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Abstract
This work deals with the computation of design sensitivities of elastic solid-shell
structures extended to anisotropic layered composite structures. Design sensitiv-
ities concerning fiber angles and layer thicknesses are derived and quantitatively
determined in the context of the finite element method. The anisotropic analysis
model is founded on a sophisticated solid-shell formulation based on reduced
integration and is extended to discretize the composite with only one element
over the element thickness by means of multiple integration points. This can be
understood as a special case of equivalent-single-layer theories. Examination of
system response sensitivity matrices using methods from principal component
analysis, such as singular value decomposition, is used to identify crucial design
changes corresponding to major changes in the structural behavior of the com-
posite. This procedure is termed as sensitivity based design exploration. Results
are discussed by reference to simple academic examples.

1 INTRODUCTION

Optimization of fiber-reinforced composite structures with nonlinear load-bearing behavior is a complex task that is
becoming increasingly relevant in practice. Therefore, it is desirable to automatically determine essential influences on
the structural behavior of fiber composite shells and stability-relevant objective functions and constraints in the context
of structural optimization. These structures find widespread use in aerospace, automotive, and civil engineering indus-
tries, where optimizing their performance and reliability is of great importance. Sensitivity analysis plays a crucial role
in understanding the influence of design parameters on the structural response, allowing for informed decision-making
during the design process. Additionally, it enables identifying the most influential design parameters and quantify their
impact on the structural performance, providing valuable insights for optimization and design improvement. In partic-
ular, this study focuses on employing singular value decomposition (SVD) as a powerful tool for extracting meaningful
information from response sensitivity information. SVD is a mathematical technique widely used in various scientific
and engineering disciplines for dimensionality reduction, feature extraction, and system identification, cf. for example
[1]. In the context of sensitivity analysis, SVD provides a compact representation of the response sensitivity matrix by
decomposing it into orthogonal modes with associated singular values. These modes capture the dominant sets of sen-
sitivity variation, allowing for efficient exploration and interpretation of the sensitivity information in order to automate
the selection of the most important design parameters. By applying SVD to the response sensitivity information of fiber
reinforced composite shells, critical design parameters can be identified that have the most significant influence on the
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structural response.Moreover, the extractedmodes and associated singular values can be utilized to rank the importance of
design variables and guide the optimization process towards improved designs. The utilization of SVD in sensitivity anal-
ysis of thin-walled structures has shown promising results - especially in the context of shape optimization - in enhancing
the understanding of complex structural behavior and aiding in the designing process, cf. for example [2].
In this context, utilization of sophisticated solid-shell finite elements has proven itself, cf. for example [3], and is suitable

for modeling anisotropic composite behavior, as has been shown for example in [4]. The proposed modeling has the
advantage that only one element has to be used in thickness direction as different layers can be easily represented by
means of multiple integration points in thickness direction.

2 STRUCTURAL ANALYSIS

Following, most important aspects of the structural analysis model used in this work are briefly sketched. First, a sophis-
ticated solid-shell finite element proposed by [3] is reflected, followed by the extension to model anisotropic material
behavior considering layered composites by means of multiple integration points along the element thickness.

2.1 Solid-shell finite element

The solid-shell element used for structural analysis in this work has been proposed in [3]. Following, most important
aspects are briefly summarized. Based on a Hu-Washizu three-field functional, the weak form of equilibrium is given by

𝑅(uuu,XXX; 𝛿uuu) = 𝛿𝑢Π(uuu,XXX)(𝛿uuu)

= ∫
𝐾

(
𝛿𝑢EEE(ûuu,XXX) ∶ ŜSS − 𝛿ûuu ⋅ bbb

)
d𝑉 − ∫

𝜕𝐾

𝛿ûuu ⋅ ttt dAAA

+ ∫
𝐾

𝛿ŜSS ∶ (EEE(ûuu,XXX) − ĒEE) d𝑉

+ ∫
𝐾

𝛿ĒEE ∶

(
𝜕𝑊(ûuu,XXX)

𝜕EEE(ûuu,XXX)
− ŜSS

)
d𝑉 = 0,

(1)

where uuu = (ûuu, ŜSS, ĒEE) is the vector of state variables containing the primary unknown displacements, the assumed stresses
and the assumed strains, respectively. After discretization the following system of equations has to be solved

𝗇𝖾𝗅

𝖠
𝑒=1

⎡⎢⎢⎢⎢⎣

𝒌𝑒 𝟎 𝟎 𝑳𝖳
𝑒

𝟎 𝑨11
𝑒 𝑨12

𝑒 −𝑪𝑒

𝟎 𝑨21
𝑒 𝑨22

𝑒 𝟎

𝑳𝑒 −𝑪𝑒 𝟎 𝟎

⎤⎥⎥⎥⎥⎦
𝗇𝖾𝗅

𝖠
𝑒=1

⎡⎢⎢⎢⎢⎣

Δ𝒖̂𝑒

Δ𝜶1
𝑒

Δ𝜶2
𝑒

Δ𝜷𝑒

⎤⎥⎥⎥⎥⎦
= −

𝗇𝖾𝗅

𝖠
𝑒=1

⎡⎢⎢⎢⎢⎣
𝒇

𝗂𝗇𝗍
𝑒 − 𝒇

𝖾𝗑𝗍
𝑒

𝜶1
𝑒

𝜶2
𝑒

𝒃𝑒

⎤⎥⎥⎥⎥⎦
. (2)

Static condensation on element level leads to the simplification

𝑲𝑒Δ𝒖̂𝑒 = 𝑹𝖾𝗑𝗍
𝑒 − 𝑹𝗂𝗇𝗍

𝑒 , (3)

in which only the primary diplacements remain as unknowns. Here, the effective tangent stiffness matrix is given by

𝑲𝑒 =
[
𝒌𝑒 + 𝑳𝖳 𝑪

−𝟣
𝑒 𝑨𝑒 𝑪

−𝟣
𝑒 𝑳𝑒

]
(4)

and the internal and external part of the residual vector are respectively given by

𝑹𝗂𝗇𝗍
𝑒 = 𝒇

𝗂𝗇𝗍
𝑒 + 𝑳𝖳

𝑒 𝑪
−𝟣
𝑒

[
𝒂𝑒 + 𝑨𝑒 𝑪

−𝟣
𝑒 𝒃𝑒

]
and 𝑹𝖾𝗑𝗍

𝑒 = 𝒇
𝖾𝗑𝗍
𝑒 , (5)
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where the abbreviations

𝑨𝑒 = 𝑨11
𝑒 − 𝑨12

𝑒 (𝑨22
𝑒 )−𝟣 𝑨21

𝑒 and 𝒂𝑒 = 𝒂1
𝑒 − 𝑨12

𝑒 (𝑨22
𝑒 )−𝟣 𝒂2

𝑒 (6)

have been used. Having solved Equation (3) for Δ𝒖̂𝑒, the increments of the strains and stresses can be updated as follows

Δ𝜶1
𝑒 = 𝑪

−𝟣
𝑒 (𝑳𝑒 Δ𝒖̂𝑒 + 𝒃𝑒),

Δ𝜶2
𝑒 = −(𝑨22

𝑒 )−𝟣 (𝑨21
𝑒 Δ𝜶1

𝑒 + 𝒂2
𝑒),

Δ𝜷𝑒 = 𝑪
−𝟣
𝑒 (𝑨𝑒 Δ𝜶1

𝑒 + 𝒂𝑒).

(7)

The interested reader is referred to [3] or [2] for further details on element matrices and shape functions that have been
neglected here for reasons of brevity.

2.2 Modeling fibers and layers

Anisotropic material behavior is modeled as proposed in [4] using the simplified strain energy density function of the
form

𝑊 = 𝑘𝗂𝗌𝗈
1

(𝐼1 − 3)2 + 𝑘𝗂𝗌𝗈
2 [(𝐼2 − 3) − 2(𝐼1 − 3)]

+ 𝑘𝖺𝗇𝗂
1

(𝐼4 − 1)2 + 𝑘𝖺𝗇𝗂
2 [(𝐼5 − 1) − 2(𝐼4 − 1)]

+ 𝑘𝑐(𝐼1 − 3)(𝐼4 − 1),

(8)

with the five material parameters 𝑘𝗂𝗌𝗈
1

, 𝑘𝗂𝗌𝗈
2

, 𝑘𝖺𝗇𝗂
1

, 𝑘𝖺𝗇𝗂
2

and 𝑘𝑐, and the invariants of the right Cauchy-Green deformation
tensor

𝐼1 = tr (CCC), 𝐼2 =
1

2

[
tr (CCC)2 − tr (CCC2)

]
, 𝐼3 = detCCC, 𝐼4 = tr (CCCMMM), 𝐼5 = tr (CCC2MMM), (9)

with the structural tensorMMM = nnn ⊗ nnn, where nnn denotes preferred fiber direction.
The second Piola-Kirchhoff stress tensor SSS𝖯𝖪, as well as the consistent tangent operator ℂ can finally be obtained in

classical fashion, viz.

SSS𝖯𝖪 =
𝜕𝑊

𝜕EEE
= 2

𝜕𝑊

𝜕CCC
= 2

𝜕𝑊

𝜕𝐼𝛼

𝜕𝐼𝛼

𝜕CCC
, ℂ = 2

𝜕SSS𝖯𝖪

𝜕CCC
, with 𝛼 = 1, … , 5. (10)

3 RESPONSE SENSITIVITY ANALYSIS

The method for the computation of sensitivity information is based on a variational approach as described in [2] in the
context of geometric shape sensitivity analysis. This approach is founded on an enhanced kinematic viewpoint that offers a
rigorous separation of geometric and physical effects within a deformation process. Choosing the direct way for sensitivity
analysis, the sensitivity of the system response is derived as follows. The feasible design constraint says that a change in
designmust not violate the system’s equilibrium, which leads to the vanishing total variation of the equilibrium condition,
viz.

𝛿𝑅 = 𝛿𝑢𝑅 + 𝛿𝑠𝑅 = 𝑘(vvv, 𝛿uuu) + 𝑝(vvv, 𝛿sss) = 0, (11)

with the stiffness operator

𝑘(vvv, 𝛿uuu) =
𝜕𝑅

𝜕uuu
𝛿uuu (12)
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constituting the partial variation of the weak equilibrium w.r.t. the displacements, and the pseudoload operator

𝑝(vvv, 𝛿sss) =
𝜕𝑅

𝜕sss
𝛿sss (13)

constituting the partial variation of theweak equilibriumw.r.t. design. In thework at hand, the design variables are chosen
as the layer thicknesses and the fiber directions in each layer.
The discretized versions of the stiffness and pseudoload operators lead to the stiffness and pseudoload matrices

𝑘ℎ(𝒗ℎ, 𝒖ℎ) =
𝗇𝖾𝗅

𝖠
𝑒=1

𝒗𝑇
𝑒 𝑲𝑒𝛿𝒖𝑒 = 𝒗𝑇𝑲𝛿𝒖, with 𝑲 ∈ ℝ𝗇𝗎×𝗇𝗎 (14)

and

𝑝ℎ(𝒗ℎ, 𝒔ℎ) =
𝗇𝖾𝗅

𝖠
𝑒=1

𝒗𝑇
𝑒 𝑷𝑒𝛿𝒔𝑒 = 𝒗𝑇𝑷𝛿𝒔, with 𝑷 ∈ ℝ𝗇𝗎×𝗇𝗌 , (15)

where 𝗇𝗎 and 𝗇𝗌 denote the number of degrees of freedom and chosen design variables, respectively. Hence, excluding
the trivial solution 𝒗 = 𝟎, the discretized feasible design constraint can be rearranged so as to derive the total system’s
response sensitivity

𝛿𝑅ℎ = 𝒗𝑇(𝑲𝛿𝒖 + 𝑷𝛿𝒔) = 0, ∀𝒗 ∈ ℝ𝗇𝗎∖{𝟎}, ⇔ 𝛿𝒖 = −𝑲−1𝑷𝛿𝒔 = 𝑺𝛿𝒔, (16)

where 𝑺 denotes the total response sensitivity matrix.
Within a structural optimization problem, the total gradient of any objective or constraint function of interest 𝑓 can

then easily be computed to

𝛿𝑓 = 𝛿𝑢𝑓 + 𝛿𝑠𝑓 =
𝜕𝑓

𝜕𝒖
𝛿𝒖 +

𝜕𝑓

𝜕𝒔
𝛿𝒔 =

(
𝜕𝑓

𝜕𝒔
+

𝜕𝑓

𝜕𝒖
𝑺

)
𝛿𝒔. (17)

4 PRINCIPAL DESIGN INFLUENCES

The idea of design exploration is to use methods from PCA to identify design variables that have higher and lower impact
on the structural response. In this work, SVD is used for this purpose. Briefly, the total response sensitivity that has been
derived in the previous section represents the matrix form of the total derivative of the structural response w.r.t. changes
in design, that is, 𝑺 =

[
d𝒖

d𝒔

]
. Interpreting this as an input-output system and applying SVD gives

𝑺
SVD
= Δ𝒖̂𝑾Δ𝒔̂

𝑇
, with Δ𝒖̂ ∈ ℝ𝗇𝗎×𝗇𝗎 , 𝑾 ∈ ℝ𝗇𝗎×𝗇𝗌 , Δ𝒔̂

𝑇
∈ ℝ𝗇𝗌×𝗇𝗌 , (18)

where the left singular vectors are interpreted as changes in the structural response (output) and are therefore called
response modes Δ𝒖̂, and the right singular vectors are interpreted as changes in design (input) and hence are called
design modes Δ𝒔̂. 𝑾 is a rectangular diagonal matrix and stores the singular values in decreasing order. These singular
values are interpreted as weighting factors of the corresponding design mode, that is the higher the weighting factor, the
higher the impact of the corresponding design mode on the structural response. A possible application of SVD is a low-
rank approximation of the original matrix that still contains most of the information represented by the stored data. This
is obtained by zeroing-out weighting factors (singular values) higher than a chosen rank 𝑅, viz.

𝑺
𝑅

=

⎡⎢⎢⎣
Δ𝑢̂1

1
Δ𝑢̂2

1
… Δ𝑢̂

𝗇𝗎

1

⋮ ⋮ ⋮

Δ𝑢̂1
𝗇𝗎

Δ𝑢̂2
𝗇𝗎

… Δ𝑢̂
𝗇𝗎
𝗇𝗎

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

𝑊1 0 … 0

0 𝑊2 … 0

⋮ ⋮ ⋱

𝑊𝑅

0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
Δ𝑠1

1
Δ𝑠2

1
… Δ𝑠

𝗇𝗌

1

⋮ ⋮ ⋮

Δ𝑠1
𝗇𝗌

Δ𝑠2
𝗇𝗌

… Δ𝑠
𝗇𝗌
𝗇𝗌

⎤⎥⎥⎦
𝑇

. (19)
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(A) (B)

F IGURE 1 Academic example 1: (A) mechanical system, (B) singular values of corresponding response sensitivity matrix.

5 ACADEMIC EXAMPLE

In this section small academic examples are chosen to stress the effectivity of SVD applied to sensitivity information in
the context of model order reduction. Therefore, a 5 by 5 square plate is discretized using 9 solid-shell elements. Three
layers with fiber angle orientations (90◦|0◦|90◦) are chosen in thickness direction. Thus, in total 𝗇𝖽𝗏 = 9 ⋅ 2 ⋅ 3 = 54 design
variables are chosen in the present examples. The set of material parameters is chosen as 𝑘𝗂𝗌𝗈

1
= 74.21, 𝑘𝗂𝗌𝗈

2
= −99.45 ,

𝑘𝖺𝗇𝗂
1

= −106.48, 𝑘𝖺𝗇𝗂
2

= 298.35, 𝑘𝑐 = 10.25. In Figure 1A the mechanical system is illustrated, Figure 1B shows the singular
values of the corresponding response sensitivity matrix of the system. Obviously, only a limited number of singular values
significantly differ from zero, which gives rise to state that most of the sensitivity information can already be captured by
a low-rank approximation of the corresponding sensitivity data.
In Figure 2 heatmap plots of the original (A) and a rank-1 approximation (B) of the response sensitivity matrix are

given. The rows represent the components of the structural response, while the columns represent the design variables.
Note that the pictured values are absolute and normalized so as to be better comparable. In the first 27 columns, that is, in
the first half, the sensitivity w.r.t. the layer thicknesses are pictured and in the latter 27 columns, the sensitivity w.r.t. the
fiber angles are pictured. The brighter (more red) the pixel, the higher the impact of the corresponding design variable on
the structural response.

(A) (B)

F IGURE 2 Heatmap of response sensitivity matrices: (A) original, (B) rank-1 approximation.
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LIEDMANN et al. 6 of 8

(A) (B)

F IGURE 3 Heatmap of response sensitivity matrices: (A) original, (B) rank-3 approximation.

It is clearly observable that even with a rank-1 approximation most of the influencing design variables are already
detected. This effect becomes evenmore obvious by choosingmoreweighting factors (singular values), that is, approximate
the response sensitivity matrix with slightly higher rank, as can easily be observed in Figure 3.
For comparison, a second academic example is chosen, as shown in Figure 4, in which only the Dirichlet and Neumann

boundary conditions have been changed compared to the previous example.As can be observed fromFigure 5 andFigure 6,
to capture most of the important design parameters, a higher rank approximation is necessary, especially in case of the
fiber angles as can clearly be seen of Figure 6B, where the second half of the rank-4 approximation still apparently differs
from the original.

6 CONCLUSIONS AND DISCUSSIONS

The presented methodology of sensitivity based design exploration for layered composite shells using SVD has demon-
strated its effectiveness in compressing meaningful sensitivity information and potential in detecting major design modes
with high impact on structural response for optimizing the structural performance. This can for example be utilized by
transformation of the considered optimization problem into lower dimensional space spanned by chosen orthonormal
designmodes (right singular vectors). For this, the change in design is parameterized by scaling factors𝝎 ∈ ℝ𝗇𝗆 weighting

(A) (B)

F IGURE 4 Academic example 2: (A) mechanical system, (B) singular values of corresponding response sensitivity matrix.
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(A) (B)

F IGURE 5 Heatmap of response sensitivity matrices: (A) original, (B) rank-1 approximation.

the 𝗇𝗆 chosen design modes

Δ𝒔̄ ∶= 𝜔1Δ𝒔̂1 + 𝜔2Δ𝒔̂2 + ⋯ + 𝜔𝗇𝗆
Δ𝒔̂𝗇𝗆

(20)

and the gradient of any objective or constraint function 𝑓(𝒔̄) w.r.t. the scaling factors can be computed to

𝛿𝑓 =
𝜕𝑓

𝜕𝒔̄

d𝒔̄

d𝝎
𝛿𝝎, with d𝒔̄

d𝝎
=
[
Δ𝒔̂1 Δ𝒔̂2 … Δ𝒔̂𝗇𝗆

]
∈ ℝ𝗇𝗌×𝗇𝗆. (21)

Comparison of the low-rank approximations of any important gradient information, as shown in the examples in Sec-
tion 5, can then for instance be used to define a mode selection criterion. However, several open questions remain
regarding the generality and validity of the method for real-world optimization problems and its applicability to different
engineering applications.
Firstly, in order to establish the practical relevance of the proposed method, it is crucial to validate its effectiveness in

real-world optimization examples. While the theoretical foundation and preliminary results are promising, the appli-
cability of SVD-based design exploration to complex composite structures encountered in engineering practice needs
further investigation. Real-world optimization examples involving layered composite shells from aerospace, automotive,

F IGURE 6 Heatmap of response sensitivity matrices: (A) original, (B) rank-4 approximation.
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and civil engineering applications should be studied to assess the method’s performance and validate its effectiveness
in achieving improved designs. Such validation studies will enhance confidence in the applicability of the method to
real-world scenarios.
Secondly, the potential applications of the SVD-based design exploration method extend beyond layered compos-

ite shells. The method can be adapted and applied to various engineering fields, including but not necessarily limited
to structural engineering, mechanical engineering, materials science, and biomedical engineering. By customizing the
methodology suiting the specific characteristics of different applications, it becomes possible to explore the design
space and identify critical parameters in various engineering disciplines. Investigating and documenting the successful
application of the presented method to different contexts will provide valuable insights and expand its practical utility.
In conclusion, while the design exploration method based on SVD shows promise for fiber reinforced composite shells,

further research is needed to address the open questions discussed. Validating the method through real-world optimiza-
tion examples and exploring its application in various engineering areas will contribute to its practical applicability and
efficiency. By addressing these questions, the SVD-based design exploration can evolve into a valuable tool for optimizing
fiber reinforced composite structures and enhancing their performance in a wide range of engineering applications.
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