙

d
d𝑠

∂𝑤𝑆0

∂𝜆𝑠
+ cos 𝛹

𝑟
1
𝜆𝑠

∂𝑤𝑆0

∂𝜆𝜙
]} ,

(1.13)

which is the result also obtained in Refs. [15], [18], [27]. From Eqn. (1.13) we can extract two
extremal properties of the shape, which give the slope of the arc angle along the shape as a function
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1 Axisymmetric interfaces attached to capillaries

of the pressure, stretches and the derivatives of the surface energy density with respect to the
stretches, as well as the slope of the surface energy change in meridional direction:

𝑝(𝑧) = 𝑝𝑎 − 𝛥𝜌𝑔𝑧 = 1
𝜆𝜙

∂𝑤𝑆0

∂𝜆𝑠

d𝛹
d𝑠

+ sin 𝛹
𝑟

1
𝜆𝑠

∂𝑤𝑆0

∂𝜆𝜙
= 𝜏𝑠𝜅𝑠 + 𝜏𝜙𝜅𝜙 (1.14)

1
𝜆𝜙

d
d𝑠

∂𝑤𝑆0

∂𝜆𝑠
= cos 𝛹

𝑟
1
𝜆𝑠

∂𝑤𝑆0

∂𝜆𝜙
⇒ d𝜏𝑠

d𝑠
= cos 𝛹

𝑟
(𝜏𝜙 − 𝜏𝑠) . (1.15)

these are exactly the force balance conditions with meridional and circumferential surface stresses
defined as [15], [18], [28]:

𝜏𝑠,𝜙𝜆𝜙,𝑠 = ∂𝑤𝑆0
/∂𝜆𝑠,𝜙 . (1.16)

We will show in a later section that the definition Eqn. (1.16) is not sufficient to discuss
viscelasticity and instead provide a derivation where 𝜏𝑠,𝜙 are purely defined by the geometric line
forces. The resulting relation between surface stresses 𝜏𝑠,𝜙, the surface curvatures 𝜅𝑠,𝜙 and the
pressure 𝑝(𝑧) reduces to the Young-Laplace equation for 𝜏𝑠 = 𝜏𝜙 = 𝛾.

All boundary terms obtained from Eqn. (1.13) at 𝑠 = 0 and 𝑠 = 𝐿 vanish. The boundary terms at
𝑠 = 𝐿 vanish because the interface is geometrically clamped to the capillary, such that neither
tangential, nor normal variations are allowed, and thus 𝛿𝑡(𝑠 = 𝐿) = 𝛿𝑛(𝑠 = 𝐿) = 𝛿𝑧(𝑠 = 𝐿) = 0.
The total height of the capsule is still allowed to be varied at the apex, such that 𝛿𝑧(𝑠 = 0) ≠ 0 in
general, however because 𝑟(𝑠 = 0) = 0, this terms vanishes as well. Finally, the tangential variation
at 𝛿𝑡(𝑠 = 0) is disallowed, as it would violate the parametrization. Note that the boundary terms
appearing in Eqn. (1.13) will be essential for the discussion of the solutions of the respective
broken functional in the contact problem discussed later in Chap. 4. There, these boundary terms
will generate the Weierstrass-Erdmann conditions (see Appendix A.1.3 for a derivation of those
conditions) at the contact point of the two elastic skins.

What is still missing in our description of the elastic interface is the exact mapping between surface
stretches and surface strains. In the fully elastic case, where the elastic potential energy is well
defined, we are looking for an elastic surface energy density capturing all of the important effects
of the elastic deformation of the interface at least to leading order. The choice of constitutive law,
or surface energy density, is not trivial, since there are numerous approximations that have to be
made specifically for the material which is to be described.

1.2.1 Elastic Constitutive Laws

We want to start by assuming that our interface material consists of a cross-linked polymeric chain
network. These kinds of polymeric networks can form at the interface when sufficient material
accumulates and a polymerisation reaction is engaged. Typically, this is done by means of a
chemical reaction or irradiation [16]. Consequently, we first want to discuss a single freely-jointed
polymer chain with 𝑁 monomers, each of length 𝑏, as a simple as possible material model. The
polymer resists stretching because of the entropic penalty generated by the reduced configurational
degrees of freedom in the stretched state. In the limit where we have many monomers 𝑁 ≫ 1, the
probability distribution 𝑃(𝑅𝑝) of end-to-end vectors �⃗�𝑝 of a single polymer chain is guaranteed to
be Gaussian, simply because of the central limit theorem. Furthermore, due to entropic effects –
or equivalently averaged dynamical effects [29] – we expect an energetic penalty for an extension
of the polymer. Thus

𝑃(𝑅𝑝) = (
2𝜋⟨𝑅2

𝑝⟩
𝑑

)
−𝑑/2

exp (−𝑑
2

𝑅2
𝑝

⟨𝑅2
𝑝⟩

) (1.17)
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1 Axisymmetric interfaces attached to capillaries

is the relevant probability distribution in 𝑑 dimensions [30] (𝑑 = 3 here, despite the polymeric
membrane being flat, as we will argue later), as long as the assumption of uncorrelated monomers
holds, i.e. as long as the stretching of the chain is not too strong.

We immediately find that the associated free energy difference between an undeformed configuration
d�⃗�𝑝,0 and a deformed configuration d�⃗�𝑝 is given by

𝛥𝐹 = 𝑑𝑘𝐵𝑇
2⟨𝑅2

𝑝⟩
(𝑅2

𝑝 − 𝑅2
𝑝,0) , (1.18)

where the mapping between the undeformed and deformed configurations is defined as the
deformation gradient tensor 𝐹 with d�⃗�𝑝 ≡ 𝐹 d�⃗�0,𝑝. The free energy difference Eqn. (1.18) is that
of an entropic spring which has a quadratic energy penalty for extension, just as an ideal classical
spring and is the simplest consideration for polymeric elasticity.

Defining stretching ratios 𝜆𝑖 along the principal directions ⃗𝑒𝑖 is possible by utilizing projections
of the deformation gradient tensor 𝜆𝑖 = √ ⃗𝑒𝑖 ⋅ 𝐹T𝐹 ⋅ ⃗𝑒𝑖, where 𝐶 ≡ 𝐹T𝐹 is the right-Cauchy-
Green tensor with eigenvalues 𝜆2

𝑖 and eigenvectors ⃗𝑒𝑖. With the stretches 𝜆2
𝑖 we are able to

rewrite Eqn. (1.18) and assume a very simple polymer material, where single polymers are used
independently to construct a polymeric phantom network with isotropic polymer density [31]. The
total surface energy density 𝑤𝑆0

= d𝐹/d𝐴0 for a region of the network containing 𝑁𝑝 polymers is
thus

𝑤𝑆0
= 𝑘𝐵𝑇

2⟨𝑅2
𝑝⟩𝐴0

𝑁𝑝

∑
𝑛=1

𝑑
∑
𝑖=1

(𝜆2
𝑖,𝑛 − 1) 𝑅2

𝑖,𝑛,0 ≈ 𝐻𝜌𝑝
𝑘𝐵𝑇

2⟨𝑅2
𝑝⟩

⟨𝑅2
0⟩

𝑑
(⟨Tr 𝐶⟩ − 𝑑) , (1.19)

where we enforced isotropy by demanding ⟨𝑅2
𝑖,𝑛,0⟩ = ⟨𝑅2

0⟩/𝑑 and define the polymer density as
𝜌𝑝 = 𝑁𝑝/𝑉0 and the skin thickness as 𝐻. Finally, we find that the proportionality constant found
in Eqn. (1.19) is the elastic modulus 𝐸 ∝ 𝐻𝑘𝐵𝑇.

Additionally, the fluid-skin interfaces on both sides of the interface generate surface tensions
between outer fluid and the skin 𝛾𝑜 and inner fluid and the skin 𝛾𝑖, leading to an additional energy
cost 𝛥𝐹𝛾 = ∫ d𝐴 (𝛾𝑜 + 𝛾𝑖) = ∫ d𝐴0 𝛾√det 𝒞 15, where we abbreviate 𝛾 = 𝛾𝑜 + 𝛾𝑖 and introduce

𝒞 ≡ 𝐶2𝐷 as the 2D right Cauchy-Green tensor. The 2D right Cauchy-Green tensor is a 2x2 matrix
with eigenvalues 𝜆2

1 and 𝜆2
2. The third dimension, i.e. the thickness, is integrated out and the

eigenvalue 𝜆2
3 of the 3D right Cauchy-Green tensor is implicitly constructed by an additional

constraint for the invariants of the 3D Cauchy-Green tensor 𝐶. Typically, 3D incompressibility is
used as such an additional constraint [32], where det 𝐶 = 1.

Importantly, only accounting for constant surface tension contributions is a significant simplification.
For complex interfaces other fluid effects, such as the self assembly of substructures at the interface,
as seen in vesicles [33], introduce additional non-trivial energetic contributions depending on e.g.
the mean curvature (𝜅𝑠 + 𝜅𝜙)/2 or the Gaussian curvature 𝜅𝑠𝜅𝜙 of the interface. These interfaces
might be poorly characterised by a purely surface tension based surface energy. Whether or not
these effects are relevant for the reference shape can be determined experimentally by assuming
a purely surface tension based surface energy functional and fitting the associated shapes to an
experimental deformation series of the reference interface. Should this fit have a significant shape
residual, the aforementioned effects could play a significant role in the deformation of the final
deformed shapes sequence as well. Even if the reference interface is not indicative of such effects,

15The root determinant of 𝒞 is exactly the change in surface area √det 𝒞 = d𝐴/d𝐴0 = 𝜆1𝜆2 , and thus indeed the
relevant quantity to scale the surface tension energy contribution.
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1 Axisymmetric interfaces attached to capillaries

they might still be present in the final interface if the microscopic interface elasticity can not be
approximated as an effective entropic spring. A first correction to this is a dissipative component,
which makes the surface forces non-conservative. We will generalize the theory to such dissipative
contributions in Sec. 1.3.

The total surface energy density for our polymeric skin is thus given by linear superposition of
the elastic stretching energy and the surface tension energy 𝑤𝑆0

= 𝐸 (Tr 𝐶 − 𝑑) /2 + 𝛾√det 𝒞. It
captures the polymeric resistance to stretching as well as the tendency to minimize surface area due
to the interfacial tension. In principle, it would be possible that the surface tension 𝛾 additionally
depends on the stretching of the skin, since, e.g. there could be a fixed number of surfactants
attached to the interface. As the skin expands the surface area density of surfactants is reduced
and the surface tension contribution changes accordingly, giving an additional fluid elasticity, also
often called Gibbs elasticity in the literature [25], leading to the substitution 𝛾 = 𝛾0 + 𝐺 ln(𝐴/𝐴0).
The Gibbs modulus is given by 𝐺 = ∂𝛾/∂ ln(𝐴) [34]. Since we want to first investigate the most
simple model system, we will not consider this case in the following, however, it could be added to
the model in the future, should there be experiment evidence that this makes the description more
consistent.

If the skin is thin with respect to the tangential dimensions 𝐻 ≪
√

𝐴 but thick with respect to
the average range of a single polymer 𝐻 ≫ √⟨𝑅2

𝑝⟩ the dimension 𝑑 in Eqn. (1.19), which is the
relevant dimension that the single polymers have available for their movement, needs to be 𝑑 = 3,
even though we still have a macroscopically flat skin. Thus the appropriate surface energy density
in this case is given by 𝑤𝑆0

= 𝐸 (Tr 𝒞 + 𝐶33 − 3) /2 + 𝛾√det 𝒞 with 𝐶33 being the third diagonal
element of the right Cauchy-Green tensor. If we express 𝐶33 via the incompressibility condition
det 𝐶 = det 𝒞 𝐶33 = 1 we immediately recover 𝑤𝑆0

= 𝐸 (Tr 𝒞 − 3 + 1/ det 𝒞) /2 + 𝛾√det 𝒞 which
is exactly the surface energy density of a neo-Hookean skin with added surface tension energy cost
[32].

We can extract the Cauchy surface stresses 𝜏𝑠,𝜙 (force per deformed length) in meridional and
circumferential direction from the energy per undeformed surface area 𝑤𝑆0

via [15], [18]

𝜏𝑠,𝜙 = 1
𝜆𝜙,𝑠

∂𝑤𝑆
∂𝜆𝑠,𝜙

= 𝐸 (
𝜆𝑠,𝜙

𝜆𝜙,𝑠
− 1

𝜆3
𝑠𝜆3

𝜙
) + 𝛾 . . (1.20)

Since all the constitutive laws must be invariant with respect to the frame of reference, it is clear
that only the invariants of 𝐶 may appear in the deformation energy, i.e. Tr 𝐶, Tr (cof𝐶)16 and
det 𝐶, which is the case for our simple as possible polymeric deformation energy Eqn. (1.19).

A phenomenological generalization of the theory is thus to include further combinations of the
invariants. Including the unused third invariant Tr (cof𝐶) as an additive contribution to Eqn. (1.19)
reveals another well-known material model

𝑤M
𝑆0

= 𝐸
2

(Tr 𝒞 + 1
det 𝒞

− 3) + 𝐵 (det 𝒞 +
Tr𝒞
det 𝒞

) + 𝛾√det 𝒞 , (1.21)

which is the Mooney-Rivlin material model [35], [36], yielding the surface stresses:

𝜏𝑠,𝜙 = 𝑌𝑀
3

(
𝜆𝑠,𝜙

𝜆𝜙,𝑠
− 1

𝜆3
𝑠,𝜙𝜆3

𝜙,𝑠
) [𝛹𝑀 + 𝜆2

𝜙,𝑠(1 − 𝛹𝑀)] + 𝛾 , (1.22)

16Tr (cof𝐶) ≡ (Tr (𝐶)
2

− Tr (𝐶2)) /2
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1 Axisymmetric interfaces attached to capillaries

with 3𝐸 ≡ 𝑌𝑀𝛹𝑀 and 3𝐵 ≡ 2𝑌𝑀(1 − 𝛹𝑀). We can immediately see that for 𝛹𝑀 = 1, the
Mooney-Rivlin law Eqn. (1.22) reduces to the neo-Hookean law Eqn. (1.20). The new contribution
constructed from the invariant Tr (cof𝐶) allows us to change the structural coupling of the principle
directions, to get an intuitive understanding of this, it is adequate to write out Eqn. (1.21) to
quadratic order for small strains 𝜆𝑠,𝜙 ∼ 1:

𝑤M
𝑆0

≈ 𝑌2𝐷
2(1 − 𝜈2

2𝐷)
((𝜆𝑠 − 1)2 + (𝜆𝜙 − 1)2) + 𝜈2𝐷𝑌2𝐷

1 − 𝜈2
2𝐷

(𝜆𝑠 − 1) (𝜆𝜙 − 1) + 𝛾√det 𝒞 + const. ,

(1.23)

where we introduced the two dimensional Young’s modulus 𝑌2𝐷 and two dimensional Poisson’s
ratio 𝜈2𝐷 with 𝑌2𝐷/2(1 − 𝜈2

2𝐷) = 4𝐸 + 5𝐵 and 𝜈2𝐷𝑌2𝐷/(1 − 𝜈2
2𝐷) = 4(𝐸 + 𝐵). We can directly

see that the neo-Hookean limit of 𝐵 = 0 gives a fixed 𝜈2𝐷 = 1/2 and only the third invariant
Tr (cof𝐶) allows for materials deviating from this Poisson’s ratio. Values for 𝜈2D may be in
the interval (−1, 1), which is a larger interval than that of the three dimensional Poisson’s ratio
𝜈3D ∈ (−1, 1/2) [37]. We note that three dimensional material incompressibility demands 𝜈3D = 1/2
for isotropic materials, simply because a stress applied along the 1-axis induces a volumetric change
d𝑉 = d𝑉0𝜆1𝜆2𝜆3, such that 𝜆1𝜆2𝜆3 = 𝜆1−2𝜈3D

1 = 1 17 if d𝑉 = d𝑉0
18 and thus 𝜈3D = 1/2. However,

if the material is not isotropic, the incompressibility constraint may also be achieved by a material
with 1 − 𝜈𝑖𝑗

3D − 𝜈𝑖𝑘
3D = 0 for (𝑖 ≠ 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘) ∈ {1, 2, 3}3 especially, in the case of in-plane

isotropy, we have a single Poisson’s ratio 𝜈2D for all in-plane deformations, which is arbitrary, while
the out-of-plane Poisson’s ratio is chosen such that the incompressibility constraint is fulfilled.
Thus, incompressibility with in-plane material isotropy does not generally yield 𝜈2D = 1/2, such
that we keep the two dimensional Poisson’s ratio as a parameter in all further considerations to
quantify the effects of out-of-plane anisotropy.

We generate the surface stresses from Eqn. (1.23) with the same procedure as before to get

𝜏𝑠,𝜙 = 𝑌2𝐷
1 − 𝜈2

2𝐷

1
𝜆𝜙,𝑠

(𝜆𝑠,𝜙 − 1 + 𝜈2𝐷(𝜆𝜙,𝑠 − 1)) + 𝛾 , (1.24)

which is called the non-linear Hooke material model in the literature [14], [15]. This is the
elastic material model used in all further considerations unless stated otherwise. Furthermore, we
want to consider the unstressed/reference configuration of the elastic problem as the shape that
fulfills 𝜆𝑠(𝑠) = 𝜆𝜙(𝑠) = 1 , ∀𝑠 ∈ [0, 𝐿] and is thus equivalent to the shape of a liquid drop with
𝜏𝑠(𝑠) = 𝜏𝜙(𝑠) = 𝛾 , ∀𝑠 ∈ [0, 𝐿] along the contour.

17Because of the definition 𝜈3D ≡ d(𝜆2,3 − 1)/d(𝜆1 − 1).
18Incompressibility demands constant volume if there is no volumetric sink.
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1 Axisymmetric interfaces attached to capillaries

1.2.2 Anisotropic deformation contributions

Published material – This section is reproduced with modifications and permission
from the author’s contribution to publication [32], © 2021 The Royal Society of
Chemistry.

The main difference between a liquid interface and an elastic interface is the anisotropy and
inhomogeniety of the surface stresses. Close to the reference shape, however, these anisotropic
and inhomogeneous surface stress contributions necessarily vanish. We want to understand the
origins and manifestations of the surface stress anisotropy and inhomogenity in the case where no
gravitational forces act on a capsule suspended from a capillary, i.e. 𝛥 ̃𝜌 = 0 and 𝑟(𝑠 = 𝐿) = 𝑎/2.
The liquid reference shape must then be a perfect spherical cap. All deviations from a spherical
shape during the deformation of the pendant capsule are a result of anisotropic and inhomogeneous
surface stresses. A rough approximation of the capsule shape in the limit of small deformations
𝜆𝑠 ∼ 𝜆𝜙 ∼ 1 is thus still a spherical cap. We want to discuss when the spherical approximation is
appropriate, and when it breaks apart in the following. We start our investigation by introducing
the relevant dimensionless quantities. The influence of the elastic skin in relation to the surface
tension is measured as �̃�2D ≡ 𝐾2D/𝛾 and the change in the surface area is expressed as the
area stretch 𝜆𝐴 ≡ 𝐴/𝐴0. Now, we are able to measure the anisotropy in terms of different
measures and as a function of the relevant dimensionless parameters in Fig. 1.4. In the case
of fully isotropic deformation, corresponding to a spherical sector shape, the deviation of the
mean stretch ratio along the contour ⟨𝜆𝑠/𝜆𝜙⟩ − 1 (Fig. 1.4 a,b) and the standard deviation of the
meridional and circumferential stretches std𝑠(𝜆𝑠,𝜙) (Fig. 1.4c,d) are both zero. Since we neglect
gravitational effects, it is clear that the unstressed shape of the capsule at 𝜆𝐴 = 1 must be a
spherical sector. The stretched shape will be anisotropically stressed, in general, because of the
boundary condition imposed by the attachment at the capillary. We can find, however, another
particular stretch, where the stressed shape is approximately spherical. This is reached at the
critical stretch 𝜆𝐴,𝑐 at which ̃𝑝 = 0. The force balance for every point on the capsule requires
that the pressure force cancels the tension force. For ̃𝑝 = 0, we therefore have 𝜏𝑠 = 𝜏𝜙 = 0 on the
entire surface, i.e. the surface is stress-free everywhere at this critical stretch. Since 𝜏𝑠 = 𝜏𝜙 = 0
implies 𝜆𝑠,𝑐 = 𝜆𝜙,𝑐 = (1 + 𝛾/𝐸)−1/6 19 and thus isotropic stretching, the shape at this point is
again correctly described by a perfect sphere. However, it is not possible to reach this exact shape
with the clamping at the capillary. This is obvious when considering that 𝜆𝜙(𝑠 = 𝐿) = 1 must be
satisfied due to the capillary, which is why we can not actually reach this point in Fig. 1.4 but can
get arbitrarily close to it, concentrating the anisotropy in a smaller and smaller region around the
capillary.

If the stretch is further decreased to 𝜆𝐴 < 𝜆𝐴,𝑐 both 𝜏𝑠 < 0 and 𝜏𝜙 < 0 will become compressive
and buckling or wrinkling instabilities of the capsule may occur [15], [37].

For stretch values other than 𝜆𝐴 = 1, the resulting shape is non-spherical, because of the anisotropy
(𝜆𝑠 ≠ 𝜆𝜙) introduced by the boundary condition at the capillary. This can clearly be seen in
Fig. 1.4a,b. For inflated shapes 𝜆𝐴 > 1, we find ⟨𝜆𝑠/𝜆𝜙⟩ − 1 > 0 indicating that stretching is
biased towards meridional deformations resulting in slightly prolate shapes, whereas for deflated
shapes 𝜆𝐴 < 1, ⟨𝜆𝑠/𝜆𝜙⟩ − 1 < 0 and circumferential deformations are preferred, resulting in
slightly oblate shapes. The mean anisotropy increases upon inflation before decreasing again at
much higher stretches (see the insets in Fig. 1.4a,b for a wider deformation range), when the
influence of the capillary becomes again negligible.

19For the neo-Hookean elastic surface stresses as defined in Eqn. (1.20).
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Figure 1.4: Characterization of the stretch anisotropy and the stretch inhomogeneity. (a,b) The
mean ratio of meridional and circumferential stretches ⟨𝜆𝑠/𝜆𝜙⟩ − 1 along the contour characterizes
stretch anisotropy and is shown for (a) �̃�2D ≤ 0.5 and (b) �̃�2D > 0.5. The standard deviations of
(c) meridional stretches 𝜆𝑠 and (d) circumferential stretches 𝜆𝜙 along the contour characterize the
inhomogeneity of stretches. We show the critical stretches 𝜆𝐴,𝑐 as red diamonds in (a-d).

Furthermore, the standard deviation of the stretches along the contour std𝑠(𝜆𝑠) and std𝑠(𝜆𝜙) shown
in Fig. 1.4c,d characterizes the inhomogeneity of the stretches along the contour. A standard
deviation of std𝑠(𝜆𝑠) = std𝑠(𝜆𝜙) = 0 corresponds to a spherical sector. The meridional and
circumferential stretches of an inflated capsule are isotropic at the apex with 𝜆𝑠(𝑠 = 0) = 𝜆𝜙(𝑠 =
0) ∝ 𝜆1/2

𝐴 . At the capillary, the attachment condition mandates 𝜆cap
𝜙 = 1 while 𝜆cap

𝑠 increases with
𝜆𝐴, which introduces anisotropy and inhomogeneity into the problem with meridional stresses
accumulating at the capillary. The spherical approximation will hold well for shapes where the
stretches are approximately homogeneous over a large arc length, corresponding to a small standard
deviation of the stretches, and isotropic, corresponding to a mean stretch along the contour ⟨𝜆𝑠/𝜆𝜙⟩
close to unity. This is fulfilled at the two spherical configurations 𝜆𝐴 = 1 and approximately close
to 𝜆𝐴,𝑐. The spherical configuration with 𝜆𝐴,𝑐 appears to be highly sensitive, and small changes
in 𝜆𝐴 lead to large deviations in the anisotropy (and inhomogeneity). It is interesting to note that
at small deformations around 𝜆𝐴 = 1, the anisotropy evolution depends only on ̃𝑝𝐿 and not on
�̃�2D.

We argue that the evolution of the anisotropy and inhomogeneity can be grasped by considering
that the capillary acts similar to a rigid inclusion in a stretched elastic skin as both enforce the
absence of circumferential stretching (𝜆𝜙 = 1) at their boundary. A rigid inclusion in a stretched
elastic skin is known to concentrate the meridional stresses creating anisotropy and inhomogeneity,
similar to the stress concentration around a crack tip. For flat skins, a rigid inclusion is a classic
problem that was studied for neo-Hookean skins by Wong and Shield [38]. For the capsule we have
a curved geometry, which gives rise to an even more pronounced increase of anisotropy around the
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Figure 1.5: Stretch anisotropy of capsule shapes with 𝐾2D = 10𝛾 for three values of ̃𝑝𝐿 for each
of three area stretches 𝜆𝐴 ≫ 𝜆†

𝐴, 𝜆𝐴 > 𝜆†
𝐴, and 𝜆𝐴 < 𝜆†

𝐴 (see also Fig. 1.6 for a definition of the
characteristic area stretch 𝜆†

𝐴). (a,b) Stretch ratios 𝜆𝑠 and 𝜆𝜙 as a function of the undeformed arc
length 𝑠0/𝐿0 along the contour. While 𝜆𝜙 is approaching the undeformed value of 1 at the capillary
(𝑠0/𝐿0 = 1), 𝜆𝑠 rises at the capillary. (c) shows that the deformed arc length 𝑠 considerably deviates
from the undeformed arc length 𝑠0 along the contour. (d) The resulting stretch anisotropy 𝜆𝑠/𝜆𝜙 − 1
is localized at the capillary. The size of the anisotropy zone around the capillary can be characterized
by an exponential decay arc length 𝑠∗

0, which is calculated from the logarithmic derivative of 𝜆𝑠/𝜆𝜙 −1
at the capillary for the solid lines and shown as colored dots in all plots (a-d). We also show the
maximal stretch at the capillary from Eqn. (1.26) as red diamonds in (a) and (d).

capillary.

We see clear evidence of the increased anisotropy around the capillary in the numerical solutions
to the full anisotropic shape equations as shown in Fig. 1.5. In Fig. 1.5 a,b,c, we show the stretch
ratios 𝜆𝑠 and 𝜆𝜙 and the redistribution of arc length along the contour of inflated capsules. These
results show the rise of meridional stretch close to the capillary. Fig. 1.5 d reveals that the resulting
stretch anisotropy 𝜆𝑠/𝜆𝜙 − 1 is localized at the capillary and that it decays exponentially over a
characteristic arc length 𝑠∗

0 away from the capillary. Here, 𝑠0 is the arc length of the undeformed
reference shape (the spherical droplet), which is related to the arc length 𝑠 of the deformed shape
by the meridional stretch ratio, d𝑠/d𝑠0 = 𝜆𝑠. We use the logarithmic derivative of 𝜆𝑠/𝜆𝜙 − 1 to
numerically determine the size 𝑠∗

0 of the zone of increased anisotropy around the capillary.

We propose that the relative meridional extent of the anisotropy zone along the deformed capsule
contour provides a non-dimensional number 𝑄, which is suitable to characterize the importance of
elastic anisotropy effects in the regime 𝐾2D > 𝛾, where elastic energies dominate. We thus define
𝑄 ≡ 𝑠∗/𝐿, where 𝑠∗ is the meridional length of the anisotropy region measured in terms of the
deformed arc length, while 𝐿 is the total arc length of the deformed capsule contour. For 𝐾2D < 𝛾,
elastic energies are small compared to droplet surface tension such that also elastic anisotropy
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1 Axisymmetric interfaces attached to capillaries

becomes less important.

In order to evaluate the anisotropy parameter 𝑄, we use the general relation d𝑠/d𝑠0 = 𝜆𝑠 between
deformed and undeformed arc length at the capillary and 𝐿 ∼ 𝜋𝑅0𝜆1/2

𝐴 for the total arc length 𝐿
in the limit ̃𝑝𝐿 ≪ 4 to obtain

𝑄 ≡ 𝑠∗

𝐿
∼ 𝑠∗

0𝜆cap
𝑠

𝐿
∼ 𝑠∗

0𝜆cap
𝑠

𝜋𝑅0
𝜆−1/2

𝐴 (1.25)

where 𝜆cap
𝑠 is the meridional stretch at the capillary and 𝑅0 the radius of curvature of the reference

liquid droplet. To make further progress, we derive relations for the size 𝑠∗
0 of the anisotropy zone

and the stretch ratio 𝜆cap
𝑠 at the capillary from numerical results shown in Fig. 1.6.

Because the maximal stretch anisotropy is found at the capillary and 𝜆𝜙 = 1 at the capillary, the
meridional stretch at the capillary actually equals the maximal stretch anisotropy, max ( 𝜆𝑠

𝜆𝜙
) = 𝜆cap

𝑠 .
While in the case of flat skins the maximal anisotropy 𝜆cap

𝑠 ∝ 𝜆𝑠(𝑠 = ∞) is proportional to the
radial stretch at infinity [38], our numerical results for curved capsules indicate that 𝜆cap

𝑠 first
increases upon inflation 𝜆𝐴 > 1 but saturates for highly inflated capsules with area stretches 𝜆𝐴
exceeding a fairly well-defined value 𝜆†

𝐴, as shown in Fig. 1.6a for the case of 𝐾2D = 10𝛾. Further
numerical analysis of the saturation value as performed in Fig. 1.6b allows us to quantify the
saturation value as

max ( 𝜆𝑠
𝜆𝜙

) ≈ 𝜆cap
𝑠 ≡ const ̃𝑝−1/3

𝐿 (1.26)

with const ≈ 0.93 in the regime 𝐾2D > 𝛾. This saturation value is solely determined by the
geometrical parameter ̃𝑝𝐿 of the undeformed shape, which demonstrates that the saturation is
induced by droplet curvature. We also find 𝜆†

𝐴 ∼ (𝜆cap
𝑠 )3/2 for the area stretch, where saturation

of the maximal anisotropy sets in. The maximal anisotropy given in Eqn. (1.26) diverges in the
limit ̃𝑝𝐿 ≈ 0, which seems counter-intuitive at first, because the spherical approximation works
best for exactly this limit. This issue will be resolved below. Let us quantify the size 𝑠∗

0 of the
anisotropy zone around the capillary. From Fig. 1.6c, we find a conservative bound

𝑠∗
0 ≤ 𝑎

4
. (1.27)

This relation reveals that the size of the stretch anisotropy zone is set by the geometry parameter
̃𝑝𝐿 of the reference state rather than the elastic compression modulus 𝐾2D.

Using Eqn. (1.27) for 𝑠∗
0 and the saturation value given in Eqn. (1.26) for 𝜆cap

𝑠 in Eqn. (1.25),
we obtain 𝑄 ∝ ̃𝑝2/3

𝐿 /𝜆1/2
𝐴 for the anisotropy parameter 𝑄 for highly inflated capsules 𝜆𝐴 > 𝜆†

𝐴.
This parameter remains small for ̃𝑝𝐿 ≪ 4 indicating that we can neglect anisotropy effects in this
limit.

At smaller deformations 1 < 𝜆𝐴 < 𝜆†
𝐴, where saturation of the capillary anisotropy has not yet set

in, we numerically find that the maximal stretch anisotropy scales with log(𝜆𝐴) (see Fig. 1.6a),
giving

𝑄 = 4 ̃𝑝𝐿
𝜆cap

𝑠 − 1
3𝜋 log(𝜆cap

𝑠 )
log(𝜆𝐴)

𝜆1/2
𝐴

, (1.28)

where we again use the saturation value 𝜆cap
𝑠 from Eqn. (1.26).

We obtain a full contour plot of the anisotropy parameter 𝑄 in Fig. 1.6d by joining the results in the
two regimes (𝜆𝐴 > 𝜆†

𝐴 and 𝜆𝐴 < 𝜆†
𝐴) with a smooth interpolating function. This plot confirms that
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1 Axisymmetric interfaces attached to capillaries
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Figure 1.6: Analysis of the anisotropy zone and the anisotropy parameter 𝑄 from numerical solutions
of the anisotropic shape equations. (c) The size of the anisotropy zone 𝑠∗

0 is roughly constant giving
rise to the bound Eqn. (1.27). (b) The saturation value is mainly determined by the dimensionless
reference pressure ̃𝑝𝐿, see Eqn. (1.26). (a) As a function of the area stretch 𝜆𝐴, the maximum
anisotropy saturates at large deformations beyond a value 𝜆†

𝐴 (results for �̃�2D = 10 shown as colored
diamonds). (d) Contour plot of the non-dimensional anisotropy parameter 𝑄 according to Eqn. (1.25).
Stretch anisotropy effects are negligible for 𝑄 ≪ 1.

𝑄 is small (𝑄 ≪ 1) for shapes where the spherical approximation works best. In particular, we find
that we can neglect anisotropy effects (𝑄 ≪ 1) in the limit ̃𝑝𝐿 ≪ 1, resolving the counter-intuitive
behaviour of the maximal anisotropy. We emphasize the fact that Eqn. (1.28) only depends on
̃𝑝𝐿 and 𝜆𝐴 and not on 𝐾2D, as long as 𝐾2D > 𝛾. This indicates that stretch anisotropy is mainly

governed by geometry rather than by elastic energy contributions. As already pointed out above,
elastic contributions and, thus, also elastic anisotropy effects become increasingly irrelevant for
𝐾2D < 𝛾, where surface tension dominates and the shape resembles a spherical liquid droplet. The
regions 𝜆𝐴 > 𝜆†

𝐴 and 𝜆𝐴 < 𝜆†
𝐴 differ markedly in their functional dependence on 𝜆𝐴. This results

in a maximum of the parameter 𝑄 for area stretches 𝜆𝐴 ∼ 𝜆†
𝐴 ∝ ̃𝑝−1/2

𝐿 at a fixed value of ̃𝑝𝐿. This,
in turn, indicates that stretch anisotropy is most relevant for these intermediate area stretches.

The possibility of approximating the capsule shape by a spherical sector over a wide range of
parameters is an important piece of information for experimentalists since it means that approximate
analytical expressions relying on the assumption of isotropic and homogeneous stresses can be
used in certain scenarios to reliably quantify the elastocapillary properties of capsule interfaces
over a reasonably wide range of elastocapillary numbers.
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1 Axisymmetric interfaces attached to capillaries

1.3 Viscoelastic interfaces

Figure 1.7: We can formu-
late the forces appearing
in the elastic capsule skin
through simple geometric ar-
guments. We slice the cap-
sule horizontally (left), pull
it appart slightly (for visual
purposes) and find the forces
acting on this slice in both
vertical (left) and horizonal
(right) direction. This al-
lows us to introduce non-
conservative surface stresses.

Next, we want to explore viscous, or dissipative, effects encountered during the deformation of a
pendant capsule. Microscopically, energy dissipation can happen in many places of our model, we
want to consider only the case where the polymers are ”sticky” and create drag in the polymer
matrix by interacting with the other polymers.

For conservative elastic capsules, we are able to write down an elastic energy density 𝑤𝑆0
, which is

a potential of the elastic forces. Now, however, we want to include non-conservative forces, such
that an energy density does not exist. This also means, that we are not able to generate the shape
equations from the first variation of the free energy as shown in Sec. 1.2. Rather, we need to
operate one level lower and formulate the appropriate force balance from which we are able to
derive the shape equations containing non-conservative forces.

We want to preserve the assumption of axi-symmetry, such that our viscoelastic solution shapes
shall only have scalar accelerations in the radial direction ̈𝑟 and along the axis of symmetry ̈𝑧.
All other accelerations are disallowed for axi-symmetric solutions, i.e. accelerations which have
components pointing out of the plane of projection of our parametrization. This means that an
interface patch of mass d𝑚 is accelerated with an acceleration ⃗𝑎 by all acting forces ⃗𝐹 due to
Newtons law: ⃗𝑎 = d ⃗𝐹 /d𝑚. Importantly, the inertial corrections are proportional to the mass of
the interface element, which scales with the thickness of the skin 𝐻 and its mass density 𝜌, such
that we find d𝑚 = d𝐴 𝐻𝜌 = 2𝜋 d𝑠 𝐻𝜌𝑟.

If we project Newtons law onto the axis of symmetry (i.e. the 𝑧-axis), we can isolate the vertical
acceleration ̈𝑧 together with the forces acting in the vertical direction

2𝜋𝜌𝑟𝐻 ̈𝑧 = d
ds

(2𝜋𝑟𝜏𝑠 sin 𝛹 − 𝜋𝑟2𝑝 − 𝜋𝛥𝜌𝑔 ∫
𝑧

0
d𝑧′ 𝑟2) , (1.29)

where the first term on the r.h.s. of Eqn. (1.29) is the force generated by the surface stress acting
vertically, the second term is the force generated by the internal pressure 𝑝, finally, the third
term is the force due to the self weight of the segment below height 𝑧. This is exactly the same
argument we made in Ref. [24] to derive the vertical force balance of a pendant droplet. All forces
acting on the horizontal slice of the capsule are shown in Fig. 1.7. Importantly, the force per
length 𝜏𝑠 is no longer required to be conservative because we now consider the appropriate force
balance instead of the variation of the free energy, allowing us to include dissipative constitutive
properties in the surface stress 𝜏𝑠. This approach is similar to that provided in Ref. [24] for liquid
droplets. Note, however, that already at this point an assumption is made for the dynamics of the
fluid inside and outside of the capsule – the relaxation time-scale of the hydrodynamic flow inside
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1 Axisymmetric interfaces attached to capillaries

and outside of the capsule is much faster than any other time-scale in the system. In the case
where the liquid flow field produces significant corrections, which is not the case for e.g. water
and air [39], the full hydrodynamic equations for the inner and outer liquid need to be evaluated
for the specific dynamic boundary conditions, in order to acquire an appropriate time-dependent
pressure term 𝑝 acting on the interfacial skin. We will not include these hydrodynamic effects here,
hence assuming that the fluid flow in the surrounding phases is negligible on the time scale of the
deformation of the interfacial skin. In Ref. [40] a drop is studied in an external flow field, which
conceptually involves similar steps towards including the self-induced flow around and inside of a
pendant capsule. Further studies for elastic capsules in an external flow field are readily available
[11], [41]–[44] and could be used to adopt the present approach.

With some basic calculus, we are able to reduce Eqn. (1.29) to

𝜌𝐻 ̈𝑧 = cos 𝛹 [−𝑝 + 𝜏𝑠𝜅𝑠 + 𝜅𝜙 (𝜏𝑠 + d𝜏𝑠
d𝑠

𝑟
cos 𝛹

)] , (1.30)

which, for the static case, i.e. ̈𝑧 = 0, reduces to a combination of the shape equations found in
Sec. 1.2 and [15].

The second force balance we need to consider is that in radial direction, where the accompanying
acceleration is ̈𝑟. We start by considering a horizontal hoop with a height of the arc-length section
d𝑠 (see Fig. 1.7). The force in radial direction, caused by the pressure difference is simply the
pressure times the patch area, projected onto the 𝑟-axis d𝐹 𝑝

𝑟 = d𝑠 𝑟 sin 𝛹𝑝. The force in radial
direction, caused by the meridional surface stress 𝜏𝑠 is obviously given by 𝐹 𝜏𝑠𝑟 = 𝑟 cos 𝛹𝜏𝑠 and the
force contribution of the circumferential line tension 𝜏𝜙 is the total inwards pointing force due
to the stress on the hoop d𝐹 𝜏𝜙

𝑟 = −d𝑠 𝜏𝜙. Combining all relevant contributions finally gives the
radial acceleration

𝜌𝐻 ̈𝑟 = sin 𝛹𝑝 + 1
𝑟

d
d𝑠

(𝑟 cos 𝛹𝜏𝑠) −
𝜏𝜙

𝑟
, (1.31)

We can input Eqn. (1.30) into Eqn. (1.31) to find a more convenient equation with a specific
geometric acceleration arising naturally

𝜌𝐻(cos 𝛹 ̈𝑟 + sin 𝛹 ̈𝑧) = −cos 𝛹
𝑟

(𝜏𝜙 − 𝜏𝑠) + d𝜏𝑠
d𝑠

, (1.32)

where cos 𝛹 ̈𝑟 + sin 𝛹 ̈𝑧 is exactly the tangential acceleration of the interface.

We are able to infer the normal acceleration of the interface from simple geometric considerations
as well

𝜌𝐻(sin 𝛹 ̈𝑟 − cos 𝛹 ̈𝑧) = 𝑝 − 𝜏𝑠𝜅𝑠 − 𝜏𝜙𝜅𝜙 . (1.33)

If the deformation is quasi-static, where we have slow deformations and thus ̈𝑟 ∼ ̈𝑧 ∼ 0, Eqn. (1.32)
can be identified with the static shape equation Eqn. (1.15) and Eqn. (1.33) becomes equivalent
to the static generalized Young-Laplace equation Eqn. (1.14), as it should be.

This discussion allows us to use the new set of shape equations Eqn. (1.33) and Eqn. (1.32) to
confidently introduce dissipative and hence non-conservative surface stress contributions into our
model. By extension, we are interested in the temporal evolution of the shape on the time scale of
the dissipative relaxation. We have to consider three time scales in our discussion 20. We have the
20The two additional time scales, the relaxation of the fluid flow in the inner and outer phase result, not included –

they should be small compared to all other time scales cases.

20



1 Axisymmetric interfaces attached to capillaries

time scale of the stimulus 𝑡𝑑, e.g. that of an external driving force, and the time scale of the energy
dissipation, over which the viscous stresses relax 𝑡𝑟. The third time scale is the characteristic time
scale produced by Eqns. (1.33) and (1.32) as 𝑡𝑖 = 𝑎√𝜌𝐻/𝛾, and is the inertial time scale. If the
time scale of the external stimulus is much larger than the inertial time scale 𝑡𝑑 ≫ 𝑡𝑖, we are able
to neglect the l.h.s of Eqn. (1.33) and Eqn. (1.32), giving the quasi-static case.

Should the dissipative relaxation time scale 𝑡𝑟 be sufficiently small in comparison to the deformation
time scale 𝑡𝑟 ≪ 𝑡𝑑, where the deformation time scale is also large enough to not cause inertial
corrections 𝑡𝑑 ≫ 𝑡𝑖, the temporal shape evolution will be purely elastic to first order. If, however,
the dissipative relaxation time scales are on the same order of magnitude as the deformation time
scale 𝑡𝑟 ∼ 𝑡𝑑, we need to account for the corrections applied to the dynamics by the viscous effects.
This does not mean that inertial effects play a relevant role yet, because it is still possible that
𝑡𝑑 ∼ 𝑡𝑟 ≫ 𝑡𝑖. Finally, if all time scales are of the same order of magnitude 𝑡𝑑 ∼ 𝑡𝑟 ∼ 𝑡𝑖, we need to
solve the full equations (1.32) and (1.33) in order to predict the shape evolution accurately. For
all of our purposes, we will assume 𝑡𝑑 ∼ 𝑡𝑟 ≫ 𝑡𝑖, such that inertial corrections can be neglected
safely and only viscous dissipation is accounted for.

Introducing non-conservative surface stresses without the present discussion is not consistent, since
the original equations where derived from a free energy, where dissipative surface stresses are
generally disallowed.

1.3.1 Viscoelastic constitutive equation

Notice – This section is a continued development of the method first derived in
the author’s master thesis [45]. Some parts of this section are reproduced with
modifications from the author’s master thesis [45].

We want to connect this discussion directly to that of the constitutive material model discussion
in Sec. 1.2.1, such that we again consider a polymeric skin. Now however, we want to consider
possible origins of viscosity.

If the polymers of the interfacial skin are sticky in the sense that polymers generate drag with
other polymers and the surrounding medium, while sliding through the polymer network, while
otherwise preserving the overall integrity of the cross-linked polymer matrix, we have a case where,
on short time scales, the polymer matrix is an effective fluid. The monomer beads have to pass
through this effective fluid and generate viscous drag while doing so. This yields a solid-like
viscoelastic interface, where slow deformations 𝑇 ≪ 𝜏 would give the behavior of a solid elastic
skin. A material of this kind would not encour any damage during loading, such that Mullins
effect, or the Payne effect are not captured [46].

We could also consider a fundamentally different origin of viscosity, where the polymer matrix has
cross-linkings, which persist over a certain characteristic time, such that they are not rigid and
can change over the characteristic time. These interfaces would exhibit fluid-like behavior, simply
because for time scales much larger than the characteristic cross-link lifetime the material will flow
like a fluid because all original cross-links have resolved and the new steady-state will eventually
settle in to be a solution of the Young-Laplace equation (see Eqn. (1.8)), simply because all elastic
and viscous stresses nesseccarilly dissappear over long time-scales. This material would not behave
like an elastic capsule for slow deformation rates, simply because the reference shape of the elastic
skin changes throughout the deformation.

Here, we will consider only solid-like viscoelasticity, where the elastic reference shape is preserved
throughout the entire deformation sequence. Generalizing the present theory to also include
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1 Axisymmetric interfaces attached to capillaries

fluid-like viscoelasticity is simple. While many viscoelastic constitutive laws exist in literature
[47]–[59] we want to derive the constitutive law for the geometry at hand from first principles
while stating all of our assumptions carefully.

We start our consideration by writing the most general stress-strain relationship, with viscoelastic
stress vectors ⃗𝜏 defined per undeformed lengths ⃗𝜏 = (𝜆𝜙𝜏v

𝑠 , 𝜆𝑠𝜏v
𝜙)T and strain vectors ⃗𝜖 = (𝜆2

𝑠 −
1, 𝜆2

𝜙 − 1)T/2 ≈ (𝜆𝑠 − 1, 𝜆𝜙 − 1)T, such that

�̂� ⃗𝜏 = ̂𝜁 ⃗𝜖 , (1.34)

where �̂� and ̂𝜁 are arbitrary tensor operators acting on the stress and strain vectors respectively.
The stresses 𝜏v

𝑠 and 𝜏v
𝜙 are only the viscoelastic stress resultants, further surface stresses such as a

constant surface tension excluded.

Working with Eqn. (1.34) directly is of no immediate benefit, as it is too abstract to be used
for inference of physical truths and properties. Consequently, we reduce the abstraction of
Eqn. (1.34) by loosing some of the generality, but again, we do this while carefully documenting
our assumptions.

The first assumption we want to make is that the constitutive equations do not depend on the
entire stress/strain history, but only on the current temporal derivatives of arbitrary order. The
differential operators are thus equally not explicitly time dependent as the operators only contain
temporal derivatives of given order and constant coefficients 𝜒𝑖𝑗𝑘 and 𝜁𝑖𝑗𝑘:

�̂�𝑖𝑗 =
∞

∑
𝑘=0

𝜒𝑖𝑗𝑘
∂𝑘

∂𝑡𝑘 , ̂𝜁𝑖𝑗 =
∞

∑
𝑘=0

𝜁𝑖𝑗𝑘
∂𝑘

∂𝑡𝑘 . (1.35)

Consequently, we expect that the constitutive equation only characterises viscoelastic capsule
deformation behavior to first order in the strains, and to arbitrary order in time 21. Still, the
constitutive equations respect the geometric non-linearities of our problem.

To solve for ⃗𝜖 Eqn. (1.34) can be transformed via a Carson transform 𝒞(𝑓(𝑡))(𝑠) ≡ 𝑠ℒ(𝑓(𝑡))(𝑠),
where ℒ is the Laplace transform such that

∞
∑
𝑘=0

𝑑
∑
𝑗=1

𝜒𝑖𝑗𝑘𝑠𝑘 ̃𝜏𝑗 =
∞

∑
𝑚=0

𝑑
∑
𝑛=1

𝜁𝑖𝑛𝑚𝑠𝑚 ̃𝜖𝑛 , (1.36)

where we define 𝑝𝑖𝑗(𝑠) ≡ ∑𝑘 𝜒𝑖𝑗𝑘𝑠𝑘 and 𝑞𝑖𝑛(𝑠) ≡ ∑𝑘 𝜁𝑖𝑛𝑘𝑠𝑘 as the naturally appearing polynomials
in the complex variable 𝑠. Eqn. (1.36) consists of 𝑑 equations for 𝑑 unknown strains, such that
we can solve the system of equations. Since we are interested in capsule systems we restrict
our investigations to 𝑑 = 2 and solve the system of equations analytically by isolating the two
components {𝑖, 𝑚} explicitly (we demand 𝑖 ≠ 𝑚, such that these are the two principal stretches in
this case). We arrive at an expression for the transformed strains as a function of the transformed
stresses

̃𝜖𝑖 = ∑
𝑗

𝑝𝑖𝑗(𝑠)𝑞𝑚𝑚(𝑠) − 𝑞𝑖𝑚(𝑠)𝑝𝑚𝑗(𝑠)
𝑞𝑖𝑖(𝑠)𝑞𝑚𝑚(𝑠) − 𝑞𝑖𝑚(𝑠)𝑞𝑚𝑖(𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽∗
𝑖𝑗(𝑠)

̃𝜏𝑗 , (1.37)

where we define the complex matrix 𝐽 ∗
𝑖𝑗(𝑠) in terms of the polynomials {𝑝𝑙𝑟} and {𝑞𝑙𝑟}. The

functions 𝐽 ∗
𝑖𝑗(𝑠) characterize the couplings between stress and strain and, equivalently, define the

memory kernels of the material.
21If a Taylor expansion exists for both stress and strain.
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1 Axisymmetric interfaces attached to capillaries

A next assumption is that the materials we are considering should be isotropic 22, meaning that
the principal directions are interchangeable and behave the same. Explicitly, this means that the
polynomials {𝑝𝑙𝑟} and {𝑞𝑙𝑟} must be invariant under the renaming of 𝑖 → 𝑚 and 𝑚 → 𝑖 such that
𝑝𝑖𝑚(𝑠) = 𝑝𝑚𝑖(𝑠), 𝑞𝑖𝑚(𝑠) = 𝑞𝑚𝑖(𝑠), 𝑝𝑚𝑚(𝑠) = 𝑝𝑖𝑖(𝑠), and 𝑞𝑚𝑚(𝑠) = 𝑞𝑖𝑖(𝑠).

The characteristic response matrix for isotropic materials is thus given as:

𝐽 ∗
𝑖𝑗(𝑠) =

𝑞𝑖𝑖(𝑠)𝑝𝑖𝑗(𝑠) − 𝑞𝑖𝑚(𝑠)𝑝𝑚𝑗(𝑠)
𝑞2

𝑖𝑖(𝑠) − 𝑞2
𝑖𝑚(𝑠)

. (1.38)

A particularly ”simple” material can be acquired if we only allow for a scalar memory kernel in
an isotropic material, where all relaxation processes have the same relevant time dependency, i.e.
we additionally force 𝑝𝑖𝑖(𝑠) = 𝑝𝑖𝑚(𝑠)/𝛼𝑖𝑚 ≡ 𝑝(𝑠) and 𝑞𝑖𝑖(𝑠) = 𝑞𝑖𝑚(𝑠)/𝛽𝑖𝑚 ≡ 𝑞(𝑠) where isotropy
forces 𝛼𝑖𝑖 = 𝛼𝑚𝑚 ≡ 1 and 𝛼𝑖𝑚 = 𝛼𝑚𝑖 ≡ 𝛼, as well as 𝛽𝑖𝑖 = 𝛽𝑚𝑚 = 1 and 𝛽𝑖𝑚 = 𝛽𝑚𝑖 ≡ 𝛽.

Such uni-relaxant 23 material matrix can thus be described as

𝐽 ∗
𝑖𝑖 = 1 − 𝛽𝛼

1 − 𝛽2
𝑝(𝑠)
𝑞(𝑠)

, 𝐽 ∗
𝑖𝑚 = 𝛼 − 𝛽

1 − 𝛽2
𝑝(𝑠)
𝑞(𝑠)

(1.39)

where we only retain a single memory kernel, applied to all deformations of the material components.
The components of the characteristic response matrix 𝐽∗ can still respect for a fixed Poisson’s
ratio, manifesting as 𝛽 in Eqns. (1.39), as we will demonstrate later.

For any of the characteristic matrices Eqns. (1.37), (1.38) and Eqn. (1.39), we always find a
fraction of polynomials. We are hence able to use the partial fraction decomposition to reduce the
characteristic matrix to

𝐽 ∗
𝑖𝑗(𝑠) =

∞
∑
𝑘=0

𝑢𝑖𝑗𝑘𝑠𝑘 +
𝑡𝑖𝑗

∑
𝑙=1

𝑒𝑖𝑗𝑙

∑
𝑛=1

𝜅𝑖𝑗𝑙𝑛

(𝑠 + 𝜔𝑖𝑗𝑙)𝑛 , (1.40)

where we are able to separate the polynomial fraction into a polynomial with coefficients 𝑢𝑖𝑗𝑘 and
the ∏𝑡𝑖𝑗

𝑙=1 𝑒𝑖𝑗𝑙 partial fractions for the 𝑡𝑖𝑗 poles −𝜔𝑖𝑗𝑙 with degeneracy 𝑒𝑖𝑗𝑙 and coefficients 𝜅𝑖𝑗𝑙𝑛.

Finally, we acquire the temporal stress-strain relationship by applying the inverse Carson transfor-
mation 𝒞−1 (𝑓(𝑠)) (𝑡) to both sides of Eqn. (1.37), resulting in

𝜖𝑖(𝑡) = ∑
𝑗

{𝐽𝑖𝑗(0)𝜏𝑗(𝑡) + ∫
𝑡

0
d𝑡′ ̇𝐽𝑖𝑗(𝑡 − 𝑡′)𝜏𝑗(𝑡′)} , (1.41)

which is a generalised version of the Hereditary integral equation for linear viscoelasticity [55].

In the following we use the additional physical constraint 𝐽𝑖𝑗(0) = 0, because we enforce a
finite causality latency and request the relaxation functions to be differentiable in 𝑡 = 0, as an
instantaneous strain response following a suddenly applied stress could be considered unphysical.
We note that the purely elastic material would yield such step in the response function. Of course,
this is an idealized concept, because the strain response propagates through the material at the
speed of sound in the material – and thus not instantaneously 24.

The real relaxation functions can thus be acquired by directly applying the inverse Laplace
transform to Eqn. (1.40) to find:
22This means in-plane isotropic in this case. Out-of-plane anisotropy is still possible.
23Uni-relaxant because it only has one fundamental relaxation function for all components.
24The most conservative upper bound to the propagation speed of the stress through the material is the speed of

light.
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1 Axisymmetric interfaces attached to capillaries

̇𝐽𝑖𝑗(𝑡) =
∞

∑
𝑘=0

𝑢𝑖𝑗𝑘𝛿(𝑘)(𝑡) +
𝑡𝑖𝑗

∑
𝑙=1

𝑒𝑖𝑗𝑙−1

∑
𝑛=0

𝜅𝑖𝑗𝑛𝑙

𝑛!
𝑡𝑛𝑒−𝑡𝜔𝑖𝑗𝑙 . (1.42)

In Eqn. (1.42) we can identify some classes of deformation memory behavior, some of which are to
be excluded from our investigation:

• 𝜔𝑖𝑗𝑙 ∈ R: Dominantly decaying exponentially (for 𝜔𝑖𝑗𝑙 > 0, 𝜔𝑖𝑗𝑙 < 0 makes memory of long
ago deformation exponentially more relevant, which is unphysical.)

• 𝜔𝑖𝑗𝑙 = 𝑖𝑐𝑖𝑗𝑙 , 𝑐𝑖𝑗𝑙 ∈ R: Sinusoidal correlation

• 𝜔𝑖𝑗𝑙 = 𝑟𝑖𝑗𝑙 + 𝑖𝑐𝑖𝑗𝑙 , {𝑟𝑖𝑗𝑙, 𝑐𝑖𝑗𝑙} ∈ R2: Exponentially dampened sinusoidal correlation (again
with 𝑟𝑖𝑗𝑙 > 0)

• 𝑢𝑖𝑗𝑘 ≠ 0 correlated to the 𝑘th derivative of the stresses at 𝑡

From those modes we can exclude some for our considerations, because of their implications for
the physical realization of the material deformation.

First of all, we expect the correlation between an induced strain and the strain causing stresses to
decay monotonically in a passive material, otherwise energy must be dissipated through some time
correlated mechanism, which we will not allow. This allows us to specify that 𝜔𝑖𝑗𝑙 ∈ R > 0 and
thus 𝜅𝑖𝑗𝑛𝑙 ∈ R. Furthermore, we exclude plastic deformations and instantaneous correlations due
to the physical constraint of the finite causality latency, which requests that 𝑢𝑖𝑗𝑘 ≡ 0 , ∀{𝑖, 𝑗, 𝑘}.

The general viscoelastic capsule material thus has 4 different relaxation functions, each with
∏𝑡𝑖𝑗

𝑙=1 𝑒𝑖𝑗𝑙 relaxation modes. We are able to reduce this to only two relaxation functions in the
isotropic case (see Eqn. (1.38)) and only one non-proportional relaxation function in the uni-relaxant
case (see Eqn. (1.39)).

1.3.2 Kelvin-Voigt Capsule

A simple as possible uni-relaxant linear viscoelastic model for the pendant capsule skin is the
Kelvin-Voigt viscoelastic material. The material may be isotropic, such that 𝛼 = 0 and 𝛽 = 𝜈2𝐷
with an elastic component ∝ 𝑌2D and a dissipative component ∝ 𝜂 in parallel, such that

̇𝐽𝑖𝑖(𝑡) = 1
1 − 𝜈2

2𝐷

1
𝜂

exp (−𝑌2𝐷
𝜂

𝑡) and ̇𝐽𝑖𝑚(𝑡) = −𝜈2𝐷
̇𝐽𝑖𝑖(𝑡) . (1.43)

In differential form this model has the following constitutive law:

𝜏𝑠,𝜙 = 1
𝜆𝜙,𝑠

𝑌2𝐷
1 − 𝜈2

2𝐷
(𝜆𝑠 − 1 + 𝜈2𝐷(𝜆𝜙 − 1)) + 1

𝜆𝜙,𝑠

𝜂
1 − 𝜈2

2𝐷
(∂𝑡𝜆𝑠 + 𝜈2𝐷∂𝑡𝜆𝜙) + 𝛾 , (1.44)

where it is obvious that the Kelvin-Voigt capsule reduces to a non-linear Hooke model for 𝜂 = 0.
This is not unexpected, since the generalized viscoelastic constitutive equation, by design, contains
elastic contributions up to quadratic precision in the surface energy density, which is exactly the
approximation used to derive the non-linear Hookean material model from the Mooney-Rivlin
material model (see Sec. 1.2.1). In the differential form Eqn. (1.44), we can appreciate the
manifestations of the added viscosity. Namely, it adds a stress proportional to the temporal
derivatives of the strain components, which yields in a smoothing of strain responses to abrupt
stress loads. The characteristic time-scale of the smoothing is immediately evident from Eqn. (1.43),
where it appears naturally as the time-scale of the memory decay and is given as 𝜂/𝑌2D.
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2 Numerically solving and fitting shape equations

Published material – The theoretical background for shape fitting is reproduced
with modifications and permission from the author’s publication [13], © 2023 The
Authors. Published by American Chemical Society. The present work is a continu-
ation of the work by Sebastian Knoche in Refs. [15], [27] and Jonas Hegemann in
Refs. [14], [60].

So far, we have discussed the derivation and properties of various shape equations. We have
not, however, gone into any detail on how to actually solve those equations for a given set of
control parameters. Solving shape equations numerically in an efficient and timely manner enables
iterative shape fitting approaches, which where introduced by Knoche et. al in 2013 for elastic
capsules [15] and further improved by Hegemann et. al in 2018 [14]. Even the improved design
leaves the method in a state, where it is plagued by problems, such as failure to fit an experimental
shape reliably and being comparably slow overall. This renders the resulting open source software
OpenCapsule interesting, but ultimately too unreliable for use by experimentalists. Many other
computational methods are available for the characterization of elastic and viscoelastic response
functions, as described in a recent review by Jeansson et al. in Ref. [61]. The aim of this work is to
improve the design and fix methodological flaws present in OpenCapsule to make it more reliable,
faster, more precise, extensible and accessible. Ultimately, a full re-write of the software is required
to modernize it and make it easier to use. In this chapter, we will discuss the basics of solving
and fitting shape equations with a computer and additionally discuss the design improvements
over OpenCapsule. Finally, we will present an overview of the new software package and its
capabilities.

Mathematically, the present shape equations are classified as sets of ordinary first order differential
equations (ODE). In principle, solving ODEs is usually simple and straight forward if approached
by off-the-shelf numerical methods such as the Euler-method or Runge-Kutta methods [14], [15].
Upon naively applying these methods to the present systems of ODEs, however, a number of
non-trivial challenges and problems manifest. These problems need to be treated with great care.
Some of the challenges are of numerical nature, such as numerical precision limitations, numerical
singularities, or proper book-keeping of the solution data, while other problems arise from the
nature of the problem statement, such as the requirement of fulfilling conditions at multiple
boundary points.

Especially if the solutions of the shape equations are subjected to a fitting algorithm, as done
previously in [14], [15], several non-trivial challenges arise. The pendant droplet is the most straight
forward case to numerically tackle, and numerical fitting routines are both commercially and freely
available [17]. The only available package for the numerical fitting for elastic capsules is the open
source software OpenCapsule [14]. No software currently (to the best of the author’s knowledge)
performs exact shape fitting for entire deformation sequences, accounting for viscoelastic effects.
While Nguyen et al. demonstrate in Ref. [62] that it is possible to determine the viscoelastic
properties from compression experiments, their approach is computationally demanding and
requires a different experiment setup. The complexity of viscoelastic shape sequence fits is
drastically higher than that of a single elastic capsule and will only be feasible and traceable with
the novel numerical framework presented in this section.
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2 Numerically solving and fitting shape equations

2.1 Liquid pendant droplets

Figure 2.1: A conceptualization of shape fitting. Our input will be experiment images (left). The
images are pre-processed into a suitable representation (center left). With this representation we
can apply a method of choice to determine the control parameters (center right). In this work, we
discuss a neural network (see Sec. 5.1) and a conventional shape fit as an evaluation method (this
section). Finally, we attain a control parameter set for the given theory and are able to produce a
theory representation of the experiment data (right).

Determining the surface tension from axisymmetric images of droplet profiles is not a new idea
[14], [15], [17], [63]–[67]. Liquid pendant droplet shapes are used as the reference geometry for all
elastic and viscoelastic capsules we consider in this work. They are thus of great importance for
the numerical framework as well. To accurately solve and fit the shape of an elastic or viscoelastic
capsule, we need to first make sure that we can determine the respective reference shape accurately.
Any error made in determining the liquid reference shape will negatively impact the precision of
the elastic and viscoelastic solver and shape fit. Fortunately, solving the shape equations of a liquid
drop is well conditioned and can be tackled with a standard Runge-Kutta numerical integration
scheme [17], [24]. Additionally, we will discuss how the numerical solution of the inverse problem
is implemented. A visual conceptualization of shape fitting in general is given in Fig. 2.1. We will
in a later chapter (see Sec. 5.1) discuss how the solution of the inverse problem can be accelerated
by several orders of magnitude by utilizing machine learning capabilities of modern computers.

As we have already discussed in Sec. 1.1, the control parameters for the three shape equations (1.1)
and Eqn. (1.8) of the liquid droplet problem are given as the set { ̃𝑝𝐿, 𝛥 ̃𝜌, 𝛺} [24]. Those can be
chosen independently to manipulate the shape of the liquid drop. Note that not all combinations
of the control parameters will yield a physical solution, as shown in the parameter diagram Fig. 1.3
presented in Sec. 1.1.

We start the numerical integration from the initial conditions ̃𝑟( ̃𝑠 = 0) = 0, ̃𝑧( ̃𝑠 = 0) = 0 and
𝛹( ̃𝑠 = 0) = 0, where we calculate the derivatives ̃𝑟′( ̃𝑠 = 0), ̃𝑧′( ̃𝑠 = 0) and 𝛹 ′( ̃𝑠 = 0) by evaluating
the three shape equations (1.1) and Eqn. (1.8) at ̃𝑠 = 0 1. Already at this point we face the first
numerical problem. The Young-Laplace equation (1.8) develops a numerical singularity at ̃𝑠 = 0
as we rearrange it for 𝛹 ′( ̃𝑠) [24]:

d𝛹
d ̃𝑠

= ̃𝑝𝐿 − 𝛥 ̃𝜌 ̃𝑧 − sin 𝛹
̃𝑟

. (2.1)

The problematic term is the circumferential curvature 𝜅𝜙 = sin 𝛹/𝑟, where we find the numerically
undefined result "0/0". Of course, there is no actual singularity here, as we can easily show by
using the rule of de L’ Hôspital [24] or alternatively by symmetry considerations [14], [27]. We

1All geometric symbols are non-dimensionalized by the diameter of the capillary 𝑎, such that �̃� ≡ 𝑥/𝑎.
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2 Numerically solving and fitting shape equations

finally find the well defined – and finite – value for the derivative of the arc angle at 𝑠 = 0 as
d𝛹/d ̃𝑠( ̃𝑠 = 0) = ̃𝑝𝐿/2. This result is a manifestation of the required isotropy at the apex of the
shape with 𝜅𝑠(𝑠 = 0) = 𝜅𝜙(𝑠 = 0). This limit needs to be implemented manually in the numerical
solver and is used while ̃𝑠 < 10−8 as a replacement for Eqn. (2.1) 2.

Now, we are able to advance the solution by utilizing the derivatives at ̃𝑠 = 0 to approximate
a value for ̃𝑟(ℎ̃), ̃𝑧(ℎ̃) and 𝛹(ℎ̃) at ℎ̃ > 0 but ℎ̃ ≪ 1. More precisely, we advance the solution by
utilizing the Runge-Kutta method of order 4, i.e. we evaluate the shape equations four times for
each integration step of size ℎ̃ at the arc-lengths { ̃𝑠, ̃𝑠 + ℎ̃/2, ̃𝑠 + ℎ̃/2, ̃𝑠 + ℎ̃}, where the respective
previous estimate for the values of ̃𝑟, ̃𝑧 and 𝛹 are used to calculate the derivatives at the sampling
points. Finally, all resulting estimates for ̃𝑟, ̃𝑧 and 𝛹 are averaged with the respective weights
{1/6, 1/3, 1/3, 1/6} which gives the final estimate for ̃𝑟( ̃𝑠 + ℎ̃), ̃𝑧( ̃𝑠 + ℎ̃) and 𝛹( ̃𝑠 + ℎ̃). Other
discrete integration methods, such as the Euler-method could alternatively be used, however, the
Runge-Kutta method of order 4 provides a sufficient balance between precision and speed.

As we progress trough the solution of the shape, by chaining the Runge-Kutta integration steps, we
detect the necks and bulges of the solution, by searching for minimum and maximum in the radial
distance function ̃𝑟( ̃𝑠). As we detect a neck or a bulge along the shape we increase the internal
neck and bulge counter 3. Additionally, we search for capillary boundary condition matches, i.e.
̃𝑟 = 1/2. Obviously, we can not search for ̃𝑟 = 1/2 directly, but search for a sign change in the

function 𝑑 = ̃𝑟 − 1/2, which indicates a boundary condition match in the previous integration
interval of size ℎ̃. If, and only if, the internal bulge and neck counter matches the bulge and neck
count prescribed by the control parameter 𝛺 and we detect a boundary condition match, we have
found a solution for the given set of control parameters.

To improve the final precision of the liquid reference shape we discard the very last integration
step of the 𝑁 total integration steps performed until now and re-integrate precisely up to the
capillary. We achieve this by creating a continuous spline interpolation of the shape and performing
a bisection in the range [(𝑁 − 1)ℎ, 𝑁ℎ], searching for the exact 4 location of the point ̃𝑟(�̃�) = 1/2.
This search is performed up to the machine precision, as the bisection algorithm is guaranteed to
converge in less than 𝑛 ≤ 𝑙𝑜𝑔2(ℎ/𝜖double) ∼ 40 bisection steps. This optimization yields a better
capillary precision and reduces the computation time in comparison to OpenCapsule, where the
determination of the capillary coordinate is performed by evaluating the boundary deviation at
100-fixed points and choosing the one with the lowest deviation, limiting precision to ℎ̃/100 while
taking at worst 𝑛 = 100 steps.

2.1.1 Fitting the shape equations

The objective for shape fitting is to find a set of parameters �⃗�∗ = ( ̃𝑝∗
𝐿, 𝛥 ̃𝜌∗, 𝛺∗)𝑇 ∈ 𝑃 from the

admissible parameter space 𝑃 (see Fig. 1.3), which generates a shape 𝑆0(�⃗�∗) ∶ 𝑃 → 𝑇 from the
possible shapes 𝑇 5 which, compared to a predetermined target shape 𝑆𝑇

0
6, minimizes a suitable

error metric ⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�∗)), comparing a number dim ⃗𝐸 of shape coordinates from both shapes:

�⃗�∗ = arg min
�⃗�∗

{|| ⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�∗))||2} . (2.2)

2In practical terms ̃𝑠 < 10−8 applies only for the very first integration step.
3This is exactly the discrete control parameter 𝛺 as introduced in Sec. 1.1.
4Up to machine precision, meaning | ̃𝑟 − 1/2| ≤ 10−16.
5The function 𝑆0 is the mapping from parameter space 𝑃 to shape space 𝑇 determined by the shape equations.

Thus, only solutions to the shape equations are elements of 𝑇.
6The target shape is a representation of an experimental image in most cases.
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2 Numerically solving and fitting shape equations

Ideally, if the target shape 𝑆𝑇
0 = 𝑆0(�⃗�𝑇

0 ) ∈ 𝑇 is a solution to the shape equations, with parameters
�⃗�𝑇

0 ∈ 𝑃, the solution of Eqn. (2.2) is �⃗�∗ = �⃗�𝑇, with ⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�∗)) = ⃗0.

However, the target shape 𝑆𝑇
0 is not necessarily limited to be a member of 𝑇. Rather, the target

shape can be any arbitrary shape from the super-set 𝐻 ⊇ 𝑇. This is the manifestation of the target
shapes being experiment data in most cases and thus not exact solutions to the shape equations.
We still assume that the experiment shapes follow the shape equations we provide at least up to a
certain precision, however, there might be noise or small deviations from the idealized theoretical
description. Thus, the target shapes might always be imperfect to a certain degree and thus, we
expect || ⃗𝐸(𝑆𝑇

0 , 𝑆0(�⃗�∗))|| > 0 and �⃗�∗ only being an approximate solution. Ultimately, this means
that the precision of the fit is intrinsically limited by the respective experiment errors 7 and we
must declare the fit converged at a finite (and positive) target precision || ⃗𝐸(𝑆𝑇

0 , 𝑆0(�⃗�∗))|| < 𝜖 to
eventually halt the algorithm 8.

A prominent iterative numerical approach for solving problems of the kind found in Eqn. (2.2)
is the least squares method [68], where an improved guess �⃗�𝑖+1 is achieved by incorporating
information about the derivatives in the error-parameter landscape J𝐸

𝑖 (i.e. the Jacobian matrix)
at the current guess �⃗�𝑖. We apply this to Eqn. (2.2) by writing the Taylor expansion to first order
of the error metric at �⃗�𝑖 with a step 𝛥�⃗�𝑖 ≡ �⃗�𝑖+1 − �⃗�𝑖

⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�𝑖+1)) ≈ ⃗𝐸(𝑆𝑇

0 , 𝑆0(�⃗�𝑖)) + J𝐸
𝑖 𝛥�⃗�𝑖 (2.3)

and decompose the Jacobian into an orthogonal matrix Q𝑖 and an upper triangular matrix R𝑖:
J𝐸

𝑖 = Q𝑖R𝑖. We accordingly rephrase Eqn. (2.2) as

𝛥�⃗� = arg min
𝛥�⃗�

{||Q𝑇
𝑖

⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�𝑖)) + R𝑖𝛥�⃗�𝑖||2} , (2.4)

with the unique solution
𝛥�⃗�𝑖 = −R−1

𝑖 Q𝑇
𝑖

⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�𝑖)) . (2.5)

We use Eqn. (2.5) to update the parameter set in each iteration of the optimization and employ a
line-search algorithm to enforce || ⃗𝐸(𝑆𝑇

0 , 𝑆0(�⃗�𝑖+1))|| ≤ || ⃗𝐸(𝑆𝑇
0 , 𝑆0(�⃗�𝑖))|| by backtracking through

�⃗�𝑖 + 𝜉𝛥�⃗�𝑖 with 𝜉 ∈ (0, 1) till the condition is fulfilled.

Notably, it is possible to find an approximate mapping �⃗�∗ ∼ ⃗𝑆−1
0 (𝑆𝑇

0 ) with the methods of machine
learning, eliminating the need for computationally expensive iterative techniques at the cost of
traceability, as we show in Ref. [24] and later in Sec. 5.1, where an estimate for ⃗𝑆−1

0 is found using
a feed-forward neural network.

For now, we stick to the iterative numerical approach and calculate the parameter update
numerically by solving the shape equations once per continuous parameter in the direct vicinity
of the last iteration value �⃗�𝑖 allowing us to calculate the approximate derivatives in the error-
parameter landscape per shape coordinate.

Ultimately, we do not implement the QR-decomposition ourselves, but use the free and open-source
software package Armadillo because it employs several advanced optimization techniques, while
retaining accuracy. The solver function from Armadillo is ∼ 10 times faster than the custom QR
decomposition implemented in OpenCapsule utilizing the free and open-source library GSL. The
optimizations Armadillo provides are enabled by combining the entire solver into one function,
where intermediate calculations can be shortcut, combined as vector instructions, or entirely reused
from previous steps.

7Those include, but are not limited to, camera resolution limitations, material inhomogeneities and gravity-capillary
misalignment.

8We employ a host of other halting criteria because this check alone obviously does not guarantee convergence.
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2 Numerically solving and fitting shape equations

2.1.2 Precision, performance and robustness
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Figure 2.2: The precision of the numerical fit (MAE) shows a low error at low Gaussian noise
standard deviation 𝜎 ∼ 0 with MAE ∼ 10−4 (see left), upon increasing the standard deviation of
the Gaussian noise 𝜎 we observe a quick decline in precision to MAE ∼ 10−2 at noise standard
deviations equivalent to 1% of the capillary radius. The decay in precision for higher noises slows
down significantly. A more detailed look at a low noise level (middle, right) reveals the fitting
precision correlation in the parameter space.

In order to provide a more complete picture of the capabilities of the solver, we benchmark it
with some artificially constructed data. This will benchmark the capability of the method on
”perfect” 9 data. To make the evaluation more indicative of actual performance on experiment
images, we apply a uniform Gaussian noise with standard deviation 𝜎 to the shape coordinates
and probe the robustness of the numerical method in Fig. 2.2. The precision for low noise shape
data (2𝜎/𝑎 ≤ 1%) is severely improved over the method used in Ref. [24] and results in mean
absolute errors (MAE) in the fit parameters of ∼ 10−3 (see Fig. 2.2, left). The MAE increases
quickly with applied noise and already at 2𝜎/𝑎 ∼ 3% diminishes to MAE ∼ 10−2.

We can determine the regions in the parameter space (see Sec. 1.1) where the fit is more accurate
by evaluating a 2D histogram of fit errors as a function of the two non-dimensional fit parameters
̃𝑝𝐿 and 𝛥 ̃𝜌, as shown in Fig. 2.2 (middle, right). It is to no surprise that the shape fit – especially

in the parameter 𝛥 ̃𝜌 – is more precise near the top bifurcation boundary for 𝛺 = 2 → 3, as we
have previously shown in Ref. [24] that this bifurcation boundary corresponds roughly to the
line of volumetric stability control loss and thus highest shape sensitivity. This investigation also
reveals that the fit error is orders of magnitude more precise in specific parts of the shape space
than the MAE (averaged over all regions) implies.

Finally, the performance of the method is measured in real-time consumption, as this is the most
relevant performance measure in practical applications. We note that the real-time consumption
will vary drastically with the hardware executing the code. On an Apple M1 Pro CPU, we achieve
∼ 20 fits per second per CPU core, which makes a single fit take ∼ 50 ms. This includes fitting
both hemispheres of a droplet profile. The time consumed by a fit scales linearly with the noise
applied, where at a high noise of 2𝜎/𝑎 ∼ 10% the time for a single fit is increased on average by
35%, because the gradients in shape-parameter-space get more noisy as well, which increases the
iteration steps required to find the minimum of the shape error landscape.

9Perfect in the algorithmic sense, because we provide the numerical inverse method with data generated directly
from the forward method.
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2 Numerically solving and fitting shape equations

2.2 Elastic capsules

Since we choose the reference shape of the elastic capsule to always match the shape of a purely
liquid droplet, we can conveniently reuse the non-dimensionalization of the liquid droplet, i.e.
the surface tension 𝛾 of the reference droplet as a stress scale, and the capillary diameter 𝑎 as a
length scale. This enables us to write the full set of dimensionless shape equations along with the
dimensionless constitutive equations of the non-linear Hooke model as [14], [15]:

d ̃𝑟
d ̃𝑠0

= 𝜆𝑠 cos 𝛹 (2.6)

d ̃𝑧
d ̃𝑠0

= 𝜆𝑠 sin 𝛹 (2.7)

d𝛹
d ̃𝑠0

= 𝜆𝑠
̃𝜏𝑠

(𝑝𝑎𝑎
𝛾

− 𝛥 ̃𝜌 ̃𝑧 − sin 𝛹
̃𝑟

̃𝜏𝜙) (2.8)

d ̃𝜏𝑠
d ̃𝑠0

= 𝜆𝑠
cos 𝛹

̃𝑟
( ̃𝜏𝜙 − ̃𝜏𝑠) , (2.9)

̃𝜏𝑠,𝜙 = 𝑌2D/𝛾
1 − 𝜈2

2D

1
𝜆𝜙,𝑠

(𝜆𝑠,𝜙 − 1 + 𝜈2D(𝜆𝜙,𝑠 − 1)) + 1 . (2.10)

The equations (2.6), (2.7), (2.8) and (2.9) are ordinary differential equations of first order and
may be integrated by the same numerical method as applied to the shape equations of the liquid
droplet (i.e. a Runge-Kutta method of order 4) when combined with the constitutive equations
of the non-linear Hookean material model Eqn. (2.10). Just as in the liquid droplet case, there
are some inconvenient numerical singularities of type ”0 / 0”. In addition to the circumferential
curvature at the apex 𝜅𝜙(𝑠 = 0) (which was discussed already in Sec. 2.1), we encounter the
additional numerical singularity (𝜏𝜙(𝑠 = 0) − 𝜏𝑠(𝑠 = 0))/𝑟(𝑠 = 0). Which we can, again, recover
using the rule of de l’Hôspital to be (𝜏𝜙(𝑠 = 0) − 𝜏𝑠(𝑠 = 0))/𝑟(𝑠 = 0) = 0 [14], [15]. As before, we
handle these numerical singularities by manually switching between the analytically calculated
limit and the exact equation in the vicinity of the singularity, i.e. ̃𝑠 < 10−8.

One peculiar problem arises because the actual solution shapes shall end at a predetermined
radius, i.e. 𝑟(𝑠 = 𝐿) = 𝑎/2 is the attachment boundary condition at the capillary, and at a
predetermined total length 𝐿 = ∫𝐿0

0
d𝑠0𝜆𝑠. We are thus no longer able to simply integrate to

an arbitrary arc-length where the capillary boundary condition is met, as we did in the liquid
droplet case, complicating matters significantly. If we ignore the attachment condition, we are
able to independently specify the apex stress 𝜏𝑠(𝑠 = 0) and the apex pressure 𝑝𝑎 = 𝑝(𝑧 = 0) along
with the other control parameters of the problem10. Consequently, the solutions will, in general,
no longer attach to the capillary at 𝑠 = 𝐿, however, there exists a hyperplane of solutions in
this larger 11 parameter space of the problem, where the boundary condition at 𝑠 = 𝐿 is fulfilled
exactly. Thus, we need to limit the acceptable solutions to exactly this hyperplane.

Obviously, the questions now becomes, which of the control parameters is replaced by constraining
the acceptable solutions to the hyperplane of solutions that do satisfy the attachment boundary
condition and can no longer be chosen freely. This control parameter is implied by the choice of
all other control parameters and the boundary conditions at the capillary. In Ref. [14] they choose
to eliminate the apex stress 𝜏𝑠(𝑠 = 0) as a control parameter. This, however, is a grave mistake,
since it leaves the pressure at the apex 𝑝𝑎 as a control parameter for the system, where we have

10I.e. the reference shape parameters and the constitutive parameters.
11Larger by exactly one dimension, which we need to use to fulfill the boundary condition.
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2 Numerically solving and fitting shape equations

shown previously in Ref. [32] that the apex stress 𝜏𝑠(𝑠 = 0) is not guaranteed to be unique for a
given apex pressure, i.e. multiple apex stresses yield the same apex pressure, while additionally
fulfilling all initial and boundary conditions. Thus Ref. [14] eliminate a parameter which is not
uniquely determined by the other control parameters, since it intersects the hyperplane multiple
times and is thus not an injective parameter of the problem.

The same is not true the other way around – a predetermined apex stress has exactly one
corresponding apex pressure 𝑝𝑎 for any point that lies on the hyperplane of solutions that satisfy
all boundary conditions and thus, eliminating the apex pressure 𝑝𝑎 as a control parameter is the
only correct choice. This statement is accessible to a simple proof, utilizing the implicit function
theorem and that the Jacobian matrix of the solution at the additional boundary constraint
is always locally invertible. Not realizing this fact excludes entire solution branches from the
numerical integration and makes it ultimately entirely unpredictable, because it is arbitrary which
of the matching parameters is selected during the search for a hyperplane intersection, rendering
the shape fit built on top of this numerical integration routine intrinsically ill-conditioned and
crippled in its capabilities.

Thus, we perform a shooting method in the apex pressure 𝑝𝑎, i.e. we leave the apex stress 𝜏𝑠(𝑠 = 0)
as a control parameter and search for the one and only apex pressure 𝑝𝑎 matching the boundary
condition 𝑟(𝑠 = 𝐿) = 𝑎/2, and thereby finding the hyperplane intersection, iteratively. The
search for the proper apex pressure 𝑝𝑎 is performed with an initial multi-section search to find
a valid interval around the reference pressure 𝑝𝐿, followed by a much faster secant method to
finally converge to the correct apex pressure. This conceptual improvement together with the new
shooting algorithm already improves the shape fitting performance and reliability drastically over
OpenCapsule.

Now, the shooting method can fail only due to two reasons

• For a given set of control parameters, shooting parameters and initial/boundary conditions,
no valid 12solution exists.

• The shooting parameter required to match the boundary condition for a set of given control
parameters and initial/boundary conditions exists, but can not be found by the algorithm.

The first case appears naturally due to physical limitations and is a feature of the equations and
thus not a problem in itself, counter-intuitively, however, classifying solutions as invalid (and thus
ignoring them in the shooting and fitting method) too aggressively will negatively impact the
capabilities of the shooting algorithm. Not all invalid solutions are created equally – we distinguish
between the numerically invalid solutions, where a numerical problems leads to an abort of the
shape equation integration (e.g. if a variable has the NaN flag set) and the solutions which are
physically invalid. The solutions, which are physically invalid but not numerically invalid, are
mathematically valid and as such proper solutions of the shape equations. These simply fail to
satisfy physicality constraints, such as self-intersecting solutions.

Since we are searching for a zero crossing in the boundary deviation as a function of the shooting
parameter, we need to be able to evaluate solutions at as many points of the larger solution
space as possible. We reason that all mathematically valid solutions may be used to evaluate the
boundary deviation, since the boundary deviation continuously depends on the shooting parameter
for all mathematically valid solutions. During the shooting method, we thus include the valid but
unphysical solutions to stabilize the method. Only when the solution of the shooting method is
still unphysical, we discard it. This further improves the reliability of the shooting method, while
retaining correctness.

12Valid in the sense that it may not intersects itself, diverge or show geometric discontinuities.
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2 Numerically solving and fitting shape equations

The second case why the shooting method can fail is the one that is critical. Here, an algorithmic
limitation is responsible for a failure to generate a physically valid solution. This is exactly the case
which needs to be optimized and understood carefully to allow a proper and reliable parameter
space exploration, which is an important prerequisite for numerical shape fitting. In the following,
we will discuss some of the more important aspects, where we are able to significantly improve
the reliability of the shooting method in comparison to OpenCapsule and beyond the conceptual
improvements already discussed here.

2.2.1 Fitting the shape equations

Conceptually, fitting elastic capsules is similar to fitting liquid droplets. The input to the fit is
still a representation of the profile shape (e.g. an image), and the goal still is to find the set of
control parameters which produce the shape profiles (see Fig. 2.1). It is thus to no surprise that
we are able to reuse a significant amount of work already done for the liquid droplet fit. Being
able to properly reuse the important structures of the actual implementation, requires them to
be designed with a certain degree of generality in mind. How exactly the design of the software
allows us to implement all kinds of fits in a compact and maintainable software package without
unnessecarry code duplication will be discussed in a later section (see Sec. 2.4).

Beyond the superficial, conceptual, similarities between the elastic capsule fit and the liquid droplet
fit, there are some striking dissimilarities. A first fundamental dissimilarity is the parameter-shape
sensitivity. For a liquid droplet, a single high quality profile image suffices to determine all relevant
dimensionless control parameters in almost all cases [17], [24]. For elastic capsules, the situation
is more involved. It is trivial to produce a scenario, where even the most accurate shape fit will
fail to determine all control parameters from a single image. The underlying problem is that only
parameters, which produce a force resultant adequate for altering the shape, can be determined
by a shape fit. This obvious statement is the reason why a single image of an elastic capsule may
not always suffice to recover all control parameters. Take for example the stresses generated from
elastic deformations of the interface, those only manifest if there is a deformation away from the
elastic reference shape. As long as the capsule is sufficiently close to the reference shape, the
elastic stresses are not capable of notably altering the resulting shape – we will not be able to
properly fit the elastic control parameters manifesting as elastic stresses if the shape is close to the
elastic reference shape. We will study the fitting landscape in the next section in order to make
quantitative statements about the fidelity of the elastic fit.

While it is theoretically possible to obtain a fit for a (sufficiently elastically stressed) shape on its
own, we can determine a subset of the control parameters already from the liquid reference shape,
if we have access to it. From a theoretical point-of-view the reference shape is exactly the shape
where no anisotropic and inhomogeneous surface stresses exist. These shapes are guaranteed to
be solutions of the Young-Laplace equation. From an experiment point-of-view, determining a
proper reference shape is not as straight forward and requires feedback from evaluation methods
quantifying the anisotropy and inhomogeneity of the surface stresses [12], [13]. Sometimes the
reference shape is only determined during the analysis, by determining the exact point where the
Young-Laplace fits13 start to fail and use this shape as the proper elastic reference, as we show in
Ref. [13] and later in Sec. 3.1.

The subset of control parameters for the elastic problem, accessible through the reference shape
is, by definition, exactly the reference shape parameter set �⃗� = { ̃𝑝𝐿, 𝛥 ̃𝜌, 𝛺}. Along with the
reference shape parameters, we obviously also, implicitly, find the elastic reference shape of the
capsule. Apart from the reference shape, we can also reuse the parameter 𝛥 ̃𝜌, if and only if the
13Purely isotropic and homogeneous surface stresses.
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total isotropic and homogeneous surface stress does not notably change, the density contrast 𝛥𝜌
does not change, the capillary geometry does not change and the gravitational acceleration does
not change, i.e. 𝛥𝜌𝑔𝑎2/𝛾 must be a constant throughout the entire experiment.

Finally, the fit for an elastic capsule is separated into two parts, we first fit the pendant liquid
drop reference shape to get access to the parameters �⃗� = { ̃𝑝𝐿, 𝛥 ̃𝜌, 𝛺}. This is done exactly as
described in Sec. 2.1.

Second, we fit a sufficiently deformed shape with our elastic theory. The slightly modified
problem statement for this is summarized as following. Let �⃗� ∗ = (𝐾∗

2𝐷/𝛾, 𝜈∗
2𝐷, 𝜏∗

𝑠 (𝑠 = 0)/𝛾)𝑇 be
a parameter vector for the elastic problem modulo the reference degrees of freedom (i.e. ̃𝑝𝐿, 𝛥 ̃𝜌, 𝛺)
and 𝑆𝐿 be a mapping from the elastic parameter space to the elastic shape space with given
reference parameters 𝐿 ∈ 𝑃. The parameter set �⃗� ∗ is considered to be the best elastic fit for some
target shape 𝑆𝑇 if it is a solution to

�⃗� ∗ = arg min
�⃗� ∗

{|| ⃗𝐸(𝑆𝑇, 𝑆𝐿(�⃗� ∗))||2} . (2.11)

Since Eqn. (2.2) and Eqn. (2.11) are from the same class of problems we solve it by utilising the
exact same procedure as discussed for the liquid drop.

Of course, due to the drastically increased complexity of numerically solving the forward problem,
we see a significant degradation in performance compared to a liquid droplet fit. However, through
meticulous optimization (detailed in Sec. 2.4) the time required for an elastic fit is only a factor of
20 slower than the liquid droplet fit (∼ 1 fit/second using multiple cores). This makes the present
software up to three orders of magnitude faster than OpenCapsule, while being drastically more
reliable and accurate at the same time.

2.2.2 The fitting landscape
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Figure 2.3: An example of the error-
parameter landscape encountered during the
fit of an elastic capsule. For this visualization
we have deactivated the additional parameter
𝜈2𝐷 as a fit parameter, which we choose as the
actual target parameter 𝜈2D = 𝜈∗

2D. The full
error-parameter landscape is three dimensional.
The target shape is located at the point of zero
shape MSE, while shapes similar to the target
shape appear on a straight line. We superpose
the numerical target shape with varying degrees
of Gaussian noise and sample the shape error
in the vicinity of the target shape. Varying the
standard deviation 𝜎 reveals the size of regions
where the error is already close to the best
shape error encountered (colored contours).

To better understand the potential shortcomings encountered in the numerical fit, we can probe
the fitting landscape by choosing an arbitrary target shape with the parameter set �⃗� ∗ and
then mesh through the parameters 𝐾2𝐷/𝛾, 𝜏𝑠(𝑠 = 0)/𝛾 and 𝜈2D while evaluating the error func-
tion || ⃗𝐸(𝑆𝑇, 𝑆𝐿(�⃗� ∗))||2. For visualization purposes we exclude 𝜈2D from our parameter space
exploration and set it to the actual parameter of the target shape 𝜈2D = 𝜈∗

2D.

We color code the error function in Fig. 2.3 for an arbitrarily chosen set of control parameters 14.
14The control parameters are: �̃�𝐿 = 3.7, 𝛥 ̃𝜌 = 1, �̃�2D = 4.7, 𝜈2D = −0.3, ̃𝜏𝑠( ̃𝑠 = 0) = 0.6
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2 Numerically solving and fitting shape equations

Interestingly, the region of low shape error seems to be a straight line. We can understand this by
assuming an approximately homogeneous stretching and realizing that at the apex of the shape,
we achieve a similar stretching 𝜆𝑠(𝑠 = 0) if

𝜏𝑠(𝑠 = 0) − 𝛾
𝐾2𝐷

∼ 2(1 − 1/𝜆∗
𝑠(𝑠 = 0)) . (2.12)

The slope of the straight line (called similarity line in the following) is related to the stretching of
the target capsule at the apex 𝜆∗

𝑠(𝑠 = 0). This is also the reason why the slope of the region of low
residual shape error does not strongly depend on 𝜈2D. Rather, a change in 𝜈2𝐷 will shift the global
minimum along the straight line. Interestingly, Eqn. (2.12) predicts that, if the target shape is
close to the reference shape 𝜆∗

𝑠(𝑠 = 0) ∼ 1, we obtain a horizontal line of similar shapes. This result
makes sense, as we discussed previously that exactly those shapes are entirely insensitive to the
elastic compression modulus 𝐾2D. Another notable observation is that the similarity line will have
a positive slope for stretched solutions 𝜆∗

𝑠(𝑠 = 0) > 1 and a negative slope for compressed shapes
𝜆∗

𝑠(𝑠 = 0) < 1. Furthermore, the maximum slope of the similarity line for stretched solutions
is encountered for 𝜆∗

𝑠(𝑠 = 0) → ∞ as 2, while for compressed solutions the similarity line gets
vertical for 𝜆∗

𝑠(𝑠 = 0) → 0.

This is a valuable insight for our goal of extracting rheological parameters from the deformed
shapes, since it allows us to quantify a lower bound for the expected error encountered in the
determination of constitutive parameters from deformed shapes. In Fig. 2.3, we compare exact
numerical solutions, however, in a realistic experimental setting, we will not have two perfect
shapes. Rather, we will have a noisy experimental shape, which we compare to the perfect
numerical shapes in order to find the fitting set of theoretical shape parameters. Hence, we always
have a natural noise floor, which is superposed onto the perfect shape error shown in Fig. 2.3,
eliminating all shape errors lower than the background noise contribution from the line of low
error and disallowing a more precise solution for any single shape. The ramifications of this are
that the region of indistinct shapes 15 grows larger. We show this in Fig. 2.3, where we disturb the
numerically generated target shape’s dimensionless coordinates with a uniform Gaussian noise of
magnitude 𝜎 and use it for the shape error calculation. We highlight the contour lines where the
shape error is within 0.1%, 0.5%, 1% and 5% of the lowest error encountered for a specific noise
amplitude, which gives us an insight into the limitations we face during the fit. It is evident that a
high precision fit is required to resolve the constitutive parameters accurately, as the region of
indistinct shapes grows rapidly with the precision cut-off of the fit.

Numerical problems may arise if a local minimum exist in between the initial guess and the global
minimum. This problem really only materializes once 𝜈2𝐷 is included as a parameter. The general
sensitivity of 𝜈2𝐷 on the target shape is much lower than that of the other two elastic parameters
𝐾2𝐷 and 𝜏𝑠(𝑠 = 0), however, it causes significant trouble for our numerical fit. The manifestations
of this are that we achieve unsuccessful shape fits, where we use unsuccessful in the sense that the
”correct” set of parameters was not retrieved. Interestingly, however, when considering a different
measure of ”success”, namely, the shape residual, most of these fits are actually successful. The
problem here is that these fits get stuck in a local minimum along the similarity line of low error
in Fig. 2.3 with the wrong 𝜈2𝐷, which leads to an inaccurate overall parameter set.

Generally, determining 𝜈2D is ill-conditioned if the shape deformation is approximately isotropic,
because then 𝜆𝑠 ∼ 𝜆𝜙 and 𝜈2D vanishes entirely from the constitutive equations, only leaving 𝐾2D
as a constitutive parameter. Inconveniently, this is always the case if the deformation is small,
because the reference shape surface stresses are isotropic and homogeneous. Therefore, predicting

15Indistinct up to a specific precision.
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Figure 2.4: The error encountered during the fit spans several orders of magnitude. Fits with a
parameter residual of MAE > 10−1 are frequently encountered. These fits are not necessarily bad
shape matches, as they may lie on the similarity line (see Eqn. (2.12)). The problem in the region
MAE > 10−1 is in most cases related to an improper initial guess, which we show in a later chapter
where the initial guess is supplied by a machine learning approach.

𝜈2D reliably is only possible for large enough deformations and appropriate initial guesses for the
fitting algorithm.

Determining an appropriate initial guess for the shape fit, i.e. the start of the optimization is
essentially arbitrary. However, there are better choices than others for the initial guess. An
advantageous property for the initial guess is that it should reside in a region of the parameter
space, where the gradient components in parameter-shape space are all sufficiently steep. Take for
example any initial guess with 𝜏𝑠(𝑠 = 0) = 𝛾, where it is obvious that this point is located in a
region with several slopes in the parameter-shape space being zero 16. The shape fit would only
very slowly depart from the initial guess because of the vanishing gradients in the vicinity of the
initial guess. We thus have to avoid this initial guess and instead choose one, where 𝜏𝑠(𝑠 = 0) < 𝛾,
since the slope of the similarity line is more sensitive to 𝜏𝑠(𝑠 = 0) < 𝛾. Finally, we settle on the
(informed, but still arbitrary) initial guess for the fit: �̃�2D = 2.5, 𝜈2D = 0.5, ̃𝜏𝑠( ̃𝑠 = 0) = 0.95. We
will, in a later chapter, discuss a significantly more robust way to provide a proper initial guess for
the numeric fit with the help of machine learning (see Sec. 5.2) to again significantly improve the
precision, performance and robustness of the fit.

First, we want to evaluate the precision of the numerical fit without applying further machine
learning driven optimizations. In Fig. 2.4 we generate 10.000 random shapes 17 by solving the shape
equations with the numerical forwards solver. These shapes are superposed with a Gaussian noise
(𝜎 = 2%) and fed back into the inverse fit. In a sense, this is an idealized scenario for the solver
and stands as a ”best case” fit performance measure. The results in Fig. 2.4 shows that the fit can
produce accurate results, if it is not trapped in a local shape-error minimum, however, compared to
the liquid droplet fit – where almost all fits return an adequate parameter set – we see a decrease
in robustness and overall precision. We are able to improve the precision and robustness of the
numerical fit beyond Fig. 2.4 by carefully selecting a set of fitting parameters which is conditioned
better than the present one. Finally, we internally use 𝐾2D and 𝐺2D = 𝐾2D(1 − 𝜈2D)/(1 + 𝜈2D) as
parameters for the fit. A more elaborate investigation of this can be found in the Appendix A.3.1.

16The slopes with respect to 𝜏𝑠(𝑠 = 0), 𝐾2D and 𝜈2D are all zero at this point.
17Uniformly sampled in the parameter range shown on the respective x-axis and with uniformly sampled reference

shape parameters from the liquid shapes with 𝛺 = 2.
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2 Numerically solving and fitting shape equations

2.3 Viscoelastic capsules

The next numerical challenge we want to tackle is that, where the shape equations (2.6), (2.7),
(2.8) and (2.9) are accompanied by a time dependent constitutive law. In the purely elastic
case discussed in Sec. 2.2 a numerical scheme was trivially achieved by analytically solving the
constitutive equation in 𝜏𝑠 for 𝜆𝑠. Here, we will need to make 𝜆𝑠 accessible from the available
information as well, but have to consider the much more general constitutive law of a viscoelastic
skin, as derived in Sec. 1.3 in the form of Eqn. (1.41).

Here, we choose to explicitly discretize the convolution integral appearing on the r.h.s of the
constitutive equation Eqn. (1.41) with a trapezoidal rule on a temporal grid with uniform time
step 𝛥𝑡. The time 𝑡 = 𝑛𝛥𝑡 is quantized by the time step number 𝑛, which is why we use that
to refer to the temporal evolution in the following. All other time dependent quantities are also
denoted by their respective the time step number. Finally, we apply the discretization

∑
𝑗

∫
𝑡

0
d𝑡′ ̇𝐽𝑖𝑗(𝑡 − 𝑡′)𝜏v

𝑗 (𝑡′) → 𝛥𝑡
2

∑
𝑗

( ̇𝐽𝑖𝑗,𝑛𝜏v
𝑗,0 + ̇𝐽𝑖𝑗,0𝜏v

𝑗,𝑛 + 2ℛ𝑖𝑗,𝑛) , with ℛ𝑖𝑗,𝑛 ≡
𝑛−1
∑
𝑘=1

̇𝐽𝑖𝑗,𝑛−𝑘𝜏v
𝑗,𝑘

(2.13)

where 𝑅𝑖𝑗,𝑛 is zero if 𝑛 < 2. The entire memory of the deformation sequence is contained 18 in the
terms 𝑅𝑖𝑗,𝑛, which is why they constitute the history terms.

Applying the discretization Eqn. (2.13) to Eqn. (1.41) and utilizing the previously introduced
definition 𝜏1 = 𝜏𝑠𝜆𝜙 and 𝜏2 = 𝜏𝜙𝜆𝑠 we arrive (after some basic calculus) at an expression for
𝜆𝑠,𝑛:

𝜆𝑠,𝑛 − 1 =
̇𝐽𝑠𝜙,0
̇𝐽𝜙𝜙,0

(𝜆𝜙,𝑛 − 1) + 𝛥𝑡
2

(𝜆𝜙,𝑛𝜏v
𝑠,𝑛 ( ̇𝐽𝑠𝑠,0 −

̇𝐽𝑠𝜙,0
̇𝐽𝜙𝜙,0

̇𝐽𝜙𝑠,0) + 𝜆𝜙,0𝜏v
𝑠,0 ( ̇𝐽𝑠𝑠,𝑛 −

̇𝐽𝑠𝜙,0
̇𝐽𝜙𝜙,0

̇𝐽𝜙𝑠,𝑛)

+𝜆𝑠,0𝜏v
𝜙,0 ( ̇𝐽𝑠𝜙,𝑛 −

̇𝐽𝑠𝜙,0
̇𝐽𝜙𝜙,0

̇𝐽𝜙𝜙,𝑛) + 2 (ℛ𝑠𝑠,𝑛 + ℛ𝑠𝜙,𝑛 −
̇𝐽𝑠𝜙,0
̇𝐽𝜙𝜙,0

(ℛ𝜙𝑠,𝑛 + ℛ𝜙𝜙,𝑛)))

(2.14)

The final equation, which closes the system of equations, is obtained by solving the constitutive
equation for 𝑗 = 2 for 𝜏𝜙,𝑛:

𝜏v
𝜙,𝑛 = 1

𝜆𝑠,𝑛𝛥𝑡 ̇𝐽𝜙𝜙,0
(2(𝜆𝜙,𝑛 − 1)

− 𝛥𝑡( ̇𝐽𝜙𝑠,𝑛𝜆𝜙,0𝜏v
𝑠,0 + ̇𝐽𝜙𝑠,0𝜆𝜙,𝑛𝜏v

𝑠,𝑛 + ̇𝐽𝜙𝜙,𝑛𝜆𝑠,0𝜏v
𝜙,0 + 2ℛ𝜙𝑠,𝑛 + 2ℛ𝜙𝜙,𝑛)) .

(2.15)

In all following considerations, and in the actual simulation code, we will choose that at 𝑛 = 0 or
𝑡 = 0 the capsule is in a configuration with no viscoelastic stresses 𝜏𝑣

𝑠,0 = 𝜏𝑣
𝜙,0 = 0. This marks

the start of the simulation, but including the viscoelastic pre-stress in a simulation is no problem
either 19. An important realization is that the time step 𝛥𝑡 must be significantly smaller than the
viscoelastic relaxation time scale in order for the simulation to be precise.

18If the first step is in a reference configuration.
19By including all terms from Eqn. (2.14) and Eqn. (2.15) in the simulation software.
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2.3.1 Fitting shape sequences
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Figure 2.5: We supply an ideal shape
sequence (left) to our numerical inverse
solver and let it deduce the control pa-
rameters purely by shape sequence analy-
sis. The resulting fit (right) is precise with
MAE ∼ 10−4 in the control parameters.

If we wish to fit the parameters of a time-dependent
constitutive model to a prescribed shape deformation
sequence, we need to generalize several concepts used for
the static case in the previous sections. Namely, we still
have a set of parameters �⃗� ∗ for the viscoelastic response,
however, the mapping function from parameter space
to shape space is history-, and thus time-, dependent
𝑆𝐿(�⃗� , 𝑡). This means that the problem statement for
the inverse problem changes in a subtle way to:

�⃗� ∗ = arg min
�⃗� ∗

{∑
𝑛

|| ⃗𝐸(𝑆𝑇
𝑛 , 𝑆𝐿,𝑛(�⃗� ∗, 𝑡))||2} . (2.16)

Still, Eqn. (2.16) is a least-squares problem, which is
accessible to the treatment discussed in Sec. 2.1, in
certain circumstances.

It is important to properly understand which information we actually wrap into �⃗� ∗ and if there
may be problems with assuming that those properties are static. The obvious parameters that go
into �⃗� ∗ are the parameters of the constitutive law, i.e. elastic moduli and viscosities 20. Those can
reasonably be assumed to be static. However, for every shape in the sequence, there is an additional
degree of freedom we need to properly determine, which is exactly the apex stress in meridional
direction 𝜏𝑠(𝑠 = 0). In extent, we could choose to only provide information about the constitutive
parameters and for every shape do an additional, ”inner”, fitting routine, which determines the
best apex stress 𝜏𝑠(𝑠 = 0) for the given target image and fixed constitutive parameters. This is
the most general way to fit a viscoelastic shape sequence, however, it provides a computational
challenge. For a shape sequence consisting of 𝑁 time steps, the complexity for a single ”outer”
fit iteration is high, because 𝑁 inner fit iterations for the 𝑁 apex stresses need to be calculated,
making the overall fit untraceably slow.

We thus choose to reduce the generality and assume a sinusoidal oscillation of the applied external
stress, which we can use to determine that the apex stress throughout the shape sequence shall
also be sinusoidal. The only unknown parameter in this case is the amplitude of the apex stress
oscillation throughout the shape sequence, which is, however, a static parameter, we can add to
the fit parameter set �⃗�. In the future, with significant technical effort, fitting the apex stresses
exactly might be possible, but is out of scope for this work.

In an ideal scenario 21 a viscoelastic shape sequence following the Kelvin-Voigt constutive relation-
ship and consisting of 30 shapes, results in a fit taking ∼ 20 s. We show this fit in Fig. 2.5, where
it is evident by visual comparison of the shape sequences (colors indicate temporal evolution) on
the left (input) and right (fit) that the fit does work. Of course, we can determine the control
parameter deviation, since we have access to the actual ground-truth. The MAE of the control
parameters in an ideal scenario (just as shown in Fig. 2.5) is ∼ 10−4. We want to highlight that
this level of performance is only possible through meticulus optimization as well as static and
dynamic analysis of the code. Of course, real-world shape sequences will in general take longer
than the ideal scenario, because the error-parameter landscape is more treacherous. Additionally,
for real-world shape sequences we do not have a ground-truth for the actual control parameters.
We will investigate real-world shape sequences in Chap. 3.

20Or in terms of the relaxation functions: decay time scale and amplitude.
21Ideal meaning that a theory shape sequence is presented as the input to the inverse method.
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2 Numerically solving and fitting shape equations

2.4 CapSol: A highly capable capsule solver with powerful shape fitting
capabilities

Notice – This section details the software created by the author. It is a rewrite and
significant improvement of the open source software OpenCapsule. The motivation
for this new software is that the extension to viscoelastic capsules requires drastically
better performance. Additionally, several significant problems exist in OpenCapsule,
which make a significant restructuring essential.

In this section we want to highlight the software that enables all of the shape fits presented
in Chap. 3 and which also supplies the data presented in Chap. 1 and Chap. 2. An often
overlooked, but very important, step towards a well-functioning software is the actual design of the
implementation. This point is conceptually different from the pure numerics, since it focuses on
ease-of-use, extensibility, re-usability, error mitigation and performance. It is crucial to design the
implementation in a way where human error is spotted early and critical functionality is isolated.

The design of the present software – CapSol – is guided by object oriented programming (OOP).
Using OOP has many benefits over using functional programming in a project such as CapSol.
Abstracting the components of the program into compact objects supports minimal code duplication
and an overall easier to understand structure. For example, we consider solutions of axi-symmetric
shape equations in all of our application cases, hence we abstract the information the Shape holds
into a structure, where we additionally define a common interface to interact with these information.
Any solution of an axi-symmetric shape equation then inherits from the Shape class, giving it
immediate access to all of its members without any code duplication. Furthermore, the interface
of a base class may be purely virtual, forcing the inheriting class to implement those functions,
keeping the code consistent and functional across multiple independent sections. Additionally,
templating the interfaces with purely virtual functions allows us to implement generalized functions,
such as a shape fitting function, without specifying the exact routine or parameters required to
generate the solution shapes from the shape equations. The child class then inherits all traits and
only implements the functions required by its virtual base class, e.g. the shape equations. This
way, all solutions to axi-symmetric shape equations can directly use the shape fitting capabilities
when inheriting from the abstract Shape class without any further work required.

An example which shows the power of this design is the least squares method, which is employed
for the shape fit in all of our applications. This method needs to only be implemented a single
time when properly utilizing purely virtual functions, although the shape equations, parameter
sets, initial conditions and more may be different for the specific application. For this to work, the
least squares method needs to impose a certain interface, which all classes using the method must
implement, i.e. a set of purely virtual functions which can be called during the fitting procedure
and call out to the specific implementation in the child classes.

This is one of the major optimizations made in the design compared to OpenCapsule, where
functional design and object oriented designs are mixed, producing many code duplications. This
reduces the maintenance cost of the code and overall code complexity drastically.

2.4.1 Accessing information of other solution shapes

To solve the shape equations, we are required to evaluate properties of solutions of other shapes
(such as the reference shape) at points between integration steps. This is purely due to the
Runge-Kutta method used for the integration.
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2 Numerically solving and fitting shape equations

The Runge-Kutta method of order four, employed here, requires us to evaluate the shape equations
at points ̃𝑠+ ℎ̃/2, where we need access to e.g. 𝜆𝜙 = 𝑟/𝑟0. However, 𝑟0 is provided by the reference
solution.

One way to account for this is to interpolate these properties using a spline interpolation for
the entire integration interval 𝑠 ∈ [0, 𝐿]. The spline can be evaluated at any point inside the
interpolation interval, this is exactly what Ref. [14] does to tackle this problem. A drawback of this
technique is that creating and evaluating splines is computationally demanding and comparatively
slow. Additionally, the interpolation does not actually produce correct intermediate values, because
it is only an interpolation, which can induce numerical instability. It turns out that we are able
to entirely circumvent using an interpolation technique, while solving the shape equations, by
not only saving the results of the integration at all integration steps, but also all results of the
intermediate steps performed by the Runge-Kutta algorithm. This requires the integration step
size to be the same for all relevant solutions of the shape equations, but replaces a spline with an
array and a spline evaluation with a direct memory access. This speeds up the integration process
and additionally improves the reliability of the method because we are not using interpolated
values, but actual integration values in all of our integrations. A side-effect of this is that it
reduces the required minimal integration step-size because the errors made in in-between steps are
smaller.

2.4.2 Python API

While C++ is a robust language choice for the computation side, because the language is compiled
into raw machine code and thus fast, it is not entirely easy to use from a user/scripting perspective.
A common language for scientists is the interpreted language Python, possibly because of its
simplicity and intuitiveness. There is a way to bridge these two worlds together. Python is able to
load static object files and call exported symbols by allowing the instruction pointer to jump into
the loaded object machine code. A simple to use abstraction for this is the free and open-source
package pybind11, which allows us to expose classes and functions from native C++ to a Python
module.

Using pybind11 we are able to fully expose the C++ framework to Python and make it possible to
inspect variables, integration results and generate shapes, compute shape fits all from within the
comfort of a simple to use Python interface. Additionally, we can use readily available python
packages to perform the experiment image preparation before passing it into the shape fitting
routine implemented in C++. The shape detection and pre-processing is a technical detail and is
delegated to the author’s master thesis [45] for the interested reader.

A documentation for the Python API, together with the entire source code, is available at the
software repository https://www.github.com/FelixKratz/CapSol.

39

https://www.github.com/FelixKratz/CapSol


3 Analysis of experimental shape sequences

Notice – None of the experiments discussed in this chapter are performed by the
author, they are provided by our collaborators from the groups of W. Drenckhan
et al. at the Institut Charles Sadron in Strasbourg, and F. Mugele et al. at the
University of Twente. Although the author participated in parts of the experiments
performed for Sec. 3.2, he was merely participating as a visiting observer. The
author’s contribution is the experiment data analysis and interpretation discussed in
the following sections.

Figure 3.1: An experiment setup for pendant droplet experiments. The image is taken at the
laboratory of W. Drenckhan et al. and shows their experiment setup used for the experiments from
Sec. 3.2 and Ref. [12]. A camera is pointed at the cuboid experiment cell into which a needle (not
seen in the image) is suspended from the top mechanic platform. The experiment is illuminated from
the back. The tubing attached to the white cuboid is used to exchange the outer liquid phase and
control the polymerisation process of elastic surface layers. It can be used to manufacture multilayer
skins and is not generally required for liquid droplet experiments.
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Having an exchange between theory and experiment is an integral constituent for the knowledge
gain in the natural sciences. While the pure theory aspect of physics may give insight into possible
mechanisms of nature, we have no strict axiomatic framework from which it would be possible
to derive all inner workings of nature in a formal manner. Rather, any theory about nature’s
workings needs to be rooted to reality via appropriate experiments. Those experiments should be
designed in a way to be able to test assumptions and results derived from them as well as inspire
novel theoretical approaches. Ultimately, this is the reason why a theory in the natural sciences is
not accessible to a formal proof as seen in pure mathematics, rather, it is only valid as long as
none of its assumptions are rejected by an experiment. Although this thesis is primarily a theory
based work, in this chapter, the focus will be to apply the theory presented in Chap. 1 and the
computational methods presented in Chap. 2 to actual experiments and thereby real, non-idealized,
systems. All experiments discussed in this chapter are performed by skilled experimentalists
belonging to our collaborators from the groups of W. Drenckhan et al. and F. Mugele et al..

The setup for the pendant drop experiments performed for this section is common in the literature
[12], [13], [17], [32]. A drastically simplified description of the experiment setup is given here
for completeness sake. A spherical needle is attached to a rigid frame and connected (commonly
via tubes) to a liquid reservoir, e.g. a syringe. The liquid reservoir can be controlled to eject
or retract fluid through the needle. Creating a proper needle, which does not create additional
interactions with the fluid (often achieved by a hydrophobic coating [12]) is one of the many difficult
challenges encountered on the experiment side, which we will not discuss here. If experimenting
with non-negligible gravitational effects, i.e. |𝛥 ̃𝜌| > 0, the needle needs to be precisely oriented
along the axis of gravity to reduce deviations from axi-symmetry as well as possible. The influence
of non-axisymmetric shape corrections is discussed qualitatively in Ref. [17] for liquid droplets.
Additionally, the interface attached to the needle needs to be presented with proper lighting, such
that the outlines of the interface are clearly distinguishable from the background. Usually, the
droplet is illuminated from the back, while a digital camera is focused on the front of the droplet,
as depicted in Fig. 3.1.

Such experiment can be performed both in a pendant and in a rising geometry. Ultimately, only
the sign of the product 𝑔𝛥𝜌 determines the directionality of the effective buoyancy force acting on
the droplet, such that a pendant drop experiment 𝑔 > 0 with positive density contrast 𝛥𝜌 > 0 is
entirely equivalent to a rising drop experiment 𝑔 < 0 with negative (but equal magnitude) density
contrast 𝛥𝜌 < 0. Only if the combined sign changes, the experiments are not equivalent, as one of
them has positive 𝛥 ̃𝜌 and the other has negative 𝛥 ̃𝜌. All of the present experiments have positive
𝛥 ̃𝜌 > 0, such that they operate in the positive half space of the parameter space (see Fig. 1.3). A
liquid droplet in air at ∼ 1 bar has a positive 𝛥 ̃𝜌 if it is suspended in a pendant geometry. An oil
droplet suspended in water has positive 𝛥 ̃𝜌 if suspended in a rising geometry.

Additionally, the present experiment shapes are always volume controlled 1 and never pressure
controlled. This makes all liquid shapes of class 𝛺 = 1, 2 and some of class 𝛺 = 3 available to
the experiment, as detailed in Fig. 1.3. In order to precisely follow a given volumetric deflation
sequence of the drop, a software calculates the volume (or equivalently surface area) from the
profile of the shape in real-time and performs micro-adjustments through an electric motor which
controls the liquid flow rate at the tip of the needle, e.g. by pressing or pulling on a syringe. Notice
that the calculation of volume or surface area is not equivalent to the liquid or elastic shape fits in
any way. Rather, it only uses the geometry of the profile to calculate the volume and does not
solve any shape equations to properly include the force balances – this is what we will do in the
following sections.

1Sometimes implicitly through a software surface area control mechanism.
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3.1 Complex interfaces with liquid-solid phase transitions

Published material – This section is reproduced with modifications and permission
from the author’s publication [13], © 2023 The Authors. Published by American
Chemical Society. All experiments discussed in this section are performed by the
group of F. Mugele et al. at the University of Twente.

Figure 3.2: The experimental observation (top), where we successively reduce the volume of the oil
droplet to find a transition between a liquid-like interface and a solid-like interface. The theoretical
description (bottom) shows the devised mechanism of the process, i.e. the solidification process due
to a change in the interaction between surface molecules at a certain critical surface area. While
the drops are initially well described by a uniform, but temporally varying, surface tension (i.e. a
Gibbs-elasticity), this description starts to break down at the critical point, where anisotropies and
inhomogeneities in the surface stresses need to be taken into account to appropriately describe the
shape sequence.

In all of our previous considerations, the actual interface configuration only entered the discussion
in terms of the surface tension 𝛾 of the elastic reference shape and in terms of the density contrast
𝛥𝜌 between the phases in the reference configuration. This is the idealized theoretical description
used to model the interface properties. From an experimental perspective, however, there are
several additional complex processes at interfaces, which need to be considered with care. One
such ubiquitous complex interface is the interface between crude oil and water. Here, several
surface active organic molecules (surfactant molecules) can be found at the interface, which means
that they are able to actively migrate at the interface. The effects sufactant molecules have for
the interface deformation behavior are multitude. A particularly obvious modification to interface
properties driven by surfactants is regularly exploited by most people – scientists and non-scientists
alike – when soap is mixed into water in order to reduce the surface tension of oil-water interfaces,
emulsifying the oil-water mixture and thus making it possible to rinse the mixture more easily.
Other complex interface effects include the accumulation of macroscopic structures at the interface
in an aging process, as observed in biological proteins such as hydrophobins [14], industrially used
polymers such as PNIPAM [69], and crude-oils [70] used in the energy sector.
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These complex structures at the interface can, under certain circumstances, be described as
viscoelastic surface layers. The modifications made by the viscoelastic surface layer can be drastic,
as discussed from the theoretical perspective in Sec. 1.3. As a result, the microscopic manifestations
of such drastic change in theoretical description include, but are not limited to, changes to capillary
pressure, surface flow, transport through the interface, stability of emulsions and contact properties
(which we will discuss in Chap. 4) [71].

To properly understand these complex systems, we quantify the rheological properties of the
interface by utilizing the methods developed in this thesis, i.e. the theory of two dimensional
surface viscoelasticity in combination with the numerical shape-fitting backbone. In this section,
we will use the interface between crude oil (CRO) and brines containing aqueous salt ions as the
complex interface subjected to our methods. We note that the methodology employed for this
specific system is widely applicable for other complex interfaces, as we will discuss in the following
sections.

Such crude oil interfaces occur naturally within oil reservoirs and unnaturally in ocean oil spills.
Crude oils contain a diversity of surface-active organic molecules, resulting in a complex interface
rheology. The complexity of interfaces between brines and CRO plays a significant role in the
recovery process of crude oil from ocean spills and phase separation [72]. The question, which
microscopic constituent causes the complexity of the interface is usually answered by: asphaltenes.
Asphaltenes are exactly those components of crude oil, which fulfill a set of solubility specifications
and are also found in other materials such as coal. The exact specification requires asphaltenes
to be soluble in toluene, but insoluble in n-alkanes. This definition dates as far back as to
J. Boussingault in 1837 [73]. The amphiphilic nature of asphaltenes in combination with the
significant alkane fraction in most CROs leads the asphaltenes to adsorb (often irreversibly) to the
oil/brine interface [74], creating macroscopic interface sub-structures. The exact structure of the
asphaltene interface layers depends on several factors, including resin content, ionic composition
of the brine, hydrogen bonding, temperature, surface history, kinetics, and other factors [75]. A
recent review by Moud et al. discusses the importance of various controlling factors in asphaltene
layer development at the oil/brine interface [76].

Asphaltene layers grown under a wide variety of conditions show distinct phase transitions when
compressed. Both Yarranton et al. [77] and Kabbach et al. [78] qualitatively describe the surface
tension versus surface area relationship for these interfaces. A change in Gibbs modulus seems
to indicate a ”phase change” of the interface during compression. With the assumption that
asphaltenes adsorb nearly irreversibly to oil/brine interfaces, the Gibbs elasticity is defined
as 𝐸Gibbs = d𝛾/d ln 𝐴. How reliable the interpretation as a fluid Gibbs-elasticity is remains
somewhat elusive for now, as a qualitative comparison of residual error is not performed up till
now. Continuing to compress further, induces surface wrinkling and distortion that they attribute
to a solid interfacial layer [70], [77]. Measurements of the surface layers, at 2-9 nm thick, seems
to suggest that network formation extends into the oil phase [79]. Additionally, interfacial shear
rheology and particle tracking has shown that asphaltenes form rigid, heterogeneous films that
immobilize particles on the surface [80].

On the other hand, a number of authors have shown that asphaltene-laden interfaces show a
unique equation of state (EoS), meaning every interfacial tension corresponds to a unique surface
coverage, even independent of external conditions. They also state that the maximum surface
coverage aligns well with the average size of a single asphaltene molecule, suggesting a packed, but
unaggregated, asphaltene layer [81]–[84]. Others find a single equation of state when the heptane
fraction in the solvent is low, but suggest gel formation when the heptane fraction is higher (as
it is in natural CRO) perhaps due to adsorption of nanoaggregates to the interface [85]. Some
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Figure 3.3: The purely liquid shape fits utilizing the Young-Laplace equation (1.8) show non-constant
control parameters throughout the entire deformation sequence. The dimensionless pressure ̃𝑝𝐿 (left)
is expected to change during the deflation of a liquid droplet, however, the dimensionless density
contrast 𝛥 ̃𝜌 (right) of a liquid droplet with constant surface tension is not expected to change during
a deflation, hinting at an effective fluid viscosity. The non-dimensional control parameter 𝛥 ̃𝜌 (right)
is the more important one, since we use it to acquire the dimensional surface tension.

authors also propose both an EOS model at lower asphaltene coverage and a solid model at higher
coverage [86].

We note that the current research explores the CRO/brine interfacial rheology using techniques
such as Gibbs isotherms, which eventually break down as the interface forms a layer which supports
anisotropic and inhomogeneous surface stresses[14], [32], [71]. Once the layer has undergone a
phase transition to a fully solid interface layer, the surface stresses are no longer compatible with
the Young-Laplace equation, and thus fits utilizing it are no longer viable[14], [15], [24], [32], [87].
Previous works have used the onset of Young-Laplace fit errors to describe a potential phase
transition, however this method is qualitative [88]. Recently, also the detection of deviations from
Laplacian shapes without (computationally intensive) fitting to them has been described [89]. Here,
we introduce a new method for quantitative measurements of the elastic compression modulus 𝐾2D
and the two dimensional Poisson’s ratio 𝜈2D of a fully solidified CRO/brine interface. We solve
the pendant capsule shape equations of droplets with a true elastic interface using the theoretical
description provided in Sec. 1.2 and then fit the resulting shapes to the experimental data.

We find that a phase transition to a truly solid interfaces occurs earlier than discussed in prior work.
We determine the exact transition point by comparing the shape fit residuals of a Young-Laplace
shape fit compared to a truly elastic shape fit. Furthermore, using this measure, we are able to
determine the importance of anisotropic and inhomogeneous surface stress contributions that arise
upon sufficient deflation.

The experiments are performed in a rising droplet geometry, with 𝛥 ̃𝜌 > 0, such that the experiments
can be subjected to our numerical machinery described in Chap. 2. The experiment data consists
of a series of images taken during the deflation process, as shown in Fig. 3.2 (top).

3.1.1 Fitting the elastic shape equations to the experiment data

We quantify the importance of anisotropic and inhomogeneous surface stresses during the deflation
of the drops by comparing the residual fit error of a purely liquid elastic fit with that of a solid
elastic theory, including anisotropic and inhomogeneous surface stress contributions. It is important
to emphasize that both the purely liquid elastic, as well as the solid elastic interface theories
are mere approximations of more complex interfaces – both theories capture entirely different
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Figure 3.5: We perform two kinds of fits, a purely liquid (Laplace) fit – using Eqn. (1.8) – and an
elastic fit, where we use the equations produced in Sec. 1.2. We show the relevant shape fit residual
(Fit RMSE) as a function of the relative area compression 𝐴/𝐴ref, where 𝐴ref is chosen to be the
area of the shape after which the shape error for Young-Laplace fits start to drastically increase, as
can be seen at 𝐴/𝐴ref ∼ 1. The secondary increase in fit error (towards errors RMSE > 10−1) as
seen prominently for the green points at strong area compression 𝐴/𝐴ref < 0.8 is of technical nature,
since the solution class changes from 𝛺 = 2 to 𝛺 = 3 and our Young-Laplace fit only considers shape
class 𝛺 = 2 solutions. The shape error of the elastic fit is detailed in the inset figure and is always
lower than the error achieved by a Young-Laplace fit.

physical properties and the experimental system might have characteristics correctly described by
either of the theories. Thus, we can only quantify which theory has a smaller residual error to
hint at the relative importance of the characteristics contained in each theoretical description.
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Figure 3.4: The effective surface
tension 𝛾, as recovered as the best
Young-Laplace fit.

We start our analysis of the experiment system by fitting the defla-
tion sequences to the purely liquid model using our Young-Laplace
fit as described in Sec. 2.1. These fits yield the non-dimensional
control parameters of the shape equations, which we show in
Fig. 3.3. A first observation is that the dimensionless density
contrast 𝛥 ̃𝜌 ≡ 𝛥𝜌𝑔𝑎2/𝛾 is not constant. Since the defining dimen-
sional properties 𝑎, 𝑔 and 𝛥𝜌 are not expected to change during
the deflation sequence, the effective dimensional surface tension 𝛾
must be the non-constant contribution. In fact, we can calculate
the dimensional surface tension 𝛾 by inverting the definition of
the dimensionless density contrast, as shown in Fig. 3.4. It seems
that the slope of the effective surface tension 𝛾 as a function of
the logarithmic surface area log 𝐴 undergoes a significant change
at 𝐴/𝐴ref ∼ 1. This is exactly the reason both Yarranton et
al. [77] and Kabbach et al. [78] conclude a change of composition from one fluid surface elasticity
𝐸Gibbs(𝐴/𝐴ref > 1) < 𝐸∗

Gibbs(𝐴/𝐴ref < 1) towards a stiffer Gibbs modulus 𝐸∗
Gibbs. However, this is

not necessarily the correct conclusion. We compare the shape fit residual error along the entire
deflation sequence in Fig. 3.5 (circles) and find a peculiar coincidence of the slope change in Fig. 3.4
at 𝐴/𝐴ref ∼ 1 and a drastic increase in the shape fit error (RMSE) at 𝐴/𝐴ref ∼ 1 in Fig. 3.5.
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Figure 3.6: We show a visual comparison of the shapes seen in experiments (positive 𝑟/𝑎 respectively)
and the best fitting theory shapes (negative 𝑟/𝑎 respectively). Additionally, the dotted lines on
the left of the theory shapes indicate the effective shape and range of the wrinkled region. Here
we only show shapes from the temperatures 𝑇 = 296 K (left) and 𝑇 = 333 K (right). The visual
compatibility of theory and experiment shapes is obvious and quantified in Fig. 3.5 for all three
experiment temperatures.

The appropriate conclusion thus seems to be that, while the slope of the effective surface tension
changes at 𝐴/𝐴ref ∼ 1, it might not actually be caused by a transition between two fluid elastic
phases, but rather by a more fundamental transition to a non-liquid interface morphology. This
more fundamental change in constitutive law induces a change in the effective surface tension as
the Young-Laplace equation fails to capture the actual shape deformation with enough precision.
As soon as the liquid shape fit error starts to increase, the surface stresses become anisotropic and
inhomogenous, as we discussed in Sec. 1.2.2 and Ref. [32].

It is evident from Fig. 3.4 that the surface tension of the liquid shapes change even before a
significant increase in fit error is observed. This is consistent with a fluid elasticity, i.e. a Gibbs
elasticity, till the critical deformation is reached. We identify the point at which the liquid shape
error starts to rise as the onset of anisotropic and inhomogeneous surface stress contributions,
after which the shape of the experimental system might no longer be adequately described by
the Young-Laplace equation. The liquid drop shape at this critical deformation can be used
as a liquid reference shape for the elastic corrections we apply next, since it is the last shape
properly characterized by the Young-Laplace fit and thus by fully homogeneous and isotropic
surface stresses.

We achieve significantly better fits with the solid elastic theory, using a reference shape right before
the critical deformation, i.e. 𝐴/𝐴ref ∼ 1. This is evidenced by the significantly decreased fit errors
in Fig. 3.5 (as seen in the inset). We also show some of the shape fits created by our solver in
Fig. 3.6, where the elastic fit is shown as the left half of the respective plots and the experiment
data as the right half of the plots. This grants an intuition of the precision we are able to achieve
with our software.

The results of Fig. 3.5 suggests that 𝐴/𝐴ref = 1 indeed marks the onset of non-negligible anisotropic
and inhomogeneous surface stress contributions, which are taken into account in the solid elastic
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Figure 3.7: The dimensionless elastic control parameters arising from our shape fits are the main
result of this section. We note that the reference surface tension 𝛾ref is different for each of the
temperature trials, such that the dimensional compression moduli 𝐾2D/𝛾ref (left) exhibit an additional
temperature dependence inherited from the reference surface tension. The dimensional apex stress
𝜏𝑠(𝑠 = 0) also inherits this additional temperature dependence in addition to the temperature
dependence of the dimensionless apex stress (right). All data points depicted in this figure are the
result of two independent fits for both hemispheres of the experimental images, weighted by their
respective residual error.

theory.

In total we fit the theory to three different experimental shape sequences at three different
temperatures 𝑇 = {296 K, 333 K, 358 K} respectively. All values of the elastic control parameters
acquired by the fit are shown in Fig. 3.7, here we will only focus on the average values over a
respective deformation sequence.

While the experiments fitted with the solid elastic theory show some noise in their respective
dimensionless compression modulus 𝐾2𝐷/𝛾ref in Fig. 3.7 (left), we see that the dimensionless
compression modulus is fairly constant for the three temperatures. The results for the average
dimensionless compression moduli are summarized in Tab. 3.1.

For a fully polymeric network interface, we would expect an explicit temperature dependence of
𝐾2𝐷 ∝ 𝑇, simply because the entropic spring constant scales linearly with temperature, as evident
from Eqn. (1.19). A hypothesis for the present results is that the dimensionless compression
modulus 𝐾2𝐷/𝛾ref is not explicitly dependent on temperature, hinting at a steric interaction as
the reason for the large and constant dimensionless compression moduli. This would support the
hypothesis that, at a critical area compression 𝐴/𝐴ref ∼ 1, contact between steric constituents on
the interface is established, which counteracts further contraction. Our results in the elastic region
are not compatible with the assumption of an entropic temperature scaling with 𝐾2𝐷 ∝ 𝑇, but it
is compatible with a temperature independent dimensionless compression modulus. If we assume
the validity of the temperature independent compression modulus hypothesis we can average all
data points for the dimensionless compression moduli together to get a universal non-dimensional
compression modulus 𝐾2𝐷/𝛾ref = 30.0 ± 0.7.

It is important to realize that while the dimensionless compression modulus might show no
temperature dependence, the same is not true for the dimensional compression modulus

𝐾2𝐷 = 𝐾2𝐷
𝛾ref

𝛾ref = 𝐾2𝐷
𝛾ref

𝛥𝜌𝑔𝑎2

𝛥 ̃𝜌(𝐴/𝐴ref = 1)
(3.1)

where we have used the definition of the dimensionless density contrast. Thus the dimensional
compression modulus is inversely proportional to 𝛥 ̃𝜌(𝐴/𝐴ref = 1), which is different for each
temperature trial, as can be seen in Fig. 3.3.
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Temperature ⟨K2D/𝛾ref⟩ 𝛾ref (mN/m) ⟨K2D⟩ (mN/m) ⟨𝜈2D⟩

296 K 29 ± 2 7.8 226 ± 16 0.74 ± 0.03

333 K 27 ± 2 6.6 178 ± 13 0.68 ± 0.02

358 K 30 ± 1 2.1 63 ± 2 0.81 ± 0.02
Table 3.1: Results of our elastic capsule fits for drops aged in de-ionised water for half an hour at
three temperatures. Here, we show the average non-dimensionalized compression modulus (𝐾2𝐷/𝛾ref),
the surface tension of the reference state (𝛾ref), the average re-dimensionalized compression modulus
(𝐾2𝐷), and Poisson’s ratio (𝜈2𝐷).

The surface tension 𝛾ref of the reference shape for the three trials (shown in Tab. 3.1) can be
used to re-dimensionalize the dimensionless compression modulus and to give us the dimensional
compression moduli (also shown in Tab. 3.1). While the dimensional compression modulus is an
order of magnitude larger than the fluid elastic Gibbs modulus, it shows the same qualitative,
decreasing trend with temperature. The inconsistency of solid elastic compression modulus
measurements with liquid elastic Gibbs elasticities is known in literature [14], [15].

Poisson’s ratio seems to not vary drastically with temperature as can be seen in Fig. 3.7 (center).
The averaged Poisson’s ratios are shown in Tab. 3.1. These resulting data for Poisson’s ratio
are not compatible with a single constant for the three experiments. If we, regardless of this
incompatibility, enforce a constant Poisson’s ratio, we arrive at an overall average 𝜈2𝐷 = 0.79±0.01
over all data points. We show the dimensionless apex stresses of the elastic fits in Fig. 3.7 (right)
to find that the dimensionless apex stresses behave similar for all three temperatures. We can
motivate this finding by remembering that the surface stresses are exclusively controlled via the
local stretches 𝜏𝑠,𝜙 = 𝜏𝑠,𝜙(𝜆𝑠, 𝜆𝜙), hence at equal area compression, where d𝐴 = d𝐴ref𝜆𝑠𝜆𝜙, we
expect to find apex stresses similar in magnitude. Thus finding similar dimensionless apex tensions
between temperatures is compatible with the claim of temperature independent dimensionless
compression moduli, because all temperature dependence is contained in the dimensional 𝐾2D.

It is clear from our analysis of CRO droplets that Gibbs isotherm analysis and elastic shape
fitting are not equivalent methods for examining the elasticity of those droplets. This highlights
the importance of introducing elastic shape fitting for quantitative measurement of the elasticity
contributed by solid interfacial layers. These interfaces are extremely complex and, in order to
begin to understand their surface structure, we must think critically about the assumptions behind
the analysis method we choose to employ. A Gibbs isotherm analysis proves to be useful to identify
the characteristic regions, altough mainly as an artifact of a worsened shape residual. It provides
accurate fits for 𝐴/𝐴ref > 1 and can be used to identify the transition point. In the present
analysis, elastic shape fitting reduces the error significantly for 𝐴/𝐴ref < 1 suggesting that the
CRO interface should be interpreted as solid rather than liquid in this regime. This insight cannot
be gained from Gibbs isotherm analysis alone. In addition, the temperature dependence of the
measured elastic modulus provides hints about the mechanism of solid interface formation and
suggests solidification by steric interactions rather than polymeric network formation. We employ
simple elastic constitutive equations; for other complex interfaces more complex constitutive laws
might be more appropriate and can be also employed in elastic shape fitting [14].

Although such elastic membranes have been reported in the literature, no quantitative measure-
ments have been made of the solid layer elasticity. Here, we show that quantitative measurements
of the surface elasticity in solid regimes are possible using shape-fitting elastometry. Not only does
this elastometry allow us to measure the elasticity of the compressed layers, it also gives us clearer
insight into where this solid phase transition occurs. This analysis shows that it is likely that the
compressed layer becomes solid much earlier in compression than previously assumed.
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3.2 Multilayer elasticity and viscoelasticity

Published material – Parts of this sections results are reproduced with modifica-
tions and permission from the author’s publication [12], © 2024 The Royal Society
of Chemistry.
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Figure 3.8: The elastic shape fit provides values for the elastic moduli at each point of the deformation
sequence (linear volume deflation). Increasing image number corresponds to decreasing volumes.
From this data we are able to deduce the dependence of surface elasticity and surface layer count.
While the fits all show a low fit error (see Fig. 3.9), we see that the elastic compression modulus
seems to rise up until 5 layers are reached (left), thereafter a decrease in compression modulus is
observed, hinting at an irreversible change of the skin composition (e.g. a rupture). Already at the
fifth layer, the fit gets highly incompatible with a single universal compression modulus for the entire
deformation sequence, hinting at a severe restructuring of the interface between the fourth and fifth
layer. The Poisson’s ratio is noisy (right), but compatible with low values for the initial layers. Upon
increase of the layer count, the Poisson’s ratio seems to increase as well.

In this section we investigate a system composed of a liquid core and polyelectrolyte multilayers at
the interface. This system is interesting due to its relevance to encapsulation applications [90],
[91]. We aim to understand the properties of those multilayer system in detail and quantify the
viscoelastic response to external stimuli. The polyelectrolyte layers used here (see [12] for details
about the experiment) consist of two components, one constructed from NaPSS, and the other
from PAH. Interestingly, there is no need for an anchoring layer in this system because NaPSS
solidifies at the interface naturally and therefore constitutes sufficient anchoring for successive
layers. We employ the shape fitting technique developed in Sec. 2.2 in order to extract the elastic
constitutive properties of the multilayer system. First, we want to analyse the shape sequences
with our purely elastic constitutive law. We expect this to be appropriate for the first couple of
layers, until at some point significant dissipation will become important. We will try to quantify
exactly at which count of layers the transition from a quasi-elastic to a fully viscoelastic description
becomes relevant. We achieve this by utilizing our viscoelastic theory (see Sec. 1.3) to improve
the compatibility of the generated shapes and experiment shapes over the entire deformation
sequence.

The results for the elastic shape fit are shown in Fig. 3.8. Because of the intrinsic sensitivity issues
at small deformations, the first ∼ 10 images can not adequately reflect the elastic constitutive
properties, which is why they fluctuate severely. After a sufficient deformation is reached, the shape
fit can unleash its power and accurately determine the constitutive properties. We thus average
all measured properties starting from the 10th image. Here we find average results contained in
Tab. 3.2.

It is evident from Tab. 3.2 that a drastic change in the surface layer morphology takes place
between layer four and five, because the compression modulus increases strongly compared to the
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Figure 3.9: During the elastic fit, we need to search for the best matching apex stress 𝜏𝑠(𝑠 = 0).
This apex stress should reflect the experimental stimulus of the system. In our case, it is a linear
deflation. Additionally, we are able to quantify the fit error by calculating the mean square pixel
error between the best fitting theory shape and the experiment shape. All errors encountered during
our elastic fit are low at 0.2% average pixel deviation relative to the capillary diameter.

prior gradual evolution. Furthermore, after layer five, the monotonous increase in compression
modulus seems to also stop. Rather, adding a sixth layer now decreases the compression modulus
for the first time. Looking more closely at the evolution of the compression modulus throughout
the deformation sequence in Fig. 3.8 (left), we see a qualitative change in the evolution of the
compression modulus with deformation appear at layer four and five, indicating an incompatibility
of the applied constitutive law appearing here. This further bolsters the theory of a significant
change in surface layer morphology. The Poisson’s ratio is compatible with a low value around
zero for most layers, only for the sixth layer we see a drastic increase in Poisson’s ratio. How
representative this result is is somewhat elusive for the fifth and sixth layer, as the compression
moduli show a strong deformation dependence. Hence, the constitutive model – and all parameters
obtained with – might not be adequate for these layers after all. However, the error achieved by
the elastic fits stays relatively low at a mean pixel coordinate deviation below 0.2% of the capillary
diameter, as seen in Fig. 3.9 (right). Additionally, the apex stress 𝜏𝑠(𝑠 = 0) identified by the elastic
fit reflects the experimental stimulus – a linear deflation – well, such that we can confidently state
that the fitted constitutive parameters indeed result in precise theoretical reconstructions of the
experiment.

Layer
Count

1 2 3 4 5 6

𝐾2D/𝛾ref 0.18 ±0.02 0.46 ±0.01 0.88 ±0.06 1.79 ±0.05 9.6 ±0.8 8.4 ±0.7

𝜈2D -0.02 ±0.03 -0.04 ±0.01 -0.12 ±0.04 0.21 ±0.05 0.1 ±0.1 0.58 ±0.02
Table 3.2: The average results of the shape sequence fit shown in Fig. 3.8 using a purely elastic
constitutive law. The averages are taken starting at the 10th image of the deformation sequence.

We perform another fit, where we exchange one of the fitting parameters to properly quantify
a different set of constitutive parameters. Up to now, we only considered 𝐾2D and 𝜈2D as the
fitting parameter of the elastic constitutive law. However, as discussed in Sec. 1.2 we can use any
combination of two compatible parameters to quantify the elastic response of the skin. While
these sets of constitutive parameters can always be transformed into another, we do not know
whether the fitting method might perform better with one set of parameters or the other 2.

2Simply due to the conditioning of the fitting algorithm changing.
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Figure 3.10: We can perform the elastic fit in any combination of compatible elastic parameters.
Here we refit the shapes using the compression modulus and the shear modulus to better quantify
those parameters. We can see a notable stability improvement in the method compared to Fig. 3.8.
The compression modulus (left) still varies greatly in the first ∼ 10 images – which we expect – but
starts to show a relatively smooth deformation dependence thereafter.

Hence, we perform a new fit in the compression modulus 𝐾2D, paired with the shear modulus
𝐺2D = 𝐾2D(1 − 𝜈2D)/(1 + 𝜈2D). The results are qualitatively similar as seen in Fig. 3.10. However,
it is already visually obvious that the fitted parameters are less noisy, hinting at a better fitting
stability with those parameters. This could be caused by the fact that both of these parameters
have no upper bound, where Poisson’s ratio has a strict upper bound of one, which might hinder
the algorithm at properly exploring the parameter landscape. Additionally, the shape equations
might be better conditioned with respect to changes in the shear modulus versus Poisson’s ratio.

The results obtained for the compression modulus and the shear modulus shown in Fig. 3.10
result in the averaged (from the 10th image) constitutive parameters summarized in Tab. 3.3. The

Layer
Count

1 2 3 4 5 6

𝐾2D/𝛾ref 0.13 ±0.01 0.43 ±0.02 0.78 ±0.03 1.74 ±0.04 13 ±1 9.9 ±0.5

𝐺2D/𝛾ref 0.21 ±0.01 0.55 ±0.02 1.07 ±0.08 1.95 ±0.44 7 ±1 2.8 ±0.2
Table 3.3: The average results of the shape sequence fit shown in Fig. 3.10 using a purely elastic
constitutive law. The averages are taken starting at the 10th image of the deformation sequence.

obtained results for the compression modulus in Tab. 3.3 are compatible with those obtained in
Tab. 3.2.

3.2.1 Viscoelastic effects

Next, we allow viscous dissipation and fit an entire sinusoidal shape oscillation sequence to a
viscoelastic Kelvin-Voigt model (as discussed in Sec. 1.3). In contrast to methods used in the
literature [92], we solve the full time dependent shape equations and fit them to the experimental
input. It is important to discuss the potential pitfalls encountered during such a fit. One major
problem of the available data is that the resting droplet image is not captured. Thus, the first
data point in each shape sequence is captured already after the oscillatory stimulus was started.
This makes determining the proper, non viscously stressed, shape impossible. However, since
the data rate is sufficient, we can still use this image as an approximate reference shape, if we
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Figure 3.11: We compare the results of sev-
eral fits performed on the same expermiment
system. A purely elastic fit for individual shapes
of the sequence in the fitting parameter ensem-
bles {𝐾2D, 𝜈2D} and {𝐾2D, 𝐺2D} (blue plus and
orange cross respectively) gives the indicated av-
eraged results. Additionally, we perform a vis-
coelastic shape sequence fit for an entire oscilla-
tion sequence (green Y). The results coincide for
the first few layers but start to drastically diverge
for layers five and six. The viscoelastic fit allows
us to fit an exponential dependence to the data
(red dotted line) with 𝐾2D/𝛾ref ∝ 1.85𝑛.

assume that the deformation is small during the first frame time. Additionally, the shape data
points obtained from the experiment are not equidistantly spaced in time. Rather, the images
have (sometimes largely) varying frame-times. This makes the viscoelastic shape fit challenging,
because in the numerical implementation, we use a fixed time step. While it would be possible to
generate the theory shape sequences at a much finer temporal resolution to match the experiment
variations, we avoid doing that for performance reasons. In the end, we fit the shape data assuming
a constant time-step and because the actual frame-times are spread symmetrically around an
average frame-time, we expect the error we produce by neglecting the precise timing to not be
relevant in the long run. This is because the mean-square pixel displacement of the entire shape
sequence is minimized during a viscoelastic fit, such that, as long as the error is symmetric, we
still achieve a proper result.

In total, each experiment we subject to our analysis contains five sinusoidal cycles. We are able to
fit the viscoelastic properties to the entire shape sequence, meaning all five cycles are used in a
single fit. This makes the viscoelastic fit use much more information than the purely elastic fit and
the result is the one that fits the entire data the best, with the constraint that the constitutive
parameters are constant throughout the entire deformation sequence. The results obtained from

Layer
Count

1 2 3 4 5 6

𝐾2D/𝛾ref 0.28 0.51 0.68 1.68 3.32 5.53

𝜂𝜔/𝛾ref 0.18 0.25 0.53 0.57 0.86 4.02
Table 3.4: The results of the viscoelastic shape sequence fit using a Kelvin-Voigt model with a
dissipation coefficient 𝜂 and compression modulus 𝐾2D. Poisson’s ratio is not fitted here, rather it is
kept constant at 𝜈2D = 0.5.

the viscoelastic fit, as seen in Tab. 3.4, are qualitatively similar to the results obtained by the
purely elastic shape fit in Tab. 3.3. However, the transition between layer four and five is no longer
so drastic. Instead, the viscosity of the interface seems to change dramatically between layers five
and six. The layer dependence of the compression modulus can be obtained from Fig. 3.11, where
it is evident that an exponential dependence is compatible with the results of the viscoelastic shape
sequence fits. The data produces a layer dependence for the dimensionless compression modulus
as 𝐾2D/𝛾ref ≈ (0.14 ± 0.02) ⋅ (1.85 ± 0.08)𝑛, where 𝑛 is the layer count – for every additional layer
𝑛, the compression modulus roughly doubles. Isolating the first three layers, reveals that a linear
fit 𝐾2D/𝛾ref(𝑛 ≤ 3) ≈ (0.20 ± 0.02)𝑛 + (0.09 ± 0.04) is compatible with the data as well. However,
the exponential fit can be applied even to layers four and five, indicating that the layers may start
to grow super-linearly or synergetic effects start to be important.
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Figure 4.1: We discuss contact phenomena in several geometries. We start from a contact between
an elastic capsule and a wall (left). Then, we progress to the contact between two capsules (center).
Finally, we discuss the contact of many capsules, which form a three dimensional macrostructure and
has bespoke three dimensional elastic moduli (right).

Contact phenomena between soft or elastic bodies are ubiquitous in nature. They are encountered
in problems across the scales and include important biological processes, such as cell interactions,
as well as medical applications such as drug delivery. An important hallmark in the understanding
of contact mechanics is the Hertz-problem, studied and solved by Heinrich Hertz in 1881 [93]. It
predicts the contact properties of spherical fully elastic bodies without adhesion or friction. It is
still applied in scientific and industrial innovations today and marks the importance of contact
problems in general. While the contact between two curved bulk elastic objects is well understood
by this theory, the understanding for thin-walled and pressurised elastic objects is still evolving
[94]–[96].

The properties of micro-capsules with an elastic interface have received increasing interest in the
sciences and in industry, because of their ubiquitous fields of applications. Contacting elastic
capsules with certain loads is usually discussed in terms of a point force [97]–[99] or in contact
with a rigid wall [96], [100]–[110]. Adhesive membranes, without elasticity, are considered in the
literature for various tasks, such as robotic gripping [111] and the membrane-membrane contact
properties are frequently discussed [95], [112], [113]. Elastic capsules are theoretically more complex
because the elasticity generates a local surface stress depending on deformations relative to a
relaxed elastic reference shape. There is very little literature available for the elastic capsule
contact problem [94] and the understanding is still evolving.

In this work we want to explore the contact mechanics of two thin walled, pressurised adhesive
elastic capsules – with and without bending stiffness – suspended from two opposing capillaries and
pressed against each other by an external force, as seen in Fig. 4.1. The theoretical investigation
is performed in terms of variational calculus of the appropriate free energy. We differentiate
between free-slip and no-slip contact boundary conditions and derive the full set of shape and
contact equations independent of the elastic constitutive law. Finally, we integrate the resulting
shape equations numerically and analyse the parameter-shape-space and the force-contact-length
relationship. As a pre-requisite to the capsule contact problem we investigate the contact between
an elastic capsule with and without bending stiffness and a solid wall (see Fig. 4.1 (left)). We also
show how the solution of the contact problem could be applied in the material sciences to design
elastic capsule meta-materials with peculiar bulk elastic properties, as shown in Fig. 4.1(right).
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4.1 Buckling, and why we can ignore it

In the literature there are numerous works which discuss the buckling instability of shells [18],
[114]. The common result seemingly is that shells without bending stiffness buckle immediately.
We want to discuss why this is not generally true and how to instead interpret the results from
literature in the limit of vanishing bending stiffness.

The general setup for the discussion of the buckling instability is a shell in some geometry, where
we will concentrate on the spherical geometry. The shell has elastic energies proportional to the
two dimensional Young’s modulus 𝑌2D and bending stiffness proportional to the bending modulus
𝐸B. An isometric compression of the shell will create a cost in stretching energy and bending
energy, because the shell is deformed in-plane to reduce the surface area and, additionally, the
radius of curvature decreases from the preferred spontaneous curvature. This is an energetic
loose-loose scenario (i.e. overall higher total energy). If the bending energy is much smaller than
the stretching energy, we arrive at a situation, where the energy can always be decreased from an
isometrically compressed solution by creating a mirror inverted cap. This is exactly the result
from Pogorelov [114]. In this scenario it is indeed the case that vanishing bending modulus allows
the shell to decrease its volume without any energetic cost, simply by creating an appropriately
sized mirror inverted dimple. Here we indeed have instantaneous buckling at a volume decrease.

The situation changes, however, once we introduce a constant surface tension contribution, which
quantifies the energetic penalty created by the shell being embedded into the surrounding medium.
By introducing a constant surface tension we ensure that the shell behaves as the pure liquid
enclosed by the skin in contact with the surrounding medium (e.g. water in air) in the limit
𝑌2D → 0 and 𝐸B → 0, as it should be. Now, however, the energetic situation changes quite
fundamentally. An isometric compression of the shell still costs bending and stretching energy.
However, the reduction of the interfacial area reduces the energetic penalty of embedding the shell
into its surrounding medium, simply because the surface area is reduced. This is no longer a
situation where it is clear which energetic contribution dictates the shape of the shell. Simplifying
the situation and reducing the bending stiffness 𝐸B → 0 we now have a situation, where an
isometric compression might actually be favourable from an energetic perspective if the reduction
of the surface tension induced interfacial energy ∝ 𝛾𝛥𝐴 outweighs the energetic increase in elastic
compressive energy ∝ 𝛥 (∫ d𝐴 𝑤el

𝑆0
/(𝜆𝑠𝜆𝜙)).

Another way to think about this is to realize that in a state without any elastic stresses 𝜆𝑠 = 𝜆𝜙 = 1,
a constant surface tension contribution yields 𝜏𝑠 = 𝜏𝜙 = 𝛾 and thus requires a positive internal
pressure 𝑝 to achieve a force balance. Without surface tension, this pressure is zero in the
undeformed state because then also 𝜏𝑠 = 𝜏𝜙 = 0.

We are able to state that, as long as the internal pressure is positive, buckling is generally disallowed.
This statement is actually trivial, because the sign of the pressure 𝑝 quantifies the sign of the slope
of the inner energy 𝐸 (i.e. the surface energy due to stretching, bending and surface tension),
with respect to volume changes. This becomes obvious when considering that the pressure 𝑝 is
introduced as a Lagrange multiplier in the Legendre transformation from inner energy 𝐸 to the
volumetrically constrained free energy 𝐹 ≡ 𝐸 − 𝑝𝑉 and thus counters the forces generated by the
inner energy in order to drive the shell into the inner energy minimum. Thus, if the pressure 𝑝 is
positive, the inner energy is reduced by a reduction in volume and vice versa. Buckling on the
other hand is a process, where the system is forced into a configuration which is more unfavourable
for the inner energy at decreased volume, which is why the pressure is always negative (or zero)
for buckling.
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Another way to think about this fact is that a force balance can never be achieved in a mirror-
inverted region with positive pressure, because 𝑝 = 𝜅𝑠𝜏𝑠 + 𝜅𝜙𝜏𝜙, where the curvatures are inverted
in the mirror-inverted region but the tensions do not change their sign. This is exactly the
manifestation of the energetic decrease due to the decreased surface area. As long as the internal
pressure is positive, it needs to counteract the net tension along the interface, which acts to further
compress the shell. Hence, only at the point where 𝑝 = 0 and as such 𝜏𝑠 = 𝜏𝜙 = 0, the energetic
penalty from the elastic compressive energy becomes larger than the energetic benefit due to the
surface area reduction. Exactly at this point mirror-inversion buckling is again the energetically
favourable solution at a further decrease in volume 𝑉.

Additionally, because increasing bending stiffness delays the buckling transition (to increasingly
negative internal pressures), we can be sure that as long as the internal pressure 𝑝 is positive, we
can not have a buckling transition.

4.2 Contact of a capsule with a solid wall

Figure 4.2: A fluid filled,
pressurized elastic capsule is
pressed against a solid wall
with force 𝑓 and contacts it
over a length 𝑙.

We want to start our investigation by considering the contact of an
elastic capsule and a solid wall of arbitrary (smooth) shape, which is
visualized in Fig. 4.2. The scenario is similar to that in an emulsion,
investigated by Morse and Witten in Ref. [115], only that we want
to derive the exact shape equations for the contact with a wall. The
capsule shall have a surface energy per undeformed unit area 𝑤𝑆0
and vanishing bending stiffness 𝐸𝐵 = 0. In a later chapter, we will
generalize the derivation to non-zero bending stiffness. Note that
𝐸𝐵 = 0 is not an exotic case of the problem. When performing
the limiting process 𝐸𝐵 → 0, the solution will smoothly approach
the one for 𝐸𝐵 = 0. We can understand this fact by considering
that the bending stiffness imposes a length scale 𝑅min of smallest
radius of curvature allowed. Conversely, if this length scale is small
with respect to the characteristic length scale of the problem, i.e.
𝑅min ≪ 𝑎, we encounter a scenario, where the corrections due to the
bending energy only have an effective correlation length-scale given by 𝑅min and are thus negligible
for the macroscopic solution on the length scale 𝑎 (which we are interested in). Thus, the limiting
process 𝐸𝐵 → 0 continuously converges to the case 𝐸𝐵 = 0 on the macro-scale.

The capsule shall be in contact with the wall over a total parametric length 𝑙 and then detach
from the wall. The capsule shall be pressed against the wall with a force 𝑓. The modifications
to the constitutive law of the capsule due to the contact with the wall, e.g. a change in surface
tension, are kept as a parameter in the following derivation and can be chosen arbitrarily. The
surface energy density in the contact region is marked with an additional superscript to indicate
this fact.

The energy functional of the system at hand has two distinct regions, the contact region and the
region where the shape is free. Between those regions, discontinuous changes in the Lagrange
function can appear. Thus, the energy functional has to be treated as a broken functional. We
discuss the variational calculus of broken functionals in the Appendix A.1.3 and can simply use
the derived formalism here. The broken functional can be written in terms of the undeformed arc
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length coordinate 𝑠0, simply by collecting all energetic contributions 1

𝐹 =𝜋 ∫
𝑙0

0
d𝑠0 {2𝑟0𝑤𝑐

𝑆0
− (𝑝𝑟2 − 𝑓

𝜋
) 𝜆𝑠 sin 𝛹}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑐+2𝑟0𝜆𝑠𝜆𝜙𝛥𝛾wall

−𝜋 ∫
𝑙0

0
d𝑠02𝑟0𝜆𝑠𝜆𝜙𝛥𝛾wall

+ 𝜋 ∫
𝐿0

𝑙0

d𝑠0 {2𝑟0𝑤𝑆0
− (𝑝𝑟2 − 𝑓

𝜋
) 𝜆𝑠 sin 𝛹}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑓

.
(4.1)

The term ∝ 𝛥𝛾wall in Eqn. (4.1) is the surface energy change of the wall due to it being
in contact with the interface material versus the surrounding medium. This is the same term
encountered in the discussion for capsules absorbed to liquid-liquid interfaces in Ref. [26]. Note
that the contribution ∝ 𝜆𝑠 sin 𝛹 is always zero in the contact region if the wall is flat, because then
sin 𝛹 ≡ 0 in the entire contact region. Additionally, the variation of the pressure term ∝ 𝑝 only
produces pre-factors to the variation normal to the interface ∝ 𝛿𝑛, which is always zero in the
contact region to ensure that the variations do not violate the premise of a contact with the wall,
such that even in the more general case of a non-flat wall, the pressure term always vanishes from
the variation in the contact region – as it should be.

The shape equations in the non-contacting region are equivalent to those found in [14], [15], [26]
and those produced in Sec. 1.2. Alternatively and equivalently, we could apply the Euler-Lagrange
formalism for broken functionals introduced in the Appendix A.1.3 in the free region to the
functions 𝑟, 𝑟′ ≡ d𝑟/d𝑠0, 𝑧 and 𝑧′ ≡ d𝑧/d𝑠0 to find

d
d𝑠0

∂ℒ𝑓

∂𝑧′ = d
d𝑠0

(2𝑟𝜏𝑠 sin 𝛹 − 𝑝𝑟2 + 𝑓
𝜋

) = ∂ℒ𝑓

∂𝑧
= 𝑧′𝑟2𝛥𝜌𝑔 , (4.2)

d
d𝑠0

∂ℒ𝑓

∂𝑟′ = d
d𝑠0

(2𝑟𝜏𝑠 cos 𝛹) = ∂ℒ𝑓

∂𝑟
= 2𝜆𝑠𝜏𝜙 + 2𝑝𝑟𝑧′ . (4.3)

The two equations Eqn. (4.3) and Eqn. (4.2) reduce to the shape equations recovered by variations
in normal and tangential directions 𝛿𝑛 and 𝛿𝑡 given as Eqn. (1.14) and Eqn. (1.15) respectively,
however, we can attain some additional information about the system. If we have no gravitational
effects, i.e. 𝛥𝜌𝑔 = 0 and consequently 𝑝(𝑧) = 𝑝 = const., the problem becomes translationally
invariant in the 𝑧-coordinate. As stated in the Noether theorem (see Appendix A.1.4 for more
detail), such symmetry entails an associated conserved quantity, simply because variations along
this symmetry do not change the energy. The conserved quantity associated with this translation
invariance is the quantity ∂ℒ𝑓/∂𝑧′. Even with gravity we are able to integrate the Euler-Lagrange
equation (4.2) and write

𝑓 = 𝜋𝑟2𝑝 − 2𝜋𝑟𝜏𝑠 sin 𝛹 + 𝜋𝛥𝜌𝑔 ∫ d𝑧𝑟2 , (4.4)

where we identify the last term as the gravitational force due to the self weight of the shape below
height 𝑧. As such Eqn. (4.4) is exactly the force balance in 𝑧-direction and the force required to press
the capsule against the wall is given as 𝑓 and conserved along the entire non-contacting solution
region in the case of 𝛥𝜌𝑔 = 0. Without external force 𝑓 = 0, this is exactly the generalization of
the force balance Eqn. (1.10) as found for liquid droplets and a special case of the viscoelastic
capsule force balance in the limit of quasi-static deformations (see Eqn. (1.29)).

The solution for the contacting region is a bit more involved, since the wall sets some constraints
for the variations. Here it is no longer possible to freely vary the radial and height coordinates 𝑟

1Surface energy density 𝑤𝑆0
, pressure difference 𝑝, external force 𝑓 and the wall surface energy.
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and 𝑧. We are able to intuitively understand this fact by realizing that a shape variation in normal
direction 𝛿𝑛, applied to a surface patch in the contact region, will always create a contradictory
shape. Either, the surface patch penetrates the wall after applying the normal variation, or it
detaches from the wall, violating the assumption of a contact.

Furthermore, we must take into account the contact coupling between the wall and the material of
the capsule. Consider the two simple special cases:

• (slip) The capsule skin can slide frictionless over the surface of the wall.

• (no-slip) The capsule can not slide over the surface of the wall at all.

We will refer to those two conditions as slip and no-slip boundary coupling conditions. In the
no-slip case, the capsule can not slide along the wall at any point in time, such that the shape is
effectively ”glued” to the wall once it comes into contact. This makes the no-slip contact entirely
contact history dependent, since it fully determines which undeformed coordinate 𝑠0 of the capsule
is in contact with a certain point on the wall, completely dictating the deformation in the contact
region. In this case, no evolution equation for the shape is generated by the variations in the
contact region, because no variation is allowed, i.e. 𝛿𝑟 = 𝛿𝑧 = 0, as also discussed in Ref. [116].

The slip contact coupling is easier to work with, as it makes the current shape entirely independent
of the contact history. In this case, it is imperative to limit the variations in the contacting region
to those that are tangential to the wall, as normal variations relative to the wall would either
violate the premise of a contact, or lead to an unphysical penetration of the wall.

Hence, we perform the variation of the free energy Eqn. (4.1) in terms of normal 𝛿𝑛 and tangential
variations 𝛿𝑡 and set the normal variation in the contact region to zero 𝛿𝑛 = 0. In the contact
region we need to take into account the additional contribution generated by the surface energy
change of the wall.

Importantly, the variation of the external force term does not contribute to the shape equations
in the respective domains, since 𝑓𝛿 ∫𝑏

𝑎
d𝑠 sin 𝛹 = 𝑓[𝛿𝑧]𝑏𝑎 2. The only equation we acquire in the

contact region is thus
d𝜏𝑠
d𝑠

= cos 𝛹
𝑟

(𝜏𝜙 − 𝜏𝑠) , for 𝑠 ∈ [0, 𝑙) (slip), (4.5)

where the geometry of the shape is purely controlled by the wall geometry. As such, it is sensible
that we do not get an equation for the evolution of the arc angle in this region anymore.

4.2.1 The contact point (Weierstrass-Erdmann conditions)

We acquire some additional equations at the contact point. Those equations are exactly the
manifestations of the additional terms appearing at the discontinuous transition between the
contacting and the non-contacting region. They are produced by the partial integrations of the
terms ∝ 𝛿𝑟′ and ∝ 𝛿𝑧′ or ∝ 𝛿𝑛′ and ∝ 𝛿𝑡′ during the variation of the free energy respectively.
When the variation is performed explicitly, those terms need to be carefully collected. A visual
schematic of this is provided as Fig. 4.3, where the left-sided and right-sided variations at the
contact point are visualized. Here, however, we can use the Weierstrass-Erdmann formalism (as
detailed in the Appendix A.1.3) to attain the first Weierstrass-Erdmann condition

0 = ∂ℒ𝑐

∂𝑧′ (𝑙0,−)𝛿𝑧(𝑙0,−) − ∂ℒ𝑓

∂𝑧′ (𝑙0,+)𝛿𝑧(𝑙0,+) + ∂ℒ𝑐

∂𝑟′ (𝑙0,−)𝛿𝑟(𝑙0,−) − ∂ℒ𝑓

∂𝑟′ (𝑙0,+)𝛿𝑟(𝑙0,+) , (4.6)

2While the force makes an appearance in Eqn. (4.2), it is immediately eliminated by the derivative, as it is a
constant factor.
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Figure 4.3: Schematic of the variation at the contact point. The functional is broken at the contact
point, hence the variation at the contact point needs to account for the left-sided limit lim𝑠→𝑙−

and
the right-sided limit lim𝑠→𝑙+

respectively, as the variations no longer need to be continuous at this
specific point.

where we have to make sure that the variations do not violate properties of our solution. In
this case the properties we must protect are continuity of the shape, i.e. 𝛿𝑟(𝑙0,−) = 𝛿𝑟(𝑙0,+) and
𝛿𝑧(𝑙0,−) = 𝛿𝑧(𝑙0,+), and contact with the wall. We can assure contact with the wall by again
expressing the variations in terms of the normal and tangential variations, such that

𝛿𝑟− = sin 𝛹−𝛿𝑛− + cos 𝛹−𝛿𝑡− (4.7)
𝛿𝑧− = − cos 𝛹−𝛿𝑛− + sin 𝛹−𝛿𝑡− , (4.8)

where we set the normal variations left of the contact point 𝛿𝑛− to zero, such that the contact
point may only slide along the wall. The first Weierstrass-Erdmann condition then reduces to

cos (𝛹(𝑙+) − 𝛹(𝑙−)) = 𝜏𝑠(𝑙−) − 𝛥𝛾wall
𝜏𝑠(𝑙+)

, (4.9)

which produces an expression for the contact angle of the capsule with the wall as a function of
the change in internal stresses across the contact point.

For a liquid interface, this would be the change in surface tension, i.e. the surface stress in the
contact region would be the surface tension between capsule and wall 𝜏𝑠,− = 𝛾𝑐𝑤, while the surface
stress in the non-contacting region would be the surface tension between the capsule and the
surrounding ambient medium 𝜏𝑠,+ = 𝛾𝑐𝑎, finally the difference in wall surface tension is given as
the tension between the wall and the ambient medium 𝛥𝛾wall = 𝛾𝑤𝑎, such that the relationship for
the contact arc angle 𝛹(𝑙+) − 𝛹(𝑙−) reduces to the well known Young-Equation as first discussed
by Thomas Young already in his 1805 work ”cohesion of fluids”, and appearing in many fields of
study [117]:

cos(𝛹(𝑙+) − 𝛹(𝑙−)) = 𝛾𝑐𝑤 − 𝛾𝑤𝑎
𝛾𝑐𝑎

. (4.10)

From the formalism discussed in the Appendix A.1.3, we encour a second equation due to the
variation of the contact point itself. Since the position of the contact point along the wall is not
fixed, we incur a transversality condition, referred to as the second Weierstrass-Erdmann corner
condition in the formalism we use and it is given as

0 = ℒ𝑐(𝑙−) − ℒ𝑓(𝑙+) − 𝑧′(𝑙−)∂ℒ𝑐

∂𝑧′ (𝑙−) + 𝑧′(𝑙+)∂ℒ𝑓

∂𝑧′ (𝑙+) − 𝑟′(𝑙−)∂ℒ𝑐

∂𝑟′ (𝑙−) + 𝑟′(𝑙+)∂ℒ𝑓

∂𝑟′ (𝑙+) , (4.11)

and produces the equation
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𝑤𝑐
𝑆0

(𝑙−) − 𝑤𝑆0
(𝑙+) = 𝜆𝑠(𝑙−)𝜆𝜙(𝑙)𝜏𝑠(𝑙−) − 𝜆𝑠(𝑙+)𝜆𝜙(𝑙)𝜏𝑠(𝑙+) (4.12)

from which the meridional stretch ratio 𝜆𝑠(𝑙+) (or equivalently the meridional stress 𝜏𝑠(𝑙+)) is
determined. As long as the constitutive change is constrained to stresses independent of the
stretches, e.g. a change in surface tension, this equation forces continuity of the stretch ratio
𝜆𝑠(𝑙+) = 𝜆𝑠(𝑙−) across the contact point. If the contact changes e.g. the elastic moduli, then
Eqn. (4.12) must be solved for 𝜆𝑠(𝑙+). Here, we will only discuss changes in the constant stresses,
e.g. adhesive terms, such that we always have continuity in the stretch ratio 𝜆𝑠. Note that the
transversality condition Eqn. (4.12) is equivalent to that found for a capsule at a liquid-liquid
interface in Ref. [26].

More strictly speaking, all constant stress contributions 𝜏𝛾
𝑠,𝜙 = const. constitute a surface energy

density per undeformed unit area proportional to the area stretch ratio 𝑤𝛾
𝑆0

∝ 𝜆𝑠𝜆𝜙, however, the
r.h.s of Eqn. (4.12) exactly scales the stresses by the area stretch ratio, such that the constant
stress contributions 𝜏𝛾

𝑠,𝜙 = const. and 𝑤𝛾
𝑆0

= const.𝜆𝑠𝜆𝜙 cancel from Eqn. (4.12). This leads
to an equation where the difference of the remaining surface energy density must vanish, i.e.
𝑤𝑆0

(𝑙−) − 𝑤𝛾
𝑆0

(𝑙−) = 𝑤𝑆0
(𝑙+) − 𝑤𝛾

𝑆0
(𝑙+). The resulting residual surface energy density function

is purely dependent on the meridional and circumferential stretch ratios and the constitutive
parameters of the problem (e.g. Young’s modulus and Poisson’s ratio). Keeping the constitutive
parameters continuous only leaves 𝜆𝑠 as a potentially non-continuous parameter (since 𝜆𝜙 = 𝑟/𝑟0
is always continuous), such that Eqn. (4.12) dictates continuity in 𝜆𝑠 for all constitutive laws that
satisfies the construction premise (i.e. a function exclusively of 𝜆𝑠 and 𝜆𝜙).

4.2.2 Bending energy effects

In the previous section we neglected the influence of bending stiffness. If the interface additionally
resists out-of-plane deformations we need to include this degree of freedom as additional variables
in our surface energy density, as discussed for a pendant shell in the Appendix A.2.1. If bending
effects play a role, the interface will punish small radii of curvature with a large energy penalty.
In essence, the bending energy will act to smooth sharp corners. The influence on the solution
shape by the bending energy is thus greatest in regions of large curvature 3. Bending stiffness has
a profound effect in red blood cells [118] and is thus interesting to include. Without any bending
stiffness we find a kink in the solution shape at the contact point, manifesting as 𝛹(𝑙+) ≠ 𝛹(𝑙−).
This is not possible with the addition of bending energies, as a kink in the shape costs infinite
energy. Thus, the shape must transition smoothly at the contact point with 𝛹(𝑙+) = 𝛹(𝑙−),
however, the same will not be true for other functions of the problem, such that we still have to
treat this problem as a broken functional.

Since we still keep the adhesion at the wall, we are confronted with a competition of energies at
the contact point: while the change in surface tension energy would like to produce a sharp corner
at the contact point, the bending energy can not allow this, we thus expect to see this competition
manifest in the equations generated at the contact point.

The energy functional we want to subject to extremization changes only in the surface energy
density 𝑤𝑆0

, since we account for the additional bending energy there. The bending energy
contributions are dependent on the bending strains 𝐾𝑠 = 𝛹 ′ − 𝛹 ′

0 and 𝐾𝜙 = (sin 𝛹 − sin 𝛹0)/𝑟0 as
detailed in the Appendix A.2.1.

3Inverse radius of curvature.
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We want to neglect gravity for the discussion of the bending-stiff-capsule-wall contact for simplicity,
such that we are able to express the entire energy functional as a function of 𝑟, 𝑟′, 𝛹 and 𝛹 ′, when
using 𝜆𝑠 = 𝑟′/ cos 𝛹 and 𝑧′ = 𝑟′ tan 𝛹:

𝐹 =𝜋 ∫
𝑙0

0
d𝑠0 {2𝑟0(𝑤𝑐

𝑆0
− 𝜆𝑠𝜆𝜙𝛥𝛾wall) − (𝑝𝑟2 − 𝑓

𝜋
) 𝑟′ tan 𝛹}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑐

+ 𝜋 ∫
𝐿0

𝑙0

d𝑠0 {2𝑟0𝑤𝑆0
− (𝑝𝑟2 − 𝑓

𝜋
) 𝑟′ tan 𝛹}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑓

.
(4.13)

Following the formalism introduced in the Appendix A.1.3, the Euler-Lagrange equations in the
free region are given by

d
d𝑠0

∂ℒ𝑓

∂𝑟′ = d
d𝑠0

(2𝑟 𝜏𝑠
cos 𝛹

− (𝑝𝑟2 − 𝑓
𝜋

) tan 𝛹) = ∂ℒ𝑓

∂𝑟
= 2𝜆𝑠𝜏𝜙 − 2𝑝𝑟𝜆𝑠 sin 𝛹 (4.14)

d
d𝑠0

∂ℒ𝑓

∂𝛹 ′ = d
d𝑠0

(2𝑟𝑚𝑠) = ∂ℒ𝑓

∂𝛹
= 𝜆𝑠 (2𝑟 (𝜏𝑠 tan 𝛹 − 𝑚𝜙

cos 𝛹
𝑟

) − (𝑝𝑟2 − 𝑓
𝜋

) 1
cos 𝛹

) , (4.15)

where it is important to note that the force 𝑓 now appears in all equations, as it acts against
the bending resistance of the shell. Contrary, without bending stiffness we only had in-plane
force balances, where the external force did not appear at all. The two equations Eqn. (4.14) and
Eqn. (4.15) are thus not entirely equivalent to the force-free equations found as Eqn. (A.26) and
Eqn. (A.27), or in the literature [15]. Rather the modified shape equations for the force loaded
free region are given as:

𝑚′
𝑠

𝜆𝑠
= cos 𝛹

𝑟
(𝑚𝜙 − 𝑚𝑠) + 𝜏𝑠 tan 𝛹 − (𝑝𝑟

2
− 𝑓

2𝜋𝑟
) 1

cos 𝛹
. (4.16)

𝜏 ′
𝑠

𝜆𝑠
= cos 𝛹

𝑟
(𝜏𝜙 − 𝜏𝑠) + 𝜅𝑠 ((𝑝𝑟

2
− 𝑓

2𝜋𝑟
) 1

cos 𝛹
− 𝜏𝑠 tan 𝛹) . (4.17)

The equations Eqn. (4.16) and Eqn. (4.17) can be used along with the trivial geometric shape
equations to solve for the entire non-contacting region.

The transverse shear stress

A common quantity arises in both Euler-Lagrange equations (4.16) and (4.17), which we can
identify as

𝑞 ≡ cos 𝛹
𝑟

(𝑚𝜙 − 𝑚𝑠) − 𝑚′
𝑠

𝜆𝑠
. (4.18)

This is the same common factor that appears when performing the normal and tangential variations
of the bending energy of the free shell, as detailed in the Appendix A.2.1. The interpretation of 𝑞
is revealed when considering the force balance in 𝑧-direction, where 𝑞 has the role of a transverse
shear stress [18], i.e. it captures an out-of-plane stress resultant acting normal to the surface. In
the non-contacting region the resulting transverse shear stress can be read off of Eqn. (4.16) and
is given as

𝑞 = −𝜏𝑠 tan 𝛹 + (𝑝𝑟
2

− 𝑓
2𝜋𝑟

) 1
cos 𝛹

, (4.19)

where the external force 𝑓 appears additionally to the algebraic relation for 𝑞 found for free shells
in Ref. [18]. If the bending modulus vanishes 𝐸𝐵 ≡ 0, so do the bending moments 𝑚𝜙 ∝ 𝐸𝐵,
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4 Contact phenomena of complex interfaces

𝑚𝑠 ∝ 𝐸𝐵 and its derivatives 𝑚′
𝑠 ∝ 𝐸𝐵, such that Eqn. (4.18) demands 𝑞 = 0, which results the

force balance in 𝑧-direction for a capsule without bending stiffness Eqn. (4.4) from Eqn. (4.19).

Note that the solution of the shape equations does not require knowledge about the interpretation
of Eqn. (4.18) and Eqn. (4.19) at all, it merely acts to help to understand the resulting equations
on a more intuitive level.

Contacting region

In the contacting region, the variations need to again be restricted to only include variations
tangential to the wall. From the calculation in Sec. 1.2 in combination with the bending terms
from the Appendix A.2.1 we are thus able to conclude that in the contacting region we only
get Eqn. (4.14) and lack an explicit equation for the evolution of the bending moment, i.e. we
are missing Eqn. (4.16). This can again be easily understood, since the wall now dictates the
curvatures 𝜅𝑠 and 𝜅𝜙, and as such it also dictates the bending strains 𝐾𝑠 and 𝐾𝜙 as well as
the bending moments 𝑚𝑠 and 𝑚𝜙 and their respective derivatives 𝑚′

𝑠 and 𝑚′
𝜙 along the contact

contour. The information dictated by the wall are thus enough to determine the bending moments
𝑚𝑠 and 𝑚𝜙 along with their derivatives 𝑚′

𝑠 from its definition and no further evolution equation is
required for it. For a flat wall, we have d𝑛𝛹/d𝑠𝑛

0 = 0 and thus the bending strains in the contact
region are given by 𝐾𝑠 = −𝜅𝑠,0 = const. and 𝐾𝜙 = −𝜅𝜙,0 = const. 4, such that the transverse
shear stress in the contact region may be calculated as:

𝑞 = cos 𝛹
𝑟

(𝑚𝜙 − 𝑚𝑠) − d𝑚𝑠
d𝑠

= cos 𝛹
𝑟

(𝑚𝜙 − 𝑚𝑠
𝜆𝜙

𝜆𝑠

cos 𝛹0
cos 𝛹

) . (4.20)

To calculate Eqn. (4.20), we used the defining equation for the meridional bending moments
𝑚𝑠 ≡ 1

𝜆𝜙
∂𝑤𝑆0

/∂𝐾𝑠, where the later part 𝑔(𝐾𝑠, 𝐾𝜙) ≡ ∂𝑤𝑆0
/∂𝐾𝑠 is a function purely of 𝐾𝑠 and

𝐾𝜙, which are constant along the entire contact region if the reference shape is spherical, such
that

𝑚′
𝑠

𝜆𝑠
= d𝑚𝑠

d𝑠
= d

d𝑠
𝑔(𝐾𝑠, 𝐾𝜙)

𝜆𝜙
= −𝑚𝑠

𝜆𝜙

d𝜆𝜙

d𝑠
= −𝑚𝑠

𝑟
(cos 𝛹 −

𝜆𝜙

𝜆𝑠
cos 𝛹0) . (4.21)

Note that Eqn. (4.20) differs from the transverse shear stress found by Ref. [100] (who find that it
is always zero), because they did not account for the geometric non-linearities in the definition
of the bending moments, i.e. they are missing the non-linear factors 1/𝜆𝑠,𝜙 in 𝑚𝜙,𝑠 respectively.
Additionally, the equation produced here holds for arbitrary constitutive laws complying with
our construction premises. We can calculate the value of 𝑞 at the center of the contact region at
𝑟 = 0 with the rule of l’Hôspital and symmetry considerations. At 𝑠 = 0 we have isotropy, such
that 𝑚𝑠 = 𝑚𝜙 and 𝜆𝑠 = 𝜆𝜙, finally (cos 𝛹 − cos 𝛹0)/𝑟 → 0 as 𝑠 → 0, such that 𝑞(0) = 0. The
transverse shear stress must vanish at 𝑠 = 0 due to symmetry already [18], such that this finding
is not surprising.

Finally, the only non-geometric shape equation found in the contacting region is given as

𝜏 ′
𝑠

𝜆𝑠
= cos 𝛹

𝑟
(𝜏𝜙 − 𝜏𝑠) + 𝜅𝑠𝑞 , (4.22)

where the term 𝜅𝑠𝑞 will not appear for a flat wall, simply because 𝜅𝑠 ≡ 0 in the contact region
if the wall is flat. Conversely, for a flat wall, this is the same evolution equation found for the
meridional stress of a capsule without any bending stiffness. The evolution of the meridional stress

4For a spherical reference geometry.
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is thus not influenced by the addition of bending stiffness and, with equal initial conditions, will
give the exact same contact region behaviour.

Together with Eqn. (4.22) we are now able to solve the entire contacting region of the problem.
We are still not able to traverse the contact point with our solution. The additional equations
required for this are, again, the Weierstrass-Erdmann conditions.

Weierstrass-Erdmann corner conditions

The equations required at the contact point – the Weierstrass-Erdmann conditions – are again
determined from the formalism introduced in the Appendix A.1.3. The first Weierstrass-Erdmann
condition in this case is given by

0 = ∂ℒ𝑐

∂𝑟′ (𝑙0,−)𝛿𝑟(𝑙0,−) − ∂ℒ𝑓

∂𝑟′ (𝑙0,+)𝛿𝑟(𝑙0,+) + ∂ℒ𝑐

∂𝛹 ′ (𝑙0,−)𝛿𝛹(𝑙0,−) − ∂ℒ𝑓

∂𝛹 ′ (𝑙0,+)𝛿𝛹(𝑙0,+) , (4.23)

where we enforce geometric continuity and contact with the wall by expressing the variations
𝛿𝑟(𝑙0,−) ≡ 𝛿𝑟− = 𝑟(𝑙0,+) ≡ 𝛿𝑟+ and 𝛿𝛹(𝑙0,−) ≡ 𝛿𝛹− = 𝛿𝛹(𝑙0,+) ≡ 𝛿𝛹+ by their respective normal
and tangential contributions. We find

𝛿𝑟− = sin 𝛹−𝛿𝑛− + cos 𝛹−𝛿𝑡− (4.24)

𝛿𝛹− = 𝜅𝑠,−𝛿𝑡− − 1
𝜆𝑠,−

𝛿𝑛′
− , (4.25)

where we set 𝛿𝑛− = 𝛿𝑛′
− = 0 and recover the first Weierstrass-Erdmann condition

𝑚𝑠,−𝜅𝑠,− − 𝑚𝑠,+𝜅𝑠,+ = 𝜏𝑠,+ − (𝜏𝑠,− − 𝛥𝛾wall) , (4.26)

which is exactly the in-plane force balance between the meridional stresses and bending moments.
For a flat wall the curvature in the contact region 𝜅𝑠,− vanishes, such that 𝑚𝑠,+𝜅𝑠,+ = 𝜏𝑠,− −
𝛥𝛾wall − 𝜏𝑠,+.

Forcing 𝛿𝑛− to be zero makes the wall act as a bearing that supports external forces acting upon
it, the same is true for 𝛿𝑛′

−, which allows the wall to counter bending moments.

The second Weierstrass-Erdmann corner condition is given as

0 = ℒ𝑐(𝑙−) − ℒ𝑓(𝑙+) − 𝑟′(𝑙−)∂ℒ𝑐

∂𝑟′ (𝑙−) + 𝑟′(𝑙+)∂ℒ𝑓

∂𝑟′ (𝑙+) − 𝛹 ′(𝑙−)∂ℒ𝑐

∂𝛹 ′ (𝑙−) + 𝛹 ′(𝑙+)∂ℒ𝑓

∂𝛹 ′ (𝑙+) , (4.27)

and produces the equation

𝑤𝑆0,− − 𝑤𝑆0,+ = 𝜆𝜙𝜆𝑠,−𝑚𝑠,−𝜅𝑠,− − 𝜆𝜙𝜆𝑠,+𝑚𝑠,+𝜅𝑠,+ + 𝜆𝜙𝜆𝑠,−𝜏𝑠,− − 𝜆𝜙𝜆𝑠,+𝜏𝑠,+

= 𝜆𝜙(𝑚𝑠,−𝜅𝑠,− + 𝜏𝑠,−)(𝜆𝑠,− − 𝜆𝑠,+) + 𝛥𝛾wall𝜆𝜙𝜆𝑠,+ .
(4.28)

The equations Eqn. (4.26) and Eqn. (4.28) determine the meridional curvature after the contact
point 𝜅𝑠,+ and the meridional stretch ratio after the contact point 𝜆𝑠,+

5. Solving these equations
for the relevant quantities is not straight forward, since the constitutive law might contain several
non-linear relationships between all the involved quantities. An important distinction between the

5Or equivalently the meridional stress 𝜏𝑠,+ and bending moment 𝑚𝑠,+.
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contact with bending stiffness and the one without must be made: while the second Weierstrass-
Erdmann condition for the purely elastic capsule imposes continuity in the stresses if the changes in
the constitutive model due to the contact are limited to constant stress terms, it no longer implies
this when including bending terms. We can understand this intuitively by realizing that the bending
terms disallow kinks in the shape, such that the force balance is achieved through the bending
moments counteracting the stress difference across the contact point (see Eqn. (4.26)). However,
the energetically optimal solution no longer needs to be the one with continuous stretch ratios 𝜆𝑠,
it rather depends on the relative importance of the stretching energies and the bending energies,
ultimately controlled by their respective moduli, this is exactly the meaning of Eqn. (4.28).

If we use a simple quadratic surface energy density (as discussed previously in Sec. 1.2.1) such as

𝑤𝑆0
= 𝑌2𝐷

2(1 − 𝜈2)
((𝜆𝑠 − 1)2 + 2𝜈(𝜆𝑠 − 1)(𝜆𝜙 − 1) + (𝜆𝜙 − 1)2)

+ 𝐸𝐵
2

(𝐾2
𝑠 + 2𝜈𝐾𝑠𝐾𝜙 + 𝐾2

𝜙) + 𝜆𝑠𝜆𝜙𝛾
(4.29)

we can progress further and rewrite the surface energy densities on the l.h.s of Eqn. (4.28) in terms
of the stresses and bending moments such that

𝑤𝑆0
= 1

2
(𝜆𝜙(𝜏𝑠 − 𝛾)(𝜆𝑠 − 1) + 𝜆𝑠(𝜏𝜙 − 𝛾)(𝜆𝜙 − 1) + 𝜆𝜙𝑚𝑠𝐾𝑠 + 𝜆𝑠𝑚𝜙𝐾𝜙) + 𝜆𝑠𝜆𝜙𝛾 , (4.30)

which allows us to reduce Eqn. (4.28) for a flat wall to

𝑚𝑠,−(𝐾𝑠,+ − 𝐾𝑠,−) = 𝜆𝑠,−(𝜏𝑠,+ − 𝛾+ − (𝜏𝑠,− − 𝛾−)) − 𝜆𝑠,+(𝛾+ − 𝛾− − 𝛥𝛾wall) (4.31)

which is an explicit equation for 𝐾𝑠,+ as a function of 𝜆𝑠,+ (or vice versa) and describes exactly
the balance between stretching and bending, as the l.h.s only considers bending contributions and
the r.h.s only considers stretching contributions.

The only situation where the meridional curvature 𝜅𝑠 and the meridional stretch ratio 𝜆𝑠 is
continuous at the contact point is the case where the wall consists of the same material as the
shell and as such 𝛾− = 0 and 𝛾+ = 𝛥𝛾wall, which implies that the meridional stretch ratio and the
meridional curvature are continuous at the contact point. In all other cases the two conditions
must be solved for 𝜆𝑠,+ and 𝜅𝑠,+ respectively.

The initial meridional bending moment 𝑚𝑠(𝑠 = 0) is determined by the geometry of the wall and
can not be chosen arbitrarily, such that only 𝜏𝑠(𝑠 = 0) can be chosen to control the volume of
the shell. The pressure 𝑝 must be chosen, such that the boundary condition at 𝑠 = 𝐿 is fulfilled.
Additionally, however, we must choose 𝑚′

𝑠(𝑠 = 𝑙+) in a way such that the boundary condition
for the clamped angle at the capillary, i.e. 𝛹(𝐿) is met. This produces a discontinuity in the
transverse shear stresses across the contact point, as we will see in the following.

Note that the situation is different when bending is involved compared to the discussion for the
contact without bending stiffness – without bending we are allowed to choose the contact length
as a parameter and the contact force would be a resultant of the solution in the non-contacting
region, as the force enters the shape equations at no point. If the contact length is chosen here, we
need to determine the contact force at the contact point, because it is needed to calculate the
transverse shear stresses in the non-contacting region.

The question then becomes: how are the length of the contact region 𝑙 and the external force 𝑓
related? To resolve this question we need an additional equation which gives a constraint to the
discontinuity in the transverse shear stress 𝑞. This equation is subtle and turns out to be hidden
in one of the boundary conditions for the arc-angle, e.g. for a closed shell we necessarily have
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𝛹(𝐿) = 𝑟(𝐿) = 𝑞(𝐿) = 0, such that 𝑚′
𝑠(𝑙+) has to be chosen such that the boundary conditions at

𝑠 = 𝐿 are fulfilled. Alternatively, for a shell suspended from a capillary, we have 𝑚𝑠(𝑠 = 𝐿) = 0.
By choosing 𝑚′

𝑠,+ in a way that fulfills the boundary condition at 𝑠 = 𝐿 we generate an additional
equation for 𝑞+, since 𝑞+ can then directly be calculated from its definition. Finally, the external
force can then be calculated from the Euler-Lagrange equations just right of the contact point.

The force exerted from the wall onto the shell is the counter-force to the external force 𝑓 and
thus has the same magnitude. Just like in the case without bending stiffness, the force 𝑓 is the
conserved quantity generated by translational invariance in the 𝑧−axis (without gravity), where

𝑓 = 𝜋𝑝𝑟2 − 2𝜋𝑟(𝜏𝑠 sin 𝛹 + 𝑞 cos 𝛹) , (4.32)

which is particularly easy to evaluate at the positive side of the contact point, where 𝛹+ = 0 for a
flat wall, such that

𝑓 = 𝜋𝑝𝑟2 − 2𝜋𝑟𝑞+ . (4.33)

This enables us to calculate the external force 𝑓 from a given contact length configuration, by
choosing 𝑞+ to fulfill all boundary conditions at 𝑠 = 𝐿 and inputting it in Eqn. (4.33). Because
we know that this quantity is conserved along the entire remaining shape, we can then use it to
calculate the transverse shear stresses along all remaining points of the solution.
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4.3 Contact shape equations for capsule-capsule contacts

Figure 4.4: Parametrization of the
capsule-capsule contact problem. Each
capsule has their own surface energy
density 𝑤𝑢,𝑑

𝑆0
, volume 𝑉 𝑢,𝑑 and internal

pressure 𝑝𝑢,𝑑. The shape and stress evo-
lution for such a configuration follows
from the shape equations of the prob-
lem, we derive from variational calculus.
The external force 𝑓 is the relevant con-
trol parameter for the compression of
the capsules.

The schematic setup for this problem is shown in Fig. 4.4.
We consider two independent capsules, which are affected
by a gravitational pull 𝑔 and a compressing force 𝑓 along
the axis of axi-symmetry 6. We are interested in the contact
behaviour of this system, i.e. what are the solution shapes,
how is the stress distributed in the interface material and
how does the force affect the region of contact.

For these considerations we want to assume two elastic
capsules, which we will distinguish by superscribing them
with their respective identifier, which we choose as 𝑢 and
𝑑. This choice is motivated by 𝑢 and 𝑑 being mnemonics
for ”up” and ”down”, which will be the parametrization we
want to consider for this problem. The ”up” capsule 𝑢 and
the ”down” capsule 𝑑 are pressed together by the force 𝑓,
such that they come in contact over a length 𝑙.

We parametrize the upper capsule 𝑢 exactly as we did for the
single capsule before and analogous to [14], [15], [18], [24],
such that it has the coordinates 𝑟𝑢, 𝑧𝑢, arc-angle 𝛹𝑢, total
arc-length 𝐿𝑢, stretches 𝜆𝑢

𝑠 , 𝜆𝑢
𝜙, volume 𝑉 𝑢 and pressure

difference 𝑝𝑢.

The same is true for the lower capsule 𝑑, such that all superscripts for 𝑢 are replaced by 𝑑. An
important note is that we choose to mirror the 𝑧-axis of the upper and lower shape, i.e. the shapes
are both parametrized such that the apex is at height 𝑧𝑢(𝑠 = 0) = 𝑧𝑑(𝑠 = 0) = 0 and the boundary
where they are suspended is 𝑧𝑢,𝑑(𝑠 = 𝐿𝑢,𝑑) > 0 7.

Again, we start by neglecting bending energy terms, such that the solution may have kinks along
its shape and discuss how to add the bending terms in a later section. We expect a kink in the
solution to appear exactly at the contact point between the two capsules (yellow region 2 in
Fig. 4.5), just as it is for purely liquid interface contacts with an imposed contact angle of 2𝜋/3,
only that the contact angle here will depend on the internal stress states of both capsules at the
contact point.

We are thus searching for a broken extremal of the combined energy functional, which we combine
from the energies of both individual capsules with an additional force term, such that we acquire:

𝐹 = ∫ d𝐴𝑢
0 𝑤𝑢

𝑆0
− ∫ d𝑉 𝑢 𝑝𝑢 + ∫ d𝐴𝑑

0 𝑤𝑑
𝑆0

− ∫ d𝑉 𝑑 𝑝𝑑 + 𝑓 ∫
𝐿𝑢

0
d𝑧𝑢 + 𝑓 ∫

𝐿𝑑

0
d𝑧𝑑 . (4.34)

The terms appearing in Eqn. (4.34) are the surface energies of the upper and lower shape,
parametrized by their respective surface energy density 𝑤𝑢,𝑑

𝑆0
, the respective volumetric energies

scaled by the Lagrange multipliers 𝑝𝑢,𝑑, which are the respective pressure differences between
the inside and outside of the respective capsules. Finally, the work done by the external force is
exactly 𝑓(𝐻𝑢 + 𝐻𝑑), where 𝐻𝑢,𝑑 is the projection of the height of the respective capsule onto the
force axis. Additional energetic contributions like gravity are easy to include, as shown in the
Appendix A.4.1. The resulting shape must be split into four distinct regions (see Fig. 4.5):

6Without loss of generality we choose the 𝑧-axis.
7Where the superscript 𝑢, 𝑑 indicates that these are actually two equations for 𝑢 and 𝑑 respectively.
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Figure 4.5: The four distinct regions
of the capsule-capsule contact prob-
lem. All of these regions must be
treated individually in our variational
approach in order to obtain all re-
quired equations to solve this problem.
Region 1 is the contact-region. Region
2 is the splitting-point and regions 3
and 4 are the free-regions.

1. The region where the upper and lower capsule are in contact.

2. The ”splitting point”, where the solutions of the upper and lower shapes separate

3. The region of the upper capsule 𝑢 where it is not in contact with the lower capsule.

4. The region of the lower capsule 𝑑 where it is not in contact with the upper capsule.

The region of contact between the capsules shall be between 𝑠 = 0 8 and 𝑠 = 𝑙, where 𝑙 is the
position along the deformed arc where the capsules loose their contact. It is important to realize
that the coordinate 𝑙 is the same for both the upper and the lower shape, since they share the same
deformed arc length coordinate up to this point, simply due to their contact with each other.

Another important realization is that the contact between both capsules directly imposes

d𝛹𝑢

d𝑠
= −d𝛹𝑑

d𝑠
, ∀𝑠 ∈ [0, 𝑙) . (4.35)

In a sense, Eqn. (4.35) is a trivial contact condition, which we enforce in the following by using it
during the variation. Note that the negative sign appears because the coordinate systems of the
upper and lower capsule are mirrored at the 𝑟-axis.

Finally, we write the target functional:

𝐹 =𝜋 ∫
𝑙

0
d𝑠 {2𝑟𝑢

𝑤𝑢
𝑆0

𝜆𝑢
𝑠 𝜆𝑢

𝜙
+ 2𝑟𝑑

𝑤𝑑
𝑆0

𝜆𝑑
𝑠𝜆𝑑

𝜙
− 𝑝𝑢𝑟𝑢2 sin 𝜓𝑢 − 𝑝𝑑𝑟𝑑2 sin 𝜓𝑑 + 𝑓

𝜋
[sin 𝛹𝑢 + sin 𝛹𝑑]}

+ 𝜋 ∫
𝐿𝑢

𝑙
d𝑠 {2𝑟𝑢

𝑤𝑢
𝑆0

𝜆𝑢
𝑠 𝜆𝑢

𝜙
− 𝑝𝑢𝑟𝑢2 sin 𝛹𝑢 + 𝑓

𝜋
sin 𝛹𝑢}

+ 𝜋 ∫
𝐿𝑑

𝑙
d𝑠 {2𝑟𝑑

𝑤𝑑
𝑆0

𝜆𝑑
𝑠𝜆𝑑

𝜙
− 𝑝𝑑𝑟𝑑2 sin 𝛹𝑑 + 𝑓

𝜋
sin 𝛹𝑑}

(4.36)

Where we will denote the first integral by 𝐹𝑐, the second by 𝐹𝑢 and the third by 𝐹𝑑. At this point
it is crucial to realize that applying normal and tangential variations directly to Eqn. (4.36) is not
expedient, since it results unwieldy expressions and will potentially miss one equation.

Instead, the proper procedure is to introduce normal and tangential shape variations for the upper
and lower shape separately, i.e. 𝛿𝑛𝑢, 𝛿𝑡𝑢 and 𝛿𝑛𝑑, 𝛿𝑡𝑑, and couple them with the appropriate
conditions in the contact region. Doing it this way forces us to explicitly state the coupling between
the capsules in the contact region, which will be similar to the slip and no-slip discussion for the
contact with a wall.

This insight allows us to perform the variations of the upper and lower shape independently up to
the point where we enforce the contact conditions for the variations, which makes the calculation

8Which is at the center of the contact region with 𝑟(𝑠 = 0) = 0.
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4 Contact phenomena of complex interfaces

Figure 4.6: Schematic coupling of the variations in the contact region. We discuss the two cases of
no-slip (left) coupling and free-slip (right) coupling. These coupling conditions determine how the
respective normal variations 𝛿𝑛𝑢,𝑑 and tangential variations 𝛿𝑡𝑢,𝑑 are coupled in the contact region,
influencing the final set of shape equations.

approachable. Since we already know the individual variations of the upper and lower shape from
Sec. 1.2 we can directly write the variations of the upper/lower shape functional in the contact
domain 𝛿𝐹 𝑢,𝑑

𝑐 to be

𝛿𝐹 𝑢,𝑑
𝑐 = 𝜋 [2 𝑟𝑢,𝑑

𝜆𝑢,𝑑
𝜙

∂𝑤𝑢,𝑑
𝑆0

∂𝜆𝑢,𝑑
𝑠

𝛿𝑡𝑢,𝑑 − (𝑝𝑢,𝑑𝑟𝑢,𝑑2 − 𝑓
𝜋

) 𝛿𝑧𝑢,𝑑]
𝑙

0

+ 𝜋 ∫
𝑙

0
d𝑠 {𝛿𝑛𝑢,𝑑 2𝑟𝑢,𝑑 [−𝑝𝑢,𝑑 + 1

𝜆𝑢,𝑑
𝜙

∂𝑤𝑢,𝑑
𝑆0

∂𝜆𝑢,𝑑
𝑠

d𝛹𝑢,𝑑

d𝑠
+sin 𝛹𝑢,𝑑

𝑟
1

𝜆𝑢,𝑑
𝑠

∂𝑤𝑢,𝑑
𝑆0

∂𝜆𝑢,𝑑
𝜙

]

+𝛿𝑡𝑢,𝑑 2𝑟𝑢,𝑑 [− 1
𝜆𝑢,𝑑

𝜙

d
d𝑠

∂𝑤𝑢,𝑑
𝑆0

∂𝜆𝑢,𝑑
𝑠

+cos 𝛹𝑢,𝑑

𝑟𝑢,𝑑
1

𝜆𝑢,𝑑
𝑠

∂𝑤𝑢,𝑑
𝑆0

∂𝜆𝑢,𝑑
𝜙

]} ,

(4.37)

where we have used 𝑓 𝛿 ∫𝑙
0

d𝑠 sin 𝛹 = [𝑓 𝛿𝑧]𝑙0.

The full variation of the contact region is given as the sum of the upper and lower shape variation
𝛿𝐹𝑐 = 𝛿𝐹 𝑢

𝑐 + 𝛿𝐹 𝑑
𝑐 .

Just as for the contact with the wall, we need to carefully evaluate the contact coupling conditions
between the capsules. Again, we want to only consider the both limiting cases of slip and no-slip
coupling between the capsules. Obviously, a no-slip coupling is equivalent to coupling both 𝛿𝑟𝑢

and 𝛿𝑧𝑢 to 𝛿𝑟𝑑 and 𝛿𝑧𝑑, such that any point that is in contact must stay in contact during the
variation. This makes the exact stress-distribution in the contact region entirely contact history
dependent. The no-slip contact coupling of the shape variations is visualized in Fig. 4.6 (left).

For the slip case, instead, it is sufficient to link only the normal variation of both capsules and leave
the tangential variations entirely separated (see Fig. 4.6 (right)). This ensures that both capsules
can change their internal stress states independently along the shape, while being in contact – we
allow the shapes to ”slip” over each other while they are in contact. The only connection condition
we must impose for the variations in the free-slip case is thus 𝛿𝑛𝑢 = −𝛿𝑛𝑑, which we use to extract
the normal and tangential conditions in the contact region from Eqn. (4.37):

𝑝𝑢 − 𝑝𝑑 = (𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 ) 𝜅𝑢
𝑠 + (𝜏𝑢

𝜙 + 𝜏𝑑
𝜙) 𝜅𝑢

𝜙 for 𝑠 ∈ [0, 𝑙) (slip) (4.38)
d𝜏𝑢,𝑑

𝑠
d𝑠

= cos 𝛹𝑢,𝑑

𝑟𝑢,𝑑 (𝜏𝑢,𝑑
𝜙 − 𝜏𝑢,𝑑

𝑠 ) for 𝑠 ∈ [0, 𝑙) (slip) . (4.39)

Note that Eqns. (4.39) are exactly the equations found for an individual capsule [15], [18], [26]
and Eqn. (4.38) gives the difference pressure between both contacting shapes as a function of the
sum of internal stress states and principal curvatures.
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4 Contact phenomena of complex interfaces

Interestingly, the stronger coupling condition, i.e. the no-slip case with 𝛿𝑛𝑢 = −𝛿𝑛𝑑 and 𝛿𝑡𝑢 = 𝛿𝑡𝑑

eliminates one further shape equation

𝑝𝑢 − 𝑝𝑑 = (𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 ) 𝜅𝑢
𝑠 + (𝜏𝑢

𝜙 + 𝜏𝑑
𝜙) 𝜅𝑢

𝜙 for 𝑠 ∈ [0, 𝑙) (no-slip) (4.40)
d(𝜏𝑢

𝑠 + 𝜏𝑑
𝑠 )

d𝑠
= cos 𝛹𝑢

𝑟𝑢 (𝜏𝑢
𝜙 + 𝜏𝑑

𝜙 − 𝜏𝑢
𝑠 − 𝜏𝑑

𝑠 ) for 𝑠 ∈ [0, 𝑙) (no-slip) (4.41)

which is replaced by a deformation history dependent mapping function 𝑠𝑑
0(𝑠𝑢

0 ) to be supplied
externally. This function essentially determines how the shapes are glued together. Integrating
solutions for the no-slip case is computationally more demanding because it requires to integrate
an entire deformation sequence, where the function 𝑠𝑑

0(𝑠𝑢
0 ) is incrementally computed from the

initial contact at 𝑠𝑑
0(𝑠𝑢

0 = 0) = 0 up to the final undeformed contact length of the upper shape
𝑠𝑑

0(𝑠𝑢
0 = 𝑙𝑢0 ). The slip and no-slip cases are manifestations of two completely different contact

boundary couplings and are the two extreme limits for a more general friction based coupling
between the two materials. While the slip case implements the zero friction case, the no-slip case
implements a perfect linking (or infinite friction) between the two materials. Notably, the slip and
no-slip cases are entirely equivalent in the mirror-symmetric case, where the upper solution is a
mirror image of the lower solution, because in this case, the mapping function is trivially given by
the additional symmetry 𝑠𝑢

0 = 𝑠𝑑
0.

4.3.1 The splitting point

Although we now have the set of differential equations at almost all points of the problem, it
is still not possible to integrate for a solution, since we lack equations for exactly one point of
the problem, namely at the kink at 𝑠 = 𝑙. These equations are exactly the Weierstrass-Erdmann
conditions. To acquire the Weierstrass-Erdmann corner conditions we need to carefully collect all
boundary terms created at the corner and equate them to zero.

Since the kink in the shape results in a discontinuity in some shape variables, it is imperative to
distinguish between the left and right sided limits at the discontinuity, i.e. 𝑔(𝑙+,−) ≡ lim𝑠→𝑙+,−

𝑔(𝑠).
Select geometric functions are continuous at the kink, simply due to the fact that the shape has to
be continuous, such as 𝑟(𝑙+) = 𝑟(𝑙−) = 𝑟(𝑙) and 𝑧(𝑙+) = 𝑧(𝑙−) = 𝑧(𝑙). The same is not generally
true for the arc angle 𝛹(𝑙−) ≠ 𝛹(𝑙+) 9, the internal stresses 𝜏𝑠(𝑙+) ≠ 𝜏𝑠(𝑙−) and others, such that
the distinction becomes important.

Collecting all boundary terms at 𝑠 = 𝑙, denoted as 𝑅, gives

𝑅
2𝜋𝑟(𝑙)

= [𝜏𝑢
𝑠 (𝑙−)𝛿𝑡𝑢(𝑙−) + 𝜏𝑑

𝑠 (𝑙−)𝛿𝑡𝑑(𝑙−) −𝜏𝑢
𝑠 (𝑙+)𝛿𝑡𝑢(𝑙+) − 𝜏𝑑

𝑠 (𝑙+)𝛿𝑡𝑑(𝑙+)]

+ 𝑟(𝑙)
2

[𝑝𝑢𝛿𝑧𝑢(𝑙+) + 𝑝𝑑𝛿𝑧𝑑(𝑙+) −𝑝𝑢𝛿𝑧𝑢(𝑙−) − 𝑝𝑑𝛿𝑧𝑑(𝑙−)] − 𝑓
2𝜋𝑟𝑙

[𝛿𝑧𝑢(𝑙+) + 𝛿𝑧𝑑(𝑙+)] .
(4.42)

We demand some continuity conditions at the kink, such that the shape is not ripped apart by the
variations:

𝛿𝑟𝑢(𝑙+) = 𝛿𝑟𝑢(𝑙−) = 𝛿𝑟𝑑(𝑙−) = 𝛿𝑟𝑑(𝑙+) , (4.43)
𝛿𝑧𝑢(𝑙+) = 𝛿𝑧𝑢(𝑙−) = −𝛿𝑧𝑑(𝑙−) = −𝛿𝑧𝑑(𝑙+) . (4.44)

9Since we have no bending stiffness here, with bending stiffness this is obviously not the case
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4 Contact phenomena of complex interfaces

Figure 4.7: The resulting stress tri-
angle at the splitting point is equiva-
lent to the first Weierstrass-Erdmann
conditions. The red arrow depicts the
stresses pulling on the splitting point
(yellow dot) from the contact region
where the shapes are still in contact
and the green and blue arrows depict
the stresses pulling from the respec-
tive free regions of the solution.

Note that the condition at the kink is stronger than in the contact region, since the tangential
perturbations of the upper and lower shape are not independent anymore, as treating them
independently would lead to a unilateral shifting of the contact arc-length variable, which is
unphysical. It is clear that only two variations out of the set of eight variations at the contact
point are independent. In the following we will choose 10 𝛿𝑛𝑢(𝑙−) and 𝛿𝑡𝑢(𝑙−) as the independent
variations and express the other six variations 𝛿𝑛𝑑(𝑙−), 𝛿𝑡𝑑(𝑙−), 𝛿𝑛𝑑(𝑙+), 𝛿𝑡𝑑(𝑙+), 𝛿𝑛𝑢(𝑙+) and 𝛿𝑡𝑢(𝑙+)
in terms of those, by utilising the six continuity conditions Eqns. (4.43) and Eqns. (4.44). We
express the continuity conditions Eqns. (4.43) and Eqns. (4.44) in terms of the normal and
tangential variations 𝛿𝑛𝑢,𝑑 and 𝛿𝑡𝑢,𝑑 and use the relationship

𝛿𝑡𝑢,𝑑(𝑙+) =𝛿𝑛𝑢,𝑑(𝑙−) sin (𝛹𝑢,𝑑(𝑙−) − 𝛹𝑢,𝑑(𝑙+)) + 𝛿𝑡𝑢,𝑑(𝑙−) cos (𝛹𝑢,𝑑(𝑙−) − 𝛹𝑢,𝑑(𝑙+)) (4.45)

to isolate only our select independent variations at the contact point. Finally, we obtain

𝑅
2𝜋𝑟(𝑙)

=𝛿𝑛𝑢(𝑙−) {− sin (𝛹𝑢(𝑙−) − 𝛹𝑢(𝑙+)) 𝜏𝑢
𝑠 (𝑙+) + sin (𝛹𝑑(𝑙−) − 𝛹𝑑(𝑙+)) 𝜏𝑑

𝑠 (𝑙+)}

𝛿𝑡𝑢(𝑙−) {𝜏𝑑
𝑠 (𝑙−) + 𝜏𝑢

𝑠 (𝑙−) − cos (𝛹𝑢(𝑙−) − 𝛹𝑢(𝑙+)) 𝜏𝑢
𝑠 (𝑙+) − cos (𝛹𝑑(𝑙−) − 𝛹𝑑(𝑙+)) 𝜏𝑑

𝑠 (𝑙+)}
(4.46)

which can be unwrapped by allowing 𝛿𝑛𝑢(𝑙−) and 𝛿𝑡𝑢(𝑙−) to be arbitrary and forcing that 𝑅 = 0,
finally giving the two Weierstrass-Erdmann corner conditions at the contact point:

sin (𝛹𝑢(𝑙−) − 𝛹𝑢(𝑙+)) 𝜏𝑢
𝑠 (𝑙+) = sin (𝛹𝑑(𝑙−) − 𝛹𝑑(𝑙+)) 𝜏𝑑

𝑠 (𝑙+) (4.47)
𝜏𝑢

𝑠 (𝑙−) + 𝜏𝑑
𝑠 (𝑙−) = cos (𝛹𝑢(𝑙−) − 𝛹𝑢(𝑙+)) 𝜏𝑢

𝑠 (𝑙+) + cos (𝛹𝑑(𝑙−) − 𝛹𝑑(𝑙+)) 𝜏𝑑
𝑠 (𝑙+) .
(4.48)

The two conditions found in Eqn. (4.47) and Eqn. (4.48) are precisely the stress balance at the
contact point which can also be derived from a simple geometric argument as depicted in Fig. 4.7.
The two conditions can be solved for the arc angle differences 𝛥𝛹𝑢,𝑑 ≡ 𝛹𝑢,𝑑(𝑙+) − 𝛹𝑢,𝑑(𝑙−) as
functions of the stresses.

One way to do it is to solve the first contact condition Eqn. (4.47) for the arc angle difference
𝛥𝛹𝑑, input this result into Eqn. (4.48) and solve the result for 𝛥𝛹𝑢, which gives:

𝛥𝛹𝑢 = arccos (1 +
(𝜏𝑢

𝑠 (𝑙−) + 𝜏𝑑
𝑠 (𝑙−) − 𝜏𝑑

𝑠 (𝑙+))2 − (𝜏𝑑
𝑠 (𝑙+)2)

2(𝜏𝑢
𝑠 (𝑙−) + 𝜏𝑑

𝑠 (𝑙−))𝜏𝑢
𝑠 (𝑙+)

) . (4.49)

Finally, we use this result and input it into Eqn. (4.47) to solve for 𝛥𝛹𝑑 and arrive at:

𝛥𝛹𝑑 = arcsin (sin(𝛥𝛹𝑢)
𝜏𝑢

𝑠 (𝑙+)
𝜏𝑑

𝑠 (𝑙+)
) . (4.50)

10Without loss of generality.
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4.3.2 Determining contact forces

The compression force 𝑓 did not appear in any equations yet. This is to be expected, since all
equations we calculated so far are manifestations of changes in forces. To calculate the forces at
any point along the problem we need a first integral of one of our equations. Since the force is
directed along the 𝑧-axis, variations in the z-coordinate will unveil this force. The forces applied
to the capillaries can then be found just as discussed in the previous section. Both non-contacting
regions of the problem at hand produce the Euler-Lagrange equations

d
d𝑠𝑢,𝑑

0

∂ℒ𝑢,𝑑

∂(𝑧𝑢,𝑑)′ = d
d𝑠𝑢,𝑑

0
(2𝑟𝑢,𝑑𝜏𝑢,𝑑

𝑠 sin 𝛹𝑢,𝑑 −𝑝𝑢,𝑑(𝑟𝑢,𝑑)2 + 𝑓
𝜋

) = ∂ℒ𝑢,𝑑

∂𝑧𝑢,𝑑 = ±(𝑧𝑢,𝑑)′(𝑟𝑢,𝑑)2𝛥𝜌𝑢,𝑑𝑔

(4.51)

such that integration yields an equation for the forces at the respective height 11

𝑓𝑢,𝑑(𝑧) = 𝜋𝑝𝑢,𝑑(𝑟𝑢,𝑑)2 − 2𝜋𝑟𝑢,𝑑𝜏𝑢,𝑑
𝑠 sin 𝛹𝑢,𝑑 ± 𝜋𝛥𝜌𝑔 ∫

𝐿𝑢,𝑑

𝑙
d𝑧 (𝑟𝑢,𝑑)2 . (4.52)

The force may be evaluated at any point along the non-contacting shapes. A particular point,
which gives the compression force 𝑓 without the corrections made by the self-weight of the system
is the positive side of the splitting point:

𝑓 = 𝜋𝑝𝑢,𝑑𝑟(𝑙)2 − 2𝜋𝑟(𝑙)𝜏𝑢,𝑑
𝑠 (𝑙+) sin 𝛹𝑢,𝑑(𝑙+) . (4.53)

We can verify that the forces of the upper and lower regions after the splitting point are equal
by utilizing the Weierstrass-Erdmann conditions. The equation we have found as Eqn. (4.52)
combines the upper and lower shape force balance in 𝑧-direction with the requirement of a net
zero force in the contact region.

4.3.3 The mirror-symmetric special case

If the contact is between two identical capsule systems we have 𝑝𝑢 = 𝑝𝑑 = 𝑝 and because of
Eqn. (4.38) 𝜅𝑠 = 𝜅𝜙 = 0 in the contact region. This enforces 𝛹𝑢 = −𝛹𝑑 = 0 , ∀𝑠 ∈ [0, 𝑙). We are
thus investigating a contact between two systems in a mirror-symmetric configuration, with respect
to a reflection at the radial axis at 𝑧 = 0. The contacting region is hence completely flat. Addi-
tionally, simply because of mirror-symmetry we can deduce that 𝛹𝑢(𝑙+) = 𝛹𝑑(𝑙+). Applying these
conditions to the first Weierstrass-Erdmann condition Eqn. (4.47) yields 𝜏𝑢

𝑠 (𝑙+) = 𝜏𝑑
𝑠 (𝑙+), which

complies with the assumption of mirror-symmetry. Furthermore, the second Weierstrass-Erdmann
condition Eqn. (4.48) reduces significantly to 𝜏𝑠(𝑙−) = cos 𝛹(𝑙+)𝜏𝑠(𝑙+), where no distinction between
the upper and lower shape is made, since their properties are exactly equal.

In the mirror-symmetric case the contact angle is thus given by 𝛺 = 2𝛹(𝑙+) = 2 arccos(𝜏𝑠(𝑙−)/𝜏𝑠(𝑙+))
where a first trivial observation can be made – the meridional stress at 𝑙+ must always be larger
than the meridional stress at 𝑙−, otherwise a stress balance is impossible in a rotationally-symmetric
configuration. Additionally, the relationship between contact region length and force applied to
push the system together is given as

𝑓 = 𝜋𝑝𝑙2 − 2𝜋𝑙√𝜏2
𝑠 (𝑙+) − 𝜏2

𝑠 (𝑙−) . (4.54)

11Without gravity, this equation is a conserved quantity along the entire shape.
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4 Contact phenomena of complex interfaces

If additional assumptions are made regarding the surface energy density 𝑤𝑆0
the analytical

treatment can progress a bit further.

In the case of a pure liquid we have 𝑤𝑢,𝑑
𝑆0

= 𝛾𝜆𝑢,𝑑
𝑠 𝜆𝑢,𝑑

𝜙 , 𝑠 ∈ (𝑙, 𝐿𝑢,𝑑], which gives 𝜏𝑢,𝑑
𝑠 (𝑠) = 𝜏𝑢,𝑑

𝜙 (𝑠) =
𝛾 , 𝑠 ∈ (𝑙, 𝐿𝑢,𝑑]. Where it is instructive to distinguish between the surface tension of the interface
with the outer phase 𝛾𝑜 and the surface tension of the interface with the inner phase 𝛾𝑖, where
𝛾 = 𝛾𝑜 + 𝛾𝑖.

The contacting region then has surface tension 𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 = 2𝛾𝑖 + 𝛾𝑢𝑑 , 𝑠 ∈ [0, 𝑙), as the interface is
exposed to the inner liquid on both sides. The additional tension 𝛾𝑢𝑑 arises if there is additional
surface interaction between both contacting interfaces (e.g. adhesion). Here we will disable such
effects 𝛾𝑢𝑑 = 0 such that the surface energy density can be expressed as 𝑤𝑆0

= 𝛾𝑖𝜆𝑠𝜆𝜙 , 𝑠 ∈ [0, 𝑙).
The contact angle is thus given by 𝛺 = 2 arccos(𝛾𝑖/𝛾). It is worth noting that if inner and outer
phase are the same 𝛾𝑖 = 𝛾𝑜 = 𝛾/2 we get a contact angle of 2𝜋/3, which is what is expected in e.g.
liquid foams and directly follows from the von-Neumann triangle force balance condition.

The force required to create a contact region of arc-length 𝑙 is then given by

𝑓 = 𝜋𝑙2𝑝 − 2𝜋𝑙√𝛾2
𝑜 + 2𝛾𝑖𝛾𝑜 .

Interestingly, the force changes its sign at 𝑙𝑠 = 2√𝛾2
𝑜 + 2𝛾𝑖𝛾𝑜/𝑝, up to this point the reduction of

surface energy through the shared interface outweighs the penalty created by loss of volume (when
controlling pressure). Extending the contact length beyond 𝑙𝑠 finally requires an external force
that compresses the system with a force pointing inwards. For 𝑙 < 𝑙𝑠 a force is required which
pulls the system apart, with forces pointing outwards. In the case where inner and outer phase
are the same we have 𝛾𝑖 = 𝛾𝑜 = 𝛾/2 and thus 𝑓 = 𝜋𝑙2𝑝 − 𝜋

√
3𝑙𝛾 such that the contact length at

𝑓 = 0 is given by 𝑙𝑠 =
√

3𝛾/𝑝. Obviously, a second solution for 𝑓 = 0 is given as 𝑙𝑠 = 0. We will
discuss this hysteresis in more detail in the next sections.

4.3.4 Bending energy corrections

We will now discuss how bending stiffness can be accounted for during the variational calculus
performed in the derivation of the contact problem. Fortunately, the bending energy contributions
can be added to the problem via linear superposition, because we assume bending terms to
be independent of stretching terms, as we have demonstrated for the free elastic capsule in
Appendix A.2.1. The resulting variation of the bending energy is Eqn. (A.25), which we can reuse
for the contact problem, such that the total bending energy contribution to the first variation is
given by:

𝛿𝐸𝑢,𝑑
𝐵

2𝜋
= − [𝑟𝑢,𝑑𝑚𝑢,𝑑

𝑠 𝛿𝛹𝑢,𝑑]𝑙+

𝑙−
+ [𝑟𝑢,𝑑𝑞𝑢,𝑑𝛿𝑛𝑢,𝑑]𝑙+

𝑙−

+ ∫
𝑙−

0
d𝑠 [𝛿𝑡𝑢,𝑑 d𝛹𝑢,𝑑

d𝑠
+ 𝛿𝑛𝑢,𝑑 d

d𝑠
] (𝑟𝑢,𝑑𝑞𝑢,𝑑)

+ ∫
𝐿𝑢,𝑑

𝑙+

d𝑠 [𝛿𝑡𝑢,𝑑 d𝛹𝑢,𝑑

d𝑠
+ 𝛿𝑛𝑢,𝑑 d

d𝑠
] (𝑟𝑢,𝑑𝑞𝑢,𝑑) .

(4.55)

Combining this extra term with the one we have found in the previous calculation without bending
energy as Eqn. (4.37), isolating the terms relevant for the contact region, and employing the slip
contact coupling condition for the normal variations 𝛿𝑛𝑢 = −𝛿𝑛𝑑 reduces the first variation only
to the independent contributions from which we can directly read off the five non-geometric shape
equations in the contact region:
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d(𝑞𝑑 − 𝑞𝑢)
d𝑠

= 𝑝𝑑 − 𝑝𝑢 + (𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 )𝜅𝑢
𝑠 + 𝜅𝑢

𝜙(𝜏𝑢
𝜙 + 𝜏𝑑

𝜙) + cos 𝛹𝑢

𝑟𝑢 (𝑞𝑢 − 𝑞𝑑) for 𝑠 ∈ [0, 𝑙) (slip)
(4.56)

d𝜏𝑢,𝑑
𝑠

d𝑠
= cos 𝛹𝑢

𝑟𝑢,𝑑 (𝜏𝑢,𝑑
𝜙 − 𝜏𝑢,𝑑

𝑠 ) + 𝜅𝑢,𝑑
𝑠 𝑞𝑢,𝑑 for 𝑠 ∈ [0, 𝑙) (slip)

(4.57)
d𝑚𝑢,𝑑

𝑠
d𝑠

= cos 𝛹𝑢,𝑑

𝑟𝑢,𝑑 (𝑚𝑢,𝑑
𝜙 − 𝑚𝑢,𝑑

𝑠 ) − 𝑞𝑢,𝑑 for 𝑠 ∈ [0, 𝑙) (slip)
(4.58)

A first integral of Eqn. (4.56) may be found simply by grouping the differentiation with respect to
the arc length coordinate until we find

d
d𝑠

(𝑟𝑢 cos 𝛹𝑢 (𝑞𝑢 − 𝑞𝑑 + tan 𝛹𝑢(𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 ) − (𝑝𝑢
𝑎 − 𝑝𝑑

𝑎)𝑟𝑢

2 cos 𝛹𝑢 )) + (𝛥𝜌𝑢 − 𝛥𝜌𝑑)𝑔𝑧𝑢𝑟𝑢 cos 𝛹𝑢 = 0 ,

(4.59)
such that an explicit equation for the difference in transverse shear stresses is recovered

𝑞𝑢 − 𝑞𝑑 = −(𝜏𝑢
𝑠 + 𝜏𝑑

𝑠 ) tan 𝛹𝑢 + 𝑟𝑢 𝑝𝑢
𝑎 − 𝑝𝑑

𝑎
2 cos 𝛹

− 𝑔(𝛥𝜌𝑢 − 𝛥𝜌𝑑)
𝑟𝑢 cos 𝛹𝑢 ∫ d𝑠 𝑧𝑢𝑟𝑢 cos 𝛹𝑢 + 𝒞

𝑟 cos 𝛹𝑢 , (4.60)

where the constant of integration 𝒞 appears, which captures additional external forces in the
contact region and is hence zero here. In the case where gravitational effects can be neglected, we
find an algebraic equation for the difference in transverse shear stresses.

One observation we can directly make is that the bending strains 𝐾𝑠 and 𝐾𝜙 must stay finite.
Otherwise, the bending energy contribution goes off to infinity as well, which can at no time be the
energetic minimum of the functional. Due to the definition of the bending strain 𝐾𝑠 = d(𝛹−𝛹0)/d𝑠0
there may be no kinks in the solution shape, i.e. 𝛹(𝑙+) = 𝛹(𝑙−), such that the arc angle derivative
stays finite. This implies that 𝐾𝜙 = (sin 𝛹 − sin 𝛹0)/𝑟0 is not only bounded but also continuous.
This argument does not, however, constrain 𝐾𝑠 to be continuous, such that step changes in the
meridional curvature are not disallowed and thus step changes in the bending moments 𝑚𝑠,𝜙 are
possible. As we will show in the following derivation, these observations are highly relevant for the
correct treatment of the problem.

For the terms ∝ 𝛿𝛹𝑢,𝑑, we can thus mandate 𝛿𝛹𝑢(𝑙+) = 𝛿𝛹𝑢(𝑙−) = −𝛿𝛹𝑑(𝑙−) = −𝛿𝛹𝑑(𝑙+).
Because of the definition of 𝜆𝑢,𝑑

𝑠 𝛿𝛹𝑢,𝑑 = d𝛹𝑢,𝑑/d𝑠𝑢,𝑑
0 𝛿𝑡 − d𝛿𝑢,𝑑𝑛/d𝑠𝑢,𝑑

0 we are able to extract an
additional equation for the terms ∝ d𝛿𝑢,𝑑𝑛/d𝑠𝑢,𝑑

0 , which must hold at the splitting point, as
0 = 𝑚𝑢

𝑠 (𝑙−) + 𝑚𝑑
𝑠(𝑙+) − 𝑚𝑢

𝑠 (𝑙+) − 𝑚𝑑
𝑠(𝑙−), which is precisely the meridional moment balance around

the splitting point.

The remaining terms constitute the corrections to the shape and splitting point equations of the
previously discussed contact problem without bending stiffness. Notably, however, due to the hard
constraint the bending stiffness demands from the arc angle, i.e. 𝛹𝑢,𝑑(𝑙−) = 𝛹𝑢,𝑑(𝑙+), the prior
contributions to the splitting point equations simplify tremendously. Collecting the boundary
terms, as before, allows us to read off the new contact conditions at the splitting point

𝜏𝑢
𝑠 (𝑙−) − 𝜏𝑢

𝑠 (𝑙+) + 𝜏𝑑
𝑠 (𝑙−) − 𝜏𝑑

𝑠 (𝑙+) =𝑚𝑢
𝑠 (𝑙+)𝜅𝑢

𝑠 (𝑙+) − 𝑚𝑢
𝑠 (𝑙−)𝜅𝑢

𝑠 (𝑙−)
+ 𝑚𝑑

𝑠(𝑙+)𝜅𝑑
𝑠(𝑙+) − 𝑚𝑑

𝑠(𝑙−)𝜅𝑑
𝑠(𝑙−) ,

(4.61)

𝑞𝑢(𝑙−) − 𝑞𝑢(𝑙+) = 𝑞𝑑(𝑙−) − 𝑞𝑑(𝑙+) , (4.62)
𝑚𝑢

𝑠 (𝑙−) + 𝑚𝑑
𝑠(𝑙+) = 𝑚𝑢

𝑠 (𝑙+) + 𝑚𝑑
𝑠(𝑙−) . (4.63)
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The interpretation of these equations is immediately obvious when considering the force and
moment balances at the splitting point. Where Eqn. (4.61) is the force balance tangential to the
contact line, Eqn. (4.62) is the force balance normal to the contact line, while, finally, Eqn. (4.63)
is the moment balance of all moments attacking the splitting point.

It is important to realize that if 𝐸𝐵 → 0 but still 𝐸𝐵 > 0, we have 𝛹(𝑙−) = 𝛹(𝑙+) on the length-
scale implied by the relative importance of the bending energy, however, on a macro-scale, we
can use the results from the discussion without any bending stiffness as effective contact angles
observed over an (experimentally accessible) macro length-scale.

These are all the corrections necessary to include the bending energy terms. Note, however, that
solving the shape equations with bending energy included is much more difficult than solving
the shape equations without bending stiffness. This is simply due to the fact that all available
equations need to be used in order to determine the individual quantities 𝑞𝑢 and 𝑞𝑑, as implied by
geometry, in the contact region. We will thus limit our numerical treatment to the case without
bending energy contributions.

4.4 Numerical integration of the shape equations

The integration of the shape equations is more involved than the integration of a single free
capsule, both in terms of the conceptual integration routine and the technical aspects of generating
solution shapes. The following steps are required to qualitatively solve the shape equations. On a
quantitative level, many more steps are needed. Those additional steps are described in the next
sections.

We start the integration at 𝑠 = 0 with 𝛹𝑢,𝑑(𝑠 = 0) = 𝑟𝑢,𝑑(𝑠 = 0) = 𝑧𝑢,𝑑(𝑠 = 0) = 0 and with
a given 𝜏𝑢,𝑑

𝑠 (𝑠 = 0), which represents a certain volume. The pressures 𝑝𝑢 and 𝑝𝑑 are not free
parameters, rather they need to be adjusted such that the solution satisfies the boundary conditions
at 𝑠 = 𝐿𝑢,𝑑. In our case, we will connect the shape to a capillary of fixed diameters 𝑎𝑢,𝑑, such that
𝑟𝑢,𝑑(𝑠 = 𝐿𝑢,𝑑) = 𝑎𝑢,𝑑/2. Both shapes are integrated in the undeformed arc-length coordinates
of the upper shape 𝑠𝑢

0 , purely by arbitrary choice. It would be equally possible to integrate in
terms of any other fixed parameter, however, we note the simplicity of choosing an undeformed
coordinate of the system.

Since we choose to integrate in the undeformed coordinates of the upper shape we have direct
access to the upper circumferential stretch ratio 𝜆𝑢

𝜙 = 𝑟/𝑟𝑢
0 (𝑠𝑢

0 ). Additionally, the circumferential
stretch ratio of the lower shape is required to proceed, which can be accessed by 𝜆𝑑

𝜙 = 𝑟/𝑟𝑑
0(𝑠𝑑

0(𝑠𝑢
0 )),

where the function 𝑠𝑑
0(𝑠𝑢

0 ) appears for the first time. It connects the undeformed coordinate of the
upper and lower shapes. The defining property of this function is the coincidence of deformed arc
lengths at the respective undeformed shape coordinates 𝑠𝑢

0 and 𝑠𝑑
0:

∫
𝑠

0
d𝑠′ = ∫

𝑠𝑢
0

0
d𝑠𝑢

0
′𝜆𝑢

𝑠 (𝑠𝑢
0

′) = ∫
𝑠𝑑

0

0
d𝑠𝑑

0
′𝜆𝑑

𝑠(𝑠𝑑
0

′) . (4.64)

This function must hold for any 𝑠, such that the evolution of the undeformed coordinate of the
lower shape, as a function of the undeformed coordinate of the upper shape is simply given by
d𝑠𝑑

0/d𝑠𝑢
0 = 𝜆𝑑

𝑠/𝜆𝑢
𝑠 . In the no-slip case, the function 𝑠𝑑

0(𝑠𝑢
0 ) is prescribed by the deformation history

of the contact, where in the free-slip case it can be integrated along with the other shape equations.
This gives access to 𝑠𝑑

0(𝑠𝑢
0 ) and, conversely, gives access to 𝜆𝑑

𝜙.

The meridional stresses 𝜏𝑢
𝑠 and 𝜏𝑑

𝑠 are known at integration time, since they are generated by
their derivatives contained in the shape equations. This makes 𝜆𝑢

𝑠 (𝑠𝑢
0 ) and 𝜆𝑑

𝑠(𝑠𝑑
0(𝑠𝑢

0 )) available
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by rearranging the constitutive equations of 𝜏𝑢
𝑠 and 𝜏𝑑

𝑠 for the respective meridional stretch ratio
𝜆𝑢,𝑑

𝑠 . With all stretches being known, the circumferential stresses can be calculated by utilizing
the respective constitutive equations for 𝜏𝑢

𝜙 (𝑠𝑢
0 ) and 𝜏𝑑

𝜙(𝑠𝑑
0(𝑠𝑢

0 )) .

These are all the properties needed to calculate the derivatives d𝜏𝑢
𝑠 /d𝑠, d𝜏𝑑

𝑠 /d𝑠 and d𝛹𝑢/d𝑠 =
−d𝛹𝑑/d𝑠 with the shape equations (4.38) and (4.39), such that we are able to extrapolate to the
next integration step. The solution can be integrated up to an arbitrary 𝑙, where we need to then
satisfy the Weierstrass-Erdmann conditions to continue the integration.

The conditions at the splitting point Eqn. (4.47) and Eqn. (4.48) contain four unknown quantities:
𝛹𝑢(𝑙+), 𝛹𝑑(𝑙+) and the meridional stresses after the splitting point 𝜏𝑢,𝑑

𝑠 (𝑙+). To integrate across
the contact point, we need access to all of them. However, not all of these four quantities can be
chosen arbitrarily. The surface stresses need to additionally satisfy the transversality conditions
Eqn. (4.12), such that the meridional stretch ratio is prescribed and the meridional stresses are
entirely determined a priori. This leaves the two unknown quantities 𝛹𝑢(𝑙+) and 𝛹𝑑(𝑙+) to be
determined by the two equations Eqn. (4.47) and Eqn. (4.48).

The rest of the shape can be integrated in a straightforward manner, since the solution is equivalent
to that of two free capsules with initial conditions at 𝑠 = 𝑙 being 𝜏𝑢,𝑑

𝑠 (𝑙+), 𝛹𝑢,𝑑(𝑙+), 𝑟𝑢,𝑑(𝑙−) and
𝑧𝑢,𝑑(𝑙−).

4.4.1 Non-dimensionalization

Of course, one crucial step to take before actually integrating the shape equations is to bring
them into a dimensionless form. By doing so we reduce the problem to its minimum set of control
parameters and make the resulting numeric values unambiguous.

Some care has to be taken when performing the non-dimensionalization of this problem, because
there are numerous dimensional quantities involved. It is imperative to choose the length and
stress scales uniquely for all involved equations. This begins with the liquid reference shapes.

For instance, we now have two liquid reference shapes, an upper and a lower shape. Without
loss of generality, we choose the upper shape to be the scale defining shape. This means, that
the length scale for our problem is the diameter of the capillary of the upper system 𝑎𝑢 and the
stress scale is the surface tension of the upper systems reference shape 𝛾𝑢. This gives rise to the
definition of the dimensionless length quantities:

̃𝑟𝑢,𝑑
0 ≡ 𝑟𝑢,𝑑

0 /𝑎𝑢 , ̃𝑟𝑢,𝑑 ≡ 𝑟𝑢,𝑑/𝑎𝑢 , (4.65)
̃𝑧𝑢,𝑑
0 ≡ 𝑧𝑢,𝑑

0 /𝑎𝑢 , ̃𝑧𝑢,𝑑 ≡ 𝑧𝑢,𝑑/𝑎𝑢 , (4.66)
̃𝑠𝑢,𝑑
0 ≡ 𝑠𝑢,𝑑

0 /𝑎𝑢 , ̃𝑠 ≡ 𝑠/𝑎𝑢 . (4.67)

The shape equations for the upper reference shape are thus obviously the exact same ones as
derived in Sec. 1.1. However, the lower reference shape must now also utilize the length and
stress scales found in the upper shape, which leads to the appearance of the new non-dimensional
parameters 𝛤 ≡ 𝛾𝑑/𝛾𝑢 and 𝛼 ≡ 𝑎𝑑/𝑎𝑢, which quantifies the ratios of surface tensions and capillary
diameters between upper and lower reference systems. The resulting modified shape equations for
the lower reference shape are thus given by

d ̃𝑟𝑑
0

d ̃𝑠𝑑
0

= cos(𝛹𝑑
0 ) , d ̃𝑧𝑑

0
d ̃𝑠𝑑

0
= sin(𝛹𝑑

0 ) , d𝛹𝑑
0

d ̃𝑠𝑑
0

= ̃𝑝𝑑
𝐿
𝛤

+ 𝛥 ̃𝜌𝑑

𝛤
̃𝑧𝑑
0 . (4.68)

The dimensionless control parameters for the lower shape are defined with respect to the same
scales as the upper shape ̃𝑝𝑑

𝐿 ≡ 𝑝𝑑
𝐿𝑎𝑢/𝛾𝑢 and 𝛥 ̃𝜌𝑑 ≡ 𝛥𝜌𝑑𝑔(𝑎𝑢)2/𝛾𝑢. The additional scale 𝛤 appears
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in the shape equations (4.68) simply because the surface tension 𝛾𝑢 does not arise naturally in the
Young-Laplace equation of the lower shape, while 𝛾𝑑 does. The initial and boundary conditions
for the lower reference shape are then given by ̃𝑟𝑑

0( ̃𝑠𝑑
0 = 0) = ̃𝑧𝑑

0( ̃𝑠𝑑
0 = 0) = 𝛹𝑑

0 ( ̃𝑠𝑑
0 = 0) = 0 and

̃𝑟𝑑
0( ̃𝑠𝑑

0 = 𝐿𝑑
0) = 𝛼/2.

Progressing to the elastic shape, we use that the tension scale for both deformed shapes is set by
the surface tension of the upper shape 𝛾𝑢, such that the non-dimensional tensions are defined
as ̃𝜏𝑢,𝑑

𝑠,𝜙 ≡ 𝜏𝑢,𝑑
𝑠,𝜙 /𝛾𝑢. Utilizing this, the previous definitions of the non-dimensional quantities and

expressing the shape equations in the contact region Eqn. (4.38) and Eqns. (4.39) in terms of 𝑠𝑢
0

gives the seven non-dimensional shape equations for the free-slip problem 12

d ̃𝑠
d ̃𝑠𝑢

0
= 𝜆𝑢

𝑠 (4.69)

d ̃𝑠𝑑
0

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠

𝜆𝑑
𝑠

(4.70)

d ̃𝑟𝑢

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠 cos 𝛹𝑢 (4.71)

d ̃𝑧𝑢

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠 sin 𝛹𝑢 (4.72)

d𝛹𝑢

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠

1
̃𝜏𝑢
𝑠 + ̃𝜏𝑑

𝑠
( ̃𝑝𝑢

𝑎 − ̃𝑝𝑑
𝑎 − (𝛥 ̃𝜌𝑢 − 𝛥 ̃𝜌𝑑) ̃𝑧𝑢 − ( ̃𝜏𝑢

𝜙 + ̃𝜏𝑑
𝜙)sin 𝛹𝑢

̃𝑟𝑢 ) (4.73)

d ̃𝜏𝑢,𝑑
𝑠

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠 cos 𝛹𝑢 ̃𝜏𝑢,𝑑

𝜙 − ̃𝜏𝑢,𝑑
𝑠

̃𝑟𝑢 (4.74)

where we define the dimensionless pressure ̃𝑝𝑢,𝑑
𝑎 at 𝑠 = 0 as ̃𝑝𝑢,𝑑

𝑎 ≡ 𝑝𝑢,𝑑
𝑎 𝑎𝑢/𝛾𝑢 and recognize the

dimensionless density contrasts 𝛥 ̃𝜌𝑢,𝑑, which are the same as for the liquid reference shapes.

Already at 𝑠 = 0 we encounter a numerical problem we have to carefully solve. Namely, since
𝑠 = 0 coincides 13 with 𝑟𝑢,𝑑 ≡ 0, several equations develop numerical singularities. All of those are
of the kind ”0/0” where L’Hôspital’s rule is applicable. At 𝑠 = 0 shape equations Eqn. (4.73) and
Eqn. (4.74) are thus replaced by

d𝛹𝑢

d ̃𝑠𝑢
0

= 𝜆𝑢
𝑠

1
2( ̃𝜏𝑢

𝑠 + ̃𝜏𝑑
𝑠 )

( ̃𝑝𝑢
𝑎 − ̃𝑝𝑑

𝑎 − (𝛥 ̃𝜌𝑢 − 𝛥 ̃𝜌𝑑) ̃𝑧𝑢) , d ̃𝜏𝑢,𝑑
𝑠

d ̃𝑠𝑢
0

= 0 , (4.75)

which we employ in a radius 𝜖 = 10−8 around 𝑠 = 0 in order to solve the equations.

In order to integrate the shape equations we still need to specify a constitutive material model,
which connects the surface stresses with the stretch ratios. For this, we choose the non-linear
Hookean constitutive law, as detailed in Sec. 1.2.1. Other choices are possible, however, this choice
is the simplest model, with a surface energy density accurate up to quadratic order in the strains,
while still retaining the geometric non-linearities [15].

The surface tension contribution to the stresses is split into the contribution 𝛾𝑢,𝑑
𝑖 made by the

contact of the interface to the inner phase and the contribution 𝛾𝑢,𝑑
𝑜 due to the contact to the outer

phase. Additionally, we include a tension due to the contact of the upper and lower interface 𝛾𝑢𝑑,
which captures additional adhesive effects. This distinction is important, because only the inner
contributions play a role in the contact region, while the sum of the inner and outer contributions

12In the no-slip problem the two equations Eqn. (4.74) reduce to the sum of the equations.
13By choice of our initial conditions.
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play a role outside of the contact region. The total surface tension of the reference liquid drop is
thus 𝛾𝑢,𝑑 ≡ 𝛾𝑢,𝑑

𝑖 + 𝛾𝑢,𝑑
𝑜 .

The resulting non-dimensional stresses in the contact region are thus given by

̃𝜏𝑢,𝑑
𝑠,𝜙 =

̃𝑌 𝑢,𝑑
2𝐷

1 − (𝜈𝑢,𝑑
2D )2

1
𝜆𝑢,𝑑

𝜙,𝑠
(𝜆𝑢,𝑑

𝑠,𝜙 − 1 + 𝜈𝑢,𝑑
2D (𝜆𝑢,𝑑

𝜙,𝑠 − 1)) + 𝛾𝑢,𝑑
𝑖 + 𝛾𝑢𝑑

𝛾𝑢⏟⏟⏟⏟⏟
�̃�𝑢,𝑑

𝑐

for 𝑠 ∈ [0, 𝑙) , (4.76)

where we find the two additional non-dimensional parameters ̃𝛾𝑢,𝑑
𝑐 , which quantify the magnitude

of the surface tension in the contact region in relation to the total surface tension of the upper
shape outside the contact region.

4.4.2 Quantitative Integration Routine

The integration is implemented using C++ in the same numerical framework presented in Chap. 2.
We are able to combine the data structure of two individual capsules and implement the new
shape equations only for the contact region and the splitting point. The solution of the shape for
𝑠 > 𝑙 can then be generated with the routine used for the single pendant capsules, eliminating the
need for code duplication and again highlighting the modularity of the framework.

The integration is started in the center of the contact region, from where we progress with a Runge-
Kutta method of order four to integrate the dimensionless shape equations (4.69), (4.70), (4.71),
(4.72) (4.73) and (4.74) together with the constitutive equations (4.76). Here we additionally
discriminate between the shape equations for 𝑠 < 𝜖 = 10−8 and 𝑠 > 𝜖 to avoid numerical
singularities. The shape equations for 𝑠 < 𝜖 are thus only used for the very first integration step
to kick off the integration. For 𝑠 > 𝜖 we need access to 𝑟𝑢,𝑑

0 (𝑠𝑢
0 ), which is granted by evaluating a

spline of the reference shape at the current undeformed arc length. For access to 𝑟𝑑
0(𝑠𝑢

0 ) we use
the property 𝑠𝑑

0(𝑠𝑢
0 ), which we integrate together with the other shape equations as Eqn. (4.70).

Due to the dimensionless constitutive equations (4.76) we gain access to 𝜆𝑢,𝑑
𝑠 and 𝜏𝑢,𝑑

𝜙 , which we
finally use to calculate the derivatives on the l.h.s of the shape equations (4.69), (4.70), (4.71),
(4.72), (4.73), (4.74), and start to propagate to the next integration step.

Due to the fact that we integrate 𝑠(𝑠𝑢
0 ) along with the other shape equations as Eqn. (4.69), we

are able to access the deformed arc length at any integration step and use it to determine when to
switch the shape equations from the contact region shape equations to the splitting point shape
equations and the shape equations of the free capsule afterwards. We thus set a contact length
𝑙 as our control parameter rather than a contact force 𝑓, simply because it is easier to handle
from a technical perspective. Conversely, the contact force is calculated as a by-product at the
splitting point via Eqn. (4.53) once the splitting point equations Eqn. (4.47) and Eqn. (4.48) are
evaluated to determine the contact angles. At this point we fall back to the integration routine for
a free pendant capsule and integrate the shape equations up to the respective total undeformed
arc length.

The solutions generated in this way are a super class of the solutions we are interested in, simply
because they do not necessarily reach the respective attachment boundary conditions. Searching
for the solutions that do satisfy the additional boundary condition requires the use of two coupled
shooting methods.

We can not choose both the apex stresses 𝜏𝑢,𝑑
𝑠 (𝑠 = 0) and the pressures 𝑝𝑢,𝑑 if we want to reach

an attachment boundary condition. This is similar to the shooting problem encountered for the
free pendant capsule in Sec. 2.2 and literature [14], only that we now have a significantly more
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complex problem. As already discussed for the free pendant capsule in Sec. 3.1 and Ref. [13] –
choosing a pressure and searching for the accompanying apex stress is ambiguous. Thus an apex
stress must be chosen for which we determine the relevant pressure in a shooting method. The
additional complexity over the free capsule stems from the fact that changing the pressure of the
upper shape influences the solution shape for the lower shape and vice versa, because they are
linked in the contact region. Ultimately, this is a problem where we search for two coupled zero
crossings as a function of two parameters.

Analysing the problem reveals that it is accessible to a simple iterative method. Changing 𝑝𝑢 while
searching for the zero crossing of 𝑑𝑢 = 𝑟(𝐿𝑢) − 𝑎𝑢/2, will influence the contact region solution
of the lower shape, simply because the pressure difference changes, such that 𝑑𝑑 = 𝑟(𝐿𝑑) − 𝑎𝑑/2
also changes. However, if the pressures of the upper and lower shape are in the same order of
magnitude, the pressure difference will be small and the radius of curvature in the contact region
will be large compared to the total height of the droplet, such that the change in 𝑑𝑢,𝑑 is small
compared to the attachment radius 𝑎𝑢,𝑑/2 when changing 𝑝𝑑,𝑢. This makes the problem suitable
for a fix-point iteration scheme, where we search for the pressures 𝑝𝑢,𝑑 sequentially and iteratively
to eventually satisfy both equations |𝑑𝑢,𝑑| < 𝜖 to a given acceptable uncertainty 𝜖.

We employ a hybrid between a multi-section method and a secant method to solve both of the
shooting problems. While a shooting method certainly introduces computational overhead, we
are able to robustly generate solutions in acceptable time due to an optimized integration code
implemented in C++.

On top of the shooting method performed for the pressures, we can search for the relevant apex
stresses 𝜏𝑢,𝑑

𝑠 (𝑠 = 0) which lead to a given volume 𝑉 𝑢,𝑑. The application for this might be that the
volume is controlled in an experiment and thus the deformation will not happen at a given apex
stress but rather at a given volume. For example, the volume of the reference liquid droplets could
be a conserved quantitiy due to the upper and lower shape not allowing any volume exchange 14.

The same methodology applied for the double pressure shooting problem can be applied here as
well. We thus search for the apex stresses 𝜏𝑢,𝑑

𝑠 (𝑠 = 0) seperately and iteratively to eventually
converge to a set of 𝜏𝑢,𝑑

𝑠 (𝑠 = 0) for which the appropriate volume is achieved by both shapes.

Since we are stacking complexity, this method is severely slower than the double pressure shooting
method alone. However, this method is not needed to study the parameter space of the system, or
in an eventual shape fitting routine.

14Due to the shape being closed, or attached to a capillary with closed valves.
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4.5 Analysis of the shape space

Figure 4.8: We generate a slice of the shape space for
the elastic contact problem. Here we choose 𝐾2𝐷 = 𝛾.
The lines of constant volume (contour lines of the up-
per plot) are shown for the deformed volumes equaling
the reference volume 𝑉 𝑢,𝑑 = 𝑉 𝑢,𝑑

0 (red line) and for
a 50% inflated reference volume (yellow line). Addi-
tionally, the lines of minimum forces (black lines) and
zero forces (orange line) are shown. The intersections
between the volume and force lines are highlighted
with colored diamonds and mark the respective char-
acteristic points in the deformation sequences of fixed
volume. In a certain region, no solutions can be found
for a given contact length and apex stress (blue line),
i.e. there does not exist a pressure for which the
capillary boundary condition may be fulfilled. The
area marked as 𝑓-unstable is always unstable under
force control.

The shape space of the present problem is
severely high-dimensional. For the convenience
of the reader, we will now rehearse all the in-
volved control parameters. The two liquid ref-
erence shapes already provides us with a range
of control parameters. They encompass the di-
mensionless apex pressures ̃𝑝𝑢,𝑑

𝐿 , the respective
dimensionless density contrasts 𝛥 ̃𝜌𝑢,𝑑, the ra-
tio of capillary widths 𝛼 ≡ 𝑎𝑑/𝑎𝑢, the ratio
of surface tensions 𝛤 ≡ 𝛾𝑑/𝛾𝑢 and the surface
tension contributions generated by the contact
of the inner and outer phases respectively, i.e.
𝛾𝑢,𝑑 = 𝛾𝑢,𝑑

𝑖 + 𝛾𝑢,𝑑
𝑜 which gives two additional

parameters in total. The reference configuration
thus already constitutes 8 entirely independent
continuous control parameters. As shown previ-
ously in Sec. 1.1 and in more detail in Ref. [24],
there are two additional discrete control param-
eters for the reference shapes, which control the
shape class 𝛺𝑢,𝑑 of the reference shape solu-
tion.

Furthermore, the control parameters for the elas-
tic constitutive equation are expressed by two
elastic moduli per shape, e.g. 𝑌 𝑢,𝑑

2𝐷 /𝛾𝑢 and 𝜈𝑢,𝑑
2𝐷 .

Additionally, the constitutive material equations
provide a surface tension contribution, which
captures an additional adhesive contribution in
the contact region 𝛾𝑢𝑑/𝛾𝑢. The elastic material
properties add a total of 5 independent contin-
uous control parameters to the shape space.

Moreover, the shape equations of the problem ex-
pose the dimensionless apex stresses ̃𝜏𝑢,𝑑

𝑠 (𝑠 = 0)
and the dimensionless contact length 𝑙/𝑎𝑢 as
control parameters, which adds an additional 3
continuous control parameters to the problem.
All other properties are implied by utilising the
set of equations generated from the variational
calculation in Sec. 4.3, such as the external force,
pressures, local stresses and stretches, as well as
the full geometry of the solution.

Finally, we arrive at a set of 16 continuous con-
trol parameters, which present a 16-dimensional
shape-parameter space. Consequently, we need
to limit our investigation of the shape space to
a well motivated slice of the shape space. As
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Figure 4.9: Evolution of the pressure, volume and external force during a contact deformation at
fixed apex stress. Additionally, we show the difference between five elastic compression moduli 𝐾2𝐷.
The fixed apex stress we subject the elastic shape to is chosen, such that we are able to compare
with the liquid case, which only allows 𝜏𝑢

𝑠 /𝛾 = 0.5.

evident from the above listing of control parameters, they can be categorised based on their origin
of appearance.

An especially easy choice, which conveys a certain conceptual simplification, is the case of mirror-
symmetric reference shapes. Mirror-symmetry of the reference shapes mandates that gravitational
effects can be neglected and 𝛥 ̃𝜌𝑢,𝑑 = 0 as well as ̃𝑝𝑢

𝐿 = ̃𝑝𝑑
𝐿 and 𝛾𝑢 = 𝛾𝑑 = 𝛾, reducing the

control parameter count for the reference shapes to only 2. Additionally, we choose the reference
shapes to have a shape class of 𝛺𝑢,𝑑 = 2, leaving only a single control parameter for the reference
shapes, which is e.g. ̃𝑝𝑢

𝐿. Propagating the assumption of mirror-symmetry to the deformed shapes
additionally forces equality for the respective constitutive parameters, e.g. ̃𝑌 𝑢

2D = ̃𝑌 𝑑
2D, 𝜈𝑢

2D = 𝜈𝑑
2D,

and apex stresses ̃𝜏𝑢
𝑠 (𝑠 = 0) = ̃𝜏𝑑

𝑠 (𝑠 = 0).

Since the parameter space is still too large to properly visualize, we eliminate further insensitive
control parameters by fixing them to arbitrary 15 values. Two of such parameters are the Poisson’s
ratios 𝜈𝑢,𝑑

2D , which we fix to a value of 𝜈𝑢,𝑑
2D = 0.5 16. Additionally, we fix the reference shape apex

pressure to ̃𝑝𝑢,𝑑
𝐿 = 2 and provide quantitative arguments how the fixed parameters influence the

recovered results.

We can further reduce the complexity of the parameter space by eliminating 𝛾𝑢
𝑖 /𝛾. The assumption

needed for this is that the respective inner and outer phase are equal, e.g. both air, giving
𝛾𝑢

𝑖 /𝛾 = 1/2. Initially, we disable additional adhesive effects by setting 𝛾𝑢𝑑 = 0. We include these
parameters in the quantitative description of the characteristics found in the shape space, enabling
the reader to infer the influence of this parameter on the presented figures.

These simplifications reduce the set of control parameters to ̃𝑙, ̃𝑌 𝑢
2D = �̃�𝑢

2D, ̃𝜏𝑢
𝑠 (𝑠 = 0).

We sample the apex stress 𝜏𝑢
𝑠 (𝑠 = 0) and contact length 𝑙 parameters and find volume, force and

apex pressure dependencies for 𝐾2D = 𝛾 in Fig. 4.8. Interestingly, the control over the apex stress
𝜏𝑢

𝑠 (𝑠 = 0) is something that only arises due to the elastic skin. A liquid droplet does not have this
degree of freedom, on the contrary, for the purely liquid contact, the apex stress is dictated entirely
by the surface tension of the interface to the inner liquid 𝜏𝑢,𝑑

𝑠 (𝑠 = 0) = 𝛾𝑢,𝑑
𝑖 = 𝛾𝑢,𝑑 − 𝛾𝑢,𝑑

𝑜 and the
pressure dictates the volume. The purely liquid contact exhibit different shapes than any elastic

15But experimentally typical.
16The choice is typical and motivated because this value implies 3D isotropy and incompressibility of the skin.

Furthermore, this choice mandates 𝐾2D = 𝑌2D.
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interface would have. This is simply due to the reference shape of the elastic problem being a
non-contacting liquid configuration. This can not be neglected, even for very small contact lengths
𝑙/𝑎 ≪ 1, because the mere existence of a contact introduces the necessity for a specific contact
angle at the splitting point. For very small 𝑙/𝑎 this essentially imposes a change in the initial
condition of the arc-angle. Thus, achieving the reference liquid volume for the elastic contact
problem requires an apex stress 𝜏𝑢

𝑠 (𝑠 = 0) ≠ 𝛾𝑢
𝑖 + 𝛾𝑢𝑑.

The volume evolution in Fig. 4.8 (top) gives an insight into how volume controlled deformation
sequences move through the parameter space. Two fixed volume curves are shown as the red
and yellow lines (𝑉 𝑢 = 3𝑉 𝑢

0 /2 and 𝑉 𝑢 = 𝑉 𝑢
0 respectively). The evolution of external force and

pressure at constant volume can be seen by tracing the red line in Fig. 4.8 through the respective
figures. We additionally show this evolution for a shape that is inflated 50% in volume throughout
the entire contact (yellow line). After a specific contact length for a given apex stress, no further
solutions are found (blue solid line in Fig. 4.8). All of the shapes along this line have an arc angle
of 𝛹 cap = 3𝜋/2 at the capillary and thus meet the capillary from above with a vertical tangent.
No further solutions exist because they would penetrate the capillary walls.

In Fig. 4.9, we show horizontal slices through the shape space, color coded in Fig. 4.8. These
slices reveal the modifications made by the elastic skin at a fixed apex stress. The pressure (see
Fig. 4.9(left)) variations are amplified with increasing elastic modulus, while the volume variations
(see Fig. 4.9(center)) are supressed. Note that the crossing of all lines at 𝑙/𝑎𝑢 ∼ 3/4 is only
present for 𝜏𝑢

𝑠 /𝛾 = 1/2 and is the point where elastic stresses are approximately isotropic and
homogeneous (i.e. the shape is liquid-like).

During such contact evolution the external force required to stabilize the shape changes drastically.
When the force is negative, the shapes need to be pulled apart from each other to keep them from
increasing the contact length. If the force is positive, the shapes need to be pressed against each
other to increase the contact length. We can thus use the external force to make statements about
the stability of certain regions in the shape space.

From our previous theoretical discussion of the symmetric case we acquire the external force in the
limit 𝑙/𝑎 ≪ 1 from Eqn. (4.54), by recognizing that the pressure term is a contribution of second
order in the contact length 17. Additionally, the stress in the contact region will not vary by much
in the limit of short contact lengths 𝜏𝑠(𝑠 = 𝑙−) ∼ 𝜏𝑠(𝑠 = 0), such that we finally arrive at

𝑓(𝑙/𝑎 ≪ 1) ≈ −2𝜋𝑙(𝛾𝑜 − 𝛾𝑢𝑑)√1 + 2𝜏𝑠(𝑠 = 0)
𝛾𝑜 − 𝛾𝑢𝑑 , (4.77)

As discussed previously, for the purely liquid case with 𝛾𝑜 = 𝛾𝑖 = 𝛾/2 this reduces to 𝑓liquid(𝑙/𝑎 ≪
1) ≈ −𝜋𝑙𝛾

√
3.

Thus, for contact lengths 𝑙/𝑎 ≪ 1, the force is small and negative, however, this configuration is not
stable at constant external force. A slight perturbation that causes the contact to increase slightly,
also increases the force required to keep the shapes separated from each other, so d𝑓/d𝑙 < 0. As
long as this is true, the shapes will dynamically increase their contact length until they eventually
reach a steady state where d𝑓/d𝑙 > 0 and a force balance is restored. The black line in Fig. 4.8
symbolizes the line of minimum force 18. All shapes to the left of this black line are dynamically
unstable if subjected to a constant external force and transition to the corresponding contact
length of equal external contact force to the right of the black line. A contact with external force
𝑓 ≡ 0 will thus instantaneously 19 transition from 𝑙/𝑎 = 0 to 𝑙/𝑎 > 0 onto the orange line in
17Because the apex pressure corrections due to the change in contact length are of higher order.
18The maximum absolute force required to keep the shapes apart.
19In an idealized sense. Experimentally, this will not happen instantaneously due to inertial effects.
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Figure 4.10: The evolution of the meridional and circumferential stretch ratios and surface stresses
along a set of solution shapes. The contacting region is enlarged by the choice of 𝑙, however, since we
are considering a mirror-symmetric system, the difference pressure in the contact region is always
the same and thus we find a universal contact region behaviour. As soon as the mirror-symmetry is
broken, the contact region behaviour will be influenced by the choice of 𝑙 as well. The shapes shown
here have constant apex stresses 𝜏𝑢

𝑠 = 𝜏𝑑
𝑠 = 𝛾/2, with the other parameters set to the characteristic

values chosen for this section.

Fig. 4.8. This orange line is characterised by setting Eqn. (4.53) to zero, which gives a functional
connection between the stress at the splitting point, the pressure 𝑝 and the contact length 𝑙:

𝑙orange𝑝 = 2(𝛾𝑜 − 𝛾𝑢𝑑)√1 + 2𝜏𝑠(𝑙−)
𝛾𝑜 − 𝛾𝑢𝑑 . (4.78)

Unfortunately, the contact length is no longer small at the orange line, where 𝑙/𝑎 ∼ 1. Thus, the
corrections in the pressure 𝑝 and the difference between apex stress 𝜏𝑠(𝑠 = 0) and splitting point
stress 𝜏𝑠(𝑙−) need to be carefully considered to arrive at usable results. As we show in Fig. 4.8
(lower) the pressure changes substantially while traversing the shape space. This effect is amplified
with larger compression moduli, as can be seen in the Appendix Fig. A.2.

We have no immediate access to the pressure difference, as the shape equations in the contact region
only include apex pressure differences 𝑝𝑢 − 𝑝𝑑, which are trivially zero in the symmetric case. The
first occurrence of the relevant pressures is right after the splitting point, where the shapes come into
contact with the external medium for the first time. We thus have 𝑝 = 𝜅𝑠(𝑙+)𝜏𝑠(𝑙+) + 𝜅𝜙(𝑙+)𝜏𝜙(𝑙+),
where 𝑝 can not be determined from, since it needs to be chosen such that the connection boundary
condition is fulfilled.

Separating the contacting shapes again is prevented by an energy barrier corresponding with the
black line of minimum forces. This energy/force barrier must be overcome by the external force
in order to separate the shapes. As soon as the external force is strong enough to overcome the
barrier, the shapes separate. The shapes to the left of the black line are, again, unreachable in an
experiment where the force is controlled.
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Figure 4.11: All of the displayed shapes have
the same total surface tension 𝛾 in the non-
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contact region changes necessarily, changing
the contact angle at the contact point. Here we
still disable additional adhesive surface tension
terms 𝛾ud = 0.

We can approximate the black line in Fig. 4.8 by using Eqn. (4.53). The black line corresponds to
the minimum of the function. Again, the simplest approximation can be found when assuming
𝑝 ∼ 𝑝0 = const. and 𝜏𝑠(𝑠 = 𝑙−) ∼ 𝜏𝑠(𝑠 = 0), which gives 𝑙black ∼ 𝑙orange/2 and qualitatively captures
the behaviour seen in Fig. 4.8.

The force required to separate the shapes 𝑓rip then approximates to

𝑓rip ∼ − 𝜋
𝑝0

((𝛾𝑜 − 𝛾𝑢𝑑)2 + 2(𝛾𝑜 − 𝛾𝑢𝑑)𝜏𝑠(𝑠 = 0)) . (4.79)

For Fig. 4.9 the force required to separate the shapes is approximated by Eqn. (4.79) to be
𝑓rip/(𝛾𝑎) ≈ −3𝜋/8 encountered at a contact length 𝑙rip/𝑎 ≈

√
3/4, which is a solid approximation

for 𝐾2𝐷 ≤ 𝛾.

We can inspect the properties of a single solution in more detail by evaluating the evolution of the
stretch ratios 𝜆𝑢

𝑠 and 𝜆𝑢
𝜙 together with the surface stresses 𝜏𝑢

𝑠 and 𝜏𝑢
𝜙 along the solution shape.

We find that in the mirror-symmetric case, all contact regions for different values of the contact
length 𝑙 collapse onto each other (see Fig. 4.10). This fact can be understood by realizing that
the only parameters allowed to change in a response to a change in contact length 𝑙 is the upper
and lower pressure 𝑝𝑢 and 𝑝𝑑. Since, however, the contact region only depends on the difference
𝑝𝑢 − 𝑝𝑑 = 0, we do not actually see a change in the contact region solutions. At the splitting point,
the absolute value of the pressures enters and the solution in the non-contacting region depends
on the choice of the contact length 𝑙, as can be seen in Fig. 4.10.

Short contact lengths lead to a short-ranged extensive stretching in meridional direction and
compressive stretching in circumferential direction just right of the contact point (see Fig. 4.10).
This is exactly the manifestation of the effective adhesion due to the combined surface tension in
the contact region being only half that of the two individual capsules in the non-contacting region
20. In this immediate contact region, elastic stretching energy is traded for adhesive surface energy.
If it where not for the external force 𝑓, the shapes would continue trading stretching energy for
surface energy until an equilibrium is reached exactly at the orange line in Fig. 4.8.

The pinning at the capillary demands 𝜆𝑢
𝜙(𝑠𝑢

0 = 𝐿𝑢
0 ) = 1, which we can confirm is respected by all

of our solutions in Fig. 4.10.

Another set of mirror-symmetric solutions is obtained if the inner and outer phases – relative to
the skin – are not the same and thus do not contribute the same amount to the total effective
20Or the discontinuity in 𝜏𝑢

𝑠 and 𝜏𝑢
𝜙 as seen in Fig. 4.10
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Figure 4.12: Exemplary upper contact
shapes with varying gravitational influence
(parameter 𝛥 ̃𝜌𝑢). The shapes are addi-
tionally compressed/stretched by gravity.
For all of these shapes we choose a contact
length of 𝑙/𝑎 = 0.6 and an apex stress of
𝜏𝑢

𝑠 (𝑠 = 0)/𝛾 = 0.5 (i.e. we select a spe-
cific point in Fig. 4.8 and only vary the
gravitational influence). The accompanying
lower shape is not shown explicitly, but is
equivalent to that of the upper shape with a
flipped sign in 𝛥 ̃𝜌𝑢, while the upper shape
is stretched by gravity, the lower shape is
compressed by it.

surface tension in the non-contacting region 𝛾 = 𝛾𝑖 + 𝛾𝑜, the partitioning 𝑝 ∈ [0, 1] between
𝛾𝑖 = 𝑝𝛾 and 𝛾𝑜 = (1 − 𝑝)𝛾 would control the contact angle in the purely liquid case. These
configurations are still mirror-symmetric as long as all other control parameters still are mirror-
symmetric. Here it controls the effective adhesive energy contribution in the contact region. Both
shapes trade stretching energy in the contact region against surface tension energy because of the
difference in surface tension in the non-contacting versus the contacting region 2𝛾 ↔ 2𝛾𝑖 + 𝛾𝑢𝑑 by
elongating the contact length 𝑙. The result is a change in the contact angle as described by the
Weierstrass-Erdmann conditions

𝛺 = 2 arccos 𝜏 el
𝑠 (𝑙) + 𝑝𝛾 + 𝛾ud

𝜏 el
𝑠 (𝑙) + 𝛾

(4.80)

however, we can assume 𝜏 el
𝑠 (𝑙) ≪ 𝑝𝛾 < 𝛾 if the contact length is sufficiently small. This gives

𝛺 ∼ 2 arccos(𝑝 + 𝛾ud/𝛾). In a sense, the partitioning 𝑝 creates a ”trivial” adhesion of the two skins,
with ”trivial” in the sense that it is an inherent adhesion due to the inner and outer fluid phases,
which is entirely independent of the inter-material interactions. The inter-material interactions
leading to additional adhesive effects are captured in the entirely separate parameter 𝛾ud. Some
shape examples are given in Fig. 4.11, where only the partitioning 𝑝 is varied. As expected 𝑝 = 1
gives a contact angle 𝛺 = 0.

Up to this point we did not include any additional adhesive effects, i.e. 𝛾ud = 0. The term 𝛾ud

scales additional energetic contributions in the contact region, where it is the proportionality
constant between the additional contact energy and the contact surface area. It can be used to
modify the total effective surface tension energy in the contact region. If the contact between the
capsules leaves a wetted liquid film between the individual capsules, due to it not being drained
fast enough, the additional surface tension is exactly equal to the sum of the outer liquid surface
tension contributions 𝛾ud = 𝛾𝑢

𝑜 + 𝛾𝑑
𝑜 .

In the case, where the contact between the two materials causes an effective attraction between the
two, due to adsorbtion or other surface processes, the additional effective surface tension would be
negative 𝛾ud < 0, acting to further increase the contact length in exchange for elastic energy.

Gravity induced mirror-asymmetry

Up to this point we have disabled gravitational effects by explicitly choosing 𝛥 ̃𝜌𝑢,𝑑 = 0 as an
assumption in our analysis. This assumption is well suited if the capsules are sufficiently small,
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Figure 4.13: Gravitational effects change the solution shapes by modifying the reference shapes and
the local stretch ratios. The stretch ratios 𝜆𝑢

𝑠 and 𝜆𝑢
𝜙 are defined relative to the liquid reference shape.

We identify the region where gravitational effects influence the solution shapes most drastically to be
close to the capillary.

or if the density between inner and outer phase are negligible [32]. We will now discuss what
happens to a configuration that is symmetric in every parameter but gravity is introduced into
the problem by choosing 𝛥 ̃𝜌𝑢 = 𝛥 ̃𝜌𝑑 ≠ 0. Most obviously, introducing gravity changes the
shapes to be longer/shorter if gravity stretches/compresses the shape additionally. We always
have both deformation modes in our contact problem, because if the upper shape is stretched by
gravity, the lower shape is compressed by gravity and vice versa. This is simply because their
respective orientation exactly mirrors the gravitational influence. Since we have axisymmetry as
a fundamental assumption for all of our derivations, we are not able to access solutions where
gravity leads to a non-axisymmetric configuration.

In Fig. 4.12 we only show the upper solution shapes, however, the lower shape needs to be
calculated as well to arrive at this solution, as the contact pressure is dependent on both solutions,
as discussed previously. By sampling the gravitational influence 𝛥 ̃𝜌 from negative to positive,
we essentially flip the role of upper and lower shapes during our sampling, because a negative
value for 𝛥 ̃𝜌𝑢 gives the same shape solution as the lower solution shape would have for a positive
𝛥 ̃𝜌𝑢. In a sense, the shape for 𝛥 ̃𝜌𝑢 = −0.3 in Fig. 4.12 is the same shape as the lower solution for
𝛥 ̃𝜌𝑢 = 0.3, such that these are intimately connected.

The visual intuition is that the shapes do not change significantly in and around the contact
region when gravity is activated. We can quantify this intuition by evaluating the internal stretch
states of the respective shapes in Fig. 4.13. Furthermore, Fig. 4.13 gives an insight into how the
shapes redistribute the surface area stretches when gravity is enabled. As intuitively expected,
the local stretches are amplified in the vicinity of the capillary with increased gravitational pull.
This is simply because a large meridional stretch lengthens the region of the capsule, where it is
comparatively slender and transfers a larger body of volume to the lower parts of the capsule, as
preferred by the gravitational potential energy. The total arc-length of the capsule thus increases,
trading stretching energy against gravitational potential energy. For negative gravitational pull,
the effect is inverted, since the gravitational potential energy prefers having as much volume as
possible close to the capillary.
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4.6 Capsule contact at constant volume
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Figure 4.14: A deformation sequence at constant enclosed volume 𝑉 𝑢 = 𝑉0 and with a mirror-
symmetric contact. Shown is only the first quadrant of the shape, where the full shape is recovered
by symmetry. The shape sequences have varying elastic moduli and the visual appearance of the
deformation sequence only differs in details, such as the total height, or the angle at the capillary
at 𝑠 = 𝐿. A more detailed investigation reveals that the external forces required to achieve the
respective shapes vary distinctively, leading to a modified adhesion behavior and a hysteresis.

The convenient parameters to control from the theory point-of-view are the apex stresses 𝜏𝑢,𝑑
𝑠 (𝑠 = 0)

and the contact length 𝑙, since they are immediately used in the integration routine. Unfortunately,
they are not the parameters usually controlled during an experiment. Instead, an easily accessible
control parameter is the respective volume of the configuration 𝑉 𝑢,𝑑. Controlling the volume during
a contact sequence is experimentally more accessible than controlling the apex stress 𝜏𝑢,𝑑

𝑠 (𝑠 = 0).
From the theoretical point-of-view this is an unpleasant control parameter, because in order to
control it, we must iteratively search for the proper initial meridional stresses, which generate the
prescribed volumes. This adds another layer of complexity on top of our numerical approach. As
already shown in Fig. 4.8, the path of constant volume snakes through the 𝜏𝑢,𝑑

𝑠 (𝑠 = 0)-𝑙 shape
space along a sine-like curve. The numerically demanding task is to iteratively search for exactly
these curves through the shape space at given control parameters and volumes 𝑉 𝑢,𝑑. Finally, we
choose to use a bisection algorithm 21 in order to find the shapes with appropriate volume.

In Fig. 4.14 we fix the volume to that of the reference liquid droplet 𝑉 = 𝑉0 for all deformed
shapes and progressively increase the contact length 𝑙. Additionally, we show the changes to the
shapes caused by the elastic modification of the interface from left to right. Note, that the liquid
shapes are integrated with a different solver than the elastic shapes, simply because the notion of
stretch and reference shape get lost, which our elastic solver relies on. Essentially, when setting
𝐾2D = 0, we are dividing by zero when inverting Eqn. (4.74). This is of course only a numerical
problem and is solved by integrating the shape equations of the liquid contact problem separately
which is simple such that we will not discuss it here 22.

At 𝐾2D ∼ 𝛾, the visual difference between the deformed shapes is not immediately obvious but
starts to become more pronounced for 𝐾2D ≥ 4𝛾. The difference in the deformed shapes is caused
by the additional force required to deform the elastic interface. During this deformation sequence
21Similar to the one used in the shooting process for the respective pressures.
22Similar to the integration used in Sec. 1.1 and Ref. [24] with the appropriate initial conditions.
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Figure 4.15: The total height of the capsule ℎ𝑢

and the external force required to achieve the
specific configuration are shown for the deforma-
tion sequences in Fig. 4.14. A change in the two
dimensional compression modulus reveals the dis-
tinct differences introduced by the elastic skin.
The force required to rip the capsules apart rises
with the elastic modulus, while the work required
to do so 𝑊rip decreases. Additionally, the colored
markers indicate several distinct regions along
a contact hysteresis. The shapes come into con-
tact first at the green diamond, then immediately
transfer to the colored triangles (with force con-
trol) from which they need to progress towards
the colored circles in order to separate again. If,
instead, the separation distance is controlled, the
shapes only separate at the colored squares. The
ripping work is exactly the area under the respec-
tive force-height lines.

we prescribe the contact length 𝑙 and let the required external force 𝑓 and the total height ℎ𝑢,𝑑

settle in. The forces and total heights required to achieve a given contact length are modified
by the elastic skin, as shown in Fig. 4.15. Following the deformation sequence along the colored
lines in Fig. 4.15 reveals that the shapes come into contact first at the green diamond, where,
if the external force is zero 𝑓 = 0, they instantaneously slip along the orange horizontal line at
𝑓 = 0 to the corresponding triangle, where a stable force balance is achieved. The stable point
differs not only in total height, but also in contact length 𝑙. Increasing the compression modulus
at zero external force, leads to a decrease in the contact length and a decrease in the total height
ℎ𝑢 compared to the reference shape. This makes intuitive sense, since the elastic skin additionally
resists a deformation away from the reference shape and thus decreases the energy advantage
obtained from the adhesion in the contact zone due to an increase in elastic energy.

In order to separate the shapes again, starting at the colored triangles in Fig. 4.15, we need to
trace through the negative forces along the respective colored lines up to the colored circles 23.
At the circles, the biggest separating force is required. If we control the pulling force, the shapes
will separate at the colored circles, as an increase in the pulling force will yield no stable solution
anymore. The detachment following from here is a complex dynamic process not captured by the
present theory. Ultimately, however, the shapes will separate at this point, simply because there is
no configuration beyond this pulling force which satisfies a force balance.

The magnitude of the maximal separating force 𝑓rip is increased by an increase in 𝐾2D. Counter-
intuitively, this does not mean that the shapes stick together more strongly. Instead, the height of
the energy barrier locking the shapes together is a better measure of how strongly the shapes stick
together. The height of this energy barrier is exactly the work required to rip the shapes apart
𝑊rip and is obtained by integrating over the colored curves from the colored triangles up to the
colored circles. The ripping energy barrier height is shown in the inset of Fig. 4.15 and shows a
decrease of the energy barrier with increasing 𝐾2D. The elastic shapes thus stick together with
greater force, but the work required to separate them is decreased with increasing 𝐾2D. In a sense,
the compound could be considered as being increasingly brittle with increasing 𝐾2D.

If, instead of the pulling force, the separation of the shapes ℎ𝑢 is controlled, the contact sequence

23Along increasing ℎ𝑢.
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behaves distinctly different. The shapes still come into contact first at the green diamond at
zero external force, then, however, they instantaneously slide along the black vertical line to
the corresponding intersection point on the respective colored line with negative external forces.
Bringing the shapes closer together, by decreasing the separation of the capsules, increases the
external force from here on 24. Separating the shapes again requires an increase in the separation,
beyond the original contact separation up to the colored squares along the colored lines. Increasing
the separation any further does not yield stable configurations anymore, such that the shapes
must separate after this point.

Both for force and for separation control, we see a hysteresis in the contact behavior, induced
entirely by the adhesion between the two capsules. Deactivating the adhesive effects by setting
𝛾𝑢,𝑑 = 𝛾𝑖 and 𝛾ud = 0 25 eliminates the hysteresis entirely.

4.7 Elastic meta-materials and the elastic capsule unit cell

Figure 4.16: We are able to solve an entire col-
umn of stacked elastic capsules by exploiting cer-
tain symmetries. The unit cell of the column is
only one quadrant of the actual full solution of a
single capsule from the column, since we are able to
construct the remaining quadrants by reflections at
the symmetry lines indicated as (1) and (2). The
full solution of a capsule column can be constructed
by additionally translating the unit cell solution
along the 𝑧-axis. Using the elastic unit cell to char-
acterize an entire stack of capsules is only possible if
gravitational effects are negligible and if all capsules
share the exact same control parameters. Otherwise,
the entire stack needs to be solved, by explicitly
integrating all contributing (coupled, through the
contact pressure) capsules.

Determining the macroscopic elastic properties of materials is important to properly characterise
the acoustic and mechanical response functions of the material. Ultimately, the material constants
allow to precisely manufacture sound absorbtion, thermal insulation or structural mechanical
properties [119], [120]. We would thus like to discuss how we can apply the present theory to
improve the understanding of a particular meta-material geometry.

In all of our considerations, we are limited by our initial assumption of axi-symmetry. So far we
have discussed a single contact between two capsules. Increasing the number of contacts to beyond
two is not possible, as it would require at least one of the contacts to not be on the symmetry axis.
We can however investigate one further contact scenario. Here, we have three capsules stacked
on top of each other, as seen in Fig. 4.16. This stack of elastic capsules could be considered as
a column in an elastic meta material. However, because of the limitations axi-symmetry entails,
this column does not interact with any other material column. While the present theory allows
for a multitude of scenarios (e.g. gravitational effects, different elastic properties for all capsules
etc.) we want to focus on the most simple scenario first. The most simple scenario is that where

24Lowering the separating force up to the colored triangles, then requiring a compressive external force to bring the
capsules closer together.

25I.e. the contact angle vanishes.

87



4 Contact phenomena of complex interfaces

0.6 0.8 1.0 1.2 1.4

hu/2R0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
f
/
(γ
u
2R

0
)

Constant Volume V = V0

K2D � γ

K2D = γ

K2D = 2γ

K2D = 6γ

0.0 2.5 5.0

K2D/γ
u

0.20

0.25

W
ri

p
/(

4
γ
u
R

2 0
)

Figure 4.17: The total height of a single cap-
sule ℎ𝑢 in a column of similar capsules against
the external force required to achieve the con-
figuration. The qualitative behavior is similar
to that seen in Fig. 4.15 but shows qualitative
differences because the boundary conditions and
reference shapes differ conceptually. Here, mirror-
symmetry must be enforced such that there is a
vertical tangent at exactly half the total unde-
formed length, where the boundary condition in
Fig. 4.15 is to reach the capillary. Note that the
length scale is now set by the size of the reference
spherical liquid droplet, such that this figure is
universal for all contact unit cells.

all capsules of the column have the same fully spherical liquid reference shape and have identical
elastic constitutive properties. Additionally, we want to disable gravity.

In this scenario, we have a multitude of symmetries. First, all of the capsules in the column have the
same deformed shape. Second, the solution of a single capsule in the column is mirror-symmetric
with respect to a horizontal plane at half the total height of the capsule.

Similar to the approaches in foam mechanics [121], [122], we can define an elastic unit cell of the
capsule column. The unit cell of the capsule column is a capsule which has a reference shape
with the parameters ̃𝑝𝐿 = 4 and 𝛥 ̃𝜌 = 0 26. This sets the natural length scale as the diameter of
the reference liquid sphere and eliminates the dimensionless pressure of the reference shape as a
control parameter. All of the deformed unit cell capsule solutions must satisfy 𝛹(𝑠0 = 𝐿0) = 𝜋/2,
which ensures mirror-symmetry (see the red line in Fig. 4.16). The full solution of a single capsule
in the column can then be generated by reflecting the solution of the unit cell at the horizontal
plane at 𝑧(𝑠0 = 𝐿0).

To find the appropriate deformed unit cell shape, we search for the pressure of the deformed
configuration, such that the boundary condition 𝛹(𝑠0 = 𝐿0) = 𝜋/2 is satisfied. This still leaves
us with two further control parameters, i.e. the contact length 𝑙 or force 𝑓, and the meridional
apex stress 𝜏𝑠(𝑠 = 0) or the volume 𝑉. If we control the enclosed volume, such that it is constant,
as detailed before, we are left with only one control parameter, which is the contact length 𝑙 or
the contact force 𝑓. This elastic unit cell behaves qualitatively similar to the elastic capsule on a
capillary, as can be seen in Fig. 4.17. The beauty of this unit cell is however, that its properties
can be exactly extended to the entire column. All intensive variables, such as the external force
stay the same for all capsules 27. The extensive variables scale by the number of capsules in the
column, such as the total height of the column and by extension the ripping work 𝑊rip.

Furthermore, we are able to deduce the macroscopic elastic moduli from Fig. 4.17. The contacting
system is in a force balance with no external force 𝑓 = 0 exactly at the colored triangles in Fig. 4.17.
The region around this point is approximately linear for a certain range of displacement heights
ℎ𝑢.

26Which is a perfect half sphere.
27Because they are in series.
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Figure 4.18: The effective three dimensional stress-strain curves of a column of stacked elastic
adhesive capsules reveals the effective elastic properties. The slope of the stress-strain curve around
the reference (external force free) state at 𝜖ℎ = 0 determines the three dimensional Young’s modulus
of the entire capsule column (left). We show in the inset (left) that the three dimensional Young’s
modulus scales linearly with the two dimensional Young’s modulus, while it has an offset at 𝐾2D = 0
caused by the adhesion, which is also present in the purely liquid case. Similarly, we apply a uni-axial
force to the capsule column along the 𝑧-axis and investigate its strain response in the axial direction
𝜖ℎ as a function of the strain in the radial direction 𝜖𝑤 (right). The slope of this curve around the
reference configuration (external force free) at 𝜖ℎ = 𝜖𝑤 = 0 reveals the three dimensional Poisson’s
ratio 𝜈3D of the capsule column. We find that the three dimensional Poisson’s ratio decreases with an
increase of the two dimensional compression modulus 𝐾2D, as can be seen in the inset figure (right).

We can imagine an arrangement where multiple columns of this kind are placed in a grid, such
that they are immediately neighboring, but not contacting the other columns. This creates a
scenario, where we are able to pull on the macroscopic three dimensional material in the direction
of the column orientation and measure its effective elastic moduli. The three dimensional Young’s
modulus is defined as the force per area exerted on the material faces divided by the relative
extension of the material. In our case this means that the three dimensional Young’s modulus is
calculated as

𝑌3D = 𝑓ℎ𝑢(𝑓 = 0)
𝜋𝑟2

max(ℎ𝑢(𝑓 = 0) − ℎ𝑢(𝑓))
, (4.81)

where the relative change in the height ℎ𝑢 is exactly the strain 𝜖ℎ induced by the uni-axial force 𝑓
that acts on the capsule stack over its surface 𝜋𝑟2

max. The Young’s modulus given in Eqn. (4.81)
results from a linearization around 𝑓 = 0, but in principle, we are able to determine 𝑌3D as the slope
of the deformation sequences in a stress-strain ( 𝜎ℎ- 𝜖ℎ) diagram. This is exactly what we show
in Fig. 4.18 (left). With increasing two dimensional compression modulus 𝐾2D, or equivalently
increasing two dimensional Young’s modulus 𝑌2D = 2(1 − 𝜈2D)𝐾2D (with fixed 𝜈2D = 1/3), we
find an increase in the slope of the effective three dimensional stress-strain curve (see Fig. 4.18
(left)). We quantify this increase in the slope by showing the relationship between the three
dimensional modulus 𝑌3D and 𝐾2D in the inset of Fig. 4.18(left). We find a linear relationship
2𝑅0𝑌3D = 𝛼𝐾2D + 𝛽𝛾𝑢 with the coefficients 𝛼 ≈ 0.52 and 𝛽 ≈ 1.39. We have 𝛽 ≠ 0 because
the adhesion between the capsules is also present if there is no elastic skin and introduces a
quasi-elastic response to the uni-axial force.
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The three dimensional Poisson’s ratio 𝜈3D quantifies the deformation of the normal directions (with
respect to the axis of loading) when a uni-axial loading is applied. When pulling on the capsule
column, the maximum radius of the capsules changes. The proper definition of the Poisson’s ratio
is given as

𝜈3D = −d𝜖𝑤
d𝜖ℎ

. (4.82)

We thus determine the three dimensional Poisson’s ratio from Eqn. (4.82), or via the slope of the
𝜖𝑤-𝜖ℎ diagram as we show in Fig. 4.18(right). We find that 𝜈3D decreases with increasing capsule
compression modulus 𝐾2D. This means that a stiffer capsule material inhibits the contraction of
the radial component more strongly than a softer capsule material. This makes sense, since the
stretching energy required to pull the capsule into a cylindrical shape (with larger 𝜖𝑤) increases,
and it will be energetically favourable to trade-in some adhesion energy at the contact sites to
avoid the larger stretching energy penalty incurred alternatively to provide the same axial strain.

4.8 Discussion

We provide a detailed discussion of the contact between two elastic capsules and the contact of a
single elastic capsule and a solid wall. The present discussion enables the design of experiments
and novel shape fitting methods to deduce adhesive properties of thin walled elastic capsules.
We show that the coupling of both contacting shapes is important to generate the appropriate
solutions and discuss the shape equations of the free-slip and no-slip contact coupling case. The
differences in the contact coupling are subtle but fundamentally change the problem from being
history independent (free-slip) to being entirely history dependent (no-slip). The main result of
the theoretical investigation is the set of shape and contact equations, which we derive formally
from a variational method and motivate the results with simple force and moment balances. We
additionally show that an effective contact angle for small bending length scales may be derived
from the variational problem by allowing step angle changes over length scales longer than the
bending length scale. These effective contact angles may be used for visual analysis of contacting
elastic skins.

We show that gravity has a profound influence on the deformation behaviour. The gravitational
effects enter as a hydrostatic pressure contribution into the shape equations, thereby modifying
the resulting shapes distinctively. We find that gravitational effects may only be neglected if
𝛥 ̃𝜌𝑢,𝑑 ≪ 1.

Additionally, we parametrize the severely high-dimensional parameter-shape space of this problem
and derive approximate relationships for characteristic points in the shape space, possibly to be
utilized by experimentalists in the future. One of the main result of the shape space investigation
is the detailed analysis of the contact hysteresis created by adhesion effects. Importantly, having
force control versus separation control distinctly changes the contact hysteresis and the accessible
solutions. In an experiment, both of those control mechanisms could be employed. In the
future, experiments could measure both separation and exerted force at known elastic constitutive
parameters 28 to determine the adhesive properties of the capsule-capsule system.

Finally, the source code is openly available at https://www.github.com/FelixKratz/CapSol,
where we provide an interactive Python frontend to easily explore the parameter-shape space.

28Determined, e.g. by capsule elastometry (see Chap. 2).
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5 Machine learning applications in ill-posed inverse
problems

Because the computing power evolved exponentially in the past decades, it has become possible to
exploit learning capabilities of machines. The idea of machine learning is as old as computers (or
even older) and can be marked as one of the most important technological advances in the 21th
century. Creating a machine, which learns to exploit and act on arbitrary correlations found in an
appropriately designed set of training data has the potential to shift a multitude of paradigms.
Certainly one of them is the solution of ill-posed inverse problems, as we will discuss in this
section.

A remarkable application of machine learning is an approach to the problem of protein folding
called AlphaFold developed at Google DeepMind, which significantly outperforms conventional
methods and allows for entirely new design processes [123]–[125]. Of course, in the recent past,
capable and powerful transformer networks demonstrate the capabilities of machine learning in
the context of natural language processing. A prominent example of such transformer network
is ChatGPT [126], poised to challenge several paradigms in text processing, text production and
more 1. Further prominent examples of machine learning include image and video generating
networks such as DALLE and Sora [127], where images or entire videos are created from simple
natural language text prompts. AlphaZero/AlphaGo is an AI playing Chess/Go, able to beat
even the most sophisticated conventional algorithms such as Stockfish and – of course – the best
human players [128]. The aforementioned examples are popular examples, however, the fields
of application for machine learning are essentially endless. It is fair to say that the concepts of
machine learning currently drive a full grown revolution in several fields of science. For example,
in medicine and diagnostics machine learning is able to confidently identify pathological patterns
from highly limited data and provide information otherwise unattainable [129]–[131].

Generally, whenever an algorithmic approach to a certain problem is convoluted 2 and sufficient
example data is available, a machine learning approach seems to regularly outperform the algo-
rithmic approach [24]. Here, we will discuss applications of machine learning in ill-posed inverse
problems. The steps required to create a successful machine learning approach to an inverse
problem include but are not limited to:

• Find a suitable parametrization for the problem.

• Understand the intrinsic accuracy limitations of the problem.

• Create a training data set which contains labeled samples for the inverse problem and
respects the physics of the problem, e.g. covers the parameter space appropriately.

• Design a network architecture capable of learning the appropriate correlation from the
training data set.

• Probe the resulting network and compare it to other methods.

This will be the general recipe for the following sections, where we will investigate several inverse
problems and accelerate their solution with the help of machine learning.

1This thesis text is created without use of any neural network or AI. Possibly being one of the last of this kind.
2E.g. by having many edge cases, being ill-conditioned, having many hyperparameters or using phenomenological

assumptions.
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5 Machine learning applications in ill-posed inverse problems

5.1 Liquid droplet machine learning tensiometry

Notice – This section is a continuation of the author’s publication [24] and master
thesis [45].

We can intuitively understand that we should be able to provide a more efficient and severely
faster method for determining the control parameters of the Young-Laplace equation from a single
image than the previously detailed numerical fitting approach (see Sec. 2.1). A fundamental
shortcoming of the numerical inverse approach is that it has no memory or deeper understanding
of the problem 3. Rather, every shape is fitted without any use of the information about previously
fitted shapes – this is a history agnostic algorithmic approach. While this approach has a certain
elegance because it is entirely deterministic, it is simply inefficient. The major overhead with the
algorithmic approach stems from the necessity to sample the residual gradient landscape anew
for every individual shape fit. While this problem itself may not be considered ill-posed, as we
have shown that a stable algorithm exists for its solution (see Sec. 2.1), we will use it as a first
introductory problem. Later problems will indeed be ill-posed in the mathematical sense.

On the contrary to an algorithmic approach would be a lookup table, where several fitted shapes
are characterized in a suitable way [63], [64], [67] and the appropriate values are provided essentially
for free from any computational effort – as long as some similar shape is already in the lookup
list. Ultimately, we do not want to create a large lookup table because it is too inflexible, but
rather a highly compressed representation of that lookup table, where functional correlations are
exploited to reduce the amount of storage needed. Because we have severely limited knowledge
about the correlations in shape-parameter space, implementing these heuristics on an algorithmic
level ourselves is unreasonable. However, we are able to generate ∼ 1000 shapes/s as solutions to
the purely liquid shape equations on a single laptop CPU core. This enables us to easily sample
the parameter space in reasonable time to generate a large sample data set. This brings us into
a position where we have essentially unlimited sample data available. The only part missing to
the puzzle is a clever – and in the best case autonomous – way to use this data set to extract the
relevant information. Finally, we can realize that a fully connected deep neural network is exactly
what can do this job for us. Without us supplying any bias, we can simply provide the sample
data set – essentially an uncompressed lookup table – to the network and let it find a sufficient
compression for it. This compression is found in terms of a set of correlations, implementing a
mapping function from shape space to parameter space by use of the trainable weights and biases
of the network. Furthermore, because the network learns to exploit the fundamental correlations
of the problem, it does more than learning a simple compression, it rather learns to generalize the
problem to data never seen before. A naïve upper bound for the compression ratio 4 may be found
simply by comparing the information contained in the training data set and the weights and biases.
While the training data set contains data of size ∼ 1010 Bytes, the final weights and biases only
contain data of size ∼ 107 Bytes, which sets an upper bound for the compression ratio at ∼ 103.
The elegance of this approach is its independence of any human bias 5 and its generalization
potential, where it fails to provide us with any insight about its exact inner workings. In essence,
we create a highly capable black box 6. Retroactively, we can of course verify that this black box
does what we expect it to do, which is exactly what we will discuss in the following. Once the

3Altough some understanding is coded into the algorithm, the algorithm still requires an iterative approach,
manifesting that deeper knowledge about the inverse problem solution space is lacking. In a sense, we use ”deeper
understanding” as a way to describe the fact that a solution to the problem is created ad-hoc, witout need for
initial guesses and iterations.

4This is only a bound because we did not show that the training data set is minimal.
5Under the assumption that the training data set sufficiently characterizes the problem.
6Similar to the human brain, which is also essentially a highly capable black box.
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Figure 5.1: The performance of our adapted
neural network (NN) as compared to the highly
optimized numerical solver. The NN provides
its guess three orders of magnitude faster than
the numerical fit. The precision of the NN is
consistently lower than that of our numerical
shape fit. This would not be true if both methods
are only allowed to take the same amount of
time. We additionally quantify the resistance to
noise by applying a Gaussian noise with standard
deviation 𝜎 to numerically generated shapes and
only then feed them back to the respective inverse
solver.

black box is trained, evaluating shape data never seen before will cut out any numerical fitting
overhead and only include trivial GPU accelerated matrix multiplications to find a proper result.

As we showed previously in Ref. [24] such approach can compete with a numerical fitting algorithm
in all metrics and severely beats it in terms of computational cost. While we used a fixed arc-length
sampling (𝛥 ̃𝑠0 = 10−2) in Ref. [24] for the input shape data with a maximum of 226 coordinates,
we now want to always provide 250 equidistantly spaced (𝛥 ̃𝑠 = �̃�0/250) points to the input layer
of the network. The problem with the prior sampling approach is that small shapes only have few
data points and large shapes do not entirely fit into the 226 coordinate slots available, leaving out
information towards the capillary. Both of these problems are efficiently countered by adapting
the input data format of the network. Additionally, since computing the benchmark with the
numerical fit in Ref. [24] many improvements to it are implemented (as detailed in Sec. 2.1), such
that the numerical benchmark now is consitently lower than that presented in Ref. [24].

An updated performance comparison is provided as Fig. 5.1. The NN is able to accurately solve the
inverse problem and has generalized well, as indicated by the low MAE in Fig. 5.1. However, the
numerical solver outperforms the NN across all noise levels 𝜎, which is reasonable when considering
that it uses three orders of magnitude more time to do so. Additionally, the numerical shape fit
is able to continuously probe the shape equations to find the actual minimum of residual shape
error, where the NN has no feedback and essentially creates an ad-hoc one-shot guess 7. Still, the
NN is capable of solving the inverse problem in high precision, while presenting high throughput
capabilities. This makes the NN approach interesting for real-time or ad-hoc data analysis, e.g. for
rapid feedback during experiments. Additionally, this approach marks a proof-of-concept, where
we show that machine learning approaches are well versed to solve intricate numerical inverse
problems efficiently. We will built on-top of the knowledge acquired here in order to extend the
conceptual approach to more involved problems in the following sections.

7If the numerical solver only had one iteration available, the performance would be significantly worse.
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5 Machine learning applications in ill-posed inverse problems

5.2 Elastic capsule machine learning elastometry

Figure 5.2: The neural network we employ for capsule elastometry has a simple feed-forward
architecture. We provide discretized shape information of the elastic reference shape, along with
shape information of a sufficiently elastically stressed shape as an input. The input is passed through
a number of hidden layers, until finally, the output of the network provides information about the
non-dimensional control parmameters of the elastic capsule.

As we showed in the previous section and Ref. [24], it is possible to determine the control parameters
of pendant droplets (i.e. no elastic or viscoelastic stress contributions) with high precision via a
neural network. Here, we want to adapt this approach to elastic capsules. The task at hand is
thus to create and train a set of weights and biases which solve the inverse problem of determining
the constitutive elastic parameters from deformed capsule shapes. We have shown in Sec. 2.2 that
finding a stable algorithmic approach is highly challenging, where the proper choice of the shooting
parameter is imperative for the success of the numerical approach. A distinction between an
ill-conditioned and an ill-posed problem can be made, where ill-conditioned problems are sensitive
to noise, ill-posed problems have parameter space regions where the inverse problem, even under
ideal circumstances will not converge. We discuss the ill-posedness of the elastic shape fitting
problem in Sec. 2.2.

The merits of using a machine learning approach for an inverse problem of this kind is an orders
of magnitude faster execution time once the machine has been trained. Because the training has
to be performed only once, the performance benefits always pay off in the long run. However,
improvements in performance should not come with significant loss in precision or traceability.
Conveniently, we are not depending on experimental training data, since we can generate the
training data from the numerical realization of the forwards problem. This eliminates a possible
bias introduced when labeling experiment training data and makes this approach bias-free as long
as the sampling of the training data set is cautiously performed. Furthermore, we do not depend
blindly on the guess of the machine but are able to feed the reconstructed parameters back into our
numerical solver and thereby calculate a true shape residual. This allows us to keep traceability of
our networks in check. Whether precision can be retained by our machine learning approach can
only be evaluated once the networks are trained.

We already discussed the problem in detail for the numerical approach to the inverse problem (see
Sec. 2.2) and can reuse the gathered knowledge for the machine learning approach. Furthermore,
similarly to the tensiometry problem discussed in Sec. 5.1, we have access to essentially unlimited
sample data. Our numerical forwards solver is able to produce up to 67 shapes/s on an M1 Pro
CPU, using 10 CPU cores. Thus, we are again able to generate a labeled training data set with
our numerical solver, where we solve the forward problem (i.e. solving the shape equations) for a
given, randomly sampled, set of control parameters.

Again, we use a deep neural network to extract the fundamental correlations from the training
data set, allowing the trained network to generalize to data never seen before and hence provide
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Figure 5.3: The precision of our trained neural network is within a drastically narrower band than
the numerical fit (compare to Fig. 2.4). This means the best case performance of the NN is worse
than the best case performance of the numerical solver, while the worst case performance is better
for the NN. On average, the NN beats the numerical shape fitting approach in precision roughly by a
factor two, while being six orders of magnitude faster.

an appropriate estimate for the control parameter set from experimental image input. We start
our discussion by detailing the architecture of the neural network we employ.

5.2.1 Architecture

We choose an architecture similar to that used in the liquid droplet problem in Ref. [24], where
some important modifications are made. The input for our neural network will be a set of shape
coordinates of the undeformed reference shape (i.e. a liquid droplet) and a set of shape coordinates
from the deformed elastic shape. This is the same input that our numerical inverse solver requires.
While it would theoretically be possible to only provide a single deformed image and fit the
accompanying reference parameters along with the constitutive parameters, the resolution of
the shape needed for this to reliably work would be unrealistic. Additionally, in the future, a
systematic approach for infering the ”true” reference shape could be made available. Of course, we
could also provide any number of deformed shapes from a deformation sequence to the machine to
improve precision. For this work, we will focus on the most simple case first, where we provide a
reference shape and a single deformed shape. A schematic of the network architecture is provided
as Fig. 5.2.

We need to take some care to consider which information is actually available in an experiment
and choose the training data such that we are able to apply the neural network to experiment
data as well. In the numerical implementation, we integrate the shape equations in terms of
the undeformed arc-length coordinate 𝑠0. Creating a set of shape coordinates sampled naively,
e.g. equidistantly spaced along the undeformed arc coordinate 𝑠0, will provide the network with
information implausible to obtain experimentally, since in an experimental image the shape is always
obtained as a function of the deformed, geometric, coordinate 𝑠 at first. This is a very important
observation, as a sampling in the undeformed arc coordinate implicitly provides information about
the local stretches 𝜆𝑠 and 𝜆𝜙. We thus sample our numerical solutions equidistantly in terms of the
deformed arc length coordinate 𝑠, such that we acquire 250 pairs of shape coordinates (𝑟(𝑠), 𝑧(𝑠)).
We flatten the shape coordinates of both the reference and the deformed shape, and supply them
to the neural network as a list with 500 entries. This is the only information the neural network
shall receive.

The shape coordinates are propagated through a fully connected feed-forward neural network with
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Figure 5.4: We employ a hybrid shape fitting technique, where we provide an informed initial guess
for the control parameters by evaluating the shapes with our NN first and only then starting the
numerical shape fit. This allows us to combine the strengths of both approaches, significantly reduce
computational cost and improve overall precision.

four hidden layers (see Fig. 5.2). The first layer has 1024 neurons and is activated with a sigmoid
function. This is done to normalize the input. The second layer has 512 neurons and is activated
with a LeakyReLu function. The third layer has 256 neurons and is activated with a LeakyReLu
function as well. A motivation why to use LeakyReLu instead of ReLu functions is given by the
vanishing gradient problem [132]. Finally, we have a layer with 16 neurons directly connected
to the output layer with 3 neurons and a sigmoid activation. The final layer is passed through
a sigmoid function, such that the outputs map to the target domain of [0, 1]. This means that
the training labels must be normalized to the range [0, 1] before supplying them to the training
process. Since 𝐾2D is unbounded, we artificially choose an upper bound for the sampling process
of 𝐾2D = 5𝛾.

We are able to generate up to 67 shapes/s, utilizing up to 10 M1 Pro CPU cores for the numeric
solution of the shape equations. This allows us to generate a large training set, consisting of
500.000 individual pairs of deformed and undeformed elastic shapes. 90% of these are used in
training, while the remaining 50.000 shape pairs are used for evaluation at the end of each training
epoch to detect over-fitting. Generally, over-fitting can be a problem when the capacity of the
network is on the same order of magnitude as the training data sets size, this is not the case here,
hence we do not expect or see over-fitting.

5.2.2 Hybrid Shape Fitting

Generally, the best-case precision of the network is not as good as the best-case precision of the
numerical fit, as can be seen by comparing Fig. 5.3 and Fig. 2.4. However, the worst-case precision
of the network is better than that of the numerical shape fit and most importantly, the network
produces guesses close to the actual control parameters more frequently than the numerical fit.
This manifests in the average precision (MAE) of the network being roughly a factor two more
precise when averaging over all 10.000 fitted shapes. We also have to keep in mind the drastically
different computational costs of those evaluations. While a numerical fit on a modern 10-core
CPU takes on average 5 s, the network produces its guess in 10 𝜇s – the NN is roughly six orders
of magnitude faster.

We realize that the numerical fit has stability problems produced by the nature of the parameter
space minimum search, which are most pronounced if the initial guess for the shape fitting is
too far away from the global minimum. Conversely, the machine learning approach has problems
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achieving precision in the vicinity of the global minimum but can predict the approximate vicinity
of the global minimum reliably. Hence, we are able to combine both approaches to achieve an
overall superior fitting performance. In extent, we first create a rough approximation of the
control parameters using the neural network. This rough approximation brings us in the vicinity
of the global minimum in the parameters-error landscape. We then use this approximation as the
initial guess for the numerical fit. Since the numerical fit now already starts in the vicinity of the
global minimum, we not only circumvent the numerical instabilities of the parameter space search,
but also accelerate the numerical fits drastically, since the search is slowest far from the actual
minimum. The precision of the hybrid-fitting approach is shown in Fig. 5.4

The first approximation of the control parameters by the ML approach can be created at effectively
no additional computational cost compared to the numerical fitting algorithm and leads to at
worst the same precision as the numerical fit with a randomly selected initial shape. We can
however show that the worst case precision is drastically improved by the hybrid fitting approach.
We also note that using the NN to provide an initial guess close to the minimum reduces the
computational cost by a factor of ∼ 3 on average.
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5.3 Machine learning traction force microscopy

Published material – This section is reproduced with modifications and permission
from the author’s publication [133], © 2023 Biophysical Society. It is a continuation
of the work by Lars Möllerherm described in his master thesis [134].

Figure 5.5: An artistic visualization of traction force microscopy. The cell is resting on an elastic
substrate with embedded light emitting marker beads. Our machine learning approach (as indicated
by the brain-chip) translates the observed marker bead displacements into an accurate cell traction
reconstruction (shown as the projection onto the black surface).
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Many cellular processes are intrinsically connected to mechanical interactions of the cell with its
surroundings. Mechanical surface forces control the shape of single cells or groups of cells in tissue
patterns and morphogenesis [135]. Forces alter cell behavior via mechanotransduction [136] and
affect cell migration and adhesion. Gaining access to the forces 8 exerted by the cell during critical
processes like migration or proliferation can give insight into biophysical processes underlying
force-generation and aid the development of novel medication and treatment, e.g. by identifying
changes of cellular forces in diseased states. Altered cell behavior is present in diseases [137] like
atherosclerosis [138], deafness [139], or tumor metastasis [140].

Traction Force M icroscopy (TFM) is a modern method designed to measure tractions exerted by
an adherent cell. The tractions are deduced from the cell-induced deformations of an engineered
external substrate with known elastic properties [141]–[143]. Beyond adherent cells it has applica-
tions to a broader range of biological and physical systems where interfacial forces are of interest
[144]. TFM thus constitutes a classic inverse problem in elasticity, where tractions or forces are
calculated from displacements and given external material properties. This inverse problem turns
out to be ill-posed, i.e., noise or slight changes in displacement input data induce large deviations
in traction output data because of singular components of the elastic Green’s tensor. This technical
problem has been addressed by different regularization schemes that have been developed over
the last two decades [145]–[149]. As discussed in the previous sections, machine learning can be
an elegant alternative to numerical schemes when the inverse problem to a bounded problem
is ill-posed in the context of elasticity or rheology. ML-aided traction force determination can
thus provide an elegant way to improve TFM as a method, as recent studies have already begun
to show [150], [151]. A systematic investigation of ML-aided TFM with respect to an optimal
general purpose training set that allows the machine to predict tractions accurately across many
experimental situations as well as a systematic investigation of accuracy and of robustness with
respect to noise, which is present in any experimental realization, are still lacking.

The first implementation of TFM was achieved by Harris and coworkers in the early 1980s, where
thin silicone films are wrinkled by compressive surface stresses, inflicted by the traction field of
the cell [152]. Due to the inherent non-linearity of wrinkling and the connected difficulties solving
the inverse elastic problem, this method has been superseded by linear elastic hydrogel marker
based TFM introduced by Dembo et al. [153]. Due to the simplicity of the hydrogel marker
based approach, it is the most commonly used and most evolved method. Alternative techniques
and extensions include micro-needle deformations [154], force microscopy with molecular tension
probes [155], and 3D techniques [156]. Wrinkling based TFM has recently been re-explored with
generative adversarial neural networks with promising results [151].

In this work, we focus on the hydrogel marker based technique and train a deep Convolutional
Neural Network (CNN), which has the capabilities to solve the inverse elastic problem reliably,
giving fast and robust access to the traction pattern exerted by the cell onto a substrate. Specifically,
we do this by numerically solving the elastic forward problem, where we prescribe generic traction
fields and solve the governing elastic equations to generate an associated displacement field. The
”synthetic” displacement field generated this way is used as a training input for our NN, while
we use the prescribed traction field as the labels for our training set. This way, the network
learns the mapping between displacement and traction fields and is able to generate traction
fields for displacement fields never seen before, while still respecting the relevant governing elastic
equations. Complete knowledge of the prescribed tractions for the synthetic training data enables
a training process that directly minimizes deviations in the predicted tractions. This contrasts
conventional TFM techniques which determine traction forces indirectly by minimizing deviations
in the resulting displacement field. We use traction force distributions generated from collections

8We are interested in tractions – forces per area.
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of circular force patches as training data, which seems a natural general choice to allow the NN to
predict generic force distributions in cell adhesion but should also cover other future applications.
We show that the proper, physics-informed choice of training data and inclusion of artificial noise
is a similarly important step in the ML solution of the inverse problem as the proper choice of
regularization in conventional TFM techniques, in order to achieve the best compromise between
accuracy and robustness.

5.3.1 Hydrogel Marker Based TFM

The hydrogel marker approach to TFM can be described as follows. First, a cross-linked gel
substrate, often Polydimethylsiloxane (PDSM) or Polyacrylamide substrates (PAA) [157], is
cultivated. The cross-linked gel can be classified as an elastic substrate with long linkage lifetimes
compared to the imaging process [158].

Second, the substrate is coated with proteins prevalent in the extracellular matrix like collagen type
I, gelatin, laminin, or fibronectin, allowing the cell to adhere to the substrate. Fluorescent marker
beads embedded in the gel substrate aid the determination of cell-induced substrate deformations.
The reference and stressed positions of the marker beads can be determined via various microscopy
techniques, ranging from confocal to optical microscopy [152].

Third, to infer the displacement field from the marker bead positions, a particle tracking velocimetry
(PTV) algorithm, a particle image velocimetry (PIV) algorithm or a CNN particle tracker [159] is
used, which calculates the discrete displacement field. The information about the displacement
field, combined with the predetermined constitutive properties of the hydrogel substrate gives
access to the traction field of the cell via the inverse solution of the elastic deformation problem.
For homogeneous, isotropic, and linear elastic solids the displacement field �⃗� satisfies the equations
of equilibrium in the bulk [37]

(1 − 2𝜈3D)𝛥�⃗� + ∇⃗(∇⃗ ⋅ �⃗�) = 0 , (5.1)

while the force balance at the surface is modified to account for external tractions ⃗𝑡 9

𝜎�⃗� = ⃗𝑡 , (5.2)

where �⃗� is the surface normal vector and 𝜎 the stress tensor.

The TFM gel substrate can be considered sufficiently thick to be modelled as an elastic half-
space (𝑧 > 0), bounded by the 𝑥-𝑦-plane, at which traction forces ⃗𝑡 = ⃗𝑡(𝑥, 𝑦) are applied. The
displacements are a solution of the boundary problem given as Eqn. (5.1) and Eqn. (5.2). Its
solution is given by the spatial convolution of the external traction field ⃗𝑡(𝑥, 𝑦) with the Green’s
tensor G over the boundary of the surface 𝑆 [37]:

�⃗�(𝑥, 𝑦, 𝑧) = ∬
𝑆

G(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧) ⃗𝑡(𝑥′, 𝑦′)d𝑥′d𝑦′ . (5.3)

The relevant Green’s tensor is given by [37], [153]:

G(𝑥, 𝑦, 𝑧) = 1 + 𝜈3D
2𝜋𝐸

⎛⎜⎜⎜
⎝

2(1−𝜈3D)𝑟+𝑧
𝑟(𝑟+𝑧) + (2𝑟(𝜈3D𝑟+𝑧)+𝑧2)𝑥2

𝑟3(𝑟+𝑧)2
(2𝑟(𝜈3D𝑟+𝑧)+𝑧2)𝑥𝑦

𝑟3(𝑟+𝑧)2
𝑥𝑧
𝑟3 − (1−2𝜈3D)𝑥

𝑟(𝑟+𝑧)
(2𝑟(𝜈3D𝑟+𝑧)+𝑧2)𝑥𝑦2

𝑟3(𝑟+𝑧)2
2(1−𝜈3D)𝑟+𝑧

𝑟(𝑟+𝑧) + (2𝑟(𝜈3D𝑟+𝑧)+𝑧2)𝑦2

𝑟3(𝑟+𝑧)2
𝑦𝑧
𝑟3 − (1−2𝜈3D)𝑦

𝑟(𝑟+𝑧)
𝑥𝑧
𝑟3 + (1−2𝜈3D)𝑥

𝑟(𝑟+𝑧)
𝑦𝑧
𝑟3 + (1−2𝜈3D)𝑦

𝑟(𝑟+𝑧)
2(1−𝜈3D)

𝑟 + 𝑧2

𝑟3

⎞⎟⎟⎟
⎠

.

(5.4)
9Forces per area applied to the surface.
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On the surface 𝑧 = 0, this becomes

G(𝑥, 𝑦, 0) = 1 + 𝜈3D
𝜋𝐸𝑟3

⎛⎜
⎝

(1 − 𝜈3D)𝑟2 + 𝜈3D𝑥2 𝜈3D𝑥𝑦 −1
2(1 − 2𝜈3D)𝑥𝑟

𝜈3D𝑥𝑦 (1 − 𝜈3D)𝑟2 + 𝜈3D𝑦2 −1
2(1 − 2𝜈3D)𝑦𝑟

1
2(1 − 2𝜈3D)𝑥𝑟 1

2(1 − 2𝜈3D)𝑦𝑟 (1 − 𝜈3D)𝑟2

⎞⎟
⎠

. (5.5)

If we have an incompressible polymer material with 𝜈3D ∼ 1/2, the coupling between in-plane
tractions and out-of-plane displacements is small, such that it is sensible to separate the treatment of
deformations into the tangential and normal components relative to the surface of the half-space.

In TFM, it can be assumed that adherent cells exert in-plane surface tractions (𝑡𝑧 = 0), and we
are interested in in-plane displacement �⃗� = (𝑢𝑥, 𝑢𝑦) only because out-of-plane 𝑧-displacements are
hard to quantify by microscopy. The approximate problem given in Eqn. (5.3) is now quasi-two-
dimensional in the plane 𝑧 = 0, such that the Green’s tensor is given by the 2x2 matrix [153]

G(𝑥, 𝑦) = 1 + 𝜈3D
𝜋𝐸𝑟3 ((1 − 𝜈3D)𝑟2 + 𝜈3D𝑥2 𝜈3D𝑥𝑦

𝜈3D𝑥𝑦 (1 − 𝜈3D)𝑟2 + 𝜈3D𝑦2) . (5.6)

It solves the elastic boundary problem for in-plane tractions and displacements if the tractions
vanish at infinity.

TFM is essentially a technique to provide a numerical solution for the inverse elastic problem
posed by asking to recover the traction field ⃗𝑡 = (𝑡𝑥, 𝑡𝑦) from Eqn. (5.3) via a deconvolution of the
right hand side surface integral. This can be done in real space [145], [146], [153] or in Fourier
space [160].

Employing the convolution theorem for the Fourier-transform ℱ𝒯 of a convolutional integral, the
deconvolution problem encountered in Eqn. (5.3) can equivalently be stated as performing two
Fourier-transforms and one inverse Fourier-transform

ℱ𝒯 (�⃗�) (𝑢, 𝑣) = ℱ𝒯 (G) (𝑢, 𝑣) ℱ𝒯 ( ⃗𝑡) (𝑢, 𝑣) (5.7)
⃗𝑡(𝑥, 𝑦) = ℱ𝒯−1 {(ℱ𝒯 (G))−1ℱ𝒯 (�⃗�)} (𝑥, 𝑦) , (5.8)

which is named Fourier-Transform-Traction-Force-Cytometry (FTTC) [160] and recovers the
traction field exactly for perfect displacement data.

Common iterative techniques used for numerical deconvolution can become unstable when subjected
to noisy data, which is why conventional approaches to the ill-posed inverse elastic problem rely on
regularization techniques (e.g. Tikhonov(L2)- or Lasso(L1)-regularization) coupled with iterative
minimization schemes [145]–[148], [161]. This applies both to real space and Fourier space
methods. These methods minimize deviations in the resulting displacement field subject to
suitable regularization constraints for the traction forces. Regularization improves stability while
accuracy might suffer. The optimal choice of regularization parameters is important, but ultimately
subjective. In Bayesian Fourier Transform Traction Cytometry (BFTTC) the regularization
parameters need not be picked manually and heuristically, but they are inferred from probability
theory, making it an easy to use and objective FTTC method [149], [162].

The shortcomings of most conventional approaches are systematic under-predictions and edge
smoothing of the constructed traction field, caused by the regularization [163], as well as elevated
computational effort, inflicted by the computationally demanding iterative deconvolution techniques
and transformations at play.

A recent trend in many fields, including the natural sciences, has shown the capabilities of ML-based
approaches in such ill-posed and ill-conditioned scenarios [164], [165], often outperforming complex
algorithms by orders of magnitude in computing time and precision, and thus allowing for new
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and more accessible workflows with reduced computational overhead. ML based approaches to
TFM [150] and wrinkle force microscopy [151] have recently been discussed and find that deep
CNNs can perform the deconvolution of Eqn. (5.3), by learning the mapping from strain-space to
surface traction-space in training. The existing NN approaches show a promising proof-of-concept
which we want to extend further in the present work by performing systematic studies of accuracy
and robustness to noise. While regularization is particularly important in conventional TFM
approaches for accuracy and stability, accuracy and robustness to noise of deep CNNs crucially
depend on the choice of training data.

Physics-informed ML methods have also been applied to directly solve general partial differential
equations with boundary conditions, such as Eqn. (5.1) and Eqn. (5.2) that are underlying TFM
[166]–[168]. In TFM we can solve the elastic problem analytically up to the point that the Green’s
tensor Eqn. (5.6) is exactly known but proper inversion is difficult. We want to solve this inversion
problem by deep CNNs with a physics-informed choice of training data and learning metric.

5.3.2 Machine Learning the Inverse Problem

If we want to teach a machine to solve an inverse problem for us, counter-intuitively, we do not
need to know how to solve the inverse problem itself. We only need to know how to solve the
corresponding forward problem i.e., we only need to know how to precisely formulate the learning
task for the network and provide sample data that characterizes the problem well enough.

We will adhere to the steps outlined in the introduction of the present chapter to produce a capable
machine learning approach. The first step is thus to understand the forward problem, including a
discussion of the parametrization and limitations of the problem. Additionally, we need to design
an appropriate method to generate traction fields akin to those seen in the actual experimental
realization of the problem, i.e. we need to understand how real cells anchor to the substrate and
find a protocol to create displacement fields for physiologically relevant traction fields.

An additional constraint for our effort is set by the computational time. We should be able to
generate an abundance of training data in a computationally traceable time frame. Hence, we will
need to employ approximations at the proper place in order to trade-off accuracy of the model for
computational speed. As we will discuss in the following, the intrinsic linearity of the problem
allows us to employ severe simplifications.

Understanding the forward problem for traction patches

The forward problem we are trying to solve involves cell tractions on elastic substrates. Thus,
essential to the performance of our NN is the accurate interpretation of cell-characteristic de-
formations of the substrate. Cells generate forces exerted onto the substrate via focal adhesion
complexes with sizes in the µm-range and tractions in the range nN µm−2 = kPa [169]. Forces are
generated by tensing acto-myosin stress-fibers that attach to the focal adhesions and, therefore,
have a well-defined direction over a focal adhesion complex. Therefore, typical cellular traction
patterns consist of localized patches, which can comprise single or several focal adhesion complexes
and are anchored to the substrate at positions ⃗𝑟𝑖 = (𝑥𝑖, 𝑦𝑖)T. Within these patches, tractions have
a well-defined in-plane angle 𝛾𝑖 with the 𝑥-axis, resulting in a traction pattern

⃗𝑡𝑖( ⃗𝑟) = 𝑡𝑖(| ⃗𝑟 − ⃗𝑟𝑖|) (cos 𝛾𝑖
sin 𝛾𝑖

) . (5.9)
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Figure 5.6: A model cell with circular focal adhesion points. The model cell perturbs the elastic
substrate it is resting on by generating tractions (red arrows) at the focal adhesion spots (red circles),
resulting in the color coded displacement field; tractions (red arrows) are generated based on a
contractile network model. Red arrows are the ground-truth average tractions generated by the cell
model over the red circles, while the black arrows indicate the local tractions that the NNlow network
predicts at the discrete grid spots.

These tractions are applied to circular patches of variable radius 𝑅𝑖 at the anchored nodes (see
Fig. 5.6), such that 𝑡𝑖(| ⃗𝑟 − ⃗𝑟𝑖|) = 𝑡0,𝑖, for | ⃗𝑟 − ⃗𝑟𝑖| < 𝑅𝑖 and 𝑡𝑖(| ⃗𝑟 − ⃗𝑟𝑖|) = 0 otherwise.

We model typical traction patterns as a linear superposition of traction patches of the type
given in Eqn. (5.9), localized at different anchoring points. Within linear elasticity, the resulting
displacement pattern is also a linear superposition of all the displacement patterns �⃗�𝑖 caused by
all traction patches 𝑖.

For a single traction patch, we solve the forward elastic problem by exploiting the convolution
theorem ℱ𝒯{�⃗�𝑖} = ℱ𝒯{𝐺}ℱ𝒯{ ⃗𝑡𝑖} where the Fourier transform of the Green’s kernel in polar
coordinates 𝜌 and 𝜙 is known [160]

̃𝐺(𝜌, 𝜙) ≡ ℱ𝒯{𝐺}(𝜌, 𝜙) = 2(1 + 𝜈3D)
𝐸𝜌

((1 − 𝜈3D) + 𝜈3D sin2(𝜙) −𝜈3D sin(𝜙) cos(𝜙)
−𝜈3D sin(𝜙) cos(𝜙) (1 − 𝜈3D) + 𝜈3D cos2(𝜙)) ,

(5.10)

and the Fourier transform of the traction spot is given by ℱ𝒯{𝑡𝑖}(𝜌) = 2𝜋𝑡0,𝑖𝑅𝑖𝐽1(𝜌𝑅𝑖)/𝜌 , where
𝐽𝑛 are the Bessel functions of the first kind.

The Fourier transformed displacement field ℱ𝒯{�⃗�} is now accessible and can be converted back to
the displacement field by performing the inverse Fourier transform ⃗𝑢𝑖(𝑥, 𝑦) = ℱ𝒯−1{ℱ𝒯{ ⃗𝑢𝑖}(𝜌, 𝜙)}.
This can be performed analytically in polar coordinates centered around the corresponding anchored
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node with a scaled radial component ̃𝑟𝑖 ≡ | ⃗𝑟 − ⃗𝑟𝑖|/𝑅𝑖 and an angle 𝜃 with the 𝑥-axis,

𝑢𝑖
𝑥 =

𝑅𝑖𝑡0,𝑖(1 + 𝜈)
𝜋𝐸

[((1 − 𝜈)𝑁1( ̃𝑟𝑖) + 𝜈𝑁2( ̃𝑟𝑖, 𝜃)) cos(𝛾𝑖) −𝜈𝑁3( ̃𝑟𝑖, 𝜃) sin(𝛾𝑖)] (5.11)

𝑢𝑖
𝑦 =

𝑅𝑖𝑡0,𝑖(1 + 𝜈)
𝜋𝐸

[((1 − 𝜈)𝑁1( ̃𝑟𝑖) + 𝜈𝑁4( ̃𝑟𝑖, 𝜃)) sin(𝛾𝑖) −𝜈𝑁3( ̃𝑟𝑖, 𝜃) cos(𝛾𝑖)] (5.12)

where 𝑁1,2,3,4( ̃𝑟𝑖, 𝜃) are specific functions, that describe the geometric dependence of the dis-
placement field, and are obtained by explicitly solving the occurring inverse Fourier transforms,
as detailed in the Appendix A.5.1. Strictly speaking, this analytical solution of the forward
elastic problem for a single traction patch anchored at 𝑅𝑖 is valid on an infinite substrate. We
will neglect finite size effects in the following, and use this analytical solution also on finite
substrates. The solution for many traction patches anchored at different points is obtained by
linear superposition.

Numerically solving the forward problem

We consider a square substrate of size 𝐿 × 𝐿, in which displacements are analyzed 10. Typical
sizes are in the range 𝐿 ∼ 10 − 100 µm. We use the size 𝐿 to non-dimensionalize all length scales:
�̄� ≡ 𝑢/𝐿, ̄𝑟 ≡ 𝑟/𝐿 and �̄�𝑖 ≡ 𝑅𝑖/𝐿, such that the substrate in which displacements are observed
always is a square which has unit side lengths. Typical focal adhesion patch sizes 𝑅𝑖 are in the
range of several µm [149], [169]; in dimensionless units, we take �̄�𝑖 ∼ 0.05 as a typical value. The
above dimensionless coordinate ̃𝑟 remains unchanged by non-dimensionalization.

Furthermore, we use the elastic constant 𝐸 as a traction scale: ̄𝑡 ≡ 𝑡/𝐸. Typical hydrogel substrate
elastic moduli of 𝐸 ∼ 10kPa [149] and tractions in the range up to 5kPa [169] imply typical
dimensionless tractions up to ̄𝑡 ∼ 0.5. We note that this choice of typical dimensionless tractions
does not limit our approach to substrates of stiffness 𝐸 ∼ 10kPa, it rather sets an upper bound
for the dimensional tractions we allow on a substrate of given stiffness. For example, a substrate
of stiffness 𝐸 ∼ 15kPa would allow dimensional tractions, corresponding to our upper bound
̄𝑡 ∼ 0.5, of 7.5kPa. The dimensionless quantities and dimensionless equations are obviously entirely

equivalent for a substrate with stiffness 𝐸 ∼ 10kPa and tractions of 5kPa and a substrate with
stiffness 𝐸 ∼ 15kPa and tractions of 7.5kPa. In addition, we show that our approach is able
to correctly predict dimensionless tractions of up to ̄𝑡 ∼ 3/2, increasing the available range of
dimensional tractions to 3𝐸/2 (see Appendix A.5.5 for details).

We create a 𝑁 × 𝑁 square grid, on which we discretize the solution of Eqn. (5.11) and Eqn. (5.12)
for a supplied traction patch ̄𝑡0,𝑖 with direction 𝛾𝑖 and use a superposition of the individual patch
solutions for all anchored nodes, such that we get the full displacement field for a number of 𝑛
circular traction patches of variable radius 𝑅1,…,𝑛.

We discretize both displacement and traction fields on the same 𝑁 × 𝑁 square grid. While
generating the displacements in Eqn. (5.11) and Eqn. (5.12) on a discrete grid is simple, we
note that the discretization of the traction field needs to be performed with great care. A naive
approach for the discretization of the circular traction patches onto a square pixel grid with indices
𝑖, 𝑗 ∈ {1, ..., 𝑁} would be the direct discretization of Eqn. (5.9), i.e., to check whether any square
segment center point ⃗𝑐𝑖𝑗 is contained in the circular traction patch of radius 𝑅𝑡 and center point

⃗𝑐𝑡. If the center point is contained, the grid segment 𝑖, 𝑗 is assigned the traction ̃𝑡0 of the circular
patch. This naive discretization suffers from a critical artifact: it is not force conserving, i.e., does

10The total substrate size can be larger.
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not conserve the total traction force exerted by the patch, which is given by the area-integrated
tractions. This violates the fundamental physical requirement of force balance.

Rather, we present an exactly force conserving traction discretization procedure by calculating the
exact overlap area 𝐴ov of each square grid segment (with side lengths 𝑎 = 𝐿/𝑁) and the circular
traction spots. Then we assign a corresponding fraction ̃𝑡0𝐴ov/𝑎2 of the traction to each square
grid segment. A detailed derivation and discussion of the force-conserving traction discretization
we employ is given in the Appendix A.5.2. Finally, we quantify the accuracy gain by the force
conserving traction discretization method by computing the errors in the displacement field of a
large circular patch that is discretized.

We want to emphasize the relevance of these findings to our approach: As the NN will be trained
with the discretized traction fields and we are ultimately interested in an accurate discretized
traction prediction by our machine, we are forced to deliver as accurate discrete traction field
representations as ground-truths for training as possible.

We integrate this force balance conserving discretization algorithm in a solver to generate the
displacement fields from arbitrary superpositions of circular traction patches. The solver is
implemented in a C/C++ package with a Python binary interface to combine the speed of native
byte code with the simplicity of an interpreted language.

Generating arbitrary traction fields via superposition

Because of the underlying linearity of the elastic problem at hand we are able to construct
displacements for arbitrary traction patterns via superpositions of the circular traction patch
solutions. While this might seem obvious, it has far reaching implications for our approach and
implies that a solver with the ability to reconstruct traction fields constructed from circular traction
patches will also be able to reconstruct arbitrary traction fields if the solver preserves the linearity
of the elastic problem.

Because we will present our NNs with an arbitrary superposition of circular traction spots,
discretized to a finite grid, it is trained to exploit the linearity of the problem explicitly, and we
thus expect the networks to be able to solve the more general problem of predicting an arbitrary
superposition of traction patches. In a sense, generating superpositions of the analytical circular
traction patch solutions is an optimization we employ to reduce the computational effort for
generating displacement fields for training, while retaining the relevant properties of the problem,
as we will show.

Another implication of this observation is that we are able to check the predicted discretized
traction fields for consistency with a supplied displacement field by constructing a superposition
of displacement fields for circular traction spots with radius 𝑅𝑡 = 𝑎/

√
𝜋 for each grid point, where

𝑎 is the distance between grid points. The choice 𝑅𝑡 = 𝑎/
√

𝜋 assures conservation of the total
traction force. We implement this method along with our solver to generate the displacement
fields from arbitrary superpositions of circular traction patches.

Architecture of the deep convolutional neural network

We choose to employ a Unet structure [170] consisting of an input encoder, which extracts and
compresses the relevant information from the high-dimensional input displacement field into
a lower-dimensional representation. From the lower-dimensional and compressed displacement
information we inflate the dimensionality again with a decoder, such that we finally receive the
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Figure 5.7: The network we employ is a Unet Convolutional Neural Network with a discretized
displacement field as an input and a discretized traction field as an output. The mapping from input
to output is learned in training by adapting the parameters of the convolutional and transposed
convolutional layers of the network. Eventually the network will be able to reconstruct the traction
field for displacement fields never seen before. We do not enforce a strict bottleneck, rather we
allow for skip connections from the encoding process to the decoding process (blue arrows). The
skip connections thus offer a way for the network to manipulate the decoding process with selected
information gathered during encoding, increasing the capacity of the network.

representation of a traction field in the output of the network, as shown in Fig. 5.7. The motivation
for this choice is the conceptual similarity of image procession tasks such as segmentation, which
involve local classification of an image, to the assignment of local “traction labels” to each grid point
of the “displacement image”. Furthermore, the elastic problem has long range interactions, where
a localized traction spot causes large scale displacements. The layered structure of a Unet is well
suited to handle this problem, as the high-dimensional layers process short scale information and
the increasingly lower-dimensional layers will be able to handle longer range correlations. Finally,
through the process of compressing and reinflating dimensionality we might loose spatial precision
and, thus, use the skip connections to provide the upsampling layers with additional spatial
information. Additionally, skip connections have been demonstrated to improve generalization
potential and stability when used in combination with batch normalization 11 [171].

Our network (as shown in Fig. 5.7) is a fully convolutional NN, where the encoding part is a stack
of convolutional blocks, and max-pooling layers, while the symmetric decoding part consists of
transposed convolutional layers, skip connections and convolutional blocks. Each convolutional
block consist of two convolutional layers, with one Dropout layer and LeakyReLU activation
functions, which introduce non-linearity. Specially, the last layer uses a linear activation function,
ensuring that the output maps to the domain of a traction field. The encoding part uses size 3
kernels and size 1 strides, while the decoding part uses size 4 kernels and size 2 strides to avoid
checkerboard effects that would otherwise negatively impact performance.

11Which is also used in our networks.
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Figure 5.8: The time evolution of training and validation MSE during training of the neural network
NNlow. Already after the first epoch a rough traction reconstruction is achieved. After 10 Epochs
the reconstruction gains significantly in terms of visual sharpness, which is further increased in the
following epochs. We stop the training process after 5000 epochs, because longer training yields
diminishing returns.

Training data sampling and the training process

To train our NN we choose a 104 × 104-grid (𝑁 = 104) which holds the discrete representation
of the dimensionless displacement and traction fields. We will later show that our networks are
still able to work on arbitrary grid sizes (with proper scaling of the input), since they are fully
convolutional. The training data is generated by numerically solving the explicit forward problem
in dimensionless form as outlined in Sec. 5.3.2.

The traction distribution ⃗̄𝑡(𝑥, 𝑦) is generated by a random number (uniformly sampled in [10, 50])
of traction spots ̄𝑡𝑖(𝑥, 𝑦), where the radius �̄�𝑖 is drawn uniformly in the range [0.01, 0.05] with a
random center point {𝑥𝑖, 𝑦𝑖} ∈ [�̄�𝑖 + 0.05, 1 − �̄�𝑖 − 0.05]2. The traction magnitude ̄𝑡0,𝑖 is uniformly
distributed in the range [0, 0.5] and the polar angle 𝛾𝑖 is uniformly distributed in [0, 2𝜋].

While traction values and patch sizes are typical for adherent cells, our training data is more
general in the sense that other important characteristics of cellular force patterns, such as the
occurrence of force dipoles at the end of stress fibers, are not contained in our training data.
This makes our approach more general compared to Ref. [150], where training was performed on
traction patterns typical for migrating cells. In combination with non-dimensionalization, this will
allow us to easily adapt the training process to other applications of TFM in interfacial physics
[144] in future applications. Below, we will demonstrate the ability of the CNN to specialize from
our general patch-based training set to artificial and real cell data. As a convenient model to
generate realistic cell traction data artificially we use the contractile network model of Ref. [172].

We expect a NN trained with noisy data to also perform better when confronted with noisy data.
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Figure 5.9: The learning processes of different
networks where we sweep the hyper-parameter
space by changing one property at a time to search
for well performing networks. Generally, training
follows a power law and we cut off training at
5.000 epochs. It is evident that some networks
train and perform significantly better than others.
The most striking improvement over the base line
(Single Conv, blue) is the network which is trained
on training data sampled using the force conserv-
ing discretization scheme derived in the Appendix
A.5.2 (Exact Discretization, yellow). On the other
side, we directly see that disabling the skip con-
nections yields a far worse performing network
(No Skip Connections, red). Other modifications
yield more subtle changes in performance and are
examined in the main text.

To test this hypothesis, we add different levels of background noise to the displacement field �̄� in
our training data. In order to evaluate the effects on robustness we train two types of NN:

• A network NNlow is trained with a low level of background noise: To each dimensionless
training displacement field value ⃗�̄� a spatially uncorrelated Gaussian noise with a variance �̄�
that is 0.5% of the average variance of the dimensionless displacement field over all training
samples: �̄� = 0.005⟨𝜎�̄�⟩, where ⟨...⟩ is an average over all training samples.

• A network NNhigh is trained with a high level of background noise which is 5% of the average
variance of the dimensionless displacement field over all training samples: �̄� = 0.05⟨𝜎�̄�⟩.

We want to emphasize that we use uniform Gaussian noise for the training. The assumption of
uniform Gaussian noise is used as the central assumption in BFTTC to evaluate the likelihood.
The training data can easily be adapted to contain different types of noise if there is a concrete
experimental motivation to do so.

As a loss, or performance, metric we use the mean-square error (MSE) calculated from the output
guess of the tractions and the corresponding labels of the input traction data, averaged over 𝑀
training batches

MSE = 1
𝑀

𝑀
∑
𝑚=1

∑
(𝑥,𝑦)∈grid

| ⃗̄𝑡in,m(𝑥, 𝑦) − ⃗̄𝑡out,m(𝑥, 𝑦)|2. (5.13)

We train in batches of 50 samples by backpropagation using the Adadelta algorithm. The number
of training steps per epoch consists of 900 training batches or 45.000 samples.

A traction-based objective function comparing the residual of the force balance that generates
the displacements is the proper physics-informed error metric, since we are interested in correct
traction forces in TFM. Training for correct traction forces is enabled by using synthetic training
data based on traction patches, where we know the true tractions. Alternatively, one could use
the residual between the input displacement field and a displacement field generated from the
predicted traction field as a training metric, but this approach has an obvious problem: to do
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the backpropagation during training we would have to compute all predictions of the network for
the displacement field in each step of the training, which slows down training several orders of
magnitude 12. Implicitly, conventional TFM techniques such as the BFTTC algorithm follow this
strategy as they minimize deviations in the resulting displacement field 13 [149]. Therefore, we
expect networks trained according to this strategy to perform qualitatively similar to the BFTTC
algorithm. We will investigate in detail the resulting differences in accuracy of the traction and
displacement predictions in Sec. 5.3.3.

During training, we evaluate the loss MSE given as Eqn. (5.13) for the training data and a
validation MSE for unknown displacement data of the same type. The validation and training
errors in Fig. 5.8 show constant learning and generalization of the model without over-fitting.
We note that a valuation loss lower than the training loss is common when using dropout layers,
which are active in training but inactive during inference. In total, the training is performed for
5.000 epochs, which we chose as an arbitrary training limit to truncate the power law tail seen
in training, took ∼ 100 h on an NVIDIA QUADRO RTX 8000 GPU, with the main learning
advancements occurring in the first 5 h. Each epoch consists of 50.000 randomly chosen traction
patch distributions of which 45.000 samples are used in training and 5.000 are used for validation.

Sampling the hyper-parameter space of networks

We sample the hyper-parameter space to detect which network traits are important for its
performance, i.e., we train a number of different networks on the same data for the same duration
and compare their learning progress. The findings of this sampling are contained in Fig. 5.9, where
the baseline (solid blue, label “Single Conv.”) is a network with a single convolutional layer per
block, skip connections, a dropout of 10% and a batch size of 132, using the Adadelta optimizer.
For this figure we use data generated with the “naive” traction patch discretization and switch to
the force conserving method for one of the trials (see the yellow line in Fig. 5.9).

In Fig. 5.9 we vary only one parameter at a time, i.e., we disable the skip connections, vary the
batch size, change the optimizer, change the dropout rate, change the number of convolutional
layers in a block or change the traction discretization method, this allows us to get an understanding
of the hyper-parameter space and its implications on predictive performance:

1. The base line configuration “Single Conv.” (solid blue) with a single convolutional layer and
trained with the Adadelta optimizer performs better compared to training with the Adagrad
optimizer (“Adagrad”, dashed green).

2. The training performance is improved when using two convolutional layers per block (“Dual
Conv.”, solid orange), but, because of the increased complexity, training and inference is
computationally significantly more expensive.

3. We observe that the network without skip connections (“No Skip Connections”, solid red)
performs significantly worse than all other networks.

4. We are able to improve learning by using a lower batch size of 50 (“Batch Size 50”, solid
purple).

5. Changing dropout affects training as one would expect – a larger dropout decreases and
a lower dropout increases training precision (“Larger/Lower Dropout”, dashed dotted
magenta/brown).

12In a first approximation by a factor of 𝑁2.
13Which is then subjected to additional regularization.
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6. When employing a shallower network obtained by removing one encoder and one decoder
block (“Shallower”, dotted grey) the learning is faster initially, but seems to plateau earlier
before improving again.

7. Finally, when using the exact force conserving discretization for the traction grid (“Exact
Discretization”, solid yellow) we are able to drastically improve training performance,
supporting our above claim that conserving the force balance exactly is of great importance.
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Figure 5.10: We evaluate the final low noise network
𝑁𝑁low during training by computing six precision
metrics at intermediate points during training. We
use the metrics to quantify the performance of the
traction reconstruction during training of the net-
work. This evaluation is performed with new data
drawn from the same distribution and problem class
as the training data. We clearly observe drastic im-
provements in predictive precision in the first 100
epochs, after which the improvement of the metrics
is drastically slower. For the metrics DDA, DTMB
and DMA a lower score is better (as indicated by the
red arrow), while the SNR is better for larger values.
Finally, the DTMA and ADTMA scores are better
when they are closer to zero.

For all network variants, the training progress
shown in Fig. 5.8 and Fig. 5.9 follows a power law
MSE ∝ epochs−𝛼 with exponents 𝛼 ∼ 0.4.

We finally settle on a network architecture with
one convolutional layer per block, skip connec-
tions, a dropout of 10% and a batch size of 50,
while using the Adadelta optimizer. This net-
work architecture has also been used for the
training process shown in Fig. 5.8 and has been
used to produce all results shown in the following.
The entire network structure is implemented us-
ing the Keras Python API [173].

BFTTC algorithm

In order to evaluate the performance of our CNN
in comparison to conventional TFM methods, we
employ the Bayesian Fourier Transform Traction
Cytometry (BFTTC) algorithm as a standard
to compare with. The algorithm is described in
Refs. [149], [162] and has been made publicly
available by the authors.

5.3.3 Results

We analyze the performance of our ML approach
on a set of error metrics. Additionally, we com-
pare the performance to the BFTTC algorithm
[149], [162] as a state-of-the-art conventional
TFM method. Importantly, we want to dis-
criminate between background noise and signal
while also evaluating magnitude and angle recon-
struction precision to infer whether our network
generalizes to data never seen before. This will
be done for synthetic displacement data first,
which is generated in the same way as the train-
ing data and contains an additional varying level
of noise. Subsequently, we can evaluate the per-
formance of the CNN on artificial cell data using
the same error metrics, on completely random
displacement fields and, finally, we apply the CNN to real cell data.
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Evaluation metrics and application to synthetic patch-based data
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Figure 5.11: The comparison of our networks NNlow
(trained with low noise background) and NNhigh
(trained with high noise background) with a state
of the art conventional BFTTC approach shows the
precision across the six evaluation metrics for varying
noise levels �̃� on synthetic patch-based data. This
test is performed with an ensemble of traction spots
randomly chosen in count, size, magnitude and ori-
entation, testing our networks performance on data
similar to the training data. The arrows next to the
metric name indicate whether higher or lower is bet-
ter; “0” indicates that the metric has a sign and a
value of zero is optimal. Both of our networks outper-
form the BFTTC method in most metrics. With the
high noise network NNhigh we trade low noise fidelity
for elevated noise handling capabilities.

We employ six evaluation metrics (see Fig. 5.11
and Fig. 5.12). Their definition is based on
a comparison of traction predictions ⃗̄𝑡

pre,s
(𝑥, 𝑦)

in sample 𝑠 compared to “true” tractions
⃗̄𝑡
tru,s

(𝑥, 𝑦), which are known for the artifi-
cial data for random circular traction patches.
We evaluate all six metrics by averaging over
𝑆 = 100 samples; the sample average is denoted
by ⟨...⟩. All traction vectors ⃗̄𝑡𝑖,𝑣 in patch 𝑖
(𝑖 = 1, ..., 𝑛) are indexed by 𝑣. All traction
vectors ⃗̄𝑡𝑏,𝑤 outside patches are considered as
belonging to the background 𝑏 and indexed by
𝑤.

In Fig. 5.10 we evaluate these metrics for vary-
ing noise levels during training of the network
𝑁𝑁low and in Fig. 5.11 we evaluate these met-
rics for varying noise levels �̃� on our synthetic
patch-based data.

The noise applied to the displacement field data
is uncorrelated between pixels and randomly
chosen from a Gaussian distribution centered
around zero, with standard deviation 𝜎. Let the
dimensionless displacement field standard devi-
ation be std �̄�, then we define our noise levels
�̃� = 𝜎/std �̄�, such that �̃� is the relative noise
applied to the displacement field. In the follow-
ing considerations we vary �̃� between 1 % and
10 %.

We pass the exact noise standard deviation to
the BFTTC method for the noise evaluations,
such that the BFTTC method has optimal condi-
tions. Our networks do not get any additional in-
formation about standard deviation of the noise
floor.

First, we introduce a measure to more pre-
cisely quantify the orientation resolution via the
Deviation of Traction Direction at Adhesions
(DDA)

DDA = ⟨𝑝(𝛾pre, 𝛾tru)2⟩ (5.14)

between predicted and true traction angles 𝛾;
𝑝(𝛼, 𝛽) measures the periodic distance between two angles 𝛼 and 𝛽. A small DDA indicates precise
traction direction reconstruction. For both of our networks the direction reconstruction is more
precise than the BFTTC method across the range of tested noise levels.
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Second, we evaluate the Deviation of Traction Magnitude in the Background (DTMB) [149]:

DTMB = ⟨
mean𝑤 (| ⃗̄𝑡

pre,s
𝑏,𝑤 | − | ⃗̄𝑡

tru,s
𝑏,𝑤 |)

mean𝑖mean𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |)

⟩ . (5.15)

Note that | ⃗̄𝑡
tru,s
𝑏,𝑤 | = 0 because artificial traction data exactly vanishes outside patches. This metric

quantifies how accurate the traction magnitude reconstruction works in the background, thus,
if there is no prediction of an underground noise floor, not associated with any focal adhesion
point, the DTMB score will be zero. Both of our NNs have a significantly lower DTMB score
in than the BFTTC method in the limit �̃� → 0, which should manifest in a less noisy traction
force reconstruction. While the low noise network again departs from that score linearly, the high
noise network stays comparatively constant. During training we see that precision in low noise
scenarios is traded for less robustness as evident from the increasing slope in Fig. 5.10. The high
noise network again does not show this tendency.

Third, we discuss the Deviation of Traction Magnitude at Adhesions (DTMA) [147], [149]:

DTMA = ⟨mean𝑖

mean𝑣 (| ⃗̄𝑡
pre,s
𝑖,𝑣 | − | ⃗̄𝑡

tru,s
𝑖,𝑣 |)

mean𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |)

⟩ . (5.16)

Note that mean𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |) = | ⃗̄𝑡

tru,s
𝑖,𝑣 | because artificial traction data is piecewise constant in

traction patches. This metric evaluates the precision of traction magnitude reconstruction at
the focal adhesion points, thus the DTMA is zero for a perfect reconstruction, negative for an
underestimation and positive for an overestimation of traction magnitudes. During training (see
Fig. 5.10) this quantity consistently improves but trades precision in low noise scenarios for an
increasing slope of the DTMA as a function of background noise. This is a first evidence that this
network might perform poorly on high noise experimental data. We do not see the increase in
slope for the high noise network (see Fig. 5.11). In Fig. 5.11 we see similar DTMA scores for all
approaches in the limit �̃� → 0, with a systematic under-prediction of tractions. For increasing noise
floors both the BFTTC and the low noise network (NNlow) depart from this common score and
start to overestimate tractions. While the DTMA score for the high noise network barely changes,
the low noise network DTMA score rises linearly with the noise floor �̃�, while the BFTTCs DTMA
rises faster than linearly. The high noise network (NNhigh) retains a comparatively constant DTMA
score and always under-predicts the traction magnitude.

Fourth, we introduce the Absolute Deviation of Traction Magnitude at Adhesions (ADTMA) that
is similar to the DTMA, but evaluates the absolute deviations, capturing the actual reliability of
reconstructions more precisely than DTMA, since alternating under- and over-predictions do not
cancel out in this score:

ADTMA = ⟨mean𝑖

∣
∣
∣
∣

mean𝑣 (| ⃗̄𝑡
pre,s
𝑖,𝑣 | − | ⃗̄𝑡

tru,s
𝑖,𝑣 |)

mean𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |)

∣
∣
∣
∣

⟩ . (5.17)

We can again see the same qualitative behavior as in most of the other metrics: Both networks are
more precise in the low noise region, but the low noise network seems to perform best at a noise
level of ∼ 3%, while the high noise network is robust against increases in background noise.

112



5 Machine learning applications in ill-posed inverse problems

0.0

0.5

1.0

DDA

NNlow NNhigh BFTTC

0.0

0.1

0.2

0.3
DTMB

−0.4

−0.2

0.0

0DTMA

0.0

0.2

0.4

0ADTMA

0 5 10

σ̃/%

0

10

20

30

SNR

0 5 10

σ̃/%

0.0

0.5

1.0

DMA

Figure 5.12: We compare our networks NNlow and
NNhigh with the BFTTC method for data generated
from an artificial cell model using the same six evalu-
ation metrics for varying noise levels �̃� as in Fig. 5.11.
Since the method of generating the data is now dif-
ferent from the training process, we expect to see the
generalization potential of our networks more clearly
than in Fig. 5.11. The BFTTC method works con-
siderably worse on this data compared to Fig. 5.11.
Additionally, we see an amplified underestimation
of the traction magnitudes for the BFTTC method.
With respect to noise, the high noise network seems
to give the best compromise between precision and
regularization of the output traction fields.

Fifth, the Signal to Noise Ratio (SNR) [149]:

SNR = ⟨
mean𝑖mean𝑣 (| ⃗̄𝑡

pre,s
𝑖,𝑣 |)

std𝑤 ( ⃗̄𝑡
tru,s
𝑏,𝑤 )

⟩ , (5.18)

where std is the standard deviation. This metric
gives an insight into the noise floor of predictions,
it is high for a precise distinction between back-
ground noise and actual focal adhesion induced
deformation and goes to zero for an increasingly
noisy reconstruction. Both of our networks have
a consistently higher SNR than the BFTTC
method, undermining the assumption that the
networks will yield a less noisy reconstruction
overall. The low noise network SNR decays
quickly with increasing noise levels, while the
high noise network is more resilient against the
increases in noise floor.

Finally, the Deviation of the Maximum traction
at Adhesions (DMA) [149]:

DMA =

⟨mean𝑖

max𝑣 (| ⃗̄𝑡
pre,s
𝑖,𝑣 |) − max𝑣 (| ⃗̄𝑡

tru,s
𝑖,𝑣 |)

mean𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |)

⟩ .

(5.19)

Note that max𝑣 (| ⃗̄𝑡
tru,s
𝑖,𝑣 |) = | ⃗̄𝑡

tru,s
𝑖,𝑣 | because arti-

ficial traction data is piecewise constant in trac-
tion patches. This metric gives a more detailed
insight into the consistency for high amplitude
tractions within a focal adhesion point. A per-
fect reconstruction would yield a DMA score
of zero, while under-predictions give negative
scores and over-predictions positive scores. We
can again observe that both of our networks give
similar scores for low noise scenarios, which are
both lower than the score of the BFTTC method. The low noise network again departs linearly
from this common value, while the high noise network DMA score stays at a consistent level.

Across all six measures we observe the following trends for network NNlow trained with a low level
of background noise as compared to network NNhigh trained with a high level of background noise:
NNlow perform superior to the BFTTC-standard and NNhigh for low-noise data, because they are
trained on low noise data. Their performance deteriorates, however, for higher noise levels �̃�, where
their performance drops below NNhigh but also below the BFTTC-standard. NNhigh finds a better
compromise between robustness and accuracy such that it outperforms the BFTTC-standard
across all noise levels. Remarkably, the performance of the NNhigh only deteriorates above noise
levels �̃� ∼ 100%.
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Tractions of artificial cells

In order to test the ability of the CNN to specialize from our general patch-based training set to
realistic cell data, we first test the model on artificial cell data. The advantage of artificial cell
data is that the “true” tractions are precisely known. A convenient model to generate realistic cell
traction data artificially is the contractile network model [172]. In this model, the stress fibers
are active cable links with specific nodes anchored to the substrate at positions ⃗𝑟𝑖 = (𝑥𝑖, 𝑦𝑖)T.
To construct a typical cell shape with lamellipodium and tail focal adhesions the tractions ⃗𝑡𝑖( ⃗𝑟)
generated at each anchor point are generated by minimizing the total energy of the cable network.
These tractions are then applied to circular patches of radius �̃� = 0.04 under an angle 𝛾𝑖 given by
the stress fiber orientation at the anchored nodes (see Fig. 5.6).

In addition to Fig. 5.11, we want to evaluate the aforementioned metrics (DDA, ADTMA, DTMB,
DMA, DTMA, SNR) on a displacement field generated by an artificial cell as shown in Fig. 5.6.
Again, we add Gaussian noise to the displacement field with varying noise levels �̃� and evaluate
the behavior of our networks NNlow, NNhigh, and the BFTTC method in Fig. 5.12. We average all
our results over 10 artificial cells.

We see qualitatively similar results to Fig. 5.11 in the SNR and DTMB metrics, while the absolute
performance in those metrics is better 14 for the artificial cell data. This is likely due to the lower
number of traction patches in total and the equal radii of all traction patches. Both networks, are
able to reconstruct the traction fields more reliably and with greater precision. This is true across
all observed metrics.

The artificial cell data show a clear tendency towards a traction magnitude underestimation
(DTMA, ADTMA) for all approaches. Since we are generating tractions in strongly bounded range
due to the cable network, the traction spots tend to be in close proximity to each other, which can
increase smearing of sharply separated traction spots.

Reconstruction of random traction fields

In order to prove that our networks indeed have learned to exploit the linearity of the problem
and that they have learned a general solution for the problem, we probe them on entirely random
traction fields. To achive this, we generate a completely random traction field, compute the
corresponding displacement field 15 and pass it to our high noise network and the BFTTC
method for reconstruction. The advantage of this reconstruction setting is that we have the exact
ground-truth for the tractions, while not using traction fields similar to the training data.

We generate these random traction fields such that they resemble traction fields that my be
encountered in reality. We first generate Gaussian noise with vanishing mean and a standard
deviation of 10−2. We then convolve the substrate field with a proximity filter exp(−| ⃗̄𝑟 − ⃗̄𝑟′|4/0.14)
corresponding to a characteristic correlation length of 0.1 in dimensionless units of the image size,
which induces correlations over ∼ 10 pixels for 𝑁 = 104.

The result of this is a traction field and an associated displacement field which can be seen
in Fig. 5.13 (first column). The traction field we have generated here has an entirely different
character than the circular training samples the network has seen in training. The displacement
field generated from the random traction field is passed to our high noise network and the BFTTC
method without further altering it (e.g. by adding noise). The reconstructed traction fields for
both methods are shown in Fig. 5.13 (bottom row). We then pass these reconstructed traction

14Higher SNR and lower DTMB scores respectively.
15Via the superposition of grid-sized circular patches, as detailed previously.
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ỹ

0.00 0.25 0.50 0.75 1.00

x̃

0.0

0.2

0.4

0.6

0.8

1.0

ỹ

0.00 0.25 0.50 0.75 1.00

x̃

0.00 0.25 0.50 0.75 1.00

x̃

−0.4

−0.2

0.0

0.2

0.4

T
ra

ct
io

n
t̃ x

−0.050

−0.025

0.000

0.025

0.050

D
is

p
la

ce
m

en
t
ũ
x

10−6

10−5

10−4

10−3

10−2

D
is

p
la

ce
m

en
t

S
E

Figure 5.13: We construct a completely random traction field, generated by an entirely different
method compared to the training data. From the random traction field (upper left) we generate
the accompanying displacement field (middle left), which we feed to our high noise network and the
BFTTC method. Both methods generate a traction field reconstruction (top row), from which we
can compute the reconstructed displacement field (middle row) and the corresponding displacement
errors (bottom row).

traction fields back into our traction solver, which generates the associated displacement field.
The resulting reconstructed displacement fields are shown in Fig. 5.13 (top row).

Some observations are possible from visual comparison alone. First, our network is able to
reconstruct the traction field accurately and the resulting reconstructed displacement field is
visually similar to the ground-truth. Second, the BFTTC method achieves a reconstruction, which
at first glance seems similar, but on closer inspection clearly shows stronger deviations from the
ground-truth than our network. Third, the BFTTC method suffers from strong reconstruction
artifacts at the perimeter of the substrate. These visual findings are supported by the RMSE we
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Figure 5.14: Comparison of traction reconstruction for a real Fibroblast between our networks
NNlow and NNhigh and the BFTTC method (top and middle row). Although we do not have the
“true” traction field at hand for a quantitative evaluation of precision across the methods, we see
compatible results across the board, while both networks have a significantly reduced noise floor. The
top row shows traction magnitude reconstruction, while the bottom row shows angle reconstruction.

calculate between the ground-truth displacement field and the reconstructed displacement fields.
While the network has an RMSE ∼ 6.5 ⋅ 10−2 the BFTTC method achieves an RMSE ∼ 1.8 ⋅ 10−1,
as seen in the displacement error (bottom row of Fig. 5.13). We generate 50 random force fields
and determine the RMSE for the BFTTC method and our 𝑁𝑁high network between the input
displacement field and the reconstructed displacement field (generated from the reconstructed
traction field). The BFTTC method achieves on average RMSE ∼ 0.04, while our network achieves
on average RMSE ∼ 0.01. Our network thus predicts traction fields that are more consistent with
the input displacement fields.

We have thus shown two things here – our network is able to reconstruct arbitrary traction fields,
and it does so with high precision.

Tractions of real cells

Finally, we want to test our ML approach on real cell images. Of course, we do not have access
to the “true” traction field for those images, however, we can qualitatively compare the results
obtained from our ML approach with those obtained by the well tested BFTTC method. The
example cell results shown in Fig. 5.14 are for a NIH/3T3 (National Institutes of Health 3T3
cultivated) Fibroblast on a substrate with length 𝐿 = 200.2 µm and elastic modulus 𝐸 = 10670 Pa
16. Additional results for all 14 cells provided in Ref. [150] are similar with further select examples
presented in the Appendix A.5.6.
16The data was made available in Ref. [150]
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Figure 5.15: Adding noise to the Fibroblast displacement field shows strong noise robustness of
our network NNhigh, which has been trained for high noise scenarios, in traction reconstruction.
The low noise network NNlow fails to compensate for the high noise and the BFTTC method yields
qualitatively similar results to the high noise network, but exhibits strong noise artifacts in the
reconstructed traction fields. The BFTTC method has an unfair advantage, since we pass the exact
standard deviation of the perfectly uniform Gaussian noise to it for its regularization, while our
networks do not get this information.

It is apparent that the network trained with low noise reconstructs a traction field, which is similar
to that of the BFTTC method, while the noise in the vicinity of the cell is significantly reduced.
The network trained with a high noise floor gives a more regular traction pattern and cuts off
lower amplitude tractions.

The reason for these results is that the network trained with low noise exhibits a SNR superior
both to BFTTC and the network trained with high noise levels if noise in the experimental data is
low (see Fig. 5.11 and Fig. 5.12); for artificial cell data the DTMA and ADTMA of the network
trained with low noise is superior for low experimental noise levels (see Fig. 5.12). A low noise in
experimental data seems to be realized here. We can thus infer that the tractions reconstructed by
the high noise network systematically under-predict the real tractions for this particular data.

As expected from our prior analysis, the resistance to additional noise is much better for the
network which saw high noise levels during training, where the low noise network fails completely
when subjected to very high noise. The robustness of the high noise network is highlighted in
Fig. 5.15, where the cell data is superposed with significant background noise of �̃� = 100 %. Both
our low noise network and the BFTTC method produce a noisy traction field in this case, while
the high noise network still displays a similar traction pattern in both of these cases. The noise
seen in the BFTTC method is significantly reduced, as we pass the exact standard deviation of
the applied noise to the method.

Overall, the result from the high noise network and the BFTTC method is qualitatively similar
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in the high noise scenario, while the high noise network reconstruction is more regular and fits
the circular focal adhesion point model more consistently and stays invariant for a wide range
of background noise levels. Apparently, the noise the network sees in training directly controls
the effective regularization of the reconstruction and it would be possible to create intermediate
networks with higher sensitivity, but lower noise invariance.

Finally, we compute the residual error between the experimental (already noisy) input image and
the reconstructed displacement field, by solving the reconstructed traction field for the displacement
field. We do this for all the 14 cells provided in Ref. [150]. For the low noise network we achieve a
mean RMSE ∼ 10−3, while the high noise network performs slightly better at an RMSE ∼ 9 ⋅ 10−4.
The BFTTC method performs significantly better with an average RMSE ∼ 5 ⋅ 10−5. While the
residual errors are low for all approaches we can conclude that the BFTTC method reconstructs
the input displacement field more accurately. This seems surprising in light of the higher traction
background noise outside the cell shape that the BFTTC clearly produces. The reasons are
discussed in the next section in more detail.

We can additionally quantify the contribution of tractions that lie outside the cell contour, which
can be considered unphysical. For this we subtract all tractions inside of the contour from the full
traction fields and are left with tractions that lie outside the cell contour. When calculating the
rooted mean square of these outside tractions we are left with a metric that quantifies physical
consistency. We perform this analysis for the cell in Fig. 5.14 and find that the mean background
traction for the BFTTC method is ∼ 0.013, while it is ∼ 0.009 for NNlow and ∼ 0.008 for NNhigh.
Since the cell segmentation is only an approximation this metric is only a proxy for physical
consistency.

We conclude that the high noise network is the better choice for a traction field where the noise is
not known, or might be inhomogeneous. If the experimental error is high, or the displacement field
reconstruction is imprecise the high noise network provides a robust way of extracting the traction
field, while conventional methods are plagued by high background noise in the reconstructed
traction fields in this case.

Evaluating a traction field with our networks takes 1 ms, while evaluation an image with the
BFTTC method takes 1.5 s 17. This is a performance improvement of more than three orders of
magnitude. Because of the non-dimensionalization we perform it is only necessary to train one
network for a large range of experimental realizations. Thus, when the same network is reused for
a number of different experiments the long training time will eventually be outweighed by the
significant performance advantage at inference.

Displacement versus traction error

We train our NNs for correct tractions by using the MSE of tractions from Eqn. (5.13) as an
objective function. This is only possible with synthetic data, where the “truth” for tractions
is known. Within this approach we optimize accuracy in tractions but concede errors in the
displacement which are not of primary interest in TFM.

Alternatively, one could base training on the MSE of displacements with the drawback of slowing
down the training process by orders of magnitude but with the advantage that training could also
be performed with actual experimental data. Networks trained with displacement-based metrics
will minimize the displacement error in order to obtain correct tractions, which is a more indirect
approach. The BFTTC algorithm also minimizes the deviations in displacements in order to

17With a discretized substrate of size 104 × 104.
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Figure 5.16: Comparison of traction and displacement error between our networks NNlow and
NNhigh and the BFTTC method for a synthetic Fibroblast-like traction field and corresponding
calculated displacements. The two top rows show the reconstructed traction and displacement fields
as compared to the “truth” (first column), which is at hand in this comparison. The two bottom
rows display the square error calculated between the “true” and reconstructed displacement and
traction fields. We see that both NNs give better traction reconstruction with reduced noise outside
the cell as compared to BFTTC, while displacement errors are slightly higher.

determine an optimal traction field [149]. We show that this causes deviations in tractions by
applying both strategies to situations where we know the “true” tractions.

Figure 5.16 shows a comparison for a synthetic traction field that we generate from the NIH/3T3
traction data (see Fig. 5.14) by suppressing tractions outside the cell shape (which should be
artifacts). This provides the traction “truth” for the comparison. The corresponding displace-
ment field is computed and spatially uncorrelated low amplitude Gaussian noise is added. This
displacement field is analyzed by the low and high noise networks and the BFTTC algorithm.
Fig. 5.16 clearly shows that, on the one hand, both low and high noise network give a significantly
better traction reconstruction, in particular outside the cell shape where the BFTTC method
tends to generate background traction noise. On the other hand, this background traction noise
obviously enables the BFTTC method to lower the displacement errors, in particular inside the
cell shape. As we are interested in correct traction reconstruction in TFM, this comparison clearly
pinpoints the advantages of the CNN reconstruction when trained with the traction MSE as
objective function.

119



5 Machine learning applications in ill-posed inverse problems

Input resolution scaling

So far we used a fixed size of 𝑁 × 𝑁 = 104 × 104 for input images. Since our networks are
exclusively composed of input size independent layers (fully convolutional layers), we are able to
feed arbitrary input sizes 18 to the networks.

It is, however, important to realize that we provide no spatial information to the network apart from
the size 𝑁 × 𝑁 of the input array. Because the total input size is not visible to our convolutional
layers the network has no means to adapt to changes of the input size 𝑁. It is possible to circumvent
this limitation by scaling the input displacements properly, such that the input is locally equivalent
to that of a 104 × 104 grid. A local 104 × 104 section of a 𝑁 × 𝑁 image of a substrate of length 𝐿
corresponds to a section of smaller length (104/𝑁)𝐿 such that the dimensionless displacement �̄� for
a resolution 𝑁 × 𝑁 corresponds to a larger dimensionless displacement (𝑁/104)�̄� for a 104 × 104
section of the same substrate. Or, in other words, the displacement scale must be coupled to the
pixel scale, since our networks directly operate on the pixel level with dimensionless displacements.
The scale factor for the input displacements for an image of size 𝑁 × 𝑁 is thus 𝑁/104.

Applying these transformations yields good performance across all of the six metrics and even
improves the SNR for a higher resolution and allows us to provide arbitrary image resolutions to
our networks. The results for this investigation are contained in the Appendix A.5.3.

5.3.4 Discussion

We present a ML approach to TFM via a deep convolutional NN trained on a general set of
synthetic displacement-traction data derived from the analytic solution of the elastic forward
problem for random ensembles of circular traction patches. This follows the general strategy that
NNs trained with easy-to-generate data of representative forward solutions can serve as a regressor
to solve the inverse problem with high accuracy and robustness.

Our approach to TFM uses synthetic training data derived from superpositions of known and
representative traction patches. This allows us to employ an objective training function that
directly measures traction errors. This contrasts conventional TFM approaches such as BFTTC,
where the tractions are adjusted to match the displacement field 19, such that low displacement
errors are the implicit objective. We show that a force conserving discretization is crucial for high
performance networks and we find a significant enhancement of the robustness of the NN if the
training data is subjected to an appropriate level of additional noise.

In conventional TFM approaches the inverse elastic problem is ill-posed and the suitable choice
of regularization in the inversion procedure is crucial and has been a topic of active research
over the last twenty years. ML approaches circumvent the need for explicit regularization and
provide an implicit regularization by a proper choice of the network architecture, i.e., convolutional
NNs for TFM, and after proper training. Our work shows that the suitable choice of physics-
informed training data and, moreover, the suitable choice of noise on the training data governs the
applicability of the NN and the compromise between accuracy and robustness in ML approaches,
somewhat analogous to the role of the regularization procedure in conventional TFM approaches.

We employ a sufficiently general patch-based training set and show that this allows the CNN
to successfully specialize to artificial cell data and real cell data. Moreover, training with an
additional background noise that is 5% of the average variance of the dimensionless displacement
field (the 𝑁𝑁high network), gives a robustness against noise in the NN performance that is superior

18I.e., arbitrary image resolutions.
19Eventually subject to additional regularizing constraints on the tractions.
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to state-of-the-art conventional TFM approaches without significantly compromising accuracy.
We can systematically back these claims by characterizing both the NN performance and the
performance of state-of-the-art conventional TFM (the BFTTC method) via six error metrics both
for the patch-based training set (Fig. 5.11) and the artificial cell data set (Fig. 5.12), which are two
data sets where we can compare the prediction to the true traction labels. We also test the NN
performance on random traction fields and traction fields derived from real cell data (Fig. 5.16).
Whenever the true tractions are known, we find that our NNs, which were trained to minimize
traction errors, give more accurate traction reconstruction with a reduced background traction
noise outside the cell shape, although the NNs tend to concede higher errors in the corresponding
displacement fields.

For real cell data, we find that a NN trained with low noise (0.5%) gives the best performance if the
experimental data is of high quality with low noise levels (see Fig. 5.14). For noisy experimental
data, on the other hand, the NN trained with high levels of noise (5%) clearly performs best (see
Fig. 5.15). This suggests that it might be beneficial to first employ the high noise network on
experimental data and only switch to the low noise network if the background noise level is below
1% of the displacement standard deviation.

Overall, we provide a computationally efficient way to accelerate TFM as a method and improve
both on accuracy and noise resilience of conventional approaches, while reducing the computational
complexity, and thus execution time by multiple orders of magnitude compared to state-of-the-art
conventional approaches. It is apparent from our analysis that ML approaches have the potential to
shift the paradigm in solving inverse problems away from conventional iterative methods, towards
educated regressors which are trained on a well understood and numerically simple to solve forward
problem.

We make all NNs discussed in this work freely available for further use in TFM. We use a
104 × 104-grid for the displacement data, but show that our networks are able to handle arbitrary
displacement data resolutions. Experimental data can easily be adapted to comply with the
network input shape by properly scaling the displacements or, alternatively, by interpolating or
downsampling to a 104 × 104-grid, which will, however, decrease the traction resolution.

By using non-dimensionalized units, the NNs made available with this work are widely applicable
across different problems and can also be easily further adapted, for example, to problems where
typical tractions are not limited to the range traction ranges discussed here by repeating the
training process. In the Appendix (see A.5.5), we show that the present networks are able to
generalize to larger dimensionless traction magnitudes than trained for, with ̃𝑡 ranging up to 1.5,
without re-training. Another potential problem to be addressed in future work is the effect of
spatial noise correlations, for example, from optical aberration or from the displacement tracking
routine that is applied to generate the displacement input data. In Appendix A.5.4, we consider
uncorrelated Gaussian noise with a standard deviation that decreases with the distance from the
image center and find a robust performance of the high noise network. Robustness to noise with
genuine spatial correlations over characteristic distances significantly larger than the pixel size
will presumably require re-training of the networks. All necessary routines to re-train a NN to
new traction levels, new characteristic patch sizes, or other noise levels are made freely available
with this work at https://gitlab.tu-dortmund.de/cmt/kierfeld/mltfm. This will also allow
to easily adapt the training to other types of noise correlations.
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Discussion and outlook

In this thesis, we discuss the properties of complex interfaces in detail. Starting from simple
liquid-liquid interfaces in Sec. 1.1, where we discuss the rich parameter-shape space of the problem,
we progress to elastic interfaces and discuss their anisotropic and inhomogenous surface stress
contributions in Sec. 1.2, where we find a suitable non-dimensional parameter 𝑄 to quantify
the importance of anisotropic and inhomogenous surface stress contributions. To arrive at the
parameter 𝑄, we analyse the anisotropic region at the capillary, where the anisotropy is accumulated.
The maximal anisotropy is encountered at the capilary and roughly scales as max(𝜆𝑠/𝜆𝜙) ∝ ̃𝑝−1/3

𝐿 .
We show that 𝑄 ∝ ̃𝑝2/3

𝐿 /𝜆1/2
𝐴 if 𝜆𝐴 > 𝜆†

𝐴 and provide a more involved scaling law for all other
cases.

Additionally, we discuss time-dependent constitutive laws with the ability to dissipate energy
during deformation. For this purpose we derive a generalized constitutive law from first principles
while carefully stating the assumptions. The resulting viscoelastic constitutive law respects the
geometric non-linearities of the problem and may be used to more accurately describe temporal
shape sequences, where dissipative effects play a role. Additionally, we provide an alternative
derivation of the capsule shape equations appropriate for non-conservative forces, including inertial
terms. These derivations may be used as a starting point to include hydrodynamic corrections
generated by the fluid-flow on the inside and outside of the skin.

A novel shape fitting software is created for the purpose of making elastic and viscoelastic capsule
shape fitting generally available (see Chap. 2). We highlight several intricasies in the shape fit
for capsules and advance the method severely – both in terms of performance and reliablity. The
main conceptual insight we attain during this discussion is that the apex pressure 𝑝𝑎 is not a
suitable control parameter of the elastic capsule problem and may thus not be used as a fitting
parameter of the problem. We use the implicit function theorem to determine, that instead of the
apex pressure, the apex stress 𝜏𝑠(𝑠 = 0) is to be used as a control parameter. Additionally, we
detail several technical improvements to the method, which ultimately accelerates its precision
and reliability by several orders of magnitude compared to state-of-the-art methods.

Ultimately, we unleash the new method on experiment data and are able to give insight into the
complex behavior of crude oil interfaces (see Sec. 3.1), where we detect a phase transition in the
composition of the interfacial layer and are able to provide a novel interpretation of it. We are
able to systematically – for the first time – show that a solidification of the interfacial layer takes
place at a specific volumetric deflation. These insights are enabled only by the new shape fitting
software. Additionally, we are able to quantify the scaling law for a polyelectrolyte multilayer
system, comprised of NaPSS and PAH, between the compression modulus 𝐾2D and the number
of layers 𝑛, where we find 𝐾2D ∝ 1.85𝑛 (see Sec. 3.2). The experiment data consists of several
deflation sequences, which we analyse with our novel viscoelstic shape sequence fit in order to
properly account for the viscous losses during the deformation. Only by including the viscous
term, we arrive at a consistent scaling law.

Additionally, we derive the shape equations together with all relevant additional contact conditions
for a pressurized, adhesive, bending-stiff, elastic capsule in contact with a wall and another such
capsule under an external force (see Chap. 4). This is the first time in literature that this problem is
tackled in such generality (to the best of the author’s knowledge). A numerical solver is developed
which is able to solve the numerous shape equations for the contact problem in a timely manner,
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allowing us to perform a detailed investigation into the shape-parameter space of the problem.
The shape-parameter space of the problem reveals a hysteresis induced by the adhesive properties
of the capsule, which we are able to quantitatively understand by providing approximations for
the ripping force 𝑓rip (with force control) at which the system disconnects after initially being in
contact. While the ripping force increases with 𝐾2D, the same is not true for the work required
to rip the capsules apart 𝑊rip, as it decreases with 𝐾2D. Thus, the contact holds larger force,
but fails at a smaller displacement, making the contact more brittle with increasing compression
modulus.

Furthermore, we use the contact shape equations to manufacture (theoretically) a macroscopic
meta-material of capsules. We are able to do this, by identifying an elastic capsule unit cell, which
generates entire capsule columns. We study the effective three dimensional material properties
of the system, such as the three dimensional Young’s modulus 𝑌3D. We find a linear scaling law
between the three dimensional modulus and the two dimensional modulus 𝑌3D ∝ 𝐾2D with an
offset generated by the adhesive properties of the system.

Finally, we investigate several problems that could be considered ill-conditioned and ill-posed and
try to accelerate their solution with machine learning (see Chap. 5). We show that tensiometry of
liquid droplets can be tackled by a suitable neural network such that the precision of the control
parameter estimate is sufficent and the speed is three orders of magnitude faster than conventional
shape fitting methods. We show that the same is true for the elastic shape fitting problem and
provide a hybrid shape-fitting approach, where the strengths of the machine learning approach is
combined with the strengths of the conventional shape fitting approach, to give an overall superior
method.

Lastly, we discuss the problem of traction force microscopy in terms of machine learning. We
provide a novel approach to generate a suitable training data set by explicitly exploiting the
linearity of the problem and presenting the networks we train with superpositions of traction
patches, for which we can analytically calculate the accompanying displacement fields from linear
elasticity theory. We show that from a superposition of sufficiently small traction patches arbitrary
displacement fields can be created, making the methodology sufficiently general, as we show by
demonstrating our networks capabilities in terms of several benchmarks in Sec. 5.3. Additionally,
we show that while we train our networks on a finite sized grid of input/output data, the networks
do work on arbitrary resolution data once scaled appropriately. Our method severely outperforms
conventional methods, with BFTTC as a benchmark, across the board. Future investigations could
generalize our approach for quasi-two-dimensional traction force microscopy to 2.5 dimensional,
or even fully three dimensional traction force microscopy to better capture the cell forces in
physiological conditions.

The methods and theories discussed and derived in this thesis have a high generality, which
makes them available to extensive further investigation. For example, the contact problem might
benefit from a shape fitting routine if suitable experiment data is available in order to determine
adhesive properties of capsules, not available to classic pendant capsule shape fits. Future work
could accelerate the shape sequence fit performed numerically for viscoelastic capsules with an
appropriate machine learning approach, should throughput and reliability be a substantial problem
in the future.

123



A Appendix

A.1 Calculus of Variations

Many problems in physics can be phrased as a search for an extremum of some kind. For example,
all conservative problems, i.e. all problems that have a potential for its forces, naturally tend to
the minimum of said potential. Being at a minimum of the potential of the forces is equivalent to
being in a stable balance of forces. We will discuss several problems in the present work where
calculus of variations is an appropriate way to derive identities at the extremal points of an energy
functional. We will discuss how the extremization of an energy functional gives rise to force
balances at variation boundaries and how the resulting extremal identities can be used to integrate
the solution of a problem.

First, however, we will discuss the basic principles of calculus of variations and define the
nomenclature.

Similar to single or multi variable calculus we need a necessary and a sufficient condition in order
to identify an extremum of a functional. Most different from single or multi variable calculus,
however, we do not search for an extremal point, but rather for an extremal function.

A function 𝜉 extremizes a functional 𝐸(𝜉) if the functional derivative of 𝐸 with respect to 𝜉 is zero,
or in other terms, if the first variation of 𝐸 vanishes:

𝜉 extremizes 𝐸(𝜉) ⇔ 𝛿𝐸 = 0 . (A.1)

This is the necessary condition for an extremal function 𝜉.

We will now define the meaning of 𝛿𝐸. To search for an extremal function 𝜉, which extremizes
𝐸(𝜉), suppose we allow changes at every point of the function, such that we replace 𝜉 → 𝜉 + 𝛿𝜉. If
we analyse what effect replacing 𝜉 with 𝜉 +𝛿𝜉 has on the target functional 𝐸, we gain an expression
which captures the change of the functional value with 𝛿𝜉. At an extremal point of the functional,
changing the function 𝜉 by an infinitesimal, but arbitrary, amount everywhere along the contour
should not result in any change, simply due to the fact that an extremum of a smooth function is
insensitive to small changes. The variation of the functional 𝐸 is thus given by:

𝛿𝐸 ≡ 𝐸(𝜉 + 𝛿𝜉) − 𝐸(𝜉) , (A.2)

however, for all of our purposes, this is equivalent to the first derivative of the functional 𝐸 with
respect to the symbol 𝜉:

𝛿𝐸 = ∂𝐸
∂𝜉

(𝜉)𝛿𝜉 , (A.3)

where we treat the functional 𝐸 as a regular function depending on the variable 𝜉.

Keeping the variations 𝛿𝜉 is important, because the constraints and boundary conditions of our
problem might produce additional conditions for 𝛿𝜉. For example, if a solution shall be clamped
at a specific point, e.g. a rope attached to a wall, the variation 𝛿𝜉 must respect this condition. In
many cases, this means that 𝛿𝜉 must be zero at specific points along the solution.
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A.1.1 The Euler-Lagrange equations

A particularly simple first variation can be performed for a functional which can be expressed as a
parametric integral over another functional ℒ in the variable 𝑡, for which the solution functions
{𝑥𝑛} are differentiable at least once with respect to 𝑡. The integrand can then be expressed as a
function of the solution functions and their first derivatives ℒ = ℒ ({𝑥𝑛} , {𝑥′

𝑛}), where the prime
denotes derivation with respect to 𝑡:

𝛿𝐸 = 𝛿 ∫
𝑏

𝑎
d𝑡 ℒ ({𝑥𝑛} , {𝑥′

𝑛}) . (A.4)

Let the parametrization 𝑡 be independent of the solution functions such that we can swap the
variation and differentiation, such that we can apply the chain rule to perform the variation of ℒ

𝛿ℒ = ∑
𝑛

∂ℒ
∂𝑥𝑛

𝛿𝑥𝑛 + ∑
𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥′

𝑛 , (A.5)

where we can perform a partial integration to promote 𝛿𝑥′
𝑛 to the variation of the solution function

itself. The resulting variation of the functional then yields

𝛿𝐸 = [∑
𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛]

𝑏

𝑎

+ ∫
𝑏

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 , (A.6)

where the variation of the solution functions 𝛿𝑥𝑛 can be chosen arbitrarily, except at an external
clamping.

Since the first variation shall vanish for arbitrary choices of 𝛿𝑥𝑛 it is mandatory to impose

∂ℒ
∂𝑥𝑛

− d
d𝑡

∂ℒ
∂𝑥′

𝑛
= 0 , ∀𝑛, 𝑡 (A.7)

and
∑

𝑛
[ ∂ℒ

∂𝑥′
𝑛

(𝑏)𝛿𝑥𝑛(𝑏) − ∂ℒ
∂𝑥′

𝑛
(𝑎)𝛿𝑥𝑛(𝑎)] = 0 , (A.8)

which may be trivially fulfilled if the solution is clamped at both 𝑎 and 𝑏, as then 𝛿𝑥𝑛(𝑎) =
𝛿𝑥𝑛(𝑏) = 0. Note that Eqn. (A.7) are exactly the Euler-Lagrange equations.

A.1.2 Variation of free endpoints

In a variational problem, the endpoints of the integration might not always be fixed, i.e. 𝑎 and 𝑏
in Eqn. (A.4) might not be known a priori. In this case, the endpoints need to be subjected to a
variation as well. We will consider here that the endpoint 𝑎 is fixed and only 𝑏 is allowed to vary,
because this will be the only case needed in the present work.

Because 𝑏 no longer commutes with the variation, we need to apply Leibniz’ rule of integration,
such that

𝛿𝐸 = 𝛿𝑏ℒ ({𝑥𝑛} , {𝑥′
𝑛}) + [∑

𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛]

𝑏

𝑎

+ ∫
𝑏

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 . (A.9)
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Furthermore, we need to exchange the variations at 𝑏 with those at 𝑏 + 𝛿𝑏, as this is the proper
new endpoint. Using an expansion to first order yields

𝛿𝑥𝑛(𝑏 + 𝛿𝑏) = 𝛿𝑥𝑛(𝑏) + 𝑥′
𝑛(𝑏)𝛿𝑏 + 𝒪(𝛿𝑏2) , (A.10)

such that the final variation with a free endpoint at 𝑏 is given as

𝛿𝐸 =𝛿𝑏 {ℒ ({𝑥𝑛} , {𝑥′
𝑛}) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
𝑥′

𝑛(𝑏)}

+ ∑
𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛(𝑏 + 𝛿𝑏) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛(𝑎) + ∫

𝑏

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 .

(A.11)

The additional equation we acquire due to the the free endpoint is a transversality condition and
imposes that the value of the Lagrangian at the endpoint is equal to the sum of its derivatives
with respect to the primed coordinates times the primed coordinates:

ℒ ({𝑥𝑛} , {𝑥′
𝑛}) (𝑏) = ∑

𝑛

∂ℒ
∂𝑥′

𝑛
(𝑏)𝑥′

𝑛(𝑏) (A.12)

A.1.3 Broken functionals

One of the main assumptions for the derivation of Eqn. (A.7) in Sec. A.1.1 is that the solution
functions 𝑥𝑛 are differentiable on the entire domain. This assumption is broken in many cases, e.g.
when the shape of a capsule without bending stiffness has a kink along the shape 1. These broken
parts of the solution need to be handled explicitly. For the context of this thesis it is sufficient to
discuss broken extremals with only a single kink along the solution, however, multiple kinks in the
solution can be handled fully analogously.

The solution 𝑥𝑛 shall have a kink at 𝑡 = 𝑙, such that

lim
𝑡→𝑙+

𝑥′
𝑛(𝑡) ≠ lim

𝑡→𝑙−
𝑥′

𝑛(𝑡) , but still lim
𝑡→𝑙+

𝑥𝑛(𝑡) = lim
𝑡→𝑙−

𝑥𝑛(𝑡) , (A.13)

where we will use the notation 𝑓(𝑙+,−) ≡ lim𝑡→𝑙+,−
𝑓(𝑡) in the following.

We handle the broken extremal at 𝑡 = 𝑙 by splitting the integration at the kink, such that

𝐸 = ∫
𝑙−

𝑎
d𝑡 ℒ ({𝑥𝑛} , {𝑥′

𝑛}) + ∫
𝑏

𝑙+

d𝑡 ℒ ({𝑥𝑛} , {𝑥′
𝑛}) (A.14)

note that the derivatives 𝑥′
𝑛 are defined over the entire respective integration domain, since the

domains are defined from 𝑎 to 𝑙− and 𝑙+ to 𝑏 respectively. The integration misses exactly one point
at 𝑡 = 𝑙, this is, however, a zero measure set 2.

There are two ways 𝑙 may be controlled, either it is imposed externally, e.g. a hanging chain being
supported at a fixed point along its shape, or it is controlled by the functional and thus free to
move.

1This is exactly the case for Pogorelov mirror-inversion buckling at zero bending stiffness.
2The same is true if there is an arbitrary countable number of kinks in the shape.
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First, consider the case where 𝑙 is fixed. We perform the individual variations of both integrals
exactly as shown in Sec. A.1.1, such that

𝛿𝐸 = [∑
𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛]

𝑙−

𝑎

+ [∑
𝑛

∂ℒ
∂𝑥′

𝑛
𝛿𝑥𝑛]

𝑏

𝑙+

+ ∫
𝑙−

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 + ∫

𝑏

𝑙+

d𝑡 ∑
𝑛

{ ∂ℒ
∂𝑥𝑛

− d
d𝑡

∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 ,

(A.15)

which results in the same Euler-Lagrange equations as derived in Sec. A.1.1 with the important
distinction that these equations are defined on the domain [𝑎, 𝑙) ∪ (𝑙, 𝑏] ≡ [𝑎, 𝑏] ∖ {𝑙}, where an
additional equation arises at 𝑙, which is the first Weierstrass-Erdmann corner condition

0 = ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙−)𝛿𝑥𝑛(𝑙−) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙+)𝛿𝑥𝑛(𝑙+) (A.16)

and has to be fulfilled by any solution of the problem. Some caution has to be applied when
evaluating the variations 𝛿𝑥𝑛, they may be subject to additional constraints and thus not allowed
to vary freely.

Second, consider the kink does not have a fixed position. Since the coordinate 𝑙 is no longer
imposed externally, it must be allowed to vary. Thus, instead of simply swapping the integration
and variation in Eqn. (A.4) we need to apply Leibniz’ integration rule:

𝛿𝐸 =𝛿𝑙−
d

d𝑙−
∫

𝑙−

𝑎
d𝑡 ℒ ({𝑥𝑛} , {𝑥′

𝑛}) + 𝛿𝑙+
d

d𝑙+
∫

𝑏

𝑙+

d𝑡 ℒ ({𝑥𝑛} , {𝑥′
𝑛})

+ ∫
𝑙−

𝑎
d𝑡 𝛿ℒ ({𝑥𝑛} , {𝑥′

𝑛}) + ∫
𝑏

𝑙+

d𝑡 𝛿ℒ ({𝑥𝑛} , {𝑥′
𝑛}) .

(A.17)

It is obvious that 𝛿𝑙− = 𝛿𝑙+, such that we can simplify the variation to:

𝛿𝐸 =𝛿𝑙 [ℒ ({𝑥𝑛} , {𝑥′
𝑛}) (𝑙−) − ℒ ({𝑥𝑛} , {𝑥′

𝑛}) (𝑙+)]

+ ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙−)𝛿𝑥𝑛(𝑙−) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙+)𝛿𝑥𝑛(𝑙+)

+ ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑏)𝛿𝑥𝑛(𝑏) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
(𝑎)𝛿𝑥𝑛(𝑎)

+ ∫
𝑙−

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 + ∫

𝑏

𝑙+

d𝑡 ∑
𝑛

{ ∂ℒ
∂𝑥𝑛

− d
d𝑡

∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 .

(A.18)

At this step some caution has to be applied: The variation of the solution function at the kink
𝛿𝑥𝑛(𝑙+,−) is not independent of the variation of the kink location 𝛿𝑙 itself. The independent
variation of the solution function at the kink needs to be expressed in terms of the varied length
𝑙 + 𝛿𝑙 instead.

This complication can be fixed by considering the Taylor expansion to first order around the
unperturbed kink location, such that

𝛿𝑥𝑛(𝑙 + 𝛿𝑙) = 𝛿𝑥𝑛(𝑙) + ∂𝑥𝑛
∂𝑡

(𝑙)𝛿𝑙 + 𝒪(𝛿𝑙2) , (A.19)
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which we use to express the 𝛿𝑥𝑛(𝑙) terms in Eqn. (A.18) in terms of the perturbed kink location,
such that the final variation states

𝛿𝐸 =𝛿𝑙 [ℒ(𝑙−) − ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙−)𝑥′

𝑛(𝑙−) − ℒ(𝑙+) + ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙+)𝑥′

𝑛(𝑙+)]

+ ∑
𝑛

∂ℒ
∂𝑥′

𝑛
((𝑙 + 𝛿𝑙)−)𝛿𝑥𝑛((𝑙 + 𝛿𝑙)−) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
((𝑙 + 𝛿𝑙)+)𝛿𝑥𝑛((𝑙 + 𝛿𝑙)+)

+ ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑏)𝛿𝑥𝑛(𝑏) − ∑

𝑛

∂ℒ
∂𝑥′

𝑛
(𝑎)𝛿𝑥𝑛(𝑎)

+ ∫
𝑙−

𝑎
d𝑡 ∑

𝑛
{ ∂ℒ

∂𝑥𝑛
− d

d𝑡
∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 + ∫

𝑏

𝑙+

d𝑡 ∑
𝑛

{ ∂ℒ
∂𝑥𝑛

− d
d𝑡

∂ℒ
∂𝑥′

𝑛
} 𝛿𝑥𝑛 ,

(A.20)

which gives all equations obtained in the case where the kink position was fixed plus an additional
condition the solution functions must satisfy, namely the condition obtained when imposing that
the pre-factor of 𝛿𝑙 shall vanish

0 = ℒ(𝑙−) − ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙−)𝑥′

𝑛(𝑙−) − ℒ(𝑙+) + ∑
𝑛

∂ℒ
∂𝑥′

𝑛
(𝑙+)𝑥′

𝑛(𝑙+) , (A.21)

which is the second Weierstrass-Erdmann corner condition.

A.1.4 Noether’s Theorem

The theorem found by Emmy Noether states that each continuous symmetry transformation has
an associated conserved quantity. A prominent example is the conservation of energy, which is the
conserved quantity to gauge invariance of the energy. As soon as this gauge invariance is broken,
e.g. due to the coupling to another system, the conservation of the subsystems energy is violated
along with the gauge invariance. Note that the energy of the combined system is again conserved,
since the total systems energy is gauge invariant. The implications of Noethers Theorem are far
fetching and it can be used in almost all physics problems.

We can understand the theorem on the level of calculus of variations, since all continuous symmetries
𝜉 entail a variation that does not change the value of the functional, such that ∂ℒ/∂𝜉 = 0. This
means that the Euler-Lagrange equation for 𝜉 reveals a conserved quantity, since

0 = d
d𝑡

∂ℒ
∂𝜉′ ⇔ ∂𝐿

∂𝜉′ = const. (A.22)

It is thus enough to analyse the systems symmetries to eventually produce all conservation laws.
We will make use of this theorem in several derivations in order to find important conserved
quantities.
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A.2 Axisymmetric interfaces attached to capillaries

A.2.1 Interfaces with bending stiffness

Bending energy contributions can be added to the problem formulation by allowing the surface
energy density 𝑤𝑆0

to have out of plane displacement dependencies, in addition to the in-plane
displacements 𝜆𝑠 and 𝜆𝜙. For bending contributions in particular, the additional parametric
dependencies encountered are exactly the bending strains 𝐾𝑠 = d(𝛹 − 𝛹0)/d𝑠0 and 𝐾𝜙 = (sin 𝛹 −
sin 𝛹0)/𝑟0, which are related to changes in the principal curvatures [18]. Thus the surface energy
density is given as 𝑤𝑆0

= 𝑤𝑆0
(𝜆𝑠, 𝜆𝜙, 𝐾𝑠, 𝐾𝜙) and the variation is

𝛿𝑤𝑆0
= (𝛿𝜆𝑠

∂
∂𝜆𝑠

+ 𝛿𝜆𝜙
∂

∂𝜆𝜙
+ 𝛿𝐾𝑠

∂
∂𝐾𝑠

+ 𝛿𝐾𝜙
∂

∂𝐾𝜙
) 𝑤𝑆0

. (A.23)

The two last terms mark the only difference to the elastic case discussed in Sec. 1.2 and are
exactly the variations of the new bending energy contribution:

𝛿𝐸𝐵 = 𝜋 ∫
𝐿0

0
d𝑠02𝑟0 {𝛿𝐾𝑠

∂𝑤𝑆0

∂𝐾𝑠
+ 𝛿𝐾𝜙

∂𝑤𝑆0

∂𝐾𝜙
} . (A.24)

The variation of the bending strains is straight forward to calculate such that the variation of the
bending energy terms is immediately recovered as

𝛿𝐸𝐵 = [2𝜋 𝑟
𝜆𝜙

∂𝑤𝑆0

∂𝐾𝑠
𝛿𝛹]

𝐿

0

− 2𝜋 [( 1
𝜆𝑠

∂𝑤𝑆0

∂𝐾𝜙
cos 𝛹 − d

d𝑠
( 𝑟

𝜆𝜙

∂𝑤𝑆0

∂𝐾𝑠
)) 𝛿𝑛]

𝐿

0

+ 2𝜋 ∫
𝐿

0
d𝑠 [𝛿𝑡 d𝛹

d𝑠
+ 𝛿𝑛 d

d𝑠
] { 1

𝜆𝑠

∂𝑤𝑆0

∂𝐾𝜙
cos 𝛹 − d

d𝑠
( 𝑟

𝜆𝜙

∂𝑤𝑆0

∂𝐾𝑠
)} .

(A.25)

The terms appearing as pre-factors to the normal and tangential variations 𝛿𝑛 and 𝛿𝑡 modify the
two shape equations generated previously in Sec. 1.2 respectively.

The shape equations for the interface with bending stiffness can be obtained by combining the
terms produced from the variation without any bending stiffness Eqn. (1.13) and the corrections
Eqn. (A.25) as [18]

d𝜏𝑠
d𝑠

= cos 𝛹
𝑟

(𝜏𝜙 − 𝜏𝑠) + 𝜅𝑠 (cos 𝛹
𝑟

(𝑚𝜙 − 𝑚𝑠) − d𝑚𝑠
d𝑠

) (A.26)

d𝑚𝑠
d𝑠

= cos 𝛹
𝑟

(𝑚𝜙 − 𝑚𝑠) + 𝜏𝑠 tan 𝛹 − 1
2

𝑝𝑟
cos 𝛹

. (A.27)

We use the definition of the meridional and circumferential bending moments

𝑚𝑠 ≡ 1
𝜆𝜙

∂𝑤𝑆0

∂𝐾𝑠
, and 𝑚𝜙 ≡ 1

𝜆𝑠

∂𝑤𝑆0

∂𝐾𝜙
(A.28)

to realize that the resulting shape equations are again equivalent to a force and bending moment
balance [18].

Again, we need to properly discuss the resulting boundary terms from Eqn. (A.25). Here we find
terms scaled by the normal variations 𝛿𝑛 at the endpoint 𝑠 = 0 and 𝑠 = 𝐿, and terms scaled by a
variation in the arc-angle 𝛿𝛹. As we discussed for elastic capsules in Sec. 1.2, these are the only

129



A Appendix

resulting boundary terms from the combined variation. We can immediately state two trivial
things: First, the variation of the arc-angle at the apex 𝑠 = 0 is disallowed, because it would create
a kink in the shape and thus incur infinite bending energy, so 𝛿𝛹(𝑠 = 0) = 0. Second, the normal
variation at the capillary is disallowed, because the shell is clamped there, such that 𝛿𝑛(𝑠 = 𝐿) = 0.
This leaves us with one equation for each endpoint:

0 = 𝑟(𝑠 = 𝐿)𝑚𝑠(𝑠 = 𝐿)𝛿𝛹(𝑠 = 𝐿) (A.29)
0 = 𝑞(𝑠 = 0)𝑟(𝑠 = 0)𝛿𝑛(𝑠 = 0) . (A.30)

The implications of Eqn. (A.30) are obviously void, because 𝑟(𝑠 = 0) = 0 by parametrization. The
implications of Eqn. (A.29) depend on a subtle detail at the capillary. If the shell is clamped at
the capillary, such that the attachment angle 𝛹(𝑠 = 𝐿) is fixed (like a beam slotted into an inset)
we trivially find 𝛿𝛹(𝑠 = 𝐿) = 0 and thus no additional equation, however, if the attachment angle
can arrange freely, we find the additional condition 𝑚𝑠(𝑠 = 𝐿) = 0, which mandates that there
may not be any bending moments in meridional direction at the capillary.
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A.3 Numerically solving and fitting shape equations

A.3.1 Fitting Parameter Considerations
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Figure A.1: We determine the performance of the numerical fit with a different set of elastic moduli.
The algorithm seems to be more robust when exchanging 𝜈2D as a parameter for 𝐺2D. This is evident
by comparing to Fig. 2.4

Obviously, the choice of the constitutive fit parameters as 𝐾2D and 𝜈2D is entirely arbitrary. The
elastic constitutive parameters are an interchangeable set of two parameters, which means that
we could, for example, choose to exchange the problematic Poisson’s ratio for another parameter,
which is better conditioned for the fit. As we discover in a later section (see Sec. 3.2), the fit
of experimental shape sequences is better conditioned if the Poisson’s ratio is exchanged for
the shear modulus 𝐺2D = 𝐾2D(1 − 𝜈2D)/(1 + 𝜈2D) during the fit. In essence, this means that
internally the fitting algorithm will work with 𝐺2D, where externally, the Poisson’s ratio is retrieved
as previously. We can understand why Poisons ratio is ill-versed for a shape fit by analysing
the poles of the constitutive law. If 𝜈2D gets close to −1 or 1, we see a real divergence in the
constitutive law. Additionally, the sensitivity close to the boundaries of the admissible range for
𝜈2D is amplified significantly. Since the fitting algorithm (i.e. least-squares) uses a linearization to
update the parameter set, the algorithm is ill-conditioned in this region. The shear modulus has
the algorithmic benefit, that one of the poles in the constitutive law coincides with 𝐺2D → ∞ and
the other with 𝐺2D → 0+. Appropriately, 𝐺2D has no upper bound for its admissible range, which
is advantageous – in an algorithmic sense – as well.

We fit another 10.000 generated and noised shapes, internally using this new parametrization of
the constitutive law and indeed find a superior fitting performance (see Fig. A.1). In Fig. A.1
we can see a subtle, but qualitatively noticeable improvement in fitting performance compared
to Fig. 2.4, i.e. the bands of high error promptly visible in Fig. 2.4 are entirely absent from the
improved fit in Fig. A.1.
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A.4 Contact phenomena of complex interfaces

A.4.1 Gravitational Effects

Up to this point the gravitational effects where not included in the calculations, however, they are
trivial to include.

To show this, consider the potential energy of both capsules

𝐸pot = 𝑔 ∫ d𝑉 𝑢 𝛥𝜌𝑢𝑧𝑢 − 𝑔 ∫ d𝑉 𝑑 𝛥𝜌𝑑𝑧𝑑 , (A.31)

where 𝑔 is the gravitational acceleration and 𝛥𝜌𝑢,𝑑 the respective density difference between the
inside and the outside of the volumes 𝑉 𝑢,𝑑 enclosed by the capsules. This potential energy term
can be absorbed into a hydro-static pressure difference, where we introduce a height dependent
pressure function 𝑝𝑢,𝑑 = 𝑝𝑢,𝑑

𝑎 ∓ 𝛥𝜌𝑢,𝑑𝑔𝑧𝑢,𝑑 with a negative sign for the upper shape and a positive
sign for the lower shape, simply because the axis of gravity is flipped for the lower shape.

Writing Eqn. (A.31) in terms of the arc length 𝑠 yields:

𝐸pot

𝜋𝑔
= ∫

𝑙−

0
d𝑠 (𝛥𝜌𝑢 − 𝛥𝜌𝑑)(𝑟𝑢)2 sin 𝛹𝑢𝑧𝑢

+ ∫
𝐿𝑢

𝑙+

d𝑠 𝛥𝜌𝑢(𝑟𝑢)2 sin 𝛹𝑢𝑧𝑢 − ∫
𝐿𝑑

𝑙+

d𝑠 𝛥𝜌𝑑(𝑟𝑑)2 sin 𝛹𝑑𝑧𝑑 .
(A.32)

The first variation of Eqn. (A.32) reveals

𝛿𝐸pot

𝜋𝑔
= [(𝛥𝜌𝑢 − 𝛥𝜌𝑑)𝑧𝑢(𝑟𝑢)2𝛿𝑧𝑢]𝑙−

0
+ [𝛥𝜌𝑢𝑧𝑢(𝑟𝑢)2𝛿𝑧𝑢]𝐿𝑢

𝑙+
− [𝛥𝜌𝑑𝑧𝑑(𝑟𝑑)2𝛿𝑧𝑑]𝐿𝑑

𝑙+

+ ∫
𝑙−

0
d𝑠 (𝛥𝜌𝑢 − 𝛥𝜌𝑑)2𝑟𝑢𝑧𝑢𝛿𝑛𝑢 + ∫

𝐿𝑢

𝑙+

d𝑠 𝛥𝜌𝑢2𝑟𝑢𝑧𝑢𝛿𝑛𝑢 − ∫
𝐿𝑑

𝑙+

d𝑠 𝛥𝜌𝑑2𝑟𝑑𝑧𝑑𝛿𝑛𝑑 ,

(A.33)

where the boundary terms vanish in sum because they are composed from continuous geometric
properties. This observation makes it obvious that the gravitational contributions may be accounted
for, simply by performing the substitution

𝑝𝑢,𝑑 → 𝑝𝑢,𝑑
𝑎 ∓ 𝛥𝜌𝑢,𝑑𝑔𝑧𝑢,𝑑 (A.34)

in all prior calculations. The static pressure 𝑝𝑢,𝑑 is thus replaced with the pressure at the apex of
the drop 𝑝𝑢,𝑑

𝑎 and a height dependent hydro-static pressure contribution.
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A.4.2 Shape space for 𝐾2D = 2𝛾
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Figure A.2: Slice of the shape space for the elastic
contact problem. Here we choose 𝐾2𝐷 = 2𝛾. The
lines of constant volume (contour lines of the upper
plot) are shown for the deformed volumes equaling
the reference volume 𝑉 𝑢,𝑑 = 𝑉 𝑢,𝑑

0 (red line). Addi-
tionally, the lines of minimum forces (black lines) and
zero forces (orange line) are shown. The intersections
between the volume and force lines are highlighted
with colored diamonds and mark the respective char-
acteristic points in the deformation sequences of fixed
volume. In a certain region, no solutions can be found
for a given contact length and apex stress (blue line),
i.e. there does not exist a pressure for which the
capillary boundary condition may be fulfilled.

We show the parameter space slice from the
main text (see Fig. 4.8) with a modified com-
pression modulus, i.e. 𝐾2D = 2𝛾 in Fig. A.2.
The modifications to the shape space due to the
change in compression modulus are subtle and
include a slight increase in apex stress required
for the 𝑉 𝑢 = 𝑉 𝑢

0 configuration. Furthermore,
the orange line of zero force is slightly rotated
into a more vertical orientation. The same is
true for the blue line, after which no further
solutions exist. Qualitatively, however, the pa-
rameter space does not change significantly with
the increase in compression modulus.
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A.5 Machine learning applications in ill-posed inverse problems

Published material – This appendix is reproduced with modifications and permis-
sion from the author’s publication [133], © 2023 Biophysical Society..

A.5.1 Details of the solution of the forward problem for traction patches

For the solution of the forward problem for a tractions patch of size 𝑅𝑖, we obtained the functions
𝑁𝑗( ̃𝑟𝑖, 𝜃) in Eqn. (5.11) and Eqn. (5.12). They are defined as

𝑁𝑗( ̃𝑟𝑖, 𝜃) ≡ ∫
2𝜋

0
𝑑𝜙 ∫

∞

0
𝑑𝜌𝐽1(𝜌𝑅𝑖)

𝜌
𝑓𝑗(𝜙)𝑒−𝑖𝜌𝑅𝑖 ̃𝑟𝑖 cos(𝜙−𝜃) (A.35)

with

𝑓1(𝜙) ≡ 1
𝑓2(𝜙) ≡ sin2 𝜙
𝑓3(𝜙) ≡ sin 𝜙 cos 𝜙
𝑓4(𝜙) ≡ cos2 𝜙.

By definition, 𝑁2 + 𝑁4 = 𝑁1.

The remaining integrals in the functions 𝑁𝑗( ̃𝑟𝑖, 𝜃) can be performed analytically:

𝑁1( ̃𝑟𝑖) = 2𝜋 ∫
∞

0
𝑑𝑥𝐽1(𝑥)𝐽0(𝑥 ̃𝑟𝑖)

𝑥

= {
4𝐸 ( ̃𝑟2

𝑖 ) ̃𝑟𝑖 < 1
4 [ ̃𝑟𝑖𝐸 ( ̃𝑟−2

𝑖 ) − ( ̃𝑟𝑖 − ̃𝑟−1
𝑖 )𝐾 ( ̃𝑟−2

𝑖 )] ̃𝑟𝑖 > 1
(A.36)

with the complete elliptic integrals 𝐸(𝑚) = ∫𝜋/2
0

(1 − 𝑚 sin2 𝜃)1/2𝑑𝜃 and 𝐾(𝑚) = ∫𝜋/2
0

(1 −
𝑚 sin2 𝜃)−1/2𝑑𝜃;

𝑁2( ̃𝑟𝑖, 𝜃) = 2𝜋 ∫
∞

0
𝑑𝑥 (𝐽1(𝑥)𝐽1(𝑥 ̃𝑟𝑖)

𝑥2 ̃𝑟𝑖
− sin2 𝜃𝐽1(𝑥)𝐽2(𝑥 ̃𝑟𝑖)

𝑥
)

= {
4 sin2 𝜃𝐸 ( ̃𝑟2

𝑖 ) + 4
3 ̃𝑟2

𝑖
cos(2𝜃) [(1 + ̃𝑟2

𝑖 )𝐸 ( ̃𝑟2
𝑖 ) + ( ̃𝑟2

𝑖 − 1)𝐾 ( ̃𝑟2
𝑖 )] ̃𝑟𝑖 < 1

2
3 ̃𝑟𝑖

[(3 ̃𝑟2
𝑖 + (2 − ̃𝑟2

𝑖 ) cos(2𝜃)) 𝐸 ( ̃𝑟−2
𝑖 ) + (1 − ̃𝑟2

𝑖 )(3 − cos(2𝜃))𝐾 ( ̃𝑟−2
𝑖 )] ̃𝑟𝑖 > 1

;

(A.37)

𝑁3( ̃𝑟𝑖, 𝜃) = −2𝜋 sin 𝜃 cos 𝜃 ∫
∞

0
𝑑𝑥𝐽1(𝑥)𝐽2(𝑥 ̃𝑟𝑖)

𝑥

= {
2

3 ̃𝑟2
𝑖

sin(2𝜃) [( ̃𝑟2
𝑖 − 2) 𝐸 ( ̃𝑟2

𝑖 ) + 2(1 − ̃𝑟2
𝑖 )𝐾 ( ̃𝑟2

𝑖 )] ̃𝑟𝑖 < 1
2

3 ̃𝑟𝑖
sin(2𝜃) [( ̃𝑟2

𝑖 − 2) 𝐸 ( ̃𝑟−2
𝑖 ) + (1 − ̃𝑟2

𝑖 )𝐾 ( ̃𝑟−2
𝑖 )] ̃𝑟𝑖 > 1

; (A.38)

𝑁4( ̃𝑟𝑖, 𝜃) = 𝑁1( ̃𝑟𝑖) − 𝑁2( ̃𝑟𝑖, 𝜃). (A.39)
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A.5.2 Discretization of traction patches

Figure A.3: Calculation of overlap areas 𝐴𝑘,ov for circular patches containing 𝑘 = 1, 2, 3 corners of
square grid segments.

A naive approach for the discretization of the circular traction patches onto a square pixel grid
with indices 𝑖, 𝑗 ∈ {1, ..., 𝑁} and square side lengths 𝑎 = 𝐿/𝑁 is to check whether any square
segment center point ⃗𝑐𝑖𝑗 is contained in the circular traction patch of radius 𝑅𝑡 and center point

⃗𝑐𝑡. If the center point is contained, the grid segment 𝑖𝑗 is assigned the traction ̃𝑡0 of the circular
patch:

̃𝑡𝑖𝑗 = {
̃𝑡0, for ∣ ⃗𝑐𝑖𝑗 − ⃗𝑐𝑡∣ < 𝑅𝑡

0, else.
(A.40)

This naive discretization suffers from a critical artifact: it does not conserve the total traction
force 𝐹𝑡 exerted by the patch, ∑𝑖,𝑗 𝑎2 ̃𝑡𝑖𝑗 ≠ ̃𝑡0𝜋𝑅2

𝑡 = 𝐹𝑡.

One step towards improving the force conservation is to check for all four corners of the square
grid segment whether they are contained in the traction circle. If we assign equal weights to any
of the corners

̃𝑡𝑖𝑗 = 𝑡0
#corners contained

4
, (A.41)

the naive optimization is improved, but still not force conserving.

Ultimately, we construct a force conserving discretization by explicitly calculating the exact area
occupation ratio of each square grid segment and the circular traction spots (see Fig. A.3).

We start with the case where exactly one corner of the grid square is contained in the traction
circle. We only need to consider the case where only the bottom left corner of the grid segment is
contained in the traction circle; all remaining cases can be constructed by mirror or rotational
symmetries. We denote the vector from the center of the circle to the bottom left corner of
the grid segment by (𝛥𝑥, 𝛥𝑦), its length by 𝑑 and the angle with the y-axis by 𝛼 such that
(𝛥𝑥, 𝛥𝑦) = 𝑑(sin 𝛼, cos 𝛼). The overlap area of traction circle and grid square is given by the polar
integral

𝐴1,ov = 1
2

∫
𝜋/2

0
d𝜙𝑟2(𝜙, 𝛼) (A.42)

with
𝑟(𝜙, 𝛼) = √𝑅2

𝑡 − 𝑑2 sin(𝜙 − 𝛼) − 𝑑 cos(𝜙 − 𝛼) . (A.43)
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Figure A.4: The discretization of circular traction patches onto a pixel grid (top row) with a naive
discretization, an improved discretization and a force conserving discretization (left to right). The
resulting residual displacement errors (bottom row) are generated by feeding the discretized traction
field back to the solver to generate a residual of the input displacement field and the displacement
field obtained from resolving the discretized traction field. The residual error decreases drastically if
the total traction force is conserved by the discretization method.

This integral can be solved via basic calculus:

𝐴1,ov(𝛥𝑥, 𝛥𝑦) = 1
4

𝑅2
𝑡 + 𝛥𝑥𝛥𝑦

− 1
2

(√𝑅2
𝑡 − 𝛥𝑦2𝛥𝑦 + √𝑅2

𝑡 − 𝛥𝑥2𝛥𝑥 + 𝑅2 arcsin(𝛥𝑦/𝑅𝑡) + 𝑅2 arcsin(𝛥𝑥/𝑅𝑡)) .

(A.44)

We are able to construct all other cases from this result. For the other cases where only one
corner of the grid segment is contained we simply exploit the rotational symmetry, e.g. if the top
right corner is contained, we rotate the traction patch around the center of the grid segment by 𝜋
radians and recover a scenario where we can apply Eqn. (A.44).

If two corners of the grid square are contained in the traction patch it suffices to consider the
case where the bottom left and the top left corner are contained because of rotational symmetries.
Additionally, we can concentrate on the case where the center point of the traction patch is
below (smaller y-component) the grid square center point because of the mirror symmetries of the
problem. The two corner overlap can be viewed as a one corner overlap with a shifted 𝛥𝑥 and an
additional rectangular overlap (see Fig. A.3) resulting in

𝐴2,ov(𝛥𝑥, 𝛥𝑦) = 𝐴1,ov (√𝑅2
𝑡 − (𝛥𝑦 + 𝑎)2, 𝛥𝑦) + 𝑎 (√𝑅2

𝑡 − (𝛥𝑦 + 𝑎)2 − 𝛥𝑥) . (A.45)

Similarly, the three corner overlap decays into a two corner overlap minus a shifted one corner
overlap (see Fig. A.3). Again, for symmetry reasons, we only need to consider one configuration,
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where the top left, bottom left and bottom right corner of the grid square are contained in the
circular traction patch:

𝐴3,ov(𝛥𝑥, 𝛥𝑦) = 𝐴2,ov (𝛥𝑥, 𝛥𝑦) − 𝐴1,ov (𝛥𝑥 + 𝑎, 𝛥𝑦) . (A.46)

Finally, in order to conserve the total force exerted by the traction patch, the tractions assigned
to a grid square must then be weighted by their area occupation percentage,

̃𝑡𝑖𝑗 = ̃𝑡0
𝐴ov,𝑖𝑗

𝑎2 , (A.47)

where 𝐴ov,𝑖𝑗 is calculated from Eqn. (A.44), Eqn. (A.45), or Eqn. (A.46) depending on the number
of corners of square 𝑖𝑗 contained in the circular traction patch.

The fundamental error of this method can be computed by generating a large exact circular
solution and feeding the discretized traction grid back into our solver. With the force conserving
implementation we are able to reproduce the displacement field of a large circular traction patch
of radius 𝑅𝑡 = 0.4 to a precision of RMSE ∼ 1.2 ⋅ 10−4. This also allows us to probe the difference
between the three traction discretization methods in Fig. A.4. The naive discretization gives a
residual error RMSE ∼ 5.1 ⋅ 10−4 for the displacement field, the optimized naive discretization is
already able to lower the residual error drastically to RMSE ∼ 4.4 ⋅ 10−4. The force conserving
method finally lowers the residual error to RMSE ∼ 1.2 ⋅ 10−4, which is significantly better than
both the naive and the improved naive method.
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A.5.3 Input resolution scaling
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Figure A.5: We generate traction patches on a larger grid of size 256 × 256 to verify that our
networks are able to adapt to input resolution changes. We compare our six precision metrics with the
BFTTC method and find similar results compared to the findings for 104 × 104 grids (see Fig. 5.11).

To quantify the performance of our networks for higher input resolutions we generate data on
a significantly larger grid (𝑁 × 𝑁 = 256 × 256) and scale the input displacements by 256/104.
We compare the traction reconstruction performance with the BFTTC method in Fig. A.5. In
our implementation (using TensorFlow), the execution time scales ∝ 𝑁2 for the BFTTC method,
while it remains linear ∝ 𝑁 for network inference.
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A.5.4 Gaussian noise with amplitude correlated with position
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Figure A.6: Results for Gaussian noise with a standard deviation decreasing with the distance to
the center of the experimental images. It is evident, that the high noise network returns an invariant
prediction even under these circumstances. The BFTTC method produces a significantly elevated
traction background noise.

In this work, we focused on uncorrelated Gaussian noise. Experimental noise might contain
correlations, for example, from optical aberration that gives rise to a non-uniform noise amplitude.
As an example, we consider effects from uncorrelated Gaussian noise with a standard deviation
that decreases with the distance from the center of the experimental image in Fig. A.6. In this
example, the standard deviation decreases with a factor (1 − 𝑟/

√
2)4, where 𝑟 is the dimensionless

distance from the center.
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A.5.5 Higher traction magnitudes
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Figure A.7: We generate traction patches with magnitudes uniformly varying from 0.5 to 1.5, which
is well outside our training range. We observe that the networks are still able to provide highly
accurate predictions, even in this traction magnitude regime.

We trained our networks on traction patches with dimensionless traction magnitudes ̃𝑡 uniformly
distributed between 0.0 and 0.5. In Fig. A.7, we show that the networks are able to generalize
to larger traction magnitudes by evaluating all six metrics for synthetic patch-based data with
dimensionless traction magnitudes ̃𝑡 uniformly distributed between 0.5 and 1.5.
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A.5.6 Further analysis of experimental data
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Figure A.8: Comparison of traction and displacement reconstruction for a real Fibroblast between
our networks NNlow and NNhigh and the BFTTC method for cell 1 of Ref. [150].

We present additional results for one of the 14 cells provided in Ref. [150]. We compare the traction
reconstruction for an additional real Fibroblast between our networks NNlow and NNhigh and the
BFTTC method (top and middle rows of Fig. A.8). Although we do not have the “true” traction
field at hand for a quantitative evaluation of precision across the methods, we see compatible
results, while both networks have a significantly reduced noise level. The top row shows the traction
magnitude reconstruction, while the center row shows the angle reconstruction. In addition, the
bottom row displays the displacement field computed from the reconstructed traction fields. We
see that deviations in the displacement field between all three methods are small.
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A.5.7 Manual regularization of the traction reconstruction
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Figure A.9: Comparison of the traction reconstruction for different manually chosen regularization
parameters. The BFTTC method automatically chooses 𝐿 = 10.

To show that the tractions produced by the BFTTC method are indeed a fair benchmark for
our method we provide additional traction reconstructions, where we choose the regularization
parameter 𝐿 manually to show that lower regularization parameters than that chosen by the
BFTTC method lead to excessive noise and higher regularization parameters lead to highly blurred
reconstructions. The automatically chosen regularization parameter of the BFTTC method is
𝐿 ∼ 10.
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