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Abstract

This note gives an easily verified necessary and sufficient condition

for one probability forecaster to empirically outperform another

one in terms of all strictly proper scoring rules.
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1 The problem and notation

Probability forecasting has a long and distinguished history in meteorology and

medicine. Due to the increasing importance of default predictions in the credit

industry, it has recently become important also in economics, so the subsequent

discussion is couched in terms of default probabilities for corporate bonds.

Let 0 = a1 < a2 < . . . < ak = 1 be k predicted probabilities of default.

We circumvent the problem of converting conventional letter grades such as
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AAA into predicted probabilities of default by equating the latter to historical

default frequencies below. This note is not concerned with the intricacies of

correctly mapping letter grades probabilities of default, but with assessing the

empirical performance of competing rating agencies.

Let q(ai) be the relative frequency with which default probability forecast ai

is made and let p(ai) be the conditional relative frequency of default given

probability forecast ai. Given two rating agencies A and B who rate the same

n borrowers, with frequency functions qA(ai), q
B(ai), p

A(ai) and pB(ai), it is

then natural to ask whose forecasts have been better? Below it is shown that,

in a sense, an unequivocal answer is possible if and only if A and B can be

ranked according to the ”empirical refinement ordering”. Otherwise, there will

always exist two strictly proper scoring rules such that one prefers A to B and

the other prefers B to A.

2 The empirical refinement ordering

DeGroot and Fienberg (1983) introduce the refinement ordering among well

calibrated probability forecasters. A probability forecaster is called well cali-

brated if, among borrowers with predicted default probability ai, the long-run

relative percentage of defaults is equal to ai:

ai = p(ai). (2.1)

A well calibrated forecaster A is called ”more refined” than B, in symbols:

A ≥R B, if there exists a k×k Markov matrix M (i.c. a matrix with nonnegative

entries whose columns seems to unity) such that

qB(ai) =
k∑

j=1

Mijq
A(aj) (2.2)
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and

aiq
B(ai) =

k∑

j=1

Mijajq
A(aj) (i = 1, . . . , k). (2.3)

Equation (2.2) means that, given A’s forecast aj, an additional independent

randomisation is applied according to the conditional distribution Mij (j =

1, ..., k) which produces forecasts with the same probability function as that of

B. Condition (2.3) ensures that the resulting forecast is again well calibrated.

Below, calibration is ensured by equating observed default rates to predicted

ones. A forecaster who then dominates another one in the refinement sense is

called ”empirically more refined”.

The crucial point for the subsequent discussion, first observed by DeGroot and

Eriksson (1985), is that A ≥R B is equivalent to the fact that the distribution

qA(ai) second-order stochastically dominates the distribution qB(ai). This al-

lows to tap the vast literature on necessary and sufficient conditions for second

order stochastic domination. In particular, we can use a theorem dating back

to Hardy, Littlewood and Polya (1929) which states that A ≥R B if and only

if

k∑

i=1

g(ai)q
A(ai) ≥

k∑

i=1

g(ai)q
B(ai) (2.4)

for all continuous, convex functions g on the unit interval. This key inequality

is now related to scalar measures of forecasting performance known as scoring

rules.

3 Strictly proper scoring rules

Let θi(i = 1, . . . , n) be an indicator variable taking the value 1 if borrower i

defaults and 0 otherwise, and let Pi ∈ {a1, . . . , ak} be the default probability
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attached to borrower i. A scoring rule is a function F (θ1, . . . , θn; p1, . . . , pn)

which is designed to measure the performance of a forecast. Examples are the

Brier-Score

B = − 1

n

n∑

j=1

(pi − θi)
2, (3.5)

the logarithmic score

L = − 1

n

n∑

i=1

`n(|pi + θi − 1|) (3.6)

or the spherical score

S =
1

n

n∑

i=1

|pi + θi − a|√
p2

i + 1− pi)2
(3.7)

(see e.g. Winkler 1996). A scoring rule can also be viewed as a random variable

which takes a value S1(p) if the forecaster reports a predicted probability p for

the event in question and the event actually occurs, and which takes a value

S2(p) if the event in question does not occur. For the Brier-score, we have

S1(p) = −(p−1)2 and S2(p) = −p2. A scoring rule is called ”strictly proper” if

its expectation, given the subjective probability distribution of the forecaster,

is maximized if and only if the probability forecasts are equal to the subjective

probabilities. All scoring rules above are strictly proper.

A key result about proper scoring rules, due to Savage (1971), states that a

scoring rule is strictly proper if and only if the subjectively expected score for

a forecaster who reports his true subjective probabilities, viewed as a function

of p, is a strictly convex function. For the Brier-score, for instance, we have

E[B(p)] = −[p(p− 1)2 + p2(1− p)] = −[p(1− p)]. (3.8)
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Also, any strictly convex function on the unit interval induces a strictly proper

scoring rule via

S1(p) = E[S(p)] + (1− p)dE[S(p)]/dp (3.9)

and

S2(p) = E[S(p)]− pdE[S(p)]/dp (3.10)

(see Winkler 1996, section 3).

In the credit rating context, default probabilities are often equated to ob-

served default frequencies. For this to make sense, the sample has to be quite

large, of course. Then it is natural to evaluate scoring rules by attaching to

borrower i the observed frequency of the grade borrower i has been sorted into.

THEOREM: If predicted default probabilities are equal to observed

default rates, then forecaster A outperforms forecaster B according to all

strictly proper scoring rules if and only if A is empirically more refined than B.

PROOF: The key to the proof of the theorem is to show that all empiri-

cally computed proper scoring rules, which are initially defined as functions

of θ1, . . . , θn and p1, . . . , pn, depend on these inputs only via a1, . . . , ak and

some strictly convex function g. To see this, note that pi is by definition equal

to the empirical default rate of grade aj ∈ {a1, . . . , ak} which has been as-

signed to borrower i. Then the forecaster is by definition well calibrated, and

a percentage q(aj) of the predicted p’s are equal to aj. For these p’s and the

corresponding θ’s, the observed score is equal to the expected score, computed
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under the assumption that the realized default rate in class ai corresponds to

the predicted one:

S(θ1, . . . , θn; p1, . . . , pn) =
k∑

j=1

q(aj)[ajS1(aj) + (1− aj)S2(aj)], (3.11)

where

g(a) := aS1(a) + (1− a)S2(a) (3.12)

is a strictly convex function in view of Savage (1971). The assertion of the

theorem then immediately follows from (2.4).
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