
Testing for symmetric error distribution in
nonparametric regression models

Natalie Neumeyer and Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

natalie.neumeyer@ruhr-uni-bochum.de

holger.dette@ruhr-uni-bochum.de

June 4, 2003

Abstract
For the problem of testing symmetry of the error distribution in a nonparametric re-

gression model we propose as a test statistic the difference between the two empirical
distribution functions of estimated residuals and their counterparts with opposite signs.
The weak convergence of the difference process to a Gaussian process is shown. The co-
variance structure of this process depends heavily on the density of the error distribution,
and for this reason the performance of a symmetric wild bootstrap procedure is discussed
in asymptotic theory and by means of a simulation study. In contrast to the available
procedures the new test is also applicable under heteroscedasticity.
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1 Introduction

Consider the nonparametric heteroscedastic regression model

Yi = m(Xi) + σ(Xi)εi (i = 1, . . . , n)(1)

with unknown regression and variance functions m(·) and σ2(·), respectively, where X1, . . . , Xn

are independent identically distributed. The unknown errors ε1, . . . , εn are assumed to be inde-
pendent of the design points, centered and independent identically distributed with absolutely
continuous distribution function Fε and density fε. Hence −εi has density f−ε(t) = fε(−t) and
cumulative distribution function F−ε(t) = 1−Fε(−t). In this paper we are interested in testing
the symmetry of the error distribution, that is:

H0 : Fε(t) = 1 − Fε(−t) for all t ∈ IR versus H1 : Fε(t) �= 1 − Fε(−t) for some t ∈ IR
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or equivalently

H0 : fε(t) = fε(−t) for all t ∈ IR versus H1 : fε(t) �= fε(−t) for some t ∈ IR.

The problem of testing symmetry of the unknown distribution of the residuals in regression
models has been considered by numerous authors in the literature for various special cases of
the nonparametric regression model (1). Most of the literature concentrates on the problem of
testing the symmetry of the distribution of an i.i.d. sample about an unknown mean [see for
example Bhattacheraya, Gastwirth and Wright (1982), Aki (1981), Koziol (1985), Schuster and
Berker (1987) or Psaradakis (2003) among many others]. Ahmad and Li (1997) transferred an
approach of Rosenblatt (1975) for testing independence to the problem of testing symmetry
in a linear model with homoscedastic errors. Ahmad and Li’s test was generalized to the
nonparametric regression model (1) with homoscedastic errors in the fixed design case by Dette,
Kusi–Appiah and Neumeyer (2002). These approaches are based on estimates for the L2–
distance

∫
(fε(t)− fε(−t))2 dt of the densities fε and f−ε. A similar test was proposed recently

by Hyndman and Yao (2002) in the context of testing the symmetry of the conditional density
of a stationary process.
In this paper we propose an alternative approach for testing symmetry in nonparametric regres-
sion models. Our interest in this problem stems from two facts. On the one hand we are looking
for a test which is applicable to observations with a heteroscedastic error structure. On the
other hand the available procedures for the nonparametric regression model with homoscedastic
errors are only consistent against alternatives which converge to the null hypothesis of sym-
metry at a rate (n

√
h)−1, where h denotes a smoothing parameter of a kernel estimator. It is

the second purpose of this paper to construct a test for the symmetry of the error distribution
in model (1), which can detect local alternatives at a rate n−1/2. To explain the basic idea
consider for a moment the regression function m ≡ 0 and variance σ ≡ 1 in model (1) which
leads to the well investigated problem of testing the symmetry of the common distribution of an
i. i. d. sample ε1, . . . , εn [see e.g. Huškova (1984), Hollander (1988) for reviews]. One possible
approach is to compare the empirical distribution functions of εi and −εi [see, for example,
Shorack and Wellner (1986, p. 743)] using the empirical process

Sn(t) =
1

n

n∑
i=1

(
I{εi ≤ t} − I{−εi ≤ t}

)
= Fn,ε(t) − Fn,−ε(t),(2)

where I{·} denotes the indicator function, Fn,ε is the empirical distribution function of ε1, . . . , εn

and Fn,−ε is the empirical distribution function of −ε1, . . . ,−εn, that is

Fn,−ε(t) = 1 − Fn,ε(−t−).

Throughout this paper we will call the process Sn(t) (and any process of the same form)
empirical symmetry process. Under the hypothesis of symmetry Fε = F−ε the process

√
nSn

converges weakly to the process S = B(Fε) + B(1 − Fε), where B denotes a Brownian bridge.
The covariance of this limit process is given by

Cov(S(s), S(t)) = Fε(s ∧ t) − Fε(s)Fε(t) + Fε((−s) ∧ t) − Fε(−s)Fε(t)

+ Fε(s ∧ (−t)) − Fε(s)Fε(−t) + Fε((−s) ∧ (−t)) − Fε(−s)Fε(−t)

= 2Fε(−(|s| ∨ |t|)),(3)



and a suitable asymptotic distribution free test statistic is then obtained by

Tn = n

∫ ∞

0

S2
n(t) dHn(t),

where Hn = Fn,ε + Fn,−ε − 1 denotes the empirical distribution function of the absolute values

|ε1|, . . . , |εn|. The test statistic Tn converges in distribution to the random variable
∫ 1

0
R2(t) dt,

where {R(1 − t)}t∈[0,1] is a Brownian motion. The null hypothesis of a symmetric error dis-
tribution is rejected for large values of this test statistic and the resulting test is consistent
with respect to local alternatives converging to the null at a rate n−1/2. A generalization of
the empirical symmetry process (2) for the unknown residuals ε1, . . . , εn in linear models with
homoscedastic error structure [that is a regression function m(Xi) = hT (Xi)β in model (1) with
a known function h, finite dimensional parameter β, constant variance function σ(Xi) ≡ σ and
a fixed design] can be found in Koul (2002, p. 258).
In the present paper we propose to generalize this approach to the problem of testing the hypoth-
esis of a symmetric error distribution in a nonparametric regression model with heteroscedastic
error structure. The empirical symmetry process defined in (2) is modified by replacing the
unknown errors εi by estimated residuals ε̂i = (Yi − m̂(Xi))/σ̂(Xi) (i = 1, . . . , n) where m̂(·)
and σ̂(·) denote kernel based nonparametric estimators for the regression and variance function,
respectively. This yields the process

Ŝn(t) =
1

n

n∑
i=1

(
I{ε̂i ≤ t} − I{−ε̂i ≤ t}

)
,

and allows us also to consider heteroscedastic nonparametric regression models. In Section 3
we prove weak convergence of a centered version of this empirical process to a Gaussian process
under the null hypothesis of a symmetric error distribution and any fixed alternative. The
covariance structure of the limiting process depends in a complicated way on the unknown
distribution of the error and as a consequence an asymptotically distribution free test statistic
cannot be found. For this reason we propose a modification of the wild bootstrap approach to
compute critical values. The consistency of this bootstrap procedure is discussed in asymptotic
theory and by means of a simulation study in Section 4 and Section 5, respectively. The
numerical results indicate that the new bootstrap test is applicable for sample sizes larger than
20 and is more powerful than the existing procedures, which were derived under the additional
assumption of homoscedasticity.

2 Technical assumptions

In this section we state some basic technical assumptions which are required for the statement of
the main results in Section 3 and 4. We assume that the distribution function of the explanatory
variables Xi, say FX , has support [0, 1] and is twice continuously differentiable with density
fX bounded away from zero. We also assume that the error distribution has a finite fourth
moment, that is

E[ε4] =

∫
t4fε(t) dt < ∞.



Further suppose that the conditional distribution P Yi|Xi=x of Yi given Xi = x has distribution
function

F (y|x) = Fε

(y − m(x)

σ(x)

)
and density

f(y|x) =
1

σ(x)
fε

(y − m(x)

σ(x)

)
such that

inf
x∈[0,1]

inf
y∈[0,1]

f
(
F−1(y|x)|x)

> 0 and sup
x,y

|yf(y|x)| < ∞,

where F (y|x) and f(y|x) are continuous in (x, y), the partial derivative ∂
∂y

f(y|x) exists and is

continuous in (x, y) such that

sup
x,y

∣∣∣∣y2∂f(y|x)

∂y

∣∣∣∣ < ∞.

In addition, we also require that the derivatives ∂
∂x

F (y|x) and ∂2

∂x2 F (y|x) exist and are contin-
uous in (x, y) such that

sup
x,y

∣∣∣∣y∂F (y|x)

∂x

∣∣∣∣ < ∞ , sup
x,y

∣∣∣∣y2∂2F (y|x)

∂x2

∣∣∣∣ < ∞.

The regression and variance functions m and σ2 are assumed to be twice continuously differen-
tiable such that minx∈[0,1] σ

2(x) ≥ c > 0 for some constant c.
Throughout this paper let K be a symmetric twice continuously differentiable density with
compact support and vanishing first moment

∫
uK(u) du = 0 and h = hn denote a sequence of

bandwidths converging to zero for an increasing sample size n → ∞ such that nh4 = O(1) and
nh3+δ/ log(1/h) → ∞ for some δ > 0.

3 Weak convergence of the empirical symmetry process

We explained in the introduction that the basic idea of the proposed procedure for testing
symmetry is to replace the unknown random variables εi by estimated residuals ε̂i (i = 1, . . . , n)
in the definition (2) of the empirical symmetry process. For the estimation of the residuals we
define nonparametric kernel estimators for the unknown regression function m(·) and variance
function σ2(·) in model (1) by

m̂(x) =

∑n
i=1 K(Xi−x

h
)Yi∑n

j=1 K(
Xj−x

h
)

(4)

σ̂2(x) =

∑n
i=1 K(Xi−x

h
)(Yi − m̂(x))2∑n

j=1 K(
Xj−x

h
)

.(5)

Note, that m̂(·) is the usual Nadaraya–Watson estimator which is considered here for the sake
of simplicity, but the following results are also correct for local polynomial estimators [see Fan
and Gijbels (1996)], where the kernel K has to be replaced by its asymptotically equivalent



kernel [see Wand and Jones (1995)]. Now the standardized residuals from the nonparametric
fit are defined by

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
(i = 1, . . . , n).(6)

The estimated empirical symmetry process is based on the residuals (6) and given by

Ŝn(t) = F̂n,ε(t) − F̂n,−ε(t) =
1

n

n∑
i=1

(
I{ε̂i ≤ t} − I{−ε̂i ≤ t}

)
.(7)

Our first result states the asymptotic behaviour of this process.

Theorem 3.1 Under the assumptions stated in Section 2 the process {Rn(t)}t∈IR defined by

Rn(t) =
√

n
(
Ŝn(t) − Fε(t) + (1 − Fε(−t)) − h2B(t)

)
converges weakly to a centered Gaussian process {R(t)}t∈IR with covariance structure

G(s, t) = Cov(R(s), R(t))

= Fε(s ∧ t) − Fε(s)Fε(t) + Fε((−s) ∧ t) − Fε(−s)Fε(t)

+ Fε(s ∧ (−t)) − Fε(s)Fε(−t) + Fε((−s) ∧ (−t)) − Fε(−s)Fε(−t)

+ (fε(t) + fε(−t))(fε(s) + fε(−s))

+ (fε(s) + fε(−s))

∫ t

−∞
x(fε(x) + fε(−x)) dx

+ (fε(t) + fε(−t))

∫ s

−∞
x(fε(x) + fε(−x)) dx

+
s

2
(fε(s) − fε(−s))

∫ t

−∞
(x2 − 1)(fε(x) + fε(−x)) dx

+
t

2
(fε(t) − fε(−t))

∫ s

−∞
(x2 − 1)(fε(x) + fε(−x)) dx

+
s

2
(fε(s) − fε(−s))(fε(t) + fε(−t))E[ε3

1]

+
t

2
(fε(t) − fε(−t))(fε(s) + fε(−s))E[ε3

1]

+
st

4
(fε(s) − fε(−s))(fε(t) − fε(−t))Var(ε2

1),

where the bias B(t) is defined by

B(t) =
1

2

∫
K(u)u2 du

(
(fε(t) + fε(−t))

∫
1

σ(x)
((mfX)′′(x) − (mf ′′

X)(x)) dx

+ t(fε(t) − fε(−t))

∫
1

2σ2(x)

(
(σ2fX)′′(x) − (σ2f ′′

X)(x) + 2(m′(x))2fX(x)
)

dx
)
.



Note that the first two lines in the definition of the asymptotic covariance can be rewritten as
follows,

Fε(s ∧ t) − Fε(s)Fε(t) + Fε((−s) ∧ t) − Fε(−s)Fε(t) + Fε(s ∧ (−t)) − Fε(s)Fε(−t)

+ Fε((−s) ∧ (−t)) − Fε(−s)Fε(−t)

= Fε(s ∧ t) + 1 − Fε(−(s ∧ t)) − (Fε(t) + 1 − Fε(−t)) + Fε((−s) ∧ t) + 1 − Fε(−(−s) ∧ t)

+ (Fε(t) − 1 + Fε(−t))(Fε(s) − 1 + Fε(−s)),

and under the hypothesis H0 : Fε(t) = 1 − Fε(−t) this expression reduces to

2Fε(s ∧ t) − 2Fε(t) + 2Fε((−s) ∧ t) = 2Fε(−(|s| ∨ |t|)),

which coincides with the covariance (3) of the limit of the classical empirical symmetry process
(2) based on an i.i.d. sample. Additionally, under H0 we deduce for the bias in Theorem 3.1

B(t) =

∫
K(u)u2 du fε(t)

∫
1

σ(x)
((mfX)′′(x) − (mf ′′

X)(x)) dx.

Corollary 3.2 If the assumptions of Theorem 3.1 and the null hypothesis H0 of a symmetric
error distribution are satisfied, the process {√n(Ŝn(t) − h2B(t))}t∈IR defined in (7) converges
weakly to a centered Gaussian process {S(t)}t∈IR with covariance

H(s, t) = Cov(S(s), S(t))

= 2Fε(−(|s| ∨ |t|)) + 4fε(s)fε(t) + 4fε(s)

∫ t

−∞
xfε(x) dx + 4fε(t)

∫ s

−∞
xfε(x) dx.

Comparing the covariance kernel H with the expression (3) we see that there appear three
additional terms depending on the density of the error distribution. This complication is
caused by the estimation of the variance and regression function in our procedure. We finally
note that the bias h2B(t) in Theorem 3.1 and Corollary 3.2 can be omitted if h4n = o(1).

Proof of Theorem 3.1:

From Theorem 1 in Akritas and Keilegom (2001) we obtain the following expansion of the
estimated empirical distribution function,

F̂n,ε(t) =
1

n

n∑
i=1

I{ε̂i ≤ t}

=
1

n

n∑
i=1

I{εi ≤ t} +
1

n

n∑
i=1

ϕ(Xi, Yi, t) + βn(t) + rn(t)

where, uniformly in t ∈ IR,

rn(t) = op(
1√
n

) + op(h
2) = op(

1√
n

)



and

ϕ(x, z, t) = − fε(t)

σ(x)

∫
(I{z ≤ v} − F (v|x))

(
1 + t

v − m(x)

σ(x)

)
dv

= − fε(t)

σ(x)

(
1 − tm(x)

σ(x)

)( ∫ ∞

z

(1 − F (v|x)) dv −
∫ z

−∞
F (v|x) dv

)
− fε(t)

σ(x)

t

σ(x)

( ∫ ∞

z

v(1 − F (v|x)) dv −
∫ z

−∞
vF (v|x) dv

)

= − fε(t)

σ(x)

(
1 − tm(x)

σ(x)

)
(m(x) − z) − fε(t)t

σ2(x)

(
1

2
(σ2(x) + m2(x)) − z2

2

)

= − fε(t)

σ2(x)

(
σ(x)(m(x) − z) − tm2(x) + tm(x)z +

1

2
σ2(x)t +

1

2
m2(x)t − 1

2
tz2

)
.

This gives for z = m(x) + σ(x)ε:

ϕ(x, z, t) = ϕ(x, m(x) + σ(x)ε, t) = fε(t)

(
ε +

t

2
(ε2 − 1)

)
.

From the proof of Theorem 1 in Akritas and Keilegom (2001), p. 555, we also have for the bias
term

βn(t) = E
[
fε(t)

∫
m̂(x) − m(x)

σ(x)
dFX(x) + tfε(t)

∫
σ̂(x) − σ(x)

σ(x)
dFX(x)

]
=

h2

2

∫
K(u)u2 du

(
fε(t)

∫
1

σ(x)
((mfX)′′(x) − (mf ′′

X)(x)) dx

+ tfε(t)

∫
1

2σ2(x)

(
(σ2fX)′′(x) − (σ2f ′′

X)(x) + 2(m′(x))2fX(x)
)

dx
)

+ o(h2) + o(
1√
n

).

An analogous expansion for the estimated empirical distribution function F̂n,−ε(t) of the signed
residuals now yields

Ŝn(t) = F̂n,ε(t) − F̂n,−ε(t)

=
1

n

n∑
i=1

(
I{ε̂i ≤ t} − I{−ε̂i ≤ t}

)

=
1

n

n∑
i=1

(
I{εi ≤ t} − I{−εi ≤ t} + εi(fε(t) + fε(−t)) + (ε2

i − 1)
t

2
(fε(t) − fε(−t))

)
(8)

+ h2B(t) + op(
1√
n

)

uniformly with respect to t ∈ IR, where B(t) = (βn(t)+βn(−t))/h2 +o(1) is defined in Theorem
3.1. Note, that under the null hypothesis the quadratic term in εi in (8), which is due to the
estimation of the variance function, vanishes. From the above expansion we obtain

Rn(t) =
√

n
(
Ŝn(t) − Fε(t) + (1 − Fε(−t)) − h2B(t)

)
=

1√
n

n∑
i=1

(
I{εi ≤ t} − Fε(t) − I{−εi ≤ t} + (1 − Fε(−t))



+ εi(fε(t) + fε(−t)) + (ε2
i − 1)

t

2
(fε(t) − fε(−t))

)
+ op(1)

= R̃n(t) + op(1)

uniformly with respect to t ∈ IR, where the last line defines the process R̃n. Now a straightfor-
ward calculation of the covariances gives:

Cov(R̃n(s), R̃n(t)) = E
[(

I{ε1 ≤ s} − Fε(s) − I{−ε1 ≤ s} + F−ε(s)) + ε1(fε(s) + fε(−s))

+ (ε2
1 − 1)

s

2
(fε(s) − fε(−s))

)(
I{ε1 ≤ t} − Fε(t) − I{−ε1 ≤ t}

+ F−ε(t)) + ε1(fε(t) + fε(−t)) + (ε2
1 − 1)

t

2
(fε(t) − fε(−t))

)]
+ o(1)

= G(s, t),

where G(s, t) is defined in Theorem 3.1. To prove weak convergence of the process {Rn(t)}t∈IR

we prove weak convergence of {R̃n(t)}t∈R and write

R̃n(t) =
√

n(Pnht − Pht),

where Pn denotes the empirical measure based on ε1, . . . , εn, that is Pnht = 1
n

∑n
i=1 ht(εi), Pht

denotes the expectation E[ht(εi)] and

H = {ht | t ∈ IR}
is the class of functions of the form

ht(ε) = I{ε ≤ t} − I{−ε ≤ t} + ε(fε(t) + fε(−t)) + (ε2 − 1)
t

2
(fε(t) − fε(−t)).

To conclude the proof of weak convergence in �∞(H) we show that the class H is Donsker.
Applying Theorem 2.6.8 (and the remark in the corresponding proof) of van der Vaart and
Wellner (1996, p. 142) we have to verify that H is pointwise separable, is a VC–class and has
an envelope with finite second moment.
Using the assumptions made in Section 2 we have supt∈IR |fε(t)| < ∞, supt∈IR |tfε(t)| < ∞ and
due to this the class H has an envelope of the form

H(ε) = c1 + εc2 + (ε2 − 1)c3,

where c1, c2, c3 are constants. This envelope has obviously a finite second moment.
The function class G = {ht | t ∈ QI} is a countable subclass of H. For each ε ∈ IR the function
t �→ ht(ε) is right continuous. Hence for a sequence tm ∈ QI with tm ↘ t as m → ∞ we have
pointwise convergence gm(ε) = htm(ε) → ht(ε) for m → ∞. The convergence is also valid in
the L2–sense:

P ((gm − ht)
2) ≤ 6

(
Fε(t) − Fε(tm) + F−ε(t) − F−ε(tm) + E[ε2](fε(t) − fε(tm))2

+ E[ε2](fε(−t) − fε(−tm))2 + E[(ε2 − 1)2]
1

4
(tfε(t) − tmfε(tm))2

+ E[(ε2 − 1)2]
1

4
(tfε(−t) − tmfε(−tm))2

)
−→ 0 for m → ∞.



This proves pointwise seperability of H [see van der Vaart and Wellner (1996, p. 116)].
Sums of VC–classes of functions are VC–classes again [see van der Vaart and Wellner (1996, p.
147)]. The classes {ε �→ I{ε ≤ t} | t ∈ IR} and {ε �→ I{−ε ≤ t} | t ∈ IR} are obviously VC.
Finally, the function class

{ε �→ ε(fε(t) + fε(−t)) + (ε2 − 1)
t

2
(fε(t) − fε(−t)) | t ∈ IR}

is a subclass of the VC–class {ε �→ aε + bε2 | a, b ∈ IR}. This yields the VC–property of H and
concludes the proof of the weak convergence of the process {Rn(t)}t∈IR. �

4 Symmetric wild bootstrap

Suitable test statistics for testing symmetry of the error distribution Fε are, for example,
Kolmogorov–Smirnov or Cramer–von–Mises type test statistics,

sup
t∈IR

|Ŝn(t)| and

∫
Ŝ2

n(t) dĤn(t),(9)

where Ĥn is the empirical distribution function of |ε̂1|, . . . , |ε̂n| and the null hypothesis of
symmetry is rejected for large values of these statistics. The asymptotic distribution of the
test statistics can be obtained from Theorem 3.1, an application of the Continuous Mapping
Theorem and (in the latter case) the uniform convergence of Ĥn,

sup
t∈IR

|Ĥn(t) − H(t)| = op(1),

where H denotes the distribution function of |ε1|. A standard argument on contiguity [see
e. g. Witting, Müller–Funk (1995), Theorem 6.113, 6.124 and 6.138 or van der Vaart (1998),
Section 6] now shows that the resulting tests are consistent with respect to local alternatives
converging to the null at a rate n−1/2. However, because of the complicated dependence of
the asymptotic null distribution of the process Ŝn(t) on the unknown distribution function
these test statistics are not asymptotically distribution free. Thus the critical values cannot
be computed without estimating the unknown features of the error distribution of the data
generating process. To avoid the problem of estimating the distribution and density function
Fε, fε we propose a modification of the wild bootstrap approach, which is adapted to the specific
problem of testing symmetry.
For this let v1, . . . , vn be Rademacher variables, which are independent identically distributed
such that P (vi = 1) = P (vi = −1) = 1/2, independent of the sample (Xj, Yj), j = 1, . . . , n.
Note that wether the underlying error distribution Fε is symmetric or not the distribution of
the random variable viεi is symmetric with density gε and distribution function Gε defined by

gε(t) =
1

2
(fε(t) + fε(−t)), Gε(t) =

1

2
(Fε(t) + 1 − Fε(−t)),(10)

respectively. Define bootstrap residuals as follows,

ε∗i = vi(Yi − m̂(Xi)) = viσ̂(Xi)ε̂i (i = 1, . . . , n)



where ε̂i is given in (6). Now we build new bootstrap observations (i = 1, . . . , n)

Y ∗
i = m̂(Xi) + ε∗i

= viσ(Xi)εi + m̂(Xi) + vi(m(Xi) − m̂(Xi))

and estimated residuals from the bootstrap sample,

ε̂ ∗
i =

Y ∗
i − m̂∗(Xi)

σ̂∗(Xi)
,(11)

where the regression and variance estimates m̂∗ and σ̂∗2 are defined analogous to m̂ and σ̂2 in
(4) and (5) but are based on the bootstrap sample (Xi, Y

∗
i ), i = 1, . . . , n. In generalization of

definition (7) the bootstrap version of the empirical symmetry process is now defined as

Ŝ∗
n(t) = F̂ ∗

n,ε(t) − F̂ ∗
n,−ε(t) =

1

n

n∑
i=1

(
I{ε̂ ∗

i ≤ t} − I{−ε̂ ∗
i ≤ t}

)
.

The asymptotic behaviour of the bootstrap process conditioned on the initial sample is stated in
the following theorem. Note that the result is valid under the hypothesis of symmetry fε = f−ε

and under the alternative of a non-symmetric error distribution.

Theorem 4.1 Under the assumptions of Theorem 3.1 the bootstrap process

{√n(Ŝ∗
n(t) − h2B(t))}t∈IR,

conditioned on the sample Yn = {(Xi, Yi) | i = 1, . . . , n}, converges weakly to a centered
Gaussian process {S(t)}t∈IR with covariance

Cov(S(s), S(t)) = 2Gε(−(|s| ∨ |t|)) + 4gε(s)gε(t) + 4gε(s)

∫ t

−∞
xgε(x) dx + 4gε(t)

∫ s

−∞
xgε(x) dx

in probability, where the bias term is defined by

B(t) =

∫
K(u)u2 du gε(t)

∫
1

σ(x)
((mfX)′′(x) − (mf ′′

X)(x)) dx.

Here gε and Gε are given by (10) and under the null hypothesis of symmetry we have gε = fε,
Gε = Fε and Cov(S(s), S(t)) = H(s, t), where the kernel H(s, t) is defined in Corollary 3.2.

The proof of Theorem 4.1 is deferred to the Appendix.
From the theorem the consistency of a test for symmetry based on the wild bootstrap procedure
can be deduced as follows. Let Tn denote the test statistic based on a continuous functional
of the process Ŝn and let T ∗

n denote the corresponding bootstrap statistic based on Ŝ∗
n. If tn is

the realization of the test statistic Tn based on the sample Yn then a level α–test is obtained
by rejecting symmetry whenever tn > c1−α, where PH0(Tn > c1−α) = α. The quantile c1−α can
now be approximated by the bootstrap quantile c∗1−α defined by

P (T ∗
n > c∗1−α | Yn) = α.(12)

From Theorem 4.1 and the Continuous Mapping Theorem we obtain a consistent asymptotic
level α–test by rejecting the null hypothesis if tn > c∗1−α. We will illustrate this approach in a
finite sample study in Section 5.



5 Finite sample properties

In this section we investigate the finite sample properties of the bootstrap procedure proposed
in Section 4 by means of a simulation study. Exemplarily we consider the statistic

Tn =

∫
Ŝ2

n(t)dĤn(t),(13)

where

Ĥn(t) =
1

n

n∑
i=1

I{|ε̂i| ≤ t}

denotes the empirical distribution function of the absolute residuals |ε̂1|, . . . , |ε̂n|. If

T ∗
n =

∫
(Ŝ∗

n)2(t) dĤ∗
n(t)

is the bootstrap version of Tn, where Ĥ∗
n = F̂ ∗

n,ε + F̂ ∗
n,−ε − 1 denotes the empirical distribution

function of |ε̂ ∗
1 |, . . . , |ε̂ ∗

n|, the consistency of the bootstrap procedure follows from Theorem 4.1,
the Continuous Mapping Theorem and the fact that for all δ > 0 we have

P
(

sup
t∈IR

|Ĥ∗
n(t) − H(t)| > δ

∣∣∣Yn

)
= op(1).

For the bandwidth in the regression and variance estimator defined by (4) and (5), respectively,
we used

h =
( σ̂2

n

)3/10

,(14)

where

σ̂2 =
1

2(n − 1)

n−1∑
i=1

(Y[i+1] − Y[i])
2(15)

is an estimator of the integrated variance function
∫ 1

0
σ2(t)fX(t)dt and Y[1], . . . , Y[n] denotes the

ordered sample of Y1, . . . , Yn according to the X values [see Rice (1984)]. The same bandwidth
was used in the bootstrap step for the calculation of ε∗1, . . . , ε

∗
n and the corresponding estimators

m̂∗, σ̂∗.
B = 200 bootstrap replications based on one sample Yn = {(Xi, Yi) | i = 1, . . . , n} were per-
formed for each simulation, where 1000 runs were used to calculate the rejection probabilities.
The quantile estimate c∗1−α defined in (12) from the bootstrap sample T ∗,1

n , . . . , T ∗,B
n was defined

by

ĉ ∗
1−α = T ∗,(�B(1−α)�)

n ,

where T
∗,(i)
n denotes the ith order statistic of T ∗,1

n , . . . , T ∗,B
n . The null hypothesis H0 of a

symmetric error distribution was rejected if the original test statistic Tn based on the sample
Yn exceeded ĉ ∗

1−α.
The model under consideration was

Yi = sin(2πXi) + σ(Xi)εi , i = 1, . . . , n,(16)



for the sake of comparison with the results of Dette, Kusi-Appiah and Neumeyer (2002), who
proposed a test for symmetry in a nonparametric homoscedastic regression model with a fixed
design. Table 5.1 shows the approximation of the nominal level for the uniform design on the
interval [0, 1]. The error distribution is a normal distribution, a convolution of two uniform
distributions and a logistic distribution standardized such that E[ε] = 0, E[ε2] = 1, while the
variance function is constant i.e. σ(x) ≡ 1. We observe an accurate approximation of the
nominal level for sample sizes n ≥ 20.
The performance of the new test under alternatives is illustrated in Table 5.2, where a standard-
ized chi-square distribution with k = 1, 2, 3 degrees of freedom is considered. The non-symmetry
is detected in all cases with high probability, where the power increases with the sample size
and decreases with increasing degrees of freedom. The cases k = 1, 2 should be compared with
the simulation results in Dette, Kusi-Appiah and Neumeyer (2002), where the same situation
for a fixed design has been considered. We observe notable improvements with respect to the
probabilities of rejection in all considered cases. We note again that the procedure of these
authors requires a homoscedastic error, while the bootstrap test proposed in Section 4 is also
applicable under heteroscedasticity.
In order to investigate the impact of heteroscedasticity on the approximation of the level and
the probability of rejection under the alternative we conducted a small simulation study for
the case m(x) = sin(2πx), σ(x) = e−x

√
2(1 − e−2)−1/2, a normal distribution and chi-squared

distribution with k = 1, 2, 3 degrees of freedom standardized such that E[ε] = 0, E[ε2] = 1. The
explanatory variable is again uniformly distributed on the interval [0, 1]. Note that the variance

function was normalized such that
∫ 1

0
σ2(x)dx = 1 in order to make the results comparable with

the scenario displayed in Table 5.1 and 5.2. The results are presented in Table 5.3. We observe
no substantial differences with respect to the approximation of the nominal level (compare the
first case in Table 5.1 and 5.3) and a slight loss with respect to power, which is caused by the
heteroscedasticity (compare the cases df1, df2 and df3 in Table 5.3 with Table 5.2). The results
indicate that our procedure has a good performance under heteroscedasticity.

α n = 20 n = 30 n = 40 n = 50 n = 100
0.025 0.029 0.033 0.029 0.029 0.027
0.05 0.057 0.060 0.051 0.057 0.052

df1 0.10 0.109 0.111 0.107 0.107 0.104
0.20 0.214 0.216 0.215 0.193 0.209
0.025 0.035 0.032 0.024 0.032 0.029
0.05 0.062 0.055 0.051 0.068 0.057

df2 0.10 0.113 0.111 0.101 0.113 0.108
0.20 0.215 0.209 0.204 0.210 0.193
0.025 0.031 0.030 0.028 0.028 0.030
0.05 0.055 0.051 0.061 0.049 0.067

df3 0.10 0.108 0.101 0.112 0.102 0.105
0.20 0.199 0.204 0.202 0.197 0.192

Table 5.1: Simulated level of the wild bootstrap test of symmetry in the nonparametric re-
gression model (16) with σ(x) ≡ 1. The error distribution is a normal distribution (df1), a



logistic distribution (df2) and a sum of two uniforms (df3) standardized such that E[ε] = 0 and
E[ε2] = 1.

k α n = 20 n = 30 n = 40 n = 50 n = 100
0.025 0.358 0.654 0.849 0.957 1.000
0.05 0.484 0.764 0.912 0.981 1.000

1 0.10 0.584 0.847 0.959 0.991 1.000
0.20 0.716 0.914 0.983 0.998 1.000
0.025 0.239 0.458 0.698 0.817 0.998
0.05 0.342 0.570 0.805 0.896 1.000

2 0.10 0.442 0.681 0.865 0.936 1.000
0.20 0.594 0.794 0.934 0.976 1.000
0.025 0.208 0.436 0.604 0.750 0.982
0.05 0.303 0.565 0.710 0.833 0.995

3 0.10 0.414 0.667 0.812 0.895 0.998
0.20 0.551 0.790 0.886 0.939 0.999

Table 5.2: Simulated power of the wild bootstrap test of symmetry in the nonparametric re-
gression model (16) with σ(x) ≡ 1. The error distribution is a chi-square distribution with k
degrees of freedom standardized such that E[ε] = 0 and E[ε2] = 1.

α n = 20 n = 30 n = 40 n = 50 n = 100
0.025 0.030 0.033 0.034 0.031 0.032
0.05 0.056 0.061 0.063 0.062 0.050

df0 0.10 0.094 0.113 0.107 0.101 0.106
0.20 0.185 0.211 0.191 0.211 0.202
0.025 0.308 0.610 0.838 0.941 1.000
0.05 0.419 0.715 0.902 0.969 1.000

df1 0.10 0.551 0.814 0.947 0.987 1.000
0.20 0.693 0.898 0.975 0.993 1.000
0.025 0.218 0.413 0.639 0.796 0.995
0.05 0.314 0.541 0.737 0.870 0.997

df2 0.10 0.425 0.674 0.835 0.925 0.999
0.20 0.570 0.791 0.920 0.966 0.999
0.025 0.197 0.377 0.559 0.710 0.985
0.05 0.291 0.485 0.676 0.814 0.992

df3 0.10 0.407 0.618 0.776 0.881 0.997
0.20 0.539 0.766 0.884 0.941 1.000

Table 5.3: Simulated level and power of the wild bootstrap test of symmetry in the nonparamet-
ric regression model (16) with σ(x) =

√
2e−x(1− e−2)−1/2. The error distribution is a standard

normal distribution (df0) and chi-square distribution with k degrees of freedom (dfk, k = 1, 2, 3)
standardized such that E[ε] = 0, E[ε2] = 1.



A Appendix: Proof of Theorem 4.1

We decompose the residuals ε∗i defined in (11) in the following way,

ε̂ ∗
i = vi

σ(Xi)

σ̂∗(Xi)
εi + vi

m(Xi) − m̂(Xi)

σ̂∗(Xi)
+

m̂(Xi) − m̂∗(Xi)

σ̂∗(Xi)
.

Hence for t ∈ IR the inequality ε̂ ∗
i ≤ t is equivalent to

viεi ≤ td∗
n2(Xi) + vidn1(Xi) + d∗

n1(Xi)

and viε̂i ≤ t is equivalent to

viεi ≤ tdn2(Xi) + vidn1(Xi),

where we introduced the definitions

dn1(x) =
m̂(x) − m(x)

σ(x)
, dn2(x) =

σ̂(x)

σ(x)
,

d∗
n1(x) =

m̂∗(x) − m̂(x)

σ(x)
, d∗

n2(x) =
σ̂∗(x)

σ(x)
.

In the following we need four auxiliary results which are listed in Proposition 4.2–4.5 and can be
proved by similar arguments as given in Abritas and Keilegom (2001). For the sake of brevity
we will only sketch a proof of Proposition A.1 at the end of the general proof. The verification
of Proposition A.2 follows from a Taylor expansion as in the proof of Theorem 1 of Akritas
and Keilegom (2001) while the proof of Proposition A.3 follows exactly the lines of the proof
of Lemma 1, Appendix B, in this reference. The proof of Proposition A.4 is done by some
straightforward calculations of expectations and variances and is therefore omitted.

Proposition A.1 Under the assumptions of Theorem 3.1 we have

1

n

n∑
i=1

(
I{ε̂ ∗

i ≤ t} − P (vε ≤ td∗
n2(X) + vdn1(X) + d∗

n1(X) | Yn)

−I{viε̂i ≤ t} + P (vε ≤ tdn2(X) + vdn1(X) | Yn)
)

= op(
1√
n

)

uniformly in t ∈ IR.

Proposition A.2 Under the assumptions of Theorem 3.1 we have

P (vε ≤ td∗
n2(X) + vdn1(X) + d∗

n1(X) | Yn) − P (vε ≤ tdn2(X) + vdn1(X) | Yn)

−P (−vε ≤ td∗
n2(X) − vdn1(X) − d∗

n1(X) | Yn) + P (−vε ≤ tdn2(X) − vdn1(X) | Yn)

= 2gε(t)

∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x) + op(

1√
n

)

uniformly in t ∈ IR, where gε is defined in (10).



Proposition A.3 Under the assumptions of Theorem 3.1 we have

1

n

n∑
i=1

(
I{viε̂i ≤ t} − I{viεi ≤ t} − P (vε ≤ tdn2(X) + vdn1(X) | Yn) + P (vε ≤ t)

)
= op(

1√
n

)

uniformly in t ∈ IR.

Proposition A.4 Under the assumptions of Theorem 3.1 we have∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x) = h2B(t)/(2gε(t)) +

1

n

n∑
j=1

εjvj + op(
1√
n

)

where B(t) is defined in Theorem 4.1.

From Proposition A.1, an analogous result for the empirical distribution function F̂ ∗
n,−ε(t) =

1
n

∑n
i=1 I{−ε̂ ∗

i ≤ t}, and Proposition A.2 we have uniformly with respect to t ∈ IR [see also the
identity (8) in the proof of Theorem 3.1 and note that gε is symmetric]

Ŝ∗
n(t) − h2B(t) =

1

n

n∑
i=1

(
I{ε̂ ∗

i ≤ t} − I{−ε̂ ∗
i ≤ t}

)
− h2B(t)

=
1

n

n∑
i=1

(
I{viε̂i ≤ t} − I{−viε̂i ≤ t}

)
+ 2gε(t)

∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x)

−h2B(t) + op(
1√
n

).

Now an application of Proposition A.3, an analogous result for F̂ ∗
n,−ε(t), and Proposition A.4

yields

Ŝ∗
n(t) − h2B(t) =

1

n

n∑
i=1

(
I{viεi ≤ t} − I{−viεi ≤ t}

)
+ P (vε ≤ tdn2(X) + vdn1(X) | Yn)

− P (vε ≤ t) − P (−vε ≤ tdn2(X) − vdn1(X) | Yn) + P (−vε ≤ t)

+ 2gε(t)
1

n

n∑
j=1

εjvj + op(
1√
n

)

=
1

n

n∑
i=1

(
I{viεi ≤ t} − I{−viεi ≤ t} + 2gε(t)εivi

)
+ op(

1√
n

)

=
1

n

n∑
i=1

vi

(
I{εi ≤ t} − I{−εi ≤ t} + 2gε(t)εi

)
+ op(

1√
n

),

where in the last two equalities we have used P (vi = 1) = P (vi = −1) = 1/2. By an application

of Markov’s inequality we obtain, conditional on Yn, that the processes
√

n(Ŝ∗
n(t) − h2B(t))

and

R∗
n(t) =

1√
n

n∑
i=1

vi

(
I{εi ≤ t} − I{−εi ≤ t} + 2gε(t)εi

)
,



are asymptotically equivalent with respect to weak convergence, that is, for all δ > 0

P
(

sup
t∈IR

∣∣∣√n
(
Ŝ∗

n(t) − h2B(t)
)
− R∗

n(t)
∣∣∣ > δ

∣∣∣ Yn

)
= op(1).

To prove weak convergence we rewrite the process R∗
n as follows,

R∗
n(t) =

1√
n

n∑
i=1

viht(εi),

where the function class

F = {ht(ε) = I{ε ≤ t} − I{−ε ≤ t} + 2gε(t)ε | t ∈ IR}
is Donsker. Conditionally on the sample Yn, the finite dimensional distributions converge to
normal distributed random vectors on account of Lindeberg’s central limit theorem, for almost
every sequence ε1, ε2 . . . [compare van der Vaart and Wellner (1996, Lemma 2.9.5, p. 181)]. To
evaluate the covariance of the limit process, at first we calculate the conditional covariance,

Cov(R∗
n(s), R∗

n(t) | Yn) = E[R∗
n(s)R∗

n(t) | Yn] =
1

n

n∑
i=1

hs(εi)ht(εi)

=
1

n

n∑
i=1

(
I{εi ≤ s ∧ t} + I{−εi ≤ s ∧ t} − I{εi ≤ t,−εi ≤ s}

− I{−εi ≤ t, εi ≤ s} + 4gε(s)gε(t)ε
2
i + 2gε(s)εi(I{εi ≤ t}

− I{−εi ≤ t}) + 2gε(t)εi(I{εi ≤ s} − I{−εi ≤ s})
)
.

This conditional covariance converges almost surely to

Fε(s ∧ t) + F−ε(s ∧ t) + Fε((−s) ∧ t) + F−ε((−s) ∧ t) − Fε(t) − F−ε(t) + 4gε(s)gε(t)

+ 2gε(s)
(∫ t

−∞
xfε(x) dx −

∫ ∞

−t

xfε(x) dx
)

+ 2gε(t)
(∫ s

−∞
xfε(x) dx −

∫ ∞

−s

xfε(x) dx
)

= Cov(S(s), S(t)),

which is the covariance kernel claimed in Theorem 4.1. Conditional weak convergence of the
process R∗

n to a Gaussian process with the above covariance structure, in probability, now
follows from an imitation of the proof of the Conditional Multiplier Central Limit Theorem
of van der Vaart and Wellner (1996, Th. 2.9.6, p. 182). Note that under the null hypothesis
of symmetry the aforementioned theorem is directly applicable because in this case we have
E[ht(ε1)] = 0. �

Proof of Proposition A.1.

The proof of Proposition A.1 is similar to the proof of Lemma 1, Appendix B, of Akritas and
Keilegom (2001) and we only explain the main differences. The idea is to consider the process
quoted in Proposition A.1 as an empirical process of the form

1

n

n∑
i=1

(
f(vi, εi, Xi) − E[f(vi, εi, Xi)]

)
(17)



indexed by a class of functions F given by

F =
{
f(v, ε, x) = I{vε ≤ td∗

2(x) + vd1(x) + d∗
1(x)} − I{vε ≤ td2(x) + vd1(x)}

∣∣∣
t ∈ IR, d1, d

∗
1 ∈ C1, d2, d

∗
2 ∈ C2

}
.

The function classes C1 and C2 are defined by

C1 =
{

d : [0, 1] → IR
∣∣∣ d differentiable , ||d||1+δ ≤ 1

}
C2 =

{
d : [0, 1] → IR

∣∣∣ d differentiable , ||d||1+δ ≤ 2, inf
x∈[0,1]

d(x) ≥ 1/2
}
,

where δ is defined in Section 2 and

||d||1+δ = max
{

sup
x∈[0,1]

|d(x)|, sup
x∈[0,1]

|d′(x)|
}

+ sup
x,y∈[0,1]

|d′(x) − d′(y)|
|x − y|δ/2

.

The function class F is Donsker and we have

lim
n→∞

P
(
dn1 ∈ C1 and dn2 ∈ C2

)
= 1

[see the proof of Lemma 1, Appendix B, Akritas and Keilegom (2001)]. Similarly, in order to
show

lim
n→∞

P
(
d∗

n1 ∈ C1 and d∗
n2 ∈ C2

)
= 1

we have to verify the following conditions,

sup
x∈[0,1]

|m̂∗(x) − m̂(x)| = o(1) a. s.(18)

sup
x∈[0,1]

|σ̂∗(x) − σ̂(x)| = o(1) a. s.(19)

sup
x∈[0,1]

|(m̂∗)′(x) − m̂′(x)| = o(1) a. s.(20)

sup
x∈[0,1]

|(σ̂∗)′(x) − σ̂′(x)| = o(1) a. s.(21)

sup
x,y∈[0,1]

|(m̂∗)′(x) − m̂′(x) − (m̂∗)′(y) + m̂′(y)| / |x− y|δ/2 = o(1) a. s.(22)

sup
x,y∈[0,1]

|(σ̂∗)′(x) − σ̂′(x) − (σ̂∗)′(y) + σ̂′(y)| / |x− y|δ/2 = o(1) a. s.(23)

The condition (18) is valid due to the following decomposition

m̂∗(x) − m̂(x) =
1

f̂X(x)

1

nh

n∑
i=1

K
(x − Xi

h

)
(Y ∗

i − m̂(x)) = M1(x) + . . . + M4(x)

where f̂X(x) = 1
nh

∑n
i=1 K(x−Xi

h
) is the kernel estimator for the design density fX and

M1(x) = m(x) − m̂(x)



M2(x) =
1

f̂X(x)

1

nh

n∑
i=1

K
(x − Xi

h

)
(m(Xi) + σ(Xi)viεi − m(x))

M3(x) =
1

f̂X(x)

1

nh

n∑
i=1

K
(x − Xi

h

)
(m̂(Xi) − m(Xi))

M4(x) =
1

f̂X(x)

1

nh

n∑
i=1

K
(x − Xi

h

)
vi(m̂(Xi) − m(Xi)).

We directly obtain supx∈[0,1] |M1(x)| = o(1) and supx∈[0,1] |M2(x)| = o(1), almost surely, because
M2(x) is equivalent to m̃(x) − m(x) where m̃(x) is the Nadaraya–Watson estimator for m(x)

in the regression model Ỹi = m(Xi) + σ(Xi)viεi. We straightforward estimate

sup
x∈[0,1]

|M3(x)| ≤ sup
x∈[0,1]

|m̂(x) − m(x)| = o(1)

almost surely and the same estimation is valid for supx∈[0,1] |M4(x)|. Conditions (19)–(23) can
be shown in a similar manner.
Now the result of Proposition A.1 follows analogous to the proof of Lemma 1 of Akritas and
Keilegom (2001) with an application of Corollary 2.3.12 of van der Vaart and Wellner (1996,
p. 115) and Var(f(vi, εi, Xi)) → 0 for

f(vi, εi, Xi) = I{viεi ≤ td∗
n2(Xi) + vidn1(Xi) + d∗

n1(Xi)} − I{viεi ≤ tdn2(Xi) + vid
∗
n1(Xi)}.
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