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Abstract. The general random walk on the nonnegative integers with absorbing boundaries at

0 and n has the transition probabilities p0j = �0j , pnj = �nj, pi;i�1 = pi, pi;i+1 = qi, and pii = ri,
where pi + ri + qi = 1. The fundamental matrix B of this Markov chain is the inverse of matrix
(I � Q) where Q results from P by deleting the rows and columns 0 and n. Entry bij represents
the expected number of occurrences of the transient state j prior to absorption if the random walk
starts at state i. The absorption time as well as the absorption probabilities are easily derived once
the fundamental matrix is known. Here, it is shown that the fundamental matrix can be determined
in elementary manner via the adjugate of matrix (I �Q).
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1. Introduction. Random walk models have surfaced in various disciplines.

They served as initial simple models in biology (especially in genetics) and physics,

but they are also useful tools in analyzing sequential test procedures in statistics or

randomized algorithms in computer science|to name only few �elds of application.

Needless to say, many results have been published for speci�c instantiations of

the transition probabilities; the general case, however, seems to be explored with less

intensity. For example, El-Shehawey [1] has determined the joint probability gener-

ating function of the number of occurrencies of the transient states. Its marginals

may be used to derive the fundamental matrix but the expression o�ered in [1] con-

tains unresolved recurrence relations that make potential further calculations di�cult.

Therefore, this work aims at a `closed form' expression for each entry of the funda-

mental matrix. It will be shown that such a result can be achieved via elementary

matrix theory.

2. General Random Walk with Absorbing Boundaries. At �rst, some

notation being adopted from Minc [2] is introduced. Next, the Markov chain model of

the random walk is presented along with some basic results from Markov chain theory

taken from Iosifescu [3]. Finally, the fundamental matrix of the Markov chain as well

as expressions for the absorption time and absorption probabilities are determined.

2.1. Notation. Let A be an m � n matrix. Then A(�1; : : : ; �hj�1; : : : ; �k) de-

notes the (m�h)�(n�k) submatrix of A obtained fromA by deleting rows �1; : : : ; �h
and columns �1; : : : ; �k whereas A[�1; : : : ; �hj�1; : : : ; �k] denotes the h� k submatrix

of A whose (i; j) entry is a�i;�j
. If �i = �i for i = 1; : : : ; k then the shorthand nota-

tion A(�1; : : : ; �k) resp. A[�1; : : : ; �k] will be used. As usual, A
�1 is the inverse and

detA is the determinant of a regular square matrix A. Matrix I is the unit matrix

and every entry of column vector e is 1.

2.2. Markov Chain Model. The general random walk with absorbing bound-

aries is a time-homogeneous Markov chain (Xk : k � 0) with state space f0; 1; : : :; ng
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and transition matrix

P =

0
BBBBBBBBB@

1 0 0 � � � 0

p1 r1 q1 0 � � � 0

0 p2 r2 q2 0 � � � 0
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 pn�2 rn�2 qn�2 0

0 � � � 0 pn�1 rn�1 qn�1
0 � � � 0 0 1

1
CCCCCCCCCA

such that PfXk+1 = j jXk = ig = pij for i; j = 0; 1; : : : ; n. Let Q = P (0; n), i.e.,

Q results from P by deleting the rows and columns 0 and n, and set A = I � Q.

Then B = A�1 is the fundamental matrix associated with the transition matrix P .

Let T = minfk � 0 : Xk 2 f0; ngg. Then E[T jX0 = i ] = ai denotes the absorption

time for a random walk starting at state i where ai is the ith entry of vector a = Be.

Thus, ai is just the sum of all entries of row i of the fundamental matrix. In case of

the random walk, the absorption probabilities are PfXT = 0 jX0 = ig = bi1 � p10 and

PfXT = n jX0 = ig = bi;n�1 � pn�1;n for i = 1; : : : ; n� 1.

2.3. Determination of the Fundamental Matrix. There are many methods

to obtain the inverse of some regular square matrix. Here, the inverse of matrix (I�Q)

is determined via its adjugate. This approach is especially useful if only few elements

of the inverse are of interest.

Let A : d� d be a regular square matrix. The adjugate adj(A) of matrix A is the

matrix whose (i; j) entry is (�1)j+i detA(jji). Since B = A�1 = adj(A)= det(A) one

obtains

bij = (�1)i+j
detA(jji)

detA

for i; j = 1; : : : ; d. To proceed one needs an elementary expression for the determinant

of matrix A.

Lemma 2.1. Let P be the transition matrix of the general random walk with

absorbing boundaries at state 0 and state n. Let Q = P (0; n) and set Ad = I�Q with

d = n� 1. The determinant of Ad is given by

detAd =

dX
k=0

 
d�kY
i=1

pi

! 0
@ dY

j=d�k+1

qj

1
A

for all d � 1.

Proof. (by induction)

Let d = 1. Then matrix Ad reduces to A1 = (p1 + q1) with detAd = p1 + q1. Since

1X
k=0

 
1�kY
i=1

pi

! 0
@ 1Y

j=2�k

qj

1
A = p1 + q1

the hypothesis is true for d = 1. Now let d = 2. The determinant of matrix A2 is

detA2 = det

�
p1 + q1 �q1
�p2 p2 + q2

�
= p1 p2 + p1 q2 + q1 q2 :
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Since

2X
k=0

 
2�kY
i=1

pi

! 0
@ 2Y

j=3�k

qj

1
A = p1 p2 + p1 q2 + q1 q2

the hypothesis is true for d = 2 as well. Suppose that the hypothesis is true for d� 1

and d for d � 2. The determinant of matrix Ad+1 can be expressed in terms of detAd

and detAd�1 via

detAd+1 = det

0
BBBBBBB@

Ad

�qd

�pd+1 pd+1 + qd+1

1
CCCCCCCA

= det

0
BBBBB@

Ad�1

�qd�1

�pd pd + qd �qd
�pd+1 pd+1 + qd+1

1
CCCCCA

= (pd+1 + qd+1) detAd + pd+1 det

0
BBB@ Ad�1

0
...

0

�pd �qd

1
CCCA

= (pd+1 + qd+1) detAd � pd+1 qd detAd�1

= qd+1 detAd + pd+1 (detAd � qd detAd�1) :(2.1)

By hypothesis, one obtains

qd+1 detAd = qd+1

dX
k=0

 
d�kY
i=1

pi

! 0
@ dY

j=d�k+1

qj

1
A

=

dX
k=0

 
d�kY
i=1

pi

! 0
@ d+1Y

j=d�k+1

qj

1
A(2.2)

=

d+1X
k=1

 
d+1�kY
i=1

pi

! 0
@ d+1Y

j=(d+1)�k+1

qj

1
A(2.3)

where eqn. (2.3) results from an index shift in eqn. (2.2). The same arguments yield

qd detAd�1 =

dX
k=1

 
d�kY
i=1

pi

! 0
@ dY

j=d�k+1

qj

1
A

and hence

pd+1 (detAd � qd detAd�1) =

d+1Y
i=1

pi :(2.4)
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Insertion of eqns. (2.3) and (2.4) into eqn. (2.1) leads to

detAd+1 =

d+1X
k=1

 
d+1�kY
i=1

pi

! 0
@ d+1Y

j=(d+1)�k+1

qj

1
A +

d+1Y
i=1

pi

=

d+1X
k=0

0
@ (d+1)�kY

i=1

pi

1
A
0
@ d+1Y

j=(d+1)�k+1

qj

1
A

which is the desired result.

Next, one needs an elementary expression for the determinant of A(jji). The

�rst step in this direction is similar to the approach in Minc [2, pp. 147{149] who

considered the more general case of establishing a general expression for a submatrix

of a tridiagonal matrix. Here, the situation is less complicated. Since submatrix

A(jji) results from the tridiagonal matrix A after the deletion of row j and column

i, the submatrix is in lower triangular block form if i < j, in diagonal block form if

i = j, and in upper triangular block form if i > j. Each of these \blocks" is a square

submatrix of A. Notice that the determinant of such block matrices is the product of

the determinants of the diagonal blocks. As a consequence, one obtains

detA(jji) = det(A[1; : : : ; i� 1]) � det(A[i; : : : ; j � 1 j i+ 1; : : : ; j]) � det(A[j + 1; : : : ; d])

if 1 � i < j � d = n� 1,

detA(jji) = det(A[1; : : : ; i� 1]) � det(A[j + 1; : : : ; d])

if 1 � i = j � d, and

detA(jji) = det(A[1; : : : ; j � 1]) � det(A[j + 1; : : : ; i j j; : : : ; i� 1]) � det(A[i+ 1; : : : ; d])

if 1 � j < i � d. As a convention, if u > v then det(A[u; : : : ; v]) = 1.

The �nal step towards an elementary expression of detA(jji) requires the determi-

nation of the determinants of the diagonal block matrices. An elementary expression

for the matrices of the type A[1; : : : ; `] can be taken directly from Lemma 2.1. Since

the structure of the matrices of the type A[` + 1; : : : ; d] is identical to the structure

of the matrices of the type A[1; : : : ; d � `], Lemma 2.1 also leads to an elementary

expression for the determinants of these matrices|one must only take into account

that the indices have the o�set `. Consequently, one obtains

detA[`+ 1; : : : ; d] =

d�X̀
k=0

 
d�kY

u=`+1

pu

!  
dY

v=d�k+1

qv

!
:

If 1 � i < j � d then matrix A[i; : : : ; j � 1 j i+ 1; : : : ; j] reduces to a lower triangular

matrix. Similarly, if 1 � j < i � d then matrix A[j + 1; : : : ; i j j; : : : ; i � 1] is upper

triangular. It follows that

detA[i; : : : ; j � 1 j i+ 1; : : : ; j] = (�1)j�i
j�1Y
k=i

qk (1 � i < j � d)

and

detA[j + 1; : : : ; i j j; : : : ; i� 1] = (�1)i�j
iY

k=j+1

pk (1 � j < i � d):
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Consequently, it has been proven:
Theorem 2.2. Let B : (n�1)� (n�1) be the fundamental matrix of the general

random walk with absorbing boundaries at states 0 and n. The entries bij of matrix

B are

bij =

"
i�1X
k=0

 
i�k�1Y
u=1

pu

! 
i�1Y

v=i�k

qv

!#
�

"
j�1Y
k=i

qk

#
�

"
n�j�1X
k=0

 
n�k�1Y
u=j+1

pu

! 
n�1Y

v=n�k

qv

!#

n�1X
k=0

 
n�k�1Y
u=1

pu

! 
n�1Y

v=n�k

qv

!

for 1 � i � j � n� 1 and

bij =

"
j�1X
k=0

 
j�k�1Y
u=1

pu

! 
j�1Y

v=j�k

qv

!#
�

"
iY

k=j+1

pk

#
�

"
n�i�1X
k=0

 
n�k�1Y
u=i+1

pu

! 
n�1Y

v=n�k

qv

!#

n�1X
k=0

 
n�k�1Y
u=1

pu

! 
n�1Y

v=n�k

qv

!

for n� 1 � i > j � 1.

Thanks to Theorem 2.2 one obtains the absorption time and probability via

E[T jX0 = i ] =

n�1X
j=1

bij resp. PfXT = n jX0 = ig = bi;n�1 � qn�1

where i = 1; : : : ; n� 1. As expected, these expressions reduce to well-known formulas

if pi = p and qi = q for i = 1; : : : ; n� 1. If p = q then the limit operation (q=p) ! 1

is necessary.

3. Conclusions. Closed form expressions for the entries of the fundamental

matrix of the general random walk with absorbing boundaries have been derived by

means of elementary matrix theory. This leads also to closed form expressions for

the absorption time and the absorption probabilities. The approach taken here is

especially useful if, for example, the absorption time or the absorption probabilities

for a speci�c initial state are of interest because only few entries of the fundamental

matrix must be determined in this case.
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