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Abstract
In this work, a hybrid, that is, discrete in time and continuous in space, sensi-
tivity analysis for dynamic structures using isogeometric analysis is presented.
The main focus is placed on using a direct differentiation technique to derive
sensitivity matrices for displacement, velocity and acceleration. To gain further
understanding of the sensitivity information, a singular value decomposition is
used to decompose these sensitivity matrices. The findings are exemplified on an
academic example.

1 INTRODUCTION

In engineering disciplines, such as structural and multidisciplinary optimization (SMO) and design space exploration
(DSE), the availability of gradient information for specific design parameters is an essential ingredient of enhanced
methodologies. Design sensitivity analysis (DSA) enables the derivation and computation of these gradients throughout
various approaches. Among others, the variational design sensitivity analysis (VDSA) attempts to derive the correspond-
ing sensitivities on the continuous level prior to any time or space discretization. The classical isoparametric finite element
method (FEM) and the isogeometric analysis (IGA) [1] can both be applied to discretize the continuous sensitivities. This
work aims to present a comprehensive framework for computing geometric sensitivity information in structural dynamic
systems using IGA, see ref. [2] for related research. In this contribution, a discrete-continuous direct sensitivity analysis is
applied to dynamic systems, see ref. [3] for an early formulation. In detail, the discrete approximation in time based on the
implicit Newmark method [4] is combined with the continuous formulation of sensitivity analysis in space, as outlined
for example, in ref. [5] for nonlinear elasticity and in ref. [6] for elasto-plasticity applied to the optimization of speci-
men shapes. The novelty of the presented research is the singular value decomposition (SVD) of the resulting dynamic
sensitivity matrices. An academic example illustrates the approach.

2 STRUCTURAL ANALYSIS

In structural dynamics, the general nonlinear motion equation, that is, a vanishing residual𝐑 = 𝐑𝖾𝗑𝗍 − 𝐑𝗂𝗇𝗍 = 𝟎, has to be
solved for the set of dynamic state variables {𝒖, �̇�, �̈�}. The external part of the residual equation represents the assembly of
externally applied forces, namely,𝐑𝖾𝗑𝗍 = 𝐅𝑣 + 𝐅𝑠 + 𝐅𝑙 + 𝐅𝑛, with the volume, surface, line andnodal force vectors, respec-
tively. The internal part𝐑𝗂𝗇𝗍 incorporates the mass, damping and stiffness contributions based on the chosen geometrical
and material nonlinearities. The reader is referred to the literature for details on these fundamentals.
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In this work, the implicit Newmark method [4] is utilized for time discretization, which approximates the actual value
of displacements, velocity and acceleration, respectively. The approximations within an implicit time interval [𝑡𝑛, 𝑡𝑛+1

]

read

𝒖
𝑛+1
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The Newmark parameters 𝛽 and 𝛾 control the stability and accuracy of the integration scheme.
The space discretization using IGA yields a nonlinear equation for the actual displacements 𝒖

𝑛+1
, which can be solved

utilizingNewton’smethod. In each iteration, a correctionΔ𝒖 = −𝐊−1
𝖾𝖿𝖿 𝐑 is added to the current iterate. The corresponding

values of velocity and acceleration can be updated according to the Newmark update scheme, compare Equations (2–3),
which leads to the updated solution of dynamic state variables at discrete time step 𝑡

𝑛+1
. The update formulae with Δ�̇� =

𝛼4Δ𝒖 and Δ�̈� = 𝛼1Δ𝒖 within Newton’s method for displacement, velocity and acceleration read

𝒖𝗄+𝟣
𝑛+1

= 𝒖𝗄
𝑛+1

+ Δ𝒖, �̇�𝗄+𝟣
𝑛+1

= �̇�𝗄
𝑛+1

+ Δ�̇�, �̈�𝗄+𝟣
𝑛+1

= �̈�𝗄
𝑛+1

+ Δ�̈�. (5)

This process is repeated until the desired accuracy is achieved. The effective stiffness matrix in each time step and solu-
tion iteration is 𝐊𝖾𝖿𝖿 = 𝛼1 𝐌 + 𝛼4 𝐂 + 𝐊 , with the Rayleigh damping matrix of the form 𝐂 = 𝑐

1
𝐌 + 𝑐

2
𝐊 , where the

coefficients 𝑐1 and 𝑐2 correspond to mass and stiffness proportional damping.

3 DIRECT SENSITIVITY ANALYSIS

After determination of a dynamic solution state, DSA is performed to obtain gradient information of the current state with
respect to chosen geometric design variables 𝒔, see refs. [3, 5]. Importantly, a total design variation must not violate force
equilibrium of the dynamic system as defined in the residual equation, that is,

𝛿𝐑 = 𝛿𝐑𝖾𝗑𝗍 − 𝛿𝐑𝗂𝗇𝗍 = 𝟎. (6)

In a first step, the functional dependencies 𝐑 = 𝐑(�̈�
𝑛+1

, �̇�
𝑛+1
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, 𝒔) are considered and the variation of the inter-
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+ 𝐏𝗂𝗇𝗍𝛿𝒔, where 𝐌, 𝐂 and 𝐊 denote the already mentioned mass,

damping and stiffness matrices, and 𝐏𝗂𝗇𝗍 =
𝜕𝐑𝗂𝗇𝗍

𝜕𝒔
is the so-called internal pseudo load matrix.

The Newmarkmethod introduces the functional dependencies for the acceleration �̈�
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can be determined as follows
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For the chosen Newmark scheme, the partial derivatives of Equations (2) and (3) read
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𝜕�̇�𝑛
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𝜕�̈�
𝑛+1

𝜕�̈�𝑛
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𝑛+1

𝜕𝒖
𝑛+1
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𝜕�̇�

𝑛+1

𝜕𝒖𝑛
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= − 𝛼5 𝐈,

𝜕�̇�
𝑛+1

𝜕�̈�𝑛
= − 𝛼6 𝐈,

(9)

where 𝐈 ∈ ℝ𝑛𝖽𝗈𝖿×𝑛𝖽𝗈𝖿 denotes the identity matrix with dimension 𝑛𝖽𝗈𝖿 . Assuming the external part as independent of the
dynamic state, the variation of the external part takes the form 𝛿𝐑𝖾𝗑𝗍 = 𝛿𝐅𝑣 + 𝛿𝐅𝑠 + 𝛿𝐅𝑙 + 𝛿𝐅𝑛 = 𝐏𝖾𝗑𝗍𝛿𝒔, where 𝐏𝖾𝗑𝗍 =
𝜕𝐑𝖾𝗑𝗍

𝜕𝒔
. Rearranging Equation (6) leads to the definition of the total sensitivity matrix 𝐒𝑛+1, connecting the displacements

with geometric design variations in the actual time step

𝛿𝒖
𝑛+1

= −𝐊−1
𝖾𝖿𝖿 [𝐏 + 𝐃] 𝛿𝒔 = 𝐒𝑛+1 𝛿𝒔, (10)

where 𝐏 = 𝐏𝗂𝗇𝗍 − 𝐏𝖾𝗑𝗍 has been used and 𝐃 denotes the dynamic pseudo load matrix of the form

𝐃 =

[
𝐌

𝜕�̈�
𝑛+1

𝜕�̈�𝑛
+ 𝐂

𝜕�̇�
𝑛+1

𝜕�̈�𝑛

]
𝐀𝑛 +

[
𝐌

𝜕�̈�
𝑛+1

𝜕�̇�𝑛
+ 𝐂

𝜕�̇�
𝑛+1

𝜕�̇�𝑛

]
𝐕𝑛 +

[
𝐌

𝜕�̈�
𝑛+1

𝜕𝒖𝑛
+ 𝐂

𝜕�̇�
𝑛+1

𝜕𝒖𝑛

]
𝐒𝑛, (11)

where 𝐕𝑛 and 𝐀𝑛 are history velocity and acceleration sensitivity matrices, respectively. Within the chosen time dis-
cretization scheme, the velocity and acceleration history sensitivity matrices 𝐕𝑛+1 and 𝐀𝑛+1, respectively, are updated at
the end of each time step as follows

𝛿�̇�
𝑛+1

=

[
𝜕�̇�

𝑛+1

𝜕�̈�𝑛
𝐀𝑛 +

𝜕�̇�
𝑛+1

𝜕�̇�𝑛
𝐕𝑛 +

𝜕�̇�
𝑛+1

𝜕𝒖𝑛
𝐒𝑛

]
𝛿𝒔 = 𝐕𝑛+1 𝛿𝒔, (12)

𝛿�̈�
𝑛+1

=

[
𝜕�̈�

𝑛+1

𝜕�̈�𝑛
𝐀𝑛 +

𝜕�̈�
𝑛+1

𝜕�̇�𝑛
𝐕𝑛 +

𝜕�̈�
𝑛+1

𝜕𝒖𝑛
𝐒𝑛

]
𝛿𝒔 = 𝐀𝑛+1 𝛿𝒔. (13)

Depending on the specific update formula of the chosen time discretization scheme, the partial derivatives of the actual
values of dynamic state variables at time 𝑡

𝑛+1
w.r.t. their counterparts from the prior time step 𝑡𝑛 can be computed straight

forward. Based on the results presented in Section 3, geometric design sensitivity information of any physical quantity of
interest Φ(𝒔) can be computed by directly inserting the total variations of the dynamic state in form of the sensitivity
matrices 𝐒𝑛+1, 𝐕𝑛+1 and 𝐀𝑛+1, which leads to the total variation expressed only in terms of design variations

𝛿Φ = 𝛿�̈�
𝑛+1

Φ + 𝛿�̇�
𝑛+1

Φ + 𝛿𝒖
𝑛+1

Φ + 𝛿𝒔Φ =

[
𝜕Φ

𝜕�̈�
𝑛+1

𝐀𝑛+1 +
𝜕Φ

𝜕�̇�
𝑛+1

𝐕𝑛+1 +
𝜕Φ

𝜕𝒖
𝑛+1

𝐒𝑛+1

]
𝛿𝒔. (14)

4 SVD OF RESPONSE SENSITIVITIES

SVD is a factorizationmethod commonly used in linear algebra. Given a real matrix 𝒀 ∈ ℝ𝗆×𝗇, it can be factorized as 𝒀 =

𝑳 𝚺 𝒁T. Here, 𝑳 ∈ ℝ𝗆×𝗆 and 𝒁 ∈ ℝ𝗇×𝗇 are matrices containing orthonormal left and right singular vectors, respectively.
Thematrix 𝚺 ∈ ℝ𝗆×𝗇 is a diagonalmatrix with non-negative singular values arranged in decreasing order on the diagonal.
Model reduction based on SVD of sensitivity information is applied for shell elements in ref. [7]. Applying SVD on the
sensitivity matrices 𝐒𝑛+1 ∈ ℝ𝗇𝖽𝗈𝖿×𝗇𝖽𝗏, 𝐕𝑛+1 ∈ ℝ𝗇𝖽𝗈𝖿×𝗇𝖽𝗏, and 𝐀𝑛+1 ∈ ℝ𝗇𝖽𝗈𝖿×𝗇𝖽𝗏 at time 𝑡𝑛+1 yields

𝐒𝑛+1 =

[
d𝒖

𝑛+1

d𝒔

]
SVD
= Δ𝒖

𝑛+1
𝚺𝑢
𝑛+1

[
Δ𝒔𝑢

𝑛+1

]T
, (15)

𝐕𝑛+1 =

[
d�̇�

𝑛+1

d𝒔

]
SVD
= Δ�̇�

𝑛+1
𝚺𝑣
𝑛+1

[
Δ𝒔𝑣

𝑛+1

]T
, (16)

𝐀𝑛+1 =

[
d�̈�

𝑛+1

d𝒔

]
SVD
= Δ�̈�

𝑛+1
𝚺𝑎
𝑛+1

[
Δ𝒔𝑎

𝑛+1

]T
. (17)
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F IGURE 1 DSE algorithm using VDSA method. DSE, Design space exploration; VDSA, variational design sensitivity analysis.

SVD provides an enhanced interpretation of these sensitivity matrices. In this context, the right singular vectors (inputs)
can be understood as design modes or shape modes, while the left singular vectors correspond to the associated dis-
placement, velocity, and acceleration responses (outputs). The algorithm that utilizes SVD of sensitivities using direct
differentiation is illustrated in Figure 1.
In order to perform structural response sensitivity analysis in the current time step, the values of displacements, veloc-

ities and accelerations from the previous time step are required. They have to be initialized for the first time step. Based
on these values, the nonlinear structural dynamic problem is solved utilizing Newton’s method and the Newmark time
integration scheme as presented in Section 2. The time step length Δ𝑡 can be calculated utilizing any time adaptivity algo-
rithm, compare for example, [8]. All time dependent variables need to be updated at the end of each time step according
to the chosen time integration scheme.
In a converged state, sensitivity analysis is performed to compute the gradient information of quantities of interest

with respect to chosen design parameters. This process involves loading sensitivity matrices from the previous time step,
while the effective stiffness matrix is already calculated from the structural analysis at the current time. After calculating
the pseudo load matrix and dynamic pseudo load matrix, the sensitivity matrices at the current time step are updated.
Using these updated sensitivity matrices, it is possible to calculate the gradient of quantities of interest. After determining
the sensitivities, DSE of sensitivity information can be performed using SVD at time 𝑡𝑛+1 to identify the most significant
design modes.
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F IGURE 2 Single patch isogeometric mapping.

5 NUMERICAL EXAMPLE

A numerical example is provided, utilizing the approach presented above, to demonstrate the application of SVD for
dynamic structures by using the obtained sensitivities. The IGA method is employed for structural analysis, integrating
computer-aided design (CAD) and numerical analysis. Its objective is to bridge the gap between CAD geometry repre-
sentation and numerical simulation by employing the same basis functions for both geometry description and structural
analysis. In the case of shape sensitivity analysis using IGA, the coordinates of control points can be defined as design
variables. The higher-order continuity of Non-Uniform Rational B-Splines (NURBS) basis functions offers advantages in
sensitivity analysis, avoiding sharp edges. The concept of IGA is briefly introduced, followed by the presentation of the
numerical example and subsequent discussion of the results.

5.1 NURBS-based isogeometric analysis

To represent a structural multi-part geometry using NURBS, it is usually divided into smaller regions called patches.
Each patch can be described using a NURBS volume, which is defined by coordinates of a parameter space 𝑿

𝜃
∈  . The

NURBS volume in physical space with coordinates 𝑿𝑔 ∈  is represented mathematically by a polynomial of predefined
order 𝑝 in each direction of the parameter space. Continuity conditions are defined for each spatial direction between
adjacent elements of the parameter space 𝑿

𝜃
∈  . Figure 2 illustrates a single patch NURBS-based isogeometric mapping.

To represent the geometry 𝑿𝑔, a set of elements with different continuities can be defined using parameter coordinates
𝑿
𝜃
. General rational basis functions are used to map discrete points from the parameter space 𝑿𝑡 to the corresponding

points in physical space. This results in the following geometry description

𝑿𝑔 = 𝐓𝑔𝑐(𝑿𝑡) 𝑿𝑐. (18)
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F IGURE 3 Parametric space.

Here, 𝑿𝑐 are the coordinates of the control geometry in physical space and 𝐓𝑔𝑐 ∈ ℝ𝑛𝑝×𝑛𝑐 contains the general rational
basis functions defined as

𝑛𝑝∑
𝐼=1

𝑛𝑐∑
𝐽=1

{𝑇𝑔𝑐}
𝐼𝐽

=
{𝐵}

𝐽
{𝑊𝑐}

𝐽

𝐁 𝑾𝑐
. (19)

In the equation above, 𝑾𝑐 ∈ ℝ1×𝑛𝑐 contains control point weights and 𝐁 ∈ ℝ1×𝑛𝑐 represents the multivariate basis
functions. In the case of three-dimensional space, the multivariate basis functions can be obtained by taking the tensor
product of the univariate basis functions 𝐁(𝑿𝑡) = 𝐁1 ⊗ 𝐁2 ⊗ 𝐁3, where each univariate basis function 𝐁1, 𝐁2, and 𝐁3

are B-Spline basis functions. For numerical integration using the Gaussian quadrature, an element with coordinates 𝑿𝑟 ∈

̂𝑜 is defined in parent space and integration point coordinates 𝑿𝜉
∈ 0 and weights are calculated utilizing Legendre

polynomials. After defining a single patch in the parameter space, knot vectors for each dimension can be calculated
using the defined continuity conditions and coordinates of the parameter space. From the polynomial order and continuity
conditions the required number of control points in each spatial direction can be calculated. Once the parameter space
𝑿
𝜃
, weights and coordinates of the control points are defined, general rational basis functions can be used to map each

discrete point in the parameter space (defined as 𝑿𝑡) to a corresponding point in physical space. This mapping creates a
geometry that accurately represents theNURBS volume in physical space. Note that within the IGA framework, the values
of the dynamic state variables are computed at the control point coordinates of the NURBS geometry, that is, 𝒖 ∶= 𝒖𝑐,
and can be projected to the actual physical geometry 𝒖𝑔 within a post-processing step.

5.2 Problem description

A comprehensive 3D example, as introduced in ref. [1], is presented here. The patch of the geometry in the parametric
space of theNURBSmodel is illustrated in Figure 3, demonstrating 12 elementswith predefined continuity conditions. The
geometry employs a polynomial order of two in each direction with four, three, and nine control points in the respective
spatial directions, The control geometry and geometry in physical space is depicted in Figure 4. The problem incorporates
theNeo-Hookemodel, representing a constitutive nonlinear elasticitymaterial. For the time integration scheme, theNew-
mark parameters are chosen as 𝛽 = 0.25 and 𝛾 = 0.5, while the time step size is set to Δ𝑡 = 0.01. The problem involves the
application of equal and opposite surface loads on the top surfaces. The displacement of the top surfaces is fixed in both
the 𝑥-direction and 𝑧-direction. The applied surface load linearly increases over a duration of 0.1 s. Following this period,
the surface load is fully released, and the response decay is simulated for a total duration of 3 s. In the sensitivity analysis,
all control points are considered as design variables, leading to a total of 𝗇𝖽𝗏 = (4 ⋅ 3 ⋅ 9) ⋅ 3 = 324 design variables to be
accounted for.

5.3 Results

By utilizing the algorithm outlined in the preceding sections, as depicted in Figure 1, the computation of response sen-
sitivities is performed at each time step. These sensitivity values undergo SVD analysis. To illustrate this, time step 39 is
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F IGURE 4 Geometry and boundary conditions.

F IGURE 5 Singular values of 𝐒𝑛+1, 𝐕𝑛+1 and 𝐀𝑛+1 at time step 39.

F IGURE 6 Design modes 1 for displacement, velocity and acceleration at time step 39.

considered. The distribution of singular values associated with the number of principal components is shown in Figure 5.
By analyzing the singular value distribution, valuable insights can be gained regarding the dominant factors driving the
response and the impact of various design modes on the response fields. It becomes evident that the first few design
modes have a remarkable influence on the response fields. A better understanding of the dominant structural features
and their influence on the system’s response can be obtained by visualizing these design modes. As an example, Figure 6
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F IGURE 7 Design modes 250 for displacement, velocity and acceleration at time step 39.

depicts the first design modes. The remaining design modes exhibit distortion in the design modes that are considered
insignificant. For instance, Figure 7 shows design modes 250 as examples of such modes. On the one hand, the significant
influence of the most prominent designmodes on the response modes is a crucial observation in our analysis. These dom-
inant designmodes capture the primary structural characteristics. On the other hand, as we explore the higher-numbered
design modes, particularly the last ones, their impact becomes increasingly negligible.

6 CONCLUSIONS AND OUTLOOK

In conclusion, this work has explored the design space through the utilization of SVD. The analysis of singular values has
provided valuable insights into the shape modes identified in the study. These singular values have proven to be useful in
quantifying the significance and importance of each mode.
Consequently, this methodology can be effectively employed in future research for model reduction in shape optimiza-

tion procedures. By selecting a subset of design modes, it becomes possible to represent changes in the structure’s design
as a linear combination of thesemodes. The scaling factors associated with thesemodes can be utilized as design variables
in an adapted optimization procedure. Through this approach, the computational complexity of the optimization process
can be significantly reduced.
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