
Mutation Operators for the Evolution of

Finite Automata

Dirk Wiesmann

FB Informatik, LS 11, Univ. Dortmund, 44221 Dortmund, Germany

wiesmann@ls11.cs.uni-dortmund.de

Abstract. Evolutionary programming has originally been proposed for

the breeding of �nite state automata. The mutation operator is working

directly on the graph structure of the automata. In this paper we in-
troduce variation operators based on the automatons input/output be-

havior rather than its structure. The operators are designed to make

use of additional information based on a ranking of states as well as a
problem-speci�c metric which enhances the search process.

1 Introduction

Within the scope of evolutionary programming (EP) the evolution of Mealy

automata is studied. An automaton is represented as a directed graph. The nodes

are representing the states of the automaton and the edges are representing the

state transitions. Every edge is labeled with an input and an output symbol.

In the original work of Fogel et al. [5] the mutation operator is working on the

graph structure of the automaton. There are �ve random mutation operators

that a�ect the graph structure in di�erent ways. The e�ect of a mutation event

on the input/output behavior of the automaton is not obvious. In this paper we

propose two variation operators which are not motivated by a random variation

of the graph structure, but by the e�ect of a variation on the input/output

behavior of the automaton. For simpli�cation we will regard only deterministic

�nite automata (DFA). In the following we will �rst give a short overview on the

topic of �nite automata and present some well known properties we will refer to

later on. After that we discuss the traditional mutation operators used in EP.

Then the two alternative approaches are presented and evaluated.

2 Deterministic Automata

Finite automata are a formal representation for the analysis of sequential logic

systems. For each point in time a �nite automaton is in a state q of a �nite

nonempty set of states Q. In every step the automaton reads a symbol wi 2 �,

writes a symbol yi 2
 and changes its state according the mapping � : Q�� !

Q. Automata of this kind are called deterministic Mealy automata and can be

described by the system (Q;�;
; qo; �;
). Where Q is a �nite nonempty set

of states, � the �nite input alphabet,
 the �nite output alphabet, q0 2 Q the

initial state, � : Q�� ! Q the state transition mapping, and
 : Q�� !
 the

output function. Thus, a Mealy automaton computes a function f : �� !

�.

Where �� denotes the set of all �nite strings of symbols from the alphabet �.

In the following we will focus on decision problems. An input string w 2 �
�

is said to be accepted, i� the automaton is in a �nal state after reading w.

An automaton A of this kind is denoted as an DFA and can be described as a

system A = (Q;�; q0; �; F). Where F � Q is the set of �nal (accepting) states.

The set of all strings accepted by A is denoted as the regular language L(A).

The language Ln � �
n consists only of strings of a �xed length n. Thus, Ln(A)

is the set of all strings of �xed length n accepted by the DFA A.

We will propose a mutation operator which is based on the operations in-

tersection, union, and negation of regular languages. All algorithms can work

e�ciently on DFAs [2]:

Theorem 1. Given a DFA A accepting the language L(A) a DFA A
0 for the

complement L(A) can be computed in linear time O(jQj).

Proof. The set F of the �nal states needs only to be interchanged with the set

Q n F . ut

Theorem 2. Given two DFAs A1 and A2 accepting the languages L(A1) and

L(A2) a DFA A accepting the language L(A2)[L(A2) can be computed in time

O(jQ1jjQ2jj�j).

Proof. The DFA A is constructed as follows. Let Q = Q1 � Q2, and q0 the pair

of the initial states from A1 and A2. Then let F = f(qi; qj) j qi 2 F1 _ qj 2 F2g

and �((qi; qj); a) = (�1(qi; a); �2(qj; a)) with 0 � i < jQ1j; 0 � j < jQ2j. ut

Theorem 3. Given two DFAs A1 and A2 accepting the languages L(A1) and

L(A2) a DFA A accepting the language L(A2)\L(A2) can be computed in time

O(jQ1jjQ2jj�j).

Proof. L(A1) \ L(A2) = (L(A1) [L(A2)): ut

In the following we will apply these operations to minimum state DFAs only, i.e.

DFAs with the minimum number of states.

Theorem 4. If at �rst the unreachable states are eliminated from a DFA A, and

then the equivalence class automaton A
0 is constructed, then A

0 is equivalent to

A and has the minimum number of states.

The proof and further details can be found in [2]. The set of unreachable states

of a DFA can be computed by a depth �rst search starting in the initial state, in

time O(jQjj�j). The non equivalent states can be computed in time O(jQj2j�j).

3 Evolutionary Programming

In the scope of evolutionary programming (EP) the evolution of �nite automata

was studied since the 60s [5, 4]. The starting point of the research was the ques-

tion, whether a simulated evolution on a population of contending algorithms

is able to produce some kind of arti�cial intelligence. Intelligent behavior was

viewed as the ability to predict an event in a given environment and to react on

this event to meet a given goal. For the reason of simpli�cation the environment

was modeled as a sequence of symbols taken from a �nite alphabet �. The al-

gorithms were represented as Mealy automata, which are reading the sequence

of symbols. Every symbol the automaton reads activates a state transition and

and produces one output symbol from the �nite alphabet
. The task of the

EP system is to evolve an automaton that correctly predicts, i.e., produces, the

next symbol to appear in the environment on the bases of the sequence of sym-

bols it has previously observed. Thus, the number of wrong predictions is to be

minimized.

An EP system is working on the graph representation of an automaton [5].

An automaton is represented as a directed graph. The nodes are representing the

states of the automaton, and the edges correspond to the state transitions. Every

edge is labeled with an input and an output symbol. Five di�erent mutations

have been derived from the graph description: change of an output symbol,

change of a state transition, addition of a state, deletion of a state, and change

of the initial state. The mutation operator selects with equal probability a certain

mode of mutation and applies it to an individual. Depending on the mode of

mutation the nodes and edges are selected with equal probability. The number

of mutations per o�spring is chosen with respect to a probability distribution

[4]. A recombination operator was proposed but not implemented.

The graph representation of an automaton and the resulting �ve modes of

mutation have two advantages. First, every single mode of mutation can be

performed e�ciently. Provided that the graph is stored as an adjacency list,

every change of an output symbol and every mutation of a state transition needs

only linear time in the number jQj of nodes. To add or to delete a state needs

quadratic time. The change of the initial state can be done in constant time.

Since the deletion of a state and the change of the initial state are only allowed

when the parent automaton has more than one state, every mutation leads to

a feasible representation of an automaton. But the resulting automaton is not

necessarily minimal. In particular there can be nodes and even whole subgraphs

that are not reachable from the initial state.

A potential drawback of the mutation may be, that every single mode of mu-

tation is solely based on the structure of a automaton. The size of a mutation,

e.g. the length of a mutation step is directly related to the complexity of the

structural modi�cation. A mutation which deletes a state and changes a state

transition has greater in
uence on the structure as a mutation that only changes

a symbol of the output alphabet. Thus, the impact on the input/output behavior

is not considered here. Even the in
uence of two mutations of the same mode

may vary signi�cantly (see section 5.1). Moreover it is di�cult to �nd a suitable

distance measure (metric), which measures the structural di�erence of two au-

tomata. Especially for the gradual approximation of a solution in a large search

space, it is important that mutation will prefer small steps in the search space

(regarding a suitable distance measure). By using EP to evolve programs in form

of symbolic expressions it was observed, that preferring mutations with a small

e�ect has some advantages [1]. A formal approach is presented in [3]. By de�n-

ing two related distance measures within the geno- and the phenotype space, so

that neighboring elements have similar �tness, problem-speci�c knowledge was

incorporated into the variation operators. The metric allows to reason about the

distance of individuals and the size of mutation steps in a formal framework.

The size of a mutation is correlated with the change in the �tness value and

is not directly based on the structural modi�cations within the representation

of an individual. The requirements on the mutation operator are described in

section 5.2. By the example of a synthetic problem, where a Boolean function

has to be found based on the complete training set, it was shown, that systems

which ful�ll the requirements have a signi�cant advantage [3].

To simplify our consideration we will focus on DFAs in the following. In

general this restriction to decision problems is not too strong [6].

4 Fitness function and distance of DFAs

Given a �nite subset S � �
� and a training set T = f(w; f(w))jw 2 Sg. Based

on the training set a DFA has to be found which accepts the language L(A) :=

f
�1(1) for a function f : �� ! f0; 1g. The EP system has to evolve DFAs which

will generalize from the training set to L(A).

For simplicity, we restrict the problem space in two ways. Firstly, we only

consider languages with strings of �xed length n. Secondly, the search will be

based on the complete training set Tv. For a function f : �n ! f0; 1g and the

training set Tv = f(w; f(w)) j w 2 �
ng a DFA has to be found which accepts

the language Ln(A) := f
�1(1). Thus, A must achieve:

8(w; 1) 2 T is w 2 L
n(A) and 8(w; 0) 2 T is w 62 L

n(A):

The e�ects of the restrictions will be discussed later. The �tness function F (A) :=

jf(w; f(w)) 2 Tv j f(w) = 1 , w 2 L
n(A)gj counts the number of strings on

which the DFA A will make the right decision.

Now, how can the similarity of two DFA A and B be measured? The distance

d
n of A and B should be the number of strings on which A and B are not

corresponding:

d
n(A;B) = jL

n(A)j+ jL
n(B)j � 2jLn(A) \ Ln(B)j

The maximum di�erence in �tness values of two DFA is dn(A;B). Note, that

the �tness calculation is based on Tv. The distance measure dn : �n ��
n ! IN

is a metric. Imagine that all strings from �
n are sorted in lexicographical order.

A language Ln can then be represented as a bit-string of length j�nj. The i-th

bit equals 1, if the i-th string from �
n is in the language Ln. Otherwise the i-th

bit equals 0. Thus, dn equals the hamming distance between the bit-strings be-

longing to the corresponding languages. Obviously, this distance measure won't

distinguish between two structural di�erent DFAs accepting the same language.

5 Proposals for EP mutation operators

5.1 Weighted mutation

The �rst proposal for a new mutation operator is motivated by the observation

that the �tness calculation can provide more information than the pure �tness

value only. To compute the �tness of a given DFA for every word in the training

set a path beginning at the initial state has to be traversed.

In order to assess the in
uence of a mutation event every node (state) is

assigned a weight index with initial value 0. Every time a node is visited during

�tness calculation the weight index is incremented by 1. After �tness calculation

on the complete training set, the weights give an upper bound for a change in

the �tness value caused by mutation.

Lets consider the following example. Let �4 = f0; 1g4 and L4 = f0000; 0011;

0101; 0110;1001; 1010;1100; 1111g be the language of all strings with an even

number of 0's and an even number of 1's of length 4. Figure 1 shows the graph

representation (state diagram) of an automaton with the corresponding weights

after �tness calculation on the complete training set Tv. In three cases the DFA

draws the wrong decision on Tv.

Now, let us discuss the impact of di�erent mutations: The state q2 has a

relative high weight of 15. If the state q2 would be deleted by a mutation event,

then the �tness can be changed by the value 15 at most. In comparison the

deletion of state q5 can change the �tness by the value of 3 at most. By ranking

the states according to their weights, states with a lower weight can be mutated

with higher probability than states with a higher weight. State transitions can

be mutated likewise. Transitions beginning in a state with a lower weight will

be mutated with higher probability than transitions beginning in a state with a

higher weight. The insertion of new states will take place with higher probability

between states with a lower weight.

This approach allows to de�ne a reasonable probability distribution on mu-

tation events on every single mode of mutation. But it is not obvious how the

di�erent modes of mutation should be weighted among each other. E.g., should

transitions be mutated with higher probability than states? Should we mutate

states with a low weight more often than transitions beginning in a state with

a high weight? Additionally, even with respect to Tv the upper bound may turn

out to be a bad estimate for the real change in �tness. E.g., an improvement

and a decline of the �tness may cancel each other out. These observations show

once again the problems of variation operators purely based on the structure,

even when additional information is available.

q1

q4

q5

q2

q3

1
1

0

0

0

0

1

1

1

0

(16) (15)

(12) (8)

(3)

Fig. 1. DFA with weighted states (weights in parenthesis) after �tness evaluation on

the complete training set T4 for the language L4 of all strings with an even number of

0's and an even number of 1's. State q1 is initial and �nal state.

5.2 Metric Based Mutation

In order to overcome the de�ciencies described above we �rst post some formal

requirements on the mutation operator. Let G be the genotype space. Here G

consists of all graph representations of DFAs A accepting a language Ln(A) �

�
n. Since we consider minimum state automata only, G is �nite. Let dG : G �

G ! IN be a suitable metric on G. Without loss of generality we restrict our

discussion to the reduced mutation operator m0 : G �
m0 ! G with the �nite

probability space (
m0 ; Pm0). With probability Pm0 (m0(u) = v) := Pm0(f! 2

m0 j m0(u; !) = vg) the mutation operator m0 changes an element u 2 G to a

new element v 2 G. The �rst rule assures that from each point u 2 G any other

point v 2 G can be reached in one mutation step.

Guideline M 1 The mutation m
0 should ful�ll:

8u; v 2 G : Pm0(m0(u) = v) > 0:

Moreover small mutations (with respect to dG) should occur more often than

large mutations.

Guideline M 2 The mutation m
0 should ful�ll: 8u; v; w 2 G :

(dG(u; v) < dG(u;w))) (Pm0(m0(u) = v) > Pm0 (m0(u) = w))

The mutation should not prefer any search direction, e.g. should not induce a

bias by itself.

Guideline M 3 The mutation m
0 should ful�ll: 8u; v; w 2 G :

(dG(u; v) = dG(u;w))) (Pm0(m0(u) = v) = Pm0(m0(u) = w)) :

A motivation of the guidelines and a discussion of a suitable metric can be found

in [3, 9]. We will now design a mutation operator in accordance to the guidelines

which uses the metric dn de�ned in section 4. The mutation will make use of the

e�cient synthesis operations for DFAs presented in section 2.

The �rst step in mutating the DFA A to a DFA B is to randomly choose a

step size K with 0 � K � j�nj using the following probability distribution:

P (K = k) =

8<
:
�+ (1� �)j�

n

j+1 , if k = 0

� � (1� �)k , if 1 � k � j�nj

0 , if k > j�nj

:

This is a slight modi�cation of the geometric distribution (P (K = k) = � � (1�

�)k) with parameter � 2 (0; 1). Using an equally distributed random variable

R 2 [0; 1], the modi�ed geometrical distribution can be created in constant time

[7].

Then we choose a subset Mn � �
n with jMnj = K. All strings in �

n have

an equal probability to be selected for the set Mn. The set Mn is split in two

sets Xn and Y n with:

8x 2 X
n : x 2 Ln(A); 8y 2 Y

n : y 62 Ln(A) and Xn
[Y

n =M
n
:

No x 2 X
n should be accepted by the DFA B. The DFA B should only accept

all y 2 Y
n. On every other input string A and B should agree. Thus, it is

d
n(A;B) = K. For the partitioning in the sets Xn and Y n the DFA A has to be

tested K times (cost: K �n). To obtain B two DFA AX and AY are constructed

with:

L
n(AX) = �

n
nX

n and Ln(AY) = Y
n
:

With this we get B as Ln(B) = (Ln(A) \ Ln(AX)) [L
n(AY).

AX and AY are constructed as follows. For every xi 2 Xn = fx1; : : : ; xjX
n

jg

we construct an automatonAxi which accepts only the string x
i, thus Ln(Axi) =

fxig. This automaton has n + 2 states. Figure 2 shows the structure of a DFA

only accepting the string a = a1 : : : an. Thus, we have:

L
n(AX) = Ln(Ax1) [: : :[Ln(AxjXnj):

For every y
i 2 Y

n = fy1; : : : ; yjY
n

jg we construct an automaton Ayi only ac-

cepting the string yi as well. With Ln(Ayi) = fyig we have:

L
n(AY) = L

n(Ay1) [: : :[L
n(AyjYnj):

After each synthesis operation the resulting DFA will be minimized. An EP

system using this mutation operator is called a MBEP system.

Theorem 5. The constructed mutation operator ful�lls the guidelines M1, M2

and M3.

Proof. The guideline M1 is ful�lled, because every step size K 2 f0; : : : ; j�njg

and all subsets Mn � �
n with jMnj = K have positive probability of being

chosen. According to the design of the operator, every language Ln � �
n can

be generated. The guideline M2 is ful�lled, because for k1 < k2 it is guaranteed

that P (K = k1) > P (K = k2), and all subsets Mn � �
n with jMnj = K have

an equal probability of being chosen. This also implicates that guideline M3 is

ful�lled too. ut

q0

qn+2

q2q1

10

1

0

......a1 a2 a3 an

a1

a2 a3

qn+1

Fig. 2. The structure of a DFA on �n = f0; 1gn. The DFA only accepts the string

a = a1 : : : an. The �nal state is hatched and q0 is the initial state.

6 Experiments

For reasons discussed in section 7 a direct comparison between EP and MBEP

is not possible. Due to its design the MBEP system searches for languages with

strings of �xed length n. An EP system can operate on strings of arbitrary

length. A (1+1)-MBEP system was tested on two di�erent languages. The �rst

language Lneven consists of all strings of length n with an even number of 0's and

an even number of 1's. The second language Lnfel consists of all strings of length

n where the last symbol equals the �rst. The initial start point was chosen by

random selection of an element from the set of all languages with strings of length

n with equal probability. We used a constant setting � = 0:3, but a dynamic

adaptation of the parameter �would be possible, too. The number of generations

(mutations) until the language was found the �rst time were averaged over 50

independent runs (Table 1). One has to keep in mind that the time needed for

a mutation depends on the length n of the strings, the step size K, and on the

size of the DFAs. The mutation operator is e�cient in these sizes, but more

time-consuming than standard EP mutation (see sections 3 and 5.2, and [3]).

For 500 mutations the MBEP system needs for n = 4, n = 6, and n = 8, about

1, 4, and 16 seconds, respectively (on a Sparc Ultra 10/300). It is not surprising

that the evolution process for both languages need similar time.

To explain this observation recall the bit-string representation from section

4. Given a bit-string of length j�nj for every DFA. At the i-th position the bit-

string has a 1, if the DFA draws the right decision for the i-th string. Otherwise

this position hold a 0. The �tness function is just counting the number of 1's in

the bit-string. Thus, the �tness function equals the counting ones problem [8]

on a string of length j�jn. Since the MBEP mutation operator is based on the

metric dn, all languages Ln have the same di�culty to be found.

Language Runs Generations

L4

even 50 143.86

L6

even 50 794.84

L8

even 50 4610.22

Language Runs Generations

L4

fel
50 138.11

f6fel 50 884.82

f8fel 50 4743.54

Table 1. Number of generations averaged over 50 independent runs until the (1 + 1)-
MBEP system found the language the �rst time.

7 Problems

The work towards applicable MBEP system is still in its in fancies. The MBEP

system is subject to substantial restrictions. The system can only work on regular

languages with strings of �xed length n. But this restriction could be weakened.

Prior to a mutation step a string length could be chosen with respect to a

probability distribution. Then the mutation operator works only on strings of

the chosen length. The restriction that the MBEP system can only work on

the complete training set is much stronger. In its current implementation the

system has no generalization ability. Due to the construction of the DFAs (see

Figure 2), there can not occur cycles over �nal states. Strings that are too long

or too short are kept in a non accepting state. This problem may be solved by

setting transitions starting in state qn+1 (see Figure 2) randomly to states in

fq0; : : : ; qn+1g. Additionally states in fq0; : : : ; qn+1g have to be �nal states with

a certain probability. Unfortunately, �rst experiments have shown that under

this condition the resulting DFAs may become very large. The size of a DFA

depend on the size of the incomplete training set. If the training set is too small

the DFAs may become too large.

8 Conclusion

In this work we have discussed the mutation operator in evolutionary program-

ming. We proposed two alternative mutation operators for structure optimiza-

tion. The operators are using additional information to improve the search pro-

cess. The weighted mutation operator uses information that results from the

�tness calculation. The metric based mutation operator uses a problem-speci�c

distance measure. The weighted mutation operator was not analyzed in detail

due to open questions. A MBEP system has shown its performance on a syn-

thetic problem. A practical application of a MBEP system remains for future

work. But some alternative starting points for the design of variation operators

for structure optimization have been identi�ed.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft as part of

the collaborative research center \Computational Intelligence" (531).

References

1. K. Chellapilla. Evolving computer programs without subtree crossover. IEEE Trans-

actions on Evolutionary Computation, 1(3):209{216, 1997.

2. P.J. Denning, J.B. Dennis, and J.E. Qualitz. Machines, Languages, and Computa-

tion. Prentice-Hall, Englewood Cli�s, 1979.
3. S. Droste and D. Wiesmann. Metric Based Evolutionary Algorithms. In R. Poli,

W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, and T.C. Fogarty, editors, Ge-

netic Programming, Proc. of EuroGP'2000, Edinburgh, 15.{16. April 2000, LNCS.
Springer, Berlin, 2000. (in print).

4. D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine In-

telligence. IEEE Press, New York, 1995.
5. L.J Fogel, A.J. Owens, and M.J. Walsh. Arti�cial Intelligence through Simulated

Evolution. Wiley, New York, 1966.

6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, New York, 1979.

7. G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor, H.-

P. Schwefel, and R. M�anner, editors, Parallel Problem Solving from Nature - PPSN

III, Int'l Conf. Evolutionary Computation, pages 139{148, Jerusalem, October 9{14,

1994. Springer, Berlin.

8. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kova�c,
Hamburg, 1997.

9. G. Rudolph. Finite Markov chain results in evolutionary computation: A tour

d'horizon. Fundamenta Informaticae, 35(1-4):67{89, 1998.

