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Abstract

Firstly rather accurate approximations to the p value functions of the common
Standard CUSUM test and the OLS-based CUSUM test for structural change are
derived. Secondly alternative boundaries for both tests are suggested and their prop-
erties are examined by simulation of expected p values. It turns out that the power
of the OLS-based CUSUM test for early and late structural changes can be improved,
whereas this weakness of the Standard CUSUM test cannot be repaired by the new
boundaries.
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1 Introduction and summary

One of the first tests on structural change with unknown break point was the Standard
CUSUM test, introduced by Brown, Durbin and Evans (1975), henceforth BDE. Whereas
this test is based on recursive residuals, which are independently distributed under the
null hypothesis, Ploberger and Kramer (1992), henceforth PK, suggested a test based on
the ordinary least squares residuals. Both are suitable to test the constancy of regression
coeflicients in linear regression relationships, although no version is uniformly superior to
the other. For both tests approximations to the asymptotic p value functions are derived,
which are closely linked to the crossing probabilities of (tied down) Brownian motions, the
limiting distributions of the tests. It is much more convenient to have p values instead
of the common critical values for fixed confidence levels like given in BDE (1975) or in
Kuan and Hornik (1995), who put CUSUM tests in a more general context of strutctural
change tests. Hansen (1997) gives approximate asymptotic p values for another class of
structural change tests based on F' statistics and here similar results will be obtained for
CUSUM tests.

Afterwards alternative boundaries, that are proportional to the standard deviation of (tied
down) Brownian motions, are suggested for both tests in order to repair their weakness in
detecting structural shifts early and late in the sample period. Although this cannot be
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accomplished for the Standard CUSUM test due to the properties of the recursive residuals
under the alternative, the OLS-based CUSUM test can indeed be improved. This OLS-
based CUSUM test with the alternative boundaries has rather evenly distributed rejection
properties for structural changes early, midway and late in the sample period. 2

2 The model and the tests

The standard linear regression model
yi =z, B+w t=1,....n) (1)

is considered, where at time ¢, y; is the observation of the dependent variable, x;, =
YT is a k x 1 vector of observations of the independent variables, with the
first component equal to unity, u; are iid(0, o2), and /3 is the k x 1 vector of regression
coeflicients. The CUSUM tests are concerned with testing against the alternative that this
unkown coeflicient vector varies over time. Like in PK (1992) and in Krdmer, Ploberger,
Alt (1988), henceforth KPA, it is assumed that the regressors z; and the disturbances w;
are defined on a common probability space, such that
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m sup nZHTtH o as (2)
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for some § > 0 (]| - || the Euclidean norm), and that

1 n
n Z l"tl",;,r — Q. (3)
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for some finite regular matrix . Furthermore it is assumed that the disturbances u; are
stationary and ergodic, with

Elug Al =0, E[u?| A = o2, (4)

where A; is the o-field generated by {y;— s, xt—s,ur—s|s > 1}. These assumptions allow in
particular for dynamic models, in which case they imply stability.
The Standard CUSUM test is based on the cumulative sum of the recursive residuals
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(t=k+1,...,n), (5)

which have zero mean and variance ¢ under the null hypothesis. ﬂA(t*I) is the ordinary
least squares estimation of the regression coeflicients based on the observations up to ¢t — 1.
The path of the CUSUM quantity is defined as
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2R code for all tests and procedures proposed is available from the auther upon request.



where ¢ = \/ ﬁ > a1 (g —w)2. The meaning of the variable ¢ changes slightly, it is
standardized to the interval [0,1].

If there is just a single structural change at fixed time ¢y < 1 the mean of the recursive
residuals will be zero only up to tg and differing afterwards. Hence the CUSUM path
W, (t) will start to leave its zero mean at ty. Hy is rejected whenever W, (¢) crosses either
c(t) or —c(t) with ¢(t) = A+ 2\¢t, which is equivalent to rejecting the null hypothesis when
the test statistic

(7)

is larger than A, which depends on the significance level of the test. KPA show that for
n — oc
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where 4 denotes convergence in distribution and where B(t) is the standard Brownian
motion.

The OLS-based CUSUM test is defined analogously using the OLS residuals 4; = y; —x, ﬁ
instead of the recursive residuals. The OLS-based CUSUM quantity is defined for ¢ in [0,1]
as

Lt

L L )
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where ¢ = 4/ ﬁ S, @Z. This path will always not only start in zero but also return to
zero, but if there is structural change at iy it should have a peak close to the break point
tg. Hp is rejected if the path crosses either A or —A\, which is equivalent to rejecting when
the test statistic

S = sup [Wi(0)| (10)

0<i<1

is larger than A, which determines the significance level of the test. PK show that for
n—oc

wow -4 B

where BY(1) is the standard Brownian bridge or tied down Brownian motion.

3 p values of the CUSUM tests

In the context of these two CUSUM tests usually just three critical values, for the confi-
dence levels 1%, 5% and 10%, are indicated, although it is much more convenient, espe-
cially for implementation in a statistical software package, to have an explicit formula to
calculate p values. In this section an approximation to the p value function of both tests
will be derived.

If S is the test statistic and given an observation s the p value is by definition:

P, (S > s). (11)



Thus the p value is the confidence level of the test with critical value s.
Like already suggested in the last section p values of CUSUM tests are closely related to
crossing probabilities of (tied-down) Brownian motions. According to (11) the p value for

the Standard CUSUM test is
P, (S>s) = PHU(|Wn(t)| > s+ 2st for some 0 <t < 1). (12)

KPA show that this probability converges for n — oc to the corresponding crossing prob-
ability of a Brownian motion. Hence the asymptotic p value function p(s) is

p(s) = P(IB()] > s+2st forsome 0 <t <1). (13)

Therefore p(s) is the level of the test with critical value s. Now an upper and a lower
bound for this function will be derived by applying results of Durbin (1971), who examined
the crossing probabilities of Brownian motions for linear boundaries. In lemma 3 he shows
that

P(B(L) >al+b forsome(<(< 1) =
1 — ®(a +b) + exp(—2ab) P(a — b), (14)

where ®(-) is the standard normal distribution function. Neglecting the probability that
a single path of a Brownian motion crosses both lines, which is sufficiently small for large
values of s, an upper bound is just twice the value of (14). But this can take values up to
2, whereas the real p value is of course not larger than 1, so that a proper upper bound is

pu(s) = min{l,, 2(1 — ®(3s) + exp(—45?) @(5)) } (15)

To get an exact formula the probability that B(t) crosses both lines has to be subtracted.
But also for that probability Durbin’s lemma 7 gives just an upper bound, which neglects
three or more crossings:

P(B(tl) > s+4+2st1 A Blta) < —s—2sta for some 0 < t1,t0 < 1) <

2(exp(—452)(1 — ®(5s)) + exp(—16s2) (1 — qa(s))). (16)
Subtracting (16) from twice the value of (14) gives a lower bound for p(s):
pr(s) = 2(1 — B(35) + exp(—45) (B(s) + &(55) — 1)
—exp(—16s) (1 — qa(s))). (17)

The major drawback of this approximation is that it takes the value 0 for s = 0, although
p(0) obviously equals 1. But figure 1 shows clearly that both functions are rather good
approximations to (13) for sufficiently large values of s. It can also be seen that up to
its maximum, which is around pr(0.3) = 0.956, pr(s) is closer to the simulated p values,
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Figure 1: p value of the Standard CUSUM test

so that it approximates p values smaller than 0.96 very well. Larger p values can be
approximated by linear interpolation, but they are not of great interest anyway. The
practically useful small p values can be calculated equivalently well by both functions,
which differ in 0.85, the critical value to the confidence level 0.1, just by 5 - 1076,

As both functions are easily calculated by any statistical software package, the lower
boundary with linear interpolation for small s should be recommended for implementation:

. _ pr.(s) s>0.3
pls) = { 1-0.1465s s<0.3 (18)

Due to the similarity of the test statistics of the OLS-based and the Standard CUSUM
test and the close relation between their asymptotic distributions the determination of the
p value function p°(s) is analogous to that in the previous section. Hence

Ps) = PHU(|Wg(t)| > s for some0§t§1>
= P(|B0(t)| > s for Some0§t§1)

- P(|B(t)| > s forsome0<t<1 | B(l):0>, (19)



where = denotes asymptotic equality. This is again approximated by twice the probability
that a tied down Brownian motion crosses the line s parallel to the x-axis, which is given
by lemma 4 in Durbin (1971). Cutting this function again at 1 gives the upper bound

pY(s) = min{1,2exp(—252)}. (20)

To derive the lower bound the probability that the path of a Brownian bridge crosses both
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Figure 2: p value of the OLS-based CUSUM test

lines is needed, for which Durbin’s lemma 6 provides the following inequality
P(Bo(tl) > s A B%ty) < —s for some 0 < ty,ts < 1) <
2 exp(—8s?). (21)
For the same reasons as for the Standard CUSUM test a lower bound for p°(s) is given by
0 _ 2 2
pi(s) = 2<exp(—25 ) — exp(—8s )) (22)

Figure 2 shows that the properties of the approximations are rather similar to those of
the Standard CUSUM test. Again the upper bound has to be “cut” at the p value 1 and



the lower bound provides the better approximation to the simulated p values, although it
decreases again for small values of s. It takes its maximum 0.94 at /—In(0.25)/6 = 0.48
and larger values can again be approximated by linear interpolation. Practically relevant
p values can be calculated equivalently well by both functions as they differ in 1.22, the
critical value for the level 0.1, just by 1.3 - 107°. Most suitable for implementation in a
statistical software package is the combination of the lower bound and a linear interpolation

for small values of s: 0( )
0 B (s s> 048
ps) = { 1—-0.1147s & <048 (23)

4 Alternative boundaries for CUSUM tests

One of the major drawbacks of both CUSUM tests is that they have poor power for early
and late structural changes. To have similar properties over the whole time interval it
seems natural to consider boundaries that are proportional to the standard deviation of
the limiting distribution, so that the rejection probability is spread evenly. Thus the
alternative boundary for the Standard CUSUM test is

b(t) = AV, (24)

as the variance of a Standard Brownian motion (starting in 0) is VAR[B(¢)] = ¢. Similarly
the variance of a Brownian Bridge is VAR[BY(t)] = t(1 — t), so that the alternative
boundary for the OLS-based CUSUM test is

dt) = Ml-0. (25)

The parameter A depends on the confidence level of the test, which is hard to evaluate,
because the crossing probabilities of (tied-down) Brownian motions are not calculated
as easily as for straight lines. For this reason BDE chose the boundary ¢(t), which is
tangential to b(¢) in ¢ = 0.5 and the same argument holds for the linear boundary of the
OLS-based CUSUM test. Here the critical values will be assessed by simulation, but firstly
the alternative test statistics will be defined.

Rejecting the null hypothesis when the trajectory W, (¢) either crosses b(t) from (24) or
—b(t) is equivalent to rejecting if the alternative test statistic

Sa = sup (26)

e<t<1

ol
=2,

with £ > 0 exceeds A. The level « of the test is linked (asymptotically) to the critical
value X\ by the following equation:

a = P(Sa >N
= P(|B(t)| > b(t) forsomee <t < 1). (27)

The point ¢t = 0 has to be excluded as the rejection condition B(0) > b(0) = 0 would be
satisfied trivially. It is also not possible to evaluate the supremum on (0,1], because even



then the rejection probability would converge against 1. Hence a compact interval [, 1]
with € > 0 is needed, here £ = 0.001 is used.

To evaluate the pairs of values of A and o which solve (27) two methods are used:
Method 1: A Brownian motion is simulated by the cumulative sum of n = 5000 normally
distributed random numbers; then it is checked whether the absolute value of this simu-
lated Brownian motion crosses +b(t) (with fixed parameter A\). This is repeated & = 5000
times and the resulting percentage of crossings is an estimator for level o corresponding
to A. The results have been smoothed by a third order polynomial but have just a mean
absolute difference of 2 - 1072 from the original data.

Method 2: This method is an application of the algorithm of Wang and Pé&tzelberger
(1997) for crossing probabilites of Brownian motions for arbitrary boundaries. The bound-
ary b(t) is approximated by a piecewise linear function by simple interpolation in 128 sub-
intervals of the same size. The formula that Wang and Pé&tzelberger provide is evaluated
200,000 times, which gives an estimation of /2 as only the crossing of a single boundary
is being considered. Hence the approximation is poor for small A and can take values
larger than 1. The advantage however is that an estimation of the standard deviation is
provided as well, which was smaller than 107 for all simulated values.
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Figure 3: Results of method 1 and 2

A graphical comparison of both methods in figure 3 shows that the results are rather



similar for large values of A; in particular the critical values for the common confidence
levels 1%, 5% and 10% are identical:

a = 0.10, X = 290,
a = 005, A= 3.15,
o = 0.01, X = 365. (28)

To compare the shape of the linear and the alternative rejection area both boundaries for
the confidence level @ = 0.01 are plotted in figure 4, the shape for the other confidence
levels is rather similar. It can be seen that the the alternative boundary offers advantages
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Figure 4: Boundaries of the Standard CUSUM test

only for ¢ < 0.2. Therefore structural changes that occur late in the sample can be detected
more easily with the linear boundaries; even for early shifts there is little hope that the
advantage of the alternative boundary can be used as figure 5 illustrates: Although the
break point is at 10% of the 1000 observations in this simulated data set, the CUSUM path
actually crosses the boundary much later, where the alternative boundary lies above the
linear one, i.e. the usual Standard CUSUM test would have rejected the null hypothesis
anyway.

Now the alternative boundaries for the OLS-based CUSUM test will be investigated in the
same way as it was done for the Standard CUSUM test. To reject Hy if the OLS-based
CUSUM trajectory W2(t) crosses the alternative boundary 4d(t) from (25) is equivalent
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Figure 5: Standard CUSUM test with alternative boundaries

to rejecting if the alternative test statistic

Wa(t)
— su — . 29
A I N g (29)
exceeds A. The critical values A are again linked to the confidence level « by
a = P(S3 >N
= P(|Bo(t)| > d(t) forsomee <t <1-— 5). (30)

In this case both limits of the interval have to be excluded and with the same arguments
as above the compact interval [e, 1 — £] (with e = 0.001) will be considered.

Analogously to method 1 from the previous section the corresponding pairs of A and « are
evaluated by simulation with the following result for the common confidence levels 1%,

5% and 10%:

10



a = 0.10, X = 3.13,
a = 0.05, X = 3.37,
a — 0.01, A\ — 3.83. (31)

Using these results the rejection regions for the OLS-based CUSUM test can be compared.
Figure 6 shows both boundaries for the level & = 0.01. In contrast to the boundaries of
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Figure 6: Boundaries of the OLS-based CUSUM test

the Standard CUSUM test the new boundary lies under the linear one at the beginning as
well as at the end. These advantages can be worth the disadvantage in the middle as figure
7 indicates, which shows the OLS-based CUSUM trajectory for the same simulated data
as above with a structural shift after 10% of the 1000 observations. Whereas the linear
boundaries fail to detect the structural change at level « = 0.01, the new boundaries are
able to find evidence for a structural shift at the same level. The reason for that is the
behaviour of the CUSUM values under the alternative: the path has its peak around the
break point so that the advantages of the alternative boundaries can be used for early and
late structural changes.

To emphasize this simulation of expected p values will be used in the next section.
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Figure 7: OLS-based CUSUM test with linear and alternative boundaries
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5 Simulation of expected p values

Firstly expected p values will be defined according to Sackrowitz and Samuel-Cahn (1999).
If T4 is the test statistic distributed according to the null distribution Fy and 77, the test
statistic under some specified alternative Fjy, takes the value ¢ the usual p value is given
by

P(To > t|T' =t). (32)

Thus the expected p value results if in (32) is the unconditional probability is considered
EPV(0) = P(Ty=1) (33)

which is 1 - expected power (over all possible levels). Under Hy the expected p value is
obviously 0.5; a small expected p value indicates good chances to reject the null hypothe-
sis.

Expected p values seem to be convenient to compare the power of the two OLS-based
CUSUM tests as they don’t depend on the confidence level; the power of the two Stan-
dard CUSUM tests won’t be compared because the alternative boundaries could just offer
disadvantages.

To compare the OLS-based CUSUM tests a simple model is chosen like in PK (1992),
where k = 2, 2; = (1,(—1))" and u; ~ nid(0,1). Then the timing, the intensity and the
angle of a single shift are varied in the following way:

B g fort < |gn]
e = { B+ApB fort > [gn] (34)
and the shift Ag is given by
B g [cost
AB = vn <Sin w) ’ (35)

where 1 is the angle between the shift and the mean regressor (1,0)". Including the angle
is necessary as neither the Standard nor the OLS-based CUSUM test are able to pick up
shifts with an angle of 90°. The intensity of the shift is ||AS|| = |¢g|v/n, which occurs at
time ¢ = [gn] with n = 500. With ¢ taking values 0.1, 0.3, 0.5, 0.7, 0.9 structural changes
early, midway and late in the sample period are covered. In 1000 runs one test statistic
under Hy and one under the specified alternative are simulated and it is checked whether
the null test statistic is larger. The empirical probabilities are reported in table 1 and it
can be seen that the linear boundaries cause some weaknesses for early and late structural
changes, whereas the properties of the test are rather good for ¢ between 0.3 and 0.7. The
alternative boundaries can solve the weakness for early and late changes and they spread
the rejection probability more evenly over the whole sample period.
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Table 1:

P
q g 0° 18° 36° 54° 72¢ 90°
OLS-based CUSUM test with linear boundaries
0.1 4.8 | 0.395 0.415 0.419 0489 0.458 0.505
7.2 | 0.293 0329 0.374 0.425 0.509 0.483
9.6 | 0.201 0.207 0.267 0.389 0.484 0.526
12.0 | 0.124 0.133 0.166 0.331 0.442 0.545
0.3 4.8 | 0.151 0.198 0.255 0.350 0.449 0.536
7.2 | 0.045 0.060 0.121 0.221 0.435 0.513
9.6 | 0.005 0.015 0.029 0.127 0.332 0.544
12.0 | 0.002 0.001 0.008 0.055 0.308 0.519
0.5 4.8 | 0.118 0.144 0.224 0.338 0.468 0.509
7.2 1 0.020 0.024 0.067 0.171 0.381 0.500
9.6 | 0.004 0.006 0.016 0.065 0.294 0.508
12.0 | 0.000 0.000 0.003 0.039 0.247 0.504
0.7 4.8 | 0.179 0.185 0.252 0.364 0.464 0.484
7.2 1 0038 0.051 0.119 0.226 0.398 0.512
9.6 | 0.005 0.010 0.031 0.121 0377 0.521
12.0 | 0.000 0.000 0.005 0.056 0.299 0.512
0.9 4.8 | 0.399 0431 0.421 0.443 0.488 0.482
7.2 | 0.334 0339 0.392 0412 0.480 0.487
9.6 | 0.211 0.204 0.268 0.384 0.488 0.507
12.0 | 0.109 0.136 0.190 0.308 0.458 0.508
OLS-based CUSUM test with alternative boundaries
0.1 4.8 | 0.367 0.382 0.396 0.436 0.477 0.503
7.2 1 0.256 0.246 0.308 0.409 0.457 0.494
9.6 | 0.138 0.145 0.231 0.309 0.455 0.500
12.0 | 0.054 0.071 0.118 0.260 0.395 0.494
0.3 4.8 | 0.227 0.243 0.300 0.393 0.456 0.507
7.2 | 0.066 0.087 0.138 0.293 0.438 0.533
9.6 | 0.023 0.012 0.037 0.156 0.390 0.539
12.0 | 0.001 0.003 0.010 0.106 0.346 0.514
0.5 4.8 | 0.197 0.207 0.262 0.359 0.465 0.505
7.2 | 0.049 0.075 0.114 0.271 0.422 0.513
9.6 | 0.004 0.011 0.038 0.141 0.395 0.536
12.0 | 0.001 0.001 0.007 0.045 0.338 0.520
0.7 4.8 | 0.224 0.250 0.303 0415 0485 0.522
7.2 |1 0.080 0.077 0.170 0.276 0.441 0.523
9.6 | 0.009 0.016 0.039 0.184 0.394 0.527
12.0 | 0.002 0.006 0.012 0.095 0.347 0.544
0.9 4.8 | 0.383 0.376 0.426 0.453 0.482 0.488
7.2 1 0229 0.264 0.291 0.397 0.480 0.488
9.6 | 0.137 0.154 0.203 0.328 0.447 0.500
12.0 | 0.060 0.074 0.129 0.229 0.404 0.494

Simulation of expected p values of the alternative OLS-based CUSUM test
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6 Conclusion

Firstly explicit formulae for approximating the (asymptotic) p values for the common
Standard and the OLS-based CUSUM test are derived, which are rather useful for com-
putation and implementation. Secondly alternative boundaries that are proportional to
the standard deviation of the limiting distributions are suggested. They fail to improve
that properties of the Standard CUSUM test, but they can solve the weakness of the
OLS-based CUSUM test for early and late structural changes. If a CUSUM test should be
applied to data where the potential break point is not known, the alternative OLS-based
CUSUM test is probably the most recommendable.

References

[1] Brown R.L., Durbin J., Evans J.M. (1975), “Techniques for Testing Constancy of
Regression Relationships over Time”, Journal of the Royal Statistal Society, B, 37,
149-163.

[2] Durbin J. (1971), “Boundary-Crossing Probabilities for the Brownian Motion and Pois-
son Process and Techniques For Computing The Power of the Kolmogorov-Smirnov
Test”, Journal of Applied Probability, 8, 431-453.

[3] Hansen B. (1997), “Approximate Asymptotic P> Values for Structural-Change Tests”,
Journal of Business & Economic Statistics, 15, 60-67.

[4] Kramer W., Ploberger W., Alt R. (1988), “Testing for Structural Change in Dynamic
Models”, Econometrica, 56, 1355-1369.

[5] Kuan C.-M., Hornik K. (1995), “The Generalized Fluctuation Test: A Unifying View”,

Econometric Reviews, 14, 135 - 161.

[6] Ploberger W., Krimer W. (1992), “The CUSUM Test with OLS Residuals”, Econo-
metrica, 60, 271-285.

[7] Sackrowitz H., Samuel-Cahn E. (1999), “P Values as Random Variables - Expected P
Values”, The American Statistician, 53, 326-331.

[8] Wang L., Pétzelberger K. (1997), “Boundary Crossing Probability for Brownian Mo-
tion and General Boundaries”, Journal of Applied Probability, 34, 54-65.

15



