
E�cient Genetic Programming for Finding Good

Generalizing Boolean Functions

Stefan Droste
Lehrstuhl Informatik II

Universit�at Dortmund

44221 Dortmund, Germany

droste@ls2.informatik.uni-dortmund.de

ABSTRACT

This paper shows how genetic pro-
gramming (GP) can help in �nd-
ing generalizing Boolean functions
when only a small part of the func-
tion values are given. The selec-
tion pressure favours functions hav-
ing as few subfunctions as possible
while only using essential variables,
so the resulting functions should
have good generalization properties.
For e�ciency no S-expressions are
used for representation, but a spe-
cial case of directed acyclic graphs
known as ordered binary decision
diagrams (OBDDs), making it pos-
sible to learn the 20-multiplexer.

1 Introduction

When using genetic programming (GP) or other tech-
niques that use a number of training examples, the main
goal is not only to create a program that exactly repro-
duces these training examples, but also has good gener-
alizing properties: for inputs not in the training set the
program should output values that closely resemble the
underlying function. Intuitively one would call a smaller
program better generalizing than a larger one, if both �t
the training examples with the same quality, because the
smaller program cannot di�erentiate between as many
cases as the larger one can. Hence, it must use more
regularities in the training examples. If one accepts that
smaller programs generalize better than larger ones, one
has to search for small programs that �t the training ex-
amples well in order to �nd good generalizing programs.
In GP S-expressions are often used to represent pro-

grams (see \Koza (1992)" for a detailed introduction to
GP). To correctly measure the size of a program, all un-
necessary code has to be removed. As it can be very
time-consuming to remove all unnecessary code in S-
expressions, in this paper ordered binary decision dia-

grams (OBDDs) (see \Bryant (1986)") are used to rep-
resent programs. Although this structure can only rep-
resent programs with Boolean input and output, it allows
e�cient removal of unnecessary code and can represent
many functions with polynomial size in the number of in-
put variables, while allowing many important operations
to be done in polynomial time in the size of the OBDD
(see \Wegener (1994)" for a survey article on OBDDs).
OBDDs are a special case of directed acyclic graphs, so
that a cache can be used to ensure that the same node
is stored only once (see \Handley (1994)"). \Yanagiya
(1995)" used OBDDs to learn the 20-multiplexer with
GP for the �rst time ever.
In this paper the case is studied, that the correct func-

tion values of an unknown Boolean function are only
known for a small part of its possible inputs, which is of-
ten the case in practical applications. Then one wants to
�nd an OBDD, which has the correct values on this small
part of the inputs and a minimal number of nodes. As
only OBDDs, where di�erent nodes represent di�erent
subfunctions, are considered, an OBDD with the min-
imal number of nodes uses the minimal number of di�er-
ent subfunctions, while �tting the given function values.
Therefore, one can call the resulting function the most
generalizing function that �ts the given values (with re-
spect to a given ordering of the input variables).
The next section gives a short introduction to well

known facts about OBDDs, the third section presents
genetic operators for OBDDs and the fourth section ex-
perimental results, where the given function values rep-
resent the multiplexer and parity function, resp. The
last section gives a conclusion of the paper.

2 Ordered Binary Decision Dia-

grams

Given n Boolean input variables x1; : : : ; xn, let � be
an ordering of these variables, i.e. a bijective function
� : fx1; : : : ; xng ! f1; : : : ; ng. An OBDD for � is an
acyclic directed graph with one source, where every node



is labeled either by one of the variables or one of the
Boolean constants 0 or 1 (in the last two cases the node
is called a sink). Every sink node has index n + 1 and
no outgoing edges, while every non-sink node has index
i, if its label is xi, and exactly two outgoing edges, one
labeled by 0 and the other by 1 (whose endpoints are
called 0-successor and 1-successor, resp.). Furthermore,
if there is an edge from a node labeled xi to a node
labeled xj, then �(xi) must be really smaller than �(xj)
(in the following it is always assumed, that �(xi) = i for
all i 2 f1; : : : ; ng).

To evaluate the function fO represented by a given
OBDD O for an input (a1; : : : ; an) 2 f0; 1gn, one starts
at the source. At a node labeled xi one chooses the ai-
successor. The value fO(a) equals the label of the �nally
reached sink. So the OBDD O in Figure 1 represents the
Boolean function fO(x1; x2; x3) = x1x3 _ x1x2x3.

�

��
�

��

�

��

�

��

0

1

x1

x2

x3

0

�
�
�


�
�
�


S
S
Sw

0

0 1

�
��+

A
A
A
A
AU

PPPPPPq

0
1

1

Figure 1: An example OBDD O

If a function f : f0; 1gn ! f0; 1g is given, an OBDD
Of that represents f can be constructed by building
the complete decision tree (Of stands for an appropriate
OBDD when the function f is given, and fO stands for
the function represented by a given OBDD O).

The size jOj of an OBDD O is the number of its non-
sink nodes. An OBDD is called reduced, if it has no node
with identical 0-successor and 1-successor and contains
no isomorphic subgraphs. It is well known, that for a
given function f the reduced OBDD is uniquely determ-
ined by starting with an arbitrary OBDD representing
the function and using two reduction rules: the deletion

rule states that a node v can be deleted, if its 0- and 1-
successor are identical, where all incoming edges to v are
redirected to this successor. The merging rule states that
a node v can be deleted, if there is another node w with
the same label and the same 0- and 1-successor, where
all incoming edges to node v are redirected to node w. If
neither the deletion nor the merging rule can be applied
on an OBDD, this OBDD is reduced and for given f and
� the reduced OBDD Of is unique up to isomorphism
(see \Wegener (1994)").

For a set fi1; : : : ; ikg � f1; : : : ; ng of indices and
(a1; : : : ; ak) 2 f0; 1gk the function fjxi1=a1;:::;xik=ak :

f0; 1gn�k ! f0; 1g is de�ned as the restriction of f ,

where for every j 2 f1; : : : ; kg the variable xij is set to aj .
A function f : f0; 1gn ! f0; 1g depends essentially on xi,
if fjxi=0 6= fjxi=1. One can show that a reduced OBDD
Of contains exactly as many nodes labeled xi as there
are di�erent subfunctions fjx1=a1;:::;xi�1=ai�1 depending
essentially on xi (for all (a1; : : : ; ai�1) 2 f0; 1gi�1).

If f is only partially de�ned, i.e. f : f0; 1gn ! f0; 1; �g,
Of is de�ned as the set of all reduced OBDDs O, where
fO(x) = f(x) for all x 2 f0; 1gn with f(x) 6= �. A set T of
vectors (xi1; : : : ; x

i
n; y

i) 2 f0; 1gn+1 (called table) de�nes
a partially de�ned function fT : f0; 1gn ! f0; 1; �g by
fT (xi1; : : : ; x

i
n) = yi for all i 2 f1; : : : ; jT jg, while fT (x) =

� for all other x 2 f0; 1gn.

Let OfT be the set of reduced OBDDs �tting the table
T , which contains exactly 22

n�jT j OBDDs. The minimal

consistent OBDD problem is the problem of �nding the
OBDD with the minimal number of nodes in the set OfT

of reduced OBDDs for a given table T . This problem
is known to be NP-hard (see \Sauerho� and Wegener
(1996)") and many heuristics for it are known (e.g. see
\Shiple et al. (1994)"). In this paper it is shown how GP
can (and in some sense has to) approximately solve the
minimal consistent OBDD problem when T has small
size, in order to �nd Boolean functions fO with good
generalization properties.

3 GP using OBDDs

The now described GP system uses only OBDDs that
�t the given table T , therefore being similar to strongly
typed GP. \Montana (1995)" showed that strongly typed
GP can be very e�ective by restricting the space of used
programs, i.e. the search space. This concept is also used
here in slight variation:

The OBDDs of the initial generation are created in
such a way that they �t the table, but otherwise are
random. Every OBDD of a later generation, created
by crossover or mutation, is explicitly checked, if it �ts
the table. If not, it is replaced by its parental OBDD,
i.e. a reproduction takes place. This di�ers from most
strongly typed GP systems, where the genetic operators
implicitly guarantee the syntactic correctness of the new
programs. This checking costs timeO(n�jT j) per OBDD,
but reduces the size of the search space by a factor of 2jT j.
Subsection 4.3 compares this approach with GP without
restriction by experimental results.

3.1 Representation of Programs

In this paper reduced OBDDs are used for representation
of programs, because the �tness of a program is based on
the size of its corresponding reduced OBDD and OBDDs
allow very e�cient representation of Boolean functions
for GP (see \Yanagiya (1994)").



To automatically build reduced OBDDs without expli-
citly using the reduction rules, the following well known
technique is used: in a hash table all nodes are stored
by their label and their 0- and 1-successor. Every time
a node shall be constructed, it is checked, if its 0- and
1-successor are identical. If so, this successor is returned
without constructing a new node (deletion rule). Other-
wise, the hash table is checked, if a node with the same
label, 0-, and 1-successor already exists. If so, this node
is returned without constructing a new node (merging
rule); otherwise a new node is constructed, inserted in
the hash table, and returned.
By constructing a node only after its 0- and 1-successor

it is guaranteed, that the constructed OBDD is reduced.
So only reduced OBDDs are used, lowering storage re-
quirements for GP enormously. The hash table is used
for all OBDDs, so equal nodes of di�erent OBDDs are
in memory only once. For all following estimations it is
assumed that every access to the hash table can be done
in time O(1).

3.2 The initial OBDDs

The OBDDs of the initial generation are created in such
a way, that they �t the table T . This is done by using
a function CheckTable(x) taking as input a vector x 2

f0; 1; �gn, that outputs the set of values y with (x0; y) 2
T , where x0 �ts x, i.e. x0i = xi for all i 2 f1; : : : ; ng
with xi 6= �. CheckTable can be trivially implemented
to work in time O(n � jT j). Notice, that any path from
the source of an OBDD to one of its nodes v uniquely
determines a vector x 2 f0; 1; �gn by starting with x =
(�; : : : ; �) and setting xi = ai, if the ai-successor is taken
at a node labeled xi.
Using CheckTable an OBDD is build in a depth-�rst-

manner using another function BuildOBDD(l; x), that cre-
ates a subOBDD, whose source has index l 2 f1; : : : ; n+
1g and starts on the path x 2 f0; 1; �gn. If l is n + 1,
the source has to be a sink: if CheckTable(x) is empty,
then either the 0- or the 1-sink is returned with prob-
ability 1=2. Otherwise, CheckTable(x) contains exactly
one element (see below): if it is 0, the 0-sink is returned,
otherwise the 1-sink.
If l is at most n, the path x is copied into x0 and

x1, where x0l is set to 0 and x1l to 1. If CheckTable(x)
contains two elements, a new node with label xl is
created (and returned) in the way described in sub-
section 3.1, whose 0- and 1-successor are given by
BuildOBDD(l + 1; x0) and BuildOBDD(l + 1; x1), resp. If
CheckTable(x) contains at most one element, values
�0;�1 2 f1; : : : ; n+ 1 � lg are chosen randomly and a
new node with label xl is created (and returned), whose
0- and 1-successor are given by BuildOBDD(l + �0; x0)
and BuildOBDD(l+�1; x1), resp.
Calling BuildOBDD(1; (�; : : :; �)) returns the source of

an OBDD that �ts the table, but contains random ele-

ments, too. As long as the actual node is relevant for
two inputs x; x0 2 f0; 1gn with di�erent outputs regard-
ing to T , there is no randomness in the construction.
But as soon as this is not the case anymore for a node
labeled xl, randomness is used. By choosing P (� = i) =
(1�p)i�1 �p for i 2 f1; : : : ; n� lg and P (� = n+1� l) =

1�
Pn�l

i=1 P (� = i) it is guaranteed that every node with
a label greater than xl has the same probability p of oc-
curring in any path starting from this node labeled with
xl. In all following experiments p was 1=4.

3.3 Crossover

When using OBDDs one has to be careful about the
crossover points to ensure that the resulting structure
is still an OBDD, i.e. respects the variable ordering
x1; : : : ; xn. To guarantee that the resulting structure is
an OBDD, the following method is used here: in the �rst
parental OBDD O1 the crossover node v1 is chosen by
random, where every node and the two sinks have the
same probability 1=(jO1j + 2). In the second OBDD a
crossover node v2 is selected with equal probability from
all nodes having an index, which is at least that of v1
(similar to strongly typed GP, see \Montana (1995)").
Then the subOBDD starting at v1 in the �rst OBDD O1

is exchanged by the subOBDD starting at v2. This ex-
change makes an update of the nodes on the chosen path
in O1 necessary. This is equivalent to tree modi�cation
in directed acyclic graphs (see \Ehrenburg (1996)").
The example in Figure 2 shows two parental OBDDs,

where node v1 is chosen in the left OBDD O1 on the
rightmost path x = (1; �; �). Then node v2 is chosen as
the crossover point of the second OBDD O2 from its two
nodes with label x3 and the two sinks.

�

��
�

��

�

��

�

��

0

1

x1

x2

x3

0

��	 B
B
BN

�
�
�


B
B
BN

0
1

0

1

0 1

v1

�

��
�

��
x1

�

��
x2

�

��
x3 �


��
x3

1

1 10 0

��	 @@R

�
�+ @@R

��
 BBN ��� JĴ

0 1

0 1

0 1 0 1

v2

O1 O2

�
�
��

XXXXz

Figure 2: Two parental OBDDs O1 and O2

Now the �rst crossover fragment starting at v1 is ex-
changed by the crossover fragment starting at v2. In
O1 are two incoming edges to node v1, but as only the
nodes on the path x are updated, the 1-successor of the
x2-node remains node v1. This leads to the left o�spring
OBDD O�

1 shown in Figure 3. But now the number of
nodes in OBDD O�

1 is higher than in O1, as there is a
shared subOBDD in O1, but not in O�

1. So it can be
advantageous, if all nodes of the OBDD are updated, i.e.
all edges to the old crossover node are redirected to the



new one. To do so, every edge on a path leading to the
node v1 is redirected to the corresponding node on the
path, where v1 is exchanged with v2.
This is done by �rst doing a path update, where every

old node on this path (included node v1, if it is no sink)
gets a reference pointer to the new node that substi-
tutes it. Then a depth-�rst search in O�

1 is done, where
every edge to an old node is replaced by an edge to the
referenced new node (a node with a replaced successor
becomes an old node, too, by its new successor). The
right OBDD in Figure 3 is the result of the depth-�rst
search, where every edge to an old node is replaced by
an edge to the referenced node.

�

��
�

��

�

��

0

x1

x2

�

��
x3

1 0

��
 BBN0 1
�

��
x3

10

��� JĴ0 1

v2

�
�+

��/ AAU

A
A
A
AAU

0
1

0 1
v1

O�
1

-Ref.

�

��
�

��

�

��

0

x1

x2

�

��
x3

10

��� JĴ0 1

v2

�
�+

��/

0

0

O�
1

?
Q
QQs

1

1

-Complete Upd.

Figure 3: Path and complete update

After the exchange of the subOBDDs and path update
with probability 1=2 a complete update of the OBDD is
done, as there are also situations where only path update
is advantageous. After the crossover the new OBDD O�

1

is tested, if it �ts the table T ; if not, it is replaced by its
parental OBDD O1, i.e. in this case crossover degenerates
to reproduction. This crossover of two OBDDs O1 and
O2 is done in time O(jO1j+ jO2j+ n � jT j).

3.4 Mutation

In this paper mutation is trying to apply the deletion
rule to an OBDD O. So the mutation of an OBDD O

works as follows: �rst, a node v (and a path x leading to
v) is selected with probability 1=(jOj+ 2) from all of its
nodes and its two sinks. If v is a sink, then v is replaced
by a random subOBDD generated in the same way as
described in subsection 3.2 (when using an empty table
T ). The index of the source of this subOBDD has to be
greater than the indices of all predecessors of v in O (if
there are no predecessors, then the index has to be at
least 1).
If v is a non-sink node with index i, then let x0 and

x1 be copies of x with x0i = 0 and x1i = 1. Now it is
checked, if v can be deleted, because one of its successors
is not relevant for �tting the table T , by checking the sets
CheckTable(x0) and CheckTable(x1). If one of the sets
is empty, the corresponding successor is not relevant, so
the node v is replaced by the other successor (corres-
ponding to the deletion rule applied to v). If both sets
contain at least one element, v is replaced by a random

subOBDD.
The replacement of v makes it necessary to update at

least the nodes on the path x. Again, a complete up-
date is done with probability 1=2. The explicit checking
of the table by CheckTable prevents that most of the
mutated OBDDs do not �t the table and leads to a high
creation rate of random subOBDDs when the OBDDs
are rather small. Neglecting the time needed to create
a random OBDD, the whole mutation of an OBDD O is
done in time O(jOj+n�jT j). In all experiments mutation
probability was 0:1 and crossover probability 0:9.

3.5 Fitness

The standardized �tness of an OBDD O is simply the
number jOj of its non-sink nodes, which can be evaluated
by a depth-�rst search in time O(jOj). The adjusted
�tness a(i; t) of individual i in generation t is computed
as follows: let s+(t) be the maximal standardized �tness
in generation t and s�(t) be the minimal standardized
�tness in generation t, then a(i; t) is computed as

a(i; t) =
1

s(i; t) � (2 � s�(t)� s+(t)) + "(t)
:

Using this formula with "(t) = 0, a best-of-generation
individual i with s(i; t) = s�(t) has a 100% higher adjus-
ted �tness than a worst-of-generation individual j with
s(j; t) = s+(t). To allow escape from local minima, "(t)
is chosen as 10=(s(t) � s�(t) + 0:001), where s(t) is the
average standardized �tness in generation t.

4 Experimental results

The purpose of this section is twofold: �rst, it will be
shown by experiment, that the described GP system can
�nd small OBDDs when only few function values are
given, thus �nding generalizing functions. Second, it will
be shown that the explicit restriction to OBDDs that �t
the table T leads to much better results when using the
described crossover and mutation operator.
The GP system was written from scratch and all exper-

iments were done on a PC with a 33MHz Intel 80486DX
CPU and 8MB main memory. The input of the GP sys-
tem was the table T = f(xi1; : : : ; x

i
n; y

i) 2 f0; 1gn+1 j i 2
f1; : : : ; jT jgg, so that a minimal OBDD in OfT should
be found. In all following examples T was generated
by a known function f : f0; 1gn ! f0; 1g, i.e. yi =
f(xi1; : : : ; x

i
n) for all i 2 f1; : : : ; jT jg. This guarantees

that the number of nodes of the minimal OBDD in OfT

is at most jOf j.

4.1 The multiplexer function

The �rst type of function used to generate the table T

is the n-multiplexer function muxn : f0; 1gn ! f0; 1g,



where n = k + 2k for some k � 1. It is de�ned by
muxn(a0; : : : ; ak�1; d0; : : : ; d2k�1) = di, where i has the
binary coding a0 : : :ak�1. The size of the reduced OBDD
for the k+2k-multiplexer is 2k+1�1 for the used variable
ordering a0; : : : ; ak�1; d0; : : : ; d2k�1.
The table T used for a k+ 2k-multiplexer has the size

4�2k: if a0 : : :ak�1 is the binary coding of i 2 f0; : : : ; 2k�
1g, then the following four elements are inserted in T :
(a0; : : : ; ak�1; 0; : : : ; 0; 0); (a0; : : : ; ak�1; 1; : : : ; 1; 1);

(a0; : : : ; ak�1; 0; : : : ; 0;

k+1+i
z}|{
1 ; 0; : : : ; 0; 1); and

(a0; : : : ; ak�1; 1; : : : ; 1;

k+1+i
z}|{
0 ; 1; : : : ; 1; 0):

First, the GP system was tested for the 11-multiplexer.
The number of individuals was 50, the number of genera-
tions 200, and the number of runs 100. Table 1 shows the
size of the best-of-run OBDD, the time needed to �nd
the best-of-run OBDD, and the generation, in which the
best-of-run OBDD was found, over the 100 runs. In 61
of the 65 runs, where the size of the best-of-run OBDD
was 15, the exact 11-multiplexer was found.

Table 1: 11-multiplexer

OBDD Size Time (sec) Generation
Minimum 15 72 97
Average 15.9 117 160
Maximum 26 149 200

The same experiment was repeated with the 20-
multiplexer: now T consisted of 64 elements, and the
number of generations was raised to 2000. The number
of individuals was still 50, the number of runs 10. The
results over the 10 runs are shown in Table 2. In all 5
runs, where the size of the best-of-run OBDD was 31,
the exact 20-multiplexer was found.

Table 2: 20-multiplexer

OBDD Size Time (sec) Generation
Minimum 31 3843 1270
Average 32.1 4229 1558
Maximum 36 4993 1988

So the GP system was able to �nd the OBDDs of both
multiplexers with relatively small time e�ort, although
only 32 and 64 function values were given.

4.2 The parity function

The other function used to test the GP system was the
n-parity function parn : f0; 1gn ! f0; 1g. The n-parity
function parn computes one, if and only if the number of
ones in the input is even. While the table T for the mul-
tiplexer function consists of carefully chosen elements, in
practical applications the given input values will not re-

ect the underlying function so well, but will be rather
randomly chosen samples. To test the GP system for
tables of such kind, the input values x of the table T

for the parity function are chosen with equal probability

from f0; 1gn. Then x is expanded by parn(x), so that
(x; parn(x)) 2 f0; 1gn+1 is inserted into T .

Experiments with the n-parity function were done for
n = 11 and 20 with tables of size 32 and 64, resp. As
the size of the reduced OBDD for the n-parity function
is 2n � 1, the size of the optimal OBDD in OfT can be
at most 21 and 39, resp. The �rst experiment was done
with the 11-parity function: the number of individuals
was 50, the number of generations 200, and the number
of runs 100. The results over the 100 runs are shown in
Table 3.

Table 3: 11-parity

OBDD Size Time (sec) Generation
Minimum 9 25 41
Average 14.9 60 119
Maximum 21 102 199

For the 20-parity function the size of the table T was
64 (whose elements were chosen randomly as described
above), the number of individuals was 50, the number
of generations 1000, and the number of runs 20. The
results over the 20 runs are shown in Table 4:

Table 4: 20-parity

OBDD Size Time (sec) Generation
Minimum 20 554 316
Average 25.2 844 645
Maximum 31 1112 987

In both experiments the GP system found OBDDs be-
ing smaller than the parity-OBDD, showing that these
OBDDs found regularities in the given tables (which were
too small to re
ect the parity function completely). Fur-
thermore, the small size of the OBDDs shows that the
data were not just simply \memorized".

4.3 Restricting the search space

The GP system described in this paper excludes all OB-
DDs which do not �t the table T by explicitly generat-
ing �tting OBDDs in the initial generation and replacing
new OBDDs, which do not �t the table. This decreases
the size of the search space by a factor of 2jT j, but also
gives rise to the question, if this restriction can make it
harder to �nd good solutions.

Therefore, the experiments for the 11-multiplexer de-
scribed in subsection 4.1 were repeated in two versions
to justify this restriction: in the �rst version all OBDDs
were allowed, i.e. the random OBDDs of the initial gen-
eration were completely random OBDDs (constructed as
described in subsection 3.2 for an empty table T ), and
no test was done after crossover or mutation. The stand-
ardized �tness s(i; t) of individual i in generation t was
computed as s(i; t) = size(i; t) + 100 � (jT j � hits(i; t))
and its adjusted �tness a(i; t) by the standard formula
a(i; t) = 1=(1 + s(i; t)).



100 runs were done with 50 individuals over 200 gen-
erations. Graph 1 in Figure 4 shows the development of
the standardized �tness of the best-of-generation OBDD
on average over the 100 runs.

0

300

600

900

1200

1500
S
t
a
n
d
a
r
d.
-
F
i
t
n
e
s
s 0 50 100 150 200

Generations

Graph 1 pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Graph 2 pppppppp pppppppp pppppppp pppppppp pppppppp pppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp
pppppppp pppppppp pppppppp
pppppppp pppppppp pppp
pppp pppppppp ppppp
ppp pppppppp pppppppp
pppppppp pppppppp pppppppp ppp
ppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp ppp

Figure 4: 11-multiplexer without restriction

One can see that the GP system made absolutely no
progress in �nding OBDDs which �t the table well. The
best individual of all 100 runs had a standardized �tness
of 605, i.e. for six elements of the table its value did not
agree with the table T (its size was 5). Hence, the used
mutation and crossover operators seem not to be suited
for a GP system that operates with reduced OBDDs,
when no restrictions are used.
Then this experiment was repeated with restricted

initial programs, i.e. with explicit initial generation of
OBDDs �tting the table as described in subsection 3.2,
while new OBDDs from crossover and mutation were not
tested. This was done with the same parameters, i.e.
with 50 individuals and 200 generations over 100 runs.
The results are shown in graph 2 in Figure 4.
In only 19 of these 100 runs, the 11-multiplexer OBDD

with 15 nodes was found, showing that the initial gener-
ation of OBDDs that �t the table is very important for
convergence to a good solution. But in many runs there
was a point where the best-of-generation OBDD did not
completely �t the table anymore and the following best-
of-generation OBDDs became even worse (therefore be-
ing responsible for the rise shown in graph 2)
The two experiments show, that the initial generation

of OBDDs which �t the table is very important for �nd-
ing good OBDDs. Selection pressure is not su�cient to
generate OBDDs which �t the table, when their prede-
cessors do not have this property. The explicit testing of
new OBDDs allows GP to be run over many generations
while avoiding OBDDs which do not �t the table.

5 Conclusion

If one seeks for good generalizing functions, it can be
useful to seek for functions having as few subfunctions
as possible while �tting the �tness cases. In this paper
it is shown, how GP can help in �nding such generaliz-

ing Boolean functions. The usage of OBDDs, e�cient
data structures for representation, and e�cient genetic
operators for OBDDs are presented, lowering memory
and time needs and making it possible to �nd the 20-
multiplexer when only 64 �tness cases are given. Exper-
imental results for the parity function show that small
OBDDs can be found, even if the �tness cases are chosen
arbitrarily. Furthermore, it is shown that it can be ad-
vantageous to restrict the search space of GP by expli-
citly forbidding some programs, in accordance with the
results of strongly typed GP.

Acknowledgments

Hereby I thank Thomas Jansen and Ingo Wegener for
their help while preparing the paper and the referees for
their helpful comments. This research was supported by
the DFG as part of the Collaborative Research Center
\Computational Intelligence" (531).

Bibliography

Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-

puters. Volume 35. Pages 677-691.
Ehrenburg, H. 1996. Improved directed acyclic graph
evaluation and the combine operator in genetic pro-
gramming. In Proceedings of the Genetic Program-

ming Conference GP-96. Pages 285-290.
Handley, S. 1994. On the use of a directed acyclic graph
to represent a population of computer programs. In
Proceedings of IEEE World Congress on Computa-

tional Intelligence. Pages 154-159.
Koza, J. R. 1992. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. Cambridge, MA: The MIT Press.
Montana, D.J. 1995. Strongly typed genetic program-
ming. Journal of Evolutionary Computation. Vol. 3.
Number 2. Pages 199-230.

Sauerho�, M. and Wegener, I. 1996. On the complex-
ity of minimizing the OBDD size for incompletely
speci�ed functions. In IEEE Transactions on CAD.

Volume 15. Number 11.
Shiple, T.R., Hojati, R., Sangiovanni-Vincentelli, A.L.,
and Brayton, R.K. 1994. Heuristic minimization of
BDDs using don't cares. In Proceedings of the 31st

Conference on Design Automation. Pages 225-231.
Wegener, I. 1994. E�cient data structures for Boolean
functions. Discrete Mathematics. Volume 136. Pages
347-372.

Yanagiya, M. 1995. E�cient genetic programming based
on binary decision diagrams. In Proceedings of Inter-

national IEEE Conference on Evolutionary Computa-

tion. Pages 234-239.


