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Abstract

In this paper we consider the problem of identifying outliers in exponential sam-

ples with stepwise procedures, namely inward and outward testing procedures. We

treat outliers in the spirit of Davies and Gather (1993) as points which for given

� > 0 lie in a certain �-outlier region and focus especially on the worst-case be-

haviour of the identi�cation rules. Best results yield stepwise procedures which use

test statistics based on a standardized version of the sample median.
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1 Introduction

In samples taken from some target population one often observes some data points which
seem to di�er strongly from the main body of the data. Such seemingly aberrant data
points are usually called \outliers". However, there exists no formal de�nition of what
constitutes an outlier that has been widely accepted.

In this paper we focus on outlying observations in exponential samples. The exponential
distribution Exp(�) with unknown scale parameter � > 0 is commonly used as a simple
but nevertheless quite useful model distribution for lifetime data. The corresponding
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distribution and density function are given by F�(x) = 1�exp(�x=�); x > 0; and f�(x) =
1=� exp(�x=�); x > 0; respectively.

Beginning with Cochran (1941), there is a rich literature on the problem of detecting
outliers in exponential samples, see e.g. Gather (1995) for a comprehensive (yet not ex-
haustive) account on contributions to this topic. In most of this work the problem of
outlier detection is seen as a testing problem with null hypothesis that all observed life-
times come from the same exponential distribution { the null model { and alternative
that at least one lifetime comes from another distribution permitted by a sometimes only
implicitly assumed outlier-generating model.

An other approach recently pursued by Schultze and Pawlitschko (2000) is based on the
so called �-outlier region of a distribution F which for � � 1 can be described as the
maximal part of the support of F which carries only a certain small probability mass. In
case of F = F� = Exp(�), the corresponding �-outlier region is given by

out(�; F�) = fx > 0 : x > �� ln�g:

To take into account the size N of a given sample one may choose

� = �N = 1�
�
1� ~�

�1=N
for a given ~�:

In Schultze and Pawlitschko (2000), the identi�cation of outliers in a given sample xN =
(x1; : : : ; xN) is achieved by constructing an empirical version OR(xN ; �N) of out(�N ; F�)
{ a so-called one-step outlier identi�er { and classifying all observations as �N -outliers
which lie in OR. Typically, in the exponential case such a one-step outlier identi�er has
the form

ORS(xN ; �N) = fx > 0: x > SN (xN) g(N;�N)g (1)

where SN(xN) is an estimator of scale and g(N;�N) an appropriate normalizing constant.
In the set-up of a normal sample, Carey et al. (1997) call a rule of this type a \resistant
detection rule" if it is based on robust estimators of the parameters of the null distribution.
In the exponential case there are a variety of robust estimators of the scale parameter �,
and it turns out that a standardized version of the sample median yields the best results.

Other approaches for detecting �N -outliers are not necessarily based on an explicit em-
pirical version of out(�N ; F�) but merely consist in a rule that classi�es the observations
with respect to their \outlyingness". Especially stepwise procedures, namely consecu-
tive inward and outward testing procedures can be interpreted in this way. The main
topic of this paper is the investigation of some of these procedures with respect to their
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worst-case behaviour. Therefore, in Section 2 we recall some worst-case criteria for out-
lier identi�cation rules, namely masking and swamping breakdown points and the size
of the largest nonidenti�able outlier, and adapt them for stepwise procedures. Section 3
discusses some inward testing procedures, a classical one using Cochran-statistics at each
step and three alternatives which are based on robust estimators of scale. The fourth
section contains corresponding results for some outward testing procedures: again the
classical version with Cochran-statistics, two procedures based on spacings and a new
proposal that makes use of the standardized sample median. Clearly, worst-case analysis
only sheds light on the behaviour of outlier identi�cation rules for extreme data situations.
Therefore, Section 5 contains the results of a small simulation study where we compare
their power of correctly identifying the outlying observations in a contaminated sample,
generated from a scale-slippage model of Ferguson-type. A real data example and a short
discussion in Section 6 conclude this paper.

2 Worst-case behaviour of outlier identi�cation rules

In the literature, comparisons of di�erent rules for outlier identi�cation are mostly based
on simulations since exact results on e.g. power are seldom available. A �eld, however,
where also theoretical results can be obtained is the analysis of the worst-case behaviour
of the identi�cation rules.

When identifying outliers two possible mistakes can occur: (1) a genuine outlier is not
recognized as such, and (2) a non-outlying observation is identi�ed as outlier. If these
errors are caused by the outliers themselves, the phenomena are called (1) masking and
(2) swamping. The worst-case concerning these mistakes occurs if either badly placed
outlying observations in the sample cause an identi�cation rule to be unable to recognize
an arbitrarily large outlier as such or to identify a non-outlying observation as arbitrarily
large outlier. The smallest fraction of outliers needed in a sample to achieve these extreme
results are called the masking and swamping breakdown point of the identi�cation rule,
respectively (cf. Davies and Gather, 1993).

More formally, given a sequence � = (�N)N2N with �N 2 (0; 1), � 2 (0; 1), and a sample
with n arbitrary observations xn, the masking breakdown point of an outlier identi�cation
rule OI may be de�ned as

�M(OI; �; xn; �) =
kM

n+ kM
;
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with kM = minfk : �M(�n+k; xn; k; �) = 0 gand

�M(�n+k; xn; k; �) = inf
�
� > 0: there exist �-outliers xok = ( xo1; : : : ; x

o
k) such

that OI fails to identify some xoi also in out(�; F�) as an
�n+k-outlier in the combined sample (xn; x

o
k)
	
:

Further, the swamping breakdown point of OI may be de�ned as

�S(OI; �; xn; �) =
kS

n + kS
;

with kS = minfk : �S(�n+k; xn; k; �) = 0 gand

�S(�n+k; xn; k; �) = inf
�
� > 0: there exist �-outliers xok such that OI identi�es
some non-�n+k-outlier in xn as �-outlier in the combined
sample

	
.

Here, the de�nitions in Davies and Gather, 1993, have been altered slightly to cover
the situation that with stepwise procedures only the observations of a given sample are
classi�ed with respect to their \outlyingness".

A high masking and swamping breakdown point are desirable features of an identi�cation
rule and there are indeed many rules which achieve the optimal value 1/2. Note that
theoretically larger values are possible but this is irrelevant in practical applications since
a sample with a fraction of outliers of more than 50% makes no sense. For comparisons
between those optimal rules further criteria are needed. For instance, if the fraction of
outlying observations in the sample is smaller than the masking breakdown point then
one may still ask for the size of the largest nonidenti�able outlier which is then �nite.
Formally this quantity can be de�ned as follows. Let again OI denote an identi�cation
rule and ~� > 0 and � and xn be as in the de�nition of the breakdown points. If for some
k < n

k

n+ k
< �M(OI; �; xn; �);

then set

LO(k; OI; ~�; xn; �) = sup
�
x 2 out(�n+k; F�): there exists xok 2 out(�; F�) with
x 2 xok such that OI fails to identify x as �n+k-outlier
in the combined sample (xn; x

o
k)
	
.

The value of LO will in general depend on the given sample xn, further it may even
not be well de�ned if the points in xn are located such that for all possible choices of
xok each �n+k-outlier in the combined sample will be correctly identi�ed. To work with
this worst-case criterion, one may e.g. calculate the expectation of the largest observation
that is not identi�ed as �n+k-outlier under the condition that the random sample Xn

comes i.i.d. from an Exp(�) distribution. Indeed, this expectation will often be a point
in out(�n+k; F�) and we will use the notation LO also in this case. Another way to work
with this worst-case criterion is to give an asymptotic approximation of LO.
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3 Inward testing procedures

The idea of applying stepwise procedures for detecting multiple outliers if there is no a
priori information about their number immediately suggests itself and the �rst procedure
of this type has indeed been proposed as early as in 1936 by Pearson and Chandra Sekar.
With an inward testing procedure, in the �rst step the \most extreme observation" of a
given sample is considered by means of a discordancy test. If the test decides that this is
an outlier it is removed from the sample and in the next step the \most extreme" of the
remaining observations is checked. The procedure terminates if for the �rst time such an
observation is not identi�ed as an outlier or if the largest sensible number k� = b(N�1)=2c
of possible outliers is reached.

In the exponential case, the most extreme observation of a (sub-) sample is simply its
maximum. Let x(1) � � � � � x(N) denote the ordered observations in the complete sample
and xN�i+1;N = ( x(1); : : : ; x(N�i+1)) the sample investigated in the i-th step of the inward
testing procedure. There are many possible ways for choosing the test statistics for the
discordancy tests in each step. Appealing are statistics of the form

T S
N�i+1(xN�i+1;N) =

x(N�i+1)
SN�i+1(xN�i+1;N)

; i = 1 ; : : : ; k�; (2)

where SN�i+1 denotes an estimator of the scale parameter � that is based on the �rst
N � i + 1 ordered observations only. We consider the following choices for SN�i+1:

i) Standardized median

SMN�i+1(xN�i+1;N) = 1 :4427Med(x(1); : : : ; x(N�i+1)):

ii) RCS-estimator

RCSN�i+1(xN�i+1;N) = 1 :6982Medk
�
Medjfjx(j)�x(k)j; j; k = 1 ; : : : ; N� i+1g

	
:

iii) RCQ-estimator

RCQN�i+1(xN�i+1;N) = 3 :476
�
jx(j) � x(k)j; j; k = 1 ; : : : ; N� i+ 1 ; j < k

	
(l)

where

l =
l(N � i+ 1) (N� i)

8

m
:

iv) Mean of the subsample (Maximum-Likelihood- (ML-) estimator)

MLN�i+1(xN�i+1;N) =
1

N � i + 1

N�i+1X
j=1

x(j):
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For samples from an exponential distribution, the standardized median has been proposed
as robust alternative to the sample mean by Gather and Schultze (1999). The RCS- and
RCQ-estimators were proposed by Rousseeuw and Croux (1993) in the general context
of robust estimation of a scale parameter. Their properties in the exponential case have
been studied further by Gather and Schultze. Their usefulness in the construction of
one-step outlier identi�ers has been shown in Schultze and Pawlitschko (2000). Choice
iv) corresponds to the well known Cochran-statistic which has been discussed e.g. by
Cochran (1941), Kimber (1982), Chikkagoudar and Kunchur (1987), Like�s (1987), and
Tse and Balasooryia (1991). In the following, we denote the corresponding inward testing
procedures as SM-IT, RCS-IT, RCQ-IT, and Cochran-IT, respectively.

It remains to specify the critical values for the discordancy tests. A common requirement
for identi�cation rules is that for given ~� 2 (0; 1) under the null model H0 { all Xi come
from i.i.d. Exp(�)-distributed random variables { one has

PH0

�
no observation is identi�ed as �N -outlier

�
� 1� ~�: (3)

For an inward testing procedure, condition (3) is already ful�lled if the critical value in
the �rst step, say tSN (~�), is chosen such that the corresponding discordancy test keeps the
level ~�. The critical values tSN�i+1(~�); i = 2 ; : : : ; k�; can be chosen arbitrarily. Here they
are determined such that every discordancy test keeps the niveau ~� under H0.

For the three inward testing procedures based on robust estimators of scale the null
distribution of T S

N�i+1 is quite di�cult to handle. For SM-IT, expressions for the survival
function of T SM

N�i+1 have been calculated in Pawlitschko (2000). These expressions are
helpful for deriving critical values if N is not too large. Otherwise and for RCS- and
RCQ-IT in general, the most appropriate way to obtain critical values is via simulations.
For Cochran-IT a quite good approximation is given by choosing

tML
N�i+1(~�) = ( N� i+ 1)

1� aN�i+1
1 + ( i� 1) aN�i+1

(4)

where for i = 1 ; : : : ; k�

aN�i+1 =

�
~��
N
i�1

��1=(i�1)

(5)

see e.g. Like�s (1987). This approximation is exact if tML
N�i+1(~�) > (N � i+1) =2, otherwise

it makes the Cochran-tests slightly conservative.

We now investigate masking and swamping breakdown points of the four inward testing
procedures.

Theorem 3.1 Let � = (�N)N2N be a sequence with �N 2 (0; 1), � 2 (0; 1), and xn be
a sample of arbitrary observations assumed to come from Exp(�). If ~� in (3) is chosen
reasonably small, then
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(i) �M(SM-IT; �; xn; �) = �M(RCS-IT; �; xn; �) = �M(RCQ-IT; �; xn; �) =
1

2
;

(ii) �M (Cochran-IT; �; xn; �) �
k�

n+ k�
;

where k� 2 f 1; : : : ; n gis the smallest k such that with N = n+ k

N

k
� tML

N (~�):

Proof.

(i) Suppose that for an identi�cation rule with test statistics of type (2) there exists
k 2 f 1; : : : ; n� 1g such that

�M(�n+k; xn; k; �) = 0 :

That is, for any � > 0 we can �nd k �-outliers xok = ( xo1; : : : ; x
o
k) such that at least

one arbitrarily large �-outlier contained in the combined sample xN = ( xn; x
o
k) of size

N = n+k is not identi�ed as �N -outlier. If � ! 0, the lower border of the corresponding �-
outlier region moves to in�nity. Now assume that for some r � k we have that x(N�r+1) 2
out(�; F�) { then it also holds that x(N�i+1) 2 out(�; F�) for i < r { and that it is not
correctly identi�ed as �N -outlier. This implies the existence of some j � r such that

T S
N�j+1(xN�j+1;N) � tSN�j+1(~�): (6)

However, if S is chosen as an estimator of scale with explosion breakdown point

�+(S; xn) =
1

2
>

i

n + i

the denominator of T S
N�i+1; i = 1 ; : : : ; n�1; is bounded. This holds especially for j, hence

for � ! 0 we have that T S
N�j+1(xN�j+1;N) moves to in�nity which contradicts (6). As a

simple consequence

�M (OI; �; xn; �) �
n� 1

2 n� 1
(7)

for SM-, RCS-, and RCQ-IT, since the explosion breakdown point of the standardized
median, the RCS-, and the RCQ-estimator equals 1/2 (cf. Gather and Schultze, 1999).

If k = n, for each of those three inward testing procedures we have for reasonable small
~� that

inf
xo
n
2out(�;F�)

T S
N(xN ) < tSN (~�);

where this in�mum is obtained if some of the �-outliers move to in�nity and therefore are
also �-outliers for each � > 0. For example, consider the case of S = SM . The least
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favourable position of the �-outliers is given if they all are placed at the same point xo.
In this case

inf
xo
n
2out(�;F�)

T SM
N (xN) = lim

xo!1
T SM
N (xN) = 2 ln 2 � 1:386

which is smaller than tSMN (~�) for all reasonable choices of ~�. For the other two proce-
dures similar arguments apply. Together with (7), these �ndings establish part (i) of the
theorem.

(ii) For Cochran-IT, the least favourable position of k �-outliers is given if they all are
placed at the same point xo. This placement gives

inf
xo
k
2out(�;F�)

TML
N (xN) = lim

xo!1
TML
N (xN) =

n + k

k
;

note again that for xo !1 these �-outliers are also �-outliers for any � > 0. �

If an inward testing procedure is build with test statistics of type (2) and the critical
value in the �rst step is chosen according to (3), then the most extreme observation x(N)

is identi�ed as �N -outlier if and only if it is located in the corresponding empirical �N -
outlier region (1) based on the scale estimator SN . However, as the proof of Theorem 3.1
(ii) shows, this fact does not allow the conclusion that the masking breakdown points of
these two identi�cation rules are equal. The reason is the slightly di�erent de�nition of
the breakdown point for the two classes of identi�cation rules.

Theorem 3.2 Given an arbitray sample xn, � 2 (0; 1), and a sequence � = (�N)N2N,
the swamping breakdown point of SM-IT, RCS-IT, RCQ-IT, and Cochran-IT is not
smaller than 1=2.

Proof. Denote with OI any of the four inward testing procedures. Suppose there exists
k 2 f 1; : : : ; n� 1g with

�S(OI; �n+k; xn; k; �) = 0 :

Denote with xr the largest non-�n+k-outlier with respect to F� that is contained in xn.
The condition for �S is then ful�lled if and only if there exist k �-outliers xok 2 out(�; F�)
such that

T S
N�i+1(xN�i+1;N) > tSN�i+1(�); i = 1 ; : : : ; k�; (8)

for all � > 0, where k� denotes the rank of xr in the combined sample (xn; x
o
k). However,

if � ! 0, it follows generally for all i 2 f 1; : : : ; kg that tSN�i+1(�) ! 1 . Sincexr <
�� ln(�N ) < 1, at least at stage k� of the inward testing procedure the corresponding
test statistic becomes bounded. This is obvious for Cochran-IT, in case of SM-, RCS-,
and RCQ-IT the boundedness is due to the implosion breakdown point 1/2 of the scale
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estimators involved (cf. Gather and Schultze, 1999). This �nding contradicts (8) and
hence proves the theorem. �

Concerning the largest nonidenti�able outlier in the presence of k �-outliers, the calcula-
tion of its expectation would be a quite involved task. However, for SM-IT and Cochran-IT
it is possible to give an upper bound which is quite accurate where in case of Cochran-IT
one has to assume that k=N is smaller than the masking breakdown point.

Theorem 3.3 Let Xn = ( X1; : : : ; Xn) be a sample of size n coming i.i.d. from a Exp(�)-
distribution and X(1) � � � � � X(n) denote the ordered sample. For k < n and appropriate
� 2 (0; 1) let Xo

k = ( Xo1 ; : : : ; X
o
k) be a random sample of �-outliers (possibly dependent of

Xn) and set N = n + k. Then conditional on min(Xo
k) > X(n), for all reasonable ~� > 0

we have the following results for the expected value of the largest observation that is not
identi�ed as �N -outlier.

(i) For SM-IT one has

E
�
LO(k; SM-IT; Xn; ~�; �)

�

= �
tSMN (~�)

ln 2

8>>>><
>>>>:

(N+1)=2X
i=1

1

N � k � i+ 1
; N odd, 

N=2X
i=1

1

N � k � i+ 1
+

1

N � 2 k

!
; N even.

(ii) If

k

N
�

1

tML
N (~�)

(9)

then for Cochran-IT one has

E
�
LO(k;Cochran-IT; Xn; ~�; �)

�
= �

tML
N (~�)

N � k tML
N (~�)

(N � k):

Proof. W.l.o.g. let � = 1. For both inward testing procedures the least favourable
constellation of k �-outliers is given if they are located at one point, say Xo, such that in
the �rst step the corresponding discordancy test fails to reject.

(i) In case of SM-IT, let Xo be de�ned as the solution of

Xo = tSMN (~�)
Med(Xn; X

o
k)

ln 2
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where now Xo
k denotes the random vector with k components equal to Xo. Provided

that this solution is larger than X(n), we have that Med(Xn; X
o
k) does depend on Xo

k only
through k and its distribution is equal to that of the (N + 1) =2-th order statistic out of
N � k observations from an Exp(�)-distribution if N is odd and to that of the mean of
the N=2-th and (N +1) =2-th order statistic ifN is even. The result now follows from the
well known relation

E(X(r)) = �
rX
i=1

1

N � k � i + 1
(10)

which holds for the r-th order statistic out of N � k observations from Exp(�).

(ii) In case of Cochran-IT, consider the equation

Xo = tML
N (~�)

1

N

� nX
i=1

Xi + k Xo
�
:

Under condition (9) this equation has a positive �nite solution

Xo =
tML
N (~�)

N � k tML
N (~�)

nX
i=1

Xi:

Taking expectation gives the expression stated in the theorem. �

Simulations show that in both cases the probability of the event Xo � X(n) is quite small
even if k is small, hence the unconditional expectation { which is smaller { will not be very
di�erent from the conditional one. Further calculations have shown that for reasonable ~�
the expectations given in the theorem are indeed �N -outliers.

For the three inward testing procedures based on robust estimators of scale the following
asymptotic result can be derived.

Theorem 3.4 Let X1; X2; : : : be a sequence of observations coming i.i.d. from an
Exp(�)-distribution and Xn the sample consisting of the �rst n observations of this se-
quence. For � 2 (0; 1) set k = b� n c, andN = k + n. Further, let � = (�N )N2N denote an
appropriate sequence with elements in (0; 1), Xo

k a sample of size k containing �N -outliers
(possibly dependent on Xn), and XN = ( Xn; X

o
k) the combined sample. Then for all

~� > 0, with n!1 the probability that SM-, RCS-, and RCQ-IT identify all �N -outliers
in out(�oN(�); F�) converges to one, where

�oN (�) = �
exp(b(S; �; �))
N

and

b(S; �; �) = lim sup
n!1

�
sup

Xo

k
2out(�N ;F�)

ln
�SN(XN)

�

��
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denotes the maximum asymptotic bias of the respective scale estimator S.

Before giving the proof of Theorem 3.4 some remarks are in order: The maximum asymp-
totic bias for scale estimators has been introduced in Davies and Gather (1993). For
the estimators considered in Theorem 3.4 the corresponding expressions can be found in
Schultze and Pawlitschko (2000). An approximation of the largest nonidenti�able outlier
in a sample of size N with a fraction �=(1 + �) of �N -outliers is then given as

ALO(�; OI; N; �; �) = �� ln�oN (�);

where OI stands for one of the three inward testing procedures considered in the theo-
rem. Note that these approximations coincide with those for the corresponding one-step
identi�ers (1) based on the robust scale estimators. Hence the comparisons in Schultze
and Pawlitschko (2000) carry over directly to the inward testing scheme. For all values of
N and k considered there it turned out that ALO is smallest for SM-IT and largest for
RCQ-IT.

Proof of Theorem 3.4. Under the conditions stated in the theorem, the largest possi-
ble observation Xo

(N) in XN which is not identi�ed as an �N -outlier by the inward testing
procedure based on SN is determined from

Xo
(N) = tSN(~�) sup

Xo

k
2out(�N ;F�)

SN(XN): (11)

Consider the critical value: if SN is a root-N-consistent estimator of �, under the null
model of no outliers we can asymptotically approximate the distribution of T S

N(XN) with
that of X(N)=�. That is, for any c > 0

lim
N!1

�
PH0

�
T S
N(XN) � c

�
�
�
1�

exp(�c)

N

�N �
= 0 : (12)

Therefore, the critical values in the �rst step of the three identi�cation rules considered
here ful�ll

lim
N!1

�
tSN(~�) + ln�N

�
= 0

and from (11) one obtains that in probability

lim
N!1

�
Xo

(N) + � ln�N exp
�
b(S; �; �)

� �
= 0 :

Hence, asymptotically observations larger than �� ln�N exp
�
b(S; �; �)

�
are always iden-

ti�ed as �N -outliers. Setting

� ln(�oN) = � ln�N exp
�
b(S; �; �)

�
and solving for �oN gives the assertion of the theorem. �
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For Cochran-IT, we can make no asymptotic statement as in Theorem 3.4, since the
maximum asymptotic bias of the ML-estimator is in�nity. Further, notice from Theorem
3.1 that for n!1 the masking breakdown point of Cochran-IT tends to zero. However,
in those cases where it exceeds 1=(n + 1) it is possible to give an approximation based
on asymptotic arguments that works quite well if N is su�ciently large. Given the
assumptions of Theorem 3.4 and provided that

� < �
1

1 + ln�N
(13)

we can approximate the largest nonidenti�able outlier by

ALO(�;Cochran-IT; N; �; �) =
ln�N

1 + � (1 + ln�N )
: (14)

Condition (13) is derived from the masking breakdown point of Cochran-IT given in
Theorem 3.1 (ii), the argument leading to (14) is essentially the same as in the proof of
Theorem 3.3.

Simulations show that all approximations work well in samples of sizeN � 50, see Schultze
and Pawlitschko (2000) where some numerical results for the corresponding one-step iden-
ti�ers are presented.

4 Outward testing procedures

The proneness of classical inward testing procedures like Cochran-IT to masking has led
to the development of alternative stepwise rules. Rosner (1975), in the context of normal
samples, suggested a method that inverts the concept of inward testing and, therefore,
is often denoted as outward testing. In an outward testing procedure, at �rst the k�

\most extreme" observations of a sample xN are removed. In the following we always set
k� = b(N � 1)=2c, the maximal reasonable number of outliers. Of course smaller values
for k� are possible, e.g. if one has a rough idea about the fraction of irregular observations
in the sample. Then, beginning with the least extreme of the selected observations, these
are tested with an appropriate discordancy test whether they are indeed outlying. If at
one stage the test rejects, the corresponding observation and all that are more extreme
are identi�ed as outliers. If the test rejects not, the corresponding observation is reunited
with the reduced sample and the next observation is considered. In general, in the �rst
step a problem is the need for a criterion to judge the extremeness of an observation.
In case of an exponential sample, however, this problem does not occur since naturally
the k� largest observations stick out as the most extreme ones. There is a rich literature
on outward testing procedures in exponential samples, contributions to this topic have
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been made by Kimber (1982), Sweeting (1983), Chikkagoudar and Kunchur (1987), Like�s
(1987), Balasooriya (1989), Tse and Balasooriya (1991), and Balasooriya and Gadag
(1994). To our knowledge, however, the worst-case behaviour of these procedures has not
been considered yet.

For each step of an outward testing procedure principally the same discordancy tests can
be used as with the inward testing scheme. However, now also application of discordancy
tests which in the latter case su�ered frommasking yields satisfactory results and therefore
deserves a closer investigation. We consider the worst-case behavior of the following four
outward testing procedures based on

i) Cochran-statistics (Cochran-OT),

ii) Dixon-statistics (Dixon-OT), that is in the j-th step we use

TD
N�k�+j(xN�k�+j;N) =

x(N�k�+j) � x(N�k�+j�1)
x(N�k�+j)

; j = 1 ; : : : ; k�

(see Dixon, 1950, Like�s, 1967, Chikkagoudar and Kunchur, 1987),

iii) test statistics proposed by Balasooriya (B-OT),

TB
N�k�+j(xN�k�+j;N) =

x(N�k�+j) � x(N�k�+j�1)
Wj

; j = 1 ; : : : ; k�;

with

Wj =

PN�k�+j�1
i=1 x(i) + (N� k� + j � 1) x(N�k�+j�1)

(N � k� + j � 1) (k� � j + 1)

(see Balasooriya, 1989, Tse and Balasooriya, 1991, Balasooriya and Gadag, 1994),

iv) test statistics of type (2) with the standardized median as scale estimator (SM-OT).

The �rst three outward testing procedures are well known. The Balasooriya-statistics
have the interesting property that they are mutually independent under the null model
(cf. Sweeting, 1983). In this case, the denominator of TB

r is equal to the best linear
predictor of the r-th order statistic given the r � 1 smallest observations. The procedure
based on the standardized median is new and is included in the following investigation to
see how an outward testing procedure based on a robust estimator of scale compets with
classical methods.

As in the previous section, we require that condition (3) is ful�lled. In case of an outward
testing procedure with test statistics TN�k�+j; j = 1 ; : : : ; k�; this requirement is equivalent
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to

PH0

� k�[
j=1

�
TN�k�+j(XN�k�+j;N) > tN�k�+j(~�)

	�
� ~�: (15)

Condition (15) does not uniquely determine the critical values. This can be achieved by
the additional requirement that

PH0

�
TN�k�+j(XN�k�+j;N) > tN�k�+j(~�)

�
= �k�; j = 1 ; : : : ; k�: (16)

If the test statistics for the individual steps are mutually independent then �k� can be
chosen to 1� (1� ~�)1=k

�

. In case of B-OT we get the following simple expression for the
corresponding critical values:

tBN�k�+j(~�) = ( N� k� + j � 1)
�
��1=(N�k

�+j�1)
k� � 1

�
(cf. Tse and Balasooriya, 1983). Otherwise, the Bonferroni-inequality allows for the
slightly more conservative choice �k� = ~�=k�. In case of Cochran-OT the critical val-
ues then can be approximated as in (4) with ~� in (5) now replaced with ~�=k�. In case of
Dixon-OT we �nd them as the solutions of

~�=k� =
�
1� tDN�k�+j(~�)

�N�k�+j�1 N�k�+j�1Y
i=1

N � i+ 1

N � i� tDN�k�+j(~�) ( N� k� + j � i)
:

(17)

This equation can be deduced from the more general expressions in Like�s (1967) and Kabe
(1970) or by direct calculation.

We now determine masking and swamping breakdown points for the four outward testing
procedures introduced above.

Theorem 4.1 Given an arbitrary sample xn, � 2 (0; 1); and a sequence � = (�N)N2N,
all four outward testing procedures have masking breakdown point

�M (OI; �; xn; �) �
1

2
:

Proof. We �rst consider the case of Cochran-OT and assume that its masking break-
down point is smaller than 1/2. With similar arguments as in the proof of Theorem 3.1
this would imply the existence of k < n such that for the combined sample (xn; x

o
k) none

of the discordancy tests with test statistics TML
n+j ; j = 1 ; : : : ; k;rejects as xo moves to

in�nity. Here xok denotes a vector with k components equal to some xo 2 out(�; F�). That
is for all j � k we must have

lim
xo!1

TML
n+j (xn+j;n+k) � tML

n+j(~�=k
�): (18)
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However, already in the �rst of these steps

lim
xo!1

TML
n+1(xn+1;n+k) = n+ 1

whereas
tML
n+1(~�=k

�) < n+ 1

and this contradicts (18).

The proof for the other three outward testing procedures is quite similar and therefore
omitted. �

Theorem 4.2 Let the assumptions of Theorem 4.1 be ful�lled and assume further that
all xi 2 xn are positive. Then all four outward testing procedures have swamping break-
down point

�S(OI; �; xn; �) �
1

2
:

Proof. Assume that the swamping breakdown point is smaller than 1/2. As in the proof
of Theorem 3.2 this implies the existence of k < n such that for some xr 2 xn which is not
in out(�n+k; F�) we can �nd a sample xok 2 out(�; F�) for each � > 0 such that xr is falsely
identi�ed as �-outlier. As in the proof of Theorem 4.1 we look closer at Cochran-OT. Set
k� = b(n + k � 1)=2c. Then xr is identi�ed as �-outlier if for some j 2 f 1; : : : ; k�g it is
not smaller than the maximum of the subsample xn+k�k�+j;n+k of the combined sample
(xn; x

o
k) and if

TML
n+k�k�+j(xn+k�k�+j;n+k) > tML

n+k�k�+j(�): (19)

Since xr is no �n+k-outlier it is bounded:

xr � � �ln�n+k = c < 1:

Hence, also the test statistic of the discordancy test is bounded by

TML
n+k�k�+j(xn+k�k�+j;n+k) � (n+ k � k� + j)

c
n+k�k�+j�1X

i=1

x(i) + c

< n + k � k� + j

where the last inequality is strict since the regular observations are assumed to be positive.
However, for j = 1 ; : : : ; k� we have

lim
�!0

tML
n+k�k�+j(�) = n+ k � k� + j

and this contradicts (19).
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Again, for the other three outward testing procedures the assertion of the theorem follows
quite similarly. �

Theorems 4.1 and 4.2 show that concerning their breakdown points there is no di�erence
between the three \classical" outward testing procedures and the new one based on the
standardized median: all procedures have optimal high masking and swamping breakdown
points. Hence, a �ner investigation of their worst-case behaviour based on the size of the
largest nonidenti�able outlier is necessary.

As in case of the EDR-ESD identi�er for normal samples which is thoroughly discussed
in Davies and Gather (1993), the most infavourable constellation of outliers is given if to
a regular sample of size n a \string" of k �-outliers is added. Such a string is constructed
by placing in each step of the outward testing procedure a �-outlier at that point at which
the corresponding discordancy test just fails to reject. For the four identi�ers discussed
here, this leads to the following results.

Theorem 4.3 Let Xn = ( X1; : : : ; Xn) be a sample of size n coming i.i.d. from an
Exp(�)-distribution and with X(n) denote the maximum of Xn. For k < n and � 2 (0; 1)
let Xo

k = ( Xo1 ; : : : ; X
o
k) be a random sample of �-outliers (possibly dependent of Xn) and

set N = n + k. Then for all reasonable ~� > 0, conditional on the event that no regular
observation is identi�ed as �N -outlier, the expected value of the largest observation that
is not identi�ed as �N -outlier is given by

(i) for Cochran-OT

E
�
LO(k;Cochran-OT; Xn; ~�; �)

�
= � cML

N (~�)
k�1Y
j=1

�
1 + cML

N�k+j(~�)
�
(N � k)

with

cML
N�k+j(~�) =

tML
N�k+j(~�=k

�)

(N � k + j) + tML
N�k+j(~�=k

�)
; j = 1 ; : : : ; k;

(ii) for Dixon-OT

E
�
LO(k;Dixon-OT; Xn; ~�; �)

�
= �

kY
j=1

1

1� tDN�k+j(~�)

kX
i=1

1

N � i+ 1
;

(iii) for outward testing with Balasooriya-statistics

E
�
LO(k;B-OT; Xn; ~�; �)

�
= E(Xo

k);
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with Xo
k recursively de�ned by

Xo
1 = X(n) +

�
�
�1=(N�k)
k� � 1

� �1
k

nX
i=1

Xi +X(n)

�
;

Xo
j = Xo

j�1 +
�
�
�1=(N�k+j�1)
k� � 1

� � 1

k � j + 1

� nX
i=1

Xi +

j�1X
i=1

Xo
i

�
+Xo

j�1

�
;

for j = 2 ; : : : ; k;

(iv) for SM-OT

E
�
LO(k; SM-OT; Xn; ~�; �)

�

= �
tSMN (~�=k�)

ln 2

8>>>><
>>>>:

(N+1)=2X
i=1

1

N � k � i+ 1
N odd,

�N=2X
i=1

1

N � k � i + 1
+

1

N � 2 k

�
N even.

Proof. Since the proofs of parts (i) { (iv) are quite similar, we only look closer at
Cochran-OT. Assume that for given ~� no regular observation is classi�ed as �N -outlier.
To achieve that no further discordancy test rejects, choose

Xo
1 =

tML
N�k+1(~�=k

�)

(N � k + 1) + tML
N�k+1(~�=k

�)

nX
i=1

Xi

which is a �-outlier for appropriately chosen �, and then subsequently

Xo
j =

tML
N�k+j(~�=k

�)

(N � k + j) + tML
N�k+j(~�=k

�)

� nX
i=1

Xi +

j�1X
r=1

Xo
r

�

= cML
N�k+j(~�)

1 + cML
N�k+j�1(~�)

cML
N�k+j�1(~�)

Xo
j�1

for j = 2 ; : : : ; k. Consecutive application of this recurrence relation and making use of
E
�Pn

i=1 Xi

�
= � (N � k) yields the result in (i). For (ii) and (iv), relation (10) can be

applied in the same way as in the proof of Theorem 3.3 since the smallest �-outlier is
placed to the right of X(n). �

Note that under the assumptions of Theorem 4.3 for SM-OT the expected size of LO only
depends on the critical value used in the last step and on the expected values of certain
order statistics of the regular Xi. Further, since

tML
N (~�=k�) � tML

N (~�)
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it follows from Theorem 3.4 that the expected size of LO is always larger for the outward
testing procedure based on the standardized median than for the corresponding inward
testing procedure. A similar result would be obtained when using one of the other robust
estimators of scale suggested in Section 3.

Figure 1 illustrates the results from Theorem 4.3 for N = 20 and all possible values of
k. From plot a) it can be seen that B-OT and especially Dixon-OT perform very poorly
if the fraction of irregular observations approaches 1/2. Therefore, plot b) contains only
the values for Cochran-OT and SM-OT. Generally it can be said that the latter performs
best with respect to this worst-case criterion with the exception of the case k = 1, where
Cochran-OT has the edge. It is worth noting that the two procedures where the nominator
of the test statistics used in the discordancy tests is a di�erence of consecutive order
statistics are clearly outperformed by those where only a single order statistic appears.
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Figure 1: Expected size of LO for ~� = 0 :05,N = 20, with �������� : SM-OT,
����� : Dixon-OT, � � � � � : B-OT, and � � � � � � � � � : Cochran-OT
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5 Some remarks on power

In the previous sections we have mainly been concerned with the worst-case behaviour
of stepwise outlier identi�cation rules. If no distributional assumptions are made for the
outlying observations apart from being located in a certain outlier region, it is not possible
to give general results for the performance of these identi�ers in non worst-case situations.
Therefore, we have also studied the fraction of correctly identi�ed outliers and inliers
(that are the sample elements not located in out(�N ; F�)) via a small simulation study
under a certain popular outlier-generating model, namely a slippage model of Ferguson-
type (cf. Gather, 1995). Under this model, the distribution of a random sample XN =
(X1; : : : ; XN) of size N is given by FX

N
=
QN

i=1 Fs(i) where s(i) 2 f 1; b gfor some b� 1

and
PN

i=1 I[s(i) = b] = k for some given k � b N=2c. To guarantee that the number
of outliers generated by this model is not too small we set b = 1 =13. In Schultze and
Pawlitschko (2000) the expected number of �N -outliers for ~� = 0 :05 and some selected
values for N and k has been calculated. For these values the expectation always exceeds
k=2 but is nearly always smaller than 2=3k. For the simulation study we set N = 20 ;50;
and ~� = 0 :05. The corresponding�N -outlier regions are given by the intervals (5:97; 1)
and (6:88;1), respectively. Then 5000 random samples from the Ferguson-model were
drawn for each combination of N and some selected values of k � k� = b(N � 1)=2c.
The average fractions of correctly classi�ed observations are displayed in Figures 2 to 5.
To make di�erences in the height of the blocks more visible, their shading becomes more
dense with growing fraction.

Concerning the fraction of correctly identi�ed outliers, Figures 2 and 4 show that SM-IT
yields the best results of the four inward testing procedures while the other two procedures
based on robust estimators of scale are nearly as good. Cochran-IT performs poorly if k
gets large and therefore is not recommendable. The highest power of the four outward
testing procedures is obtained with Cochran-OT. If k is not to small, SM-OT is nearly
as good for N = 50, however, it performs not very satisfactory for N = 20. For outward
testing procedures that use test statistics of type (2) there seems to be a close connection
between the �nite sample e�ciency of the scale estimator and the power of the identi�-
cation rule. Some further simulations with outward testing procedures that are based on
the RCS- and RCQ-estimator showed that they had smaller power than Cochran-OT too,
although they did not perform better than SM-OT. Dixon-OT in general shows the least
convincing results, whereas B-OT performs quite well as long as k is not too large. When
comparing inward and outward testing procedures one �nds that the latter are always
inferior to their competitors if k is small and have similar power for large k only. This
comparison, however, is somewhat misleading, which becomes clear from Figures 3 and
5 where the fraction of correctly classi�ed inliers is shown. With few exceptions for all
outward testing procedures this fraction is at least as great as 90% irrespective of the
value of k, whereas for the inward testing procedures it may be smaller than 85% if k
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is large. The reason can be seen in the choice of the critical values from the second to
k�-th step of the inward testing procedures. These values are determined under the null
model of no outliers which leads to discordancy tests that are too liberal if indeed outliers
are contained in the sample. There is a nice analogy in the �eld of multiple testing: The
probability of declaring at least one regular observation as outlier corresponds in some way
to the probability of falsely rejecting at least one true null hypothesis in a given family of
hypotheses, the so-called familywise error rate (FWE). An outlier identi�cation rule that
is standardized according to (3) corresponds to a multiple test that controls FWE only
in the weak sense that is if all hypotheses in the family are true. Neither outward nor
inward testing procedures provide an equivalent to strong control of FWE. However the
former seem to have a smaller probability of classifying at least one regular observation
as outlying if the null model does not hold.

Figure 2: Fraction of correctly identi�ed outliers in the Ferguson-model,
� = 0 :05; N= 20
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Figure 3: Fraction of correctly identi�ed inliers in the Ferguson-model, � = 0 :05; N= 20

Figure 4: Fraction of correctly identi�ed outliers in the Ferguson-model,
� = 0 :05; N= 50

21



Figure 5: Fraction of correctly identi�ed inliers in the Ferguson-model, � = 0 :05; N= 50

6 Example and conclusion

As an example for the application of the stepward outlier identi�cation rules discussed in
this paper, we consider a data set taken from Nelson (1982, p. 104). The data are the
times to breakdown of an insulating 
uid between two electrodes, recorded at a voltage
of 32 kV. The recorded breakdown times in ascending order are 0.27, 0.40, 0.69, 0.79,
2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58, and 215.10. We suppose
that the breakdown times follow a one-parameter exponential distribution and seek to
�nd out if the sample contains any �N -outliers where N = 15 and ~� = 0 :05. Tables 1
and 2 contain a comparison of the results given by the eight identi�cation rules discussed
so far in this paper. For each rule the test statistics and corresponding critical values are
listed up to the terminal step.

The results can be summarized as follows: The outward testing procedures based on
spacings do not classify any observation as outlying whereas Cochran-OT identi�es the
�ve largest ones and SM-OT even one more. Inward testing with Cochran-statistics is
less successful: Cochran-IT fails to identify any outlier. This result is not due to masking
since also RCQ-IT declares no observation as outlying. RCS-IT identi�es only the largest
observation whereas the inward testing procedure based on the standardized median 
aggs
the maximal reasonable number k� = 7 of observations as outliers. In this example we
have assumed for purpose of demonstration that under the null modell the data come
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SM-IT Cochran-IT RCS-IT RCQ-IT

i x(16�i) T SM
16�i tSM16�i TML

16�i tML
16�i TRCS

16�i tRCS16�i T
RCQ
16�i t

RCQ
16�i

1 215.10 10.6879 7.0437 5.2257 6.3146 9.2590 8.0307 5.5251 5.9838

2 100.58 5.8512 4.9587 4.7287 5.6065

3 89.29 6.2643 4.3398

4 82.85 8.3288 3.7570

5 53.24 9.4381 3.6342

6 27.80 5.7866 3.2748

7 15.93 4.0152 3.3284

Table 1: Inward testing procedures for the example

SM-OT Cochran-OT B-OT Dixon-OT

j x(8+j) T SM
8+j tSM8+j TML

8+j tML
8+j TB

8+j tB8+j TD
8+j tD8+j

1 15.93 4.0152 5.4701 2.9518 3.5457 0.8510 6.7968 0.1243 0.5763

2 27.80 5.7866 5.0888 3.6402 3.6587 4.4466 6.5470 0.4270 0.5615

3 53.24 4.5185 3.8111 5.9061 6.3555 0.4778 0.5569

4 82.85 3.8031 6.2041 0.3574 0.5637

5 89.29 0.5029 6.0815 0.0721 0.5861

6 100.58 0.6111 5.9801 0.1122 0.9873

7 215.10 3.1880 5.8950 0.5324 0.7324

Table 2: Outward testing procedures for the example

from a one-parameter exponential distribution. The results obtained with Cochran-OT
and both procedures based on the standardized median may however also be seen as
indication that this assumption is questionable. It is indeed more properly to analyze the
breakdown times under a Weibull model.

To come to a �nal conclusion: with respect to their breakdown properties there are many
competing optimal stepwise procedures for outlier identi�cation in exponential samples,
among them the well known outward testing procedures based on discordancy tests with
Cochran-, Dixon-, and Balasooryia-statistics. A �ner worst-case analysis with respect to
the size of the largest nonidenti�able outlier LO reveals that these classical procedures
are outperformed by an outward testing procedure SM-OT that relies on a standardized
version of the sample median. Especially the two procedures based on spacings perform
very poorly whereas Cochran-OT is close second and seems also to have slightly better
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power than SM-OT in identifying outliers in non worst-case situations.

An alternative to these outward testing procedures is given by inward testing procedures
that are based on robust estimators of the scale parameter. Whereas inward testing
procedures with classical discordancy tests su�er heavily from masking and are therefore
not recommendable, these new methods have optimal breakdown properties and lead to a
smaller size of LO than competing inward testing procedures. A minor drawback is their
tendency to identify too many observations as outlying if the null model does not hold.
This tendency is due to the fact that the usual choice of critical values after the �rst step
seems to be too liberal. How a better choice could be made is an interesting topic for
further investigations.
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