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Abstract

This paper reports on the evolution of GP teams in di�erent classi�cation and

regression problems and compares di�erent methods for combining the outputs of

the team programs. These include hybrid approaches where (1) a neural network is

used to optimize the weights of programs in a team for a common decision and (2) a

real-numbered vector of weights (the representation of evolution strategies) is evolved

with each team in parallel. The cooperative team approach results in an improved

training and generalization performance compared to the standard GP method. The

higher computational overhead of coevolving several genetic programs is counteracted

by using a fast variant of linear GP. In particular, the processing time of linear genetic

programs is reduced signi�cantly by removing intron code before program execution.
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1 Introduction

Genetic programming (GP) has been formulated originally as an evolutionary method

for breeding programs using expressions from the functional programming language LISP

[6]. We employ linear GP [9, 2, 1], a genetic programming variant using sequences of

instructions of an imperative programming language (C here), for the evolution of teams.

The team approach is applied to prediction problems including both classi�cations and

regressions.

The linear variant of GP operates on genetic programs being represented as linear se-

quences of C instructions. One strength of linear GP is that most of the introns, i.e. in-

structions that do not e�ect program behavior, can be removed before a genetic program

is executed during �tness calculation. This does not cause any change to the individual

representation in the population but results in an enormous speedup [2]. In this way intron

elimination can compensate the increase in runtime caused by the evolution of teams.

Team evolution is motivated strongly by natural evolution. Many predators, e.g. lions,

have learned to hunt pray in a pack most successfully. By doing so, they have a much bet-

ter chance to survive than single fellows. In GP the parallel evolution of team programs is

expected to solve a task more eÆciently than the usual evolution of individuals. Thereto

the team individuals have to solve the overall task in cooperation by specializing in sub-

tasks for a certain degree. Evolution of heterogenous teams with restricted recombination

is used to promote specialization of members.

Team solutions require the multiple decisions of their members to be merged into a col-

lective decision. Several methods to combine the outputs of team programs are compared

in this work. The team approach not only allows the combined error to be optimized

but also an optimal composition of the programs to be found. In general the optimal

team composition is di�erent from simply taking individual programs that are already

quite perfect predictors for themselves. Moreover, with the coevolutionary approach the

diversity of the individual decisions of a team may become an object of optimization.

This contribution also presents a combination of GP and neural networks, the weighting

of multiple team programs by a linear neural network. The neural optimization of weights

results in an improved performance compared to standard combination methods. In an-

other hybrid approach the representations of linear GP and evolution strategies (ES) [12]

are coevolved in that a vector of programs (team) and a vector of program weights form

one individual and undergo evolution and �tness calculation simultaneously.

2 Evolution of teams

In GP the evolution of teams has been investigated mostly in connection with cooperating

agents solving multi-agent control problems. Luke and Spector [8] tested teamwork of

homogeneous and heterogeneous agent teams in a predator/prey domain and showed that

the heterogenous approach is superior. In contrast to heterogenous teams homogeneous

teams are composed of completely identical agents and can be evolved with the standard

GP approach. In [4, 5] Haynes et al. tested a similar problem with di�erent recombination

operators for heterogeneous teams. Recently Soule [14] published a paper where he solves

a non-control problem, a parity function problem, with teams using majority voting to
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combine the individual decisions.

In our paper the team approach is applied to di�erent prediction problems, two classi�ca-

tion tasks and one regression task. In contrast to control tasks only heterogenous teams

are of interest here, because for prediction tasks there is nothing to be gained from the

combination of the outputs of completely identical programs (homogeneous teams).

2.1 Team representation

In general teams of individuals can be implemented in di�erent ways. Firstly, a certain

number of individuals can be selected randomly from the population and evaluated in

combination as a team. The problem with this approach is known as the credit assignment

problem: The combined �tness value of the team has to be shared and distributed among

the team members (�tness sharing).

Secondly, team members can be evolved in separate subpopulations which provide a more

specialized development. In this case, the composition and the evaluation of teams might

be separated from the evolution of their members by simply taking the best individuals

from each deme in each generation and combining them. However, this raises another

problem: An optimal team is not necessarily composed of best individuals for each team

position. Specialization and coordination of the team's individuals is not a matter of

evolution there. These phenomena might only emerge accidentally.

The third approach favoured here is to use an explicit team representation that is con-

sidered as one individual by the evolutionary algorithm [5]. The population is subdivided

into �xed, equal-sized groups of individuals. Each member is assigned a �xed position

index. In this way team members undergo a coevolutionary process because they are al-

ways selected, evaluated and varied simultaneously. This eliminates the credit assignment

problem and renders the composition of teams an object of evolution.
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Figure 1: Population subdivded into teams and demes.

Figure 1 shows the partitioning of the total population used in the experiments described

below. First, the population is subdivided into demes [15] which, in turn, are subdivided

into teams of individual programs (demes of teams). Following the biological island model,

individual teams are allowed to migrate between arbitrary demes. This is realized by

selecting teams (tournament winners) occasionally from di�erent demes and reproducing

them in other demes. Demes are used here because they better preserve the diversity of

the population [2]. This, in turn, would reduce the probability of the evolutionary process

3



getting stuck in a local minimum.

The coevolutionary approach prohibits teams of arbitrary size because the complexity of

the search space and the training time, respectively, grow exponentially with the number

of coevolved programs. On the other hand, the team size has to be large enough to cause

an improved prediction compared to the traditional approach, i.e. team size one. This

trade-o� situation and our experimental experience let us use rather moderate numbers

of members (see Section 6).

2.2 Team operators

Team representations require special genetic operators, notably for recombination. Genetic

operations on teams in general reduce to the respective operations on their members which

can be selected randomly. Haynes et al. [5] found that a moderate number of crossover

points works better than recombining either one or every team position per operation.

This is due to the trade-o� between a suÆcient variation and the destructive e�ect of

changing too many team members at the same time.

For recombination the participating individuals of the two parent teams can be chosen

of arbitrary or equal position. If recombination between di�erent team positions is not

allowed, team members evolve independently in isolated \member demes". Luke and

Spector [8] already showed that team recombination restricted in this way can outperform

free recombination. Isolated or semi-isolated coevolution of the team members is argued

to promote specialization in behaviour. In this contribution we do not allow recombina-

tion between di�erent team positions because we are interested in team programs which

disagree on some decisions (see Section 3.1).

A possible alternative to a random selection might be genetic operators that modify the

team members depending on their respective individual �tness. Members may be sorted

by error and the probability that an individual becomes a subject of mutation or crossover

depends on its error rank. But only a limited number of members is allowed to change

simultaneously. By doing so, worse individuals are varied more often than better ones

on average. On the one hand improving the �tness of worse individuals might have a

better chance to improve the overall �tness of the team. But this does not hold for all

combination methods discussed below. Beyond that, there is not necessarily a positive

relationship between better member �tness and better team �tness for the problem de�-

nition considered. On the other hand this technique does not allow the error of the team

members to di�er much what might have a negative e�ect on specialization.

3 Combination of multiple predictors

In principle, this paper integrates two research topics, the evolution of teams discussed

above and the combination of multiple predictors, i.e. multiple classi�ers or regressors. In

contrast to teams of agents teams whose members solve a prediction problem require the

aggregation of the member's output to produce a common decision.

In the neural network community di�erent approaches have been investigated dealing

with the combination of multiple decisions in neural network ensembles [3, 10, 7]. Usu-

ally, neural networks are combined after training and are hence already quite perfect in
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solving a classi�cation or approximation problem on their own. The ensemble members

are not trained in combination and the composition of the ensemble does not undergo an

optimization process.

In [17] neural networks are evolved and a subset of the �nal population is combined

afterwards. Di�erent combination methods|including averaging and majority voting|

are compared while a genetic algorithm is used to search for a near optimal ensemble

composition.

For genetic programming Zhang et al. [18] applied a weighted majority algorithm in clas-

si�cation to combine the Boolean outputs of a selected subpopulation of genetic programs

after evolution. This approach resulted in an improvement in generalization performance,

i.e. robustness, compared to standard GP and simple majority voting, especially with

sparse and noisy training data.

The decisions of di�erent types of classi�ers including neural networks and genetic pro-

grams are combined by an averaging technique in [13]. As a result an improved prediction

of thyroid normal and thyroid carcinoma classes has been achieved in a medical applica-

tion.

3.1 Making multiple decisions di�er

In principle, all members in a team of predictors solve the same full task. The problem

is not arti�cially subdivided among the team positions and there are no subproblems

(subsets of data) assigned to special members explicitly. Since in many cases the problem

structure is completely unknown we are interested in teams where specialization, i.e. a

partitioning of the solution, emerges from the evolutionary process itself.

Specialization strongly depends on the heterogeneity of the teams. Heterogeneity is

achieved by evolving members that produce slightly diverging outputs for the same input

situations. Nothing will be gained from the combination of the outputs of completely

identical predictors (homologous teams) as far as the quality of the solutions is concerned.

Note that this is in contrast to agent teams that solve a control task. Each agent program

usually has side e�ects on the problem enviroment.

In genetic programming the inherent noise of the evolutionary algorithm already provides a

certain heterogeneity of teams. Besides the restricted recombination scheme (see Section

2.2) used here there are more speci�c techniques to increase heterogeneity and, thus,

promote the evolution of specialization:

One possible approach is to force the programs of a team to disagree on decisions and

to specialize in di�erent domains of the training data. This can be achieved by either

using di�erent �tness functions for the programs of a team or by training each team

position with di�erent subsets of the original training dataset. Both techniques require

the individual errors of the team members to be integrated into the �tness function (see

Section 5.2). Otherwise, the e�ect of the di�erent input situations cannot be made known

to the evolutionary algorithm if you take into account that only member outputs of equal

input situations can be used to calculate the combined error of the team.

Leaving out non-overlapping subsets is similiar to k-fold cross validation (k is the number

of team members), a method used to improve the generalization capabilities of neural

networks over multiple runs. The training subsets can either be sampled randomly at the
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beginning of each run or, alternatively, resampled after a certain number of generations.

The latter technique, called stochastic sampling, introduces some additional noise in the

sampling process. It allows smaller and more di�erent subsets to be used for the individual

members since it guarantees that every team position over time is confronted with every

training example.

On the other hand, di�erent function sets can be chosen for di�erent team positions to

promote specialization as well. Of course, the team crossover operator has to be adapted

in a way that only individual members from the same function set are allowed to be

recombined. Also the recombination between individuals of di�erent positions must be

restricted, respectively.

3.2 Combination methods

Two main approaches can be distinguished concerning the combination of individual so-

lutions in genetic programming: Either the individuals (genetic programs) can be evolved

independently in di�erent runs and combined after evolution. Or a certain number of

individuals are coevolved in parallel as a team. The focus of this paper is on the second

approach. Post-evolutionary combination su�ers from the drawback that successfull com-

positions of programs are detected randomly only. That might require a lot of runs to

develop a suÆcient number of individual solutions. Coevolution of k programs instead

will turn out to be much more eÆcient in time than k independent runs.

The problem that arises with the evolution of teams is in the combination of the outputs

of the individual members during �tness evaluation of a team. Di�erent combination

methods have been tested here. All methods compute the resulting team output from a

linear combination of its member's outputs. Non-linear methods cannot necessarily be

expected to produce better aggregations of multiple predictions since the actual problem,

linear or non-linear, is already solved by the single predictors. Figure 2 illustrates the

general principle of the approach.

Moreover, only basic combination methods are documented and compared in this con-

tribution. Even if there are hybridizations of the methods possible, e.g. EVOL/OPT

or EVOL/MV (weighted majority voting), the concurrent application of two combina-

tions is not necessarily more successfull. We noticed that more complicated combination

schemes are rather diÆcult to handle for the evolutionary algorithm. These might be

more reasonable with post-evolutionary combinations of (independent) predictors. Most

of the methods|except WTA (see Section 3.2.6)|can be applied to parallel as well as to

sequentially evolved programs

For classi�cation problems there exist two major possibilities to combine the outputs of

multiple predictors: Either the raw output values or the classi�cation decisions can be ag-

gregated. In the latter case the team members act as full (pre-)classi�cators themselves.

The downside is that by mapping the continuous outputs in discrete class identi�ers before

combining them reduces the information content each individual might contribute to the

common team decision. This could restrict specialization as well as cooperation. There-

fore, we decided for the former and combined raw outputs|except for majority voting

(see below) that requires class decisions implicitly.

Some of the combination methods are only applicable to classi�cation tasks and are based

upon one of the following two classi�cation methods:

6



o
2

oko
3

o

wkw1

w2
w3

o
1

oiwi

1 GP GP GP2 3 . . . k

in
. . .

Team

i1

GP

Σ

Figure 2: Linear combination of genetic programs.

Classi�cation with intervals (INT). Each output class of the problem de�nition cor-

responds to a certain interval of the full range of the (single) program output. In particu-

lar, for classi�cation problems with two output classes the continuous program output is

mapped to class output 0 or 1 here | depending on a classi�cation threshold of 0:5.

Winner-takes-all classi�cation (WTA). Here for each output class exactly one pro-

gram output is necessary. The output with the highest value determines the class decision

of the individual. This method is especially interesting for higher dimensional program

outputs.

These di�erent combination methods are introduced for problems with two output classes

while a generalization to more output classes is not complicated. Even more important is

to note that none of the methods presented here produces relevant extra computational

costs.

3.2.1 Averaging (AV)

There are di�erent variants of combination possible by computing a weighted sum of

the outputs of the team programs. The simplest form is to use uniform weights for all

members, i.e. the simple average of k outputs as team output. In this way the in
uence

of each individual on the team decision is exactly the same. The evolutionary algorithm

has to adapt the team members to the �xed weighting only.

oteam =

kX
i=1

1

k
oindi (1)
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3.2.2 Weighting by error (ERR)

An extended method is to use the �tness information of each team member for the com-

putation of its weight. By doing so, better individuals get a higher in
uence on the team

output than worse.

wi = 1=e�E(gpi): (2)

E(gpi) is the individual error explained in Equation (10). � is a positive scaling factor to

control the relation of the weight sizes. The error-based weighting gives lower weights to

worse team members and higher weights to better ones.

In order to restrict their range the weights always undergo normalization in that they are

all positive and sum to one:

wi =







wi
kP

j=1

wj






 (3)

With this approach evolution decides over the weights of a program member by manip-

ulating its error value. In our experiments the individual weights are adjusted during

training using the �tness information. Using data di�erent from the training data may

reduce over�tting of teams and increase their generalization performance. It has, however,

the drawback of increasing computation time.

In general, the error-based weighting approach has not been found to be consistently better

than the average of member outputs. The reason might be that the quality of a single mem-

ber solution must not be directly related to the �tness of the whole team. If the combined

programs had been evolved in single independent runs, deriving the member weights from

this independent �tness might be a better choice. In such a case stronger dependencies

between programs|that usually emerge during team evolution by specialization|cannot

be expected.

3.2.3 Coevolution of weights (EVOL)

With this approach member weights are evolved in parallel with every team in the popula-

tion (see Figure 3). The real-valued vector of weights is selected together with the vector

of programs (team) by tournament selection. During each �tness evaluation the weight

vector is varied by a sequence of mutation operations (\macro mutation"). Only better

mutations are allowed to change the current state of weighting, a method typical for an

(1+1)ES [12]. The mutation operator updates single weight values by allowing a constant

standard deviation (mutation step size) of 0.02. The initial weights are randomly selected

from the interval [0; 1]. Recombination of the weight vectors is not applied.

Alternatively, a complete (1+1)ES run might be initiated to optimize the weighting of

each team during �tness calculation. This, of course, increases the computational costs

signi�cantly depending on the run length. It also might not be necessarily advantageous

since the program teams adapt to a given weighting situation concurrently. With our

approach optimization of the weighting is happening in coevolution with the members, not
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Figure 3: Coevolution of program team and vector of weights as individual.

during each team evaluation. Thus, the coevolutionary aspect that allows team solutions

to adapt to di�erent weighting situations is the most important point here.

Even if the diversity of the population decreases at the end of a GP run there are still

improvements possible by changing the in
uences of the single team members.

3.2.4 Majority voting (MV)

A special form of linear combination is majority voting which operates on class outputs.

In other words, the continuous outputs of team programs are transformed into discrete

class decisions before they are combined.

Let us assume that there are exactly two output classes, 0 and 1. Let Oc denote the subset

of team members that predict class c:

O0 := fijoindi = 0; i = 1; ::; kg (4)

O1 := fijoindi = 1; i = 1; ::; kg (5)

The class which most of the individuals predict for a given example is selected as team

output:

oteam =

(
0 : jO1j < jO0j
1 : jO1j � jO0j

(6)

Note that clear decisions are forced for two output classes if an uneven number of team

members participates. Majority voting works as well with an even number of members as

long as the team decision is de�ned for equality (class 1 here).

3.2.5 Weighted voting (WV)

Another voting method, weighted voting, is introduced here for the winner-takes-all classi-

�cation (see above) where each team program returns exactly one output value for each of
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m output classes. For all classes c these values are summed to form the respective outputs

of the team:

oteam;c =

kX
i=1

oindi;c8c 2 f0; ::; mg (7)

The class with the highest output value de�nes the response class of the team as illustrated

in �gure 4.

i1
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GP1 GP GP GP2 3 . . . k
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o o o1 2 m. . .MAX( )  =  o

Figure 4: Combination of genetic programs by weighted voting.

With this combination method each team individual contributes a continuous \weight"

for each class instead of a clear class decision as in Section 3.2.4. If discrete (class)

outputs would be used the method corresponds to majority voting. Here the weighting

comes from the member programs themselves. When using interval classi�cation instead

of WTA classi�cation each program might compute its own weight in a separate (second)

output variable alternatively.

3.2.6 Winner-takes-all (WTA)

Two di�erent winner-takes-all combination methods are presented in this contribution:

The �rst WTA combination variant selects the individual with the clearest class decision

to determine the output of a team. With interval classi�cation the member output that

is closest to one of the class numbers (0 or 1) is identi�ed as the clearest decision. The

winner may also be seen as the individual with the highest con�dence in its decision.

Specialization may emerge if di�erent members of the team win this contest for di�erent

�tness cases.
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oteam = owin (8)

If seperate outputs are used instead of output intervals (WTA classi�cation) the clearest

decision might be de�ned as the biggest di�erence between the highest output and the

second highest output of a team member.

The second and simplest WTA combination (WTA2) just chooses the lowest output as

team output. (Note that this is de�nition and could be the greatest output as well.) This

selection happens before the continuous outputs are transformed into class decisions and

is valid for interval classi�cation. For WTA classi�cation the member with the lowest

sum of outputs could be choosen. This combination variant is also possible for regression

problems.

Of course, it is not a feasible alternative to select the member with the best �tness. Than

a decision on unkown data is only possible if the right outputs are known in advance and

is not made by the team itself.

3.2.7 Weight optimization (OPT)

The �nal approach tested here uses a linear neural network in form of a perceptron without

hidden nodes to �nd an optimal weighting of the team individuals. The learning method

applied is RPROP [11], a backpropagation variant about as fast as Quickprop but with

less adjustments of the parameters necessary. With this approach data is processed �rst

by the team programs before the neural network combines their results (see also Figure

2). Actually, only a single neuron weights the connections to the genetic programs whose

outputs represent the input layer of the linear neural network here. The outputs of the

programs are, of course, only computed once for all data inputs before the neural weighting

starts. In [16] a linear perceptron has been used to learn the averaging weights of an

ensemble of trained perceptrons.

Like with the other approaches the neural weighting might be done each time the �tness

of a team is calculated. Obviously, this has the drawback of an exponential increase in

runtime even with a small neural network and a relatively low number of epochs trained.

A much less time-consuming variant applied here is to use a neural network for optimizing

the weights of the best teams only before (re)computing the training and validation error

with the new weights. By doing so, the process of �nding an optimum weighting for

the members is decoupled from the contrary process of breeding team individuals with a

more balanced share in cooperation. In other words, worse members cannot so easily be

\weighted out" of a team just by assigning them very low weights.

Weighting is an inherent property of neural networks. The linear network structure assures

that there is only a weighting of program outputs possible by the neural network and that

the actual, non-linear problem is solved exclusively by the genetic programs. Thus, the

genetic programs form some kind of \hidden layer" in the GP/NN hybrid.

Instead of using hill-climbing by a neural networks, evolutionary techniques, like evolution

strategies or simulated annealing, might be applied for the adaptation of weights.
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4 Linear genetic programming

In the experiments described below we use linear GP, a genetic programming approach

with a linear representation of individuals that has been introduced by Nordin and Banzhaf

[9, 1]. Its main characteristic in comparison to tree-based GP is that not expressions of

a functional programming language (like LISP) but programs of an imperative language

(like C or machine code) are evolved.

In the linear GP system used for our experiments [2] an individual program is represented

as a variable length sequence of simple C instructions. All instructions operate on one or

two indexed variables vi or constants c from a prede�ned range and assign the result to a

destination variable vj , e.g. vj = vi + c. The operation set used for the experiments in this

contribution includes addition, subtraction, multiplication, division and exponentiation.

4.1 Removing non-e�ective code

Non-e�ective code in a genetic program speci�es instructions without any in
uence on

the calculation of the output for all possible inputs. These so-called introns are believed

to act as redundant code segments that protect advantageous building-blocks from being

destroyed by crossover.
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CalculationElimination
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Figure 5: Intron elimination in linear GP.

The program structure in linear GP allows non-e�ective code to be detected and eliminated

eÆciently. The intron removal algorithm [2] achieves this in linear runtime O(n), with n

is the maximum length of the linear programs. Prior to �tness evaluation the e�ective

instructions are copied to a temporary program bu�er which is executed subsequently. By

doing so, the representation of individuals in the population remains unchanged while the

computation time for non-e�ective code is saved (see �gure 5).

By skipping the execution of the non-e�ective code during program interpretation the

evolutionary process is accelerated by a factor 1

1�p
, where p denotes the average percentage

of redundant program part. In most applications documented below an average intron rate

of about 80% has been observed resulting in a speedup factor of about 5 through intron

elimination. In other words, about �ve e�ective team members could be executed with

the same time requirements as a single standard individual including its introns. Thus,

the additional computational overhead of team evolution reduces signi�cantly with linear

GP and the elimination of non-e�ective code.
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5 Experimental setup

We examine the team approach with di�erent combination methods discussed earlier using

two classi�cation problems and one regression problem. First of all, the structure of the

data that represents the respective problems is documented in further detail.

5.1 Structure of the experimental data

The heart dataset is composed of four datasets from the UCI Machine Learning Repository

(Cleveland, Hungary, and Switzerland) and includes 720 examples altogether. The input

dimension is 13 while two output classes (1 or 0) indicate the diagnosis (ill or not ill).

The heart problem incorporates noise because inputs|including continuous and discrete

values|are missing and have been completed with 0. The diagnosis task of the problem

is to predict whether the diameter of at least one of four major heart vessel is reduced by

more than 50% or not.

Two chains denotes a popular machine learning problem where two chained rings that

represent two di�erent classes|of about 400 data points each|have to be seperated. The

two rings in Figure 6 \touch" each other at two regions without intersection.

-1.5
-1

-0.5
0

0.5
1

1.5
2 -1.5

-1
-0.5

0
0.5

1
1.5

2

-0.4

-0.2

0

0.2

0.4

Figure 6: Two chains problem.

The regression problem three functions tests the ability of teams to learn three di�erent

functions at the same time which consist of a sinus, a logarithm and a half circle (see

Figure 7). A function index has to be passed to the genetic programs as an additional

input to distinguish the three functions.

In all cases, the data examples were subdivided randomly into three sets: training set

(50%), validation set (25%) and test set (25%). Each time a new best team emerges its
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Figure 7: Three functions problem.

error is calculated using the validation set in order to check its generalization ability during

training. From all these best teams emerging over a run the one with minimum validation

error is tested on the test set once after the training is over.

5.2 Team �tness

The �tness F of a team might integrate two major goals: the overall error of the team

E(team) and (optionally) the errors of its program members E(gpj) should be minimized.

F (team) = E(team) + Æ
1

m

mX
j=1

E(gpj) (9)

The in
uence of the average member error on the team �tness is controlled by a multi-

plicative parameter Æ. Including the individual errors as a second �tness objective (by

choosing Æ = 1) has not been experienced to produce necessarily better results. One e�ect

is that the average �tness of the members in a team becomes signi�cantly better. Ac-

tually it might reduce the specialization potential of the members since the cooperating

individuals are restricted to be good predictors of their own.

If, on the other hand, the individual errors are not included into the �tness function (Æ = 0)

there is no direct relation between the �tness of the single members and the quality of the

common team solution. This allows the errors of members to di�er more strongly within

a team and to be signi�cantly worse than the team error. For all experiments documented

in this work Æ has been set to 0.

In Equation (9) E denotes the error of a predictor p that is computed as the sum of square

distances between the predicted output p(~ik) and the desired output ~ok over n examples
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(~ik; ~ok):

E(p) =
nX

k=1

(p(~ik)� ~ok)
2 + �CE (10)

The classi�cation error (CE) is calculated as the number of incorrectly classi�ed exam-

ples in Equation (10). The in
uence of the classi�cation error is controlled by a weight

parameter �. For classi�cation problems � has been set constantly to 2 in order to favour

classi�cation quality (0 otherwise).

5.3 Parameter settings

Parameter Setting

Number of generations 1000

Number of teams (population size) 3000

Number of team members 4

Number of varied team members 1-2

Number of demes 6

Migration rate 3%

Migration frequency (in generations) 1

Crossover probability for teams 100%

Mutation probability for teams 100%

Mutation step size for constants 5

Instruction set f+;�;�; =; powg
Set of (integer) constants f0,..,100g
Maximum individual length (in instructions) 128

Table 1: General parameter settings.

Table 1 lists the parameter settings of our linear GP system used for the evolution of

teams and all problem de�nitions described above. The population size is 3000 teams

while each team is composed of the same number of individual members. The population

has been choosen suÆciently large to conserve diversity of the more complex team solu-

tions. The total number of members per team and the number of members that are varied

during crossover and mutation are the most important parameters when investigating the

evolution of teams. Di�erent settings of these parameters are reported in further detail in

the next section.

The number of generations is limited to 1000, both for GP teams and the standard GP

approach. Note that a single individual is varied much less|one or two member per team

recombination only| than an individual during a standard GP run. While this reduces

the progress speed of single team members it does not necessarily hold for the �tness

progress of the whole team as we will see below.

A single program is not allowed to become longer than 128 instructions in our experiments.

For all tested problems this has been experienced to be a suÆcient length for representing

powerful solutions. Longer programs cannot always be expected to produce better results.

The e�ective part of best solutions usually depends strongly on the problem and does
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not vary much in size between runs [2]. Thus, the longer a program becomes the more

non-e�ective code it has to maintain.

The selected standard set of instructions|including addition, subtraction, multiplication,

protected division, and the protected power function|should be powerful enough for not

producing too restrictive solutions for the three prediction tasks.

6 Results

We now document the results obtained by applying the di�erent team approaches de-

scribed in 3.2 to the three problems of Section 5.1. Prediction accuracies and code sizes

are compared for the team con�gurations and a standard GP approach.

The team approach, in general, has been found to produce better results than the stan-

dard GP approach for all three prediction tasks. Mainly problems pro�t from GP teams

whose solution can at least be divided partly into subsolutions and distributed to di�erent

problem solvers (team members). Especially data that hold linearly separable subsets can

take advantage. Moreover, team solutions can be expected to be less brittle and more

general in the presence of noise due to their collective decision making. Only if nearly

optimal solutions already emerge with the standard approach teams cannot be expected

to be bene�cal. In this case the additional computational overhead of the more complex

team solutions outweighs the advantages.

6.1 Prediction accuracy

Table 2 summarizes the di�erent con�gurations of the team approaches tested in this

contribution. The outputs of the team members are continuous except for majority voting

(MV) where the raw outputs have to be mapped on discrete class identi�ers �rst. Only

our weighted voting approach (WV) is based on the WTA classi�cation method. All other

methods use interval classi�cation.

Method ID Combination Classi�cation Outputs

GP GP | INT cont

TeamGP AV AVeraging (standard) INT cont

TeamGP OPT weight OPTimization INT cont

TeamGP ERR weighting by ERRor INT cont

TeamGP EVOL coEVOLution of weights INT cont

TeamGP MV Majority Voting INT class

TeamGP WV Weighted Voting WTA cont

TeamGP WTA Winner-Takes-All INT cont

TeamGP WTA2 Winner-Takes-All INT cont

Table 2: Con�guration of the di�erent team approaches.

The following tables compare error rates of the standard GP approach and the di�erent

team approaches for the three test problems described in Section 5. Minimum training

error and minimum validation error are determined among best solutions (concerning

�tness) of a run. The solution with minimum validation error is applied to unknown data
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at the end of a run to compute the test error. All �gures given in this paper denote average

results from series of 60 test runs. In order to avoid unfair initial conditions and to give

more reliable results each test series (con�guration) has been performed with the same set

of 60 random seeds.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

GP 3.67 3.7 5.07 5.69

AV 0.64 11.7 1.25 2.20

OPT 0.59 26.7 0.93 2.44

ERR 1.31 20.9 1.91 2.73

EVOL 0.33 28.0 0.71 2.00

MV 0.37 25.7 1.48 2.17

WV 0.39 27.7 0.76 1.91

WTA 0.02 59.2 0.00 0.33

WTA2 0.00 64.3 0.00 0.65

Table 3: Two chains: Classi�cation errors (CE) in percent. Best team results highlighted.

Considering the classi�cation rates for the two chains problem in Table 3 the standard team

approach (AV) reaches approximately a 5 times better performance than the standard GP

approach.

Most interesting are the results of the winner-takes-all combination that select a single

member program to decide for the team on a certain input situation. Both team variants

(WTA and WTA2) nearly always found the optimum (0% CE) for training data and

validation data. With standard GP the optimum solution has not even emerged once

during 60 trials here. This is a strong indication of a high specialization of the team

members. It demonstrates clearly that highly coordinated behaviour emerges from the

parallel evolution of programs. This cannot be achieved by a combination of standard GP

programs which would have to be evolved independently. Team evolution is much more

sophisticated than just testing random compositions of programs. In fact, the di�erent

members in a team have adapted strongly to each other during the coevolutionary process.

Among the real team approaches which combine outputs of several individual members

WV was the most successful alternative. This is remarkable because this method requires

twice as much output values|two instead of one output per member|to be coordinated.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

GP 13.6 13.6 14.5 19.0

AV 11.5 13.2 13.4 18.2

OPT 11.5 32.0 12.8 17.5

ERR 11.9 28.6 12.9 18.0

EVOL 11.4 32.9 12.7 18.1

MV 10.9 24.6 13.6 17.5

WV 11.5 32.4 12.9 17.9

WTA 11.9 60.5 14.5 18.5

WTA2 12.9 61.5 14.9 19.2

Table 4: Heart: Classi�cation errors in percent. Best team results highlighted.

Table 4 shows the prediction results for the heart problem. This application demonstrates
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not only the ability of teams in real data-mining but also in noisy problem enviroments

since many data attributes are missing or are unknown. The di�erence in prediction error

between GP and TeamGP is about 2% which is signi�cant in the respective real problem

domain. The problem structure does not o�er many possibilities for specialization, espe-

cially in case of the winner-takes-all approaches which do not generalize signi�cantly better

here than the standard approach. The main bene�t of the other combination methods

seems to be that they improve �tness and generalization quality for the noisy data by a

collective decision making of more than one team program.

Method Training MSE Member MSE Validation MSE Test MSE

GP 16.9 17 16.2 16.6

AV 4.9 411 4.1 4.5

OPT 4.6 619 3.8 4.1

ERR 4.6 6340838 3.9 4.0

EVOL 3.2 33135 2.6 2.7

WTA2 11.0 154762629 9.8 10.1

Table 5: Three functions: Mean square error (MSE � 100). Best team results highlighted.

Experimental results for the three functions problem are given in Table 5. Note that not

all team variants are applicable to a regression problem. The regression task at hand has

been solved most successfully by EVOL teams. This combination variant allows di�erent

weighting situations to be coevolved with the program teams and results in nearly twice as

small prediction errors compared to uniform weights (AV). The standard team approach

is found to be about four times better in training and generalization than the standard

GP approach. Note that the average member error is extremely high compared to the

respective team error with this problem.

Finally, some general conclusions can be drawn from the three applications:

Teams of predictors have proven to give superior results for known data as well as un-

known data. The improved generalization performance of teams results from the increased

robustness of team solutions against noise in the data space. This, in turn, is mainly due

to the combination of multiple predictions that absorb (\smooth") larger errors or wrong

decisions made by single members. In all three test cases not only the given average results

but also the standard deviations (not shown in the tables) reduce with teams. In general,

there are less \outliers" among the test runs using teams.

Comparing the di�erent team con�gurations among each other further shows that di�erent

combination methods dominate for di�erent problems. A general ranking of the methods

cannot be produced. It is worth trying several variants when dealing with the evolution

of multiple predictors.

Optimizing the weights of the best teams (OPT) that occur during evolution by using a

neural network improved the results (AV) signi�cantly. But even more successful was the

parallel evolution of weights together with the team programs (EVOL)|the second hybrid

approach presented. In general, most methods that allow various weighting situations

outperformed the standard team approach using uniform weights.

For all three examples the average member error was highest with winner-takes-all com-

binations. This is not suprising since only one member is selected to make a �nal decision

for the whole team while outputs of the other team individuals could be arbitrarily worse
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(WTA) or bigger (WTA2) respectively. Obviously specialization potential is highest with

this combination. In case of all other team methods with varying weights (e.g. EVOL) the

member errors are higher than with uniform weights (AV). The individual performance in

an AV team again is worser than the performance of stand-alone GP individuals.

6.2 Code size

With linear GP the higher complexity of team evolution and the resulting increase in

computation time are counteractive in two ways:

1. By executing the e�ective code only which makes the evolution of teams with a

modest number of members computationally a�ordable.

2. By the fact that the e�ective code size of a team with k members is found signi�cantly

smaller than the e�ective size of k individual GP solutions.

Firstly, the non-e�ective intron code (see Section 4) does not cause any computational

costs no matter how complex it might become during the evolutionary process. This

reduces non-e�ective code and absolute size respectively to be interesting for protecting

the e�ective program parts and for genetic diversity in general.

The second e�ect is demonstrated in this section by comparing e�ective code sizes (in

number of instructions) for di�erent team con�gurations and standard GP. In linear GP

only the e�ective program code (as de�ned in Section 4) has an in
uence on �tness. If no

parsimony pressure is used there is no selection pressure on the non-e�ective code parts

possible. As a result, the absolute program length grows unbounded usually until the

maximum size limit is reached.

For the three example cases Figures 8, 9, and 10 visualize the development in e�ective

code size of teams holding four members. The absolute code size approaches mostly

the maximum and is not given here. WV combination that is based on winner-takes-all

classi�cation produces the largest teams. WTA teams are found to be smallest in code

size. Actually they are not much bigger than a single standard individual. This might be

seen as another indication for the high specialization of the members in those teams.

In general|including all di�erent combination variants|teams become only about twice

as big as standard individuals. For the heart problem they are not even 50% bigger. That

means that, on average, a team member is de�nitely smaller than a standard individual.

All graphs show the e�ective length of best solutions. The average e�ective length in

the population has developed quite similar. As a result, the di�erences in e�ective size

correspond directly to the di�erences in computation time when using intron elimination

in linear GP (see Section 4.1).

One reason for the reduced growth of the (e�ective) team members could be seen in

the lower variation probability compared to standard GP individuals. We will see in the

following Section 6.3 that it is not recommended to vary too many members concurrently

during a team crossover operation. Best team prediction is obtained by varying about one

member only. But if only one team member is changed the probability for crossover at a

certain team position is reduced by a factor equal to the number of members. One might

conclude that member programs grow faster the more members are varied. That this is
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Figure 8: Heart: E�ective code size of best teams with 4 members and standard GP.

Teams are not even 50% bigger than standard individuals on average.

not true is demonstrated in the experiments documented in Table 8 and 9 further below.

Members with the best prediction accuracy and the biggest e�ective length emerge with

the lowest variation rate.

As a result there must be another explanation than variation speed for the relatively

small e�ective size of teams. We have already seen in the last section that teams perform

better than standard individuals after a suÆcient number of generations even though

single members are changed less frequently. In order to make team solutions more eÆcient

there must be cooperations occuring between the members that specialize to solve certain

subtasks. These subtasks can be expected to be less diÆcult than the main problem

wherefore the respective subsolutions are most probably less complex in e�ective size than

a full one-program solution.

6.3 Parameter analysis

In this section we analyze the in
uence of the two most relevant parameters when dealing

with the evolution of program teams. Those are the total number of team members (team

size) and the number of members that are selected from a team during a genetic operation.

Both prediction errors and code sizes are compared for various settings of these parameters.

It would go under the scope of this paper to give a detailed analysis for each team variant

and each problem. Instead, we restrict our experiments to the standard team approach

(AV). Combination by simple average has the advantage that each member solution has

exactly the same in
uence on the team decision. That makes teams with a single dom-
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Figure 9: Two chains: E�ective code size of best teams with 4 members and standard GP.

Teams are about twice as big as standard individuals on average.

inating member less likely. Each of the two experiments is documented for one problem

only. But similar results had been found with all three test problems.

Number of team members

Each team member is varied by crossover or mutation with a probabilty of 50% in order

to guarantee a comparison as fair as possible. Modifying only one member at a time, for

instance, would be unfair since then the variation speed of members reduces directly with

their number. But, on the other hand, the more members are varied at the same time the

more diÆcult it becomes to make small improvments to the combined team output.

Table 6 compares the classi�cation errors (CE) for the two chains problem and di�erent

numbers of team members ranging from one (standard GP) to eight. Using teams with

more individuals might be rather computationally unacceptable even though only e�ective

instructions are executed in our GP system. Both prediction performance and generaliza-

tion performance increase with the number of members. But from a team size of about

four members signi�cant improvements do not occur here any more.

The correlation between the number of members and the average code size of a member

(in number of instructions) is shown in Table 7. The maximum code size of each member

is restricted to 128 instructions. The absolute size and the e�ective size per member

decrease until a certain number of team individuals only. Beyond that, both sizes stay

almost the same. This corresponds directly to the development in prediction quality from

Table 6. Note that the amount of genetic material of the whole team still increases with

21



0

20

40

60

80

100

120

140

0 200 400 600 800 1000

E
ffe

ct
iv

e 
S

iz
e

Generations

AV
ERR

EVOL
GP

WTA2

Figure 10: Three function: E�ective code size of best teams with 4 members and standard

GP.

#Members Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

1 3.72 3.7 5.15 5.73

2 1.47 14.6 2.50 3.47

3 0.89 23.1 1.59 2.64

4 0.37 27.4 0.57 1.72

5 0.36 31.9 0.47 1.88

6 0.38 32.6 0.58 1.76

7 0.33 32.5 0.48 1.78

8 0.39 34.1 0.59 1.83

Table 6: Two chains: Classi�cation error (CE) for di�erent number of team members.

Half of the team members are varied.

the number of members.

The reason for the reduction in e�ective member size can be seen in a distribution of the

problem task among the team individuals whereby the subtask each member has to ful�ll

gets smaller and easier. A second indication for that might be the average member error

that has been calculated for the full training set here. As shown in Table 6 the error

increases respectively. Obviously, beyond a certain number of individuals the task can not

be split more eÆciently so that some members must ful�ll more-or-less the same. As a

result, members keep to a certain e�ective size and prediction quality.

The intron rate is not a�ected signi�cantly even though genetic operators change more

members (always 50%) simultaneously in bigger teams. Only with very few members
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#Members Member Size E�. Member Size Introns (%)

1 128 47 63.1

2 127 38 70.1

3 100 27 73.0

4 95 22 76.8

5 83 19 77.1

6 88 22 75.0

7 81 19 76.5

8 80 20 75.0

Table 7: Two chains: Correlation between number of members and average member size

(in number of instructions) in teams. Half of the team members are varied.

the rate is lower. But this is due to the maximum size limit that restricts mainly the

growth of the intron code. The, otherwise, rather constant rate of non-e�ective code (and

e�ective code respectively) can be explained by the in
uence of each member on the team

output that decreases with the total number of members|especially if uniform member

weights are used. As a result, the intervention of crossover should be almost the same for

all con�gurations (in contrast to Table 8) and higher protection by more introns is not

needed. Moreover, this is also an explanation why team errors in Table 6 do not get worse

again from a certain number of individuals.

Number of varied members

As stated above best results occur when only a moderate number of team members, i.e.

one or two, is varied simultaneously by crossover or mutation. This is demonstrated in

Table 8 where the number of varied members ranges from one to a maximum of four

while the team size stays �xed. This implies that the e�ect of crossover becomes the more

destructive the more members participate in it. Prediction and generalization performance

are found best if only one individual is varied at a time.

#Varied Members Training MSE Member MSE Validation MSE Test MSE

1 4.1 902.5 3.4 3.7

2 5.4 730.0 4.8 4.9

3 6.5 538.1 5.5 6.3

4 8.3 420.5 7.1 7.6

Table 8: Three functions: Mean square error (MSE � 100) with di�erent numbers of

varied members in teams with 4 mebers.

Table 9 demonstrates the relation between the number of varied team members and the

code size of teams. Interestingly, the e�ective code size reduces with the variation strength.

Although the variation probability per member is lowest if only one member is varied

during a team operation the e�ective code is biggest. This re
ects the results from Table

8 if we conclude that bigger program code reaches a higher prediction accuracy for this

problem.

Obviously, the less variation the team members experience the higher becomes their e�ec-

tive length. Some reasons can be found to explain this phenomena:
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#Varied Members Code Size E�. Code Size Introns (%)

1 440 148 66.4

2 424 125 70.5

3 388 113 70.9

4 320 99 69.1

Table 9: Three functions: Correlation between number of varied members and code size

of teams. Number of team members is 4.

The main reason might be the fact that smaller steps in variation allow more directed

improvements of the team programs and the combined (team) error than bigger steps.

This is also re
ected by the average error of the members that is highest with the lowest

level of variation (see Table 8). Higher individual errors might correspond to a higher

degree in specialization again as already observed in Section 6.1.

On the other hand, it is easier for smaller (e�ective) code to survive if the interferences

of the variation operators increase. Decreasing e�ective size is the dominating protection

mechanism here. The intron rate is not e�ected signi�cantly and only slighly higher if

more than one member is recombined.

7 Future research

First of all, it is interesting to �x problem classes for which the team approach is suitable in

general or for which it cannot produce better results than the standard approach. Linear

separability might be a key criterion in this context.

The exchange of information between the individuals of a team might help to evolve a

better coordinated behaviour. One possiblity in linear GP is, for instance, to share some

calculation variables between team members that together implement a collective memory.

Values can be assigned to these variables by one individual and used by others that are

executed afterwards. Note that with using a shared memory the evaluation order of the

team members has to be observed. Another possible form of information sharing is the

coevolution of submodules (ADFs) with each team that can be used by all its members in

common (shared submodules).

Moreover, an implicit form of shared registers could be realized with linear GP if single

program solutions themselves make multiple predictions in more than one output. These

outputs can be combined by using the same methods as proposed for team solutions. If

enough registers are provided complementary subsolutions may be computed in more-or-

less independent sets of registers within the same program. As a result, the e�ective code

can be expected longer than in solutions with a single output.

Teams o�er the possibility for an alternative parallelization approach in genetic program-

ming that is di�erent from distributing subpopulations of individuals to multiple pro-

cessors. The member programs of a team can be executed in parallel by assigning each

member an own processing unit. If all members of the same position index (\member

deme") belong to the same unit and interpositional recombination is not applied migra-

tion of programs between processing nodes is not necessary. The only communication

overhead between the units would be the exchange of team identi�er and team outputs.
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Further research might be done to investigate the numerous alternatives in more detail

that have been given in the text.

8 Conclusion

The team approach has been applied successfully to di�erent prediction problems and

found to improve both the training �tness and the generalization performance signi�cantly.

For di�erent problem tasks di�erent methods for combining the multiple decisions of the

team members turned out to be the most successfull ones. The additional computational

overhead of team evolution was found to be small if non-e�ective instructions are removed

from the linear genetic programs before execution. Especially this property makes linear

GP interesting for the evolution of program vectors. With linear GP the evolution of

teams becomes eÆcient in solution quality as well as in runtime.

A downside of team solutions might be that they are probably more diÆcult to analyze

than single genetic programs, thus compensating this weakness. However, a combination

of subsolutions could be more simple than a one-program solution. We are convinced that

team approaches suitable to harness the power of GP.
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