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Abstract. Most studies concerned with the e�ects of noise on evolution-

ary computation have assumed a Gaussian noise model. However, prac-

tical optimization strategies frequently face situations where the noise

is not Gaussian, and sometimes it does not even have a �nite variance.

In particular, outliers may be present. In this paper, Cauchy distributed

noise is used for modeling such situations. A performance law that de-

scribes how the progress of an evolution strategy using intermediate re-

combination scales in the presence of such noise is derived. Implications

of that law are studied numerically, and comparisons with the case of

Gaussian noise are drawn.

1 Introduction

In studies of optimization strategies, it is frequently assumed that the objec-

tive function value of a candidate solution can be determined exactly. However,

given the noisy nature of many real-world optimization problems, that assump-

tion often is an idealization. Noise can stem from sources as di�erent as |

and not restricted to | measurement limitations, the use of randomized algo-

rithms, incomplete sampling of large spaces, and human computer interaction.

Understanding how noise impacts the performance of optimization strategies is

important for choosing appropriate strategy variants, for the sizing of strategy

parameters, and for the design of new, more noise resistant algorithms.

A number of studies have dealt with the e�ects of noise on the performance of

genetic algorithms. Fitzpatrick and Grefenstette [11] have explored the tradeo�

between averaging over multiple �tness evaluations versus increasing the popu-

lation size. Rattray and Shapiro [13] have studied �nite population e�ects in the

presence of additive Gaussian noise. Miller and Goldberg [12] have investigated

the e�ect of Gaussian noise on di�erent selection mechanisms. A more extensive

overview of related work can be found in [8].

In the realm of evolution strategies, we have studied the e�ects of noise

on the local performance of the algorithms by considering a noisy version of

the sphere model. A comprehensive summary of the work can be found in [2].

In [5], the performance of the (1 + 1)-ES has been studied. It was found that

the overvaluation of the �tness of candidate solutions that results from the use



of plus-selection severely a�ects both the local performance of the strategy and

the functioning of success probability based step length adaptation mechanisms.

In [4], a performance law has been derived for the (�=�; �)-ES with intermediate

recombination. In [3], that performance law has been used to address the issue of

resampling in order to reduce the amount of noise present. It was found that in

contrast to results obtained for the (1; �)-ES, for the (�=�; �)-ES, increasing the

population size is preferable to averaging over multiple samples if the truncation

ratio �=� is chosen appropriately. This is an encouraging result as it shows that

the evolution strategy is able to handle the noise more e�ectively than by blind

averaging. The in
uence of �nite search space dimensionalities has been explored

in [6]. Finally, in [7], the performance of evolution strategies in the presence of

noise has been compared with that of other direct search algorithms.

All of the aforementioned studies as well as many other investigations of the

e�ects of noise on the performance of optimization strategies have in common

that either Gaussian noise or at least noise of a �nite variance is assumed. How-

ever, it is doubtful whether Gaussian noise satisfactorily models all variants of

noise that occur in practical applications. There is a possibility that the results

that have been obtained may qualitatively depend on that assumption.

Beyer, Olhofer, and Sendho� [9] have considered particular situations involv-

ing non-Gaussian noise. Their approach is to apply transformations that make

the noise nearly Gaussian and to then use the results obtained for the case of

Gaussian noise. While proceeding as such extends signi�cantly the realm of sit-

uations that can be considered, there are situations where a transformation that

makes the noise nearly Gaussian is not possible. In particular, in practice, op-

timization strategies frequently face outliers. In order to model such situations,

noise distributions with tails much longer than those of a normal distribution

need to be considered. One such distribution is the Cauchy distribution that

has impacted the optimization literature in the past not as a noise model but

as a mutation strategy. Szu and Hartley [17] have suggested to use Cauchy dis-

tributed mutations in simulated annealing in order to better be able to escape

local optima by occasional long jumps. Rudolph [15] has studied the e�ects of

Cauchy distributed mutations in evolution strategy optimization.

In the present paper, we investigate the e�ects that outliers have on the

performance of the (�=�; �)-ES by considering Cauchy distributed noise. The

choice of strategy is motivated both by the fact that it is relatively amenable

to mathematical analysis and by its proven good performance. In Sect. 2, the

strategy as well as the �tness environment considered are introduced. As outliers

need to be modeled, a transformation to normality of the noise is not possible.

Also, as the Cauchy distribution does not have �nite moments, an approach using

expansions of probability distributions in terms of their moments is excluded. In

Sect. 3, the expected average of concomitants of selected Cauchy order statistics

is computed. As a result of the calculations, numerical comparisons of the e�ects

of Cauchy noise with those of Gaussian noise can be performed in Sect. 4. We

conclude with a brief discussion of the results and suggest directions for future

research.



2 Preliminaries

The (�=�; �)-ES in every time step generates � > � o�spring candidate solutions

from a population of � parents and subsequently replaces the parental population

by the � best of the o�spring. Using isotropic normal mutations, for real-valued

objective functions f : IRN ! IR, generation of an o�spring candidate solution

consists of adding a vector �z, where z consists of independent, standard nor-

mally distributed components, to the centroid of the parental population. The

standard deviation � of the components of vector �z is referred to as the mu-

tation strength, vector z as a mutation vector. The average of those mutation

vectors that correspond to o�spring candidate solutions that are selected to form

the population of the next time step is the progress vector hzi.
Since the early work of Rechenberg [14], the local performance of evolution

strategies has commonly been studied on a class of functions known as the sphere

model. The sphere model is the set of all functions f : IRN ! IR with

f(x) = g(kx̂� xk);

where g : IR ! IR is a strictly monotonic function of the distance R = kRk =
kx̂�xk of a candidate solution x from the optimizer x̂. It has frequently served

as a model for �tness landscapes at a stage where the population of candidate so-

lutions is in relatively close proximity to the optimizer and is most often studied

in the limit of very high search space dimensionality. In this paper, it is assumed

that there is noise present in the process of evaluating the objective function in

that evaluating a candidate solution x does not yield the candidate solution's

true �tness f(x), but a noisy �tness

f�(x) = f(x) + ��Z; (1)

where Z is a random variable. While in our previous work, we had always as-

sumed that the distribution of Z is standard normal, in the present paper, the

case that Z is drawn from a Cauchy distribution is investigated.

A commonly used measure for the performance of evolution strategies on the

sphere model is the progress rate

'
(t) = E

h
hRi(t) � hRi(t+1)

i
that is de�ned as the expectation of the decrease in the distance between the

population centroid and the optimizer in a single time step. The commonly used

approach to computing the progress rate relies on a decomposition of vectors

that is illustrated in Fig. 1. A vector z originating at search space location x can

be written as the sum of two vectors zA and zB , where zA is parallel toR = x̂�x
and zB is in the hyperplane perpendicular to that. In the present context, z can

be either a mutation vector or a progress vector. The vectors zA and zB are

referred to as the central and lateral components of vector z, respectively. The

signed length zA of the central component of vector z is de�ned to equal kzAk
if zA points towards the optimizer and to equal �kzAk if it points away from it.
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Fig. 1. Decomposition of a vector z into central component zA and lateral compo-

nent zB . Vector zA is parallel to x̂�x, vector zB is in the hyperplane perpendicular to

that. The starting and end points, x and y = x+ �z, of vector �z are at distances R

and r from the optimizer x̂, respectively.

In what follows, we make use of a number of simpli�cations that hold exactly

in the limit N !1, but that have been seen to provide good approximations for

moderately large values of N already. A more complete justi�cation of the argu-

ment that follows and that remains somewhat sketchy due to space limitations

can be found in [4].

The (�=�; �)-ES applies all mutations to a single point | the population

centroid. Selection of candidate solutions is on the basis of their (noisy) �tness.

The lateral components of all mutation vectors contribute equally to the �tness

of the o�spring candidate solutions they generate. They are thus selectively neu-

tral. The contribution of the central components of the mutation vectors to the

�tness of the o�spring candidate solutions is asymptotically normal. Introducing

normalizations

�
� = �

N

hRi ; �
�

� = ��
N

hRig0(hRi) ; and '
� = '

N

hRi ;

and de�ning the noise-to-signal ratio # = �
�

� =�
�, the performance law

'
� = �

�
M�=�;�(#)�

�
�2

2�
(2)

has been derived in [4]. The �rst term on the right hand side of the equation

is due to the central component of the progress vector, the second term is due

to its lateral component. The factor � in the denominator of the second term is

a result of the independence of the lateral components of the mutation vectors

and signi�es the presence of genetic repair. The term M�=�;�(#) is frequently

referred to as the progress coeÆcient and results from the (noisy) selection of

� of the � o�spring candidate solutions that have been generated. It is to be

de�ned more formally and computed for the case of Cauchy noise in the next

section.



3 Determining the Progress CoeÆcient

Let Y be a standard normally distributed random variable corresponding to the

standardized contributions of the central components of the mutation vectors to

the true �tness of the o�spring candidate solutions they generate. Letting Z be

the noise variate from Eq. (1), random variable X is de�ned as

X = Y + #Z (3)

and re
ects the standardized noisy �tness of an o�spring candidate solution.

We generate � bivariate observations (X1; Y1); : : : ; (X�; Y�) by � times indepen-

dently sampling Y and Z and using Eq. (3). We then order the observations

by their X variates. The order statistics of X are denoted as usual by Xi:�,

1 � i � �. That is, X1:� � X2:� � � � � � X�:�. The Y variate associated with

Xi:� is called the concomitant of the ith order statistic and is denoted by Yi;�.

The term M�=�;�(#) from Sect. 2 is the expectation of the average of the con-

comitants of the � largest order statistics

M�=�;�(#) = E

"
1

�

�X
i=1

Y��i+1;�

#
: (4)

For the case of Gaussian noise,M�=�;�(#) has been computed in [4]. The deriva-

tion that follows assumes a general noise distribution and closely parallels the

aforementioned one. The specialization to the case of Cauchy noise will be pre-

sented in Sect. 4. The reader not interested in the particulars of the calculations

may safely skip the following paragraphs and jump to Eq. (6) for the result.

Let P (y) = �(y) denote the cumulative distribution function (cdf) of the

standardized normal distribution, and let p(y) = d�=dy = exp(�y2=2)=
p
2�

denote the corresponding probability density function (pdf). Furthermore, let

P�(z) and p�(z) denote the cdf and the pdf, respectively, of the #Z variate. The

distribution of the X variate is the convolution of those of the other two variates

and thus has pdf

q(x) =

Z
1

�1

p(y)p�(x� y)dy: (5)

The corresponding cdf Q(x) can be obtained by integration.

According to David and Nagaraja [10], the pdf of the concomitant of the ith

order statistic is

pi;�(y) =
�!

(�� i)!(i� 1)!
p(y)

Z
1

�1

p�(x� y)[1�Q(x)]��i[Q(x)]i�1dx:

Using this pdf in Eq. (4) and swapping the order of the integration and summa-

tion, the expectation of the average of the � selected concomitants is

M�=�;�(#) =
1

�

�X
i=1

Z
1

�1

yp��i+1;�(y)dy

=
�!

�

Z
1

�1

yp(y)

Z
1

�1

p�(x� y)

�X
i=1

[Q(x)]��i[1�Q(x)]i�1

(�� i)!(i� 1)!
dxdy:



Using the identity (compare Abramowitz and Stegun [1], Eqs. 6.6.4 and 26.5.1)

�X
i=1

Q
��i[1�Q]i�1

(�� i)!(i� 1)!
=

1

(�� �� 1)!(�� 1)!

Z Q

0

z
����1[1� z]��1dz;

it follows

M�=�;�(#) = (�� �)

�
�

�

�Z
1

�1

yp(y)

Z
1

�1

p�(x� y)

Z Q(x)

0

z
����1[1� z]��1dzdxdy:

Substituting z = Q(w) yields

M�=�;�(#) = (�� �)

�
�

�

�Z
1

�1

yp(y)

Z
1

�1

p�(x� y)Z x

�1

q(w)[Q(w)]����1 [1�Q(w)]��1dwdxdy:

Changing the order of the integrations results in

M�=�;�(#) = (�� �)

�
�

�

�Z
1

�1

q(w)[Q(w)]����1 [1�Q(w)]��1I(w)dw;

where, using the fact that the mean of the standardized normal distribution is

zero,

I(w) =

Z
1

�1

yp(y)

Z
1

w

p�(x� y)dxdy

=

Z
1

�1

yp(y)[1� P�(w � y)]dy

=

Z
1

�1

[�yp(y)]P�(w � y)dy:

As dp=dy = �yp(y), partial integration yields

I(w) = p(y)P�(w � y)

����
1

�1

+

Z
1

�1

p(y)p�(w � y)dy:

The �rst of the two terms on the right hand side equals zero. Comparison of the

second term with Eq. (5) shows that I(w) = q(w) and therefore that

M�=�;�(#) = (�� �)

�
�

�

�Z
1

�1

[q(w)]2[Q(w)]����1[1�Q(w)]��1dw: (6)

The remaining integral generally cannot be solved in closed form but needs to

be evaluated numerically.
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4 Gaussian Noise Versus Cauchy Noise

In case the distribution of the noise is Gaussian, the distribution of theX variates

is the convolution of two normal variates and is thus itself normal. More specif-

ically, the cdf of the X variate is Q(w) = �(w=
p
1 + #2). Using the substitution

x = w=
p
1 + #2 in Eq. (6), it follows

M
(Gauss)
�=�;�

(#) =
c�=�;�p
1 + #2

(7)

for the progress coeÆcient, where

c�=�;� =
�� �

2�

�
�

�

�Z
1

�1

e�x
2

[�(x)]����1[1��(x)]��1dx

is independent of the noise level # and depends on the population size parameters

� and � only. The result agrees with that from [4]. In that reference, it has

been seen that the strong performance of the (�=�; �)-ES in the presence of

Gaussian noise is due to the presence of genetic repair. The factor � in the

denominator of the fraction in Eq. (2) not only reduces the term that makes

a negative contribution to the progress rate, but it also has the e�ect that the

search space can be explored at higher mutation strengths. Those increased

mutation strengths decrease the noise-to-signal ratio # = �
�

� =�
� that the strategy

operates under and make the (�=�; �)-ES vastly more eÆcient than other types

of evolution strategy on the noisy sphere.

In the case of Cauchy noise, separating the in
uence of # from that of �

and � is not possible. The cdf and the pdf of the noise term are P�(z) = 1=2 +

arctan(z=#)=� and p�(z) = #=(�(#2 + z
2)), respectively. In order to numerically

evaluate the integral in Eq. (6), both the pdf and the cdf of the X variate need

to be determined. For that purpose, either Eq. (5) can be used or an approach

based on characteristic functions can be employed. The characteristic function

of the Y variates is �(t) = exp(�t2=2), that of the noise term in Eq. (3) is

exp(�#jtj). The characteristic function of the convolution is the product of the

two. According to Stuart and Ord [16], the pdf of the X variates can be obtained

from that characteristic function and be written as

q(x) =
1

�
e#

2=2

Z
1

0

cos(tx) exp

�
�1

2
(t+ #)2

�
dt:
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The corresponding cdf can be obtained by integration and be written as

Q(x) =
1

2
+

1

�
e#

2=2

Z
1

0

sin(tx)

t
exp

�
�1

2
(t+ #)2

�
dt:

Using those relationships in the numerical evaluation of Eq. (6) yields results that

make it possible to compare the performance of the (�=�; �)-ES in the presence

of Cauchy noise with that in the presence of Gaussian noise. It is important to

keep in mind, however, that a naive quantitative comparison is problematic due

to the basic incomparability of the parameter # for the two types of distribution.

While in the case of Gaussian noise # is the standard deviation, in the case of

Cauchy noise # is simply a scale parameter the choice of which is somewhat

arbitrary. Nonetheless, keeping that caveat in mind and proceeding with care,

meaningful comparisons can be made.

One of the main results of the analysis in [4] is that in the presence of

Gaussian noise, the (�=�; �)-ES is capable of nonzero progress up to a normalized

noise strength �
�

� that is proportional to the number of o�spring � generated

per time step. As a consequence, by suÆciently increasing the population size,

positive progress on the noisy sphere can be achieved for any noise strength.

Increased population sizes make it possible to use larger mutation strengths

that in turn reduce the noise-to-signal ratio #. Figure 2 has been obtained by

numerically evaluating Eq. (6) and suggests that that bene�t of genetic repair

is enjoyed also in the presence of Cauchy noise. As for Gaussian noise, the noise

strength up to which progress is possible appears to be linear in �.

A second important insight gained in [3] is that the (�=�; �)-ES can partially

compensate for a lack of reliable information by using the noisy information

provided by a larger number of parents than it would optimally use in the ab-

sence of noise. While in the absence of noise, the (�=�; �)-ES ideally operates
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with a truncation ratio � = �=� in the vicinity of 0:27, that value gradually in-

creases to 0:5 at the point where nonzero progress ceases to be possible. Figure 3

demonstrates that the same is true in the presence of Cauchy noise.

Finally, it has been seen in [3] that in the presence of Gaussian noise, larger

population sizes are preferable to averaging over multiple evaluations of candi-

date solutions. The averaging in search space that is implicit in the recombina-

tion procedure of the (�=�; �)-ES is more powerful than the explicit averaging

of � > 1 objective function values in �tness space. In the presence of Gaussian

noise, averaging � samples reduces the variance of the noise by a factor of �.

For Cauchy noise, the average of � independent samples has the same distribu-

tion as the individual samples, rendering resampling entirely useless. Figure 4

con�rms that by showing that while all of the strategies in that �gure use the

same number of objective function evaluations per time step, those that do not

resample but rather rely on larger population sizes have the highest eÆciencies.

To conclude, the di�erences between the e�ects that Gaussian noise and

Cauchy noise have on the performance of the (�=�; �)-ES are merely quanti-

tative. Outliers that are frequent in the case of Cauchy noise do not lead to

qualitatively new e�ects. The important conclusions with respect to the choice

of population size parameters and to the use of resampling that were drawn

for the case of Gaussian noise in previous studies remain valid in the case of

Cauchy noise. It is important, however, to note that that result cannot be ex-

pected to hold for strategies in which candidate solutions can survive for several

time steps and are not reevaluated periodically. The investigation of the behav-

ior of such strategies as well as the analysis of the in
uence of �nite search space

dimensionalities along the lines of [6] remain as challenges for future research.
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