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Abstract

We propose multivariate classi�cation as a statistical tool to describe busi-

ness cycles. These cycles are often analyzed as a univariate phenomenon in

terms of GNP or industrial net production ignoring additional information in

other economic variables. Multivariate classi�cation overcomes these limita-

tions by reducing dimension in a way suitable for human perception. Based on

a four phase scheme (upswing, upper turning point, downswing, lower turning

point) we demonstrate the potential of classi�cation methods by determining

the important economic variables (stylized facts) for the German business
cycle.
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1 Introduction

Although business cycles are mainly treated as a univariate phenomenon in the lit-
erature, it is realized to be actually a multivariate one. Often business cycles are
tackled by univariate time series methods ignoring the interplay of the di�erent eco-
nomic variables. This article shows the potential of a multivariate technique which
takes this interrelation into account: classi�cation. There have been essentially two
approaches in the literature concerned with business phase classi�cation: Meyer
and Weinberg (1975a,b) analyzed the American business cycle and Heilemann and
M�unch (1996) the German one. Both use a well{known classi�cation procedure
called linear discriminant analysis (LDA) which is brie
y described in the third
section. This procedure has some limitations. In this paper we enlarge and system-
atize the preceding studies. Special emphasis is put on complexity reduction and
graphical representation.

Recently, Diebold and Rudebusch (1996) discuss two main aspects of the old
de�nition of Burns and Mitchell (1946) of the business cycle: the comovement of
important economic variables and the partition of the cycle in di�erent phases, which
are assigned to di�erent economic regimes. Because of the assumed comovements
in the newer literature models with latent factors are discussed (see e.g. Stock and
Watson, 1991). Because of the regime-switching assumption models with latent
states were developed (see e.g. Hamilton, 1989, Filardo, 1994). Therefore, Diebold
and Rudebusch propose a model, in which a latent factor depends on the latent
state of the economy, which is actually a combination of the recent interpretations
of the ideas of Burns and Mitchell.

Both, the idea of switching regimes and of latent factors are also in the focus
of multivariate classi�cation methods. Indeed, oberservations, i.e. time periods,
are classi�ed and the classes can be thought of as di�erent economic regimes, and
classi�cation methods typically identify latent factors, the values of which are as
di�erent as possible in the di�erent classes, i.e. business phases. Unfortunately,
these latent factors are most of the time di�cult to interpret, since they are linear
combinations of the observed economic factors. Moreover, the time dependency of
the transition from one phase to another is completely ignored. Indeed, the business
phase of the next time period can only be the phase of the current period or the
'next' phase in the de�ned course of phases.

The aim of this paper is to demonstrate how to utilize multivariate classi�cation
methods to model business cycles. In particular, we will demonstrate how to inter-
pret the latent variables properly, and how to introduce transition restrictions into
classi�cation methods. The method will be applied to analyse the German business
cycle. One aim is to identify important 'stylized facts' (Lucas, 1983) for this busi-
ness cycle. The data used is the same as in Heilemann/M�unch elongated back to
1955/4. In particular, we use the same four phase scheme as Heilemann and M�unch
with phases called (in their natural course of appearance) 'upswing', 'upper turning
points', 'downswing', and 'lower turning points'.
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The paper is organized as follows. The classi�cation procedure will be described
in sections 2{4. In section 5 the analysed data will be introduced. In sections 6{7 the
classi�cation results for this data will be discussed. Section 8 gives the conclusions
of our study.

2 Classi�cation of Business Cycle Phases

Classi�cation deals with the allocation of objects to g predetermined groups (or
classes), indexed by G = f1; 2; � � � ; gg. In our application the objects will be time
periods (quarters), the groups above business cycle phases. The variables considered
to be important for discriminating between the groups can be continuous (GNP,
consumption etc.) or discrete (number of �rms, number of inhabitants etc.). In the
following we concentrate on, say d, continuous variables with values in a portion B
of the d{dimensional real space (B � R

d).

Based on some preclassi�ed objects (learning sample) a classi�cation rule is
learned, a rule incorporating the information inherent in the learning sample. Future
objects will then be classi�ed by this classi�cation rule.

In order to construct the classi�cation rule the information given in the learning
sample is typically "encoded" in terms of a real valued density function p : B ! R

with
R
B
p(x) dx = 1. The group densities pi(x) (1 � i � g) are estimated for each

group with the help of the learning sample. New objects with variables vector x are
classi�ed to group i if pi(x) > pj(x) ( j 6= i). The goodness of classi�cation depends
on the class of densities we use. Often one uses densities with a small number of
parameters in order to facilitate estimation. A popular density is the normal one:
only the mean vector and a measure of interrelation { the covariance matrix { have
to be speci�ed.

The goal is to choose a classi�cation rule which minimizes the misclassi�cation
error (error rate) of new objects. To achieve this, the misclassi�cation error has to
be speci�ed. There are mainly two ways:

1. In the �rst variant (model dependent) we estimate the group densities based
on the whole learning sample. Then the "overlap" in B of the di�erent group
densities pi(x) determines the misclassi�cation error (see �gure 1). This over-
lap can be evaluated by integration.

Figure 1: The error rate of the left group is gray shaded.
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2. A completely di�erent approach (variant II, modelfree) is to use the data more
extensively. Here, we construct the classi�cation rule by learning its unknown
parameters, e.g. corresponding to densities, from only one part of the sample
(training sample). With the other part (test sample) the misclassi�cation error
is determined. This approach is data intensive but more reliable in error rate
determination than integration in 1 because now the data "speaks for itself"
whereas the densities in 1 may not be appropriate, thus leading to a false
misclassi�cation error. This splitting procedure is called crossvalidation.

If the data set is "small enough", an extreme form of crossvalidation, so{
called leave one out, can be justi�ed (see, e.g., Weiss and Kulikowski (1991)).
Suppose there are n objects in the learning sample. Then we calculate the
classi�cation rule with n � 1 objects and classify the left out one. This is
done for all the n objects, thereby arriving at n di�erent classi�cations with m
errors altogether, say. The reported misclassi�cation error is then m=n. This
procedure is necessarily computer intensive because we have to construct the
rule n times.

Note that the misclassi�cation rate is related to future objects. If we would
construct the classi�cation rule with the whole learning sample and then classify
the same sample (and no future objects), with the constructed rule, this would
give the so{called apparent misclassi�cation error rate. Of course, this error rate is
optimistically biased because we use the same data for construction and validation.

Further note the di�erence between the classi�cation rule and the way one com-
putes the misclassi�cation error. Even when the densities do not re
ect the right
model for the data, they can be used to construct a classi�cation rule. Moreover,
even if the classi�cation rule is constructed by the model dependent approach, the
misclassi�cation error should be estimated modelfree, i.e. by means of crossvalida-
tion, in order to judge the rule in "real life" and not in the model world, and in
order to be able to compare di�erent classi�cation rules.

In procedure 1 apriori information can easily be incorporated. If we know how
probable group i is apriori, i.e. before having seen any data, denote �i the apriori
probability for group i, then the classi�cation rule reads as follows: allocate an object
to group i if �ipi(x) > �jpj(x) ( j 6= i). In business cycle applications such apriori
probabilities are even time dependent since the phases have, at least in principle,
to follow the pattern : : : g ! 1 ! 2 ! : : : ! g ! : : : being allowed not to change
from one time period to the next. If one does not allow any exceptions to this
rule, this can be modelled by setting the apriori probabilities �j(t + 1) = 0 for all
j 6= phase(t) or successor(t), phase(t) being the business cycle phase realized in
time period t and successor(t) being equal to phase(t) + 1, if phase(t) 6= g, and
equal to 1, otherwise. �j(t+ 1), j = phase(t); successor(t), can be estimated based
on the relative frequencies the corresponding phases are appearing in the learning
sample. Using apriori probabilities this way, only the allowed group densities are
taken into account, and from these the phase with highest probability is selected.
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E.g., when we are in phase 2 in time period t, then the phase in the next time
period can only be 2 or 3. Therefore, we should only compare p2(x) and p3(x)
taking also into account the apriori probability for the two phases. This is realized
by comparing �2p2(x) and �3p3(x) and taking the phase with the bigger value. We
call this procedure "classi�cation with exact transitions" because there will not be
any forbidden transitions in contrast to the standard classi�cation procedure. This
incorporation of apriori information makes classi�cation much more realistic for
business cycle applications. Indeed, in our learning sample no (in the above sense)
forbidden transition appeared.

3 Dimension Reduction

In order to �nd the best classi�cation rule typically dimension reduction is used
to separate structure from noise. This is accomplished by reducing the dimension
from d to d0, say. There are mainly two possible strategies. We can reduce the
number of variables, that is select d0 from d (variable selection). Or we take a
linear projection from d{space onto d0{space using a d0�d projection matrix (linear
dimension reduction). But often it is di�cult to interpret the coe�cients of such
a projection matrix. A nonlinear projection is also possible but often infeasible,
except when there is clear advice what kind of nonlinearity has to be modelled for
the data.

In variable selection one may proceed as follows. For any subset of variables,
a classi�cation rule is constructed using densities pi(x) (1 � i � g) and its perfor-
mance (misclassi�cation error) is evaluated modelfree by leave one out. This can be
either done by exhaustive search or by genetic algorithms (Siedlecki and Sklanski
(1989)) which implement a more intelligent strategy inspired by evolution. With
more than 20, say, variables, exhaustive search is not feasible. With variables selec-
tion the important variables are detected directly and no further interpretation is
needed.

The simplest group densities pi(x) are normal. In this paper three di�erent
normal models are tried.

1. Estimate for each group an individual covariance matrix (quadratic discrim-
inant analysis, QDA, see e.g. McLachlan (1992)). This is the most general
model. Unfortunately, for groups with small sample size the estimate of the
covariance matrix and thus the density estimates may not be reliable in high
dimensional space because of the big number of parameters to be estimated.

2. Estimate a joint covariance matrix for all groups (linear discriminant analysis,
LDA, see e.g. McLachlan (1992)).

3. Estimate for each group an individual but diagonal covariance matrix, i.e. set
the covariances equal to zero apriori (diagonal discriminant analysis, DDA).
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In linear dimension reduction, i.e. dimension reduction by linear projection, we
proceed as follows. First, we estimate the group densities in the original d{space.
Then, the densities are projected on a d0 dimensional subspace and the overall error
rate is evaluated by integration. By means of direct minimization of the error rate
we choose that subspace which minimizes the overall error. Simulated Annealing
(Bohachevsky et al. (1986)) is used as the optimization algorithm. When the data
set is "small", we rely on LDA or DDA in the original space. But after the optimal
subspace is selected and the data is projected into it, less parameters have to be
estimated, and QDA is applied. Finally, the error rate is evaluated by leave one out
applied to time periods. Other possibilities might be to leave one business phase of
a cycle out, or even one whole business cycle.

Having found the optimal subspace, we are mainly interested in the interpretation
of the projected original data in order to learn about conditions under which the
di�erent groups are realized. One way to interprete the projection is to partition the
optimal subspace into regions corresponding to the di�erent classi�cation groups.
The borders of such regions are constructed by means of equating the projected
group densities pR;i i.e. by analyzing the equations pR;i(x) = pR;j(x) for all i 6= j.
The densities pR;i are generated by applying a projection matrix R to the original
group densities pi. Having constructed the borders, the problem is to determine
under what economic conditions which of the regions is projected into, i.e. which
business cycle phase is realized. What we need is an interpretation of the borders
of the regions by means of the original economic variables. An example for this is
given in section 7.2.

The algorithm to determine the optimal subspace will be brie
y discussed in the
next section.

4 Optimization Procedure

The algorithm optimizes the entries in the e� d{matrix R, i.e. R 2 M (e; d) which
is used for the projection of the original d{dimensional space on a lower dimensional
space of dimension e. More speci�cally, we minimize the misclassi�cation rate f(r):

Minimizef : M(e; d) ! R
+ (1)

r 7!

gX
i=1

p(i)

Z
Bi

�R;i(x) d x;

where r is the vector of entries in R, �i is the apriori density of group i, Bi = fx j
9j : pR;i(x) < pR;j(x)g, and pR;i is the i{th projected group density. The integration
is performed by numerical quadrature procedures.

As optimization procedure we use an implementation of the simulated annealing
algorithm based on a routine inNumerical Recipes in C (Press et al (1992)). The
basis of this routine is the search algorithm of Nelder and Mead (cp. also Press
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et al. (1992)) which encloses the optimum by shrinking simplices. The shrinking
is proportional to a so{called "temperature" sequence Tn �! 0; n!1; Tn > 0.
Therefore, as Tn approaches zero, the movements have to be more and more local
and the algorithm converges to the next optimum.

For �xed Tn the algorithm generates a Markov chain with transition function
q(ri; rp) corresponding to a stochastic version of the moves of the Nelder and
Mead algorithm. The transition function q(ri; rp) speci�es the probability of a
transition from vector ri to vector rp.

The trial vector rp is accepted with probability exp(�(f(rp)�f(ri))=Tn). In this
way matrices R leading to a decrease of misclassi�cation rate f(R) are accepted in
any case, but also matrices increasing the error rate are accepted with some proba-
bility. This is the reason, why simulated annealing is able to overcome local optima
and thus avoids the selection of multiple starting points. This makes simulated
annealing useful even in lower dimensions.

After a number of steps in the markov chain, the temperature will be decreased,
Tn+1 = �Tn (0 < � < 1), and a new chain will be created.

This computerintensive method achieves minimal misclassi�cation error if ade-
quately implemented.

5 The data set

The data set consists of 13 economic variables listed in table 1 and 157 quarterly
observations from 1955/4 to 1994/4 (price index base=1991, y=yearly growth rates)
(see Heilemann and M�unch (1996)). These economic variables were selected out of
more than 120 variables as possible candidates for stylized facts for business cycle
characterization.

We use a four phase scheme (upswing (1), upper turning point (2), downswing
(3) and lower turning point (4)) for the German business cycle. The 157 observations
are classi�ed based on economic and heuristic considerations. This data set is the
learning sample introduced in the foregoing section. The quarters are distributed
among the four phases as follows:

� upswing (1): 59 observations

� upper turning point (2): 24 observations

� downswing (3): 47 observations

� lower turning point (4): 27 observations

For a detailed characterization in economic terms cp. Heilemann and M�unch (1996).
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Abbr. variable

Y GNP, real (y)
C Private consumption, real (y)
GD Government de�cit, percent of GNP
L Wage and salary earners (y)
X Net exports as, percent of GNP
M1 Money supply M1 (y)
IE Investment in equipment, real (y)
IC Investment in construction, real (y)
LC Unit labour cost (y)
PY GNP price de
ator (y)
PC Consumer price index (y)
RS Short term interest rate, nominal
RL Long term interest rate, real

Table 1: Economic variables.

The four phases have, at least in the data set, a de�nite transition structure:
4 ! 1 ! 2 ! 3 ! 4 ! 1 (where it is allowed to stay in the same phase). This
structure will be utilized for classi�cation (cp. section 2).

In the rest of the paper we apply the ideas of sections 2 and 3 to this data set.
More details are given in R�ohl (1998).

6 Variable Selection

In order to select the variables really characterizing the business cycle out of the
13 variables presented in the last section, for each possible subset of variables we
construct a classi�cation rule by exhaustive search using the densities pi(x) (1 �
i � g) estimated by QDA, LDA or DDA from the data (see section 3) and evaluate
the performance (misclassi�cation error) modelfree by leave one (period) out (see
sections 2, 3).

Figure 2 shows the results of the di�erent methods. The error rate displayed
is the smallest leave one out error rate one can obtain with a subset of n variables
(1 � n � 13).

The best performance has QDA. LDA and DDA show a stagnation of the error
rate for n > 7 and then the error rate even rises. For QDA the smallest error rate
is reached for n = 9. This indicates that not more than 9 variables are needed. To
use too many variables in a subset might lead to unstable parameter estimates and
over�tting. This results in a higher (and possibly unreliable) error rate.

To get an impression what variables are involved in the best subsets, for QDA and
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QDA

LDA

DDA

Minimal error rates (in %)
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Figure 2: Comparison of the three normal models.

LDA table 2 shows the best eight subsets with two and four variables, respectively.
QDA and LDA are put next to each other to facilitate direct comparison.

Rank V ar1 V ar2 cv{error V ar1 V ar2 V ar3 V ar4 cv{error Model

1 L LC 29:94 Y LC PY RS 26:11 QDA

L LC 35:67 Y LC PY RS 29:94 LDA

2 L PY 36:94 C L IE PY 26:75 QDA

L PC 36:31 L LC PY PC 29:94 LDA

3 IE LC 37:58 L IE LC RS 27:39 QDA

L PY 39:49 L IE LC PC 30:57 LDA

4 C PY 40:76 L IE LC PY 27:39 QDA

M1 LC 40:12 GD L IE PY 30:57 LDA

5 Y PY 40:76 Y IE LC RS 27:39 QDA

Y LC 40:76 L LC PY RL 31:21 LDA

6 C LC 40:76 C IE LC RS 27:39 QDA

Y RS 40:76 L IE LC PY 31:21 LDA

7 IE PY 40:76 L IE LC PC 28:03 QDA

IE LC 40:76 GD L IE LC 31:21 LDA

8 M1 LC 41:40 Y C IE PY 28:03 QDA

L RS 41:40 L LC PY RS 31:21 LDA

Table 2: Ranking of subsets with 2 and 4 variables.

The �rst column shows the rank. The label "cv{error" denotes the (crossvali-
dated) leave one out error. Even when QDA and LDA have distinctly di�erent error
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rates, the best variable combinations are similiar and the �rst rank is even identi-
cal. This shows that the importance of the di�erent variables is somewhat "robust"
against model variation. This simpli�es interpretation.

Histogram of absolute number of variables

1 2 3 4 5 6 7 8 9 10 11 12 13

0

20

40

 Y            C            GD          L            X            M1         IE           IC           LC         PY         PC           RS          RL

Figure 3: Importance of the variables in the data set from 55/4 { 94/4.

To get a more general perspective, we summarize table 2, the respective tables
for n = 1 ;3 variables, and the corresponding outcomes for the model DDA in a
histogram (�gure 3). The total number of variables reported this way is

4X
n=1

number of models� number of ranks� n = 3� 8� (1 + 2 + 3 + 4) = 240 :

Note that the histogram is not a listing of individual variables generated by a
univariate procedure. On the contrary, these variables are chosen by a multivariate
procedure, i.e. in presence of all the other variables.

The dominance of variables L (wage and salary earners) and LC (unit labour
cost) is obvious, followed by IE and PY. Of no importance are GD, X, M1, IC and
RL.

7 Linear Dimension Reduction

7.1 Error rate minimization

In this section, we follow the procedure indicated in section 3 for dimension reduction
by linear projection. First, we determine that two dimensional subspace by direct
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minimization in which the overall error rate is minimal under the assumption of
normal densities with identical covariance structure in the groups. After the plane
is selected, the data set is projected into it and a QDA is performed in the two
dimensional space. Finally, the error rate is evaluated by leave one out.

In the original space densities are �xed according to LDA, and not to DDA, since
LDA showed a better performance for more than �ve variables (�gure 2). But how
many variables should we take? In section 6, for LDA we mentioned the stagnation
of the error rate from seven variables on. Therefore it su�ces to use seven variables.
Which variables out of the 13 should we take? On the one hand, we can take the
best seven variables of �gure 3 (variables Y, C, L, IE, LC, PY and RS), on the other
hand the seven variables (C, L, X, IE, PY, RS and RL) �gure 2 is based on. The
two sets di�er only in two variables, but the �rst subset contains the most important
variables L and LC, so we prefer this one.

For the optimal two dimensional projected plane the boundaries of the four
phases, determined by pR;i(x) = pR;j(x) ( i 6= j), are displayed in �gure 4. Note,
that each group density pR;i(x) has its own covariance matrix because we performed
QDA in the plane.

Boundaries of the four phases

Ph 4

Ph 3

Ph 2

Ph 1

-10 -8 -6 -4 -2 0 2 4

-4

-2

0

2

4

6

8

10

Figure 4: Splitting of the optimal projection plane into the four phases.

The leave one out error is 26:8%, compared to the variable combination L and
LC (29:9%, table 2) only a decrease of 3% points. But the variables L and LC can
be easily interpreted, linear combinations of seven variables not. This relies on the
fact that small weights do not necessarily mean small importance and vice versa
(Rencher (1992)).

7.2 Comparison with Combination L and LC

Figure 5 visualizes the boundaries of the group densities pi(x), having performed
QDA in the plane spanned by the variables L and LC.
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Boundaries of the four phases

Ph 4

Ph 3

Ph 2
Ph 1

-4 -2 0 2 4 6 8
-10

-5

0

5

10

Figure 5: Splitting of the projection plane into the four phases. The horizontal axis
corresponds to variable L (wage and salary earners) and the vertical axis to variable
LC (unit labour cost).

The upswing is quite symmetric about the origin (phase 1). Small absolute val-
ues belong therefore to an upswing, more extreme ones lead to a di�erent phase.
The upper turning point (phase 2) can only be reached if the growth rate of the
employment exceeds 3% and at the same time the growth rate of unit labour cost
does not rise above 5%. Because then we are faced, even if employment is reduced
by 1%, with the transition to downswing (phase 3). A change of employment smaller
than �2% belongs to the lower turning point (phase 4), no matter how unit labour
cost behaves. Even an increase of employment of 4% compared to last year's corre-
sponding quarter and a reduction of unit labour cost about �7% does not alter the
situation: we stay at phase 4. This shows how such �gures can be easily interpreted
to discuss di�erent economic constellations.

A comparison of �gure 5 with the 90 degrees clockwise rotated �gure 4 leads to
the conclusion, that the horizontal axis in �gure 4 is mainly explained by unit labour
cost and the vertical one by wage and salary earners. Thus, the partition resulting
from linear dimension reduction can easily be interpreted by means of variables L
and LC.

7.3 Transition Structure of the Phases

The phases have to follow the pattern 4 ! 1 ! 2 ! 3 ! 4 ! 1 (or they stay at
the same phase). Standard QDA classi�cation does not take this into account, but
assumes that the observations are independent. Let us, thus, incorporate the tran-
sition structure in the classi�cation rule for the left out observation as indicated in
section 2. Such "classi�cations with exact transitions" do not produce any forbidden
transitions at all.

Table 3 compares the performance of the two procedures for the three data sets:
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data set 1 Variables L, IE, LC and PY,

data set 2 Variables Y, LC, PY and RS,

data set 3 Variables L and LC.

and the original, so{called all variables, data set with all 13 variables.

Data set 1 was chosen because variables L, IE, LC, PY are the most important
four variables concerning to variable selection (cp. �g. 3) and is the fourth best
selection in table 2. Data set 2 was chosen because variables Y, LC, PY, RS build
the best predicting group of four variables in the whole time period. Data set 3
was chosen because variables L, LC build the best predicting group of two variables
in the whole time period. Table 3 clearly indicates the better performance of the
classi�cation with exact transitions not only concerning the number of forbidden
transitions but also concerning the classi�cation error. Note however that table 3
also seems to indicate that the proposed variables selection is not useful at all since
the error rates are smallest for the all variables set. This is further discussed in the
next section.

error rates and transitions data set 1 data set 2 data set 3 all var.

error rate standard classi�cation 27:3% 26:1% 29:9% 21:0%

error rate with exact transitions 17:2% 17:8% 19:1% 16:6%

No. of forbidden trans. st. class. 11 8 16 10

No. of forbidden trans. exact trans. 0 0 0 0

Table 3: cv{Error and number of forbidden transitions of the di�erent procedures.

7.4 Forecasts

Next, we consider a prognostic/forecast situation. We construct the classi�cation
rule by means of QDA without the last complete cycle plus the very last 3 quarters
(82/2 { 94/4) and classify the left out quarters afterwards. This reduces the learning
sample to 106 quarters (phase 1: 32, phase 2: 18, phase 3: 38 and phase 4: 21).
The quarters in the test period (phase 1: 29, phase 2: 6, phase 3: 9 and phase 4: 7)
are classi�ed by standard QDA and classi�cation with exact transitions.

error rates in the forecasts data set 1 data set 2 data set 3 all variables

error rate standard classi�cation 23:5% 62:7% 29:4% 60:8%

error rate with exact transitions 25:4% 62:7% 19:6% 56:9%

Table 4: Error rates in the forecast situation

Also in this situation the superiority of the exact transitions is clear. E.g., in the
case of data set 3 we reduce the number of errors in phase 2 from 3 to 0, in phase
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3 from 8 to 6 and in phases 1 and 4 they stay the same. Overall, we reduce the
number of errors from 15 to 10 and do not have any forbidden transitions.

Note that the surprisingly bad performance of data set 2 as reported in table 4
can be interpreted as a strong hint that GNP (Y) and short term interest rate (RS)
are less signi�cant for the characterization of the business phase in the test period
than in the learning period before. This might also cause the bad performance of the
all variables set, and indicates that careful variables selection might be important
at least for prediction. Note that this is not discovered by leave-one-out resampling,
which is, at least in our example, much too optimistic.

"1982/2" "1983/3" "1984/4" "1986/1" "1987/2" "1988/3" "1989/4" "1991/1" "1992/2" "1993/3" "1994/4"
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Forecasts with QDA data set 1
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Figure 6: Comparison of the forecasts to the realized phases based on data set 1;
Left: Forecasts with QDA, Right: Forecasts with exact transitions
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Figure 7: Comparison of the forecasts to the realized phases based on data set 3 ;
Left: Forecasts with QDA, Right: Forecasts with exact transitions
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In �gure 7 the realized phases are plotted against time as lines, and forecasts
based on variables L and LC are indicated as crosses. Figure 6 shows forecasts based
on data set 1. The false predictions around 1986 in �gure 6 can be economically
explained by an interrupted upswing in 1986/1 (Tichy (1994)). Note that if in the
case of exact transitions a phase is left once, one has to go through the whole cycle to
return to this phase. This explains the short cycle around 1986. The four variables
of data set 1 thus seem to be more sensible to changes in the state of economy than
the two variables L and LC in data set 3. In data set 1 the errors in the di�erent
phases are, by exact transitions, reduced from 6 to 4 in upswing, 2 to 0 in the upper
turning point and are increased from 2 to 6 in downswing and from 2 to 3 in the
lower turning point. So the di�erence of 2% in table 4 results from one additional
error.

8 Conclusion

Classi�cation as a multivariate statistical tool has clearly proved its ability to char-
acterize business cycle phases utilising dimension reductions with optimal forecast
ability. The consideration of the transition structure of the phases not only guaran-
teed sensible classi�cation but even improved the error rate.In an example problem,
mainly four of 13 economic variables proved to adequately characterize classi�cation
into four business cycle phases.
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