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Abstract. In this paper we show how no free lunch (NFL) results can
be obtained by means of information theory. We derive two features to
identify subsets of functions for which a NFL result holds. These subsets
can be rather small compared to the set of all functions f : P ! W ,
for �nite sets P and W . Comparable results are already known, but
this paper o�ers a didactic alternative to impart knowledge about NFL
results.

1 Introduction

It has long been claimed that evolutionary algorithms have a good performance
over all problems. Although the performance of problem-speci�c algorithms may
be better on a small subset of problems, evolutionary algorithms are supposed
to outperform special algorithms on much larger sets of problems [8]. Because
the design of problem-speci�c algorithms requires extensive time and domain
knowledge, it seems that evolutionary algorithms o�er a very good cost-bene�t
ratio. In contrast to these assumptions, it is common practice to design evolu-
tionary algorithms with problem-speci�c representations and operators [2,9, 5].
It has been di�cult to resolve this contradiction.

A �rst step was made by Wolpert and Macready [10]. They formalized the dis-
cussion on the performance of evolutionary algorithms. They used the following
(no free lunch) scenario to compare the performance of optimization algorithms.
The objective function is drawn randomly from the set F = ff : P !Wg. The
sets P, and W are �nite and W is completely ordered. The aim of the optimiza-
tion algorithm is to �nd some x 2 P such that f(x) = yopt 2 W is maximal
(or minimal). For every algorithm A the performance measure perf(A; f) is the
number of di�erent search points x 2 P that must be evaluated by A to �nd
an optimal point xopt 2 P with f(xopt) = yopt. By using a dictionary, algo-
rithms can avoid evaluating a search point twice. For randomized algorithms
perf(A; f) is the expected number of di�erent search points. The average per-
formance perfF (A; f) of an algorithm A over the set F of all functions is the
average over all perf(A; f), f 2 F . Wolpert and Macready proved the following
no free lunch theorem [10]:

Theorem 1. In the NFL scenario for algorithms A and A0 the equation

perfF (A; f) = perfF (A
0; f)



holds.

The original proof is quite long and technical. By using permutations and com-
plete induction, a much shorter proof is possible [4]. Furthermore, the NFL theo-
rem can be generalized to speci�c subsets of F . A subset F 0 � F = ff : P !Wg
is called closed under permutations, if for f 2 F 0, f� 2 F 0 is also valid for ev-
ery permutation � on P with f�(x) := f(�(x)). For every subset F 0 � F that is
closed under permutations, a NFL result holds, thus perfF 0 (A; f) = perfF 0 (A0; f)
[4].

It is often claimed that evolutionary algorithms are able to gain information
about the �tness function during a run. The evolutionary algorithm can use this
information to create successful o�spring with a higher probability, for example,
by (self-) adapting a strategy parameter like the mutation rate (step-size). In
this regard it is interesting to model an optimization algorithm as an information
processing process.

It is possible to obtain NFL results by means of information theory. A �rst
attempt was made by English [6, 7]. However, the suggested approach has a
disadvantage. He used joint probability distributions that were not de�ned on
the same probability space. We present an alternative approach.

2 Entropy and Mutual Information

It is impossible to express the broad concept of information in a single de�ni-
tion. Therefore it is necessary to restrict the discussion to a particular aspect
of information. We use the concept of entropy to measure the uncertainty of a
random variable. Entropy has many properties one would expect from a measure
of information. For a comprehensive introduction to information theory, we refer
to the book of Cover and Thomas [1].

Let (
;Prob) be a discrete probability space and 
0 an arbitrary set. The
function X : 
 ! 
0

X is called a (discrete) random variable. The distribution
of X gives the probability for the occurrence of single values of X. Let 
0

X :=
fX(!) : ! 2 
g be the codomain of X. Then ProbX (x) = Prob(f! 2 
 :
X(!) = xg) with x 2 
0

X is the probability function of X. In the following we
use the notations Prob(X = x) := ProbX(x), and p(x) := Prob(X = x).

De�nition 1. The entropy H(X) of the discrete random variable X is

H(X) := �
X
x2
0

p(x) logp(x):

Therefore, the entropy is the average number of bits required to describe the
random variable. It is a measure of the average uncertainty in X.

To discuss probability models that involve several random variables, one can
use a joint probability mass function. For the probability space (
;Prob) we
have n random variables with the corresponding codomains 
0

1; : : : ; 

0
n. An n-

dimensional random vector X with the codomain 
0 = 
0
1 � � � ��
0

n is de�ned
by X(!) = ( X1(!); : : : ; Xn(!)). The joint distribution of the random variables



X1; : : : ; Xn is given by Prob(X1 = x1; : : : ; Xn = xn) for all (x1; : : : ; xn) 2 
0. In
the following we use the abbreviation p(x1; : : : ; xn) = Prob(X1 = x1; : : : ; Xn =
xx).

De�nition 2. The joint entropy of a pair of discrete random variables X : 
 !

0
1 and Y : 
 ! 
0

2 with a joint distribution p(x; y) is de�ned as

H(X;Y ) := �
X
x2
0

1

X
y2
0

2

p(x; y) log p(x; y):

De�nition 3. If both random variables X and Y are dependent, the conditional
entropy

H(Y jX) :=
X
x2
0

1

p(x)H(Y jX = x)

= �
X
x2
0

1

X
y2
0

2

p(x; y) logp(yjx);

is the entropy of Y given the knowledge that X has already been observed.

Here p(yjx) = p(x; y)=p(x) is the conditional probability that Y = y can be
observed given the knowledge that X = x is valid.

The amount of information that one random variable contains about another
random variable can be measured by the mutual information.

De�nition 4. Let X and Y be two random variables with a joint probability
function p(x; y). The mutual information I(X;Y ) is

I(X;Y ) =
X
x2
0

1

X
y2
0

2

p(x; y) log
p(x; y)

p(x)p(y)
:

The marginal distributions ofX and Y can be obtained by p(x) =
P

y2
0

2
p(x; y)

and p(y) =
P

x2
0

1
p(x; y). The relationship I(X;Y ) = H(X) � H(XjY ) holds

between entropy and mutual information.

3 Information Theory and Optimization

In the following we make use of information theory to prove NFL results. The
subset F 0 � F denotes the current optimization problem. All objective functions
f 2 F 0 are instances of the optimization problem. We assume that all functions
from F 0 have the same probability of being selected for optimization. The opti-
mization algorithm A does not know which function from F 0 is to be optimized.
The random variable X : F 0 ! F denotes the objective function selected for
optimization. Thus, we have

Prob(X = f) =

(
1

jF 0j if f 2 F 0;

0 if f 62 F 0:



The random variable Zx : F 0 ! W with Zx(f) = f(x) describes the event that
f(x) is computed for the search point x 2 P. The probability that the function
f 2 F 0 is subject to optimization is given by

Prob(X = f) = Prob(Zx1 = f(x1); : : : ; Zxn = f(xn))

with xi 2 P, xi 6= xj for i; j 2 f 1; : : : ;jPjg and i 6= j. The random variable

Yfx1;:::;xkg : F
0 ! Gk

describes the observed function values after visiting the points x1; : : : ; xk with
k 2 f 1; : : : ;jPjg, xi 2 P, i = 1 ; : : : ; k, and

Gk = f(y1; : : : ; yk) j yi 2W; i = 1 ; : : : ; kg =W � � � � �W| {z }
k

= W k:

With these de�nitions we can write Yfx1;:::;xkg(f) = ( f(x1); : : : ; f(xk)) for
every function f 2 F 0. The visited points are written as sets, because the or-
der in which the points are visited is irrelevant to the obtained information
(static objective function). To ensure that this presentation is unique, for two
sets fx1; : : : ; xkg and fx�1; : : : ; x

�
kg with fx1; : : : ; xkg=fx�1; : : : ; x

�
kg = ;, xi = x�i

must always hold for i = 1 ; : : : ; k. It would also be possible to represent the
visited points by a vector, but that would make the following presentation more
complicated.

We thus have

Prob(Yfx1;:::;xkg = ( y1; : : : ; yk)) = Prob(Zx1 = y1; : : : ; Zxk = yk):

How much information can algorithmA gain by visiting the points fx1; : : : ; xkg,
to avoid groping in the dark when creating the next (new) point xk+1 2 P? The
reduction in uncertainty with regard to the outcome f(xk+1) on the basis of the
search points already visited can be expressed by the mutual information

I(Zxk+1 ;Yfx1;:::;xkg) = H(Zxk+1 ) �H(Zxk+1 jYfx1;:::;xkg):

Let A� be an optimization algorithm that has visited the search points fx�1; : : :
; x�kg. Under which conditions is algorithm A� not able to gain more informa-
tion on the search point xk+1 than algorithm A? In the following we use the
abbreviations p(y) = Prob(Yfx1;:::;xkg = y), p(y�) = Prob(Yfx�1 ;:::;x�kg = y�), and
p(z; y) = Prob(Zxk+1 = z; Yfx1;:::;xkg = y). By using the transformation

I(Zxk+1 ;Yfx1;:::;xkg) = I(Zxk+1 ;Yfx�1 ;:::;x�kg)

, H(Zxk+1 jYfx1;:::;xkg) = H(Zxk+1 jYfx�1;:::;x�kg)

,
X
y2Gk

X
z2W

p(z; y) log
p(z; y)

p(y)
=

X
y�2Gk

X
z2W

p(z; y�) log
p(z; y�)

p(y�)
; (1)

we obtain an answer to the question. If for all k 2 f 1; : : : ;jPj � 1g, xk+1 2 P,
and all subsets fx1; : : : ; xkg � P, and fx�1; : : : ; x

�
kg � P the equation (1) is



valid, no algorithm A� has an advantage over algorithm A. Thus, we obtain an
NFL result. Whatever k search points an algorithm visits, it never receives more
information about the unvisited search points than any other algorithm. This
does not mean that an algorithm obtains no information. All algorithms obtain
the same amount of information.

It would be convenient to eliminate the sums in (1). If

Prob(Yfx1;:::;xkg = ( y1; : : : ; yk)) = Prob(Yfx�
1
;:::;x�

k
g = ( y1; : : : ; yk)); (2)

holds for all k 2 f 1; : : : ;jPj � 1g, fx1; : : : ; xkg � P, fx�1; : : : ; x
�
kg � P, and

(y1; : : : ; yk) 2 Gk, then (1) is also valid. This implication is true, because we can
write

Prob(Zxk+1 = z; Yfx1;:::;xkg = ( y1; : : : ; yk)) =

Prob(Zxk+1 = z; Zx1 = y1; : : : ; Zxk = yk); (3)

and with (2), for all y = y� the corresponding addends on both sides in (1)
have the same values. To clarify the connections, we split condition (2) in two
features.

De�nition 5. The problem class F 0 � F = ff : P ! Wg has an independent
value frequency, if 8x; x� 2 P, and 8y 2 W the equation

jff 2 F 0 j f(x) = ygj = jff 2 F 0 j f(x�) = ygj

holds.

De�nition 6. The problem class F 0 � F = ff : P ! Wg is called pattern-
creating, if for B � P with jBj = k > 0, and a vector (y1; : : : ; yk) 2 Gk with
Prob(YB = ( y1; : : : ; yk)) > 0, also Prob(YC = ( y1; : : : ; yk)) > 0 is valid for all
C � P with jCj = k.

Theorem 2. If a problem class F 0 � F = ff : P ! Wg has an independent
value frequency and is pattern-creating, this is equivalent to the ful�llment of
condition (2).

Proof. We �rst assume that condition (2) is valid for F 0. Then F 0 has an inde-
pendent value frequency and is pattern-creating. Suppose F 0 has no independent
value frequency. Then there exist x; x� 2 P, and y 2W with (w.l.o.g.)

jff 2 F 0 j f(x) = ygj < jff 2 F 0 j f(x�) = ygj

,
jff 2 F 0 j f(x) = ygj

jF 0j
<
jff 2 F 0 j f(x�) = ygj

jF 0j

) Prob(Yfxg = y) 6= Prob(Yfx�g = y):

This contradicts (2). Thus, F 0 possesses an independent value frequency. Here we
used the assumption that every function f 2 F 0 has the same probability of being
subject to optimization. Now let us suppose that F 0 is not pattern-creating. For



some B � P with jBj = k > 0 and a vector (y1; : : : ; yk) 2 Gk with Prob(YB =
(y1; : : : ; yk)) > 0, a subset C � P with jCj = k, and Prob(YC = ( y1; : : : ; yk)) = 0
exists. Then Prob(YB = ( y1; : : : ; yk)) 6= Prob(YC = ( y1; : : : ; yk)) is true. This is
a contradiction to the assumption. Thus, F 0 is also pattern-creating.

We now show that the condition (2) is true if F 0 is pattern-creating and has
an independent value frequency. The set

Mfx1;:::;xkg = f(y1; : : : ; yk) 2 Gk j (f(x1); : : : ; f(xk)) = ( y1; : : : ; yk); f 2 F 0g

contains all \patterns" (y1; : : : ; yk) that are created by functions from F 0 after
seeing the search points fx1; : : : ; xkg. Because F 0 is pattern-creating, for all
(y1; : : : ; yk) 2Mfx1;:::;xkg, ( y1; : : : ; yk) 2Mfx�

1
;:::;x�

k
g is also true, hence

jMfx1;:::;xkgj = jMfx�1;:::;x
�

k
gj (4)

holds. The function cfx1;:::;xkg : Gk ! IN with

cfx1;:::;xkg(y1; : : : ; yk) := jff 2 F 0 j (f(x1); : : : ; f(xk)) = (y1; : : : ; yk)gj

counts the number of pattern (y1; : : : ; yk) that are created by functions from F 0

after evaluating the search points fx1; : : : ; xkg. From itX
(y1;:::;yk)2Gk

cfx1;:::;xkg(y1; : : : ; yk) = jF 0j (5)

is valid. Obviously we have

Prob(Yfx1;:::;xkg = ( y1; : : : ; yk)) =
cfx1;:::;xkg(y1; : : : ; yk)

jF 0j
:

If the equation

cfx1;:::;xkg(y1; : : : ; yk) = cfx�1;:::;x�kg(y1; : : : ; yk)

holds for all k 2 f 1; : : : ;jPjg (2) is also ful�lled.
Next we show, that F 0 has no independent value frequency, if

cfx1;:::;xkg(y1; : : : ; yk) 6= cfx�1;:::;x�kg(y1; : : : ; yk)

is valid. Without loss of generality we suppose that

cfx1;:::;xkg(y1; : : : ; yk) < cfx�
1
;:::;x�

k
g(y1; : : : ; yk):

From equations (4) and (5), a vector (y01; : : : ; y
0
k) 2Mfx1;:::;xkg exists with

cfx1;:::;xkg(y
0
1; : : : ; y

0
k) > cfx�

1
;:::;x�

k
g(y

0
1; : : : ; y

0
k):

The vectors (y1; : : : ; yk) and ( y01; : : : ; y
0
k) di�er in at least one position i 2

f1; : : : ; kg, so that yi 6= y0i. To obtain an independent value frequency for xi,
x�i , and yi, a vector (y�1 ; : : : ; y

�
k) 2Mfx1;:::;xkg with

cfx1;:::;xkg(y
�
1 ; : : : ; y

�
k) > cfx�

1
;:::;x�

k
g(y

�
1 ; : : : ; y

�
k);



and y�i = yi must be chosen. If no such vector (y�1 ; : : : ; y
�
k) exists, the ith ele-

ment cannot be compensated. For yi 2 W the condition of independent value
frequency would be violated. Otherwise a position j 6= i exists such that y�j 6= y0j
holds. The jth element must be compensated in turn. For each of at most jF 0j
rounds, we can argue in the same way.

4 Examples

We now use the following example to discuss the previous results. Let F :=
ff : f1; 2; 3g ! f 0;1gg, and F 0; F 00 � F with F 0 = ff1; f2; f3g, and F 00 =
ff1; f2; f3; f4g. To de�ne the functions we use the matrix representation shown
in Figure 1. Every function fi is represented by a list of its function values. The
single lists are written one below the other. Position (i; j) of the matrix holds
the function value fi(j) with i 2 f 1;2; 3; 4g, and j 2 f 1;2; 3g.

1 2 3
f1 1 0 0
f2 0 1 0
f3 0 0 1
f4 0 0 0

Fig. 1. Matrix representation of the functions f1, f2, f3 and f4. At position (i; j) of
the matrix the function value fi(j) with i 2 f 1;2; 3; 4g, and j 2 f 1;2; 3g can be found.

The problem class F 0 is closed under permutation. Thus, a NFL result holds
for F 0. The class F 0 has an independent value frequency. Every column of the
matrix (Figure 1) contains a one and two zeroes. Furthermore F 0 is pattern-
creating. To see this, we look at every pattern (0), (1), (0; 0), (0; 1), (1; 0), (1; 1),
and all subsets of search points f1g, f2g, f3g, f1; 2g, f1; 3g, f2; 3g. From the
matrix we obtain the following probabilities for F 0:

Prob(Yf1g = (0)) = Prob(Yf2g = (0)) = Prob(Yf3g = (0)) = 2

3

Prob(Yf1g = (1)) = Prob(Yf2g = (1)) = Prob(Yf3g = (1)) = 1

3

Prob(Yf1;2g = (0 ;0)) = Prob(Yf1;3g = (0 ;0)) = Prob(Yf2;3g = (0 ;0)) = 1

3

Prob(Yf1;2g = (0 ;1)) = Prob(Yf1;3g = (0 ;1)) = Prob(Yf2;3g = (0 ;1)) = 1

3

Prob(Yf1;2g = (1 ;0)) = Prob(Yf1;3g = (1 ;0)) = Prob(Yf2;3g = (1 ;0)) = 1

3

Prob(Yf1;2g = (1 ;1)) = Prob(Yf1;3g = (1 ;1)) = Prob(Yf2;3g = (1 ;1)) = 0:

Hence, F 0 is pattern-creating (see de�nition 6). Because all relevant prob-
abilities are already given, we can directly see that condition (2) also holds.
As an example, Table 1 shows the marginal distribution p(z; y) = Prob(Zx3 =
z; Yfx1;x2g = y) with z 2 f 0;1g, y 2 f 0;1g2, and x1; x2; x3 2 f 1;2; 3g.



y

(0; 0) (0; 1) (1; 0) (1; 1)

0 0 1

3

1

3
0 2

3

z

1 1

3
0 0 0 1

3
1

3

1

3

1

3
0 1

Table 1. Marginal distribution p(z; y) = Prob(Zx3 = z; Yfx1 ;x2g = y) with z 2 f 0;1g,
y 2 f 0;1g2, and x1; x2; x3 2 f 1;2; 3g for the class F

0.

For the class F 00 a NFL result also holds. F 00 is pattern-creating and has an
independent value frequency. The constant function f4 adds the same value to
every column of the matrix in Figure 1. Thus, the independent value frequency
of F 0 is maintained. A constant function that creates the pattern (y1; : : : ; yk)
with y1 = � � � = yk for the search points fx1; : : : ; xkg, creates the same pattern
for every other set fx�1; : : : ; x

�
kg.

Corollary 1. If a problem class that has an independent value frequency and is
pattern-creating is extended by a constant function, the new problem class also
possesses these features.

5 Conclusion

We presented an alternative approach to obtain NFL results by means of infor-
mation theory. Subsets F 0 � F for which a NFL result holds can be characterized
by the features of independent value frequency and pattern creation. One must
be aware, however, that the practical implications of NFL results are limited.
The NFL scenario does not model real life optimization [3]. In practice, the
computation of f(x) has to be fast (e�cient) and the corresponding program for
�tness evaluation is rather short (has a small Kolmogoro� complexity). Thus, a
realistic optimization scenario leads to classes of functions with in some sense
restricted complexities. For more realistic optimization scenarios it is possible
that optimization techniques di�er in their e�ciency [3].
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