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Summary

In statistical practice multicollinearity of predictor variables is rather the rule than the

exception and appropriate models are needed to avoid instability of predictions. Feature

extraction methods re
ect the idea that latent variables not measurable directly are un-

derlying the original data. They try to reduce the dimension of the data by constructing

new independent variables which keep as much information as possible from the original

measurements. A common feature extraction method is Principal Component Analysis

(PCA), which in its classical form is restricted to linear relationships among predictor

variables. This paper is concerned with nonlinear principal component analysis (NLPCA)

as introduced by Kramer (1991), who modelled his approach with help of arti�cial neural

networks. By means of �rst simulation studies data derived from semicircles and circles

are investigated with respect to their ability to be described by nonlinear principal com-

ponents among the predictors.

Keywords: feature extraction, nonlinear principal component analysis, ar-

ti�cial neural networks
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1 Introduction

In many �elds of applied statistics it is common practice to sample many

predictor variables while hoping that they may be useful for describing and

investigating a poorly known processes and for predicting one or more re-

sponse variables, e.g. in technical areas. Unless these predictors are collected

according to an experimental design, they tend to be correlated. The pres-

ence of these multicollinearities among the predictor variables can be caused

by predictors being measurements of underlying latent variables, that are not

measurable directly. Therefore it might be a promising attempt to extract

a new set of variables, so-called feature variables or scores. These feature

variables are functions of the observed measurements, extracting most of the

information needed for describing the process and can be used for prediction

afterwards. The feature variables contain nearly the same information but

within smaller dimension.

Thus we may assume that the new scores are related to the observed data

matrix x � IRp�n as follows:

x = f(s) + � =

0
BBB@

f1(s) + �1
...

fp(s) + �p

1
CCCA ; (1.1)

where f describes an r-dimensional surface in IRp, s is the score and the

vector � describes noise (Malthouse, 1995). The feature extracting problem

is to �nd f and s.

The problem of feature extraction is closely related to the problem of dimen-

sionality reduction. The super�cial dimension of the observed data is much

greater then its intrinsic dimension, the number of independent underlying

variables, describing the signi�cant variables in the observations.
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Within the class of linear feature extraction methods, principal component

analysis (PCA) gives the optimal information preserving transformation (Fuku-

naga & Koontz, 1970). In PCA feature variables are linear combinations of

the original variables.

As for PCA, most of the methods for feature extraction have been developed

for linear relationships between the predictor variables, but in many appli-

cations they are connected nonlinearly. Therefore, too many linear feature

variables are needed to approximate these nonlinear relationships by using

PCA.

There have been several attempts for generalizing PCA, but this article is

focusing only on the nonlinear principal component analysis as introduced

by Kramer (1991). After this introduction, a review on linear PCA is given.

Section 3.1 gives a short description of the types of neural networks used in

this context here and Section 3.2 describes the relationship between arti�-

cial neural networks and PCA. Section 4 introduces the nonlinear principal

component analysis (NLPCA) developed by Kramer. Simulation studies in-

vestigating the performance of NLPCA for di�erent kinds of nonlinear rela-

tionships are described in Section 5.

2 Linear Principal Component Analysis

The idea of principal component analysis (PCA, Johnson & Wichern, 1992;

Mardia, Kent & Bibby, 1979) is to �nd so-called scores, describing most of the

variability in the data. So PCA is concerned with explaining the variance-

covariance structure through a few linear combinations of the original vari-

ables. The general objective is data reduction to improve interpretation, and

the scores are often used for explaining and predicting dependent variables
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(principal component regression, see Schmidli, 1995).

In the following we consider a vector X of p random variables X1; : : : ; Xp

and the data matrix x � IRp�n with n observations (columns) and p variables

(rows), centered with respect to the sample mean vector. Denote the ith

column vector of x by xi � IR
p.

Algebraically, principal components are linear combinations of the p random

variables; its scores are built by a linear combination of their observations.

The �rst principal component is the normalized linear combination of the p

variables X1; : : : ; Xp with the largest variance:

u1 : max( ^V ar(X0u1)) with u01u1 = 1 : (2.1)

The vector s1 containing the n so-called scores for the �rst principal compo-

nent is then given as the corresponding linear combination of the observed

data: s1 = x0u1. The second principal component is chosen to have the

highest variance among all directions orthogonal to the �rst principal:

u2 : max
u0
2
u2=1

V ar(X0u2) with Cov(X0u1;X
0u2) = 0 : (2.2)

and again the score vector is given by s2 = x0u2. The ith principal component

is then given by:

ui : max
u0
i
ui=1

^V ar(X0ui) with ^Cov(X0ui;X
0uj) = 0 8j < i: (2.3)

The principal components are obtained by computing the eigen decomposi-

tion of the sample covariance matrix ^Cov:

^Cov =
X
i

�̂ieie
0

i (2.4)

with �̂i the ith estimated eigenvalue and ui = ei the normalized eigenvector

belonging to �̂i, which is also called direction vector, because it gives the di-

rection of the ith highest variation in the data and thus forms an element of
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a new coordinate system. The ith estimated eigenvalue �̂i, gives the propor-

tion of total variance in the data explained by the ith principal component.

If most of the total variance can be attributed to the �rst r components, then

these components can replace the original p variables without much loss of

information (see Johnson & Wichern, 1992).

For a geometrical approach to PCA, it might be convenient to think of x

as a cloud of n points in p-dimensional space. PCA reduces the data to

its intrinsic dimension by �tting an r-dimensional plane through the middle

of the points, so that the sum of the distances between the points xi and

their projections ~xi onto the plane is minimized. This hyperplane is found

by using the �rst r eigenvectors Ur = ( u1; : : : ;ur) (where the columns uj,

j = 1 ; : : : ; r;of Ur denote the r unit-length eigenvectors), forming a basis

for IRr, because the matrix of eigenvectors minimizes the following quantity

among all p� r matrices M (Mardia et al., Section 8.2.3d):

Ur = min
M

kx� projMxk2; (2.5)

where projMx denotes the projection of x onto a subspace spanned by ma-

trix M. This means that PCA approximates x by projecting it onto an

r-dimensional subspace. For the �rst principal component, the direction vec-

tor u1 represents the direction with maximum variability in the data, that

minimizes the sum of squared distances between xi and their projected points

~xi;u1 on u1. Here we assume an orthogonal projection of the ith observation

point xi onto the direction vector u1:

~xi;u1 = proju1(xi) = ( x0iu1=u
0

1u1)u1; (2.6)

where the product (x0iu1=u
0
1u1) denotes for each point xi the length from

the projection point to the origin and u1 their direction. As we assume

normalized direction vectors the orthogonal projection of Equation (2.6) is
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given by (x0iu1)u1. Thus the geometrical interpretation of the score values

s1i = x0iu1 is the length of this projection. The orthogonal projection of x is

then given by

~xu1 = proju1(x) = (( x01u1)u1; : : : ; (x
0

nu1)u1) = u1u
0

1x: (2.7)

Points on the same hyperplane orthogonal to the direction vector will there-

fore have the same score value. This seems intuitively appealing, as they

contain the same information about the variation of the data in direction of

u1. With this, the r-dimensional coordinates of the points xi relative to the

eigenbasis Ur are given by the r scores s(i) = x0iUr .

3 Arti�cial Neural Networks

This section gives a short motivation for the use of arti�cial neural networks

in this context here. First a more general review of feedforward neural net-

works will be given. Afterwards Section 3.2 shows an approach to perform

principal component analysis with help of neural networks, e.g. how neural

networks and PCA are related.

3.1 Feedforward Arti�cial Neural Networks

In the following, three-layer neural networks (NN) with feedforward connec-

tion are described. These kinds of NN are frequently used for approximating

functional relations.

Such neural networks describe a class of models with functions

Y =
HX
h=1

�hA(
pX

j=1

Xjwjh) + � = f(X; �) + �; (3.1)

which can be graphically displayed as seen in Figure 1, using H so-called
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Figure 1: Three-layer neural network with H hidden nodes.

hidden nodes, where A describes the so-called activation function.

A feedforward NN is restricted to all signals going in one direction, from

input cells to output cells. As seen in Figure 1, networks can be organized

hierarchically into layers of neurons. The connection between two cells has

a numerical value, called weight, representing the in
uence of the input cell

on the output cell. The input signals are combined linearly with respect to

various weights to obtain input signals for the second layer. These input

signals are then passed through an activation function A, to yield output

signals of the cells on the second layer.

To approximate linear functions the identity function

A(x) = l(x) = x (3.2)

is often chosen, while the ability of neural networks to �t arbitrary nonlinear

functions depends on the presence of hidden layers with nonlinear nodes. An

especially popular choice of activation function for nonlinear problems is the

sigmoidal function

A(x) = �(x) =
1

1 + exp(�x) : (3.3)
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These are the two activation functions used for our problems here. The

parameters of equation (3.1), e.g. the weight values of the NN are determined

by minimizing the following least squares objective function:

min
�h;wjh;h=1;::: ;H;j=1;::: ;p

nX
i=1

"
kyi � (

HX
h=1

�hA(
pX

j=1

xijwjh))k2
#
: (3.4)

While training the network, the weights are successively modi�ed, accord-

ing to several possible training algorithms. Cybenco (1989) showed that

with help of 3-layers-neural-networks with sigmoidal activation function ev-

ery continuous function can be approximated to an arbitrary degree of preci-

sion. The approximation further improves with increasing number of hidden

nodes.

3.2 Principal Component Analysis and Neural Net-

works

The use of feedforward neural networks to extract principal components are

described by Baldi and Hornik (1989) using a network structure shown in

Figure 2. This three-layer neural network has p nodes in both, input and

output layers, and r < p nodes in the hidden layer for estimating r princi-

pal components. Here the identity function is used to force the network to

approximate a linear function.

Figure 2 represents a special case with only one hidden node, e.g. only

one principal component is estimated. Networks trained to reproduce their

inputs in the output layer are called autoassociative neural networks, e.g. they

perform the so-called identity mapping. These kinds of networks are typically

used for tasks involving pattern completion (e.g. Ballard, 1987).

The hidden layer in these autoassociative NN is called the bottleneck layer,

because it causes the NN to summarize the information in the input variables
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Figure 2: Neural network for principal component analysis.

to r < p dimensions, e.g. to r principal components. Since there are fewer

nodes in the hidden layer than in the output, the bottleneck nodes must

represent the most important information of the input (Sanger, 1989). If

the network training leads to an acceptable solution, e.g. estimates the input

right, a good representation of the input data must exist in the bottleneck

layer. This implied data compression caused by the network bottleneck may

force hidden units to represent signi�cant features in data.

As seen in Figure 2 the weights leading from the jth input node to the kth

hidden node are the same as the ones going from the kth hidden node to

the jth output node. So there is only one weight matrix U with p rows

and r columns, containing the weights of the networks. The kth column uk

k = 1 ; : : : ; rcontains the weights for the signals leading to the kth node in

the hidden layer. The weights for the signals going to the jth output node

are given by the jth row of U, j = 1 ; : : : ; r. With this, the outputs of the

network are then given by x̂ = UU0x.

Note that the architecture of this NN estimates the PCA solution because
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it minimizes the same objective functions, as given in Equations (2.5) and

(2.6):

min
U

=
nX
i=1

pX
j=1

kxij � (x0iU)u0(j)k2; (3.5)

where u(j) denotes the jth row of matrixU. The r weight vectors uk between

the input and bottleneck layer, given as columns of matrix U, span the same

subspace as the �rst r eigenvectors in Equation (2.4). After training, the NN

weights can be orthonormalized without changing the value of the objective

function (Baldi & Hornik (1989)). Baldi and Hornik also proved that this

linear network has a unique minimum, e.g. there is just one matrixU solving

Equation (3.5).

4 Nonlinear Generalizations

The linear principal component analysis (PCA) assumes the relationship bet-

ween the observed variables and the feature variables to be linear, e.g. a

change in the observed variable is associated with a proportional increase

in the feature variable. It is easy to assume situations, where a nonlinear

relationship exists. When looking at nonlinear data, it would be useful to

generalize the principal components to nonlinear curves and surfaces, de-

scribing the structure of the data in fewer dimensions, than by using linear

combinations as it is done in PCA.

The nonlinear principal component analysis (NLPCA) as introduced by Kramer

(1991), extends PCA by relaxing the assumption that u is linear. Section

4.2 summarizes this method. But �rst, a short review about di�erential ge-

ometry used in the following will be given in Section 4.1. For an extensive

description see Bronstein et al. (1979), Hastie (1984) or Thorpe (1979).
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4.1 Preliminary Remarks on Nonlinear Curves

Kramers approach to generalize linear principal component analysis is to

build scores by projecting observation points xi onto a curve or a surface in-

stead of a vector u. Here an r-dimensional nonlinear surface in p-dimensional

space refers to a vector f(s) of p nonlinear smooth functions of r variables:

f : A � IRr ! B � IRp with f(s) =

0
BBB@

f1(s1; : : : ; sr)
...

fp(s1; : : : ; sr)

1
CCCA : (4.1)

The parameter vector s describes the location of point xi relative to the

parameterization of surface f . When s is unidimensional, surface f is called

a curve.

Sometimes it might be convenient to parameterize a curve by its arc length,

that means each point on the curve can be described by its length along the

curve starting at the origin, as it is done in linear PCA too. Using calculus,

the arc length of curve f from s0 to s1 is given by:

l =

Z s1

s0

vuut pX
j=1

�
@fj
@s

����
s=z

�2

dz: (4.2)

As the de�nition of a curve is not unique there are many di�erent functions

f that de�ne the same curve, but with di�erent parameterizations. Hence,

an additional property for the uniqueness of this parameterization is needed.

Therefore a curve is parameterized by arc length i� it ful�lls the unit-speed

property:

pX
j=1

�
@fj
@s

�2

= 1 : (4.3)

This property implies f to be a vector of smooth functions, because the slope

of each function must be between -1 and 1. Unit-speed-curves de�ne their
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length between the origin and point s by the value s itself. From di�erential

geometry it is known that every smooth curve can be parameterized by arc

length (Malthouse, 1995).

4.2 Nonlinear Principal Component Analysis

Kramer (1991) proposed two di�erent types of nonlinear principal component

analysis (NLPCA): sequential NLPCA and simultaneous NLPCA. While si-

multaneous NLPCA is looking directly for an r-dimensional surface to sum-

marize the information in the p-dimensional data set, sequential NLPCA

is more adapted to linear PCA by estimating iteratively r one-dimensional

curves. Therefore, the geometrical idea and its analytic solution of sequential

NLPCA is described �rst. Afterwards a short remark on the generalization

to simultaneous NLPCA is given.

4.2.1 Sequential Nonlinear Principal Component Analysis

The sequential NLPCA (hereafter simply refered to as NLPCA) generalizes

the idea of the �rst principal component to a unit-speed curve, i.e. a curve f1

through the data points minimizing the sum of squared distances between the

observed data points and the curve is sought. The NLPCA �ts a composition

of two functions, sf1 : IRp ! IR, the so-called projection-index, and f1 :

IR ! IRp the curve through the data points. Ideally, the projection-index

maps each observation point to a point on the curve that is closest to it. In

di�erence to linear principal component analysis no orthogonal projection is

assumed. The de�nition for the projection-index sf for a given curve f used

in our context is given by (Hastie, 1984):

sf (x) = sup
s

fs : kx� f(s)k = inf
�
kx� f(�)kg: (4.4)
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This de�nition means that the projection-index sf evaluated at xi denotes

the score value s for which curve f(s) is closest to xi. If there are several

such values for s, so called ambiguous points, by de�nition the largest one is

selected (Kramer, 1991).

With this de�nition, it means geometrically for the NLPCA, that each data

point xi is projected on a point ~xi;f1 on the curve f1, that is next to xi. The

score si;f1 of xi is then given by the arc length between the projection point

~xi;f1 and the origin, as it is also done in linear PCA described above. So for the

�rst curve f1 each projection point can be described by its one-dimensional

coordinate si;f1 or by its p-dimensional coordinate f1(si;f1) = ~xi;f1. With

�nding a curve f1 passing through the middle of the data points

min
f1;sf1

nX
i=1

� kxi � f1(sf1(xi))k2
�
; (4.5)

the composition f1(sf1) = ~xi;f1 smoothes the data.
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Figure 3: Neural network for principal component analysis, where � denotes a

sigmoidal activation function and l the identity function.

The functions sf1 and f1 are modeled by two connected three-layer neural

networks. Therefore a �ve-layer-neural network (Figure 3) is used to model

the composition of functions f1(sf1(xi)). The NLPCA network has p nodes
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in the input layer, one node in the third layer, the so-called bottleneck layer,

and again p nodes in the output layer. The subnetwork consisting of layers

1 to 3 models function sf1 , while layers 3 to 5 model surface f1. The nodes

in layers 2 and 4 must have nonlinear activation functions (see Equation 3.3)

to represent arbitrary smooth functions, while the layers 3 and 5 have linear

activation functions (here the identity function is chosen, see Equation 3.2).

The data reduction takes place because the p-dimensional input is forced to

pass through the one dimensional bottleneck before reproducing the inputs.

The �rst three-layer network (sf1) reduces the p-dimensional input data to

the one-dimensional scores, while the second three-layer network f1 gives

estimates of the input vectors from the scores.

The �ve-layer neural network is trained to reproduce its inputs under the

following objective function (Malthouse, 1995):

min
f1;sf1

nX
i=1

"
kxi � f1(sf1(xi))k2 +

 
pX

j=1

�
@f1j (xi)

@s

�2

� 1

!#
: (4.6)

A penalty term is added to Equation (4.5), which forces the network to

produce curves with unit-speed. Once the network has been trained, the

bottleneck node activation value gives the score.

After estimating f1 and sf1 , residuals of the data matrix x = eo are computed:

e1i = e0;i�f1(sf1(e0;i)). This means that for the next step, estimating f2 and

sf2 , the data matrix x is replaced by its residual matrix e1 and this sequential

procedure is repeated r times, until the residuals are su�ciently small.

After �nding r curves describing the structure of the data, each data point

can be described by its r-dimensional coordinates (Malthouse, 1995):

(sf1(e0;i); : : : ; sfr(er�1;i)): (4.7)

Malthouse states "that one major problem of this sequential procedure is,

that it is not clear, what removing a nonlinear direction from a matrix means"
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(see Malthouse, 1995). Since, the functions f1; : : : ; fr are not orthogonal to

each other, it might be more di�cult, sometimes impossible, to estimate

surfaces stepwise by using residual matrices, instead of estimating the r-

dimensional surface at once.

4.2.2 Simultaneous Nonlinear Principal Component Analysis

In di�erence to sequential NLPCA the simultaneous NLPCA estimates an

r-dimensional surface directly to summarize the information in the data set.

The projection-index sf : IRp ! IRr maps each observation on a surface

f : IRr ! IRp and by this gives to each xi the r-dimensional coordinates of

the projected point ~xi on fi in one step. These coordinates are then used as

scores. This is realized by using r nodes in the third layer of the network

instead of one. As with the PCA network, data compression takes place

because the p inputs pass through the r < p dimensional bottleneck layer

before reproducing the inputs.
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5 Simulation Studies

In most of the articles in this �eld of research, neural networks are used as

a tool for solving minimization problems and estimating functions. Most

of the time this is done by applying neural networks as a black box. The

simulations described in this section are an attempt to treat arti�cial neural

networks as a system of nonlinear equations, and it will be tried to solve

them with SAS.

For a good visualization of the results only two variables are assumed. This

means, that only one nonlinear principal component is to be estimated, so

that both types of NLPCA, sequential and simultaneous, are equal.

According to Equation (3.1), we can view this network as a system of non-

linear equations for estimating the functions f and sf . The projection-index

sf is given by the layers 1 to 3 of the network

ŝf(xi) =
AX

a=1

va
1

1 + exp(�x0iua)
; (5.1)

assuming a = 1 ; : : : ; Anodes in the 2nd layer. The j = 1 ; : : : ; pinput nodes

are connected by the weights uja to the nodes of the second layer, where the

va are weighting the signals between the 2nd layer and the bottleneck, layer

3.

The curve f , describing the �rst principal component, is given by the network

layers 3 to 5

f̂(ŝ) =

8>><
>>:

f̂1(s) =
CP
c=1

zc1
1

1+exp(�wcŝ)

f̂2(ŝ) =
CP
c=1

zc2
1

1+exp(�wcŝ)

; (5.2)

with c = 1 ; : : : ; Cnodes in the 4th layer. The weights leading from the 3rd

to the 4th layer are denoted by wc and zcj stand for the weights between
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the 4th and the output layer. Thus, the p = 2 coordinates of the projected

points ~xi are estimated using the following functions:

x̂1 = f̂1(ŝf(xi)) =
PC

c=1 zc1
1

1+exp(wc(
PA

a=1 va
1

1+exp(�x0
i
ua)

))

x̂2 = f̂2(ŝf(xi)) =
PC

c=1 zc2
1

1+exp(wc(
PA

a=1 va
1

1+exp(�x0
i
ua)

))

: (5.3)

To ful�ll the unit-speed-property (Equation 4.3), we wish to add an addi-

tional equation to this system:

2X
j=1

�
@fj
@s

�2

=
2X

j=1

(
CX
c=1

zcj
wcexp(�wcs)

(1 + exp(�wcs))2
)2 = 1 : (5.4)

But for a network with more than one hidden node in the 2nd and 4th layer,

this constraint exceeds the capability of SAS. So for �rst simulations we

generate data from unit-speed curves and ignore the restriction.

The simulations described here are done by using the nonlinear equation sys-

tem given in Equations (5.2) and (5.3) solved by SAS 6.12 applying Proc

Model using the Newton-Marquart-method for estimating the parameter

with 100 iterations per run. First simulations studies indicate that using

100 iterations is a good �rst value.

Because solving this equation system means to estimate the functions f and

sf , the assessment of the network training is judged by the values of goodness

of �t R2 for x1 and x2 (given in Table 1).

5.1 Estimation of Semicircles

As a �rst step for our simulations, we used a semicircle, with standard nor-

mal random errors ei added to both coordinates, x1i = cos(i) + ei=10 and

x2i = sin(i)� 0:637 + ei=10 with i � [0; �] in steps by 0.001; so 3142 data

points are simulated. By these simulations we found, that for a successful

17



Figure 4: Estimated semicircle with 2 nodes in the 2nd and 4th layer each.

training of the network, i.e. solving this equation system, �nding good start-

ing values is key. This is especially true when using small neural networks,

with only a few hidden nodes. For di�erent starting values and a network

with A=2 nodes in the 2nd layer and C =2 nodes in the 4th layer we got

unsatisfactory estimates of the functions according to Figure 4.

Since we know the underlying process, given by the equation of the semi-

circle, we split this estimation problem by training the two subnetworks,

layer 1 to 3 estimating the scores and layer 3 to 5 estimating x̂i out of the

scores separately. Afterwards the �ve-layer-network was trained again using

the parameters estimated in this two subnetworks as starting values. This

procedure was quite capable to learn the semicircle.

Estimating the semicircle without prior knowledge about the scores we needed

Figure 5: Estimated semicircle with 3 nodes in the 2nd and 4th layer (left) and

its estimated scores compared to the underlying score (right).
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at least A= 3 and C = 3 nodes (Figure 5). In this case the larger number

of nodes seems to prevent the network from converging to local minima that

easily, but results in an increased number of parameters to be estimated. For

this network, increasing the number of nodes by one in layer 2 or 4 requires

additional estimation of p+1 parameters. For the simulations described here

the number of nodes in the 2nd and 4th layer are increased equally; so ad-

ditional 2 (p+ 1) parameters are needed to be estimated. Because nonlinear

PCA is proposed as a method for data sets with many variables, any exten-

sion of the network resulting in a markedly increased number of parameters

to be estimated may be critical in practical applications.

For most of the estimated semicircles the values of goodness of �t R2 are for

x1 next to 1 (for Figure 5 0.99), but for x2 next to 0.8 (here 0.83, see Table

1).

For the estimation of the semicircle, given in Figure 5 (left), we looked closer

at the estimated scores, given in the bottleneck layer and compared them to

the underlying "scores" of the semicircle. It appeared, that the range of the

estimated scores is much smaller than that of the original score (Figure 5,

right). Note, that the diagonal line indicates equal range.

Table 1: Goodness of �t measures for the trained networks

R2 for x̂1 R2 for x̂2

semicircle trained with 3 nodes (Figure 5) 0.99 0.83

circle trained with 6 nodes (Figure 7) 0.98 0.98

circle trained with 7 nodes (Figure 8) 0.95 0.91

parable trained with 6 nodes (Figure 10) 0.89 0.99

We thought, that it might be easier for a network, and therefore fewer nodes

are necessary, to estimate only positive or negative values out of the score.

Assuming a neural network with only one hidden node in the last hidden
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Figure 6: Estimated circles with 6 nodes in 2nd and 4th layer.

layer and a sigmoid activation function, the value of this node will always

be positive. So the sign of the weight between this last hidden node and the

output node determines the sign of the output value. This means, when the

net is trained and is used for predicting values, the sign of the predicted value

is determined and is independent of the signs or values of the input values.

When training a network for predicting both, positive and negative values,

at least one more node in the last hidden layer is needed, so that there are

weights with both types of signs. Therefore we assumed, that the number

of nodes in the last hidden layer depends also on, whether values with both

types of signs are predicted or not. Therefore, we shifted the semicircle by

adding a constant value to x2. We found, that this added value increases the

number of nodes needed for successful estimation to A=4 and C=4 nodes.

It seemed, that this additional node was needed for modelling an estimate of

the bias.

5.2 Estimation of circles

In literature the ability to estimate a circle is often described as the ability to

estimate highly nonlinear structures. Thus we used 6284 data points from a

unit-speed-circle, again with standard normal random errors ei added to both

coordinates, x1i = cos(i) + ei=10 and x2i = sin(i) + ei=10 with i � [��; �]in
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Figure 7: Estimated circle with 6 nodes in 2nd and 4th layer each using apriori

information.

steps by 0.001. Estimating this circle with help of a neural network with 6

nodes in each, the 2nd and 4th layer, the estimates were most of the times

looking like Figure 6. Although it was much easier to estimate the semicircle

with more nodes, increasing the number of nodes to 7 or 9 in 2nd and 4th

layer did not improve the estimation of the circle or prevent the network from

converging into local minima in most of the runs.

Using the additional information about the "underlying true" scores and

estimating the two subnets separately, 6 nodes in each the 2nd and the 4th

layer are su�cient for a quite successful estimation (Figure 7, left). The net

gives a good estimate of the functions f and sf . The estimated points are

laying in the center of the cloud of points. While the points on the circle

are estimated appropriately, no clear order with respect to their sequence

Figure 8: Estimated circle with 7 nodes in 2nd and 4th layer each using apriori

information.
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can be seen. Even though the data points are given in ordered sequence, the

procedure does not build up the circle in a clockwise or counterclock wise

manner, but seems to distribute on the circle line quite arbitrarily. This is

visualized in Figure 7 (right) by connecting points estimated immediately

after each other. This means, that quite equal data points from predictive

variables result in quite di�erent dependent values. This is obvious from the

lines crossing the circle. Using a network with 7 nodes in the 2nd and 4th

layer each, we could not �nd starting values, for which the goodness-of-�t

R2 could have been improved, compared to using 6 nodes each( see Table 1).

However, the order in which the points on the circle are estimated remains

random and the phenomenon described above is expressed more extensively

(Figure 8, right).

Malthouse (1998) describes di�culties in estimating a circle in the part,

where the circle is closing [� to 0]. We could not con�rm this result for

these values, but found for both circles signs of a line crossing the circle (see

Figures 7, left and 8, left).

Malthouse also pointed out, that in Kramers approach to NLPCA the con-

tinuity of the projection-index sf often results in problems in estimating

functions or relationships with many ambiguous points. These so-called am-

biguous points are data points for which the distance to two or more points

on the curve f is equally far. By de�nition of the projection-index, sf is

restricted to project points to the location on f , that gives the highest score.

But on the other side, by estimating sf with help of neural networks, sf is

restricted to a continuous function, which might be an explanation for the

line crossing the circle.

For both estimates of the circle (Figure 7 and 8), we took a closer look at

the estimated scores given in the bottleneck. While the actual scores range
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Figure 9: Estimated scores in comparison with true scores for the circle with 6

nodes in 2nd and 4th layer each (left) and 7 nodes in 2nd and 4th layer each

(right).

from �� to �, the estimated scores for both estimations of the circle show

a much smaller range for 6 nodes, but not for 7 nodes. Figure 9 reveals no

obvious relationship between the actual and estimated score.

Even with an increased number of nodes, estimating the circle without prior

information about the score is di�cult. So, one of the main problems in

solving these nonlinear equation system is to �nd good starting values for

parameter estimation. In many programs written for the use of neural net-

works e.g. Stuttgarter Neuronale Netze Simulator (1995), starting values are

chosen randomly. This means, that good parameter estimates are found more

or less by chance, leaving broad space for fruitless runs.

Figure 10: Estimated unit-speed curve tested on data sets with di�erent error sizes

added.
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5.3 Estimation of curves

In this last simulation we again generated 1981 data points from unit-speed

curves. We chose functions for x1 and x2 to ful�ll the unit-speed property

given in Equation (4.3) with x1i = 0 :5i2 � 0:16 + 0:05 ei and x2i = 0 :5i
p
1� i2

+0 :5artan(i)+0 :05ei with standard normal random errors ei added to both

and i � [�0:99; 0:99] again in steps by 0.001. Since a neural network with 6

nodes in the 2nd and 4th layer each seemed su�cient for estimating a circle,

it is used for this model also.

Basically an ideal case of a practical application is simulated, in which the

net is trained to estimate the functions sf and f with help of a 'learning data

set' and then applied on data sets, so-called 'test data sets', generated from

the same model but with di�erent random error terms added. Therefore it

becomes possible to �nd out, whether the network is trained to distinguish

between pattern and random errors in the data. For the �rst test data set

random errors of the size as for the training set are added (Figure 10, left).

In addition to this two more data sets are generated from the model, but

with larger error terms added: 0:1 e (Figure 10, middle) and 0:15 e (Figure

10, right). Looking only at the shape of the estimated curve it is seen that

in both cases the structure can be estimated out of the predictive variables

quite well. But it is also obvious, that with increasing error terms the order,

in which the data points are estimated becomes more random.
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6 Discussion

After a review on the theory of linear and nonlinear principal component

analysis performed with help of neural networks we investigated the perfor-

mance of Kramer's (1991) nonlinear principal component analysis by means

of simulation studies. We estimated circles and semicircles and by a close ex-

amination of the scores we got an insight in the characteristics of 'bottleneck'-

networks used for the NLPCA.

We derived �rst values for the size of neural networks, i.e. the number of

nodes in the hidden layers required for successfully estimating the functions

f and sf .

In our simulation studies we treated neural networks as systems of nonlinear

equations. The attempt to restrict the estimation of f to unit-speed functions

explicity by adding an additional equation failed. So, one problem of these

simulations is that the estimated functions are not of unit speed. When

using a restriction in form of a penalty term as suggested by Malthouse (see

Equation 4.3) the restriction on unit-speed is not always accomplished. Since

theory relies on the unit speed assumption, it would be a major improvement

if solutions of nonlinear systems could be restricted to functions ful�lling the

unit-speed property exactly instead of only penalising functions diverging to

strongly.

Although our simulations give a �rst insight in the characteristics of 'bottleneck'-

networks used for the NLPCA, additional simulation studies are needed to

verify and extend our results.
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