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Abstract: Predicting trends in Sex Ratio at Birth (SRB) is crucial in demographic research, 
shedding light on evolving population dynamics. This study conducts a thorough investigation 
into the selection and evaluation of optimal forecasting models for SRB data. Utilizing 
historical SRB records from selected countries, we meticulously assess various models, 
including Autoregressive Integrated Moving Average (ARIMA), Autoregressive (AR), and 
White Noise models. Our empirical analysis reveals the prominence of the AR(2) model in 
capturing intricate SRB dynamics. Additionally, we explore the White Noise model's role in 
understanding and predicting SRB fluctuations. Our findings emphasize the AR(2) model's 
efficacy, attributed to its parsimonious complexity, empirical validation, theoretical alignment, 
and superior statistical performance. Extending projections to 2070 for Germany, our study 
not only offers foresight into future SRB trends but also contributes a robust methodology to 
the broader field of time series analysis. 
 
Keywords: Demographic Trends, Autoregressive Models, Forecasting Methodology, White 
Noise Model. 
 
 
1. Introduction 
 
The sex ratio at birth (SRB) remains a complex demographic phenomenon influenced by 
diverse factors. Despite extensive research, a definitive explanation remains elusive (Pavić, 
2009). This paper explores SRB fluctuations using time series models, analyzing data from 39 
countries2 with the R statistical software. Our aim is to propose models for presenting and 
forecasting SRB trends. 
 
The choropleth map 1 displays SRB values across regions, representing the number of 
newborn boys per 100 newborn girls. Color-coded ranges depict varying SRB values: 
 
Light Green (103-105): This range illustrates SRB values between 103 and 105, with regions such as the United 
States, South America, and most African countries falling into this category. These areas exhibit a slightly male-
biased SRB, with approximately 103 to 105 newborn boys for every 100 newborn girls. 
 
Dark Green (105-107): The dark green range signifies SRB values between 105 and 107. European countries, 
North African countries, the Near East region, and Australia belong to this range. These regions also show a 
slightly higher male-biased SRB, with approximately 105 to 107 newborn boys per 100 newborn girls. 
 
Blue (107-110): The blue range indicates SRB values between 107 and 110, primarily represented by India and 
China. In these countries, the SRB is significantly higher, with approximately 107 to 110 newborn boys for 
every 100 newborn girls. This denotes a considerable gender imbalance in favor of male births. 
 

                                                 
1 Paper presented at the Bernoulli-IMS 11th World Congress in Probability and Statistics, August 12-16,  2024, 

Bochum, Germany.  
2 Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, 
France, Germany, Greece, Greenland, Hungary, Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, 
Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Russia, Slovakia, Slovenia, Spain, Sweden, 
Switzerland, Taiwan, United Kingdom, Ukraine, USA. 
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Map 1: Sex Ratio at Birth (SRB) - Global Distribution of Male Births per Female Births 
 
 
The choropleth map serves as a powerful tool, visually revealing the variations in SRB across 
diverse regions and providing significant insights into its global distribution. Its utility lies in 
facilitating the swift identification of areas exhibiting potential gender imbalances. This 
visualization highlights regions where issues related to gender equality and family planning 
practices may necessitate additional attention and targeted interventions. 
 
1.1 Defining Primary and Secondary Sex Ratio at Birth  
 
The primary sex ratio at birth refers to the proportion of male and female embryos conceived, 
which is typically considered to be 1:1. The secondary sex ratio at birth, on the other hand, 
pertains to the ratio of male to female live births. In a study conducted by Orzack et al. (2015), 
data was analyzed from a range of sources, including 3- to 6-day-old embryos, induced 
abortions, fetal membrane samples, miscarriages, and live births. 
 
Summarized Main Findings: The study's findings provide valuable insights into the shifts and 
patterns of primary and secondary sex ratios at various stages of pregnancy: 
 

- Primary Sex Ratio at Conception: At the point of conception, the distribution of male 
and female embryos is nearly equal, maintaining a 1:1 ratio. 

- Mid-Pregnancy Male Bias: As pregnancy progresses, there is a gradual increase in male 
bias attributed to excess female mortality. This bias continues until mid-pregnancy. 

- Steady Mid-Pregnancy Ratio: From mid-pregnancy until the end of the seventh month, 
the sex ratio remains relatively constant at around 1.28 (male to female). 

- Late-Pregnancy Shift: The final two months of pregnancy witness a decline in the sex 
ratio due to increased male mortality. 
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1.2 Gini´s White Noise Model 
 
In Gini's (1908) formulation, the concept of "White Noise" is employed to describe the sex 
ratio at birth (SRB). This notion suggests that in the absence of dominant factors or sets of 
factors influencing SRB, the appropriate time-series model would exhibit characteristics 
resembling random noise. Gini's observation is particularly relevant for short-term series 
where no prominent influencing factors are at play. This concept serves as a foundation for 
understanding SRB fluctuations in cases where no discernible patterns or trends are apparent. 
Moreover, the intricacies of real-world SRB data often reveal deviations from the idealized 
"White Noise" scenario. These deviations manifest as increasing or decreasing trends, and 
occasionally singular effects, such as noticeable SRB spikes following periods of conflict3. To 
address these complexities, advanced modeling techniques are essential. Among these, the 
Autoregressive Integrated Moving Average (ARIMA) models offer a potent framework. By 
encompassing various patterns arising from the interplay of different factors, ARIMA models 
allow us to meticulously dissect and comprehend the influences that contribute to SRB 
fluctuations. 
 
Our empirical analysis demonstrates the versatility of ARIMA models in capturing the diverse 
dynamics of SRB across multiple countries. Intriguingly, our findings also reveal that for a 
significant number of countries, the "White Noise" model stands as an appropriate choice.  
 
 
2. Sex Ratio at Birth as a Binomial Process 
 
Fluctuations in the sex ratio at birth (SRB) result from both random and systematic influences. 
If only random influences were present, we could explain SRB fluctuations through the 
binomial model. 
In the binomial model: N represents the sample size (number of births). p is the probability of 
success (probability of a male BM or female birth BF). X represents the number of male or 
female births. 

( ) (1 )x N xN
P X x p p

x
 

     
 

 

Assumptions: 
The probability of success is the same for each birth. 
Births are independent replications. 
 
However, there are additional variations to consider, including Lexis Variation, Poisson 
Variation, and Markov Variation. This is particularly relevant in the context of sex ratio at 
birth (SRB), where these variations refer to different sources of variability that can impact the 

                                                 
3   Other Possible Singular Effects: 
 Wars and Conflicts: Typically lead to an increase in SRB due to stress-induced biological responses favoring male fetuses. 
Technological Advances (Prenatal Sex Determination): Likely lead to an increase in SRB due to selective abortions of female 

fetuses. 
Economic Prosperity: Can lead to a decrease in SRB due to improved healthcare and nutrition, reducing gender-selective 

effects. 
Natural Disasters: May lead to a decrease in SRB due to stress and adverse conditions affecting male embryos. 
Social Policies and Gender Equality: Can lead to a decrease in SRB by reducing gender-based discrimination and bias. 
Medical Interventions: Can lead to an increase in SRB by enabling gender-selective treatments or interventions. 
Cultural and Religious Practices: May lead to both increases or decreases in SRB depending on specific practices and beliefs. 
Migration and Demographic Shifts: Can influence SRB depending on the gender composition of migrating populations. 
Environmental Factors: Can lead to changes in SRB based on the impact of environmental stressors on fetal development. 
Healthcare Accessibility: Can impact SRB by affecting the survival rates of male and female fetuses. 
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distribution of male and female births within a population. In many studies, the agreement 
with the binomial distribution is only modest. Even in cases where the agreement seems 
substantial, it's possible that various effects have overlapped, rendering them indistinguishable. 
By considering Lexis, Poisson, and Markov variations (see, e.g. James (2000), researchers 
gain a comprehensive understanding of the multifaceted factors that influence the sex ratio at 
birth.  
 
Lexis Variation: 
Lexis variation pertains to the differences in SRB observed among different subpopulations 
within a larger population. It highlights how SRB can vary based on factors such as 
geographical location, ethnicity, socioeconomic status, and other demographic characteristics. 
Lexis variation can be influenced by cultural norms, societal practices, and regional 
preferences for sons or daughters. Researchers study Lexis variation to better comprehend the 
demographic dynamics and gender-related implications in different subsets of the population. 

Poisson Variation: 
Poisson variation, also known as family-level variation, refers to the fluctuations in SRB that 
occur within individual families. It explores the variability in SRB among siblings within the 
same family, where the SRB may differ from one birth to another. Poisson variation occurs 
due to random biological factors and chance events during conception and gestation processes. 
Factors like genetic influences, maternal health conditions, and environmental exposures may 
contribute to Poisson variation in SRB. It does not imply any intentional gender selection or 
sex-specific practices within families but reflects inherent variability in sex determination 
during conception. 

Markov Variation: 
Markov variation refers to the dependency or correlation between the sex ratio at birth in 
successive time periods. It explores how the SRB in one time period might influence or be 
influenced by the SRB in the following time period. Markov variation can result from various 
factors, including societal changes, policies, and demographic trends that affect the sex ratio 
at birth over time. Understanding Markov variation helps researchers identify temporal 
patterns and potential long-term shifts in SRB. 
 
 
Assuming the binomial distribution, the variance of the SRB estimator is approximately (see 
Casella; Berger, 2002, p.242): 

3

ˆ 4
ˆ1 (1 )

M

F

B p p
Var Var

B p N p N

   
         

, where N=BM+BF is the number of births.  If p is 

close to 0.5, then 
4M

F

B
Var

B N

 
 

 
.  

 
The smaller the number of births, the greater the fluctuations in SRB, all else being equal. 

Statistically,  
ˆ

ˆ1

p

p
 is an estimator for the odds ratio 

1

p

p
. 

Due to the dominance of numerous (independent) influences on SRB, the white noise model 
is sufficient to explain the temporal development of SRB, provided there are no systematic 
trends. SRB fluctuates randomly around the mean μ: 
 

t tSRB u   

with  0tE u   
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 
2

0
t s

otherwise

t s
E u u

 
 


 

where  , the mean function, reflects the deterministic part, and ut represents the stochastic 
part of the SRB. 
 
Example: Binomial Process: Sex Ratio at Birth in Greenland (N = 967; p = 0.5143; SRB = 
1.059) 4 
Figure 1 (Top) displays the SRB between 1973 and 2019 (source: Statbank Greenland; 
bank.stat.gl/pxweb/en/Greenland). 
 
The Ljung-Box test is used to check for the presence of autocorrelation in the data. A low p-
value indicates that there is evidence of autocorrelation, meaning that the data points are not 
independent, and there might be some underlying patterns or trends affecting the SRB over 
time. 
 
The observed p-values from the Ljung-Box test indicate that the sex ratio at birth (SRB) 
exhibits evidence of following a binomial process. The p-values obtained from the test (p = 
0.3998/0.3628, df = 24) suggest that there is no significant autocorrelation in the SRB data. In 
other words, the data points appear to be relatively independent, supporting the assumption 
that the fluctuations in SRB can be explained by the binomial model. 
The absence of significant autocorrelation implies that the SRB values at different time points 
do not depend on each other and are not influenced by any systematic trends over time. 
Therefore, the binomial process adequately captures the random variations in the sex ratio at 
birth, making it a suitable model for explaining the observed fluctuations in SRB over the 
given time span (1973-2019) in Greenland. 
Overall, the findings from the Ljung-Box test provide empirical support for the suitability of 
the binomial model in explaining the temporal dynamics of SRB and further validate the 
randomness in sex ratio fluctuations at birth. 

                                                 
4 N = 967 represents the average annual number of births between 1973 and 2019. 
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Fig. 1: Sex Ratio at Birth in Greenland from 1973-2019 (Top) [p=0.5143, N=967] 
 and Simulated Sex Ratio at Birth from 1973-2019 (Bottom) [p=0.5143, N=967] 
 p-values=0.3998 (Top) and 0.3628 (Bottom) with df=24. 

 
3. Trends and Peaks after Wars 
 
Before embarking on an exploration of historical trends and unique patterns in sex ratio at 
birth (SRB) that emerge following significant events, it is vital to acknowledge the substantial 
body of research that extensively addresses the influences molding SRB. These 
comprehensive investigations span a wide spectrum of factors, including the intricate 
interplay of biological, environmental, cultural, and socioeconomic determinants. For instance, 
researchers have scrutinized the role of maternal age, health conditions, and lifestyle choices 
in shaping SRB. Furthermore, studies have probed the impact of environmental factors such 
as pollution and variations in climate. Sociocultural dynamics, exemplified by son preference 
and gender bias, have also been recognized as influential determinants. Additionally, 
socioeconomic status and economic development have demonstrated links to SRB disparities. 
Recognizing these multifaceted influences, our focus transitions to analyzing historical trends 
and SRB patterns. In particular, we explore the extent to which pivotal historical events, 
demographic shifts, and modern complexities contribute to the observed trends and peaks in 
SRB. Guided by insights gleaned from renowned researchers, including Düsing (1884), 
Tschuprov (1915), Fisher (1930), Mackenroth (1953), Jöckel and Pflaumer (1981), 
Chahnazarian (1988), James (1987), Gellatly (2009), Grech and Mamo (2014), Bethmann and 
Kvasnicka (2014), Strahlenschutzkommision (2014), Scalone and Rettaroli (2015), Ritchie and 
Roser (2020), we embark on an investigation into how wars, shifts in fertility, and 
contemporary factors contribute to the intricate tapestry of observed SRB trends and peaks. 
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3.1 Historical Trends during the Demographic Transition from High to Low Fertility 

 
Increasing Trends (e.g., Sweden): 
 In countries like Sweden, historical data reflects an increasing trend in SRB during the 

transition from high to low fertility. 
 Socioeconomic improvements have been associated with decreased stillbirth rates, 

which tend to be higher among male neonates. 
 Birth distribution by birth order and parental ages also contribute to the SRB trend, as 

SRB decreases with increasing parity and the age of the father. 
 The socioeconomic and demographic factors collectively contribute to the observed 

increase in SRB. 
  
Decreasing Trends (e.g., France 19th century): 

 During the 19th century in France, a decreasing SRB trend was observed. 
 Attempts at abortion during this period were found to affect relatively more male 

neonates. 
 The prevalence of abortion attempts and their selective impact on male neonates 

explain the observed decreasing SRB trend. 
 

3.2 Contemporary Declining Trends in Industrialized Countries 
 
Nutritional Habits and Environmental Hazards: 

 Contemporary trends in industrialized countries reveal declining SRBs influenced by 
factors such as nutritional habits, including slimming diets. 

 Environmental hazards, like chemical substances in makeup and baby powder, have 
also been linked to declining SRBs. 

 Ecological factors, including climate and air pollution, play a role in shaping SRB 
trends. 

 The interplay of changing nutritional habits, exposure to environmental hazards, and 
ecological conditions contribute to the contemporary declining SRB trends. 

 
3.3 Increase during and after Wars 
 
Impact of Wars on SRB: 

 Wars have been associated with unique SRB patterns, characterized by increases 
during and after wartime periods. 

 The tremendous stress experienced by women during wars, along with high levels of 
estrogen and testosterone, can elevate the probability of male births. 

 Nonprogrammed copulation and elevated coital rates during wartime contribute to 
more conceptions occurring early or late in the menstrual cycle. 

 Birth parity also influences Sex Ratio at Birth (SRB), as many couples tend to have 
their first child during or after wars, given that SRB is highest for the first child. 

 Families with more sons are likely to have a higher number of sons still alive, leading 
to more male births in the next generation, within the framework of Lexis Variation. 

 The combined effects of stress-induced hormonal changes, altered copulation patterns, 
and birth parity influence the observed SRB increases during and after wars. 
 

3.4 Examples 
 
Figures 2 shows examples of SRB trends: 
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 Sweden (1749-2014): An increasing trend with a peak after World War II. 
 The United States (1933-2014): A decreasing trend with a peak during and after World 

War II. 
 France (1806-2014): A decreasing trend during the 19th century, with peaks following 

World Wars I and II, and a continuing decrease since the 1960s. 
 Norway: Exhibits white noise, despite being a long series with 100 observations. 

 
These examples emphasize the intricate interplay between historical events, demographic 
shifts, and societal factors in shaping the sex ratio at birth (SRB). The varied trends observed 
across different countries and time periods underscore the complexity of SRB dynamics, 
highlighting the necessity for nuanced analyses beyond simplistic models. 

 
Fig. 2: Trends of the Sex Ratio at Birth in four Countries 

 
 
4. Empirical Analysis 
 
4.1 Used Models 
 
In our pursuit of deeper insights into the sex ratio at birth (SRB) dynamics, this chapter 
engages in an empirical analysis utilizing specific models to uncover patterns and trends. The 
models employed include: 
 
4.1.1 White Noise Model (No Dominating Influence Factor) 
 
The notion of the SRB being governed by the same probability laws as random phenomena 
was postulated by Gini (1908). The White Noise Model stands as a fundamental approach for 
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situations where no single influencing factor dominates the sex ratio at birth. The formula 
capturing this model elucidates the inherent randomness present within the SRB data: 
 

t tSRB u   

with  0tE u   

 
2

0
t s

otherwise

t s
E u u

 
 


 

where  , the mean function, reflects the deterministic part, and ut represents the stochastic 
part of the SRB. 
 
 
4.1.2 Autoregressive Models ARIMA(p,d,q) (for Trend Factors) 
 
As we embark on the investigation of potential trend factors influencing SRB, Autoregressive 
Models ARIMA(p,d,q) come to the fore. These models offer a mechanism to comprehend the 
impact of historical trends on SRB. The formula encapsulates the complexities of these 
models, which aid in capturing the temporal evolution of sex ratio dynamics. 
 
The here proposed models are known as ARIMA(p,d,q) models in time series analysis (see, 
e.g., Chatfield and Xing, 2019). The acronym ARIMA stands for Auto-Regressive Integrated 
Moving Average, where: 
 

 p is the number of autoregressive terms, 
 d is the number of nonseasonal differences needed for stationarity,  
 q is the number of moving average terms. 

 
The ARIMA(p,d,q) model for forecasting the sex ratio at birth (SRB) can be expressed as: 
 

1 1 2 21 1 2 2 ... ...t t t t q t q

d d d d
t t t p t pcSRB SRB SRB SRB                      , 

 
where: 
 

d
tSRB is the diffenced sex ratio at birth at time t in the time series. 

c is a constant term. 

1 2,..., p   are the autoregressive coefficients for lag 1, lag 2, and so on up to lag p. 

1 2,..., q   are the moving average coefficients for lag 1, lag 2, and so on up to lag q. 

t  represents the white noise error term at time t. 

 
The d parameter represents the number of differences needed to make the SRB time series 
stationary. It's used to transform the original SRB time series  into d

tSRB  a stationary series  
d

tSRB , where Δ is the difference operator. The series may need to be differenced more than 

once in order to achieve stationarity. In this representation, the ARIMA model combines 
autoregressive (AR) terms, moving average (MA) terms, and differencing to model the 
patterns and relationships in the sex ratio at birth data. The predictors on the right hand side 
include both lagged values of SRB and lagged errors. 
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Commonly employed models include: 
 
1. ARIMA(p,0,q) with a constant (using the original observations) 
 

1 1 2 21 1 2 2 ... ...t t t t q t qt t t p t pcSRB SRB SRB SRB                      . 

 
2. AR(2,0,0) Model with a constant or Autoregressive Model of Order 2 (AR(2)) (using the 
original observations) 
 

1 1 2 2t t t tSRB c SRB SRB         . 

 
3. ARIMA(1,1,0) using the first differences of the original observations 
 

1 1t t tSRB c SRB        or 

   1 1 1 2t t t t tSRB SRB c SRB SRB         . 

 
These models use past observations and their differences to forecast future SRB values, and 
the parameter values are estimated based on the historical data. The ARIMA(2,0,0) model 
considers the original SRB values directly, while the ARIMA(1,1,0) model focuses on the 
changes between consecutive SRB values. Modeling the sex ratio at birth with an 
ARIMA(1,1,0) model must assume that c=0 in the long run because the SRB cannot exhibit a 
long-lasting trend; after a while, the SRB will revert to its usual value around 1.05. 
 
 
4.2 Data Basis and Model Selection 
 
4.2.1 Data 
 
Our investigation relies on Annual SRB observations until 2014, sourced from The Human 
Mortality Database (mortality.org). This dataset includes birth and death time-series data 
spanning various periods and countries. Data for Germany are obtained from Statistisches 
Bundesamt, and information is analyzed until 2019.  
 
4.2.2 Criteria for Model Selection 
 
The pivotal task of model selection is approached methodically, considering several criteria: 

 The p-value of the Ljung-Box test (with lag 24) is leveraged to ascertain white noise 
characteristics. 

 Visual analyses of Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF) charts guide the determination of AR(p) model orders. 

 Parameter estimation is executed rigorously. 
 Estimates are evaluated based on p-values and Akaike Information Criterion (AIC). 

 
 
4.2.3 Detailed Results 
 
For a comprehensive perspective, detailed results are presented, both for the entire time span 
and the narrower time span of 1964-2014. These results are encapsulated in Tables 1 and 2, 
offering insights into the model selection process. Supplementary to these tables, appendix 
materials comprise SRB time series graphs and ACF/PACF charts for each country, providing 
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a visual aid in understanding the model choices. Tables A1 and A2 in the appendix list the 
results by country in alphabetical order. 
 
 
Table 1:  Results for the Entire Time Span 

Country Observations 
p-(Ljung-

Box) Model Mean SRB 
Ukraine 68 0.000 AR1/AR3 1.060 
Australia  152 0.184 AR1/WN 1.053 
Austria  144 0.000 AR2 1.057 
Chile 99 0.000 AR2 1.046 
Denmark 180 0.000 AR2 1.054 
France 209 0.000 AR2 1.052 
Germany* 136 0.000 AR2 1.058 
Hungary 65 0.000 AR2 1.061 
Poland 57 0.000 AR2 1.063 
Portugal 127 0.000 AR2 1.065 
Russia 56 0.000 AR2 1.055 
Spain 107 0.000 AR2 1.075 
Taiwan 104 0.000 AR2 1.071 
United Kingdom 92 0.000 AR2 1.054 
USA 82 0.000 AR2 1.051 
Netherlands 163 0.000 AR3 1.056 
Sweden 266 0.000 AR3 1.052 
Belgium 175 0.000 AR4 1.052 
Finland 148 0.000 AR4/AR2 1.052 
Italy 151 0.000 AR4/AR2 1.059 
Japan 136 0.000 AR4/AR2 1.049 
Bulgaria 64 0.176 WN 1.060 
Canada 91 0.790 WN 1.056 
Czech Republic 68 0.367 WN 1.058 
Estonia 55 0.833 WN 1.059 
Greece 33 0.494 WN 1.067 
Iceland 176 0.232 WN 1.053 
Ireland 65 0.254 WN 1.058 
Israel 32 0.616 WN 1.055 
Latvia 55 0.466 WN 1.055 
Lithuania 55 0.851 WN 1.052 
Luxembourg 65 0.722 WN 1.061 
New Zealand 66 0.202 WN 1.054 
Norway 100 0.296 WN 1.059 
Slovenia 32 0.272 WN 1.058 
Belarus  56 0.022 WN* 1.060 
Slovakia 65 0.025 WN* 1.055 
Switzerland 144 0.000 WN* 1.052 
Germany 1964-2018; WN* (White Noise Model with p<0.05) 
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Table 2:  Results for 1964 – 2014 

Country Observ. 
p-(Ljung-

Box) Model Mean SRB
Belgium 51 0.000 AR1 1.054 
Italy 49 0.012 AR1 1.060 
Portugal 49 0.021 AR1 1.066 
Taiwan 51 0.000 AR1 1.077 
Ukraine 50 0.000 AR1 1.060 
 USA 51 0.000 AR2 1.050 
France 51 0.000 AR2 1.051 
Hungary 51 0.000 AR2 1.059 
Japan 51 0.000 AR2 1.058 
Poland 51 0.001 AR2 1.062 
Russia 51 0.000 AR2 1.055 
Spain 51 0.000 AR2 1.065 
United Kingdom 50 0.000 AR2 1.055 
Australia  48 0.084 WN 1.055 
Bulgaria 47 0.127 WN 1.060 
Canada 48 0.414 WN 1.055 
Chile 42 0.335 WN 1.044 
Czech Republic 51 0.956 WN 1.056 
Denmark 51 0.687 WN 1.056 
Estonia 50 0.874 WN 1.059 
Finland 49 0.724 WN 1.047 
Germany 51 0.094 WN 1.056 
Greece 33 0.494 WN 1.067 
Iceland 50 0.111 WN 1.050 
Ireland 51 0.233 WN 1.059 
Israel 32 0.616 WN 1.055 
Lithuania 50 0.834 WN 1.052 
Luxembourg 51 0.592 WN 1.062 
Netherlands 49 0.812 WN 1.051 
New Zealand 50 0.071 WN 1.054 
Norway 51 0.807 WN 1.057 
Slovakia 51 0.824 WN 1.053 
Slovenia 32 0.272 WN 1.058 
Sweden 51 0.180 WN 1.058 
Switzerland 51 0.136 WN 1.056 
Belarus  51 0.002 WN* 1.060 
Latvia 50 0.008 WN* 1.055 
Austria  51 0.570 WN/AR1 1.054 
WN* (White Noise Model with p<0.05) 
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A graphical examination of ARIMA modeling, utilizing the Auto Correlation Function (ACF) 
and Partial Auto Correlation Function (PACF), is illustrated in Figures 3 and 4, as shown in 
this example. Refer to the graphical analysis provided in the appendix for the remaining 
countries. 
 

 
Fig. 3: White Noise Model for Iceland 1838 to 2013 with ACF and PACF and 1950 to 2013   
 (Average SRB: 1.05) 
 
 

 
Fig. 4: AR(2)-Model for Germany 1872 to 2019 with ACF, PACF and Predicted SRB (red); 
mean=1.0582; model: 1 2 ˆ0.0803 0.6858 0.2383 ; 0.00316t t tSRB SRB SRB         
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4.3 Summary of Results 
 
4.3.1 Whole Time Span Analysis 
 
An overarching summary reveals compelling findings: 

- The significance of most estimators. 
- An observation that ARIMA(p,0,d) models yield unsatisfactory results. 
- White Noise (WN) models are frequently observed in countries with smaller numbers of 

SRB observations, especially those with fewer entries. However, countries with 90 or 
more SRB observations, such as Iceland, Switzerland, Norway, and Canada, also exhibit 
characteristics consistent with White Noise, challenging the notion that WN models are 
solely prevalent in countries with fewer SRB.  

- A prominent AR(2) model adequacy is observed across many countries, such as Austria, 
Chile, Denmark, France, Germany, Hungary, Poland, Portugal, Russia, Spain, Taiwan, 
the UK, and the USA. 

- Noteworthy cases of AR(3) models, including the Netherlands and Sweden, further 
underscore the diverse model choices. 

- Countries such as Belgium, Finland, Italy, and Japan stand out with AR(4) models. 
 
4.3.2 Shorter Time Span Analysis 
 
A nuanced view of the results for the shorter time span (1964-2014) emerges: 
 

- The prevalence of White Noise Models for short-term periods in 26 of the 39 countries. 
- Countries like Belgium, Italy, Portugal, Taiwan, and Ukraine exhibit AR(1) models. 
- France, Hungary, Japan, Poland, Russia, Spain, the UK, and the USA manifest the 

suitability of AR(2) models. 
- Notably, there are instances where the preference for a White Noise model defies a small 

p-value in the Ljung-Box test, exemplified by Belarus and Latvia. 
 
4.3.3 Analyzing Sex Ratio at Birth (SRB) Data: Model Selection and Observation 
 Lengths 
 
In this section, we thoroughly investigate the analysis of sex ratio at birth (SRB) data, 
focusing on the selection of appropriate models in accordance with observation lengths. The 
provided frequency table showcases the distribution of countries across different observation 
length categories, along with the corresponding utilization of models for analysis. The table 
structure is as follows: 
Rows categorize observation lengths: "0-49," "50-99," and "100+." 
Columns represent applied models: "WN" (White Noise), "AR1" to "AR4" (Autoregressive 
Order 1 to 4). 
 
Table 3: Frequeny Table by Observation Lenght and Selected Model 
Observation 

lenghts WN AR1 AR2 AR3 AR4 Sum 

0-49 3         3 

50-99 12 1 5     18 

100+ 3 1 8 2 4 18 

Sum 18 2 13 2 4 39 
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The intersections reveal the count of countries falling under specific observation lengths and 
modeled using the respective techniques. This table succinctly illustrates the alignment 
between observation length and model choice in SRB analysis across diverse countries. 
The trends revealed in the table highlight a strategic approach to model selection. Longer 
observation lengths tend to lead to the application of Autoregressive (AR) models, with AR2 
being the most common. Conversely, for shorter observation spans, the prevalent choice is the 
White Noise (WN) model. This deliberate alignment underscores the careful consideration 
given to data availability, resulting in a nuanced comprehension of sex ratio dynamics. 
Autoregressive (AR2) models and the White Noise (WN) model emerge as the predominant 
choices. 
 
The comprehensive analysis of Sex Ratio at Birth (SRB) data reveals diverse model 
preferences across countries and observation lengths. While Autoregressive (AR2) models 
dominate longer spans, White Noise (WN) models are prevalent in shorter periods, 
highlighting a strategic alignment between observation length and model choice for a nuanced 
understanding of SRB dynamics. 
 
 
5. Mathematical Proofs and Model Selection 
 
The AR(2) model with a parameter value of c greater than 0 is expressed as a linear 
nonhomogeneous second-order difference equation, excluding disturbances, as discussed in 
Pflaumer (1992). 
 

1 1 2 2t t tSRB c SRB SRB        with 1 21 0    . 

 
Solving the associated characteristic equation 
 

2
1 2 0        

 
leads us to the general solution of the difference equation, which exhibits two distinct real 
roots if 2

1 24   : 

1 1 2 2
1 21

t t
t

c
SRB C C 

    
 

. 

If  1 1   and 2 1   then  

1 2

lim
1t

t

c
SRB

 


 
. 

The point forecast tends to converge towards the mean of SRBt. By incorporating the initial 
conditions of SRB0 (the penultimate observed value) and SRB1 (the last observed value), we 
can ascertain the specific solution for the AR(2) model of Germany, as depicted in Figures 4 
and 5, through the resolution of additional equations 

 0 1 2
1 21

c
SRB C C

 
  

 
and 1 1 2

1 21

c
SRB C C 

 
    

 
 which yields 

 0.00357248 0.94 0.00062563 0.252 1.0582
tt

tSRB          for 0,1,2,....t   

using the initial values (last observed values) 1.054 and 1.055 ( lim 1.0582tt
SRB


 ). 
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Figure 5 illustrates both the deterministic and stochastic AR(2) models. In the absence of 
random disturbances, the process would gradually converge to its mean of 1.0582. However, 
random shocks prevent the Sex Ratio at Birth from approaching its mean; the SRB exhibits 
random cycles around its mean, as demonstrated in a simulation assuming disturbances with a 
mean of μ=0 and a standard deviation of σ=0.003127. 
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Fig. 5: Deterministic and Stochastic AR(2) Models of the German SRB 

 0.0803 0.6858 0.2383 0.00357248 0.94 0.00062563 0.252 1.05821 2
ttSRB SRB SRBt t t             for 0,1,2,....t   

Starting values: 1.054 and 1.055; 0.003127   

 
 
The equation of the first differences 1 1t tSRB SRB     with 1 1   leads to the homogenous 

second order difference equation  1 1 1 21t t tSRB SRB SRB       with the general solution 

(roots of the characteristic equations are 1 1  and 2 1  ) 

 1 2 1

t

tSRB C C      

with  1 0 1
1

1

lim
1t

t

SRB SRB
SRB C




 
 


. 

If 0 1SRB SRB  then we get 1lim t
t

SRB SRB


 , which is the naïve forecast. 

 
The long-term point forecast of the AR(2) or ARIMA(2,0,0) model represents the mean of the 
stochastic process. In contrast, point forecasts of ARIMA(1,1,0) models tend to converge 
towards the last observation. Notably, AR(2) incorporates all past values, while 
ARIMA(1,1,0) relies solely on the last observation, which can be particularly critical if the 
last observation is an extreme outlier. 
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The selection of the AR(2) model is guided by several key considerations. Emphasizing the 
principle of parsimony, we aim to balance capturing essential SRB data trends while avoiding 
unnecessary complexity. The AR(2) model aptly encapsulates the dynamic nature of SRB 
data and aligns well with its tendency to converge towards a value near 1 over time. We 
acknowledge and address the limitations of alternative models, emphasizing the sensitivity of 
ARIMA(1,1,0) to outliers and recognizing the potential complexity introduced by AR(p) 
models with p > 2, while empirical analysis underscores the infrequent occurrence and 
potential randomness of these models. Additionally, the assessment of ARIMA(p,d,q) models 
reveals the less suitability of their estimators for capturing nuanced SRB fluctuations. The 
unique property of the AR(2 model to tend towards the mean further strengthens its suitability 
for robust forecasting, considering all past values to capture intrinsic SRB dynamics 
effectively. 
 
6. Forecasting Germany's Sex Ratio at Birth (2020-2070) with ARIMA Models 
 
In this chapter, we explore the application of ARIMA models to forecast Germany's sex ratio 
at birth (SRB) for the period 2020 to 2070. Pioneering the use of ARIMA modeling for SRB 
in Germany, Jöckel and Pflaumer (1981) initiated this line of research. Their analysis covered 
SRBs from 1872 to 1978 and identified potential model choices, including ARIMA(1,1,0) or 
ARIMA(1,1,1). 
 
Table 4 presents the estimated results of distinct ARIMA models for SRB (scaled by *1000), 
drawing insights from the work of Jöckel and Pflaumer (1981). Notably, these models 
encompass ARIMA(1,1,0) and ARIMA(1,1,1). The estimators of autoregressive (AR) and 
moving average (MA) terms, along with other pertinent statistics, facilitate the assessment of 
modeling alternatives. 
 

Table 4: Estimated Results of the ARIMA (p, d, q) Models for the Sex Ratio at Birth 
 (the t-statistics of the estimates are in bracket; SRB*1000) 

 
ARIMA 
(1,1,0) ARIMA(1,1,1)

AR(1) - 0.36 - 0.62 

 (-3.93) (-3.01) 

MA(1) - -0.29 

  (-1.18) 

Sigma 3.25 3.23 
Source: Jöckel and Pflaumer (1981) 

 
Our focus shifts to forecasting SRB for the years 2020 to 2070, based on historical data 
spanning 1872 to 2019. The analysis of the SRB time series, as well as the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) depicted in Figure 4, guides the 
model selection process. Notably, the PACF exhibits prominent peaks at lags 1 and 2, hinting 
at the potential suitability of an AR(2) model. The choice of forecasting model plays a pivotal 
role in accurately capturing the sex ratio at birth (SRB) dynamics. Our selection process leads 
us to prioritize the AR(2) model for several key reasons: The AR(2) model strikes an optimal 
balance between complexity and predictive accuracy. It effectively captures SRB trends by 
considering the influence of the two most recent observations while avoiding unnecessary 
intricacies. Our analysis of historical SRB data substantiates the AR(2) model's efficacy. It 
demonstrates consistent and robust performance, aligning well with observed trends. 
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The AR(2) model's behavior resonates with the underlying theoretical understanding of SRB 
dynamics. It leverages both recent and relevant past observations to provide accurate forecasts. 
The AR(2) model outperforms alternative models in terms of statistical metrics such as the 
Akaike Information Criterion (AIC). Its AIC values consistently indicate better performance 
in capturing SRB variations (see table 5). In essence, the AR(2) model's parsimonious 
complexity, empirical validation, theoretical alignment, and statistical superiority collectively 
position it as the optimal choice for forecasting SRB dynamics. 
 
Table 5: Estimators of Different Models 

ARIMA d mean ar1 ar2 ma1 sigma AIC 
(2,0,0) 0 1.0582 0.6858 0.2383  0.003127 -1277.41 
(1,1,0) 1  -0.275   0.003191 -1269.66 
(0,1,1) 1    -0.2851 0.003186 -1270.02 
(1,1,1) 1  -0.0839  -0.2068 0.003197 -1268.1 

        
ARIMA d  s.e.ar1 s.e.ar2 s.e.ma1 s.e.Int.  
(2,0,0) 0  0.0793 0.0796  0.0031  
(1,1,0) 1  0.079     
(0,1,1) 1    0.0778   
(1,1,1) 1  0.3082  0.3047   

 
 
Figure 6 depicts the AR(2) forecasts of SRB in Germany for the years 2020 to 2070, 
supplemented by 80% and 95% prediction intervals for the mean. The point forecast 
underscores a gradual SRB increase from 1.054 (2018) and 1.055 (2019) to 1.058 by 2070. 
However, the 95% prediction interval underscores a broader range, extending between 1.045 
and 1.072. The influence of peaks after World War I and II on the trends is evident in the 
graph.  

 
Fig. 6: Forecasts of German SRB between 2020 and 2070 with 80% and 90% Prediction 
Intervals for the Mean using an AR(2) Model 
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Table 6 presents key parameters related to the sex ratio at birth (SRB) across various countries, 
along with the outcomes of an ARIMA(2,0,0) model applied to this data. The parameters offer 
valuable insights into the behavior of the SRB time series and shed light on how the 
ARIMA(2,0,0) model captures its patterns. 
 
Table 6: Cyclical Behavior of Sex Ratio at Birth (SRB) Across Countries:  
 ARIMA(2,0,0) or AR(2) Model Insights (see Table 1) 

Country Mean c ar1 arl lambda1 lambda2 
Austria 1.057 0.528 0.294 0.207 0.625 -0.331 
Chile 1.046 0.257 0.349 0.405 0.835 -0.485 

Denmark 1.054 0.623 0.168 0.241 0.582 -0.414 
France 1.052 0.129 0.569 0.308 0.908 -0.339 

Germany 1.058 0.08 0.668 0.237 0.94 -0.252 
Hungary 1.061 0.265 0.318 0.432 0.835 -0.517 
Poland 1.063 0.286 0.367 0.364 0.814 -0.447 

Portugal 1.065 0.49 0.385 0.155 0.631 -0.246 
Russia 1.055 0.72 0.372 0.56 0.957 -0.585 
Spain 1.075 0.042 0.622 0.339 0.971 -0.349 

Taiwan 1.071 0.102 0.722 0.183 0.921 -0.199 
UK 1.054 0.121 0.473 0.412 0.921 -0.447 

USA 1.051 0.132 0.431 0.443 0.915 -0.484 
Mean 1.059 0.313 0.441 0.330 0.835 -0.392 

 
 Country: This column specifies the country under consideration. 
 Mean: The mean SRB for the country represents its long-term average sex ratio at birth. 
 c: This coefficient represents the constant term of the ARIMA(2,0,0) model. 
 ar1: Representing the autoregressive (AR) term of lag 1, this coefficient illustrates how the previous 

value of SRB influences the present. 
 ar2: This coefficient corresponds to the autoregressive term of lag 2, conveying the influence of the 

SRB two time steps ago. 
 lambda1: Emerging as one of the solutions from the ARIMA(2,0,0) model, this value contributes to the 

reduction of deviations from the mean in the sex ratio. Its positive magnitude serves as an indicator of 
stability within the sex ratio data. 

 lambda2: Another solution of the ARIMA(2,0,0) model, lambda2 is responsible for longer-term 
behavior. A negative value with an absolute magnitude less than 1 suggests the presence of damped 
cycles or oscillations in the SRB data. 

 

The significance of the absolute values of 1  and 2  being less than 1 is pivotal. This 

indicates that the ARIMA(2,0,0) model renders the SRB time series stationary across all 
selected countries. Stationarity implies that the statistical properties of the series remain 
consistent over time, without exhibiting significant trends. Furthermore, the negative value of 

2 implies the existence of damped oscillations or cycles in the SRB data. These cycles 

demonstrate that the sex ratio at birth, while fluctuating cyclically around its mean, gradually 
dampens in amplitude. The positive values of 1  play a crucial role in diminishing deviations 

from the mean in the sex ratio at birth (SRB) data. This effect is essential for reducing the 
extent of deviations over time. 
 
Acknowledging the inherent uncertainties linked to long-term projections, we conducted a 
simulation study using the AR(2) model and estimated parameters. Employing 100,000 
simulations and assuming a normally distributed error term (ut) with a mean of 0 and standard 
deviation of 0.03127 (see table 5), we generated a distribution of potential SRB trajectories. 
 



 20

Figure 7 presents the outcome of this simulation endeavor, showcasing 100,000 simulated 
SRB trajectories in Germany from 2020 to 2070. This visual representation of various 
trajectories underscores the inherent variability and the need to account for multiple potential 
outcomes in long-term forecasting. 

 
Fig. 7: Results of 100,000 Simulated Trajectories of the SRB in Germany from 2020 to 2070 
Remarks: Simulation with R; seed (3004) Starting values: 1.055, 1.054; model:  

1 2
0.0803 0.6858 0.2383

t t t
SRB SRB SRB

 
     ,  20, 0.003127

t
u N  

 
Figure 7 provides a visual representation of the simulation study's outcomes, shedding light 
on the potential range of trajectories for Germany's sex ratio at birth (SRB) from 2020 to 2070. 
This comprehensive depiction is accompanied by a 99% confidence interval, encapsulating 
the diversity of possible SRB trajectories and their associated uncertainties. 
Displayed within Figure 7 are four distinct series, each representing a unique simulated SRB 
trajectory. These trajectories collectively capture the spectrum of possible outcomes, 
underscoring the inherent variability in long-term forecasting. The corresponding 99% 
confidence intervals provide a robust framework to understand the potential range of SRB 
values by 2070. 
 
The median trajectory, represented by the dotted black line, offers valuable insights into the 
central tendency of the simulation outcomes. As evidenced in Figure 7, the median trajectory 
exhibits a slight increase over the forecast period, with a median SRB of 1.058 by 2070. This 
underscores a gradual upward trend in the projected SRB values. 
The depiction of diverse trajectories serves as a reminder of the complexity inherent in long-
term forecasting. The black series, represented by "Sim No. 1" and "Sim No. 100,000," 
highlights the range of possible individual paths that SRB could follow. The green series, 
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portraying SRB with the lowest observed values (below 1.03), stands in contrast to the red 
series, which showcases SRB with the highest observed values (near 1.09). 

 
 
Fig. 8: Simulated Means, Medians, Standard Deviations, Minima, Maxima, Ranges 
 
Figure 8 illustrates various statistical measures derived from previous simulation: means, 
medians, standard deviations, minima, maxima, and ranges. The distributions of means and 
medians appear to be relatively symmetrical, while the distributions of the other parameters 
are skewed to the left with varying degrees of intensity. The mean of all means is 1.569 with a 
standard deviation of 0.0042, and the median similarly stands at 1.0569 with a standard 
deviation of 0.0043. 
 
In summary, this chapter showcases the application of ARIMA models to forecast Germany's 
SRB from 2020 to 2070. Jöckel and Pflaumer's paper laid the foundation for this research 
direction. The AR(2) model emerges as a robust choice, and our simulations offer valuable 
insights into the potential range of outcomes. This analysis enhances our understanding of 
SRB dynamics and the intricacies of long-term forecasting within the realm of demographic 
research. 
 
 
7. Conclusion 
 
The intricacies of sex ratio at birth (SRB) are a complex interplay of biological and socio-
economic factors, their combined influence contributing to the dynamic nature of SRB 
dynamics. As observed by Gini (1908), when no singular or dominant factor asserts control, 
the appropriate time-series model often reflects the "White Noise" pattern, particularly 
evident in short-term series. This fundamental understanding has paved the way for more 
nuanced modeling approaches. 
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In instances where trend factors or unexpected spikes arise, an autoregressive model devoid of 
differencing may be suitable to capture the SRB behavior. Notably, the AR(2)-Model 
frequently emerges as a robust choice for describing SRB variations, encompassing the 
multifaceted trends and oscillations present in the data. 
Despite deviations from its mean, SRB consistently exhibits a compelling tendency to revert 
to its intrinsic equilibrium, a phenomenon observed across most countries where the natural 
sex ratio hovers around 1.05. However, when contemplating forecasts over extended horizons, 
the intricacies of SRB dynamics render predictions unreliable. While we can assert that the 
Sex Ratio at Birth will likely hover within the approximate interval of 1.03 to 1.08 across 
most countries, the inherent complexities make precise forecasting a challenging endeavor. 
Our study emphasizes the importance of comprehensive modeling approaches that consider 
the complex interplay of factors shaping SRB dynamics. As we explore the intricacies of SRB 
fluctuations, we are reminded of the complex interplay of factors contributing to the shaping 
of this essential demographic indicator. 
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Appendix: 
 
Plots of Sex Ratio at Birth (SRB), Autocorrelation Functions (ACFs), and Partial 
Autocorrelation Functions (PACFs) for the Studied Countries 
 
The analysis covers a total of 38 countries5, including Australia, Austria, Belarus, Belgium, 
Bulgaria, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, 
Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, 
Netherlands, New Zealand, Norway, Poland, Portugal, Russia, Slovakia, Slovenia, Spain, 
Sweden, Switzerland, Taiwan, United Kingdom, Ukraine, and the USA. 
 
 

                                                 
5 Greenland see Fig. 1 
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Table A1: Detailed Results for the Entire Time Span 

 
 
 
 
 



 32

Table A2: Detailed Results for 1964 – 2014 

 
 
 Germany 1964-2018; WN* (White Noise with p<0.05) 
 
 
 
 
 


