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Abstract. In recent years, probabilistic analyses of algorithms have re-
ceived increasing attention. Despite results on the average-case complex-
ity and smoothed complexity of exact deterministic algorithms, little
is known on the average-case behavior of randomized search heuris-
tics (RSHs). In this paper, two simple RSHs are studied on a simple
scheduling problem. While it turns out that in the worst case, both RSHs
need exponential time to create solutions being significantly better than
4/3-approximate, an average-case analysis for two input distributions
reveals that one RSH is convergent to optimality in polynomial time.
Moreover, it is shown that for both RSHs, parallel runs yield a PRAS.

Topics: randomized algorithms, approximation, probabilistic analysis

1 Introduction

It is widely acknowledged that worst-case analyses may provide too pessimistic
estimations for the runtime of practically relevant algorithms and heuristics.
Therefore, in recent years, there has been a growing interest in the probabilistic
analysis of algorithms. Famous examples include results on the average-case
time complexity of a classical algorithm for the knapsack problem [1] and of
the simplex algorithm [2]. Both papers show a polynomial runtime in the even
stronger model of so-called smoothed complexity.

Approximation is another way out of this worst-case way of thinking. It is
well known that many NP-hard problems allow polynomial-time approximation
algorithms or even approximation schemes [3]. However, if even no approxima-
tion algorithms are available, one often resorts to heuristic approaches, which
are said to provide good solutions within a tolerable span of time. Such ap-
proaches may be the only choice if there are not enough resources (time, money,
experts, . . . ) available to design problem-specific (approximation) algorithms.

Many general-purpose heuristics such as the Metropolis algorithm or Sim-
ulated Annealing [4] rely on the powerful concept of randomization. Another
popular class of randomized search heuristics (RSHs) is formed by the so-called
Evolutionary Algorithms (EAs), see [5]. Despite having been applied successfully
� The author was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part
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for more than 30 years, a theoretical foundation of the computational time com-
plexity of EAs has started only recently, see, e. g., [6–10] for examples considering
simple and more complex EAs.

However, almost all results on the time complexity of RSHs are concerned
with exact optimization. Moreover, these results mostly refer to worst-case in-
stances from the class of problems considered. In contrast, the real aims of heuris-
tics are approximation and efficient average-case behavior. Therefore, we should
consider these aspects when studying general-purpose heuristics such as EAs.
Positive and negative results will help to understand under what circumstances
such heuristics can be efficient (approximation) algorithms and to provide guide-
lines for the practitioner when and how to apply them. Our approach starts by
investigating RSHs on well-studied combinatorial problems. Such analyses have
already been carried out in the context of exact optimization, e. g., [9, 10]. Of
course, our goal is not to compare RSHs with clever problem-specific algorithms.

In this paper, we consider two simple RSHs for a well-known optimiza-
tion problem, namely the optimization variant of the NP-complete PARTITION
problem: Given n positive integers w1, . . . , wn, find some subset I ⊆ {1, . . . , n}
such that m(I) := max

{∑
i∈I wi,

∑
i/∈I wi

}
becomes minimal. This is one of

the easiest-to-state and easiest-to-solve NP-hard problems since it even allows
an FPAS [3]; from a practical point of view, it may be regarded as a simple
scheduling problem. In fact, there already are are some average-case analyses of
classical greedy heuristics designed for this problem [11, 12]. We will relate these
results to those for the general-purpose RSHs considered by us.

Since the RSHs to be defined have been designed for pseudo-Boolean opti-
mization, we encode a solution to a PARTITION instance by the characteristic
vector of I and arrive at the pseudo-Boolean function f : {0, 1}n → R, whose
value f(x) equals m(I) if x encodes the set I. The following two simple RSHs
are sometimes called hillclimbers. They store only one current search point and
do not accept worsenings, which are, in this case, search points with some larger
f -value. Both can be described by an initialization step and an infinite loop.
(1+1) EA
Initialization: Choose a ∈ {0, 1}n randomly.
Loop: The loop consists of a mutation and a selection step.
Mutation: For each position i, decide independently whether ai should be

flipped (replaced by 1 − ai), the flipping probability equals 1/n.
Selection: Replace a by a′ iff f(a′) ≤ f(a).

The (1+1) EA has a positive probability to create any search point from any
search point and eventually optimizes each pseudo-Boolean function. This does
not hold for Randomized Local Search (RLS), which flips only one bit per step.

RLS
This works like the (1+1) EA with a different mutation operator.
Mutation: Choose i ∈ {1, . . . , n} randomly and flip ai.

We ignore the stopping criterion needed by practical implementations of these
RSHs and are interested in the f -value of the current search point by some time t,



i. e., after t iterations of the infinite loop. Mainly, we try to estimate in how far
this f -value approximates the optimum if t is bounded by some polynomial.

The paper is structured as follows. In Sect. 2, we provide some basic defi-
nitions and proof techniques needed to estimate the progress of the RSHs. In
Sect. 3, we prove worst-case results on the approximation ratios obtainable by the
RSHs within polynomial time. Moreover, we show that these results can be ex-
tended to parallel runs of the RSHs so as to design a randomized approximation
scheme. In Sect. 3, we extend our techniques toward a probabilistic average-case
analysis for two well-known input distributions. We finish with some conclusions.

2 Definitions and Proof Methods

Throughout the paper, we adopt the following conventions. Given an instance
w1, . . . , wn for the optimization problem PARTITION, we assume w. l. o. g. that
w1 ≥ · · · ≥ wn. Moreover, we set w := w1 + · · · + wn. We call the indices
1, . . . , n objects and call wi the volume of the i-th object. Sometimes, the objects
themselves are also called w1, . . . , wn. The optimization problem can be thought
of as putting the objects in one of two bins, and a search point x ∈ {0, 1}n is the
characteristic vector of the set of objects put into the first bin. Then the goal
function f corresponds to the total volume in the fuller bin w. r. t. x.

We will essentially exploit two proof methods in order to show bounds on the
approximative quality of a solution output by the considered RSH. Both tech-
niques only study progresses by local steps, namely steps to Hamming neighbors,
and therefore, apply only until points of time where the heuristic RLS is able
to get stuck in a local optimum. We are interested in sufficient conditions such
that the considered RSH is able to improve the f -value by local steps. A first
idea is to bound the volume of the largest object in the fuller bin from above.
We do something similar but neglect the objects making the bin the fuller bin.

Definition 1 (Critical volume). Let W = (w1, . . . , wn) be an instance for
the partition problem and let � ≥ w/2 be a lower bound on the optimum f -value
w. r. t. W . Moreover, let x ∈ {0, 1}n be a characteristic vector s. t. f(x) > �. Let
wi1 ≥ wi2 ≥ · · · ≥ wik

be the objects in the fuller bin w. r. t. x, ranked in non-
increasing order. Let r := ij for the smallest j such that wi1 + · · ·+wij > �. The
volume wr is called the critical volume (w. r. t. W , � and x).

The idea behind the critical volume is as follows. Suppose that x is the current
search point of the RSH, leading to f(x) > � and we know an upper bound w∗

on the critical volume w. r. t. the instance, � and x. Let r be the minimum i s. t.
wi ≤ w∗. Due to w1 ≥ · · · ≥ wn, we know that wr is also an upper bound on
the critical volume. By the definition of critical volume there is some object wr′ ,
where r′ ≥ r, in the fuller bin. If we additionally know that f(x) ≥ �+w∗ holds,
together with � ≥ w/2 this implies that wr′ can be moved from the fuller bin
into the emptier one, decreasing the f -value. Thus, a local step improves x.

The described sufficient condition for locally improvable search points can
even be strengthened. Suppose that we have the same setting as before with the



exception that now � + w∗/2 < f(x) < � + w∗ holds. If wr′ ≤ f(x) − w/2, wr′

can still be moved to the emptier bin. Otherwise, this step makes the fuller bin
the emptier bin. Since wr′ ≤ wr ≤ w∗, the total volume in this bin will be at
least � + w∗/2−wr ≥ w/2−wr/2 and, therefore, the f -value at most � + w∗/2.
Hence, the step is accepted by the RSH, too.

For RLS, a local step to a specific Hamming neighbor has probability 1/n,
and for the (1+1) EA, the probability is at least (1/n)(1 − 1/n)n−1 ≥ 1/(en).
If we know that the critical volume is always bounded by some small value, we
can exploit this to show upper bounds on the f -values obtainable in expected
polynomial time. The special case w1 ≥ w/2 can be solved exactly.

Lemma 1. Let W and � be as in Definition 1. Suppose that from some time t∗

on, the critical volume w. r. t. W , � and the current search point of the (1+1) EA
or of RLS is at most v. Then the RSH reaches an f -value at most �+v/2 if w1 <
w/2 and at most w1 otherwise in an expected number of another O(n2) steps.

Proof. Let r be the smallest i where wi ≤ v. We consider the run of the RSH only
from time t∗ on. The proof uses a fitness-level argument [6]. Let s := wr+· · ·+wn,
i. e., the sum of all volumes at most as large as wr. Note that the conditions of
the lemma and the definition of critical volume imply that f(x) ≤ � + s for all
current search points x. According to wr, . . . , wn, we partition the set of possible
current strings by so-called fitness levels as follows. Let

Li :=
{

x
∣∣∣ � + s −

r+i−1∑
j=r

wj ≥ f(x) > � + s −
r+i∑
j=r

wj

}

for 0 ≤ i ≤ n− r and Ln−r+1 := {x | � ≥ f(x)}. Now consider some x such that
f(x) > � + wr/2. By the definition of critical volume, there must be an object
from wr, . . . , wn in the fuller bin whose move to the emptier bin decreases the
f -value by its volume or leads to an f -value of at most � + wr/2 ≤ � + v/2. If
x ∈ Li, due to wr ≥ · · · ≥ wn, there is even an object from wr, . . . , wr+i with this
property. By the above considerations, moving this object to the emptier bin by a
local step of the RSH has probability at least 1/(en) and, due to wr ≥ · · · ≥ wn,
leads to some x′ ∈ Lj such that j > i. The expected waiting time for such a step
is at most en. After at most n−r+1 sets have been left, the f -value has dropped
to at most � + wr/2. Hence, the total expected time after time t∗ is O(n2).

If w1 ≥ w/2, we can apply the previous arguments with the special values
� := w1 and r := 2. The only difference is that in case that f(x) > �, there must
be an object of volume at most f(x)− � in the fuller bin. Hence, the RSH cannot
be in a local optimum and is able to reach Ln−r+1 by local steps. ��

If we are satisfied with slightly larger f -values than guaranteed by Lemma 1,
significantly smaller upper bounds on the expected time can be shown.

Lemma 2. Let W and � be as in Definition 1. Suppose that from some time t∗

on, the critical volume w. r. t. W , � and the current search point of the (1+1) EA
or of RLS is at most v. Then for γ > 1, 0 < δ < 1, the (1+1) EA (RLS) reaches



an f -value at most �+v/2+δw/2 if w1 < w/2 and at most w1+δw/2 otherwise in
at most �en ln(γ/δ)	 (�n ln(γ/δ)	) another steps with probability at least 1−γ−1.
Moreover, the expected value for this is at most 2�en ln(2/δ)	 (2�n ln(2/δ)	).
Proof. Let r be the smallest i where wi ≤ v. First, we consider the run of the
(1+1) EA from time t∗ on. Let x be a current search point s. t. f(x) > �+wr/2.
We are interested in the contribution of the so-called small objects wr, . . . , wn

to the f -value and want to estimate the average decrease of the f -value by a
similar method as presented in [10]. Let p(x) := max{f(x)−�−wr/2, 0} and note
that due to the definition of critical volume and the conditions of the lemma,
p(x) is a lower bound on the contribution of small objects to f(x). Moreover,
as long as p(x) > 0, all steps moving only a small object to the emptier bin
are accepted and decrease the p-value by its volume or lead to an f -value of at
most �+ v/2. Let p0 be some current p-value. Since a local step of the (1+1) EA
has probability at least 1/(en), the expected p-decrease is at least p0/(en) and
the expected p-value after the step, therefore, at most (1 − 1/(en))p0. Since the
steps of the (1+1) EA are independent, this argumentation remains valid if p0 is
only an expected value and can be iterated until the p-value equals 0. Hence, the
expected p-value pt after t steps is at most (1− 1/(en))tp0. For t′ := en ln(γ/δ),
we have pt′ ≤ δp0/γ ≤ δw/(2γ). Since the p-value is non-negative, we can apply
Markov’s inequality, implying pt′ ≤ δw/2 with probability at least 1−1/γ. Since
the previous arguments make no assumptions on p0, we can repeat independent
phases of length en ln(2/δ). The expected number of phases until the p-value is
at most δw/2 is at most 2, implying the lemma for the case w1 < w/2.

If w1 ≥ w/2, we can apply the previous arguments with the special values
� := w1 and r := 2. The only difference is that in case that f(x) > �, there must
be an object of volume at most f(x) − � in the fuller bin. Hence, the (1+1) EA
cannot be in a local optimum. Redefining p(x) := f(x) − �, the lemma follows
for the (1+1) EA. The statements on RLS follow in the same way, taking into
account that a local step has probability 1/n. ��

3 Worst-Case Analyses

In this section, we will study bounds on the approximation ratios obtainable by
the RSHs within polynomial time regardless of the problem instance.

Theorem 1. Let ε > 0 be a constant. On any instance for the partition problem,
the (1+1) EA and RLS reach an f -value that is at least (4/3+ε)-approximate in
an expected number of O(n) steps and an f -value that is at least 4/3-approximate
in an expected number of O(n2) steps.

Proof. We start by studying trivial instances with w1 ≥ w/2. Then even both
statements follow for δ := 1/3 by means of Lemma 2.

Now let w1 < w/2 and � := w/2. We still have to distinguish two cases. The
first case holds if w1+w2 > 2w/3. This implies w1 > w/3 and, therefore, w−w1 <
2w/3. Hence, if we start with w1 and w2 in the same bin, a step separating



w1 and w2 by putting w2 into the emptier bin is accepted, and these objects
will remain separated afterwards. The expected time until such a separating
step occurs is O(n). Afterwards, the critical volume according to Definition 1
is always bounded above by w3. Since w3 + · · · + wn < w/3, we know that
wi < w/3 for i ≥ 3. Hence, the first statement of the theorem follows for δ := ε
by Lemma 2 and the second one by Lemma 1. If w1 + w2 ≤ 2w/3, we have
wi ≤ w/3 for i ≥ 2. Since w1 < w/2, this implies that the critical volume is
always at most w2 ≤ w/3. Therefore, the theorem holds also in this case. ��

The approximation ratio 4/3 that the RSHs are able to guarantee within
polynomial time is at least almost tight. Let n be even and ε > 0 be some
arbitrarily small constant. Then the instance W ∗, an almost worst-case instance,
contains two objects w1 and w2 of volume 1/3 − ε/4 each and n − 2 objects of
volume (1/3+ε/2)/(n−2). Note that the total volume has been normalized to 1
and that the instance has an exponential number of perfect partitions.

Theorem 2. Let ε be any constant s. t. 0 < ε < 1/3. With probability Ω(1),
both the (1+1) EA and RLS take nΩ(n) steps to create a solution better than
(4/3 − ε)-approximate for the instance W ∗.

Proof. The proof idea is to show that the RSH reaches a situation where w1 and
w2 are in one bin and at least k := n− 2− (n− 2)ε/2 of the remaining so-called
small objects are in the other one. Since ε < 1/3, at least k objects yield a total
volume of more than 1/3+ ε/4. To leave the situation by separating w1 and w2,
the RSH has to transfer small objects of a total volume of at least ε/4 from one
bin to the other one in a single step. For this, (n − 2)ε/2 small objects are not
enough. Flipping Ω(n) bits in one step of the (1+1) EA has probability n−Ω(n),
and flipping Ω(n) bits at least once within ncn steps is, therefore, still expo-
nentially unlikely if the constant c is small enough. For RLS, the probability is
even 0. Since the total volume in the fuller bin is at least 2/3 − ε/2 unless w1

and w2 are separated, this will imply the theorem.
To show the claim that the described situation is reached with probabil-

ity Ω(1), we consider the initial search point of the RSH. With probability 1/2,
it puts w1 and w2 into the same bin. Therefore, we estimate the probability
that enough small objects are transferred from this bin to the other one in or-
der to reach the situation, before a bit at the first two positions (denoting the
large objects) flips. In a phase of length cn for any constant c, with probability
(1− 2/n)cn = Ω(1), the latter never happens. Under this assumption, each step
moving a small object into the emptier bin is accepted. By the same idea as in
the proof of Lemma 2, we estimate the expected decrease of the contribution
of small objects to the f -value. Reducing it to at most an ε/2-fraction of its
initial contribution suffices to obtain at least k objects in the emptier bin. Each
step leads to an expected decrease by at least a 1/(en)-fraction. Since ε is a
positive constant, O(n) steps are sufficient to decrease the contribution to at
most an expected ε/4-fraction. By Markov’s inequality, we obtain the desired
fraction within O(n) steps with probability at least 1/2. Since c may be chosen
appropriately, this proves the theorem. ��



The worst-case example studied in Theorem 2 suggests that the RSH is likely
to arrive at a bad approximation if it misplaces objects of high volume. On the
other hand, it can easily be shown for the example that the RSH is able to find
an optimal solution with probability Ω(1) in polynomial time if it separates the
two largest objects in the beginning. We try to generalize this to arbitrary in-
stances. In order to obtain a (1 + ε)-approximation in polynomial time according
to Lemma 1, the critical volume should be bounded above by εw. Due to the
ordering w1 ≥ · · · ≥ wn, all objects of index at least s := �1/ε	 are bounded by
this volume. Therefore, the crucial idea is to bound the probability that the RSH
distributes the first s−1 objects in such a nice way that the critical volume is at
most ws. Interestingly, this is essentially the same idea as for the classical PTAS
for the partition problem presented by Graham [13]. Even if the RSH does not
know of this algorithmic idea, it is able to behave accordingly by chance.

Theorem 3. Let ε ≥ 4/n. With probability at least 2−(e log e+e)�2/ε� ln(2/ε)−�2/ε�,
the (1+1) EA on any instance for the partition problem creates a (1 + ε)-approx-
imate solution in �en ln(2/ε))	 steps. The same holds for RLS with �n ln(2/ε))	
steps and a probability of even at least 2−(log e+1)�2/ε� ln(2/ε)−�2/ε�.

Proof. Let s := �2/ε	 ≤ n/2 + 1. Since w1 ≥ · · · ≥ wn, it holds that wi ≤ εw/2
for i ≥ s. If w1 + · · · + ws−1 ≤ w/2, the critical volume w. r. t. � := w/2 is
always bounded above by ws and, therefore, by εw/2. Therefore, in this case,
the theorem follows for δ := ε and γ := 2 by Lemma 2.

In the following, we assume w1 + · · ·+ws−1 > w/2. Consider all partitions of
only the first s−1 objects. Let �∗ be the minimum volume of the fuller bin over all
these partitions and � := max{w/2, �∗}. Then with a probability at least 2−s+2,
in the beginning, neither bin receives a contribution of more than � by these
objects. As long as the property remains valid, we can be sure that the critical
volume w. r. t. � is at most ws ≤ εw/2, and we can apply the arguments from
the first paragraph. The probability that in a phase of t := �en ln(2/ε)	 steps, it
never happens that at least one of the first s − 1 bits flips is bounded below by

(
1 − s − 1

n

)en(ln(2/ε))+1

≥ e−e(ln(2/ε))(s−1)

(
1 − s − 1

n

)se ln(2/ε)

,

which is at most 2−(e log e+e)�2/ε� ln(2/ε) since s − 1 ≤ n/2. Under the mentioned
conditions, by Lemma 2 for δ := ε and γ := 2, the (1+1) EA reaches a (1 + ε)-ap-
proximation within t steps with probability at least 1/2. Altogether, the desired
approximation is reached within t steps with probability at least

1
2
· 2−�2/ε�+2 · 2−(e log e+e)�2/ε� ln(2/ε) ≥ 2−(e log e+e)�2/ε� ln(2/ε)−�2/ε�.

The statement for RLS follows by redefining t := �n ln(2/ε)	. ��
Theorem 3 allows us to design a PRAS (polynomial-time randomized approx-

imation scheme, see [14]) for the partition problem using multistart variants of
the considered RSH. If �(n) is a lower bound on the probability that a single



run of the RSH achieves the desired approximation in O(n ln(1/ε)) steps then
this holds for at least one out of �2/�(n)	 parallel runs with a probability of at
least 1 − e−2 > 3/4. According to the lower bounds �(n) given in Theorem 3,
the computational effort c(n) incurred by the parallel runs is bounded above by
O(n ln(1/ε)) · 2(e log e+e)�2/ε� ln(2/ε)+O(1/ε). For ε > 0 a constant, c(n) = O(n)
holds, and c(n) is still a polynomial for any ε = Ω(log log n/logn). This is the
first example where it could be shown that an RSH serves as a PRAS for an
NP-hard optimization problem. Before, a characterization of an EA as a PRAS
was only known for the maximum matching problem [9].

4 Average-Case Analyses

A probabilistic analysis of RSHs on random inputs must take into account two
sources of randomness. Since this constitutes one of the first attempts in this
respect, we concentrate on two fairly simple and well-known distributions. First,
we assume the volumes wi to be independent random variables drawn uniformly
from the interval [0, 1]. This is called the uniform-distribution model. Second, we
rather consider exponentially distributed random variables with parameter 1,
which is called the exponential-distribution model.

In the last two decades, some average-case analyses of deterministic heuristics
for the partition problem have been performed. The first such analyses studied
the LPT rule, a greedy algorithm sorting the volumes decreasingly and putting
each object from the resulting sequence into the currently emptier bin. Extending
a result that stated convergence in expectation, Frenk and Rinnooy Kan [11] were
able to prove that the LPT rule converges to optimality at a speed of O(log n/n)
almost surely in several input models, including the uniform-distribution and
exponential-distribution model. Further results on average-case analyses of more
elaborate deterministic heuristics are contained in [12].

In our models, the optimum f -value is random. Therefore, for a current
search point, we now consider the so-called discrepancy measure rather than an
approximation ratio. The discrepancy denotes the absolute difference of the total
volumes in the bins. It is easy to see that the initial discrepancy in both models
is Ω(

√
n) with constant probability. We start with a simple upper bound on the

discrepancy after polynomially many steps in the uniform-distribution model.

Lemma 3. Let c ≥ 1 be an arbitrary constant. After O(n2 log n) steps, the
discrepancy of the (1+1) EA and of RLS in the uniform-distribution model is
bounded above by 1 with probability at least 1− O(1/nc). Moreover, the discrep-
ancy is bounded by 1 after an expected number of O(n2) steps.

Proof. Let � := w/2 be a lower bound on the optimum f -value. Since each object
has a volume of at most 1, the critical volume w. r. t. � is always trivially bounded
above by 1. We apply Lemma 1. In terms of discrepancy, it states that this one
drops to at most 1 within O(n2) expected steps. Lemma 1 holds for any random
instance. Hence, by Markov’s inequality and repeating phases, the discrepancy
is at most 1 with probability 1 − O(1/nc) after O(n2 log n) steps. ��



The foregoing upper bound on the discrepancy was easy to obtain; however,
for the (1+1) EA, we can show that with a high probability, the discrepancy
provably becomes much lower than 1 in a polynomial number of steps. The
reason is as follows. All preceding proofs considered only local steps; however,
the (1+1) EA is able to leave local optima by flipping several bits in a step.

The following two theorems will use the following simple properties of order
statistics (e. g., [15]). Let X(1) ≥ · · · ≥ X(n) be the order statistics of the vol-
umes in the uniform-distribution model. Then for 1 ≤ i ≤ n − 1 and 0 < t < 1,
Prob(X(i) − X(i+1) ≥ t) = Prob(X(n) ≥ t) = (1 − t)n. In the exponential-
distribution model, there is a sequence of independent, parameter-1 exponen-
tially distributed random variables Y1, . . . , Yn s. t. X(i) =

∑n
j=i

Yj

j for 1 ≤ i ≤ n.

Theorem 4. Let c ≥ 1 be an arbitrary constant. After O(nc+4 log n) steps,
the discrepancy of the (1+1) EA in the uniform-distribution model is bounded
above by O(log n/n) with probability at least 1−O(1/nc). Moreover, the expected
discrepancy after O(n5 log n) steps is also bounded by O(log n/n).

Proof. By Lemma 3, the discrepancy is at most 1 after O(n2 log n) steps with
probability at least 1−O(1/n2). Since the discrepancy is always bounded by n,
the failure probability contributes only an O(1/n)-term to the expected discrep-
ancy after O(n5 log n) steps. From now on, we consider the time after the first
step where the discrepancy is at most 1 and concentrate on steps flipping two
bits. If an accepted step moves an object of volume w′ from the fuller to the
emptier bin and one of volume w′′ < w′ the other way round, the discrepancy
may be decreased by 2(w′−w′′). We look for combinations s. t. w′−w′′ is small.

Let X(1) ≥ · · · ≥ X(n) be the order statistics of the random volumes. If
for the current search point, there is some i s. t. X(i) is the order statistic of
an object in the fuller and X(i+1) is in the emptier bin then a step exchanging
X(i) and X(i+1) may decrease the discrepancy by 2(X(i) − X(i+1)). If no such i
exists, all objects in the emptier bin are larger than any object in the fuller bin.
In this case, X(n) can be moved into the emptier bin, possibly decreasing the
discrepancy by 2X(n). Hence, we need upper bounds on X(i) −X(i+1) and X(n).

Let t∗ := (c+1)(lnn)/n, i. e., t∗ = O(log n/n) since c is a constant. We obtain
(1 − t∗)n ≤ n−c−1. By the above-mentioned statement, this implies that with
probability 1−O(1/nc), X(i)−X(i+1) ≤ t∗ holds for all i and Prob(X(n) ≥ t∗) =
O(1/nc+1). Now assume X(i) − X(i+1) ≤ t∗ for all i and X(n) ≤ t∗. If this does
not hold, we bound the expected discrepancy after O(nc+4 log n) steps by 1,
yielding a term of O(1/nc) = O(1/n) in the total expected discrepancy. By the
argumentation given after Definition 1, there is always a step flipping at most 2
bits that decreases the discrepancy as long as the discrepancy is greater than t∗.

It remains to estimate the time to decrease the discrepancy. Therefore, we
need lower bounds on X(i) − X(i+1) and Xn. Let �∗ := 1/nc+2. We obtain
Prob(X(i) − X(i+1) ≥ �∗) ≥ e−2/nc+1 ≥ 1 − 2/nc+1. Hence, with probability
1 − O(1/nc), X(i) − X(i+1) ≥ �∗ for all i. Moreover, X(n) ≥ �∗ with probability
1 − O(1/nc+1). We assume these lower bounds to hold, introducing a failure
probability of only O(1/nc), whose contribution to the expected discrepancy



is negligible as above. A step flipping 1 resp. 2 specific bits has probability at
least n−2(1 − 1/n)n−2 ≥ 1/(en2). Hence, the discrepancy is decreased by at
least �∗ or drops below t∗ with probability Ω(1/n2) in each step. The expected
time until the discrepancy becomes at most t∗ is, therefore, bounded above by
O(�∗n2) = O(nc+4), and, by repeating phases, the time is at most O(nc+4 log n)
with probability 1 − O(1/nc). The sum of all failure probabilities is O(1/nc). ��
Theorem 5. Let c ≥ 1 be an arbitrary constant. With probability 1 − O(1/nc),
the discrepancy of the (1+1) EA in the exponential-distribution model is bounded
above by O(log n) after O(n2 log n) steps and by O(log n/n) after O(nc+4 log2 n)
steps. Moreover, the expected discrepancy is O(log n) after O(n2 log n) steps and
it is O(log n/n) after O(n6 log2 n) steps.

Proof. The expected value of the initial discrepancy is bounded above by n since
each object has an expected volume of 1. In the following, all failure probabilities
will be O(1/n2). In case of a failure, we will silently bound the contribution of
this failure to the expected discrepancy after O(n2) resp. O(n6 log2 n) steps by
O(1/n). Next, we will show that with probability 1 − O(1/nc), the following
two properties hold. First, the initial discrepancy is at most 2n. Second, the
critical volume w. r. t. � := w/2 is always O(log n). Together with Lemma 1, the
properties imply the theorem for the situation after O(n2 log n) steps.

To show the first claim, we exploit that the sum of exponentially distributed
random variables with parameter 1 follows a gamma distribution, more precisely,

Prob(w ≥ t) = e−t

(
1 +

t

1!
+ · · · + tn−1

(n − 1)!

)
.

Setting t = 2n, we obtain

Prob(w ≥ 2n) = e−2n

(
1 +

2n

1!
+ · · · + (2n)n−1

(n − 1)!

)
≤ ne−2n(2n)n−1

(n − 1)!
.

By Stirling’s formula, the last expression is bounded above by

e−2n+(n−1) · 2n−1 · n · nn−1

(n − 1)n−1
= e−2n+(n−1) · 2n−1 · n ·

(
1 − 1

n

)−(n−1)

= 2−Ω(n).

For the second claim, we consider the order statistics X(1) ≥ · · · ≥ X(n)

of the random volumes again. Our goal is to show that with high probability,
X(1)+· · ·+X(k) ≤ w/2 holds for k := �δn	 and some constant δ > 0. Afterwards,
we will prove that X(k) = O(log n) with high probability.

Each object has a volume of at least 1 with probability e−1 > 1/3. By
Chernoff bounds, w ≥ n/3 with probability 1−2−Ω(n). To bound X(1)+· · ·+X(k),
we use the above-mentioned identity X(i) =

∑n
j=i Yj/j. Hence,

X(1) + · · · + X(k) = Y1 + 2 · Y2

2
+ · · · + k · Yk

k
+ k

n∑
i=k+1

Yi

i

≤
k∑

j=1

Yj +
�n/k�∑
i=1

1
i

(i+1)k∑
j=ik+1

Yj ,



where Yj := 0 for j > n. Essentially, we are confronted with �n/k	 sums of
k exponentially distributed random variables each. If k := �δn	 for any con-
stant δ ∈ (0, 1), the above calculation for w yields that a single sum is bounded
above by 2k with probability 1 − 2−Ω(n). Since we consider at most n sums,
this statement also holds for all sums. Hence, with probability 1 − 2−Ω(n), the
considered expression is bounded above by

2�δn	 +
1/δ∑
i=1

2�δn	
i

≤ 2(δn + 1) ln(1/δ + 2),

which is strictly less than n/6 for δ ≤ 1/50 and n large enough. Together with
the above lower bound on w, this implies that with probability 1 − 2−Ω(n), the
critical volume is always bounded above by the �n/50	-th largest volume.

How large is X(�n/50�)? Since with probability at least 1 − ne−(c+1) ln n ≥
1 − n−c, all random variables Yj are bounded above by (c + 1) lnn, it follows
that with at least the same probability, we have

X�n/50� =
n∑

j=�n/50�

Yj

j
≤ (c + 1)(lnn)((lnn) + 1 − ln(n/49))

(for n large enough), which equals (c+1)(ln(49)+1)(lnn) = O(log n). Since the
sum of all failure probabilities is O(1/nc), this proves the second claim.

We still have to show the theorem for the case of O(nc+4 log2 n) steps. Now
we assume that the discrepancy has been decreased to O(log n) and use the same
idea as in the proof of Theorem 4 by investigating steps swapping X(i) and X(i+1)

or moving X(n). Above, we have shown that with probability 1 − O(1/nc), the
smallest object in the fuller bin is always at most X(k) for some k ≥ n/50. Since
X(k) − X(k+1) = Yk/k, we obtain X(k) − X(k+1) ≤ 50Yk/n with the mentioned
probability. Moreover, it was shown that Yj ≤ (c + 1) lnn for all j with at least
the same probability. Altogether, X(k) − X(k+1) ≤ 50(c + 1)(lnn/n) =: t∗ with
probability 1 − O(1/nc). Since X(n) = Yn/n, Prob(X(n) ≤ t∗) with probability
1−O(1/nc), too. In the following, we assume these upper bounds to hold. This
implies that as long as the discrepancy is greater than t∗, there is a step flipping
at most 2 bits and decreasing the discrepancy.

It remains to establish lower bounds on X(k)−X(k+1) and X(n). We know that
X(k) − X(k+1) ≥ Yk/n and obtain Prob(X(k) − X(k+1) ≥ 1/nc+2) ≥ e−1/nc+1 ≥
1 − 1/nc+1 for any fixed k and Prob(X(n) ≥ 1/nc+2) ≥ 1 − 1/nc+1. All events
together occur with probability 1 − O(1/nc). By the same arguments as in the
proof of Theorem 4, the expected time until the discrepancy becomes at most t∗

is O(nc+4 log n), and the time is bounded by O(nc+4 log2 n) with probability
1 − O(1/nc). The sum of all failure probabilities is O(1/nc). ��

Theorem 4 and Theorem 5 imply that in both models, the solution of the
(1+1) EA after a polynomial number of steps converges to optimality in expecta-
tion. Moreover, the asymptotic discrepancy after a polynomial number of steps is



at most O(log n/n), i. e., convergent to 0, with probability 1−O(1/nc), i. e., con-
vergent to 1 polynomially fast. This is almost as strong as the above-mentioned
result for the LPT rule.

Conclusions

In this paper, we have presented a probabilistic analysis for randomized search
heuristics on the optimization variant of the PARTITION problem. In the worst
case, both the (1+1) EA and RLS with constant probability need exponential
time to create solutions being better than (4/3−ε)-approximate; however, paral-
lel runs of the heuristics lead to a PRAS. An average-case analysis with respect
to two input distributions shows that the (1+1) EA, inspected after a poly-
nomial number of steps, creates solutions that are in some sense convergent to
optimality. By this average-case analysis, we have made a step towards a theoret-
ical justification of the efficiency of randomized search heuristics for practically
relevant problem instances.

References
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