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Abstract

This paper deals with the problem of the discrimination between
stable and unstable time series. One criterion for the separation is
given by the size of the Lyapunov exponent, which was originally
defined for deterministic systems. However, this paper will show, that
the Lyapunov exponent can also be analyzed and used for ergodic
stochastic time series. Experimental results illustrate the classification
by the Lyapunov exponent.

Although the Lyapunov exponent is a discriminatory parameter
of the asymptotic behavior and can be interpreted as a parameter
of the asymptotic distribution in the stochastic case, it has to be
estimated from a given time series, where the process might still be
in the transient state. Experimental results will show that in special
cases the estimation leads to misclassifications of the time series and
the underlying process due to the uncertainty of estimators for the
Lyapunov exponent.

1 Introduction

In connection with the description and the analysis of time series the Lya-
punov exponent can be used for the determination of the predictability of
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time series (Busse et al. 2001). Another possible field of application is to dis-
criminate between ergodic stochastic processes with stationary distributions
and processes, like chaotic systems, with local ”instability” of the asymptotic
distribution.

A formal discrimination between stable and unstable time series can be
achieved by analyzing the Lyapunov exponent, which was suggested in con-
nection with the predictability of deterministic processes and stochastic time
series with additive noise (Busse et al. 2001).

Although the Lyapunov exponent is a discriminatory parameter of the
asymptotic distribution, it has to be estimated from a given finite time se-
ries. Consequently the estimation causes the main problem, if the Lyapunov
exponent should distinguish between the different kinds of time series. If the
sample size does not suffice or the time series is strongly disturbed by noise
the estimation may be biased. In the literature various approaches for the
separation criterion estimation have been suggested (Kantz and Schreiber
(1997), Gencay (1996), Sano and Sawada (1985), Eckmann et al. (1986).
However, all these methods are susceptible to interference. Noisy time se-
ries, missing numerical stability or limited number of data often yield a bad
estimator. Consequently the classification into a stable or unstable system
could be possibly incorrect.

The remainder of this paper is organized as follows. Necessary notation
is described in Sec. 2. After an introduction of the Lyapunov exponent (Sec.
3) we will show the connection between stable and unstable processes and
the value of the Lyapunov exponent (Sec. 4). Because of this, it is possible
to analyze deterministic or stochastic processes with non-necessarily additive
noise.

Experimental results with stable and unstable processes demonstrate the
separation by the Lyapunov exponent (see Sec. 5). Additional experimental
results illustrate the method of discrimination by the Lyapunov exponent
and the possible misclassification, if the sample size is not large enough. A
conclusion is drawn in Sec. 6.

2 Deterministic and stochastic processes

An intuitive separation between deterministic and stochastic processes in-
cludes the aspects of functional relationships with and without random errors



(Tong 1993). The dynamics of deterministic processes is defined by
Tir1 = fi(wo) = f(x) , (1)

with initial point or initial state zo € IR*, 2, describes the state at time ¢.
The functional relationship is described by f and it is assumed that f is
differentiable everywhere.

A chaotic process can be represented by a deterministic process the
asymptotic behavior of which is locally unstable in contrast to a regular
deterministic or to an ergodic stochastic system (Abarbanel 1996), (Tong
1993), (Eckmann and Ruelle 1982).

As a formal definition of stability of a series x; we use:

A series x; is defined to be asymptotically stable if all fixed points or period-
ical orbits are asymptotically stable in the following sense (Jetschke (1989),
p. 59-60):

a) A fixed point 2° = f(z°) is said to be asymptotically stable if

36 > 0, so that Vay with || 2o — 2° ||< 6 :

lim || 2y —2° ||= 0. 2)
N—o0

b) A trajectory (z;)Y " of a process (X;) is said to be a periodical orbit, if
N (zo) = wo and fi(xg) £ agfori=1,...,(N—1)and f*= fo---o f.
——
i times
A periodical orbit C' is asymptotically stable, if a point x € C' is an
asymptotically stable fixed point of fV.

We call a deterministic process stable, if all fixed points and periodical
orbits are asymptotically stable and the process is unstable if there is a fixed
point or the periodical orbit which is not asymptotically stable or no fixed
point exists.

In contrast to deterministic processes a stochastic process is a functional
relationship with random noise, which reads

Xip1 = fiXo,€) = f(Xy,6). (3)

It is assumed that such a process is a sequence of random variables, where X
is the random variable realized in the initial point xy. The random variable
X, describes the state at time ¢, the realization or observation of which is



denoted by x;. The functional relationship f is stochastically disturbed with
non-necessarily additive noise €. The asymptotic behavior of a stochastic
process should ideally be independent of the initial state.

We transmit the definition of a deterministic stable process to stochastic
processes. The proper asymptotical stability for a fixed point or periodical
orbit is not demanded. We use the asymptotical stochastical stability for the
definition of a stable stochastic process. Starting from equation (2) we define
asymptotical stochastical stability in the following sense:

a) A fixed point 2% = f(20) is said to be asymptotically stochastically
stable if

36 > 0, so that Vay mit || zg — 2° ||< J :
(4)
(&ﬂo—ZXt—x _0) =1.

b) A trajectory (z;)," of a stochastic process (X;)ier is said to be a
stochastically periodical orbit, if || fY (z¢) — x¢|| < 6 and
|| f(zo) — wo|| > fori=1,...,(N—1)and f'= fo---o f.
—_——

i times

A periodical orbit C' is asymptotically stochastically stable, if a point
x € C is an asymptotically stochastically stable fixed point of f.

The definition of asymptotical stochastical stability (eq. (4)) is related
to the definition for deterministic processes(eq. 2).

Again, we call a stochastic process stable, if all fixed points and periodical
orbits are asymptotical stochastical stable and the process is unstable if there
is a fixed point or the periodical orbit which is not asymptotically stable or
no fixed point exists.

A specific stochastic process is an ergodic stochastic process, the asymp-
totic behavior of which is uniform and stable and independent of the initial
state. In this context a mean stationary discrete random process X; with
mean Ep(X) is called ergodic (Schlittgen and Streitberg (1994)), if

(13520—22(,5 ):1. (5)



The definition of ergodic stochastic processes is the same like the def-
inition of ergodic deterministic processes, if the process average Ep(X) is
inserted for the ensemble average.

For ergodic processes X, it is true that

N—o0
t=0

P ( lim 3" g(x) = E(g(X») -1 ()

for any measurable function g (Stout (1974), pp. 167, p. 182).

It is conceptually possible to transfer a deterministic observation series
into a stochastic time series by assuming a functional relationship and a noise
¢ with a one-point distribution (Busse 2003).

3 The Lyapunov exponent in a stochastic
context

One possibility to distinguish between stable and unstable time series is given
by the computation of the largest Lyapunov exponent (here as often briefly
called the Lyapunov exponent). The Lyapunov exponent A(xg) of a deter-
ministic process is formally defined by Eckmann and Ruelle (1982):

Aao) = Jim 3 7] ™)

This characteristic feature measures an average logarithmic expansion rate
along two different trajectories of the same underlying process. In Busse
et al. (2001) it was been used for classification of predictable time series.

For the separation it is necessary to analyze the Lyapunov exponent in
a stochastic framework. Note that the random effect has not to be nec-
essarily additive in the functional expression of the dynamics of stochastic
processes. It will be shown that the Lyapunov exponent can be interpreted
as the expected value of the asymptotic distribution of an ergodic process.

Let X be the random variable realized in the initial point 4. Let X; be
the random variable, which describes the state at time ¢, the realization of
which is denoted by x;.

The functional relationship of the time series is denoted by f(z,¢€), the
time series is defined by 411 = f(xy, €) and the random effect is not-necessarily
additive (see Sec. 2).



Now, the Lyapunov exponent can be naturally generalized as the asymp-
totic expectation (if existing) of a transformation of the given stochastic
process

Ao) = lim Elln| /(X (x0))[}. ®)

However, this expected value is mostly unknown and has to be estimated.
One obvious possibility is the calculation of the long time average, which is
defined for discrete time processes by

N-1

o) = lim — > (Xi(o)),

N—o0
t=0

where ¢ is any arbitrary, measurable function. In the case of the Lyapunov
exponent estimation g(x) = In|f'(x)|. Note, this g(x¢) is the definition of
the Lyapunov exponent for stochastic processes in Busse et al. (2001).

This long time average is allowed to be dependent on initial state xg.
Because of (6) following from ergodicity (Stout (1974),p. 181), however, in
the case of ergodic processes, this long time average is independent of xy and

g(z0) = E(g(x)). (9)

Thus for ergodic processes the Lyapunov exponent A(zq) in (8) is inde-
pendent of the initial state, and is the same as defined in Busse et al. (2001)
for stochastic processes with an additive noise. It can be written as

f= / In |'(z) |p(z)d, (10)

using g(z) = In|f'(x)| and p(z) as the density of the underlying process.
The ensemble average can thus obviously be estimated by means of

=

R Rt
)\:Ni In | f'(2s)], (11)

Il
o

which is also an estimator of the Lyapunov exponent in (7).

Consequently, the Lyapunov exponent can be used for any given deter-
ministic or stochastic time series. The problem of starting time dependence
vanishes due to the equality of the long time average and the ensemble aver-
age under the condition of ergodicity.



4 Stable and unstable processes

Based on sections 2 and 3 it is possible to use the Lyapunov exponent for
the separation between stable and unstable processes, because the Lyapunov
exponent can be regarded as convergence or divergence criterion. Thus a
negative Lyapunov exponent suggests a stable process, because of the in-
dependence of the initial state the same asymptotic behavior is achieved.
Whereas in the case of a positive Lyapunov exponent the long time behavior
is sensitive with regard to the initial state. In that case we have an unstable
process. Because we have no information about the true functional relation-
ship, we suggest a default modeling in each case. This first modeling can
be regarded as starting point for a more detailed analysis of the underlying
process. More precisely:

e Given a stable process, then A(zg) < 0 (see Appendix A).

A stable process like a mean stationary and average ergodic process
could be used for a default modeling.

e Given a process like a random walk, then A(zg) = 0 (because of
By o0 & 305 I [1] = 0).

In this case the random walk is a good choice for the default modeling.

e Given an unstable process, then A(zy) > 0.

The trajectories of two different, nearby initial points diverge exponen-
tially on average by a factor of e after N iterations. In this case, the
limiting behavior is not uniform, it is unstable and in literature it is
denoted by strange attractor (Eckmann and Ruelle 1982), (Grassberger
and Procaccia 1983a) (Grassberger and Procaccia 1983b).

An unstable process lika a chaotic process could be used for a default
modeling (see details about chaotic time series in (Tong 1993)).

5 Experimental results

The Lyapunov exponent gives a clue for the classification between stable
and unstable processes. Its computation is manageable, if the functional
relationship of the time series is given. However, the underlying process is
generally unknown in case of real-world problems, i.e. the derivative f’ in
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equation 7 of the function f is often unknown. Consequently, it is necessary
to evaluate a proper estimator from the given time series. On the one hand
f' can be numerically evaluated, on the other hand the divergence of two
nearby trajectories can be graphically considered. Various approaches are
suggested in the literature (for more details see Abarbanel (1996), Eckmann
and Ruelle (1982), Sano and Sawada (1985), Gencay (1996) Wolf, Swinney,
and Vastan (1985)), Kantz and Schreiber (1997)). The method, which was
implemented by Kantz and Schreiber (1997), is applied to the estimation of
the Lyapunov exponent in the following examples.

Note, the Lyapunov exponent is a characteristic of the asymptotic behav-
ior. This property implies that the observations should not be taken in the
so-called transient status. The series has to be in the asymptotic state for the
data to be used for the evaluation of f’. An inadequate evaluation of f’ may
be due to the observation series still lasting in transient state. Therefore, it
is possible that the estimation leads to misclassifications between stable and
unstable time series, if noisy data or short time series are given.

5.1 Experiments with stable and unstable data sets

We applied the method of Lyapunov exponent estimation to different func-
tions (see equations (12) and (13)). These functions have the advantage that
the exact Lyapunov exponent can be evaluated analytically.

To generate an ergodic, mean stationary stochastic process as an example
of a stable process a uniformly distributed noise term, UJ0,1], is added to
the functional relationship as follows:

zy = (0.924—1 + 0.05¢), e ~ U0, 1]. (12)

A deterministic chaotic time series as an example of an unstable process is
created by
zy = (2.524—1) mod 1. (13)

In both cases the initial point o = 0.699 is used and a sample size of 1024.

The estimation of the Lyapunov exponent yields good results with re-
spect to separation. For the ergodic stochastic process it was estimated
A = —0.0945 with a real Lyapunov exponent of A = —0.11, i.e. A< 0, which
describes stable stochastic behavior. For the chaotic process the estimation
of the Lyapunov exponent leads to A = 0.92 (A = 0.92), i.e. the property
of A > 0 is fulfilled. These examples show, that the Lyapunov exponent
estimations can correctly classify the different processes.



5.2 Experiments with short time series

In order to study the influence of different lengths of time series, various
lengths were generated from the functions (12) and (13). The aim is to
verify the separation in dependence on the length of the data sets. The
evaluation of the Lyapunov exponent can yield bad estimators, if the time
series is too short, since in this case the processes are likely to be in transient
states. Thus, for short time series it is to decide, whether a classification is
still possible.
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Figure 1: Classifications with respect to the estimation of the Lyapunov
exponent for the well-predictable process (12) are correct for all sample sizes.

We applied the method of Lyapunov exponent estimation to sample sizes
10, 20, 30, 40, 50, 100, 150, 200,...,900 independent realizations of the
stochastic process. Fig. 1 illustrates the estimated Lyapunov exponents in
dependence on the sample sizes. The dashed line indicates the classification
criterion. Estimates above this line lead to misclassification, estimations
below classify correctly. The solid line labels the true Lyapunov exponent.

It is shown, that every estimation leads to the correct classification, even
if the values differ from the true Lyapunov exponent. However, the sample
sizes of 10,20 and 30 are too small for a reliable classification.

For the chaotic time series (13), again sample sizes of 10, 20, 30, 40,
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Figure 2: The results of the Lyapunov exponent estimation for the chaotic
time series (13) show correct classification only for sample sizes greater than
200.

50, 100, 150, 200,...,900 are used. Again, the dashed line describes the
classification line. Estimations below this line yield misclassification. The
solid line indicates the true Lyapunov exponent.

It is shown, that short time series lead to misclassifications of the under-
lying process. The sample sizes of 10 to 200 yield non-correct classifications.
However, sample sizes of 250 to 900 characterize the time series correctly.
Good and nearly exact estimators are generated by sample sizes of 500 and
more.

6 Conclusion

The Lyapunov exponent was been analyzed for stochastic processes with non-
necessarily additive noise in the context of a separation between stable and
unstable time series. This criterion characterizes the asymptotic behavior
of a process. It was shown that the statistical definition of the Lyapunov
exponent can be interpreted as an asymptotic characterization of the given
stochastic process. Under the condition of ergodicity the ensemble average,
is equal to the long time average, and can be used for the Lyapunov exponent
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estimation.

In this article examples of stochastic and chaotic functions were inspected
with respect to separation. It was shown that the estimation yields correct
classifications both for ergodic stochastic and chaotic processes. In case of
unstable time series the estimator was even evaluated exactly with respect
to the true Lyapunov exponent.

Several sample sizes were studied in order to analyze the effect of short
time series. It could not be expected due to the transient state that the
separation would be always correctly evaluated. In fact short chaotic time
series yield misclassifications. However, in the case of ergodic stochastic time
series the estimations never lead to misclassifications.
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A Appendix

The Lyapunov-Exponent of a stable deterministic or stochastic process is smaller
than 0 (see Sec. 4).

Extended Proof: We distinguish between deterministic and stochastic processes
and between a fixed point and a periodical orbit.

a) Deterministic process, fixed point:

Given a deterministic process z111 = fi(z9) = f(z¢) (cp. equation (1)). The
initial point 2o belongs to the attraction zone of the fixed point z° implies
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AMzo) = Ma?).

N-1
1
AMz%) = A}gnoo N ; In |f'(x0)| (Lyapunov exponent,

started in the fixed point)

1
lim —NlIn|f'(z%) (sum is independent of 7)
N—oo N
= lim In|f'(z")|
N—o00

= In|f'(z?)| (independence of N)

: (14)
=In| lim 7]0(@ — féx )

z—20 r—x
< ln§ (see equation (2) and the comment that

all observations of the trajectory

lie in a e-neighborhood

of the fixed point for any § > € > 0)
<Inl (e is smaller than d, see eq. (2))
=0

See Section 2 and Jetschke (1989), p.117.

b) Stochastic process, fixed point:

Given a stochastic process X117 = fi(Xo,€) = f(X¢,€) (cp. equation (3)).
Let the initial point zq belong to the attraction zone of the fixed point z°.

Primarily we have to show that A\(zg) < A(z°) in terms of unbiased estima-
tions.
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N-1
1
Azp) = A}gnoo N ; In|f'(z;)] (Lyapunov exponent,

started in the initial point)
N-1
= lim — Z g(z;) (with transformation g(z) = In|f’'(z)|)

= Flg(X)] (cp. equation 6)

< g[E(X)] (Jensen inequality with a concave function)

= g(z") (the expected value of X is set to be 20, B(X) = zY)
= In|f'(z")| (backward transformation)

= A(=z") (cp. deterministic case)
(15)

The further proof is analogical to the deterministic case. The Lyapunov
exponent started in the initial point is smaller than 0.

Deterministic process, periodical orbit:

Given a deterministic process z;11 = fi(zo) = f(z) (cp. equation (1)).
The initial point zo belongs to the attraction zone of a periodical orbit with
period K, z!, ..., 2K . For a periodical orbit holds true:

rk = pk+tK and gkt! = gk+1+K gnd k12 = 2k+2+K and so on.

In addition, this means that:
f'(ah) = (F5FY (aF) and fE (aF) = fR (R,

It holds true:

(Y @) = | i LG A0) = PR

<1 eriodical orbit
AZ—0 Az (periodi Thit,

cp. deterministic process, fixed point)
(S5 (@F) <1 (because of X+ (zk) = fX(2FF1))
and the independence of k)
FE <1 (because of f/(7F) = (<) (aF)).

14



For the Lyapunov exponent follows:
K
1 R . . .
Azo) = % Z In|f'(z*)] (attraction zone of the periodical orbit)
k=1

1
< [7d -K-Inl (cp. deterministic case, fixed point)

< 0.
(17)

d) Stochastic process, periodical orbit:

Given a stochastic process X1 = fi(Xo,€) = f(Xt,€) (cp. equation 3).
The initial point 2y belongs to the attraction zone of a periodical orbit with
the period K, (z1),...(zX) .

Without loss of generality holds true

Axo) < A(zF) (cp. stochastic case, fixed point in a local view).

Consequently, for the Lyapunov exponent of a stochastic process with a
periodical orbit follows:

K
1 P E—
Azo) < 74 g In |f'(z?)] (cp. deterministic case, periodical orbit)
i=1
1
< X K-Inl (cp. deterministic case, fixed point)

<0.
(18)
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