Proper Bounded Edge-Colorings

Claudia Bertram-Kretzberg, Hanno Lefmann, Vojtěch Rödl and Beata Wysocka

Abstract

For fixed integers $k \geq 2$, and for n-element sets X and colorings $\Delta : [X]^k \rightarrow \{0, 1, \ldots \}$ where every color class is a matching and has cardinality at most u, we show that there exists a totally multicolored subset $Y \subseteq X$ with

$$|Y| \geq \max \left\{ c_1 \left(\frac{n}{u} \right)^{\frac{k}{2(k+1)}}, \quad c_2 \left(\frac{n}{u} \right)^{\frac{k}{2(k+1)}} \cdot \left(\ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{k}{2(k+1)}} \right\}$$

where $c_1, c_2 > 0$ are constants. This lower bound is tight up to constant factors for $u = \Omega(n^{1/2+\epsilon})$ for every $\epsilon > 0$. For fixed values of k we give a polynomial time algorithm for finding such a set Y of guaranteed size.

1 Introduction

On each of $(\frac{3n}{3})/n$ school days, in a school attended by $3n$ students, the students are asked to line up in n rows, each containing three students. In 1851, Kirkman asked for the existence of such a schedule that would allow each triple of students to form a row on exactly one of the school days, cf. [Bi 81]. This classical problem was answered completely by Ray-Chaudhuri and Wilson [RW 71] who proved that such a schedule exists for each $n \equiv 1, 3 \pmod{6}$. Here, we investigate a somewhat related combinatorial problem. Suppose that after such a schedule was prepared, the principle of the school wants (for unrevealed purposes) to select the largest group of, say, m students with the property that no two triples of students form a row on the

*Universität Dortmund, Fachbereich Informatik, LS II, D-44221 Dortmund, Germany.

1Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia 30322, USA.

2University of North Carolina at Greensboro, Department of Mathematical Sciences, Greensboro, NC 27412, USA.

3Research supported by NSF grant DMS 9401559. Part of this work was done during the author’s visit of Humboldt-University, Berlin, with a Humboldt senior-fellowship.

4Research supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center “Computational Intelligence” (SFB 531).
same day. For any schedule such an \(m \) must satisfy
\[
c_1 \cdot n^{2/5} \cdot (\ln n)^{1/5} \leq m \leq c_2 \cdot n^{2/3}
\]
where \(c_1, c_2 > 0 \) are constants. While the upper bound is straightforward, the lower bound follows from [ALR 91]. There are schedules which, up to constant factors, match the lower bound. Here, we consider the general case in which one has \(n \) students which are asked to line up in at most \(a \) rows on a day, each containing \(k \) people. Our results extend earlier work from [ALR 91] and [LRW 96] where the case \(a = n/k \) respectively \(k = 2 \) was considered. We also give a polynomial time algorithm which finds a group of \(m \) students satisfying the lower bound in (1).

It will be convenient to formulate our problem in terms of colorings.

Definition 1 Let \(\Delta: [X]^k \rightarrow \omega \) where \(\omega = \{0, 1, \ldots\} \) be a coloring of the \(k \)-element subsets of a set \(X \). The coloring \(\Delta: [X]^k \rightarrow \omega \) with color classes \(C_0, C_1, \ldots \), i.e., \(\Delta^{-1}(i) = C_i \) for \(i \in \omega \), is called \(u \)-bounded if \(|C_i| \leq u \) for \(i = 0, 1, \ldots \). The coloring \(\Delta: [X]^k \rightarrow \omega \) is called proper if each color class \(C_i, i = 0, 1, \ldots \) is a matching, i.e., sets of the same color are pairwise disjoint, thus, \(\Delta(U) = \Delta(V) \) implies \(U \cap V = \emptyset \) for all distinct sets \(U, V \in [X]^k \). A subset \(Y \subseteq X \) is called totally multicolored if the restriction of the coloring \(\Delta \) to the set \([Y]^k \) of all \(k \)-element subsets of \(Y \) is a one-to-one coloring.

For an \(n \)-element set \(X \), define the parameter \(f_u(n, k) \) by
\[
f_u(n, k) = \min_{\Delta} \max_{Y \subseteq X} \{|Y|; Y \text{ is totally multicolored}\},
\]
where we minimize over all proper \(u \)-bounded colorings \(\Delta: [X]^k \rightarrow \omega \) with \(|X| = n \).

The first estimates on \(f_u(n, k) \) were given by Babai, cf. [Ba 85], in connection with a Sidon-type problem. He showed for the case \(a = n/2 \) and \(k = 2 \) that
\[
c_1 \cdot n^{1/3} \leq f_{n/2}(n, 2) \leq c_2 \cdot (n \cdot \ln n)^{1/3}
\]
for constants \(c_1, c_2 > 0 \). In [ALR 91] the lower bound was improved by the factor \(\Theta((\ln n)^{1/3}) \), i.e., \(f_{n/2}(n, 2) \geq c_3 \cdot (n \cdot \ln n)^{1/3} \) where \(c_3 > 0 \) is a constant. Moreover, for fixed integers \(k \geq 2 \)
the results from [ALR 91] show that

\[f_{n/k}(n, k) = \Theta \left(n^{k-1} \cdot (\ln n)^{1/2k-1} \right) \]

Here we will prove the following:

Theorem 1 Let \(k \geq 2 \) be a fixed integer. There exist constants \(c_1, c_2, c_3 > 0 \) such that for

\[2 \leq u \leq n/k, \]

\[\max \left\{ c_1 \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}}, \quad c_2 \cdot \left(\frac{n^k}{u} \cdot \ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{1}{2k-1}} \right\} \leq f_u(n, k) \leq c_3 \cdot \left(\frac{n^k}{u} \cdot \ln n \right)^{\frac{1}{2k-1}}. \quad (2) \]

Moreover, for every \(n \)-element set \(X \) and every \(u \)-bounded proper coloring \(\Delta: [X]^k \rightarrow \omega \) one can find in time \(O(u \cdot n^{2k-1}) \) a totally multicolored subset \(Y \subseteq X \) with

\[|Y| \geq \max \left\{ c_1 \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}}, \quad c_2 \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}} \cdot \left(\ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{1}{2k-1}} \right\}. \]

2 The Existence

In this section, we will prove the existence of a totally multicolored subset as guaranteed by Theorem 1. We will use the notion of edge-colored hypergraphs. The vertices are the \(n \) students, the edges correspond to the rows, and these edges are colored by the day.

Let \(G = (V, E) \) be a hypergraph with vertex set \(V \) and edge set \(E \). For a vertex \(v \in V \), let \(d(v) \) denote the *degree* of \(v \) in \(G \), i.e., the number of edges \(E \in E \) containing \(v \). Let \(d = \sum_{v \in V} d(v) / |V| \) denote the *average degree* of \(G \). If for some fixed \(k \) we have \(|E| = k \) for each edge \(E \in E \), then \(G \) is called *\(k \)-uniform*. A 2-cycle in \(G \) is an (unordered) pair \(E, E' \in E \) of distinct edges which intersect in at least two vertices. The *independence number* \(\alpha(G) \) is the largest size of a subset \(I \subseteq V \) such that the induced hypergraph contains no edges, i.e., \(E \not\subseteq I \) for every edge \(E \in E \).

Lower Bounds

It turns out that the independence number is important in our considerations. Some of our arguments are based on a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi, [AKPSS 82]. Here, we will use a modified version proved in [DLR 95].
Theorem 2 Let G be a k-uniform hypergraph on n vertices. Assume that

(i) G contains no 2-cycles, and

(ii) the average degree satisfies $d \leq t^k$ where $t \geq t_0(k),$

then for some positive constant $c = c(k)$,

$$\alpha(G) \geq c \cdot \frac{n}{t} \cdot (\ln t)^{\frac{1}{t}}.$$ \hspace{1cm} (3)

Now we are ready to prove the lower bounds given in Theorem 1.

Proof: We start by showing the two lower bounds in (2). Let $\Delta: [X]^k \to \omega$ be a u-bounded proper coloring where $|X| = n$. We construct a $2k$-uniform hypergraph $H = (X, E)$ on X where $E \in E \subseteq [X]^{2k}$ if there exist two distinct k-element sets $S, T \in [X]^k$, $S, T \subseteq E$, so that $\Delta(S) = \Delta(T)$. As the number of k-element sets of the same color is at most u, the number of edges in H satisfies

$$|E| = \sum_{i \in \omega} \left(\Delta^{-1}(i) \right) \leq \left(\frac{n}{k} \right) \cdot \left(\frac{u}{2} \right).$$ \hspace{1cm} (4)

Observe that, if $I \subseteq X$ is an independent set of H, then I is totally multicolored with respect to the coloring Δ. Concerning the first lower bound, it is enough to show that H contains an independent set of size $c_1 \cdot (n^k/u)^{1/(2k-1)}$. To see this, pick every vertex in X at random independently of the other vertices with probability

$$p = (n^{k-1} \cdot u)^{-\frac{1}{2k-2}}.$$ \hspace{1cm} (5)

By Chernoff’s inequality, there exists a subset $Y \subseteq X$ of cardinality at least

$$(1 - o(1)) \cdot p \cdot n = (1 - o(1)) \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-2}},$$

and by Markov’s inequality, the on Y induced subhypergraph $H_0 = (Y, E \cap [Y]^{2k})$ of H contains at most

$$2 \cdot p^{2k} \cdot |E| \leq 2 \cdot p^{2k} \cdot \left(\frac{n}{2} \right) \cdot \left(\frac{u}{2} \right) \leq \frac{1}{2} \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-2}}$$

edges since $k \geq 2$. By deleting one vertex from each edge in $[Y]^{2k} \cap E$, we obtain a subset $Y' \subseteq Y$ with $|Y'| \geq |Y|/2 \geq (1/2 - o(1)) \cdot p \cdot n$. Clearly, Y' is an independent set in H, and hence Y' is totally multicolored with respect to Δ, i.e., $f_a(n, k) = \Omega((n^k/u)^{1/(2k-1)})$.

If \(u = \sqrt{n} \cdot \omega(n) \), where \(\omega(n) \to \infty \) with \(n \to \infty \), we can improve the lower bound
\[
 f_n(u, k) \geq c_1 \cdot (n^k/u)^{1/(2k-1)}
\]
by a logarithmic factor. Let \(\Delta: [X]^k \to \omega \) be a \(u \)-bounded proper coloring. Consider the \(2k \)-uniform hypergraph \(\mathcal{H} \) with vertex set \(X \) and with the set \(E \) of edges defined in the same way as above. Again, we want to show a large lower bound on the independence number of \(\mathcal{H} \). Our strategy will be to find a random subset \(Y \subseteq X \) such that the induced hypergraph has only a few \(2 \)-cycles. By deleting these \(2 \)-cycles the desired result will follow with Theorem 2.

Throughout this proof, let \(c_1, c_2, \ldots \) denote positive constants. Recall that the number of edges of \(\mathcal{H} \) satisfies inequality (4). For \(j = 2, 3, \ldots, 2k-1 \), let \(\nu_j \) denote the number of \((2, j) \)-cycles in \(\mathcal{H} \), i.e., the number of pairs \(\{ E, E' \} \in [E]^2 \) of edges which intersect in exactly \(j \) vertices. First, we estimate the total number \(\nu_j \) of \((2, j) \)-cycles in the hypergraph \(\mathcal{H} \). We fix an edge \(E \in \mathcal{E} \). The number of unordered pairs \(\{U, V\} \) of distinct sets \(U, V \in [X]^k \) with \(\Delta(U) = \Delta(V) \) and \(|(U \cup V) \cap E| = j \) and \(1 \leq U \cap E, |V \cap E| \leq j - 1 \) is bounded from above by
\[
 \sum_{i=[j/2]}^{j-1} \binom{2k}{i} \cdot \binom{n-2k}{k-i} \cdot \binom{2k-j}{j-i} \leq c_1 \cdot n^{k-\lfloor j/2 \rfloor}, \tag{6}
\]
as either \(|U \cap E| \geq \lceil j/2 \rceil \) or \(|V \cap E| \geq \lceil j/2 \rceil \), and every color class is a matching.

If \(U \cap E = \emptyset \) or \(V \cap E = \emptyset \), but \(|(U \cup V) \cap E| = j \), then the number of such pairs \(\{U, V\} \) is at most
\[
 \binom{2k}{j} \cdot \binom{n-2k}{k-j} \cdot (u-1) \leq c_2 \cdot n^{k-j} \cdot u. \tag{7}
\]

Now, (4), (6) and (7) imply that
\[
 \nu_j \leq |\mathcal{E}| \cdot \left(c_1 \cdot n^{k-\lfloor j/2 \rfloor} + c_2 \cdot n^{k-j} \cdot u \right) \leq c_3 \cdot u \cdot \left(n^{2k-\lfloor j/2 \rfloor} + n^{2k-j} \cdot u \right).
\]

As \(u \leq n/k \) and \(j \geq 2 \), we have \(n^{2k-\lfloor j/2 \rfloor} \geq n^{2k-j} \cdot u \), hence
\[
 \nu_j \leq c_4 \cdot u \cdot n^{2k-\lfloor j/2 \rfloor}. \tag{8}
\]

With foresight we use a slightly larger value than in (5) for the probability \(p \) of picking vertices, namely, we set
\[
 p = \left(\frac{1}{n^{k-1} \cdot u} \right)^{1/(2k-1)} \cdot \left(\frac{u}{\sqrt{n}} \right)^{1/(4+1)(2k-1)}. \tag{9}
\]
Let Y be a random subset of X obtained by choosing vertices $v \in X$ with probability p independently of the other vertices. The expected size $E(|Y|)$ of Y is given by

$$E(|Y|) = p \cdot n = \left(\frac{n^k}{u} \right)^{\frac{j-2k+1}{2k-1}} \cdot \left(\frac{n}{\sqrt{n}} \right)^{\frac{1}{(2k+1)(2k-1)}}.$$

Let $\nu_j(Y)$, for $j = 2, 3, \ldots, 2k - 1$, be random variables counting the number of $(2, j)$-cycles contained in Y. The random variable $\mu_2(Y) = \sum_{j=2}^{2k-1} \nu_j(Y)$ counts the total number of 2-cycles of the subhypergraph induced on Y. Let $E(\mu_2(Y))$ and $E(\nu_j(Y))$ denote the corresponding expected values.

We infer for $j = 2, 3, \ldots, 2k - 1$ that

$$E(\nu_j(Y)) \leq p^{4k-j} \cdot c_4 \cdot u \cdot n^{2k-[j/2]}$$

$$= pn \cdot c_4 \cdot u \cdot n^{2k-1} \cdot \frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)}.$$

Thus,

$$E(\nu_j(Y)) \leq \begin{cases}
 pn \cdot c_4 \cdot u \cdot n^{2k-1} \cdot \frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)} & \text{if } j \text{ is even} \\
 pn \cdot c_4 \cdot u \cdot n^{2k-1} \cdot \frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)} & \text{if } j \text{ is odd}.
\end{cases}$$

Recall that $u = \sqrt{n} \cdot \omega(n) \leq n/k$ with $\omega(n) \to \infty$ with $n \to \infty$, hence, $\omega(n) = O(\sqrt{n})$. Then, for j even,

$$E(\nu_j(Y)) \leq pn \cdot c_4 \cdot u \cdot n^{2k-1} \cdot \frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)}$$

$$\leq pn \cdot c_4 \cdot \omega(n) \cdot \left(\frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)} \right)$$

$$= o(pn).$$

For j odd, we obtain

$$E(\nu_j(Y)) \leq pn \cdot c_4 \cdot u \cdot n^{2k-1} \cdot \frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)}$$

$$= pn \cdot c_4 \cdot \omega(n) \cdot \left(\frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)} \right)$$

$$\leq pn \cdot c_4 \cdot \omega(n) \cdot \left(\frac{j-2k+1}{2k-1} \cdot \frac{4k-j-1}{2k-1} \cdot \frac{k-1}{2k+1} \cdot \frac{(4k-j-1)!}{j!} \cdot \frac{1}{2k-1} \cdot \frac{1}{(2k+1)(2k-1)} \right)$$

$$= o(pn)$$

as $\omega(n) = O(\sqrt{n})$.

(9)
Hence, by (9) and (10) we conclude \(E(\mu_2(Y)) = \sum_{j=2}^{2k-1} E(\nu_j(Y)) = o(p \cdot n) \). Using Chernoff’s and Markov’s inequality, we infer that there exists a subset \(Y \subseteq X \) with \(|Y| = c_5pn \), such that the induced hypergraph \(\mathcal{H}_0 = (Y, \mathcal{E} \cap [Y]^{2k}) \) contains at most \(c_6p^{2k}|\mathcal{E}| \) edges, and has only \(o(pn) \) 2-cycles. We omit one vertex from each 2-cycle in \(\mathcal{H}_0 \). The resulting induced subhypergraph \(\mathcal{H}_1 \) has \((c_5-o(1)) \cdot pn \) vertices, contains no 2-cycles anymore, and by (4) has average degree at most

\[
d \leq t^{2k-1} = \frac{2k \cdot c_6 \cdot p^{2k} \cdot |\mathcal{E}|}{(c_5-o(1)) \cdot pn} \leq c_7 \cdot p^{2k-1} \cdot n^{k-1} \cdot u, \]

i.e., \(t \leq c_8 \cdot p \cdot (n^{k-1} \cdot u)^{\frac{1}{2k-1}} = c_8 \cdot (\frac{u}{\sqrt{n}})^{\frac{1}{k+1}} \cdot (\frac{1}{2k-1}). \) As \(u/\sqrt{n} \rightarrow \infty \) with \(n \rightarrow \infty \) we can apply Theorem 2 to the subhypergraph \(\mathcal{H}_1 \) which yields

\[
o(\mathcal{H}) \geq o(\mathcal{H}_1) \geq c \cdot \frac{(c_5-o(1)) \cdot p \cdot n}{c_8 \cdot p \cdot (n^{k-1} \cdot u)^{\frac{1}{2k-1}}} \cdot \left[\ln \left(c_8 \cdot \left(\frac{u}{\sqrt{n}} \right)^{\frac{1}{k+1}} \right) \right]^{\frac{1}{2k-1}}
\]

\[
\geq c' \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}} \cdot \left(\ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{1}{2k-1}},
\]

i.e., \(f_u(n, k) = \Omega((n^k/u)^{1/(2k-1)} \cdot (\ln n)^{1/(2k-1)}). \)

Upper Bounds

Next, we will show the upper bound in (2) generalizing some arguments from [Ba 85].

Proof: Let \(X \) be an \(n \)-element set where without loss of generality \(n \) is divisible by \(k \). Set \(m = \lceil c \cdot n^k/u \rceil \), where \(c > 0 \) is a constant. Let \(M_1, M_2, \ldots, M_m \) be random matchings, chosen uniformly and independently from the set of all matchings of size \(u \) on \(X \). We define a coloring \(\Delta: [X]^k \rightarrow \omega \) in rounds as follows: in round \(j = 1, 2, \ldots, m \), we color every \(k \)-element set in \(M_j \) which has not been colored before, by color \(j \). Let \(C_j \) be the set of all \(k \)-element subsets of \(X \) which are colored in some round \(i = 1, 2, \ldots, j-1 \). In round \(m+1 \) we color the remaining \(k \)-elements sets in \([X]^k \setminus C_{m+1} \) in an arbitrary way, such that each color class is a matching of size at most \(u \). Let \(Y \subseteq V \) be a fixed subset with \(|Y| = x \), where \(x = o(n/u^{1/k}) \). We will prove that for \(x \geq C \cdot (n^k/u \cdot \ln u)^{1/(2k-1)} \) with probability approaching to 1 the set \(Y \) is not
totally multicolored where $C > 0$ is a sufficiently large constant. This will give the desired result. We split the proof into several claims.

First, we give an upper bound on the probability that a certain number of k-element subsets of Y is colored in round j.

Claim 1 For $j = 1, 2, \ldots, m$ and $t = 0, 1, \ldots,$

$$
\text{Prob} \left[|M_j \cap [Y]^k| \geq t \right] \leq \left(\frac{u \cdot x^k}{n^k} \right)^t .
$$

Proof: The left hand side of (11) does not depend on the particular choice of Y. Thus, assume that the matching M_j is fixed. The set Y can be chosen in $\binom{n}{x}$ ways. If $|M_j \cap [Y]^k| \geq t$, then from M_j we can choose t edges in $\binom{n}{x}$ ways, and the remaining elements of Y can be chosen in at most $\left(\frac{(n-k)^t}{(n-x)^t} \right)$ ways, hence

$$
\text{Prob} \left[|M_j \cap [Y]^k| \geq t \right] \leq \frac{(\binom{n}{x}) \cdot (\binom{n-k}{x-t})}{\binom{n}{x}} \leq \left(\frac{u \cdot x^k}{n^k} \right)^t .
$$

□

Now, we estimate the probability that a certain number of k-element subsets of Y is colored in some round $i \leq m$.

Claim 2 For $t = 0, 1, \ldots$ and for positive integers n,

$$
\text{Prob} \left[|C_{m+1} \cap [Y]^k| \geq t \right] \leq \left(\frac{e \cdot (t+m) \cdot u \cdot x^k}{t \cdot n^k} \right)^t .
$$

Proof: For $j = 1, 2, \ldots, m$, consider the events $|M_j \cap [Y]^k| \geq t$. As the matchings are chosen independently of each other, these events are independent. By Claim 1 we have

$$
\text{Prob} \left[|M_j \cap [Y]^k| \geq t_j \right] \leq \left(\frac{u \cdot x^k}{n^k} \right)^{t_j} .
$$

Since $|C_{m+1} \cap [Y]^k| \leq \sum_{j=1}^{m} |M_j \cap [Y]^k|$ we infer, using $\binom{n}{k} \leq (e \cdot n/k)^k$, that

$$
\text{Prob} \left[|C_{m+1} \cap [Y]^k| \geq t \right] \leq \text{Prob} \left[\sum_{j=1}^{m} |M_j \cap [Y]^k| \geq t \right]
$$
\[\leq \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \prod_{j=1}^m \text{Prob} \left[|M_j \cap |Y|^k| \geq t_j \right] \]
\[\leq \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \prod_{j=1}^m \left(\frac{a \cdot x^k}{n^k} \right)^{t_j} \]
\[= \sum_{(t_j)_{j=1}^m, t_j \geq 0, \sum_{j=1}^m t_j = t} \left(\frac{e \cdot (t + m)}{t} \right)^t \cdot \left(\frac{a \cdot x^k}{n^k} \right)^t \]
\[= \left(\frac{e \cdot (t + m) \cdot a \cdot x^k}{t \cdot n^k} \right)^t. \]

For \(i = 1, 2, \ldots, m+1 \), let \(E_i \) denote the event \(|C_i \cap |Y|^k| \leq [e_1 \cdot x^k]| \) where \(e_1 > 0 \) is a constant with \(3e \leq e_1 \leq 1/2 \cdot 1/k! \). Note that if \(E_i \) does not hold for some \(i \), then also \(E_{m+1} \) does not hold.

It turns out that with high probability \(E_{m+1} \) holds, i.e., only at most the constant fraction \(e_1 \) of all \(k \)-element subsets of \(Y \) is colored before round \(m+1 \):

Claim 3 For large enough positive integers \(n \),

\[\text{Prob} \left[E_{m+1} \right] \geq 1 - 2^{-e_1 \cdot x^k}. \]

Proof: Set \(t = [e_1 \cdot x^k] \). Since \(x = o \left(n^{1/k} \right) \) we have \(t = o(n^{k}/n) \). For \(n \) large enough, with \(m = \lceil e \cdot n^k/u \rceil \), and as \(e \cdot c / c_1 \leq 1/3 \), the quotient \(\frac{e \cdot (t+m) \cdot a \cdot x^k}{t \cdot n^k} \) is less than \(1/2 \), hence with (12) we have

\[\text{Prob} \left[E_{m+1} \right] \geq 1 - \text{Prob} \left[|C_{m+1} \cap |Y|^k| \geq t \right] \geq 1 - 2^{-t} \geq 1 - 2^{-e_1 \cdot x^k}. \]

We define another random variable \(Y_j \) by \(Y_j = \left[|M_j|^2 \cap |Y|^k \right] \) for \(j = 1, 2, \ldots, m \). Then \(Y_j \) counts the number of pairs of distinct \(k \)-element subsets of \(Y \) which are colored in round
j. For \(j = 1, 2, \ldots, m \), we want to determine the probability \(\text{Prob} [Y_j = 0] \). However, we do not know how many \(k \)-element sets of \(Y \) were already colored in some round \(i < j \). Therefore, we condition on the event that only at most the fraction \(c_1 \) of all \(k \)-element subsets of \(Y \) has been colored before round \(j \).

For a random variable \(Z \) let \(E(Z) \) denote the expected value of \(Z \).

Claim 4 For some constant \(c_2 > 0 \), and sufficiently large positive integers \(n \), and for \(j = 1, 2, \ldots, m \),

\[
E(Y_j | E_j) > c_2 \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
\]

Proof: As \(E_j \) holds, we have for some constant \(c_1' > 0 \) that

\[
| [Y]^k \setminus C_j | \geq \binom{x}{k} - c_1 \cdot x^k \geq c_1' \cdot x^k.
\]

For each set \(S \in [Y]^k \) there are less than \(k \cdot \left(\frac{n-1}{k-1} \right) \) \(k \)-element subsets of \(Y \) which are not disjoint from \(S \). Hence, for some constant \(c_2 > 0 \) and \(n \) large enough, the number of (unordered) pairs \(\{S,T\} \in [[Y]^k \setminus C_j]^2 \) of sets with \(S \cap T = \emptyset \) is at least

\[
\frac{1}{2} \cdot c_1' \cdot x^k \cdot \left(c_1' \cdot x^k - k \cdot \binom{x-1}{k-1} \right) \geq c_2 \cdot x^{2k}.
\]

For given disjoint \(k \)-element sets \(S, T \in [X]^k \), the probability that both sets are in \(M_j \) is given by

\[
\text{Prob} [S, T \in M_j] = \frac{u \cdot (u-1)}{\binom{n}{k} \cdot \binom{n-k}{k}} \geq \frac{u^2}{n^{2k}}.
\]

Hence, by (13) and (14) for the conditional expected value \(E(Y_j | E_j) \) we have

\[
E(Y_j | E_j) \geq c_2 \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
\]

\(\square \)

Claim 5 For \(j = 1, 2, \ldots, m \), and large positive integers \(n \),

\[
\text{Prob} [Y_j = 1 \mid E_j] \geq (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
\]
Proof: For \(t = 1, 2, \ldots \), we claim that
\[
\text{Prob}[Y_j \geq t \mid E_j] \leq \left(\frac{u \cdot x^k}{n^k} \right)^{\left\lceil \frac{\sqrt{2t + 1}}{2} \right\rceil}.
\] (15)

Namely, \(t \) pairwise distinct two-element sets span a set of cardinality at least \(\left\lceil \sqrt{2t + 1} \right\rceil \), i.e., \(Y_j \geq t \) implies \(|M_j \cap |Y]_k| \geq \left\lceil \sqrt{2t + 1} \right\rceil \). By Claim 1 this shows inequality (15):
\[
\text{Prob}[Y_j \geq t \mid E_j] \leq \text{Prob}\left[|M_j \cap |Y]_k| \geq \left\lceil \sqrt{2t + 1} \right\rceil \right] \leq \left(\frac{u \cdot x^k}{n^k} \right)^{\left\lceil \frac{\sqrt{2t + 1}}{2} \right\rceil}.
\]

For \(i = 0, 1, \ldots \), set \(p_i = \text{Prob}[Y_j = i \mid E_j] \). Then we infer from (15), using \(x = o\left(n/u^{1/k}\right) \), that
\[
E(Y_j \mid E_j) = \sum_{i \geq 0} i \cdot p_i \leq p_1 + \sum_{i \geq 2} i \cdot \left(\frac{u \cdot x^k}{n^k} \right)^{\left\lceil \frac{\sqrt{2t + 1}}{2} \right\rceil} = p_1 + O\left(\left(\frac{u \cdot x^k}{n^k} \right)^{\frac{3}{2}} \right) = p_1 + o\left(\left(\frac{u^2 \cdot x^{2k}}{n^{2k}} \right) \right).
\]

By Claim 4 we infer that \(p_1 \geq (c_2 - o(1)) \cdot u^2 \cdot x^{2k}/n^{2k} \). \(\square \)

Finally, for \(j = 1, 2, \ldots, m \) let \(A_j \) denote the event \((Y_j = 0 \text{ and } E_j) \).

Claim 6 For some constant \(c_3 > 0 \), and large enough positive integers \(n \),
\[
\text{Prob}[A_1 \land \ldots \land A_m] \leq \exp\left(-c_3 \cdot u \cdot \frac{x^{2k}}{n^k}\right).
\]

Proof: Notice that
\[
\text{Prob}[A_1 \land \ldots \land A_m] = \text{Prob}[A_1] \cdot \prod_{i=2}^{m} \text{Prob}[A_i \mid A_1 \land \ldots \land A_{i-1}].
\] (16)

By Claim 5 we have
\[
\text{Prob}[A_1] \leq \text{Prob}(Y_1 = 0 \mid E_1) \leq \text{Prob}(Y_1 \neq 1 \mid E_1) \leq 1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}},
\] (17)
while for \(i \geq 2 \) we infer

\[
\text{Prob} [A_i \mid A_1 \land \ldots \land A_{i-1}] \leq \text{Prob} [Y_i = 0 \mid A_1 \land \ldots \land A_{i-1}]
\]
\[
\leq \text{Prob} [Y_i = 0 \mid E_i]
\]
\[
\leq \text{Prob} [Y_i \neq 1 \mid E_i]
\]
\[
\leq 1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}.
\]

Using \((1 - x)^m \leq \exp(-m \cdot x)\) where \(m = \lceil e \cdot n^k / u \rceil \), inequalities (17), (18) together with (16) imply

\[
\text{Prob} [A_1 \land A_2 \land \ldots \land A_m] \leq \left(1 - (c_2 - o(1)) \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}\right)^m
\]
\[
\leq \exp \left(- (c_2 - o(1)) \cdot m \cdot \frac{u^2 \cdot x^{2k}}{n^{2k}}\right)
\]
\[
\leq \exp \left(- c \cdot (c_2 - o(1)) \cdot \frac{u \cdot x^{2k}}{n^k}\right)
\]
\[
\leq \exp \left(- c_3 \cdot \frac{u \cdot x^{2k}}{n^k}\right).
\]

\[\Box\]

Claim 7 For large enough positive integers \(n \), the probability that there exists a totally multicolored \(x \)-element subset is at most

\[
\binom{n}{x} \cdot \left(\exp \left(- c_3 \cdot \frac{u \cdot x^{2k}}{n^k}\right) + 2^{-c_1 \cdot x^k}\right).
\]

Proof: If \(Y \) is totally multicolored, then \(Y_1 = Y_2 = \ldots = Y_m = 0 \). Thus, either \(A_1 \land A_2 \land \ldots \land A_m \) holds or some \(E_i \), hence, \(E_{m+1} \) fails. As there are exactly \(\binom{n}{x} \) \(x \)-element sets \(Y \), by combining the estimates from Claim 3 and Claim 6 we obtain (19).

\[\Box\]

We want to show that for \(n \to \infty \) expression (19) tends to 0 for \(x \geq C \cdot \left(\frac{n^k}{u}\right)^{1/(2k-1)} \cdot (\ln n)^{1/(2k-1)} \) where \(C > 0 \) is a big enough constant. Namely,

\[
\binom{n}{x} \cdot 2^{-c_1 \cdot x^k} \leq \left(\frac{e \cdot n}{x}\right)^x \cdot 2^{-c_1 \cdot x^k}
\]
\[
\leq \exp \left(x \cdot \ln \frac{n}{x} - c_1 \cdot \ln 2 \cdot x^k\right)
\]
\[
= o(1)
\]
for \(x \geq C \cdot (\ln n)^{1/(k-1)} \) where \(C > 0 \) is a large enough constant.

Moreover, we have

\[
\binom{n}{x} \cdot \exp\left(-c_3 \cdot \frac{u \cdot 2^k}{n^k}\right) \leq \left(\frac{e \cdot n}{x}\right)^x \cdot \exp\left(-c_3 \cdot \frac{u \cdot 2^k}{n^k}\right)
\]
\[
\leq \exp\left(2x \cdot \ln n - c_3 \cdot \frac{u \cdot 2^k}{n^k}\right)
\]
\[
\leq \exp\left(2C - c_3 \cdot C^{2k} \cdot \left(\frac{n^k}{u}\right)^{1/(2k-1)} \cdot (\ln n)^{2k/(2k-1)}\right)
\]
\[
= o(1)
\]

provided \(C^{2k-1} > 2/c_3 \) and \(n \) is large enough. Thus, expression (19) tends to 0 with \(n \to \infty \).

For \(n \leq m_0 \) one can obtain asymptotically the same upper bound by taking an appropriately large constant \(C > 0 \).

\[\square\]

3 \hspace{1em} An Algorithm

Here, we show that one can find in time \(O(u \cdot n^{2k-1}) \) a totally multicolored subset as guaranteed by Theorem 1. The algorithm follows the probabilistic arguments given before. It is based on recent results of Fundia [Fu 96] and from [BL 96].

Proof: Let \(k \geq 2 \) be a fixed integer and let \(\Delta: [X]^k \to \omega \) with \(|X| = n \) be a proper \(u \)-bounded coloring. First, we order the set \([X]^k\) of \(k \)-element subsets according to their color. This can be done in time \(O(n^k \cdot \ln n) \). Then, by examining all \(k \)-element sets in \([X]^k\) we form a \(2k \)-uniform hypergraph \(H = (X, E) \), \(E \subseteq [X]^{2k} \), where \(E \in E \) if there exist two distinct \(k \)-element sets \(S, T \in [X]^k \) with \(S \cup T = E \) and \(\Delta(S) = \Delta(T) \). By (4), we have \(|\mathcal{E}| = O(n^k \cdot u) \), hence constructing the hypergraph \(H \) can be done in time \(O(n^k \cdot u + n^k \cdot \ln n) \). We use the following algorithmic version of Turán’s theorem, cf. [BL 96]. The existence result was given by Spencer [Sp 72].

Lemma 1 Let \(\mathcal{G} = (V, \mathcal{E}) \) be a \(k \)-uniform hypergraph on \(n \) vertices with average degree \(d^{k-1} \geq 1 \). Then, one can find in time \(O(|V| + |\mathcal{E}|) \) an independent set \(I \subseteq V \) with

\[
|I| \geq \frac{k-1}{k} \cdot \frac{n}{d}.
\]

13
Proof: We sketch the arguments. We use the method of conditional probabilities, cf. [AS 92]. Let \(V = \{v_1, v_2, \ldots, v_n\} \). Every vertex \(v_i \) will be assigned a probability \(p_i \in [0,1] \), \(i = 1, 2, \ldots, n \). Define a potential by

\[
V(p_1, p_2, \ldots, p_n) = \sum_{i=1}^{n} p_i - \sum_{E \in \mathcal{E}, v_i \in E} \prod_{v_i} p_i.
\]

The choice \(p_1 = p_2 = \ldots = p_n = p = 1/d \) gives the initial value of the potential

\[
V(p, \ldots, p) = p \cdot n - p^k \cdot \frac{n \cdot d^{k-1}}{k} = \frac{k-1}{k} \cdot \frac{n}{d}.
\]

In each step \(i, i = 1, 2, \ldots, n \), one after the other, we choose either \(p_i = 0 \) or \(p_i = 1 \) in order to maximize the current value of \(V(p_1, p_2, \ldots, p_n) \). As \(V(p_1, p_2, \ldots, p_n) \) is linear in each \(p_i \), for \(i = 1 \), for example, either \(V(p_1, \ldots, p_n) \leq V(1, p_2, \ldots, p_n) \) or \(V(p_1, \ldots, p_n) \leq V(0, p_2, \ldots, p_n) \).

If \(V(p_1, \ldots, p_n) \leq V(1, p_2, \ldots, p_n) \), we set \(p_1 = 1 \), else let \(p_1 = 0 \). Iterating this, we obtain finally \(p_1, p_2, \ldots, p_n \in \{0, 1\} \).

By our strategy, we infer \(V(p_1, p_2, \ldots, p_n) \geq V(p, p, \ldots, p) \). For \(V' = \{v_i \in V \mid p_i = 1\} \) we have

\[
|V'| = \sum_{i=1}^{n} p_i = V(p_1, p_2, \ldots, p_n) + \sum_{E \in \mathcal{E}, v_i \in E} \prod_{v_i} p_i.
\]

We can assume that \(V' \) is independent as otherwise we omit one vertex from each edge contained in \(V' \) and the value of \(V(p_1, p_2, \ldots, p_n) \) will not decrease. Thus, \(|V'| \geq V(p, p, \ldots, p) = \frac{k-1}{k} \cdot \frac{n}{d} \) and \(V' \) is an independent set. The running time is \(O(|V| + |\mathcal{E}|) \).

By (4) the average degree \(d \) of \(\mathcal{H} \) satisfies \(d^{k-1} \leq 2k \cdot |\mathcal{E}|/|X| \leq c_1 \cdot n^{k-1} \cdot u \). By Lemma 1 we can find in time \(O(|X| + |\mathcal{E}|) = O(n^k \cdot u) \) an independent set in \(\mathcal{H} = (X, \mathcal{E}) \) of size at least

\[
\frac{k-1}{k} \cdot \frac{n}{d} \geq c' \cdot \frac{n}{(n^{k-1} \cdot u)^{\frac{1}{2k-1}}} = c' \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}}
\]

where \(c' > 0 \) is a constant. With the sorting procedure in the beginning, this part of the algorithm can be done in time \(O(n^k \cdot u + n^k \cdot \ln n) \).

Now, assume that \(u = \sqrt{n} \cdot \omega(n) \) where \(\omega(n) \to \infty \) with \(n \to \infty \). Again we consider the hypergraph \(\mathcal{H} = (X, \mathcal{E}) \). First, we construct the sets \(C_{2,j} \) of \((2,j)\)-cycles in \(\mathcal{H} \), \(j = 2, 3, \ldots, 2k - 1 \). Using that the \(k \)-element sets are sorted according to their color, and that
sets of the same color are pairwise disjoint, and using the considerations leading to (8), all 2-cycles in \(H \) can be constructed in time \(O(|C_{2,j}|) = O(n^{2k-\lceil j/2 \rceil}) \).

We use the following lemma.

Lemma 2 Let \(k \geq 3 \) be an integer. Let \(G = (V,\mathcal{E}) \) be a \(k \)-uniform hypergraph with \(|V| = n \). Let \(G \) contain \(\nu_j(G) \) many \((2, j)\)-cycles which can be determined all in time \(O(\nu_j(G)) \), \(j = 2, 3, \ldots, k-1 \). Then, for every real \(p \) with \(0 \leq p \leq 1 \), one can find in time \(O(|V| + |\mathcal{E}| + \sum_{j=2}^{k-1} \nu_j(G)) \) an induced subhypergraph \(G' = (V', \mathcal{E}') \) such that

\[
|V'| \geq p/3 \cdot |V| \\
|\mathcal{E}'| \leq 3 \cdot p^k \cdot |\mathcal{E}| \\
\nu_j(G') \leq 3k \cdot p^{2k-j} \cdot \nu_j(G)
\]

for \(j = 2, 3, \ldots, k-1 \).

Proof: As in the proof of Lemma 1, we use the method of conditional probabilities. Let \(C_{2,j} \) be the set of all \((2, j)\)-cycles in \(G \), \(j = 2, 3, \ldots, k-1 \).

Let \(V = \{v_1, v_2, \ldots, v_n\} \). If \(pn < 3.9 \), any two-element subset \(V' \subseteq V \) gives the desired subhypergraph, thus let \(pn \geq 3.9 \). Every vertex \(v_i \) will be assigned a probability \(p_i \in [0,1] \), \(i = 1, 2, \ldots, n \). Define a potential \(V(p_1, p_2, \ldots, p_n) \) by

\[
V(p_1, p_2, \ldots, p_n) = 3^{pn/3} \cdot \prod_{i=1}^{n} \left(1 - \frac{2}{3} \cdot p_i \right) + \\
\quad + \sum_{E \in \mathcal{E}} \prod_{e \in E} p_i + \sum_{j=2}^{k-1} \frac{1}{3} \cdot \frac{\sum_{C \in C_{2,j}} \prod_{e \in C} p_i}{3k \cdot p^{2k-j} \cdot \nu_j(G)}.
\]

With \(p_1 = p_2 = \ldots = p_n = p \) in the beginning, for \(pn/3 \geq 1.3 \) we have

\[
V(p, \ldots, p) = 3^{pn/3} \cdot \left(1 - \frac{2}{3} \cdot p \right)^n + \frac{p^k \cdot |\mathcal{E}|}{3 \cdot p^k \cdot |\mathcal{E}|} + \sum_{j=2}^{k-1} \frac{p^{2k-j} \cdot \nu_j(G)}{3k \cdot p^{2k-j} \cdot \nu_j(G)}
\]

\[
\leq \left(\frac{3}{e^2} \right)^{pn/3} + \frac{2}{3}
\]

\[
< 1.
\]

Step by step, we decide which choice of \(p_i \in \{0,1\} \) minimizes the current value of \(V(p_1, p_2, \ldots, p_n) \).

We set \(p_1 = 1 \), if \(V(1, p_2, \ldots, p_n) \leq V(0, p_2, \ldots, p_n) \), else we set \(p_1 = 0 \). Iterating this for all vertices \(v_1, v_2, \ldots, v_n \), we obtain finally \(p_1, p_2, \ldots, p_n \in \{0,1\} \).
We have chosen the \(p_i \)'s to minimize the potential, thus, \(V(p_1, p_2, \ldots, p_n) < 1 \). The set \(V' = \{ v_i \in V \mid p_i = 1 \} \) yields the desired induced subhypergraph as otherwise \(V(p_1, p_2, \ldots, p_n) > 1 \).

The whole computation can be done in time \(O(|V| + |E| + \sum_{j=2}^{k-1} \nu_j(G)) \).

We apply Lemma 2 to the hypergraph \(\mathcal{H} = (X, \mathcal{E}) \) with

\[
p = \left(\frac{1}{n^{k-1} \cdot u} \right)^{\frac{1}{k-1}} \left(\frac{u}{\sqrt{n}} \right)^{\frac{1}{k-1} \cdot \left(\frac{1}{2^k - 1} \right)},
\]

and we obtain in time \(O(|X| + |E| + \sum_{j=2}^{k-1} \nu_j(\mathcal{H})) = O(u \cdot n^{2k-1}) \) an induced subhypergraph \(\mathcal{H}' = (X', \mathcal{E}') \) of \(\mathcal{H} \) with \(|X'| \geq pn/3 \), and, \(|\mathcal{E}'| \leq 3p^{2k} \cdot |\mathcal{E}| \) and, using the considerations (9), (10) the 2-cycles of \(\mathcal{H}' \) satisfy \(\sum_{j=2}^{k-1} \nu_j(\mathcal{H}') \leq pn/6 \) for \(n \) large enough. Then, in time at most \(O(u \cdot n^{2k-1}) \) we can determine all 2-cycles in \(\mathcal{H}' \) and delete from \(\mathcal{H}' \) one vertex from each 2-cycle. The resulting induced hypergraph \(\mathcal{H}'' \) on at least \(pn/6 \) vertices contains at most \(c \cdot p^{2k} \cdot n^k \cdot u \) edges, thus, has average degree \(d^{2k-1} \leq c' \cdot p^{2k-1} \cdot n^k \cdot u \). Then, we apply the following result from [BL 96] which gives an algorithmic version of the existence result from [DLR 95] and extends an algorithm of Fundia [Fu 96].

Theorem 3 Let \(k \geq 3 \) be a fixed integer. Let \(\mathcal{G} = (V, \mathcal{E}) \) be a \(k \)-uniform hypergraph on \(n \) vertices with average degree at most \(t^{k-1} \). If \(\mathcal{G} \) does not contain any 2-cycles, then one can find for every fixed \(\delta > 0 \) in time \(O(n \cdot t^{k-1} + n^3/t^{3-\delta}) \) an independent set of size at least \(c(k, \delta) \cdot n/t \cdot (\ln t)^{1/(k-1)} \).

We apply Theorem 3 to \(\mathcal{H}'' \) and in time \(O \left(p^{2k} \cdot n^k \cdot u + n^3 \left/ \left(p \cdot n^{\frac{k-1}{2k-1}} \cdot u^{\frac{k-1}{2k-1}} \right)^{3-\delta} \right. \right) \)

\[= o \left(n^{2k-1} \cdot u \right) \], where \(\delta < 3 \), we obtain an independent set in \(\mathcal{H}'' \) hence in \(\mathcal{H} \) of size at least

\[c_2 \cdot \left(\frac{n^k}{u} \right)^{\frac{1}{2k-1}} \cdot \left(\ln \left(\frac{u}{\sqrt{n}} \right) \right)^{\frac{1}{2k-1}}. \]

The corresponding vertices form a totally multicolored set of size as desired.

4 Concluding Remarks

The running time of the algorithm can be reduced slightly as follows. Similarly as in Lemma 2, we choose first a subhypergraph \(\mathcal{H}' = (X', \mathcal{E}') \) of \(\mathcal{H} = (X, \mathcal{E}) \), where we do not control
the 2-cycles, but where $|X'| = p_1 n/3$ and $|E'| \leq 3p_1^{2k} \cdot |E|$. Then, \mathcal{H}' contains at most $O(u \cdot (p_1 \cdot n)^{2k-[j/2]}-1)$ many $(2,j)$-cycles. The value of $p_1 > 0$ should be chosen as small as possible such that for some constant $\gamma > 0$ and $j = 2, 3, \ldots, 2k - 1$, cf. [DLR 95] or [BL 96]:

$$v \cdot (p_1 n)^{2k-[j/2]} - 1 = O \left(p_1 n \cdot \left(p_1 \cdot n^{2^{k-1}-1} \cdot u^{3^{k-1}} \right)^{4^{k-1}-j-\gamma} \right).$$

For this subhypergraph we apply Lemma 2 with a different parameter p_2 with $p \approx p_1 \cdot p_2$ and proceed as before where the value of p is given by (20). Thus, we save some time by controlling the 2-cycles later. However, more interesting might be to find the real growth rate of $f_u(n,k)$ and a corresponding fast algorithm. It might be also of some interest to give explicitly a coloring which yields our, or possibly better upper bounds, on $f_u(n,k)$.

References

