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Abstract

The prediction of certain thermodynamic properties of pure

substances and mixtures with calculation methods is a frequent

task during the process design in chemical engineering. Group

contribution models divide the molecules into functional groups

and if the model parameters for theses groups are known, predic-

tions of compounds that comprise these groups are possible. The

model parameters have to be �tted to experimental data, which

leads to a multi-parameter multimodal optimization problem. In

this paper the optimization of the tuning parameters of Evolution

Strategies and di�erent methods of parameter �tting regarding

the number of parameters are presented.

1 Introduction

Group contribution models are used for the prediction of certain ther-

modynamic properties, such as activity coe�cients, excess enthalpies or

heats of vaporization to assist in design and simulation of chemical pro-

cesses. These thermodynamic properties originate in physical interac-

tions between molecules. Group contribution models split the molecules
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into functional groups and the physical interactions between the func-

tional groups can be determined, if the model parameters for these func-

tional group interactions exist.

CH2 CH  OH2CH3

CH2 CH  OH2CH3

CH2CH3 CH  OH2

CH2CH3 CH  OH2

Group
contribution
principle

Figure 1: Group contribution concept

In many modern methods, such as mod. UNIFAC [2, 15], the model pa-

rameters appear in sums of exponential terms, especially if temperature

dependencies are described. This usually leads to a nonlinear regression

problem with a multimodal objective function. The topology of the ob-

jective function can be visualized by varying two of the model parameters

while the remaining parameters are kept constant (Fig. 2).
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Figure 2: Adaptive surface of a mod. UNIFAC group contribution model

by varying 2 parameters

A good prediction of thermodynamic quantities depends on well �tted

interaction parameters, i. e. six parameters per one functional group

combination. The parameters of the group contribution model EBGCM

[8, 13] are �tted to a database of 2315 activity coe�cients at in�nite

dilution 1 and 1240 excess enthalpy data sets hE with 18746 single

data points (i. e. the mole fraction of the considered binary mixture and

its corresponding excess enthalpy value) at di�erent temperatures.

The objective function is not the model equation in which the model

parameters occur but an error criterion which establishes the relation

between the calculated value and the respective experimental data point.
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For the optimization to activity coe�cients at in�nite dilution 1 the

mean relative error was used:

MRE =
1

n

nX
i

�����
1
icalc

� 1
iexp

1
iexp

����� (1)

The �tting to excess enthalpy data hE was carried out with the mean

relative range related error (MRER, Eq. 2)). The range is de�ned as the

di�erence between the largest and the smallest hE value of the isotherm

considered. By this the deviation between experimental and calculated

data points near the zero line (at the edges of the concentration range,

for instance) is not weighted too strong.
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1
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Additionally the interaction parameters of all three models were �tted

simultaneously to both hE and 1 data. This means that for one pa-

rameter set the deviation between the calculated and experimental hE

data as well as between the calculated and experimental 1 data had to

be determined. These individual deviations were added. The sum then

served as the objective function for the simultaneous optimization. The

error criteria were the same as for the separate �ttings to hE data and

1 data, the mean range related relative error (MRER) and the mean

relative error (MRE), respectively.

2 Selected algorithms

In the �rst steps of parameter optimization of di�erent group contribution

models only local search algorithms like Simplex-Nelder-Mead [9], Gauss-

Newton, Levenberg etc. were used. Because of the multimodal character

of the non-linear regression problems which are to be treated here they

are not suitable due to their deterministic way of action. This lead to

the development of a Genetic Algorithm [3], that delivered substantial

results which could be interpreted.

As, however, the optimization problem which is to be solved has a real

valued character it was obvious to implement a similar but purely real

valued acting algorithm. According to the theory of Rechenberg [10] it

was tried to optimize parameters of group contribution models with the

help of encapsulated Evolution Strategies using only a one dimensional

step length (n�=1) and the 1=5 success rule. However, several tests with
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di�erent tuning parameters delivered unacceptable results only. The de-

velopment and implementation of multimembered non-encapsulated Evo-

lution Strategies could be made immediately after contacting Schwefel,

Chair of Systems Analysis, Department of Computer Science, University

of Dortmund. These new developments use multi-dimensional and, if

necessary, correlated control of step length (n� = n, n� = (n2 � n)=2).

The �rst result was that conventional multimembered (�; �)- and (�+�)-

Evolution Strategies could not cope with non-linear regression problems

without further ado. Especially (�; �)-Evolution Strategies showed worse

results than (�+ �)-Evolution Strategies although they were thought to

be more suitable for the self-adaption of the strategic variables [1].

Finally only the combination of the theories ofRechenberg and Schwe-

fel lead to satisfying results. Here multimembered (�; �)- and (� + �)-

Evolution Strategies with multi-dimensional (correlated) step length con-

trol in the encapsulated version were used and delivered better results

than the Genetic Algorithm [4, 5].

When using an encapsulated ES, the parent individuals on the second

(higher) level are created by duplicating the parent individuals on the

�rst (lower) level. Here a sequential isolated optimum seeking process is

carried out in several planes (mostly two):

h
r~x
1
r~�
1
r~�
1
�1[s1]�1 (r

~x

2
r~�
2
r~�
2
�2[s2]�2)

2

i
1 � ES (3)

The 3-number letter code used in the strategy notation marks the used

recombination mechanism for each plane in the following order: objective

variables, standard deviations, and rotation angles, if necessary. The

recombination operators can be chosen as r~x
i
; r~�

i
; r~�

i
2 f�; d;D; i; I; g;Gg

[1]. A 2-number letter code indicates a renunciation of a correlated step

length control. The selection mechanism si can be chosen as plus [+] or

as comma [,] for each plane independently.

Every o�spring �1 is the founder of a new sub-population for 2 new gen-

erations during the main iteration steps 1. This sub-population can act

totally independently of the population on the �rst level. The o�spring

�1 coming from the �rst level is duplicated �2 times for every parent in

the second plane. The o�spring then works as a starting value for the

iteration on level two. This encapsulated iteration always starts using

newly initialized strategic variables (standard deviations ~� and rotation

angles ~�). After 2 generations usually the best individual which was

found is then returned to the bottom level. The returned individuals

when using an encapsulated ES are not assigned with the original set of

variables which they got during the recombination-mutation-procedure

in the course of the (�1[s1]�1)-ES on the bottom level, but the returned
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individuals are exposed to the selection procedure on the bottom level in

the usual way. The symbol N marks a standardization of the de�nition

areas of the parameters which were to be �tted. The parent individuals

(objective variables) are always chosen by random during their initial-

ization. When using an encapsulated ES, the parent individuals on the

second (higher) level are created by duplicating the parent individuals

on the �rst (lower) level.

3 Optimization procedure

The �tting procedure was done one maingroup interaction after the other.

Most of the binary mixtures contain more than two maingroups though,

therefore the �tting procedure of the parameters of the maingroup inter-

action of interest refers to already �tted parameters.

An optimization procedure is done in the following way: the maingroup

interaction, for which parameters are to be �tted is marked. If any al-

ready �tted parameters of other maingroup interactions are to be taken

into account, then these interactions are also marked. For example: the

optimization of the interaction betweenH2O and CHnOH without refer-

ring to other interaction parameters is carried out with experimental data

of water/methanol mixtures only. If the interactions CHn�CHnOH and

CHn � H2O are marked in a way that their (previously �tted) param-

eters apply, the optimization of H2O � CHnOH is carried out with ex-

perimental data of water/n-alkanol mixtures (including water/methanol

systems).

3.1 4+2 optimization

During the �rst calculations it became apparent that repeated optimiza-

tions for one group combination lead to di�erent parameter sets with

almost the same results. Another problem was the following: if a group

combination which parameters have to be optimized refers to already �t-

ted parameters of other group combinations (which remained constant),

EBGCM lead to only unsatisfying results, i. e. incompatibilities between

di�erent parameter sets.

These problems lead to the idea to simplify the optimization procedure

for the algorithms. Since the complexity of the optimization space raises

with increasing number of parameters, the optimization was splitted in

two steps. Due to the form of the temperature dependency of EBGCM

with respect to a reference temperature it is possible to determine only
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four out of six parameters (hkj, hjk, ajk1, and akj1) in the �rst step if only

experimental data at reference temperature apply. After this the remain-

ing two parameters (ajk2 and akj2) can be �tted to data not equal to the

reference temperature (the previously �tted four parameters remain con-

stant). Finally all six parameters are transferred to a deterministically

acting algorithm, like the Simplex method of Nelder and Mead [9].

The used algorithms were the following:

4-parameter: [dGG 3+6(dGG 6+20)
200]10::20 - ES followed by

Simplex-Nelder-Mead with 500..2000 iteration steps

2-parameter: [dGG 3+6(dGG 6+20)
200]10::20 - ES followed by

Simplex-Nelder-Mead with 100..200 iteration steps

6-parameter: Simplex-Nelder-Mead with 500..2000 iteration steps

3.2 2+2+2 optimization

To further minimize the dimension of the optimization space it was

searched for a possibility to split the 4-parameter optimization (hkj , hjk,

ajk1, and akj1). The fractions hkj=ajk1 and hjk=akj1 serve as weighting

factors of the sums in the model equations. Additionally the hkj and

hjk do not appear at any other place. So the parameter fractions were

replaced by the new parameters h0
kj
and h0

jk
.

In the �rst step of the splitting of the 4-parameter optimization only the

two parameters ajk1 and akj1 can be �tted to data at reference tempera-

ture with the parameters h0
kj
and h0

jk
equal to 1. In the second step the

just �tted ajk1 and akj1 remain constant and the h0
kj

and h0
jk

are opti-

mized. Then all four parameters are transferred to a deterministically

acting algorithm. The �nal steps are the same as for the 4+2 opti-

mization: the �tting of the parameters which describe the temperature

dependency (ajk2 and akj2) and the transfer of all six parameters to a

deterministically acting algorithm.

The algorithms used for this optimization were the same as for the 4+2

optimization. During the �tting process it became apparent that the

optimization spaces for the 2-parameter problems exhibited only minor

multimodality or were even unimodal (see section 4.2). So the param-

eters of some interactions were �tted with a Genetic Algorithm (that

was less time consuming than an Evolution Strategy) followed by the

Simplex-Nelder-Mead method, or just with the Simplex-Nelder-Mead

method omitting the Genetic Algorithm.
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3.3 Optimization of all six parameters at a time

After calculating the model parameters with the splitted optimizations,

an attempt for the optimization of all six parameters per maingroup

interaction at a time an encapsulated Evolution Strategy (ES) with opti-

mized tuning parameters was made. Therefore a test system with three

excess enthalpy data sets was created and di�erent strategies were tested.

Table 1 shows an extract of all on the basis of the 6-parametric test

system tested Evolution Strategy. Besides the notation of the analyzed

ES the arithmetic mean of all 50 MRER-results in per cent are shown.

The start step length was either de�ned absolutely (e. g.: 25) for every

parameter the same or was de�ned in per cent (e. g.: 20%) of each total

de�nition area (absolute values) divided by
p
n (n = number of objective

variables), in order to make the standard deviations independent from n

and from di�erent de�nition areas of the parameters. The rotation angles

- if used - were initialized by random between [��;+�] as suggested in

[1, 12]. Besides that the number of the needed function calls per run

is listed as well as the best and the worst determined error of the 50

runs and �nally the found out standard deviation for all runs is shown

to characterize the reliability and ability of reproduction of every used

ES. The symbol N marks a standardization of the de�nition areas of the

parameters which were to be �tted. The parent individuals (objective

variables) are always chosen by random during their initialization.

Table 1: Optimization results of di�erent Evolution Strategies [4]

MRER/% step- func. MRER/% �(50)

ES-notation average width calls best worst /%

(dI 120,800)380 10.61 25 304000 10.30 10.82 0.09
(dI 120+800)380 10.16 25 304000 5.53 10.70 1.18
15*(dI 15,100)200 7.75 25 300000 0.25 10.13 1.95
15*(dI 15+100)200 5.85 25 300000 0.19 10.02 2.57

[GG 4,8(GG 7,19)200]10 5.05 20%/4% 304080 0.22 9.61 2.06
[GG 4+8(GG 7,19)200]10 4.39 20%/4% 304080 0.11 9.04 2.02
[GG 4,8(GG 7+19)200]10 2.91 20%/4% 304080 0.03 9.05 2.37
[GG 4+8(GG 7+19)200]10 1.19 20%/4% 304080 0.02 8.25 1.99

[GG 4+8(GG 7+19)200]10 0.81 10%/4% 304080 0.00 5.95 1.59
[GG 4+8(GG 7+19)200]10 0.47 5%/4% 304080 0.00 5.38 1.25

[GG 4+8(GG 7+19)200]10 0.77 20%/2% 304080 0.00 5.53 1.48
[GG 4+8(GG 7+19)200]10 1.33 20%/1% 304080 0.00 5.53 1.92
[-- 4+8(-- 7+19)200]10 3.61 20%/4% 304080 0.00 8.92 2.55
[dI 4+8(dI 7+19)200]10 2.31 20%/4% 304080 0.01 5.55 2.28
[dG 4+8(dG 7+19)200]10 1.92 20%/4% 304080 0.02 8.69 2.38
[GG 2+8(GG 7+19)200]10 1.16 20%/4% 304080 0.00 7.83 1.77
[GG 4+8(GG 2+19)200]10 1.86 20%/4% 304080 0.04 6.14 2.09
[GG 4+8(GG 4+19)200]10 1.50 20%/4% 304080 0.01 5.79 1.95

Table continued
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MRER/% step- function MRER/% �(50)

ES-notation average width calls best worst /%

[GG 4+8(GG 15+19)200]10 2.29 20%/4% 304080 0.02 7.63 2.40
[GGG 4+8(GGG 7+19)200]10 N 5.15 20%/4% 304080 0.24 9.73 2.13
[GGG 4+8(GGG 7+19)200]10 N 4.65 20%/4% 304080 0.11 9.24 2.41
[GG 4+8(GGG 7+19)200]10 N 1.77 20%/4% 304080 0.00 5.53 2.30
[GGG 4+8(GGG 7+19)200]10 11.27 20%/4% 304080 2.58 26.65 6.09

[GG 3+8(GG 7+19)100]40 0.02 5%/2% 608320 0.00 0.20 0.03

The obtained results in table 1 clearly show that conventional multimem-

bered non-encapsulated ES even at high population values only deliver

very unsatisfying results. The results show that [+]-strategies can ob-

viously act better within the solution space of the given optimization

problem than [,]-strategies. This in all probability has the reason that

the adaptive surface at the n-dimensional space of variables is charac-

terized by narrow long and bent valleys [3, 13]. This seems to lead to

a more di�cult self-adaption of the strategic variables when using [,]-ES

than [+]-ES. Evidently ES show di�culties following narrow ridge-like

search paths (especially at rising number of dimensions). Considering

that it can be understood why repeated non-encapsulated ES - started

from new randomly generated starting points by keeping the �ttest dur-

ing the optimum seeking process (e. g. 15*(GG 15+100)
200

) - lead to

better optimization results: by the repetition of the search for the opti-

mum an isolation in the solution space occurs which has the consequence

that the probability of �nding the global or a very good local optimum

is increased. The di�culties of the given optimization problem can al-

ready be seen when looking at the results of repeatedly starting ES,- the

adaptive surface is so complicated that it is crucial to �nd convenient

starting points which is guaranteed by a continuously repeated start of

the algorithm.

The last paragraph of table 1 �nally shows the result of an ES based on

the determined optimum tuning parameters concluded from all results

shown by way of extract in table 1. The optimum tuning parameters

can only be transferred partly to the parameter optimization of di�erent

group contribution models or optimization problems of di�erent types of

non-linear regression. The optimum tuning parameters which were found

are to be understood as indicatory values which can be used for di�erent

optimization problems of similar type.

Detailed information about the determined results of the di�erent strat-

egy types can be obtained in [4, 5].
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4 Results and Discussion

4.1 Optimization to hE data

The 4+2 optimization was carried out with hE data, as well as the opti-

mization of all six parameters at once. The overall average mean relative

range related error (MRER) of all 31 maingroup interactions is 31:11%

for the 4+2 optimization, whereas the optimization of all six parameters

exhibits a deviation of nearly half the size (16:17%). The results for the

single interactions are given in table 2.

Table 2: Comparison between the 4+2 and 6-parameter optimization

MRER/%

Maingroup interaction data 4+2 all 6

CHn cCHn 1141 30.22 29.22

CHn CHn = 246 30.15 29.16

CHn CHn � 312 58.91 15.30

CHn aCHn 1774 25.20 21.34

CHn H2O 1064 18.88 15.40

CHn CHnOH 4008 14.44 14.43

CHn gCHnOH 167 7.20 23.98

CHn CHm(O)CHn 1272 19.55 24.32

CHn CHnCHO 159 5.56 5.56

CHn CHm(CO)CHn 441 9.55 9.33

cCHn CHn = 148 11.75 11.49

cCHn aCHn 826 17.01 17.06

cCHn H2O 29 2.67 6.38

cCHn CHnOH 1978 22.56 15.22

cCHn CHm(O)CHn 364 18.10 22.71

cCHn CHnCHO 18 6.96 11.80

cCHn CHm(CO)CHn 477 6.58 6.18

CHn = aCHn 12 50.67 0.67

CHn = CHm(O)CHn 139 37.33 8.48

aCHn H2O 57 2.28 2.17

aCHn CHnOH 723 37.76 17.32

aCHn aCOH 57 2.28 2.17

aCHn CHm(O)CHn 300 274.29 45.42

aCHn CHnCHO 112 67.45 25.00

aCHn CHn(CO)CHn 335 87.00 55.61

H2O CHnOH 174 19.51 11.45

H2O gCHnOH 116 27.13 11.33

Table continued
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MRER/%

Maingroup interaction data 4+2 all 6

H2O aCOH 57 2.28 2.17

H2O CHm(CO)CHn 406 4.11 5.20

CHnOH gCHnOH 167 7.20 23.98

CHnOH CHm(CO)CHn 1667 39.95 11.47

Overall average 18746 31.11 16.17

Examination of the single maingroup interactions shows that there are

some interactions that have smaller deviations for the 4+2 optimiza-

tion. For the interaction cCHn �CHnCHO both optimization methods

lead to the same parameter set but di�erent deviations. The �tting

procedure of this interaction refer to parameter sets of two other inter-

actions CHn � cCHn and CHn � CHnCHO. The parameter set (and

the deviation) of CHn � CHnCHO are the same for both �tting pro-

cedures. The optimization of CHn � cCHn lead to di�erent parameter

sets and a smaller deviation for the 6-parameter optimization (29:22%,

4+2: 30:22%). Although the 6-parameter optimization found a better

parameter set, it is obviously not the best parameter set for the �tting of

the interaction cCHn�CHnCHO. The same can be noticed for the opti-

miztion of the interactions cCHn�CHm(O)CHn and CHn� gCHnOH.

-50000 -25000 0 25000 50000

-50000

-25000

0

25000

50000

P
2

P
1

-50000
-25000

0
25000

50000

-50000

-25000

0

25000

50000

100

200

300

400
MRE

R

P
1

P
2

Figure 3: 4+2: adaptive surface for aCHn �H2O; ajk1 and akj1 variied

A proof for the multimodality of the optimization space is the optimiza-

tion of CHn � CHnOH. Both optimization methods lead to almost the

same deviation (all 6: 14:43%, 4+2: 14:44%) with di�erent parameter

values. The same characteristics show the interactions aCHn � H2O,

aCHn � aCOH and H2O � aCOH, which had to be �tted simultane-

ously, because only experimental data of phenol/water mixtures existed.

The deviations are almost the same (all 6: 2:17%, 4+2: 2:28%) with to-

tally di�erent parameter values. Figure 3 shows the adaptive surface of
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the variied parameters ajk1 and akj1 of the interaction aCHn�H2O while

the other parameters (which were optimized with the 4+2 method) re-

main constant. Figure 3 show the same surface but with the parameters

obtained with the 6-parameter optimization. Both plots show similar

multimodal optimization spaces. Besides a plateau (at P1 > 25000 and

P2 > 0) both plots exhibit a valley at P1 � 25000 which begins to bend

at P2 � 0. Additionally the valley lowers at this point (and thus forms

a local minimum). It is interesting to note that, despite the di�erent

parameter sets both surfaces are similar.
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Figure 4: all 6: adaptive surface for aCHn �H2O; ajk1 and akj1 variied

4.2 Simultaneous optimization to hE and 1 data

During the �tting processes to either hE or 1 data some interactions

showed incompatibilities with previously �tted parameter sets, which had

to be used in the optimization. This suggests that the objective func-

tion could become more de�nite by introducing additional constraints. A

chance to achieve such a more de�nite objective function is the determi-

nation of the di�erent model parameters by simultaneously �tting them

to several thermodynamic properties such as 1 and hE.

Initially, the simultaneous �tting to both quantities was carried out with

the 2+2+2 optimization. The greatest advantage for using the 2+2+2

optimization is the reduced multimodality of the optimization space. Fig-

ures 5 to 7 show the adaptive surfaces of the optimization of CHn�aCHn.

These are the real surfaces, where the algorithm has to �nd the global

optimum. In some cases, the optimization spaces for both quantities are

even unimodal. As expected, the objective function seems to get more

de�nite if the optimization is carried out with di�erent thermodynamic

quantities.
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With the newly developed Evolution Strategy a 6-parameter optimization

was carried out. A comparison to the 2+2+2 optimization shows that

interactions that can be �tted without other incoming parameter sets

exhibits nearly the same deviations but totally di�erent parameter sets,

except for CHn � CHnOH (see table 3). These parameter sets di�er

only slightly. The parameters of the interactions CHn�H2O and H2O�
CHnOH were �tted altogether, i. e. a 12 parameter optimization. The

2+2+2 optimization lead to a much better result than the 6-parameter

optimization (which, however, was a 12-parameter optimization in this

case). The increased variable dimension seemed to be a problem for the

unsplitted optimization procedure.

Table 3: Comparison between the 2+2+2 and 6-parameter optimization

data MRER (%)

Maingroup interaction hE 1 2+2+2 all 6

CHn cCHn 1141 82 17.88 17.47

CHn CHn = 246 218 18.81 18.53

CHn aCHn 1774 447 20.36 20.20

CHn H2O 1064 12 15.92 18.78

CHn CHnOH 4008 424 24.52 24.40

CHn CHm(O)CHn 1272 44 11.15 11.07

CHn CHnCHO 159 41 6.15 4.87

CHn CHm(CO)CHn 441 226 11.33 11.08

cCHn CHn = 148 11 94.35 12.83

cCHn aCHn 826 26 34.61 16.94

cCHn CHnOH 1929 114 33.24 26.49

cCHn CHm(O)CHn 364 13 | 10.44

cCHn CHm(CO)CHn 477 27 35.19 12.96

CHn = aCHn 12 53 37.73 40.50

aCHn CHnOH 723 167 16.76 17.59

aCHn CHm(CO)CHn 335 67 46.36 34.15

H2O CHnOH 174 12 15.92 18.78

H2O CHm(CO)CHn 406 4 60.41 30.66

CHnOH CHm(CO)CHn 1667 147 32.01 25.24

Overall average 17166 2315 29.59 20.14

Interactions that refer to already �tted parameter sets gave only unsat-

isfying results with the 2+2+2 method, especially for the interactions

cCHn � CHn = and H2O � CHm(CO)CHn. The previously �tted pa-

rameter sets which apply for the optimization seemed to be incompatible.

The application of the 2+2+2 optimization compensate the advantage

of the more de�nite objective function. This problem did not occur with

the 6-parameter optimization.
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5 Conclusion

The optimization of the model parameters of the group contribution

model EBGCM was carried out in di�erent ways with several Evolu-

tionary Algorithms.

The splitting of the 6-parameter optimization into several steps in order

to minimize the variable dimension lead to contrary results: on one hand

the optimization results are of equal quality than for the 6-parameter

optimization. Furthermore, for the simultaneous optimization of more

than one maingroup interaction (i. e. at least 12 parameters altogether)

results are even better. On the other hand though, the splitted optimiza-

tion caused incompatibilities between di�erent parameter sets.

This lead to the result that the 2+2+2 optimization may useful in the

reduction of variable dimension if several maingroup interactions are to

be �tted simultaneously to avoid incompatibilities between the param-

eter sets. If the maingroup interactions are to be optimized one after

another, the 6-parameter optimization applies. Another advantage of

the 6-parameter optimization is the less time consuming optimization

process.

In the future further examinations of multiparameter optimization com-

pared to optimizations of only one maingroup interaction will be made.

The application of the 2+2+2 optimization in order to reduce the vari-

able dimension with special regard to the appearence of incompatibilities

between di�erent parameter sets will be further tested.
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