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Summary

In many �elds of applications, test statistics are obtained by combining estimates from

several experiments, studies or centres of a multi-centre trial. The commonly used test

procedure to judge the evidence of a common overall e�ect can result in a considerable

overestimation of the signi�cance level, leading to a high rate of too liberal decisions.

An alternative test statistic is presented and a better approximating test distribution is

derived. Explicitely discussed are the methods in the unbalanced heteroscedastic 1-way

random ANOVA model and for the probability di�erence method, including interaction

treatment by centres. Numerical results are presented by simulation studies.

Key words: meta-analysis, combining experiments, multi-centre study, interaction treat-
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Zusammenfassung

In vielen Anwendungsgebieten werden Teststatistiken mittels Kombination von Sch�atzun-

gen aus verschiedenen Experimenten, Studien oder Zentren einer multizentrischen Studie

erhalten. Die allgemein verwandte Testmethode zur Beurteilung der Evidenz eines Gesamt-

e�ektes kann zu einer betr�achtlichen �Ubersch�atzung des Signi�kanz-Niveaus f�uhren, mit

der Folge eines hohen Anteils zu liberaler Entscheidungen. Es wird eine alternative Test-

statistik vorgestellt und eine besser approximierende Testverteilung wird hergeleitet. Die

Verfahren werden in der unbalanzierten heteroskedastischen Einfachklassi�kation der Var-

ianzanalyse mit zuf�alligen E�ekten und f�ur die Wahrscheinlichkeits-Di�erenzen-Methode

ausf�uhrlich diskutiert, einschlie�lich einer Wechselwirkung zwischen Behandlung und Zen-

tren. Numerische Ergebnisse werden aufgezeigt mittels Simulationsstudien.
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1 Introduction

The problem of judging an overall e�ect from several studies or experiments arises in a

variety of application �elds. However, not only in meta-analysis of composed individual

results but also in analysing multi-centre trials, for instance one has separated samples

with heterogenous error variances and possibly an interaction of treatments with centres

to asses the overall e�ect. Taking the e�ects of this interaction as random, one gets the

so-called random e�ects model of meta-analysis, cf. sec. 2.

In the commonly used method of meta-analysis, tracing back to Cochran (1937, 1954),

one gets the variance of the overall e�ect by estimating its components seperately, and for

the corresponding test statistic the standard normal distribution is taken as test distri-

bution, cf. sec. 3. Now, this procedure is observed not to hold the prescribed signi�cance

level, which can lead to a high rate of too liberal decisions. That phenomenon mainly is

not a problem of the type of variance estimator involved. Computational experience with

other estimators than the usual unbiased one, for instance also with a kind of nonneg-

ative minimum biased estimator, as discussed by Hartung (1981), yield qualitatively no

essential improvements in the signi�cance levels obtained.

Therefore in the following, cf. sec. 4, an estimation function is introduced that estimates

the variance of the weighted mean directly, based in its realisation on weights which on a

�rst stage are estimated upon some other estimation principle, for instance here is cosen

the classical one.

Further, its distribution is approximated by equating the �rst two moments to that one

of a �2-distribution, such that the test of signi�cance for the overall e�ect becomes an ap-

proximate t-test that is more able to hold the actual signi�cance level near the prescribed

one.

The performance of the test procedures is discussed, including simulation studies, in the

unbalanced heteroscedastic random 1-way ANOVA model, cf. sec. 5, and, �nally, in order

to demonstrate the application to data that don't follow an ANOVA model, to the prob-

ability di�erence method, cf. sec. 6, comparing two proportions that are observed several

times.

Sometimes there is the opinion that one should avoid the random e�ects model because

it would be too conservative, and one should better work with the so-called �xed e�ects

model, neglecting the interaction e�ect and assuming homogenity with respect to a com-

mon mean. Of course, this would lead to a higher actual sigini�cance level. However, here

it is to say that, even if the �xed e�ects model is the correct one for the data situation
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given, also the method commonly used there can yield a high rate of too liberal decisions,

e. g. Li/ Shi/ Roth (1994), B�ockenho�/ Hartung (1998).

2 The Model

Let �̂i for i = 1; : : : ; k; k � 2, be stochastically independent normally distributed unbiased

estimators for the common mean � of k independent experiments, studies or centres of a

multi-centre trial, which also let provide stochastically independent unbiased estimatorsc
�
2
i > 0, (a. e.), for the partial variance �2i > 0 of c�i; i = 1; : : : ; k. Due, for instance, to an

'interaction of response with centres', there may be a common part �2a � 0 of the variance

of the c�i that can not be estimated in the i-th study, i = 1; : : : ; k; that is, we have the

so-called random e�ects model of parametric meta-analysis, respectively of combining of

experiments: c�i � N(�; �2a + �
2
i );

c
�2i given ; i = 1; : : : ; k; (1)

e. g. Cochran (1937, 1954), Yates/ Cochran (1938), Hedges/ Olkin (1985), DerSimonian/

Laird (1986), Whitehead/ Whitehead (1991), Draper et al. (1992).

Of main interest here is to test a hypothesis like

H0 : � � 0 against H1 : � > 0; (2)

respectively to derive a con�dence interval for the common mean �. Denote

�i =
1

�2a + �
2
i

; i = 1; : : : ; k; � =
kX

i=1

�i; (3)

the best unbiased estimator of � would be

~� =
kX
i=1

�i

�
c�i (4)

with the variance var(~�) = 1=� , leading, under � = 0, to the test statistic

~�q
1=�

� N(0; 1): (5)

Now, for a realisation, the involved parameters have to be estimated.

Note that in applications often c�i is a function of further parameter estimates, for instance

a mean di�erence or an e�ect size of two treatments, or e. g. the di�erence, cf. sec. 6,

the (log) odds ratio or relative risk of two observed proportions, cf. the references cited

above, and c�2i frequently is only an approximation, e.g. via the delta-method. The general

assumptions for c�i and c�2i then can be ful�lled only in approximation, of course, implying

the same for resulting properties.
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3 The commonly used method

Let denote !i = 1=�2i ; i = 1; : : : ; k, and ! =
Pk

i=1 !i, then, e. g. Chochran (1954),

DerSimonian/ Laird (1986), Whitehead/ Whitehead (1991), an unbiased estimator of �2a

is given by

��2a :=
!

!
2 �

kX
i=1

!
2
i

8><>:
kX

i=1

!i

0@b�i � kX
j=1

!j

!
c�j
1A2

� k + 1

9>=>; ; (6)

with the realisation f�2a, replacing �2i by c�2i ; i = 1; : : : ; k, in ��2a. This estimator can become

negative with positive probability, and so one truncates it at zero,

c
�2a := maxf0;f�2ag;

such that with

b�i = 1c
�2a +

c
�2i

; i = 1; : : : ; k; and �̂ =
kX
i=1

b�i (7)

the common mean is estimated by

�̂ =
kX

i=1

b�i
�̂
c�i; (8)

and the test statistic under � = 0 is taken as

T1 :=
�̂q
1=�̂

appr:� N(0; 1): (9)

Caused by distributional de�ciencies, cf. also Li et al.(1994), B�ockenho�/ Hartung (1998),

the resulting test procedure is not satisfactory, because of the observation that the actual

levels attained by the test can arise much above the prescribed level, leading to a high

rate of too liberal decisions, cf. the simulation results in sec. 5 and 6.

4 A re�ned method

Let �i = �i=�; i = 1; : : : ; k; � = (�1; : : : ; �k)
0, and xi = c�i; i = 1; : : : ; k; x = (x1; : : : ; xk)

0

(where c0 denotes the transpose of a vector c), then we consider the following quadratic

form in x:

S(�) :=
kX

i=1

�i(xi � �
0
x)2: (10)
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Theorem 4.1

(i). � � S(�) has a (central) �2-distribution with (k-1) degrees of freedom,

(ii). ~� = �
0
x and S(�) are stochastically independent.

Proof: Denote D = diag(�2a + �
2
i ; i = 1; : : : ; k) the diagonal covariance matrix of x and

1 := (1; : : : ; 1)0 2 IRk, i. e.

x � N(� � 1; D);

and let 1i := (0; : : : ; 0; 1; 0; : : : ; 0)0 2 IR
k, with the 1 at the i-th place, mi := 1i � � and

the matrix M := � �Pk
i=1 �imim

0

i. So we can write

�S(�) = � �
kX

i=1

�i(m
0

ix)
2

= � �
kX

i=1

�ix
0
mim

0

ix

= x
0
Mx;

and if MD = (MD)2, then x0Mx is �2-distributed with trace(MD) degrees of freedom,

and ifMD� = 0, then x0Mx and � 0x are stochastically independent, e. g. Mathai/Provost

(1992, p. 197, 227); note that m0

i1 = 0 and thus ME(x) = 0.

To (i): We have

MD =
kX
i=1

��imim
0

iD

=
kX
i=1

��i(1i � �)(1i � �)0diag

�
1

�i
; i = 1; : : : ; k

�

=
kX
i=1

�(�i1i � �i�)

�
1

�i
1i �

1

�
1

�0

=
kX
i=1

�

�
1

�
1i1i

0 � 1

�
�1i

0 � 1

�
�i1i1

0 +
1

�
�i�1

0

�

=
kX
i=1

1i1i
0 � �

kX
i=1

1i
0 �

 
kX

i=1

�i1i

!
10 +

 
kX

i=1

�i

!
�10

= I � �10 �
kX

i=1

�i1i1
0 + �10

= I �
kX

i=1

�i1i1
0
;
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where I denotes the (k � k) identity matrix and

(MD)2 = (I �
kX
i=1

�i1i1
0)(I �

kX
i=1

�i1i1
0)

= I � 2
kX

i=1

�i1i1
0 +

kX
i=1

kX
j=1

�i�j1i1
01j1

0

= I � 2
kX

i=1

�i1i1
0 +

0@ kX
j=1

�j

1A kX
i=1

�i1i1
0

= I �
kX
i=1

�i1i1
0

= MD;

noting that
Pk

j=1 �j = 1 and 101j = 1. Further, we get trace(MD) = k�Pk
i=1 �i = k� 1,

which completes the proof of (i).

To (ii): There is with (i)

MD� =

 
I �

kX
i=1

�i1i1
0

!
�

= � �
kX

i=1

�i1i1
0
�

= � �
kX

i=1

�i1i

= 0;

which yields (ii).

Note that a result like (i) (for �2a = 0) is stated already by Cochran (1937, p. 111);

however, a direct proof that refers to a �2- criterion for quadratic forms we could not �nd

in the literature.

Now S(�)=(k � 1) is an unbiased estimator of var(� 0x) = 1=� , but for a realisation, one

has to replace � by an estimate, and then in numerical experiences it proves to be much

more sensitive with respect to alterations in the �-estimates than the following estimation

function.

De�ning now

�(�) =
�
0
�

1� � 0�
; and  i(�) = �i �

�i � �
2
i

1� � 0�
; i = 1; : : : ; k; (11)

we consider the a�ne quadratic (with respect to the random variables) form

Q(�) := �(�)S(�) +
kX

i=1

 i(�)
c
�
2
i ; (12)
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and get the following

Theorem 4.2

(i). Q(�) is an unbiased estimator of 1=� = Var(~�):

(ii). If the estimators c�2i of �2i are also stochastically independent of the estimators c�j of
�; i; j = 1; : : : ; k, then

(a) Q(�) and ~� are stochastically independent, and

(b) an approximate (central) �2(�)-distribution of � � Q(�)=(1=�) has the degrees

of freedom

� = �Q(�) = 2 � (1=�)2

2(k � 1)(1=�)2�(�)2 +
Pk

i=1  i(�)2Var(�̂
2
i )
:

Proof: To (i): For the expectation we get with (i) of theorem 4.1, noting that

kX
i=1

 i = 1� 1�Pk
i=1 �

2
i

(1� � 0�
= 0;

E(Q(�)) = �(�)
1

�
(k � 1) +

kX
i=1

 i(�)�
2
i +

 
kX

i=1

 i(�)

!
�
2
a

= (k � 1)
1

�
�(�) +

kX
i=1

 
�i

�
� (�i=�)� (� 2i =�

2)

1� � 0�

!
1

�i

= (k � 1)
1

�
�(�) +

kX
i=1

 
1

�
� (1=�)� (�i=�

2)

1� � 0�

!

=
1

�
(k � 1)

�
0
�

1� � 0�
+

1

�
k � (k=�)� (1=�)

1� � 0�

=
1

�

 
k +

(k � 1)� 0� � k + 1

1� � 0�

!

=
1

�

 
k � k�

0
� + k�

0
� � �

0
� � k + 1

1� � 0�

!

=
1

�
:

To (ii): Part (a) follows from theorem 4.1 (ii), together with the additional assumptions

above. Now we come to part (b).

If the random variable Q� = � �Q=E(Q) follows �2(�)- distribution, then for the variance

we have

Var(Q�) =
�
2 � Var(Q)
(E(Q))2

= 2 � �;
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that is

� = 2 � (E(Q))
2

Var(Q)
; (13)

which conversely can be used as an estimate of the degrees of freedom of an approximate

�
2-distribution, i. e. the �rst two moments of the distributions are equated, cf. Patnaik

(1949). So again, with (i) of theorem 4.1, we get for the variance of Q(�)

VQ(�) := �(�)2
�
1

�

�2

2(k � 1) +
kX

i=1

 i(�)
2Var(c�2i ); (14)

and by (i): E(Q(�)) = 1=� , yielding now the desired estimate for the degrees of freedom,

which completes the proof.

So, if Q > 0, then under � = 0, the test statistic ~�=
p
Q

appr:� t(�), where t(�) denotes the

(central) t-distribution with � degrees of freedom, and H0 can be tested, replacing the

parameters by their estimates.

If the �1; : : : ; �k take on di�erent values, then Q(�) can become negative with a positive

probability, too, which is implied by the following

Corollary 4.1

Either at least one of the  i(�); i = 1; : : : ; k, is negative or all  i(�) are zero and all

�i = 1=k; i = 1; : : : ; k.

Proof: Assume that for all i = 1; : : : ; k :  i(�) � 0. Now, cf. (11),
Pk

i=1  i(�) = 0,

implying, by our assumption, that for all i = 1; : : : ; k, there holds  i(�) = 0, and therefore

for all i = 1; : : : ; k,

�i(1� �
0
�) = �i � �

2
i ;

respectively dividing by �i(�i > 0) yields

1� �
0
� = 1� �i;

i. e. all �i are identical and by
Pk

i=1 �i = 1 there has to be �i = 1=k for all i = 1; : : : ; k,

completing the proof.

Thus we have also to truncate Q(�) in a suitable way, considering simultanously the idea

of preserving a pointwise order for two estimators as induced by their expectations and

the concept of combining estimators. Now there is

var(~�) = var

 
kX

i=1

�ic�i
!
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=
kX

i=1

�
2
i (�

2
a + �

2
i )

�
kX

i=1

�
2
i �

2
i ;

so de�ning

R(�) :=
kX

i=1

�
2
i
c
�
2
i ; (> 0 a. e.); (15)

we have by R(�) a lower estimator in the following sense:

E(Q(�)) = var(~�)

� E(R(�)):

Hence, a truncated estimator of var(~�) can be given by the order (pointwise) preserving

estimator

qm(�) = maxfQ(�); R(�)g; (16)

or, more generally, by a linear interpolation near the switching point. That means, for

some real values A and B with

0 < A � 1 � B (17)

let denote

L(�) := min

(
1;max

(
0;
(Q(�)=R(�))� A

B � A

))
; (18)

where x=0 := +1 for x � 0 and x=0 := �1 for x < 0, then 0 � L(�) � 1, and we de�ne

the convex combination of Q and R:

qL(�)(�) := L(�)Q(�) + f1� L(�)gR(�); (19)

and, regarding �; �; and var(�̂2i ); i = 1; : : : ; k; as known, the variance of qL can approxi-

mately be estimated (L(�) random) by

Vq := L(�)2VQ(�) + f1� L(�)g2
kX

i=1

�
4
i var(

c
�2i )

+L(�)f1� L(�)g
kX

i=1

 i(�)�
2
i var(

c
�2i ) (20)

=: v

�
�; �; var(c�21); : : : ; var(c�2k)� ;

where the last term in (20) corresponds to the approximate covariance of L � Q and

(1 � L) � R, and VQ(�) is given in (14). Note that L = 0 for Q � A � R and L = 1 for

9



Q � B �R, if A < B; for A = B = 1 : qL = qm. Further, qL > 0, a. e.

Applying again the Patnaik-approximation, cf. (13), an approximate �2(E~�)-distribution

of (E~�) � qL(�)(�)=EqL(�)(�) is given for

~� = ~�qL(�)(�) = 2 � fEqL(�)(�)g
2

Vq
: (21)

If the c�2i are stochastically independent of the c�j; i; j = 1; : : : ; k; then qL and ~� are also

stochastically independent, cf. theorem 4.2 (ii), and Vq is a better estimate of var(qL) with

respect to bias.

For a realisation, now � is replaced in qL and in ~�qL by its estimator, cf. (7),

�̂ =
1

�̂
( b�1; : : : ;c�k)0

and with

q̂ := q
L(�̂)(�̂); cf. (19); (22)

v̂(q̂) := v(�̂; �̂ ;dvar(c�21); : : : ;dvar(c�2k)); cf. (20); (23)

where dvar(c�2i ) denotes an estimator of var(c�21); i = 1; : : : ; k, the results above can be

summarized to state the test procedure in a compromized form as follows:

Theorem 4.3

Under � = 0, there holds for the test statistic, cf. (8), (22), (23),

T2 :=
�̂p
q̂

appr:� t(�̂); (24)

with

�̂ = 2 � q̂
2

v̂(q̂)
: (25)

Remark 4.1

The approximation in (24) is better for the case that the c�2i are stochastically independent
of c�j, implying also that c�i depends on c�j only via c�2a; i; j = 1; : : : ; k.

Remark 4.2

(i). If an estimate of var(c�2i ) is not reported in the i-th study or can not be computed

upon the knowledge of c�i and c�2i , for instance by the delta-method, cf. sec. 6, then in

the formulas above we put dvar(c�2i ) � 0; i = 1; : : : ; k; de�ning then in �̂ : x=0 := 1
for x > 0 and the t(1)-distribution as the standard normal distribution, cf. also

sec. 5 and 6.
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(ii). De�ning, cf. (15),

�̂R =
2R(�̂)2

kP
i=1

�4
i
dvar(d�2i )) ; (26)

then �
2(E�̂R) is an approximate distribution of (E�̂R) � R(�)=E(R(�)), cf. (13), so

that for 0 < 2� < 1, an approximate (1 � 2�)-con�dence interval for E(R(�)) is

given by
�̂R

�2(�̂R)1��
R(�̂) � E(R(�)) � R(�̂)

�̂R

�2(�̂R)�
;

where �2(�)� denotes the �-quantile of the �2(�)-distribution.

Now E(R(�)) = var(~�) under �2a � 0, and E(R(�)) � E(Q(�)), so one can use the

bounds of that interval to de�ne the 'changing points' A and B,

A =
�̂R

�2(�̂R)1��
; and B =

�̂R

�2(�̂R)�
; (27)

where in the following sections we have chosen � = 0:25. There also we have ignored

partially the knowledge about the estimates of var(c�2i ) and worked with �xed values

for A and B: A = 0:8; B = 1:2, and A = 0:95; B = 1:05.

The di�erent choices of A and B 'in the neighbourhood of 1' do not seem to have

much inuence on the results.

5 The unbalanced heteroscedastic 1-way random ANOVA

model

Here let us consider the model

yij = �+ ai + eij; i = 1; : : : ; k; j = 1; : : : ; ni � 2; (28)

where a1; : : : ; ak; e11; : : : ; e1n1 ; : : : ; eknk are stochastically independent normally distributed

random variables with E(ai) = E(eij) = 0; var(ai) = �
2
a � 0; var(eij) = �

2
i > 0, and

� = E(yij); i = 1; : : : ; k; j = 1; : : : ; ni.

For the i-th estimate �̂i; i = 1; : : : ; k, of � we get

c�i = 1

ni

niX
j=1

yij � N(�; �2a + �
2
i ) with �2i =

1

ni
�
2
i ;

and �2i is estimated by

c
�
2
i =

1

ni
� 1

ni � 1

niX
j=1

(yij �c�i)2; i = 1; : : : ; k;
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Table 5.1. Unbalanced heteroscedastic random 1-way ANOVA model: sample designs

D(d; k), for d = 1; 2; 3; 4; k = 3, and k = 6, with �2a = 0:1; 1:0, and 10 for the simulation

results in table 5.2.

D(d; k) k = 3 k = 6

d i 1 2 3 1 2 3 4 5 6

ni 5 10 15 5 10 15 5 10 15
1

�
2
i 1 3 5 1 3 5 1 3 5

ni 10 20 30 10 20 30 10 20 30
2

�
2
i 1 3 5 1 3 5 1 3 5

ni 5 10 15 5 10 15 5 10 15
3

�
2
i 5 3 1 5 3 1 5 3 1

ni 10 20 30 10 20 30 10 20 30
4

�
2
i 5 3 1 5 3 1 5 3 1

which is stochastically independent of �̂i; i = 1; : : : ; k; and further var(c�2i ) = 2 1
ni�1

(�2i )
2,

of which an unbiased estimator, e. g. Hartung/ Voet (1986), is given by

dvar(c�2i ) = 2 � 1

ni + 1
(c�2i )2; i = 1; : : : ; k: (29)

In k = 3 illustrative samples of sizes ni, respectively 2ni, and in k = 6 samples by inde-

pendent replications of the �rst samples, cf. table 5.1, with di�erent constellations of the

residual variances �2i , for �
2
a = 0:1; 1:0, and 10, a simulation study (10 000 runs each) is

performed in order to get estimates �̂ of the actual levels attained by the various test statis-

tics, at the prescribed nominal level � = 0:05, for the one-sided hypothesis H01 : � � 0

against H11 : � > 0 and for the two-sided hypothesis H02 : � = 0 against H12 : � 6= 0.

This is done for the commonly used statistic T1, cf. sec. 3, and for some variants of T2,

cf. (24), where T2;1 = T2 with A = 0:8; B = 1:2; T2;2 = T2 with A = 0:95; B = 1:05, and

in the correspondent test procedures, the knowledge of an estimate for var(c�2i ) is ignored
for both, i. e. we put there dvar(c�2i ) � 0; i = 1; : : : ; k, cf. remark 4.2 (i). Finally, T2;3 = T2

with A;B chosen in accordance with remark 4.2 (ii), where � in (27) is taken as � = 0:25;

here the information dvar(c�21), given by (29), is used.

The simulation results are shown in table 5.2, where in each package the �rst number

gives �̂ for H01 and the second number (cursive) �̂ for H02.
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Table 5.2. Unbalanced heteroscedastic random 1-way ANOVA model: realized signi�-

cance levels �̂% at the nominal level � = 5% for the one sided H01 [1st number] and for

the two-sided H02 [second number, cursive] with the test statistics T1; T2;1; T2;2 and T2;3
in the sample designs D(d; k) from table 5.1.

� = 5% �̂%

H0l k = 3 k = 6
�
2

a d

l T1 T2;1 T2;2 T2;3 T1 T2;1 T2;2 T2;3

1 8.0 6.1 5.8 5.2 7.8 4.7 5.2 4.5
1

2 10.4 7.4 7.6 5.9 9.8 6.0 6.1 5.2

1 7.7 5.3 5.5 5.2 7.1 4.9 4.6 4.7
2

2 9.6 7.0 7.4 6.8 8.6 5.3 4.7 5.6
0.1

1 9.2 6.6 7.2 6.2 8.4 4.6 4.9 5.3
3

2 12.4 9.5 9.3 8.3 11.0 6.0 6.6 6.9

1 11.0 7.8 6.7 7.5 8.7 4.8 4.8 4.7
4

2 15.7 11.7 9.8 11.5 12.3 6.2 6.6 6.4

1 11.4 5.5 5.2 5.1 8.0 4.9 4.5 4.9
1

2 16.7 7.7 7.6 6.9 10.9 5.1 4.6 4.7

1 12.2 5.1 5.3 5.1 8.3 4.8 5.1 5.2
2

2 18.4 6.3 6.9 6.8 11.3 4.9 4.9 4.9
1.0

1 12.8 6.2 5.9 6.5 9.5 4.4 4.2 4.4
3

2 20.2 10.3 10.5 10.4 13.1 4.3 4.2 4.5

1 13.2 5.0 4.9 5.2 9.8 4.8 4.5 4.5
4

2 20.6 8.1 8.2 8.4 13.6 4.2 4.3 4.4

1 12.2 4.9 5.0 5.0 8.7 5.2 4.9 5.2
1

2 19.1 5.6 5.6 5.5 12.2 5.3 5.1 5.2

1 12.4 5.4 4.8 4.9 8.3 4.7 5.0 4.9
2

2 19.3 5.5 5.2 5.1 11.2 5.0 5.0 5.2
10

1 13.4 4.4 5.0 4.4 9.4 4.9 4.9 4.5
3

2 21.4 5.6 6.1 5.4 13.6 5.1 5.6 5.2

1 13.7 5.0 4.7 4.8 9.8 5.0 5.1 4.9
4

2 21.6 5.9 5.5 5.2 14.1 5.5 5.3 5.2
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For T1, the realized levels �̂ are lying partially much above the 5%-level, whereas the

results of the other test procedures don't di�er very much and are satisfactory, at the

whole, cf. table 5.2.

6 The probability di�erence method

Just for demonstrating the application of the procedures discussed in sec. 3 and 4 to

data not following an ANOVA model, we here consider the problem of testing the dif-

ference of two proportions. To this let for i = 1; : : : ; k and j = 1; 2 the stochastically

independent random variables zij be binomially distributed with parameters nij � 2 and

pij; 0 < pij < 1, where it is assumed that in all studies i the probability di�erence is

identical: pi1 � pi2 =: �. An unbiased estimator of pij is cpij = zij=nij with

var(cpij) = pij(1 � pij)=nij =: �2ij, and cpij appr:� N(p; �2ij). For the di�erence of the em-

pirical rates there is allowed that one really observes

c�i = ai + (cpi1 � cpi2); i = 1; : : : ; k; (30)

where the stochastically independent ai
appr:� N(0; �2a); �

2
a � 0, corresponding to 'random

deviations' of the assumption of identical probability di�erences, represent the random

interaction e�ects, also assumed as stochastically independent of the zij; i = 1; : : : ; k; j =

1; 2. Thus we have

c�i appr:� N(�; �2a + �
2
i ); �

2
i := �

2
i1 + �

2
i2; i = 1; : : : ; k: (31)

An unbiased estimator of �2ij is

c
�
2
ij =

1

nij � 1

�cpij � c
p
2
ij

�
; (32)

and for its variance it is su�cient here to take the approximation given by the delta-

method,

var(c�2ij) appr:
=

0@@c�2ij
@cpij

�����
pij

1A2

�
2
ij =

 
1� 2pij

nij � 1

!2
1

nij
� pij � (1� pij); (33)

which is estimated by replacing pij with cpij.
Now c

�2i = c
�2i1 +

c
�2i2 and var(c�2i ) = var(c�2i1) + var(c�2i2), so that (33) yields an estimatedvar(c�2i ).

14



Table 6.1. Probability di�erence method: realized signi�cance levels �̂% at the nominal

level � = 5% for the one sided H01 [1st number] and for the two-sided H02 [2nd number,

cursive] with the test statistics T1; T2;1; T2;2 and T2;3 in the sample designs SD(k) for

k = 3 and k = 6.

Sample designs SD(k) for �2a = 0:01; 0:1; 0:5, and pij = 0.2

k = 3: (15,25),(20,15),(30,20)

k = 6: (15,25),(20,15),(30,20),(15,25),(20,15)(30,20)

� = 5% �̂%

H0l k = 3 k = 6
�
2
a

l T1 T2;1 T2;2 T2;3 T1 T2;1 T2;2 T2;3

1 7.3 5.0 5.0 4.8 6.7 4.9 4.8 4.8
0.01

2 8.8 6.0 6.1 5.8 7.7 5.1 5.0 4.9

1 11.8 5.5 5.6 5.3 8.1 5.1 5.5 5.0
0.1

2 17.4 7.1 6.8 6.8 11.1 5.1 5.0 5.0

1 12.1 4.5 4.3 4.3 8.4 5.1 5.1 5.1
0.5

2 18.7 3.9 3.7 4.0 11.7 5.2 5.4 5.2

Hence, all our test procedures can approximately be applied. This is illustrated in a sim-

ulation study (10 000 runs each) for k = 3 groups of paired samples (ni1; ni2), with sizes

(15,25), (20,15), (30,20), and for k = 6 groups by an independent replication of the �rst

samples to get estimates �̂ of the actual levels attained by the various test statistics - with

the prescribed nominal level � = 0:05 - for the one-sided hypothesis H01 : � � 0 versus

H11 : � > 0 and for the two-sided hypothesis H02 : � = 0 versus H12 : � 6= 0, where under

0 = � = pi1 � pi2, the probabilities are taken as pij = 0:2, whereas �2a here is chosen as

0.01, 0.1, and 0.5. The test procedures, corresponding to T1; T2;1; T2;2 and T2;3, are chosen

identically as in sec. 5, where for T2;3 here the approximate estimate dvar(c�2i ) derived from

(33) is used. The results are put together in table 6.1.

Now again we observe the realized levels �̂ for T1 partially to increase much over the

5%-level, and that the T2-variants produce, at the whole, satisfactory results.
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7 Final remark

In this paper we have shown the consequences of the commonly used method for testing

hypotheses about the common e�ect in combining estimates from several independent

studies, experiments or centres of a multi-centre trial, where the occurence of a random

interaction of response with centres or studies is included in the considerations.

We recommend the use of the proposed alternative test procedure with the better approx-

imating test distribution.

Acknowledgement: Thanks are due to Kepher Makambi for assistance with the simula-

tions.
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