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Summary

The minimum number of misclassi�cations achievable with a�ne hyper-
planes on a given set of labeled points is a key quantity in both statistics
and computational learning theory. However, determining this quantity
exactly is essentially NP-hard, c.f. H�o�gen, Simon and van Horn (1995).
Hence, there is a need to �nd reasonable approximation procedures. This
paper compares three approaches to approximating the minimum number
of misclassi�cations achievable with a�ne hyperplanes. The �rst approach
is based on the regression depth method of Rousseeuw and Hubert (1999)
in linear regression models. We compare the results of the regression depth
method with the support vector machine approach proposed by Vapnik
(1998), and a heuristic search algorithm.

1The �nancial support of the Deutsche Forschungsgemeinschaft (SFB 475, "Reduction
of complexity in multivariate data structures") is gratefully acknowledged.
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1 Introduction

Both in statistics and machine learning, generalized linear models for bi-
nary responses are among the most popular approaches to modelling the
occurrence of an event depending on a vector of explanatory variables, say
xi = ( xi;1; : : : ; xi;p�1) 2 IRp�1. The events can be, for example, the occur-
rence of a special kind of illness in medical applications or the purchase of a
product by a customer in direct marketing. The responses yi are commonly
assumed to be realisations of independent Bernoulli random variables Yi.
From a given set of observations Zn = f(xi;1; : : : ; xi;p�1; yi); i = 1 ; : : : ; n g �
IRp, where yi 2 f 0;1g for i = 1 ; : : : ; n , one aims to �nd an a�ne hyperplane
de�ned via � 2 IRp such that a good classi�cation of the responses is possible.
A central role concerning the existence and the quality of such estimates
plays the quantity nco de�ned as follows. For the given data set Zn, nco is
the minimum number of misclassi�cations that any a�ne hyperplane must
incur. In particular, if nco = 0, the data set is completely separated so that
there exists a vector � 2 IRp such that

(xi; 1)�
0 > 0 if yi = 1 (1)

(xi; 1)�
0 < 0 if yi = 0 (2)

for i = 1 ; : : : ; n . In other words,nco denotes the smallest number of observa-
tions whose removal yields complete separation. What can nco be used for?
The following names a few:

� For logistic regression with an intercept term, it is well-known that the
classical maximum likelihood estimate of � does not exist for all data
sets. Albert and Anderson (1984) and Santner and Du�y (1986) showed
that the maximum likelihood estimate of � does not exist, if the data
is completely separable, i.e. nco = 0.

� The opposite holds true when training a single linear threshold function
using the Perceptron (Rosenblatt, 1962) algorithm. The Perceptron
algorithm is guaranteed to converge only for data sets with nco = 0
(Noviko�, 1962).

� And �nally, when assessing the quality of linear models according to the
empirical risk minimization principle (Vapnik, 1998), nco is a parameter
in bounds on the prediction error.

Unfortunately, the problem of determining the exact minimum number of
misclassi�cations nco based on an a�ne hyperplane for arbitrary dimensions
is essentially NP-hard, c.f. H�o�gen, Simon and van Horn (1995). Hence,
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there is a need to �nd reasonable approximation procedures for the mini-
mum number of misclassi�cations. This paper compares the results of three
methods to approximate the number of misclassi�cations based on an a�ne
hyperplane. We investigate the recently proposed regression depth method
(Rousseeuw and Hubert, 1999, and Christmann and Rousseeuw, 1999), the
support vector machine (Vapnik, 1998), and a simple heuristic algorithm.

2 Regression depth

Rousseeuw and Hubert (1999) introduced the regression depth approach for
linear regression models. Christmann and Rousseeuw (1999) showed that
the regression depth method is useful for binary regression models, too. In
the following we will consider the logistic model, although the method can
be used for other binary regression models in an analogous manner. Data
sets analyzed with such models have the form Zn = f(xi;1; : : : ; xi;p�1; yi);
i = 1 ; : : : ; n g �IRp where yi 2 f 0;1g for i = 1 ; : : : ; n . For simplicity, we will
assume that the design matrix has full column rank.

De�nition 2.1 A vector � = ( �1; : : : ; �p) 2 IRp is called a non�t to Zn i�
there exists an a�ne hyperplane V in x�space such that no xi belongs to V ,
and such that the residual ri(�) = yi� �((xi; 1)�

0) > 0 for all xi in one of
its open halfspaces, and ri(�) < 0 for all xi in the other open halfspace.

De�nition 2.2 The regression depth of a �t � = ( �1; : : : ; �p) 2 IRp rela-
tive to a data set Zn � IRp is the smallest number of observations that need
to be removed to make � a non�t in the sense of De�nition 2.1. Equivalently,
rdepth(�; Zn) is the smallest number of residuals that need to change sign.

From De�nition 2.2 it follows for logistic models that the regression depth of
a �t � relative to Zn is equal to the regression depth of �� relative to the
data set f(xi;1; : : : ; xi;p�1; 1�yi); i = 1 ; : : : ; n g. Hence, the regression depth
is invariant with respect to di�erent codings of the binary response variable.
Let us illustrate the de�nition of the regression depth by an arti�cial data
set with two explanatory variables x1 and x2 and an intercept term:

X =

�
�1; 0; 0; 1; 1; 2 ; 3; 3; 3:5
3; 1; 2; 2; 4; 1:8; 1; 3; 4

�0
; (3)

y = (0 ;0; �; 0; 0; 1; 1; 1; 1)0 : (4)

If the data point y2 denoted by � in (4) is a failure, i.e. y2 = 0, then the
sets fyi = 0; i = 1 ; : : : ; n gand fyi = 1; i = 1 ; : : : ; n gcan be separated
by an appropriate a�ne hyperplane, which is indicated as a line in Figure
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Figure 1: Illustration of complete separation.

1, and hence nco = 0. If complete separation is possible, there may exist
several a�ne hyperplanes separating both response groups. The maximum
likelihood estimate of � does not exist in a logistic regression model in that
case, due to complete separation.
If the data point denoted by � in (4) has y2 = 1, then the sets fyi = 0; i =
1; : : : ; n g and fyi = 1; i = 1 ; : : : ; n gcannot be separated by an a�ne hyper-
plane, and nco = 1. In that case, the maximum likelihood estimate of � in a
logistic regression model does exist.
There exists an interesting connection between regression depth and complete
separation. De�ne the horizontal hyperplane de�ned by �� = (0 ; : : : ;0; 0:5).
Then �� is a non�t i� nco = 0, and more generally nco = rdepth(��; Zn).
This implies that nco can be computed with an algorithm for the regression
depth of a given hyperplane, c.f. Christmann and Rousseeuw (1999). For p 2
f2; 3; 4g the latter can be computed by the O(np�1 log(n)) time algorithms of
Rousseeuw and Hubert (1999) and Rousseeuw and Struyf (1998). For p � 3,
Rousseeuw and Struyf (1998) constructed a fast approximation algorithm
based on appropriate projections for the regression depth. The main idea
of the algorithm for p � 3 is to approximate the p�dimensional regression
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depth by the minimum of certain two-dimensional regression depths. We use

nco = rdepth(��; Zn) (5)

= min
�2IRp

rdepth(��; ~Zn(�)) (6)

� min
�2B�IRp

rdepth(��; ~Zn(�)) =: nco(B) ; (7)

where

~Zn(�) = f((xi; 1)�
0; yi); i = 1 ; : : : ; n g �IR2; � 2 IRp: (8)

The set B is determined via projections de�ned by a large number, say 104,
of random subsamples of the original data set. Details of the algorithm are
described in Christmann and Rousseeuw (1999).
Of course, this approximation algorithm to compute nco(B) is computer in-
tensive, if the dimensions n or p or the number of samples to be drawn, i.e.
jBj, are high. Further, drawing random subsamples of the original data set
often result in a�ne hyperplanes for which the number of misclassi�cations
is much higher than for the desired a�ne hyperplane.
This motivates us to study the results for other determinations of the set B
in (7). A naive alternative to nco(B) is to use only one special vector b in
(7). We investigate

b = �̂ML if �̂ML exists

= �̂(k) otherwise,

where �̂(k) is the last vector computed by the usual Fisher-scoring algorithm
to compute the ML estimate in the logistic regression model after stopping
due to detection that there is no overlap in the data set. We compute b by
the SAS procedure PROC LOGISTIC. This SAS procedure gives a warning if
the data set has complete separation or quasicomplete separation, but stores
�̂(k) and the linear combinations of (xi; 1) and �̂(k). In the same manner, let
s(b) be the asymptotic standard error of the ML estimate, if it exists, or the

corresponding quantity evaluated for the �̂(k). Of course, other programs to
compute ML estimates in the logistic regression model can also be used.
The naive method nco(b) often gives good approximations of nco. Neverthe-
less, it seems reasonable to �nd better approximations of nco in an iterative
manner as follows.
The heuristic method nco(h) tries to �nd good approximations of nco using
the vector b as a starting vector for a local search based on the regression
depth method and an additional grid search, where sequentially some of the
components are set to zero. A description of the heuristic method is given in
the appendix.
In the following section a relationship between the regression depth approach
and the support vector machine is shown.
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Figure 2: Illustration of the support vector machine.

3 Support vector machine

Vapnik (1998) proposed the support vector machine, which can be described
as follows for the case of pattern recognition. As is usual in the literature on
the support vector machine, the responses are recoded as �1=+1 instead of
0=1. Decompose � in the slope part, sayw = ( �1; : : : ; �p�1), and the intercept
part �p.
To emphasize the connections between the support vector machine and the
regression depth method, let us consider the same two-dimensional data set
as before, c.f. Figure 2. If the data point marked as � is equal to �1, then
the solid line gives a perfect separation of the response groups. The region
speci�ed by the dotted border lines is called the margin. It is implicitely
de�ned via the data points on it's boundary. These data points are called
support vectors. The margin is de�ned as the maximum distance between
parallel a�ne hyperplanes which separate both response groups.
However, if the data point marked as � is equal to +1, no perfect separation
is possible by an a�ne hyperplane. The marked data point lies within the
convex hull of the opposite class with a distance proportional to �i minus the
margin size.
The aim of the support vector machine is to maximize the width between
all possible parallel a�ne hyperplanes which separate both response groups
while penalyzing misclassi�cations by a large positive extra cost C. Accord-
ingly, the support vector machine solves the following quadratic optimization
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problem:

(P) minimize (w.r.t. w; b; �): 1
2 jjwjj

2 + C
P

i �i
subject to (xi; 1)�

0 � +1� �i for yi = +1
(xi; 1)�

0 � � 1 +�i for yi = �1
�i � 0 .

Here, C > 0 is a penalty parameter speci�ed by the data analyst to model
an extra cost for errors. The quantity �i must exceed unity for a misclassi�-
cation to occur. Hence, the sum over the slack parameters

P
i �i is an upper

bound on the number of training errors, c.f. Burges (1998). Increasing C
corresponds to a higher penalty to errors.
In practice, one usually solves the following dual program

(D) minimize (w.r.t. �): 1
2 �

0Q�� �01
subject to �0y = 0

0 � � � C1
where (Q)ij = yiyj x

0

ixj .

Using the Karush-Kuhn-Tucker conditions of the dual program (D), the quan-
tities w, b, and � can be computed in the following way. The slope part of �
is given by

w =

nX
i=1

�iyixi : (9)

If 0 < �i < C then b = yi � xTi w. While this value of b corresponds to the
solution of the primal problem (P), b is commonly selected to directly mini-
mize the number of training errors for the given w (Burges, 1998). This can
easily be done after sorting all training points according to their projection
on w. This approach is followed in the experiments presented here.
Of particular interest is the fact that the dual problem (D) depends only on
inner products between vectors of explanatory variables. Substituting Mercer
kernels for the simple dot product allows SVMs to e�ciently estimate not only
linear, but also e.g. polynomial functions (Boser et al., 1992).
If the number of observations n or the dimension p is large, solving the
minimization problems (P) or (D) is computer intensive. Please note, that
some algorithms require storing the huge matrix Q 2 IRn�n or the whole
matrix specifying the constraints. This is true e.g. for PROC NLP or the
IML function NLPQUA in SAS (Version 8), which both can be used to solve
(D) for small to moderate data sets.
We use SVMlight (Joachims, 1999) for solving the SVM optimization problem
(D). SVMlight is designed to e�ciently handle problems with large p (e.g.
30,000) and large n (e.g. 100,000). To avoid computing and storing the
full Hessian of (D), the algorithm of SVMlight proceeds by decomposing the
problem (Osuna et. al, 1997). Only a few variables (q � 10) are optimized
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at a time. Their selection is based on a steepest feasible descent strategy. To
reduce zig-zagging behavior, the original selection criterion (Joachims, 1999)
is modi�ed for the experiments reported here. The working set is updated like
a queue, with only two new variables entering in each iteration. Using this
decomposition, the algorithm solves only small quadratic programs in each
step. This leads to small memory requirements. In particular, memory does
not scale O(n �n) like for algorithms requiring the full Hessian, but typically
only by O(n � s), where s is the number of support vectors. The number of
support vectors is generally much lower than n. To increase the numerical
stability of SVMlight we use SVMlight in conjunction with the PR-LOQO
optimizer developed by Smola (1998). Further, the data of all explanatory
variables are standardized such that the mean is equal to 0 and the (euclidean)
norm is equal to 1. This transformation often avoids numerical problems due
to di�erent scalings of the explanatory variables.

4 Data sets

In the next section we will compare the results of nco(B), nco(b), nco(h) and
SVMlight for the following data sets. They cover a broad range of typical
combinations of n and p.
There is complete separation in the banknotes data set (Riedwyl, 1997) and
in the hemophilia data set (Hermans and Habbema, 1975).
The vaso constriction data set (Finney, 1947, Pregibon, 1981) and the food
stamp data set (K�unsch, Stefanski and Carroll, 1989) are well-known in the
literature on outlier detection and on robust logistic regression. Christmann
and Rousseeuw (1999) show that there are only 3 and 6 observations in these
data sets, respectiveley, which can be deleted such that the maximum likeli-
hood estimate �̂ does not exist for the reduced data sets. Some of these ob-
servations are well-known outliers, c.f. K�unsch, Stefanski and Carroll (1989).
The cancer remission data set (Lee, 1974) is chosen because n=p � 4 is small.
The birth weight data set (Hosmer and Lemeshow, 1989) and the coronary
heart disease data set (Pires, 1995) are chosen because p is moderate but n
is not large.
The toxoplasmosis data set (Efron, 1986) and the IVC data set (Jaeger et
al. (1997, 1998), Christmann and Rousseeuw, 1999)) are chosen, because p is
small but n is large. The IVC data set is a subset of larger data set from an
in vitro experiment to study possible risk factors of the thrombus-capturing
e�cacy of inferior vena cava (IVC) �lters. We focus on the study of a partic-
ular conical IVC �lter, for which the design consisted of 48 di�erent vectors
of the form (xi;1; xi;2; xi;3; xi;4). For each vector there were mi replications
with mi 2 f 50;60; 90; 100g, yielding a total of n = 3200.
To also explore a larger data set, we consider a medium-sized text classi-
�cation problem. The data set WEB collected by Platt (1999) consists of
n = 49749 WWW-pages represented by their frequency histrogram of 300
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words (i.e. p = 301). The task is to classify the pages by content.
Finally, the data sets Example 1 and 2 are simulated in the following way to
investigate some other complex data sets. Here, n = 104 and p = 21. The �rst
5 columns are dummy variables from Bernoulli distributions with parameter
0.2, 0.3, 0.4, 0.5, and 0.6, respectively. The last 15 columns of the design
matrix X are simulated from a standard normal distribution. The responses
Yi are simulated from a logistic regression model with success probabilities
�((xi; 1)�

0), where �j = 1, j = 1 ; : : : ; p . The data set Example 1 constructed
in this way has overlap. The only di�erence between both data sets is, that
a complete separation is arti�cially constructed in Example 2 by de�ning
yi = 1, if (xi; 1)�

0 > 5, and yi = 0, if (xi; 1)�
0 � 5.

5 Results

In this section we compare the results and the computation times given
by SVMlight and by the regression depth method, i.e. nco(B), nco(b), and
nco(h), for the data sets described in the previous section. Our main cri-
terion is a low number of misclassi�cations. The computation time is our
secondary criterion. The computations were done on an IBM/RS6000 Unix
workstation, which is approximately twice as fast than a Pentium PC with
166 MHz for our problem. The maximum amount of computation time was
set to six hours for each situation.
For the 4 data sets with dimension p 2 f 3;4g we were able to determine
the exact value of nco using the algorithms of Rousseeuw and Struyf (1998).
Further, the exact value of nco is known for the banknotes data set and for
example 1 because at least one method determines an a�ne hyperplane which
gives a complete separation.
For the �rst 8 small data sets, none of the considered methods gave con-
sistently better results with respect to the main criterion than the simple
heuristic method nco(h), c.f. Table 1. For all 6 data sets for which the exact
value of nco is known, this approximation method yielded the exact value.
Whereas nco(h) is relatively fast for small to moderately large data sets, it
can be very slow for high dimensional data sets, c.f. Table 2. E.g., the run-
time of nco(h) on the WEB data for L = 104 exceeds six hours. On large data
sets, the SVM is competitive in term of the approximation quality. The SVM
�nds better approximations on the IVC and the WEB data, while being less
accurate on the arti�cial examples. An increase of L yielded smaller values
of nco(h) only for two data sets (coronary heart disease data and example 2).
The method nco(B) yield estimates of nco which are not much larger than
nco(h) for small to moderately large data sets and usually better results than
the naive approach nco(b). However, in both simulated examples, which are
more complex, the subsampling method nco(B) does not work well for 104

subsamples. For the WEB data the runtime of nco(B) exceeds six hours.
Reducing to 103 subsamples, nco(B) �nds only a very loose approximation
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Table 1: Values of nco and approximations computed by nco(B) with 104

subsamples, nco(b), nco(h) with L = 103 and L = 104, and SVMlight with
options C = 103=(p � 1) and C = 105=(p � 1) (e = 10�3, q = 6, n = 2) for
several data sets.

Data set (n; p) nco nco(B) nco(b) nco(h) SVM Lmax

104 103 104 103 105

1 Banknotes (200; 7) 0 0 0 0 0 1 0 100
2 Hemophilia (52; 3) 0 0 0 0 0 1 0 22
3 Vaso constriction (39; 3) 3 3 3 3 3 3 3 19
4 Food stamp (150; 4) 17 17 21 17 17 21 17 24
5 Cancer remission (27; 7) � 3 4 3 3 3 4 9
6 Birth weight (189; 11) � 47 49 41 41 48 49 59
7 CHD (113; 10) � 15 12 10 9 12 13 30
8 Toxoplasmosis (697; 4) 284 284 289 284 284 290 290 341
9 IVC (3200; 5) � 458 462 458 458 467 445 748
10 WEB (49749; 301) � � 596 587 � 685 577 1479
11 Example 1 (10000; 21) 0 1396 0 0 0 68 23 2248
12 Example 2 (10000; 21) � 2082 1142 1119 1109 1160 1150 3254

Lmax = minf
P

yi;
P
(1� yi)g

nco(B) = 1244 for the WEB data.
Somewhat astonishing, the naive approach nco(b) performs much better for
large data sets and needs only a fraction of the computation time used by
nco(B). The method nco(b) is able to detect complete separation in all three
separable data sets banknotes, hemophilia, and example 1. By construction,
the heuristic method heritates this property from nco(b).
For the small to moderately large data sets (no. 1 to 9), SVMlight performs
comparably to nco(b). The computation time is not of primary interest for
such data sets. For large data sets, SVMlight �nds the best approximation
among all methods for the IVC and the WEB data set. Especially for the
high dimensional data set WEB, SVMlight and nco(b) are the only algorithms
that still exhibit acceptable runtime performance.
Please note that the results of SVMlight critically depend on C, c.f. Tables
1 and 2. In general C = 105=(p � 1) gives a better approximation of nco
than C = 103=(p � 1), but the computation time also increases. While for
C = 105=(p � 1) SVMlight successfully detects complete separation for the
banknotes and the hemophilia data, it fails for the arti�cial example 1. This
data set is particularly di�cult for the SVM, since it has a small margin by
construction.
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Table 2: Computing times in seconds for nco and its approximations by the
programs nco(B) with 104 subsamples, nco(b), nco(h) with L = 103 and
L = 104, and SVMlight with options C = 103=(p � 1) and C = 105=(p � 1)
(e = 10�3, q = 6, n = 2) for several data sets.

Data set (n; p) nco nco(B) nco(b) nco(h) SVM
104 103 104 103 105

1 Banknotes (200; 7) � 0.7 0.2 0.2 0.2 0.1 0.1
2 Hemophilia (52; 3) 0.1 0.1 0.1 0.1 0.2 0.1 0.1
3 Vaso constriction (39; 3) 0.1 1.1 0.1 0.6 5.2 0.1 0.4
4 Food stamp (150; 4) 11.1 4.5 0.1 2.3 21.2 0.1 0.3
5 Cancer remission (27; 7) � 3.4 0.1 0.6 5.1 0.1 1.3
6 Birth weight (189; 11) � 15.6 0.1 4.4 39.5 0.4 6.8
7 CHD (113; 10) � 11.3 0.1 2.5 22.2 0.2 4.8
8 Toxoplasmosis (697; 4) 1142.0 2.0 0.1 0.9 7.4 1.8 5.9
9 IVC (3200; 5) � 3.6 0.5 2.0 14.7 3.7 8.5
10 WEB (49749; 301) � � 396.0 14914.2 � 133.8 700.8
11 Example 1 (10000; 21) � 754.4 33.0 32.9 32.9 23.5 22.9
12 Example 2 (10000; 21) � 753.4 32.1 391.0 3307.0 39.8 55.4

6 Summary

The problem of determining the exact minimum number of misclassi�cations
based on an a�ne hyperplane is essentially NP-complete, c.f. H�o�gen, Simon
and van Horn (1995). Hence, there is a need to �nd reasonable approximation
procedures.
In this paper we used the regression depth method introduced by Rousseeuw
and Hubert (1999) and the support vector machine approach (Vapnik, 1998)
to �nd such approximations. There are interesting relations between both
approaches and the notion of complete separation in the logistic regression
model (Albert and Anderson, 1984, Santner and Du�y, 1986).
The results show that it can be helpful in applications to use more than
one method to determine a reasonable approximation of the exact minimum
number of misclassi�cation based on an a�ne hyperplane if an exact deter-
mination is not possible in a �xed time period.
Summarizing, nco(h) performed well for small to moderate data sets, and the
support vector machine and nco(b) performed well for large high dimensional
data sets.
The approximation algorithm nco(B) investigated in Christmann and
Rousseeuw (1999) gave good { but in general not optimal { results for small
to moderate data sets, but can drastically fail for more complex data sets.
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The heuristic method based on two-dimensional regression depths seems to
be an interesting alternative specially for small and moderately sized data
sets, but is slow for high dimensional data sets.
The support vector machine can be an interesting alternative to nco(B). It's
use is most appropriate especially for large and high dimensional data sets,
when nco(B) becomes computationally too ine�cient. However, SVM often
gave worse upper bounds for the number of misclassi�cations. Similar to the
SVM, for large data sets the naive method nco(b) can result in a relatively
small number of misclassi�cations and can outperform other methods under
considerations.
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Appendix

In the following we give pseudo-code for the heuristic method.

1. Read Zn = f(xi;1; : : : ; xi;p�1; yi); i = 1 ; : : : ; n g. Standardize the
x�variables.

2. Determine the number of different points (xaj;1; : : : ; x
a
j;p�1; y

a
j ),

say na. For each j 2 f 1; : : : ; nag count the number tj of tied
data points.

3. Compute b and s(b).
ncomp  nco(b)
if ( ncomp = 0 ) f print(b,ncomp); stop g
L  1000

4. Grid search for the (maximal) first r=10 variables, r < p-1:
b2 <- b; ncomp4 <- n
for ( all b3=(d1; : : : ; dp�1) 6= 0 , where dj 2 f 0; bjg ) f
if ( nco(b3) < ncomp ) f
ncomp4  nco(b3); b4  b3
if ( ncomp = 0 ) f b  b3; print(b,ncomp); stop g g

5. Local search starting from b:
for ( c in f 1, 3, 0.5, 0.1, 0.01 g ) f
b2 <- b
for ( ` in f1, : : : , L g) f
b3  b + c s(b) rnorm(p)
if ( nco(b3) < ncomp ) f
ncomp  nco(b3); b2  b3 g

if ( ncomp = 0 ) f b  b2; print(b,ncomp); stop g g
if ( c = 0.1 ) ncomplast  ncomp
b  b2 g

Refinement, if neccessary:
while ( ncomp < ncomplast ) f
ncomplast  ncomp; c  c/2
for ( ` in f1, : : : , L g) f
b3  b + c s(b) rnorm(p)
if ( nco(b3) < ncomp ) f
ncomp  nco(b3); b2  b3 g
if ( ncomp = 0 ) f b  b2; print(b,ncomp); stop g g g

6. Compare results of grid search and local search:
if ( ncomp4 < ncomp ) f ncomp <- ncomp4; b <- b4 g

7. Print the results: b, ncomp


