Enantioselektive Totalsynthese und
biologische Evaluierung
des Protein-Phosphatase 2A Inhibitors Cytostatin und Analoga

Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
(Dr. rer. nat.)
von der Fakultät für Chemie
der Universität Dortmund
angenommene

DISSERTATION

von
Diplom-Chemiker
Laurent Bialy
aus Karlsruhe

1. Gutachter: Prof. Dr. H. Waldmann
2. Gutachter: Prof. Dr. P. Eilbracht

Tag der mündlichen Prüfung: 25. 11. 2002
meinen Eltern
Inhaltsverzeichnis

1. Einleitung .. 7

2. Allgemeiner Teil ... 8
 2.1. Phosphorylierung von Proteinen .. 8
 2.2. Phosphatasen ... 11
 2.2.1. Protein-Tyrosin-Phosphatasen .. 11
 2.2.2. Protein-Serin-Threonin Phosphatasen ... 12
 2.3. Die Protein Serin-Threonin Phosphatase 2A (PP2A) ... 14
 2.3.1. Struktur ... 14
 2.3.2. Biologische Funktion(en) der PP2A ... 15
 2.3.2.1. Die Rolle der PP2A in der MAP-Kinase-Kaskade ... 15
 2.3.2.2. Die Rolle der PP2A in der Insulin-abhängigen Signaltransduktion 17
 2.3.2.3. Die Rolle der PP2A im Zellzyklus ... 18
 2.3.2.4. Interaktionen mit weiteren Kinasen .. 20
 2.3.2.5. PP2A und Altzheimer .. 20
 2.3.2.6. PP2A als Oncogen .. 21
 2.4. Inhibitoren der PP2A ... 23
 2.4.1. Endogene Inhibitoren ... 23
 2.4.2. Virale Proteine ... 23
 2.4.3. Naturstoffe .. 23
 2.4.3.1 Naturstoffe der Okadasäure-Klasse .. 24
 2.4.3.1.1. Cyclopeptide ... 24
 2.4.3.1.2. Terpenoide ... 24
 2.4.3.1.3. Polyketide ... 24
 2.4.3.2 Naturstoffe der Fostrieecin-Klasse .. 27
 2.5. Synthetische Möglichkeiten für die Naturstoffe der Fostrieecin-Klasse 31
 2.5.1. Das α-β-ungesättigtes δ-Lacton ... 31
 2.5.2. Das Phosphat .. 33
 2.5.3. (Z,Z)-Diene bzw. (Z,Z,E) Triene ... 34

3. Ziel der Arbeit ... 35
4. Spezieller Teil..37

4.1. Synthese von all-(S)-Cytostatin...37

4.1.1. Retrosynthetische Analyse...37

4.1.2. Modellreaktionen zum Aufbau der (Z,Z,E)-Trien-Einheit...39

4.1.3. Synthese des C3-C11-Gerüsts 87 mit allen Stereozentren...50

4.1.4. Synthese des Lactons 113..57

4.1.5. Abschluss der Synthese...65

4.1.5.1. Iodierung des Alkins, Phosphorylierung der C-9-OH-Gruppe,
Enzschützung der C-11-OTBDPS-Gruppe...66

4.1.5.2. Diimin-Reduktion...70

4.1.5.3. Stille-Kupplung..74

4.1.5.4. Versuche zur Entschützung des β-Cyanoethylgeschützten Phosphats 131a............75

4.1.5.5. Herstellung des (all-S)-Cytostatins 20a unter Verwendung
der 9-Fluorenlymethylphosphatschutzgruppe...79

4.2. Konfigurationsbestimmung von Cytostatin..83

4.2.1. Vergleich der NMR-Spektren zwischen (all-S)-Cytostatin 20a und den Literaturdaten
den Cytostatins 20...83

4.2.2. Synthese einer C1-C-9-Cytostatin-Teilstruktur 145 zur Klärung der relativen
Konfiguration von C-4, C-5 und C-6...83

4.2.3. Direkter Vergleich von synthetisiertem (all-S)-Cytostatin 20a und natürlichem Cytostatin 20..90

4.3. Synthese und biologische Evaluierung von Cytostatin-Derivaten.................................92

4.3.1. Synthese der Derivate...93

4.3.2. Biologische Evaluierung der Derivate...95

5. Zusammenfassung und Ausblick..101

5.1. Zusammenfassung...101

5.2. Ausblick..105

6. Experimenteller Teil..108

6.1. Messgeräte und Hilfsmittel..108

6.2. Versuche zu Kapitel 4.1.2...109

6.3. Versuche zu Kapitel 4.1.3...120

6.4. Versuche zu Kapitel 4.1.4...151

6.5. Versuche zu Kapitel 4.2.2...178

6.6. Versuche zu Kapitel 4.3.1...194
6.7. Versuche zu Kapitel 4.3.2 ... 201
7. Literaturverzeichnis ... 211
8. Anhang .. 221
1. Einleitung

Einer der erstaunlichsten und zugleich fundamentaldsten Merkmale des Lebens ist ohne Zweifel dessen ausgeprägte Anpassungsfähigkeit an die äußere Umgebung. Zellen entwickeln sich in jedem Gewebetyp völlig anders, stellen ihren Stoffwechsel in Abhängigkeit von vorhandenen Nährstoffen um und können auf äußere Reize innerhalb von Millisekunden reagieren. Wenn diese Anpassung der Zellen an ihre Umwelt nicht mehr funktioniert, sind die Folgen oft fatal: Stoffwechselkrankungen, Nervenerkrankungen und vor allem Krebs, eine der häufigsten Todesursachen in den Industrienationen.\(^1\) Das detaillierte Verständnis der entsprechenden Mechanismen ist daher nicht nur für die Grundlagenforschung, sondern auch im Hinblick auf eine mögliche therapeutische Anwendung von immensem Interesse.

Die Aufklärung der Rolle der einzelnen Kinasen und Phosphatasen wird allerdings dadurch erschwert, dass nicht immer selektive Inhibitoren für ein Enzym zur Verfügung stehen. Dies liegt oft daran, dass verschiedene Enzyme strukturverwandt sind und somit durch einen Inhibitor gemeinsam beeinträchtigt werden können.\(^2\)

2. Allgemeiner Teil

2.1. Phosphorylierung von Proteinen

Abbildung 1 Phosphorylierung von Proteinen am Beispiel der Glykogen-Phosphorylase

Die reversiblen Phosphorylierung von Threonin-2, Serin-3 und Tyrosinresten 4 erfolgt enzymatisch. Die sogenannten Kinasen übertragen den \(\gamma\)-Phosphat-Rest von 5'-Adenosintriphosphat (ATP) 5 auf die entsprechende OH-Gruppe des Zieldproteins unter Ausbildung von 5'-Adenosindiphosphat (ADP) 6. Die Phosphatasen hydrolysieren den Phosphatmonoester des Zielproteins (Abbildung 2). Im Fall der Glykogen-Phosphorylase sind dies die Phosphorylase-Kinase und die Phosphoprotein-Phosphatase 1 (PP-1).

Wie am Beispiel der Glykogenphosphorylase deutlich wird, ist die Phosphorylierung eine effiziente Strategie zur schnellen Regulation einer enzymatischen Aktivität. Jedoch können auch andere Prozesse, wie Protein-Protein oder Protein-Ligand-Wechselwirkung oder die Stabilität von Proteinen gegenüber proteolytischem Abbau durch Phosphorylierung gesteuert werden. Insbesondere zeigte sich, dass die Kinasen und Phosphatasen selbst wiederum oft Substratproteine für weitere Phosphorylierungen sind, wodurch ganze Kaskaden von Kinasen und Phosphatasen in einem sehr komplexen Zusammenspiel an der Regulation von Proteinfunktionen beteiligt sind. Im Fall der Glykogenphosphorylase wird die Phosphorylase-Kinase durch die cAMP-abhängige Proteinkinase phosphoryliert und aktiviert, während sie durch die PP-1 wiederum dephosphoryliert (und somit deaktiviert) wird (Abbildung 1). Solche Kaskaden sind im allgemeinen viel komplexer und ermöglichen eine sehr empfindliche und zeitlich sehr präzise Regulation. Sie spielen vor allem bei der
Signaltransduktion eine große Rolle (Kapitel 2.3.2). Die korrekte Phosphorylierung gewährleistet das Zellwachstum und die Zelldifferenzierung. Aus diesem Grund ist die fehlerhafte Funktion von Kinasen oder Phosphatasen an vielen Pathologien beteiligt: Krebs, Nervenkrankheiten wie Alzheimer, Auto-Immunkrankungen, Gewebeabstoßung bei Organtransplantationen oder Stoffwechselkrankheiten wie der Typ II-Diabetes, um nur einige zu nennen.

Abbildung 2 Proteine werden durch Kinasen phosphoryliert und von Phosphatasen dephosphoryliert

2.2. Phosphatasen
Die Proteinphosphatasen werden aufgrund ihrer Substratspezifität in 2 Gruppen eingeordnet: die Protein-Tyrosin-Phosphatasen und die Protein-Serin/Threonin-Phosphatasen.

2.2.1. Protein-Tyrosin-Phosphatasen

Die sogenannten Protein-Tyrosin-Phosphatasen (PTP) sind spezifisch für Tyrosin-phosphorylierte Enzyme (Einschränkung siehe unten). Ein Vergleich der Primärstrukturen zeigt eine hochkonservierte Sequenz um das katalytische Zentrum: (H/V)C(X)5R(S/T).\(^\text{10}\) Eine Analyse des kompletten Human-Genoms ergibt, dass 112 PTPs kodiert werden.\(^\text{11}\) Alle PTPs haben einen gemeinsamen Katalysemechanismus. Das hochkonservierte Cystein 7 dient als Nukleophil, wobei zunächst ein Phosphorylcystein-Intermediat 8 gebildet wird (Abbildung 3). Ein konservierter Asparaginsäurerest 9a katalysiert als Säure den nukleophilen Angriff, und der invariante Arginin-Rest 10 bindet das geladene Phosphat durch elektrostatische Wechselwirkung. In einem zweiten Schritt fungiert Wasser als Nukleophil, das durch den schon erwähnten Aspartat-Rest 9b, der nun als Base fungiert, deprotoniert wird. PTPs werden weiter unterteilt in tyrosin-spezifische, dual-spezifische (DSP) und niedermolekulare Phosphatasen. Die DSPs hydrolysieren hierbei neben Tyrosin-Phosphaten auch Serin/Threoninphosphate und andere Substrate als Phosphoproteine.\(^\text{12}\)

\[
\text{Abbildung 3 Katalysemechanismus der Protein-Tyrosin-Phosphatasen}
\]

Ein wichtiges Mitglied dieser Enzymklasse ist die Cdc25, die eine positive Rolle im Zellzyklus ausübt und als potentielles Target für die Krebstherapie untersucht wird.\(^\text{13}\) Es sind sowohl rezeptorähnliche PTPs, wie die CD45, die als positiver Regulator der T-Zell-Aktivierung fungiert und deshalb ein mögliches Target zur Bekämpfung von
Autoimmunerkrankungen oder Abstoßungsreaktionen bei Gewebetransplantationen
darstellt, als auch intrazelluläre PTPs, wie die PTP1B, die eine wichtige Rolle bei der
Insulin-abhängigen Signaltransduktion spielt, bekannt. Inhibitoren der PTP1B werden als
potentielle Kandidaten zur Behandlung des TypII-Diabetes (Insulin-Resistenz) intensiv
untersucht.

2.2.2. Protein Serin/Threonin Phosphatasen

Die Struktur der Serin/Threonin-Phosphatasen weist keine Ähnlichkeit zu derjenigen der
PTPs auf. Diese können durch die Sequenzhomologie ihrer katalytischen Untereinheiten in
zwei Familien eingeteilt werden. Die wichtigsten Enzyme der sogenannten Phosphoprotein-
Phosphatase (PPP) Familie sind die PP1 (Kapitel 2.1), die Protein Serin/Threonin
Phosphatase 2A (PP2A) und die Protein Serin/Threonin Phosphatase 2B (PP2B), auch als
Calcineurin bekannt. Die Aktivität der PP2B hängt als einzige von der Anwesenheit von Ca^{2+}-
Calmodulin ab. Außerdem können die sonst sehr ähnlichen PP1 und PP2A durch die
Empfindlichkeit gegenüber physiologischen Inhibitoren (Inhibitor-1 I-1 und Inhibitor I-2, die
nur PP1 inhibieren) unterschieden werden. Die katalytische Einheit der drei Enzyme ist sehr
homolog (z. B. PP1-PP2A, 50 % Aminosäureidentität); das katalytische Zentrum besteht aus
einem konservierten Phosphoesterase-Motiv: DXH(X)nGDXXD(X)nGNHD/E (n=25). Auch die Röntgenstruktur der katalytischen Einheit der PP1 (PP1_{C}) und der PP2B (PP2BC)
sind im katalytischen Zentrum sehr ähnlich. Von der entsprechenden PP2AC existiert zwar
keine Röntgenstruktur, jedoch ein Homologiemodell basierend auf der Struktur der PP1. Der vorgeschlagene katalytische Mechanismus18 unterscheidet sich grundlegend von
demjenigen der PTPs (Abbildung 4). Durch zwei Metallionen (im Falle der PP1 Fe^{2+} und
Mn^{2+}) im katalytischen Zentrum wird zunächst der Phosphatmonoester gebunden.
Anschließend greift ein überbrückendes, vermutlich deprotoniertes Wassermolekül den
Phosphatmonoester direkt an. Der nukleophile Angriff wird hierbei von einem protonierten
Histidin-Rest 125, der durch ein benachbartes Aspartat 95 stabilisiert wird, durch
Protonierung des austretenden Alkoholats erleichtert. Interessanterweise werden durch diese
catalytischen Untereinheiten \textit{in vitro} eine Vielzahl unterschiedlicher Substrate (inklusiv
Tyrosinphosphaten) toleriert.
Abbildung 4 Vorgeschlagener Katalysemechanismus der PP1

Die Mechanismen der PP2A und der PP2B sind vermutlich ähnlich.

Die zweite Familie ist die der metailabhängigen Phosphoproteinphosphatasen (PPM), deren prominentester Vertreter die PP2C ist. Diese zeigen keine Sequanzhomologie zu den PPP und zeichnen sich durch einen absolute Abhängigkeit von Metallkationen (insb. Mg$^{2+}$) aus. Während die katalytischen Untereinheiten der PPP große Ähnlichkeit aufweisen und hochkonserviert sind, assoziieren sie in vivo mit einer Vielzahl diverser Untereinheiten und bilden so sehr unterschiedliche Holoenzyme. So kann die PP1 mit einer Vielzahl von regulatorischen Einheiten assoziiert. Es wird vermutet, dass regulatorische Untereinheiten die subzelluläre Lokalisierung und die Substratspezifizität steuern. Ganz ähnlich ist dies im Fall der PP2A, auf welche im folgenden etwas näher eingegangen wird.

2.3. Die Protein Serin/Threonin Phosphatase 2A (PP2A)

2.3.1. Struktur
\textit{In vivo} kommt die PP2A hauptsächlich als Heterotrimer vor. Eine sogenannte scaffold-Untereinheit (PR65/A-Einheit) bildet hierbei das Grundgerüst und besteht aus 15, je 39 Aminosäure langen Tandem-HEAT repeats, die auch in anderen Proteinen vorkommen (so z.B. in der TOR-Kinase, dem Huntingtin-Protein, oder dem Transportprotein Importin-β. Das PR65/A kommt in 2 Isoformen α und β vor, die 86 % Sequenzidentität aufweisen, wobei die α-Form häufiger ist. Die Kristallstruktur der PR65/A zeigt ein bananenförmiges Gebilde, wobei der C-Terminus (Repeats 11 bis 15) die Bindungsstelle für die PP2A\textsubscript{C} ist, während der N-Terminus (Repeats 1-10) eine weitere, regulatorische Einheit (B) bindet.19

\begin{center}
\includegraphics[width=0.8\textwidth]{diagram.png}
\end{center}

\textbf{Abbildung 5} \textit{Schematische Struktur des PP2A-Holoenzymes}

Während von der PP2A\textsubscript{C} nur 2 Isoformen (α und β) bekannt sind, wurden 4 nichtverwandte Familien von B-Untereinheiten B/PR55, B'/PR61, B''/PR72 und B''', identifiziert. Die Häufigkeit der jeweiligen B-Isoformen ist stark abhängig von Gewebe, Entwicklungsstadium und subzellulärer Lokalisation. Deshalb wird vermutet, dass die vielfältigen, unterschiedlichen und nicht selten gegenläufigen Aktivitäten der PP2A (s.u.) über die Rekrutierung von unterschiedlichen B-Einheiten gesteuert werden.20a Z. B. werden die PR55/Bβ und die PR55/Bγ vermehrt in Hirngewebe gefunden. PR61/B' Einheiten finden sich besonders bei nuklearer PP2A, und in der Tat wurden auf zahlreichen B-Untereinheiten dieses Typs nukleare Lokalisierungssequenzen (NLS) gefunden.20a Auch können unterschiedliche B-Untereinheiten verschiedene Substratspezifizitäten vermitteln. So dephosphorylieren B''/PR72-enhaltende Holoenzyme das Serin-120 und das Ser-123 des großen SV40 T-Antigen, während B/PR55 Trimere das Thr-124 dephosphorylieren.20b Theoretisch sind mit
den bisher identifizierten Komponenten über 75 PP2A-Holoenzyme denkbar. Über die genaue physiologische Relevanz dieser Kombinationen ist jedoch nur wenig bekannt.

2.3.2. Biologische Funktion(en) der PP2A

2.3.2.1. Die Rolle der PP2A in der MAP-Kinase-Kaskade

Abbildung 6 Rolle der PP2A in dem MAP-Kinase-Weg
Nur die von der PP2A durchgeführten Dephosphorylierungen sind dargestellt.

Offenbar ist das erforderliche Enzym die PP2A, die an der Zellmembran mit Raf assoziiert.24 Durch Zugabe von Okadasäure wird die Aktivierung von Raf-1 verhindert. Dagegen hat die PP2A weiter unten (downstream) in der Kaskade einen negativen Effekt. In vitro dephosphoryliert und deaktiviert sie sowohl MEK als auch ERK,25, 26 während die Behandlung mit Okada-Säure zu einer Aktivierung der entsprechenden Kinasen führt.27, 28 Allerdings sind auch andere Phosphatasen, insbesondere die DSPs an diesen Prozessen beteiligt,29 so dass die Bedeutung der PP2A für diese Prozesse nicht völlig klar ist.30
2.3.2.2. *Die Rolle der PP2A in der Insulin-abhängigen Signaltransduktion*

Die Anbindung des Hormons Insulin an den Insulin-Rezeptor führt zu einer Aktivierung der Phosphoinositid-3-Kinase (PI-3K), die Phosphatidylinositol 3,4-bisphosphat und Phosphatidylinositol 3,4,5-Trisphosphat an der Plasmamembran generiert (Abbildung 7). Daraufhin bindet die Protein Kinase B (PKB) an die generierten Phospholipide und wird dort von 2 Kinasen, einer „Serin 473 Kinase“ und der PDK-1 am Thr-308 phosphoryliert und aktiviert.

Der Gegenspieler zur PDK-1 ist die PP2A, die somit zum Abschalten des Signals führt. Auch andere Funktionen der PDK-1, wie die Aktivierung der p70 S6 Kinase, die bei der Kontrolle der Translation eine wichtige Rolle spielt, werden offensichtlich durch die PP2A antagonisiert. Somit ist die PP2A in der Lage, mitogene und anti-apoptotische Signale durch Insulin und ähnliche Faktoren zu unterdrücken.

Abbildung 7 *PP2A in der Insulin-abhängigen Signaltransduktion*

2.3.2.3. *Die Rolle der PP2A im Zellzyklus*

\begin{Abbildung}{Zellzyklus}{PP2A im Zellzyklus}{
Oft werden mehrere Stellen in den Substraten dephosphoryliert, auch wenn es in dieser Abbildung der Übersichtlichkeit halber nicht aufgezeigt wird.

\textbf{2.3.2.4. Interaktionen mit weiteren Kinasen}
Neben den oben beschriebenen Wirkungen sind zahlreiche Wechselwirkungen der PP2A mit weiteren Protein Kinase Kaskaden nachgewiesen worden. So können diverse Ca\(^{2+}\)/Calmodulin abhängigen Kinasen (CaM-Kinasen) durch PP2A dephosphoryliert und somit die Ca\(^{2+}\)-abhängigen Signalkaskaden deaktiviert werden. Eine andere wichtige Proteinkinase, die Protein-Kinase C (PKC), das Target für die als Tumorpromotoren bekannten Phorbolester, kann durch eine PR55 enthaltende PP2A dephosphoryliert und somit deaktiviert werden. Eine weitere, bei Entzündungsreaktionen entscheidende Signaltransduktionskaskade, die durch Cytokine wie den Tumor Necrosis Factor α oder Interleukin-1 in Gang gesetzt wird, wobei letztendlich der Transkriptionsfaktor NF-κB aktiviert wird, wird durch die PP2A „abgeschaltet“. Dies läuft vermutlich über die Dephosphorylierung (Deaktivierung) der Kinase IKK, die im aktiven Zustand den Inhibitor IκB phosphoryliert, wodurch dieser proteolytisch gespalten wird und den gebundenen NF-κB freisetzt. Interaktionen der PP2A wurden auch in der Wnt-Signalkaskade, bei der der heterodimere Transkriptionsfaktor β-Catenin/TCF aktiviert wird, in der TOR („target of rapamycin“)-Signalkaskade, die z.B. bei im Verlaufe von Organtransplantationen auftretenden Gewebeabstoßungsreaktionen eine Rolle spielt, oder mit der Caspase-3 und Bcl-2, zwei bei der Apoptose-(dem programmierten Zelltod)-induktion wichtigen Proteinen, nachgewiesen.

2.3.2.5. PP2A und Alzheimer

2.3.2.6. PP2A als Oncogen

Typisch für die Bildung von FAs ist eine starke Zunahme der Tyrosinphosphorylierung der beteiligten Proteine, die vermutlich durch die räumliche Nähe der stark quervernetzten Proteine mit den involvierten Kinasen zustande kommt. Eine zentrale Rolle hierbei spielt die FAK, die durch die Integrin-Anbindung sowohl eine Autophosphorylierung erfährt als auch von Src phosphoryliert wird. Eines ihrer Substrate ist das Paxillin, ein essentieller, durch Tyrosinphosphorylierung regulierter Adaptor in den FAs. Ausserdem scheint die Serin/Threonin-Phosphorylierung des Paxillins eine notwendige Vorraussetzung für die Lokalisierung von Paxillin in FAs zu sein. Veränderungen der Phosphorylierungszustände von Paxillin und Vimentin wurden durch Zugabe von PP2A-Inhibitoren beobachtet (Kapitel 2.4.3.2). Auch eine N-terminal verkürzte, mutierte Form der PR61γ1 wurde in metastasierenden Melanomen nachgewiesen. Ein Modell geht davon aus, dass PR61γ1 die
Wechselwirkung zwischen der PP2A und Paxillin vermittelt. In den FAs fördert die PP2A (eventuell über einen indirekten Mechanismus) die Serin-Dephosphorylierung des Paxillins.\(^{62}\) Interessanterweise führt eine Inhibition der PP2A in einigen Fällen (mit Okadasäure) zu einer verstärkten Zellmotilität,\(^{63}\) während in anderen Fällen (mit Cytostatin) anti-metastatische Eigenschaften beschrieben wurden (Kapitel 2.4.3.2). Auch sind die Effekte der mutierten PR61\(\gamma1\) nicht identisch mit denen, die bei einer Okadasäure-Inhibition erhalten werden.\(^{62}\)

Abbildung 9 *Die PP2A in der Integrinvermittelten Zelladhäsion*

2.4. Inhibitoren der PP2A\(^4\)
2.4.1. Endogene Inhibitoren

Bis heute wurden 2 endogene, hochselektive peptidische Inhibitoren der PP2A entdeckt. Es handelt sich hierbei um die Proteine I-1\textsubscript{PP2A} (auch PHAP-I, „putative histocompatibility leukocyte antigens class II associated protein I) und I-2\textsubscript{PP2A} (auch SET, PHAP-II oder TAF).

Diese sind in nanomolekularer Konzentration wirksam und inhibieren nicht die anderen Serin/Threonin-Phosphatasen, insb. nicht die PP1. Leider bringen sie für biomolekulare Untersuchungen als Proteine alle Nachteile von Peptiden mit sich, wie ein Mangel an Zellmembrandurchgängigkeit und eine hohe Protease-Empfindlichkeit.

2.4.2. Virale Proteine

2.4.3. Naturstoffe

Auch Mikroorganismen haben eine große Breite an niedermolekularen, teilweise sehr potenten Inhibitoren der PP2A als Schutz vor natürlichen Feinden hervorgebracht. Die am längsten bekannten, am katalytischen Zentrum bindende Naturstoffe werden der „Okadasäure-Klasse“ zugerechnet. Eine neue Klasse von Inhibitoren mit einem anderen Inhibitionsmechanismus bilden dagegen die Naturstoffe des „Fostriecein-Typs“.
2.4.3.1 Naturstoffe der Okadasäure-Klasse

2.4.3.1.1. Cyclopeptide

Die Mikrocystine und die verwandten Nodularine sind hochtoxische Cyclohepta- bzw. Cyclopentapeptide und verursachen immer wieder tödliche Vergiftungen (besonders ausgeprägt ist die Lebertoxizität) bei Tier und Mensch durch Verseuchung der Gewässer durch Cyanobakterien. Sie inhibieren sowohl die PP2A als auch die PP1 im subnanomolaren Bereich (Abbildung 10). Für die Inhibition stellten sich die Carboxyfunktion des Glutamats und die charakteristische, lipophile Seitenkette der ungewöhnlichen Aminosäure „Adda“ als essentiell heraus.

2.4.3.1.2. Terpenoide

2.4.3.1.3. Polyketide

Der vielleicht wichtigste Inhibitor der PP2A ist die Okadasäure. Der Name rührt von der Isolierung aus dem Schwamm Halichondria okadaii, jedoch wird dieser Naturstoff in Wirklichkeit von Plankton (Dinoflagellaten) produziert.
IC₅₀ PP2A (PP1)

Microcystin LA
0.1 nM (0.1-1nM)

Thyrsiferyl-23-acetat
4-16 μM (>1 mM)

Cantharidin
40-200 nM (0.5-2 μM)

Okadasäure
0.2-1 nM (3-20 nM)
Abbildung 10 Naturstoffe der Okadasäureklasse und IC$_{50}$-Werte gegen PP2A/PP1

werden.\(^4\) Eine der zukünftigen Herausforderungen wird es sein, zwischen diesen Phosphatasen differenzieren zu können.

Ein weiterer, wichtiger Vertreter aus der Klasse der Polyketide ist das aus Schwämmen (Discodermia calyx) isolierte Calyculin 16.\(^6\) Dieses zeichnet sich durch eine amidische und Oxazol enthaltende Nordhälfe, einem mittleren, spiroketalischen Anker mit einer angeknüpften Phosphatgruppe, und einem mehrfach ungesättigten, lipophilen Rest als Südhälfte aus. Calyculin ist ein potenter, subnanomolarer Inhibitor sowohl der PP1 als auch der PP2A.

Auch das Tautomycin 17, das vermutlich wie das Cantharidin als Dicarbonsäure die PP2A deaktiviert, und aus einem Streptomyces Bakterium isoliert wurde,\(^7\) ist ein subnanomolarer Inhibitor sowohl der PP1 als auch der PP2A.\(^8\)

Die bisher besprochenen Naturstoffe (Microcystin 11, Cantharidin 13, Okadasäure 15, Calyculin 16) inhibieren die PP2A nach einem ähnlichen Mechanismus, indem sie ein Phosphothreonin imitieren.\(^1\) Die polare Gruppe (COOH, Phosphat) bindet an die Metallzentren, während die in Nachbarschaft vorhandene Methylgruppe eine hydrophobe Wechselwirkung (vermutlich mit dem His 237) eingeht (hervorgehobene Strukturen in Abbildung 10). Eine wichtige Komponente des Enzyms ist der flexible \(\beta_12-\beta_13\) Loop, der für die unterschiedliche Wechselwirkung mit der PP1 und der PP2A v. a. im Falle der Okadasäure verantwortlich gemacht wird.\(^1\)

2.4.3.2 Naturstoffe der Fostriecin-Klasse

Zu einer anderen Klasse von PP2A-Inhibitoren gehört ihr prominentester Vertreter, das Fostriecin 17. Dieses wurde 1983 aus Streptomyces pulveraceus (Subspezies fostreus) isoliert.\(^7\) Weitere Vertreter sind die Phoslactomycine, z. B. 18, die aus Streptomyces-Stämmen isoliert wurden.\(^8\) Charakteristische Struktur motive sind das \(\alpha-\beta\)-ungesättigte \(\delta\)-Lacton, die vorhandene Phosphatgruppe und das konjugierte Di- oder Trien am lipophilen Ende (Abbildung 11). Auch ein sulfatiertes Analogon, das Sultriecin 19, ist bekannt.\(^8\) Cytostatin 20 wurde 1994 durch Ishizuka et al. aus einem bis dato unbekannten Streptomyces-Stamm isoliert.\(^5\) Als strukturelle Besonderheiten dieses Naturstoffes sind das Fehlen der Doppelbindung in Nachbarschaft zum Lacton-Ring und der tertiären Hydroxy-Gruppe in Nachbarschaft zum Phosphat hervorzuheben. Im Gegensatz hierzu tauchen drei zusätzliche Methylgruppen (an C-4, C-6 und C-10) auf.
Abbildung 11
Naturstoffe der Fostriezin-Klasse und IC$_{50}$-Werte gegen PP2A/PP1

Im Gegensatz zum Fostriezin 17 und den Phoslactomycinen 18, deren absolute Konfigurationen mittels NMR-spektroskopischer Methoden aufgeklärt wurden,82 wurde im Fall des Cytostatins 20 die relative und absolute Konfiguration nicht bestimmt.83

Für diese Naturstoffklasse sind eine ganze Reihe von interessanten biologischen Aktivitäten beschrieben worden, die hier nur kurz aufgezählt werden sollen: antifungale Aktivität für Sultriecin (\textit{in vitro}),81 antimycotische Aktivität für Fostriezin,84 Antitumoraktivität für Sultriecin (\textit{in vitro} und \textit{in vivo} gegen P388, L1210 Leukämie-Zelllinien, B16 Melanomen),81
für Fostriecin (in vitro gegen L1210, HCT-8- und weiteren Zelllinien und in vivo gegen P388 und L121 Leukämien, nicht jedoch gegen solide Tumore wie B16-Melanomen85), und Induktion von Cytokinen (z. B. die Interleukine IL-6 und IL-11) für die Phoslactomycine (in vitro, Knochenmarkzellen),86 thrombopoietische Aktivität für die Phoslactomycine (in vivo),87 Insbesondere das Fostriecin wurde intensiv untersucht und ging als Antitumor-Antibiotikum in die klinische Phase I.88 Cytostatin zeigte eine ausgeprägte in vitro Cytotoxizität (IC\textsubscript{50} 0.042-0.572 µg/ml) gegen verschiedene Tumorzelllinien (L1210, P388, EL-4, B-16, IMC, Meth A Fibrosarcoma, A431)5 und anti-metastatische Aktivität (1.25 mg/kg, 19 Tage) gegen B16-Melanoma in vivo (Mäuse).89 Die anti-metastatische Aktivität steht vermutlich mit der in vitro beobachteten Inhibition der Adhäsion von B-16 Tumorzellen an Komponenten der extrazellulären Matrix (Laminin, Collagen IV) in direktem Zusammenhang.5 Hier ist von Interesse, dass Cytostatin die Tyrosinphosphorylierung von FAK und Paxillin inhibiert, während die Serin/Threonin-Phosphorylierung von Paxillin verstärkt wird. Vermutlich ist also die PP2A-Inhibition mit einer Störung des korrekten Aufbaus von FAs (Kapitel 2.3.2.5) verknüpft, wodurch die Adhäsion an die extrazelluläre Matrix (EM) unterbunden wird. Auch andere Mitglieder dieser Naturstoffklasse, die Phoslactomycine 18, induzieren eine Hyperphosphorylierung von Vimentin, einer weiteren Komponente von FAs.90 Gleichzeitig wurde eine Depolymerisierung von Actinfilamenten, die für die Vernetzung der FAs wichtig sind, beobachtet.

Cytostatin 20 induzierte die Apoptose in einer hematopoetischen Krebs-Zelllinie (EL-4), während eine solide Tumorzelllinie (B-16) nur wenig beeinflusst wurde. Eine genauere Betrachtung zeigte, dass die Cycline D1, E, A, und B1 durch Cytostatin-Behandlung in EL-4-Zellen abnahmen. Um die Befunde zu erklären, gehen die Autoren von einer Regulation der Apoptose durch die erwähnten Cykline aus.91 Fostriecein scheint gegen solide Tumorzelllinien eine geringe Aktivität zu besitzen. Es wurde postuliert, dass hier der Importmechanismus in die Zelle, der im Fall des Fostrieceans vermutlich über den reduzierten Folat-Carrier verläuft, im Fall von soliden Tumoren nicht wirksam sein könnte.92 Im Gegensatz dazu zeigen Sultriecin 19 und Cytostatin 20 jedoch gegen B16-Zelllinien Aktivität. Darüber, ob dafür vielleicht unterschiedliche Wechselwirkungen mit dem reduzierten Folat-Carrier verantwortlich sind, oder andere Ursachen eine Rolle spielen, kann im Moment nur spekuliert werden. Für alle Mitglieder dieser Naturstoffklasse, außer Sultriecin 19, wurde eine hochselektive Inhibition der PP2Ac, nicht jedoch der PP1 nachgewiesen. Interessanterweise sind sowohl Fostriecein 17 als auch Cytostatin 20 nicht kompetitiv zu Inhibitoren der Okadasäureklasse. Auch zeigte eine Lineweaver-Burke-Auftragung der kinetischen Daten für
Cytostatin eine nicht-kompetitive Inhibition gegen PNPP als Substrat.93 Die genaue Bindungsstelle dieser Naturstoffe an der PP2A\textsubscript{C} ist nicht bekannt. Jedoch scheint eine Beteiligung des \(\beta12-\beta13 \) Loops (wie bei der Okadasäure) oder der \(C \)-terminalen Domäne ausgeschlossen, wie Chimär-Konstrukte zwischen der PP1 und der PP2A beweisen.94 Somit verläuft die Inhibition der PP2A durch diese Naturstoffklasse nach einem neuen, bis \textit{dato} unbekanntem Mechanismus. Diese Inhibitoren sind zwar um ein bis drei Größenordnungen weniger potent als die Okadasäure, sie zeigen jedoch eine bisher unerreichte Selektivität, was sie zu einmaligen molekularbiologischen Werkzeugen macht.

Struktur-Aktivitätsbeziehungen sind nur spärlich vorhanden und durch Derivatisierung der isolierten Naturstoffe durchgeführt worden. Während dephosphorylierte Verbindungen keine Phosphatase-Inhibition oder Cytotoxizität mehr aufweisen,93 ist für desulfitiertes Sultriecin in einem Fall eine cytotoxische Aktivität in einer Krebs-Zelllinie beschrieben worden.81 Die Entfernung der terminalen Hydroxy-Gruppe des Fostrieccins führte zu keiner wesentlichen Veränderung der \textit{in vitro} Cytotoxizität, während eine Acetylierung der C-11-Hydroxygruppe (Numerierung) oder eine Ringöffnung des Lactons zu einem Einbruch in der Cytotoxizität führen.85 Eine Veränderung des Cyclohexanring-Substituenten oder \(N \)-Acetylierung führt zu keiner wesentlichen Veränderung der thrombopoietischen Aktivität der Phoslactomycine.87 Allerdings darf spekuliert werden, ob diese an ganzen Zellen beobachteten SAR-Daten durch einen veränderten Transport in die Zelle (s. o.) oder eine Veränderung der Phosphatase-Inhibition verursacht werden.

An dieser Stelle sei noch erwähnt, dass möglicherweise nicht alle biologischen Aktivitäten der Mitglieder dieser Klasse durch die Inhibition von Phosphatasen zustandekommen. In der Tat wurde Fostrieccin zunächst als (wenn auch schwacher, \(IC_{50} = 40 \ \mu M \)) Inhibitor der Topoisomerase-II (Topo II) identifiziert.95 Die hiermit verknüpfte Störung der DNA-Synthese war die ursprüngliche Motivation für klinische Untersuchungen des Naturstoffs als Anti-Krebsmittel. Erst später wurde die PP2A-inhibitorische Aktivität entdeckt,96 und einige Autoren sind immer noch der Ansicht, dass hauptsächlich die TopoII-Inhibition für die Aktivität von Fostrieccin gegen Krebszellen verantwortlich ist.92

\section*{2.5. Möglichkeiten für die Synthese der Naturstoffe der Fostrieccin-Klasse}

2.5.1. Das α,β-ungesättigte δ-Lacton

Die zweite Möglichkeit besteht in der Ringschlussmetathese (RCM) mit dem Grubbs-Katalysator, die von mehreren Arbeitskreisen für den Aufbau dieses Lactons angewandt wurde (Schema 2).

Schema 1
Aufbau des Lactons als Lactolether durch enantioselektive Hetero-Diels-Alder-Reaktion

R = Me, Bn

Schema 2
Aufbau des Lactons durch Ringschlussmetathese
2.5.2. Das Phosphat

Phosphate 33 können durch Reaktion des zu phosphorylierenden Alkohols 34 entweder mit Phosphor(V)-Elektrophilen oder mit Phosphor(III)-Elektrophilen mit anschließender Oxidation gewonnen werden. Durchgesetzt haben sich v.a. in der DNA-Synthese die Phosphor(III)amidite 35 als Elektrophile.105 Diese reagieren unter Säurekatalyse, (mit Tetrazol 36, Schema 4) glatt mit einer Reihe von Alkoholen 34, sind aber gegenüber den Phosphorigsäurechloriden weniger feuchtigkeitsempfindlich und somit leichter zu handhaben.

2.5.3. (Z,Z)-Diene bzw. (Z,Z,E) Triene

![Schema 5](image)

Schema 5 Synthesemöglichkeiten für (Z,Z)-Diene
3. Ziel der Arbeit

Neben ihren reizvollen und einmaligen Strukturmotiven weisen die Naturstoffe der Fostriecin-Klasse auch einzigartige inhibitorische Eigenschaften gegenüber Phosphatasen (höchste PP2A vs. PP1 Selektivität, anderer Inhibitionsmechanismus als die Naturstoffe der Okadasäureklasse) auf. Darüber hinaus verleihen ihnen ihre biologische Aktivität insbesondere gegen Krebszellen ein vielversprechendes molekularbiologisches und klinisches Potential. Sowohl die Aufklärung der genauen Rolle der Protein-Phosphatasen der Zelle als auch die therapeutische Anwendung, insbesondere für die Behandlung von Krebs, sind ungelöste Probleme der biologischen und medizinischen Forschung.

Die vorzeitige Einstellung der klinischen Phase I-Untersuchung des Fostriecins durch das NCI (National Cancer Institute) steht im Zusammenhang mit der Tatsache, dass der Naturstoff nicht analysenrein hergestellt werden konnte. Vermutlich ist dafür die intrinsische Instabilität des Triens verantwortlich. Der Zugang zu stabileren Analoga des Naturstoffs erscheint deshalb besonders wünschenswert, zumal zu Beginn der Promotion für keines der Mitglieder der Fostriecin-Klasse eine Totalsynthese publiziert war. Hier kann also die organische Chemie möglicherweise einen wichtigen Beitrag zu einer konkreten medizinischen Anwendung liefern.

Abbildung 12 Vorgeschlagene Konfiguration des Cytostatins

Lediglich Stereozentrum C-6 wurde willkürlich festgelegt, alle anderen Voraussagen basieren auf Analogieschlüssen (C-4, C-5, C-9, C-11) bzw. NMR-Daten (C-10).

![Abbildung 13](image)

Abbildung 13
Mögliche Strukturvariationen für SAR

4. Spezieller Teil

4.1. Synthese von all-\((S)\)-Cytostatin

4.1.1. Retrosynthetische Analyse

Schema 6 Retrosynthese von Cytostatin
Wegen der unbekannten Konfiguration des Naturstoffs wurde bei der Planung der Synthese besonderer Wert auf größtmögliche Flexibilität hinsichtlich der Stereochemie gelegt, so dass (wenn nötig) die Konfiguration schnell und zuverlässig variiert werden kann. Dies wurde durch die Verwendung der Evans Aldoladdition (die den Zugang zu syn- und anti-Aldolprodukten in beiden enantioomer Formen gestattet),115, 116 der asymmetrischen Evans-Alkylierung117 sowie der stereoselektiven Reduktion eines Alkinons (wofür effiziente, zu beiden Isomeren führende, reagenskontrollierte Methoden bekannt sind118), sichergestellt.

Wegen der potentiellen Labilität der Trien-Einheit sollte diese in einem möglichst späten Syntheseschritt eingeführt werden. Diese Strategie besitzt darüber hinaus den Vorteil, einen schnellen Zugang zu stabileren Analoga mit unterschiedlichen terminalen Ketten zu ermöglichen. Das Trien 20a könnte z.B. durch partielle Retro-Hydrierung auf das Endiin 42 zurückgeführt werden (Kapitel 2.5.3). Es schien daher verlockend, diese milde Methode für den Aufbau des Triens in möglichst wenigen Schritten ausgehend vom Alkin 43a und dem Alkinyllhalogenid 44a einzusetzen, zumal das ungesättigte Lacton den Reduktionsbedingungen standhalten sollte.119 Alternativ könnte das Trien durch eine Stille-Kupplung ausgehend von 43b und 44b aufgebaut werden (Kapitel 2.5.3). Die nächstempfindlichste Einheit, das \(\alpha,\beta\)-Lacton (siehe Kapitel 2.5.1) wurde auf den geschützten \(\beta\)-Hydroxylaldehyd 45 zurückgeführt, der durch eine Still-Gennari Olefinierung102 und anschließende Lactonisierung erhältlich sein sollte. Die Ringschlussmetathese wäre eine denkbare Alternative, während die Hetero-Diels-Alder-Reaktion wegen der eingeschränkten Anwendungsbreite hinsichtlich Stereochemie und Subtrattoleranz (Kapitel 2.5.1) nicht verwendet wurde. Es war vorgesehen, die syn-Diole an C5/C6 und C9/C10 durch eine asymmetrische Aldoladdition mit dem \(N\)-Propionyloxazolidinon 46 als Nukleophil aufzubauen.115 In der ersten Aldoladdition sollte der durch asymmetrische Alkylierung117 des selben Oxaaxolidinons 46 erhältliche, chirale Aldehyd 47 als Elektrophil fungieren. Die zweite Aldoladdition war nach Überführung der Doppelbindung in eine Aldehydgruppe geplant. Durch Überführung der \(N\)-Acylgruppe in ein Alkinylketon mit TMS-Acetylen 48 als Nukleophil und anschließende Reduktion sollte das Alkin 43 erhalten werden.
4.1.2. Modellreaktionen zum Aufbau der \((Z,Z,E)\)-Trien-Einheit

Als einfachste Synthese bietet sich die palladiumkatalysierte In-In-Kupplung ausgehend vom terminalen Alkin 50a (bzw. 50b) und dem Brom-enin 51a (oder Iod-enin 51b) an. Dieses wiederum könnte aus dem entsprechenden terminalen Enin durch Halogenierung hergestellt werden. Aufgrund dessen sehr hoher Flüchtigkeit und potentieller Toxizität wurde jedoch auf die entsprechende trimethylsilylgeschützte Verbindung 52 zurückgegriffen, die sich in einem Schritt durch Sonogashira-Kupplung aus den käuflichen Trimethylsilylacetylens 48 und dem \((E)\)-1-Brompropen 53 herstellen lassen sollte.

Die Ergebnisse der Endiin-Synthese sind in Schema 7 zusammengefasst. Nach Standardbedingungen der Sonogashira-Kupplung mit Tetrakis(triphenylphosphin)palladium und Kupferiodid als Katalysator erhält man das erwünschte Enin 52 in zufriedenstellender Ausbeute, wobei eine destillative Reinigung des Produktes unerlässlich ist. Die anschließende Halogenierung des trimethylsilylgeschützten Acetylens 52 nach den Bedingungen von Isobe120 musste optimiert werden. Das reaktivere und schwerflüchtige Iodid 51b wäre für die nachfolgende Sonogashira-Reaktion einfacher zu handhaben, jedoch konnte es nicht stereoselektiv hergestellt werden. Eine deutliche Bildung des unerwünschten, nicht abtrennbaren \((Z)\)-Isomers 54b konnte durch Variation der Reaktionsbedingungen nicht unterdrückt werden. Das leichtflüchtige Bromid dagegen konnte als Lösung in Pentan (30-50 % Gewichtsprozent, Gehaltsbestimmung über \(^1\text{H}-\text{NMR}\) in mäßiger Ausbeute nach Optimierung in hoher Stereoselektivität hergestellt werden (bis zu 28:1 \(E:Z\) 51a:54a, Bestimmung über \(^1\text{H}-\text{NMR}\) und GC-MS). Die variable und mäßige Ausbeute (ca. 50 %) lässt sich durch die hohen Verluste beim distillativen Abtrennen des Pentans erklären. Die anstehende In-In-Kupplung wurde unter von Vasella121 entwickelten Bedingungen ohne weitere Optimierung durchgeführt, wobei die Diine 49a und 49b in zufriedenstellender Ausbeute erhalten wurde (Schema 7).
Schema 7 Synthese der Endiine 49a und 49b

a) 1.1 eq. NaHMDS, THF, DMF, 0 °C, 30 min; 1.2 eq. PMBCl, 0.05 eq. Bu₃N⁺I⁻, RT, 16 h, 67 %; b) 0.05 eq. Pd(PPh₃)₄, 2 eq. NEt₃, 0.1 eq. CuI, THF, rt, 18 h, 69 %; c) X = Br; 1.25 eq. NBS, 0.25 eq. AgNO₃, DMF, 0 °C bis RT, 4 h; ca. 50 %; d) 0.03 eq Pd₂dba₃, 0.25 eq CuI, 0.2 eq LiI, 4.2 eq PMP, DMSO, RT, 0.66 eq 50a, 19 h, 50 % (bezogen auf 50a); e) 0.03 eq Pd₂dba₃, 0.25 eq CuI, 0.2 eq LiI, 4.2 eq PMP, DMSO, RT, 0.66 eq 50b, 18 h, 56 % (bezogen auf 50b).

Tabelle 1 Versuche zur Synthese der Triene durch partielle Reduktion der Endiine

Bei kurzen Reaktionszeiten war noch deutlich Edukt 49 detektierbar neben einer beträchtlichen Menge an überreduzierten Verbindungen. Die ersten beiden Reduktionsschritte zum Trien (Edukt + 2 H₂) waren folglich nicht schneller als die nachfolgende Reduktion zum
Dien oder zum Alken. In allen Fällen überstieg außerdem laut GC die Anzahl der Peaks die mögliche Anzahl der Diene (3 bei cis-selektiver Hydrierung für Edukt + 3 H$_2$) und Monoene (ebenfalls 3 bei cis-selektiver Hydrierung für Edukt + 4 H$_2$). Das kann mit einer Isomerisierung der Doppelbindungen erklärt werden. Die sehr grosse Anzahl an entstehenden Verbindungen konnte auch mittels 1H-NMR-Spektroskopie des Rohproduktes nach wässriger Aufarbeitung bestätigt werden. Durch Weglassen des Chinolins oder Veränderung des Lösungsmittels konnte keine selektivere Reaktion erreicht werden (Einträge 1-3). Auch der Einsatz des Rosenmund-Katalysators (Palladium auf BaSO$_4$) führte zu ähnlichen Ergebnissen (Einträge 4-5). Als Alternative wurde die Reduktion mit aktiviertem Zink untersucht, die insbesondere für die Reduktion von propargylieren Alkoholen zu den Z-Allylalkoholen in der Literatur zum Einsatz kam. In einem Fall führte die Reduktion mit der Legierung Zn-Cu-Ag (1: 0.03 : 0.04), die unter Sauerstoffausschluss nach einem literaturbekannten Verfahren in Methanol hergestellt wurde, nach 14 h zu einem Gemisch aus 2 Produkten mit der Masse (Edukt+H$_2$) (Eintrag 6). Auf dieser Stufe blieb die Reaktion dann stehen, was mit einem Altern der Legierung erklärt werden kann.

Abbildung 14 Produkte, die bei Eintrag 6 (Tabelle 1) entstehen

Das 1H-NMR und GC-MS-Spektrum des Gemisches sind vereinbar mit den in Abbildung 14 gezeigten Verbindungen 56 und 57, die laut 1H-NMR und GC-MS im Verhältnis von 1.8 : 1 entstanden. Interessant ist in diesem Zusammenhang, dass die Dreifachbindung in Nachbarschaft zum Alkohol, trotz ihrer größeren sterischen Hinderung, schneller reduziert wird. Offenbar wirkt die Hydroxygruppe an dieser Position tatsächlich aktivierend. Daraufhin wurde das erhaltene Gemisch einer nochmaligen Reduktion unter identischen Bedingungen unterzogen. Leider wurde wieder eine Überreduktion wie in den Fällen zuvor beobachtet (Eintrag 7). Auch mit durch KCN aktiviertes Zink war keine selektive Reduktion zum
erwünschten Trien möglich (Eintrag 8). Zu diesem Zeitpunkt wurde auf weitere Versuche ausgehend vom Endiin verzichtet.

Stattdessen wurde überlegt, vom partiell reduzierten Dienin 58 auszugehen. Diese Strategie bietet den Vorteil, dass nur ein Reduktionsschritt zum erwünschten Trien notwendig ist, so dass im frühen Reaktionsverlauf eine bessere Kontrolle der Selektivität möglich sein sollte. Dessen Synthese (Schema 8) ist wie beim Endiin sehr einfach und bietet zudem den Vorteil, dass keine flüchtigen Zwischenstufen isoliert werden müssen.

\[
\begin{align*}
\text{a) } & 2 \text{ eq. CBr}_4, 4 \text{ eq. PPh}_3, \text{ DCM, } 0^\circ \text{C, 8 min, 87 \%}; \\
b) & 0.04 \text{ eq. } \text{Pd(PPh}_3)_4, 1.07 \text{ eq. Bu}_3\text{SnH, THF, 2 h}; \\
c) & 0.2 \text{ eq. } 50b, 0.11 \text{ eq. CuI, DIPEA, THF, 16 h, 36 \% (bezogen auf 50b).}
\end{align*}
\]

Kupplung mit dem Alkin 50b führte zum erwünschten Produkt 58 in mäßiger Ausbeute (Schema 8). Leider führten Reduktionsversuche unter ähnlichen Bedingungen wie oben für das Endiin 58 beschrieben nicht zum Erfolg (Tabelle 2). Es tauchten dieselben Selektivitätsprobleme auf wie zuvor beim Endiin 49 (Einträge 1-3). Interessanterweise schien die geschützte Verbindung 58 gegenüber aktiviertem Zn deutlich reaktionsträger als das ungeschützte Endiin 57, wobei die Reaktion keinerlei Selektivität aufzeigte (Eintrag 4).

![Schema 8](image_url)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Reagensien</th>
<th>Lösungsmittel</th>
<th>Zeit</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2, Lindlar Katalysator</td>
<td>Ethylacetat</td>
<td>30 min</td>
<td>Edukt nicht verbraucht Komplexe Mischung</td>
</tr>
<tr>
<td>2</td>
<td>H2, Lindlar Katalysator</td>
<td>Ethylacetat</td>
<td>4 h</td>
<td>Mischung an überreduzierten Verbindungen (+ 3 H2)</td>
</tr>
<tr>
<td>3</td>
<td>H2, Lindlar Katalysator</td>
<td>MeOH</td>
<td>einige Stunden</td>
<td>keine Selektivität Edukt + 3 H2</td>
</tr>
<tr>
<td>4</td>
<td>Zn/Cu/Ag</td>
<td>MeOH</td>
<td>RT, 16 h, Ultraschall</td>
<td>Langsame Reaktion komplexe Mischung</td>
</tr>
</tbody>
</table>

Tabelle 2 Versuche zur Synthese des Triens 55b durch partielle Reduktion des Endiins 58

Schema 9 \textit{Synthese des (Z)-Alkenylstannans 62}

\begin{align*}
\text{60} & \quad \xrightarrow{\text{a, b}} \quad \text{63} & \quad \xrightarrow{\text{c}} \quad \text{62}
\end{align*}

a) 2 eq. \textit{n}-BuLi, THF, -78 °C, 1 h, RT, 70 min; b) 1.05 eq. \textit{Bu}_{3}\text{SnCl}, THF, -78°C bis RT, 15 h, 50 \%; c) 2.25 eq. \textit{Cp}_{2}\text{ZrHCl}, THF, 30 min, SiO\textsubscript{2}, 99 \%.

Die Alkine 50a und 50b konnten durch silberkatalysierte Halogenierung in die entsprechenden Halogenalkine 66a, 66b und 66c in hoher Ausbeute überführt werden (Schema 10).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Equivalente Cp₂ZrHCl</th>
<th>Bedingungen</th>
<th>Protolyse</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1[a]</td>
<td>THF, 30 min</td>
<td>ges. NH₄Cl-Lösung, 15 min</td>
<td>Edukt:Produkt ca 1:1, Produkt verunreinigt mit tributylzinnhaltigen Verbindungen</td>
</tr>
<tr>
<td>2</td>
<td>1[a]</td>
<td>THF, 2 h</td>
<td>ges. NH₄Cl-Lösung, 1 h</td>
<td>Isomerisierung, Produkt verunreinigt mit tributylzinnhaltigen Verbindungen, Bu₃SnH-Bildung</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>THF, 1.5 h</td>
<td>SiO₂-Filtration</td>
<td>Produkt:Edukt 2:1 (¹H-NMR)</td>
</tr>
<tr>
<td>4</td>
<td>2.25</td>
<td>THF, 30 min</td>
<td>SiO₂-Filtration</td>
<td>99 % Ausbeute</td>
</tr>
</tbody>
</table>

[a] Edukt noch verunreinigt durch tributylzinnhaltige Produkte

Tabelle 3 Optimierung der Reduktion des Alkinylstannans 63 zum Z-Alkenylstannan 62
Schema 10 Synthese der Alkenylhalogenide 66a-c

a) 0.20 eq. AgNO₃, 1.3 eq. NBS, Aceton, 105 min, 98 %; b) 0.20 eq. AgNO₃, 1.25 eq. NIS, Aceton, 165 min; c) 0.20 eq. AgNO₃, 1.25 eq. NIS, Aceton, 4 h; 71 %.

Die Diimin-Reduktion zu den Z-Alkenylhalogeniden 67a, 67b und 67c musste optimiert werden (Tabelle 4). Während die Generierung des Diimins durch kupferkatalysierte Luftoxidation von Hydrazin zu schlechten Ausbeuten führte (Einträge 1 und 2), waren die Ergebnisse ausgehend von Dikaliumdiazodicarboxylat als Diimin-Vorläufer vielversprechend. Beim Verfahren entsteht bei Säurezusatz die Diazodicarbonsäure, die in situ zum Diimin zerrällt. Es zeigte sich jedoch, dass bei Verwendung von überschüssigen Reagentien eine deutliche Überreduktion zu den vollständig gesättigten Brom- bzw. Iodalkanen 68a, 68b oder 68c stattfindet (Einträge 3-5) und dass die Zugabe der Reagentien am besten in 2 Portionen erfolgen sollte (Eintrag 5). Optimale Ergebnisse werden erzielt, wenn der Reaktionsverlauf sorgfältig kontrolliert (mit GC-MS) und die Reaktion dann abgebrochen wird, wenn die Menge an Edukt der Menge an überreduziertem Material entspricht (Einträge 6 und 7).

\[\text{OR} \quad \xrightarrow{N_2H_2} \quad \text{OR} \quad \text{X} \]

\begin{align*}
66a & (R=H, X=Br) & 67a & (R=H, X=Br) & 68a & (R=H, X=Br) \\
66b & (R=H, X=I) & 67b & (R=H, X=I) & 68b & (R=H, X=I) \\
66c & (R=PMB, X=I) & 67c & (R=PMB, X=I) & 68c & (R=PMB, X=I)
\end{align*}

\begin{tabular}{|c|c|c|c|c|}
\hline
N\text{r} & X=, & Reagentien & L\text{ösungs}- & Zeit & Ergebnisse \\
 & R= & & mittel & & \\
\hline
1 & Br, H & N\text{2}H\text{4},H\text{2}O (10 eq), CuSO\text{4},5H\text{2}O (0.2 eq), Luft, 2 Portionen & EtOH & 20 h & 36 \% \\
2 & I, H & N\text{2}H\text{4},H\text{2}O (5 eq), CuSO\text{4},5H\text{2}O (0.1 eq), Luft & EtOH & 16 h & 45 \% \\
3 & Br, H & K\text{+}(\text{OOCN}=\text{NCOO})\text{+}K (6 eq), Pyridin (14 eq), HOAc (12 eq) in 2 Portionen & MeOH & 20 h & 59 \% (Verhältnis[a] 67a:68a 6:1) \\
4 & I, H & K\text{+}(\text{OOCN}=\text{NCOO})\text{+}K (5 eq), Pyridin (11.5 eq), HOAc (10 eq) & MeOH & 16 h & Verhältnis[a] 67b:68b 2.5:1 \\
5 & I, H & K\text{+}(\text{OOCN}=\text{NCOO})\text{+}K (2.5 eq), Pyridin (5.75 eq), HOAc (5 eq) & MeOH & 4 h & Verhältnis[a] 67b:68b 3.4:1 \\
6 & I, H & K\text{+}(\text{OOCN}=\text{NCOO})\text{+}K (1.88 eq), Pyridin (4.32 eq), HOAc (3.75 eq) in 2 Portionen & MeOH & 20 h & 81 \% (Verhältnis[a] 67b:68b 15:1) \\
7 & I, PMB & K\text{+}(\text{OOCN}=\text{NCOO})\text{+}K (1.88 eq), Pyridin (4.32 eq), HOAc (3.75 eq) in 2 Portionen & MeOH & 20 h & 92 \% (Verhältnis[a] 66c:67c:68c 1:20:0.6) \\
\hline
\end{tabular}

\text{[a]} \text{Bestimmung über GC-MS}

\text{Tabelle 4} \quad \text{Optimierung der Diimin-Reduktion der Halogenalkine 66a-66c zu den Z-Alkenylhalogeniden 68a-68c}
\[
\begin{align*}
68a & (R=H, X=Br) \\
68b & (R=H, X=I) \\
68c & (R=PMB, X=I)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Nr</th>
<th>X=, R=</th>
<th>Katalysator</th>
<th>Lösungsmittel</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br, H</td>
<td>Pd(CH(_3)CN)_2Cl(_2) (0.05eq)</td>
<td>DMF/THF 17/1</td>
<td>RT, 18 h</td>
<td>Keine Reaktion, Zusatz von AsPh(_3) und Pd(_2)dba(_3) haben keinen Einfluss</td>
</tr>
<tr>
<td>2</td>
<td>Br, H</td>
<td>Pd(CH(_3)CN)_2Cl(_2) (0.05eq)</td>
<td>DMF/THF 17/1</td>
<td>90°C, 2h</td>
<td>Zersetzung</td>
</tr>
<tr>
<td>3</td>
<td>I, H</td>
<td>Pd(_2)dba(_3) (0.05 eq)</td>
<td>DMF/THF 16/1</td>
<td>RT, 5h</td>
<td>ca. 50 %</td>
</tr>
<tr>
<td>4</td>
<td>I, PMB</td>
<td>Pd(CH(_3)CN)_2Cl(_2) (0.05eq)</td>
<td>DMF/THF 28/1</td>
<td>RT, 16 h</td>
<td>74 %</td>
</tr>
</tbody>
</table>

Tabelle 5 Optimierung der Stille-Kupplung

<table>
<thead>
<tr>
<th>Nr</th>
<th>Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4 eq. DDQ, CH(_2)Cl(_2)/H(_2)O 20/1, RT, 30 min</td>
</tr>
<tr>
<td>2</td>
<td>2 eq. CAN, CH(_3)CN/H(_2)O 9/1 0°C, 45 min</td>
</tr>
<tr>
<td>3</td>
<td>2 eq. Ph(_3)C(^+)BF(_4)^-, DCM/H(_2)O 5/1, 0°C, 5 min</td>
</tr>
<tr>
<td>4</td>
<td>DCM/TFA/Thioanisol 43/1/1, -15°C, 30 min</td>
</tr>
</tbody>
</table>

Tabelle 6 Versuche zur Entschärfung des Triens 55b

Als letztes sollte noch überprüft werden, ob die para-Methoxy-Benzyl-gruppe sich in Gegenwart des Triens abspalten lässt (Tabelle 6). Diese Fragestellung könnte im Verlauf der Synthese von Bedeutung sein, da die para-Methoxy-Benzylschutzgruppe als mögliche Phosphat-Schutzgruppe in Betracht kommt (für eine weitergehende Diskussion siehe Kapitel
4.1.4.4). Leider war dies weder unter oxidativen (Einträge 1, 2) noch unter sauren Bedingungen (Einträge 3, 4) möglich.130 In allen Fällen wurde eine Zersetzung des Triens (vermutlich durch Polymerisation) beobachtet. Diese Modellstudien suggerieren, dass die Stille-Kupplung am besten ohne Alkohol-Schutzgruppe in einem möglichst späten Schritt durchgeführt werden sollte.

4.1.3. Synthese des C3-C11-Gerüsts (87) mit allen Stereozentren

Schema 11 Synthese des C3-C9 Gerüsts 74 mit der ersten Stereotriade

a) 2.4 eq. COCl₂, 10%ige NaOH, Et₂O, Toluol, 0°C bis RT, 6 h, 85%; b) 1 eq. BuLi, THF, -78°C, 30 min, CH₃CH₂C(O)Cl, -78°C, 35 min, RT, 135 min, 98%; c) 1.1 eq. BuLi, THF, -78°C, 30 min, 3 eq. Allyliodid, -78°C, 18 h, 80%; d) 1.1 eq. LiBH₄, 1.1 eq. H₂O, Et₂O, RT, 75 min, 94%; e) 1.5 eq. (COCl)₂, 2 eq. DMSO, CH₂Cl₂, -78°C, 100 min, 5 eq. NEt₃, -78°C bis RT; f) 1.2 eq. Bu₂BOTf, 1.35 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 45 min, -78°C, 46, RT, 90 min, H₂O₂, pH7, 68%; g) 10 eq. MOMCl, 13 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 1 h, RT, 15 h, 95%; h) 1.1 eq. LiBH₄, 1.1 eq. H₂O, Et₂O, RT, 80 min, 78%; i) 1.2 eq. TBDPSCl, 2 eq. Imidazol, DMF, 17 h, 97%.

Alle Versuche mit diesem so hergestellten Reagenz
lieferten reproduzierbare Ergebnisse mit hoher Ausbeute und Stereoselektivität für das Aldolprodukt 73 (68 % über 2 Stufen). Auftretende Nebenprodukte (andere Diastereomere) konnten hierbei durch einfaches Umkristallisieren aus Ethylacetat und Cyclohexan entfernt werden.

An dieser Stelle erfolgte die Einführung der bei der sauren Lactonisierung abzuspalten Schutzgruppe. Der Alkohol konnte in hoher Ausbeute als Methoxymethyl- (MOM-)ether 74 unter Standardbedingungen geschützt werden. Nach Reduktion zum Alkohol 75 mit dem oben beschriebenen „LiBH₃OH“ erfolgte Maskierung des primären Alkohols als tert-Butyldiphenylsilyl(TBDPS-)ether 76a.

Schema 12 Synthese des C3-C13 Gerüsts

a) 1.1 eq. 9-BBN, THF, 0°C, RT, 19.5 h, 3.5 eq. NaOH, H₂O₂, 24 h, 100 %; b) 1.5 eq. DMP, 11.5 eq. NaHCO₃, CH₂Cl₂, 1 h; c) 1.2 eq. Bu₃BOTf, 1.35 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 45 min, -78°C, RT, 90 min, H₂O₂, pH 7, 91 % über 2 Stufen; d) 5 eq. Me₃Al, 5 eq. Cl⁺H₂N(Me)OMe, THF, -10 °C bis 0 °C, 15 h; e) 10 eq. MOMCl, 13 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 1 h, RT, 19 h, 86 % über 2 Stufen; f) 3 eq. BuLi, 6 eq. Me₃SiC≡CH, THF, -78°C bis -10 °C, 45 min, 84 %.
Die stereoselektive Reduktion zum Alkinol 86a bzw. 87a und 87b (Herstellung von 85b Kapitel 4.1.4) wurde mit unterschiedlichen Reagentien untersucht (Tabelle 7). Das für Alkinone geeignete, von Midland entwickelte Alpin-Boran® 88, in situ aus 9-BBN und (+)-α-Pinen hergestellt, führte auch nach mehreren Tagen zu keinem erkennbaren Umsatz (Eintrag 1). Dies kann mit der sterischen Hinderung des Ketons erklärt werden. In der Literatur sind vor allem Beispiele mit sehr einfachen Ketonen bekannt. Das von (R)-Phenylglycin abgeleitete Oxazaborolidin 89 wurde als nächstes untersucht, da dieses schon an trimethylsilyl-substituierten Alkinonen erfolgreich angewandt wurde. Zwar konnte in einem Fall eine gute Ausbeute von 71% an erwünschtem Produkt 86a erzielt werden, doch war dies leider nicht reproduzierbar (Eintrag 2). In weiteren Versuchen wurden deutlich schlechtere Ausbeuten erreicht. Als ein gravierendes Problem bei diesen Reduktionen erwies sich auch die Abtrennung des chiralen Liganden vom Hauptprodukt. Durch gewöhnliche Flash-Chromatographie war dies nicht zu bewerkstelligen. Aus diesen Gründen wurde das von Corey et al. entwickelte CBS-Oxazolidinon 90 untersucht, welches für terminale Alkinone geeignet ist (Eintrag 3, zur Variation der Silylschutzgruppe P siehe Kapitel 4.1.4). In der Tat konnte in diesem Fall eine hohe Ausbeute an erwünschtem Produkt erreicht werden. Auch traten die Reinigungsprobleme, wie mit dem Liganden 89, nicht auf, was vermutlich an der fehlenden NH-Bindung im CBS-Liganden liegt. Im 1H-NMR des Produkts 87b konnte das andere Epimer nicht detektiert werden.
<table>
<thead>
<tr>
<th>Nr</th>
<th>P=, R=</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBDPS, H</td>
<td>3 eq. 88, THF, 65 h</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>2</td>
<td>TBDPS, SiMe₃</td>
<td>1 eq. 89, 1.2 eq. BH₃.Me₂S, THF, 0 °C, 40 min</td>
<td>71 %, variable Ergebnisse, Reinigung schwierig</td>
</tr>
<tr>
<td>3</td>
<td>TBS, H</td>
<td>2 eq. 90, 5 eq. BH₃.Me₂S, THF, -30 °C, 1 h</td>
<td>84 %</td>
</tr>
</tbody>
</table>

Tabelle 7
Versuche zur stereoselektiven Reduktion der Alkinone 84a, 85a und 85b

Als nächstes wurde die Synthese des Alkinons 85 (bisher ein Nebenprodukt bei der Herstellung von 84) untersucht.

Schema 13
Entschützung des TMS-Alkinols

a) 1.1 eq. K₂CO₃, MeOH, 22 h, 84 %.

Während die Entschützung des Alkinols 86a mit Kaliumcarbonat in Methanol problemlos verlief (Schema 13), führte die entsprechende Behandlung des Alkinons 84b zu einer extensiven Zersetzung (Tabelle 8, Eintrag 1, zur Verwendung der TBS-Schutzgruppe siehe Kapitel 4.1.4). Die Gründe hierfür sind nicht ganz klar, doch scheint der Michael-Akzeptor-Charakter des Alkinons 84b kombiniert mit der Azidität des α-Protons nicht mit Basen oder Nukleophilen kompatibel zu sein. Durch Behandlung mit 0.1 % Borax als Base in einem Methanol-Wasser-Gemisch bei Raumtemperatur wurde neben dem erwünschten entschützten Alkinon 85b in ähnlichen Mengen das β-Eliminierungsprodukt 91 beobachtet (Eintrag 2).¹⁴⁰ Dies war so nicht zu erwarten, da die MOM-Gruppe eigentlich keine gute Abgangsgruppe ist. Dennoch konnte die Umsetzung mit diesem Reagens schließlich erfolgreich durchgeführt werden, indem das Borax als wässrige Lösung langsam zum TMS-geschützten Alkinon in Methanol bei −10 °C zugegeben wurde. Anschließendes Auftauen auf RT ergab das Alkinon 85b in hoher Ausbeute (Eintrag 3).
Als Alternative zur stereoselektiven Reduktion wurde auch der stereoselektive nukleophile Angriff auf den Aldehyd 92 untersucht (Schema 14). Das Aldol-Addukt 81a wurde nach MOM-Schützung zu 93 zum Alkohol 94 reduziert und mit dem Dess-Martin-Periodinan zum Aldehyd 92 oxidiert. Mit den Carreira-Bedingungen, d.h. mit Trimethylsilylacetylen als Nucleophil, Zink-Triflat als aktivierender Lewis-Säure und (+)-N-Methylephedrin als chiralem Liganden, konnte leider nur ein sehr langsamer Reaktionsverlauf beobachtet werden.141 Das einzig identifizierbare Produkt war der durch β-Eliminierung entstandene Aldehyd 95, neben beträchtlichen Mengen an Edukt. Auch hier scheint also die Anwesenheit einer potentiellen Abgangsgruppe in β-Position zum Keton den Reaktionsverlauf ungünstig zu beeinflussen. Diese Route wurde deshalb nicht weiter verfolgt.
Schema 14 Versuch, über nukleophile Substitution das Alkinol 87a herzustellen

- a) 10 eq. MOMCl, 13 eq. (iPr)_2NEt, CH_2Cl_2, 0°C, 24 h, RT, 19 h, 83 %; b) 1.5 eq. LiBH_4, 1.5 eq. H_2O, Et_2O, RT, 90 min, 81 %; c) 1.5 eq. DMP, 11.5 eq. NaHCO_3, CH_2Cl_2, 1 h; d) 1.1 eq. Zn(OTf)_2, 1.2 eq. (+)-N-Methylephedrin, 1.5 eq. Me_3SiC=CH, Toluol, 24 h.

4.1.4. Synthese des Lactons (113)

Die Verbindung 87a, die alle Stereozentren des Naturstoffs enthält, musste nun an der C-11-Hydroxygruppe geschützt werden. Die Schutzgruppe sollte orthogonal sowohl zur TBDPS-Schutzgruppe an C-3 (Numerierung wie im Cytostatin) als auch zu den MOM-Schutzgruppen sein.

Als erstes wurde die para-Methoxybenzyl (PMB)-Schutzgruppe untersucht (Tabelle 9). Diese Schutzgruppe sollte zum einen eine Fluorid-Abspaltung der TBDPS-Gruppe aushalten, zum anderen sollte sie die geplante Abspaltung der MOM-Gruppen für die Lactonisierung überstehen. Die Deprotonierung des Alkohols 87a mit einer starken Base wie Natriumhexamethyldisilazid gefolgt von einem Abfangen des Alkoholats mit para-Methoxybenzyliodid (in situ) aus para-Methoxybenzylichlorid und katalytischen Mengen
Tetrabutylammoniumiodid generiert)130 führte nur zu einer geringen Ausbeute (33\%) an geschütztem Produkt \textit{96}. Interessanterweise konnte trotz Verwendung von überschüssigen Reagentien noch Edukt reisoliert werden (11 \%), wobei der größte Teil der eingesetzten Substanz sich jedoch zersetzte (Eintrag 1). Vermutlich wurde die Silylschutzgruppe partiell durch das intermediäre Alkoholat abgespalten. Deshalb wurde versucht, die PMB-Gruppe mit dem Trichloracetimidat \textit{97} einzuführen.130 Jedoch konnte dies mit verschiedenen Säuren und Lösungsmitteln nicht bewerkstelligt werden (Einträge 2-5). In den meisten Fällen konnte gar kein Umsatz beobachtet werden (Einträge 2, 4, 5). Dies spricht für eine ausgeprägte sterische Hinderung an der C-11-Hydroxygruppe. Andererseits zersetzte sich das Produkt unter forcierten Bedingungen (2 mol\% Trifluormethansulfonsäure, Raumtemperatur, Eintrag 3), vermutlich unter Abspaltung der MOM-Schutzgruppen. Als alternative Schutzgruppe wurde als nächstes die para-Methoxyphenyl-Schutzgruppe (PMP-) untersucht (Eintrag 6), die sich ähnlich wie PMB- unter oxidativen Bedingungen (z. B. mit Cerammoniumnitrat) abspalten lassen und ebenfalls weniger säureempfindlich als die MOM-Schutzgruppe sein sollte.143 Diese Schutzgruppe lässt sich aufgrund ihres phenolischen Charakters unter Mitsunobu-Bedingungen mit dem entsprechenden Phenol \textit{98} einführen.143 In diesem Fall konnte jedoch selbst nach 24-stündigem Erhitzen auf 90°C kein Umsatz beobachtet werden, was wiederum für den sterisch gehinderten Charakter der Hydroxygruppe spricht. Als nächstes wurden Silylschutzgruppen untersucht, die schwerer abspaltbar als die TBDPS-Gruppe sein sollten. Als erste wurde die Triisopropylsilyl-Schutzgruppe (TIPS) untersucht, die eine Abspaltung von TBDPS unter basischen Bedingungen überstehen sollte144 und gegenüber Säuren eine ausreichende Stabilität aufweist. Leider konnte auch durch 24-Stündiges Erhitzen auf 90 °C mit TIPSCl und Imidazol in DMF kein Umsatz beobachtet werden (Eintrag 7). Schließlich gelang es jedoch trotz der offensichtlichen sterischen Hinderung an der C-11-OH-Position die TBDPS-Schutzgruppe in einer überraschend guten Ausbeute einzuführen (Eintrag 8). Aufgrund der sterischen Hinderung an der sekundären Position wurde hier darauf spekuliert, dass die primäre TBDPS-Gruppe des bis-Silylethers \textit{99a} sich deutlich leichter abspalten lassen sollte, womit die oben erwähnten Orthogonalitätskriterien erfüllt wären.
OMOMTBDPSO OMOMOH OMOMTBDPSO OMOMOSG

![Chemical structure](image)

Tabelle 9 Versuche zur Schützung der C-11-OH-Gruppe

<table>
<thead>
<tr>
<th>Nr</th>
<th>SG</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMB</td>
<td>1.1 eq. NaHMDS, DMF, 0 °C, 30 min, 1.2 eq. PMBCl, 0.05 eq. Bu₄N⁺I, RT, 24 h</td>
<td>30 % Produkt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 % Edukt</td>
</tr>
<tr>
<td>2</td>
<td>PMB</td>
<td>3 eq. 97, 0.02 eq. TfOH, Et₂O, 0 °C, 30 min</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>3</td>
<td>PMB</td>
<td>3 eq. 97, 0.02 eq. TfOH, Et₂O, RT °C, 15 min</td>
<td>komplett Zersetzung</td>
</tr>
<tr>
<td>4</td>
<td>PMB</td>
<td>2 eq. 97, 0.1 eq. CSA, CH₂Cl₂, RT, 40 h</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>5</td>
<td>PMB</td>
<td>2 eq. 97, 0.05 eq. BF₃.Et₂O, CH₂Cl₂, -78 °C bis RT, 18 h</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>6[a]</td>
<td>PMP</td>
<td>3.2 eq. DEAD, 3 eq. PPh₃, 6.8 eq. 98, THF, RT bis 90 °C, 24 h</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>7</td>
<td>TIPS</td>
<td>1.5 eq. TIPSCI, 2.5 eq. Imidazol, DMF, RT bis 90 °C, 24 h</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>8</td>
<td>TBDPS</td>
<td>1.5 eq. TBDPSCl, 2.5 eq. Imidazol, DMF, 21 h</td>
<td>86 %</td>
</tr>
</tbody>
</table>

[a] bei Mitsunobu-Bedingungen ist Konfigurationsumkehr an C-11 zu erwarten.

Als letztes wurde die Desilylierung des bis-Silylethers 99a mit neutralem Aluminiumoxid, das partiell mit 1.5 % Wasser deaktiviert wurde, in Hexan erprobt (Eintrag 6). Allerdings konnte hier selbst nach mehrstündiger Behandlung mit Ultraschall kein Umsatz beobachtet werden.
Schema 15 Synthese des TBS-Ethers 99b

a) 1.3 eq. TBSCl, 3 eq. Imidazol, DMF, 15 h, 100 %; b) 1.1 eq. 9-BBN, THF, 0°C, RT, 15 h, 3.5 eq. NaOH, H₂O₂, 24 h, 83 %; c) 2.6 eq. (COCl)₂, 6 eq. DMSO, CH₂Cl₂, -78°C, 150 min, 7.5 eq. NEt₃, -78°C bis 0 °C; d) 1.18 eq. Bu₂BOTf, 1.36 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 1 h, -78°C, 46, 50 min, RT, 130 min, pH 7, H₂O, 0°C, MeOH, H₂O₂, H₂O, RT, 90 min, 89 % über 2 Stufen; e) 2 eq. TBSCI, 4 eq. NEt₃, 0.1 eq. DMAP, DCM, 0 °C, 30 min, RT, 15 h, 97 %; f) 4.6 eq. Me₃Al, 5 eq. Cl⁻H₂N(Me)OMe, THF, -20 °C bis 0 °C, 15 h, 84 %; g) 10 eq. MOMCl, 13 eq. (iPr)₂NEt, CH₂Cl₂, 0°C, 1 h, RT, 18 h, 94 %; h) 3 eq. BuLi, 6 eq. Me₃Si=CH, THF, -78°C bis -10°C, 75 min; i) 0.01 eq. Na₂B₄O₇, MeOH/H₂O, 5/1, -10°C bis RT, 70 min, 95 % über 2 Stufen; j) 2 eq. 90, 5 eq. BH₃·Me₂S, THF, -30 °C, 1 h, 84 %; k) 1.35 eq. TBDPSCI, 2.5 eq. Imidazol, DMF, 15 h, RT.
Die selektive Schützung der primären Hydroxy-Gruppe in 108 mit TBSCI und NEt₃ mit katalytischen Mengen N,N-Dimethylaminopyridin (DMAP) war jedoch unproblematisch (Schritt e). Mit der neuen Verbindung 99b gelang dann die selektive Entschützung der primären Hydroxy-Funktion in ausgezeichneter Weise (Tabelle 10, Eintrag 7).

![Schema 16 Modellreaktion zur selektiven Entschützung von propargylischen TBDPS-Ethern](image)

a) 1.2 eq. TBDPSCI, 3 eq. Imidazol, DMF, 48 h, 95 %; b) 1.2 eq. BuLi, THF, -40°C, 1 h, 3 eq. 1/x(HCHO)x, -78 °C bis RT, 5 h, 70 %; c) 1.2 eq. TBDPSCI, 3 eq. Imidazol, DMF, 15 h, 90 %; d) 10 eq. NH₄F, MeOH, 82 %.

Bei der nun anstehenden Lactonisierung ging es darum, die MOM-Schutzgruppen selektiv abzuspalten, wobei die sauren Bedingungen zu einer gleichzeitigen Lactonisierung führen sollten (Tabelle 11). Dies gelang mit dem PMB-geschützten Vorläufer 110a nicht (Eintrag 1). Durch Erhitzen der Verbindung mit 1N HCl in THF gelang zwar eine Abspaltung der MOM-Schutzgruppen, doch gleichzeitig wurde die PMB-Gruppe abgepalten, was zu einer sehr komplexen, nicht weiter analysierbaren Mischung führte.
Zu diesem Zeitpunkt wurde die PMB-Schutzgruppe aufgrund der mit ihr verbundenen Schwierigkeiten (schwierige Einführung, keine Orthogonalität zu den MOM-Schutzgruppen) aufgegeben. Der TBDPS-geschützte Vorläufer 110b wurde zunächst mit Trimethylsilylbromid (TMSBr) in Dichlormethan bei tiefer Temperatur behandelt (Eintrag 2). Unter diesen Bedingungen gelang zwar eine vollständige Abspaltung der MOM-Schutzgruppen, jedoch konnte das nicht lactonisier te Intermediat 112 in beträchtlichen Mengen isoliert werden. Dies mag daran liegen, dass unter aprotischen Bedingungen die TMS-Ether gebildet werden, die weit weniger zur Lactonisierung neigen als die entsprechenden Alkohole. Dieses Intermediat wurde dann einer weiteren Behandlung mit TMSBr bei höherer Temperatur (0 °C) unterworfen, wobei jedoch neben dem erwünschtem α,β-ungesättigten Lacton 113 das Michael-Additions-Produkt 114 als Epimerengemisch generiert wurde (Eintrag 3). Mit Pyridinium para-Toluolsulfonat als Säure in siedendem 2-Propanol entstand das erwünschte Lacton 113 als Hauptprodukt (Eintrag 4). Auch durch Erhitzen mit Tetrabrommethan in 2-Propanol konnte das Hauptprodukt in hoher Ausbeute isoliert werden (Eintrag 5). Bei dieser Methode entsteht vermutlich HBr in situ, das dann als Säure das eigentliche Reagens darstellt. Die Verwendung des sekundären Alkohols Isopropanol als Lösungsmittel dient dazu, eine mögliche Abspaltung der TBDPS-Gruppe als Nebenreaktion zu unterdrücken.\(^\text{151}\)
OMOM OMe
OMOMOSG
OMeO
OH OH OTBDPS
OMeO
112 114
Br
O OH OTBDPS
O
110a (SG=PMB)
110b (SG=TBDPS)

<table>
<thead>
<tr>
<th>Nr</th>
<th>SG</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMB</td>
<td>1N HCl, THF, 60 °C, mehrere Stunden</td>
<td>komplexe Mischung</td>
</tr>
<tr>
<td>2</td>
<td>TBDPS</td>
<td>10 eq. TMSBr, -30 °C, 8 h, CH₂Cl₂</td>
<td>113:112 2:1</td>
</tr>
<tr>
<td>3</td>
<td>TBDPS</td>
<td>10 eq. TMSBr, 0 °C, 40 min, CH₂Cl₂</td>
<td>113:114 40:60</td>
</tr>
<tr>
<td>4</td>
<td>TBDPS</td>
<td>0.5 eq. PPTS, 2-Propanol, 82°C, 18 h</td>
<td>113 (Hauptprodukt)</td>
</tr>
<tr>
<td>5</td>
<td>TBDPS</td>
<td>0.5 eq. CBr₄, 2-Propanol, 82°C, 14 h</td>
<td>83 % (113)</td>
</tr>
</tbody>
</table>

Tabelle 11 Optimierung der Lactonisierung

4.1.5. Abschluss der Synthese

4.1.5.1. Iodierung des Alkins, Phosphorylierung der C-9-OH-Gruppe, Enzschützung der C-11-OTBDPS-Gruppe

Als erster Schritt wurde die Iodierung des Alkins 113 untersucht (Tabelle 12). Überraschenderweise führte die silberkatalysierte Iodierung mit N-Iodsucinimid (NIS) in Dimethylformamid zu einem nennenswerten Umsatz (Eintrag 1). Dies liegt wohl an der sterischen Hinderung durch die benachbarte TBDPS-Gruppe. Als Alternative wurde die Iodierung mit Iod-Lewis-Basen-Komplexen untersucht. Die Basen dienen zum einen dazu, den bei der Iodierung entstehenden Iodwasserstoff abzufangen, zum Anderen dazu, Additionsprodukte des Iods an die Dreifachbindung zu vermeiden. Mit dem Iod-Morpholin-Komplex in Toluol wurde eine zufriedenstellende Ausbeute an erwünschtem Iodid 115 erreicht (Eintrag 2). Eine weitere Verbesserung der Ausbeute (76 %) konnte mit dem Iod-(N,N)-Dimethylaminopyridin (DMAP) Komplex erzielt werden (Eintrag 3). Mit Iod und 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) konnte dagegen in Toluol kein Umsatz beobachtet werden (Eintrag 4).

![Chemische Formel des Alkins 113 und des Iodids 115](attachment:image.png)

Tabelle 12: Optimierung der Iodierung des Alkins 113

<table>
<thead>
<tr>
<th>Nr</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 eq. NIS, 0.05 eq. AgNO₃, 0 °C bis RT, 18 h</td>
<td>sehr schleppende Reaktion</td>
</tr>
<tr>
<td>2</td>
<td>5 eq. I₂, 20 eq. Morpholin, Toluol, RT, 18 h bis 50 °C, 2.5 h</td>
<td>60 %</td>
</tr>
<tr>
<td>3</td>
<td>5 eq. I₂, 15 eq. DMAP, Toluol, 50 °C, 3 h</td>
<td>76 %</td>
</tr>
<tr>
<td>4</td>
<td>5 eq. I₂, 15 eq. DBU, Toluol, 50 °C, 3 h</td>
<td>keine Reaktion</td>
</tr>
</tbody>
</table>
funktionalisiertes Alkin gefunden werden (nicht gezeigt). Andere Iodverbindungen (Alkenyliodide, Aryliodide) konnten unter diesen Bedingungen nicht reduziert werden (nicht gezeigt). Diese Umwandlung ist zwar in diesem Falle präparativ nutzlos, stellt jedoch den ersten Bericht über die Reduktion eines Alkinyliodids durch Triphenylphosphin dar.

![Schema 18](image)

Schema 18 *Reduktion von Alkinyliodiden mit Phosphor(III)-Reagensien*

a) Phosphoramidit als Reduktionsmittel ?; b) Tetrazol als Säure notwendig; c) Phosphit als Reduktionsmittel ?

Zur Lösung dieser Schwierigkeiten wurde die Reihenfolge der Schritte in der Synthese umgekehrt. Ausgehend vom terminalen Alkin 113 konnte der Phosphotriester 118a mit der Phosphoramidit-Methode in quantitativer Ausbeute hergestellt werden (Eintrag 3).

Die Iodierung mit Iod in Gegenwart von Basen (siehe Tabelle 12) wäre zu diesem Zeitpunkt ungünstig, da diese basischen Bedingungen sicherlich nicht mit der β-Cyanoethyl-
Schutzgruppe kompatibel wären. Deshalb wurde entschieden, zu diesem Zeitpunkt die TBDPS-Gruppe abzuspalten (Tabelle 14).

![Chemische Strukturformel 118a zu 122a und 121]

<table>
<thead>
<tr>
<th>Nr</th>
<th>Bedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46 eq. NH₄F, MeOH, 18 h</td>
<td>121 ist Hauptprodukt</td>
</tr>
<tr>
<td>2</td>
<td>10-20 eq. TBAF, 400 eq. HOAc, THF, RT bis 70 °C, 18 h</td>
<td>Schleppende Reaktion</td>
</tr>
<tr>
<td>3</td>
<td>HF.Pyridin (70% HF)/THF, 17/83, 24 h</td>
<td>84 %</td>
</tr>
</tbody>
</table>

Tabelle 14 **Optimierung der Entschützung des TBDPS-Ethers 118a**

Erfreulicherweise war die nachfolgende Iodierung des entschützten, weniger sperrigen Alkins 122a im Gegensatz zu 113 durch silberkatalysierte Reaktion mit N-Iodosuccinimid (NIS) unter nicht-basischen Bedingungen ohne weiteres möglich (Schema 19).

![Schema 19 Iodierung des Alkins 122a](image)

Schema 19 Iodierung des Alkins 122a

![Schema 20 Herstellung des Modell-Iodalkins 119](image)

Schema 20 Herstellung des Modell-Iodalkins 119

a) 1.2 eq. TBDPSCl, 2 eq. Imidazol, DMF, 77 %; b) 1.25 eq. NIS, 0.2 eq. AgNO₃, Aceton, RT, 4.5 h; 96 %.

4.1.5.2. Diimin-Reduktion

Als nächstes wurde die Diimin-Reduktion des Alkinyliodids 123a untersucht. Grundsätzlich sind dabei folgende Nebenreaktionen zu erwarten: die Weiterreduktion des entstehenden Z-Alkenyliodids 124a zum vollständig gesättigten Alkyliodid, die Reduktion der Doppelbindung im ungesättigten Lacton zu 125a, die Ringöffnung des Lactons durch Hydrazin und der Michael-Angriff des Hydrazins an das ungesättigte Lacton. Die erste Reaktion sollte kein Problem darstellen, wenn man den Reaktionsverlauf sorgfältig kontrolliert (siehe Kapitel 4.1.2). Die zweite Nebenreaktion sollte dadurch, dass konjugierte, elektronenarme Doppelbindungen gegenüber Diimin weniger reaktiv sind,⁵⁸ ebenfalls kein größeres Problem darstellen. Am gravierendsten sind wohl die Nebenreaktionen durch Hydrazin, das durch Disproportionierung von Diimin als Nebenprodukt entstehen kann.⁵⁸ In der Tat wurden in ersten Versuchen durch Verwendung der an den Modellverbindungen 66a-c optimierten Bedingungen (Kapitel 4.1.2), d.h. durch Behandlung mit

Durch Behandlung mit Essigsäure und Kaliumazodicarboxylat in Methanol (Eintrag 1) war eine deutliche Zersetzung des Eduktes 126 zu beobachten (35 % übrig), obwohl der Umsatz zum Alkenyliodid 130 noch unvollständig war (33 % Edukt 119). In einem zweiten Versuch wurde versucht, durch Zugabe eines Konkurrenzsubstrats für das α,β-ungesättigte Lacton (Ethylacrylat) in einem fünffachen Überschuss, die Zerstörung des ungesättigten Lactons 126 zurückzudrängen (Eintrag 2). Leider führte dies zu einer vollständigen Inhibition der Reaktion. In weiteren Versuchen wurde der Einfluss des Lösungsmittels auf den Reaktionsverlauf näher untersucht. Im weniger polaren Acetonitril musste ein größerer Überschuss an Kaliumazodicarboxylat verwendet werden (Eintrag 3), da die Reaktion dort wesentlich langsamer verlief. Dies kann mit der nur geringen Löslichkeit des Reagens in diesem Lösungsmittel erklärt werden. Interessanterweise konnten nach fortgeschrittenem Umsatz (85 % Alkenyliodid 130) noch 53 % des ungesättigten Lactons 127 nachgewiesen werden. Nur 16 % wurden zum gesättigten Lacton 129 reduziert, während der Rest bei der Aufarbeitung in der wässrigen Phase verblieb (Erklärung siehe unten). In diesem Fall war also die Selektivität geringfügig höher als in Methanol. In Dimethylsulfoxid (DMSO) hingegen fand bei fortgeschrittenem Umsatz (83 % Alkenyliodid 130) eine nahezu vollständige Zersetzung des ungesättigten Lactons 127 statt (Eintrag 4, 12 % ungesättigtes Lacton 127), wobei der größte Teil wiederum in der wässrigen Phase verblieb (nur 16 % gesättigtes Lacton 129). In DMSO war die Selektivität also deutlich schlechter als in Methanol. Als nächstes
wurde Dioxan, ein aprotisches, vergleichsweise unpolarer Lösungsmittel erprobt (Eintrag 5). Zum einen musste ein sehr großer Überschuss an Kaliumazodicarboxylat verwendet werden, zum anderen war der Reaktionsverlauf äußerst schleppend. Selbst nach 40 h waren noch 28 % Alkinyliodid 119 vorhanden. Auch die Nebenreaktionen waren langsamer (69 % ungesättigtes Lacton 127), allerdings wurde aufgrund des unvollständigen Umsatzes nach weiteren Alternativen gesucht. In 2-Propanol wurden am Modellsystem die besten Resultate erzielt (Eintrag 6). Bei fortgeschrittenem Umsatz (85 % Alkenyliodid 130) waren noch 68 % des ungesättigten Lactons 127 vorhanden. Auch hier war das Hauptnebenprodukt kein gesättigtes Lacton (nur 6 % 129) (siehe unten). Die Übertragung dieser optimalen Bedingungen auf das reale Alkinyliodid 123a ergab eine Ausbeute von 44 % an 124a (Eintrag 7). Als einziges Nebenprodukt wurde das gesättigte Lacton 125a (9%) detektiert. Durch Reduzierung des Reagenzüberschusses (1.6 Equivalente), größere Verdünnung und Verkürzung der Reaktionszeit konnte das Produkt 124a in einer Ausbeute von 49 % hergestellt werden (Eintrag 8). Allerdings war dies aufgrund der großen Menge an noch nicht umgesetzten Edukt 123a (19 %), das durch konventionelle Chromatographie nicht abgetrennt werden konnte, nicht so günstig.

<table>
<thead>
<tr>
<th>Nr</th>
<th>K^+OOC-N=N-COO^-K / HOAc</th>
<th>Lösungsmittel</th>
<th>Reaktionsbedingungen</th>
<th>Ausbeuten^[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 eq. / 4 eq.</td>
<td>MeOH</td>
<td>2 h</td>
<td>126: 35 %, 119: 33 %, 130: 50 %</td>
</tr>
<tr>
<td>2</td>
<td>2 eq. / 4 eq.</td>
<td>MeOH</td>
<td>5 eq. COOEt, 18 h</td>
<td>kein Umsatz</td>
</tr>
<tr>
<td>3</td>
<td>3 eq. / 6 eq.[b]</td>
<td>CH₃CN</td>
<td>40 h</td>
<td>127: 53 %, 119: 10 %, 129: 16 %, 130: 85 %</td>
</tr>
<tr>
<td>4</td>
<td>4 eq. / 8 eq.[b]</td>
<td>DMSO</td>
<td>40 h</td>
<td>127: 12 %, 119: 6 %, 129: 12 %, 130: 83 %</td>
</tr>
<tr>
<td>5</td>
<td>6 eq. / 12 eq.[b]</td>
<td>Dioxan</td>
<td>40 h</td>
<td>127: 69 %, 119: 28 %, 129: 9 %, 130: 69 %</td>
</tr>
<tr>
<td>6</td>
<td>2 eq. / 4 eq.</td>
<td>2-Propanol</td>
<td>21 h</td>
<td>127: 68 %, 119: 9 %, 129: 6 %, 130: 85 %</td>
</tr>
<tr>
<td>7</td>
<td>2 eq. / 4 eq.</td>
<td>2-Propanol</td>
<td>24 h, 0.14 M^[c]</td>
<td>123a: Spuren, 124a: 44 %, 125a: 9 %</td>
</tr>
<tr>
<td>8</td>
<td>1.6 eq. / 3.2 eq.</td>
<td>2-Propanol</td>
<td>15.5 h, 0.11 M^[c]</td>
<td>123a: 19 %, 124a: 49 %, 125a: 6 %</td>
</tr>
</tbody>
</table>

^[a] bestimmt durch Integration aus ^1^H-NMR des Rohproduktes nach wässriger Aufarbeitung.
^[b] 2 Portionen
^[c] Konzentration des Edukts in Gesamtlösumittelvolumen

Tabelle 15 Modellreaktionen zur Dimin-Reduktion des Alkinyliodids 123a

4.1.5.3. Stille-Kupplung

wurde jedoch verzichtet, da zunächst die Abspaltung der Phosphatschutzgruppe untersucht werden sollte.

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{P} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{CNNC} & \quad \text{CNNC}
\end{align*}
\]

Schema 21 Stille-Kupplung zur β-Cyanoethyl-geschützten Verbindung 131a

a) 1.3 eq. 62, 0.05 eq. Pd_{3}dba_{3},CHCl_{3}, DMF/THF 20/1, 14 h, 40 %.

4.1.5.4. Versuche zur Entschützung des β-cyanoethylgeschützten Phosphats (131a)

Zu diesem Zeitpunkt stand nur noch sehr wenig Substanz zur Verfügung. Aus diesem Grund wurde erneut ein Modellsystem 132 aufgebaut, um die optimalen Abspaltungsbedingungen herauszufinden. Der schon synthetisierte Alkohol 107 (Schema 16) wurde hierfür mit dem entsprechenden Phosphoramidit 117 unter Standardbedingungen phosphoryliert (Schema 22). Diese Verbindung hat den Vorteil, im DC gut detektierbar zu sein, und die aromatischen Signale der TBDPS-Gruppe können als Standard zur Integration im ¹H-NMR des Rohprodukts dienen, was die Interpretation der Resultate deutlich erleichtert.

\[
\begin{align*}
\text{TBDPSO} & \quad \text{CN} \\
\text{O} & \quad \text{O} \\
\text{CN} & \quad \text{CN}
\end{align*}
\]

Schema 22 Herstellung des Modellphosphorsäuretriesters 132

a) 2 Eq. Tetrazol, 2 Eq. 117, CH_{3}CN, 3 h, RT; 2 Eq. I_{2}, Pyridin/Wasser/THF, 5 min, RT, 74 %.

Ein charakteristisches Merkmal der basischen Entschützung von Phosphorsäuretriestern wie 132 ist, dass die zweite Gruppe aus elektronischen Gründen wesentlich langsamer abgespalten wird als die erste, so dass oft nur der Diester 133 erhalten wird.161 Zur vollständigen Entschützung zum Monoester 134 wurden in der Literatur bisher nur wenige Methoden beschrieben, z.B. die Behandlung mit ammoniakalischem Methanol162 oder mit Alkoxiden.163
Diese Methoden sind jedoch inkompatibel mit dem α,β-ungesättigten Lacton, das unter solchen Bedingungen nukleophil geöffnet bzw. eine Michael-Addition eingehen würde. Deshalb wurde versucht, unter basischen, jedoch nicht-nukleophilen Bedingungen eine Abspaltung beider β-Cyanoethylstergruppen zu erreichen (Tabelle 16). Durch Variation des Lösungsmittels sollte sowohl die Reaktivität der Base als auch die Solvatation des Phosphodiesters 133 (eines Monoanions) verändert werden können, um den Reaktionsverlauf günstig zu beeinflussen.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Reaktionsbedingungen</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me\textsubscript{2}NEt / Methanol 1:1, 24 h</td>
<td>133: 70 %, 134: 0%[a]</td>
</tr>
<tr>
<td>2</td>
<td>Me\textsubscript{2}NEt / 2-Propanol 1:1, 24 h</td>
<td>133: 70 %, 134: 0%[a]</td>
</tr>
<tr>
<td>3</td>
<td>Me\textsubscript{2}NEt / DMF 1:2, 24 h</td>
<td>133: 85 %, 134: 0%[a]</td>
</tr>
<tr>
<td>4</td>
<td>Me\textsubscript{2}NEt, 18 h</td>
<td>134: 0%[a],[c]</td>
</tr>
<tr>
<td>5</td>
<td>Me\textsubscript{2}NEt / H\textsubscript{2}O 1:1, 5 d</td>
<td>134: 100 %[a],[c]</td>
</tr>
<tr>
<td>6</td>
<td>tBuNH\textsubscript{2} / Pyridin 1:10, 26 h</td>
<td>133: 100 %, 134: 0%[a]</td>
</tr>
<tr>
<td>7</td>
<td>tBuNH\textsubscript{2} / Acetonitril 1:10, 26 h</td>
<td>133: 100 %, 134: 0%[a]</td>
</tr>
<tr>
<td>8</td>
<td>tBuNH\textsubscript{2} / Methanol 1:1, 20 h</td>
<td>134: 0 % (kein Umsatz)[a],[c]</td>
</tr>
<tr>
<td>9</td>
<td>NEt\textsubscript{3} (Überschuss), TMSCl (5 eq.),</td>
<td>Mono-Entschützung (133)[a]</td>
</tr>
<tr>
<td></td>
<td>THF, 2 d</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DBU (5 eq), TMSCl (2.5 eq), CH\textsubscript{2}Cl\textsubscript{2}, 21 h</td>
<td>Zweifache Entschützung (134) Nebenprodukte[b]</td>
</tr>
</tbody>
</table>

[a] bestimmt durch Integration aus 1H-NMR des Rohproduktes nach Entfernung der Lösungsmittel im Vakuum. Integration des TBDPS-Signals im aromatischen Bereich wurde als Referenz genommen (100 %). Vom Rohprodukt wurde zusätzlich ein LC-MS und ein 31P-NMR gemacht.

[b] Nach Trockeneis (CO\textsubscript{2})-Zugabe wurde mit CO\textsubscript{2} gesättigtes Wasser zugegeben; dann Lyophilisierung und Analyse des Rohprodukts mit 1H, 31P und LC-MS.

[c] Edukt ist 133

Tabelle 16 Modellreaktionen zur Entschützung des CE-geschützten Phosphorsäuretriester 132
Mit Triethylamin als Base konnte leider auch hier nur eine Cyanoethylestergruppe abgespalten werden (Eintrag 9). Im Gegensatz hierzu konnte durch Verwendung des wesentlich basischeren DBU eine vollständige Entschützung zum Phosphorsäuremonoester 134 erreicht werden (Eintrag 10).161 Allerdings waren in diesem Fall im 1H-NMR zahlreiche Nebenprodukte detektierbar.

\begin{center}
\textbf{Schema 23 \ Übertragung der Entschützungsbedingungen auf reales System}
\end{center}

a) Me\textsubscript{2}NEt/H\textsubscript{2}O 1/1 (v/v), 3 d, <40 % Edukt; b) 8 eq. DBU, 4 eq. TMSCl, CH\textsubscript{2}Cl\textsubscript{2}, 8 h; c) BSA, CH\textsubscript{2}Cl\textsubscript{2}, HV, 12 eq. DBU, CH\textsubscript{2}Cl\textsubscript{2}.

Als nächstes wurden die erfolgreichen Reaktionsbedingungen (Einträge 5 und 10) auf das für die Totalsynthese relevante Substrat 131a übertragen (Schema 23). Durch Behandlung des fortgeschrittenen Vorläufers 113 mit Dimethylethylamin in Wasser war nach drei Tagen eine deutliche Zersetzung des Lactons zu beobachten (Schritt a). Nach Lyophilisierung wurde das Rohprodukt 1H-NMR-spektroskopisch untersucht. Es zeigte sich, dass sowohl das Lacton geöffnet als auch die Doppelbindung durch Michael-Addition angegriffen wurden, wobei das Edukt 113 zu mindestens 60 % zersetzt war. Wahrscheinlich ist die Hydroxid-Ionen-Konzentration in diesem Fall hoch genug, um die beschriebenen Zersetzungsreaktionen hervorzurufen. Das geschützte Trien 131a wurde in einem nächsten Versuch mit DBU und anschließend TMSCl behandelt (Schritt b). Nach 8 h wurde das überschüssige DBU mit
Trockeneis neutralisiert, und nach Zusatz von Wasser die Mischung lyophilisiert. Laut
\(^1\)H-NMR-Spektroskopie und LC-MS des Rohproduktes findet hierbei jedoch lediglich eine
einfache Entschäumung zum Diester 135 statt. Interessanterweise wurde die freie OH-Gruppe
unter den beschriebenen Bedingungen nicht silyliert. In einem letzten Versuch wurde der
Diester zunächst mit einem großen Überschuss \((N,O)\)-Bisdimethylsilylacetaamid (BSA)
behandelt (Schritt c). Nach Abdestillieren des BSA im Vakuum wurde die Substanz mit
einem Überschuss DBU behandelt. Unter diesen verschärften Bedingungen wurde jedoch eine
vollständige Zersetzung des Produktes, insbesondere des ungesättigten Lactons, beobachtet.

4.1.5.5. Herstellung des \((4S,5S,6S,9S,10S,11S)\)-Cytostatins (20a) unter Verwendung der 9-
Fluorenylmethylphosphatschutzgruppe

Zu diesem Zeitpunkt erschien es sinnvoller, eine andere Phosphatschutzgruppe zu prüfen,
zudem keine Substanz für weitere Experimente mehr zur Verfügung stand. Deswegen wurde
nach einer basenlabileren Phosphatschutzgruppe als dem \(\beta\)-Cyanoethylester gesucht, die unter
milderen, nicht nukleophilen Bedingungen vollständig abspaltbar sein sollte. 1997 wurde von
Watanabe und anderen erstmals die 9-Fluorenylmethylschutzgruppe als
Phosphatschutzgruppe vorgestellt.\(^{164}\) Diese lässt sich mit einem Überschuss Triethylamin
abspalten. An einem verkürzten Fragment des Naturstoffs wurde diese Schutzgruppe getestet
(Schema 24). Der schon synthetisierte Alkohol 78a wurde hierzu als MOM-Ether 136
geschützt, die TBDPS-Gruppe abgespalten, der Alkohol 137 zum Aldehyd 138 oxidiert und
unter Still-Gennari-Bedingungen olefiniert. Der Ester 139 wurde mit wässriger Salzsäure
unter Abspaltung der MOM-Schutzgruppen lactonisiert und das Produkt 140 mit dem
fluorenylmethylgeschützten Phosphoramidit 141 umgesetzt. Nach Oxidation mit meta-
Chlorperbenzoesäure (m-CPBA) wurde der Phosphotriester 142 in hoher Ausbeute erhalten.
Mit einem Überschuss Triethylamin in trockenem Acetonitril gelang eine Entschäumung
beider Fluorenylmethylgruppen zum Phosphat 143 in einer ansprechenden Ausbeute von 75%
. Folgende Vorteile sind bei dieser Entschäumung hervorzuheben: ein Abfangen des durch
Eliminierung entstehenden Dibenzofulvens ist nicht nötig. Nach einer einfachen Extraktion
erhält man das analysenreine Produkt 143, das nach Lyophilisierung der wässrigen Phase als
Monotriethylammoniumsalz anfällt.

Aufgrund dieser positiven Ergebnisse wurde das 9-fluorenylmethylgeschützte Phosphat 131b
ausgehend vom fortgeschrittenen Intermediat 113 in Analogie zum \(\beta\)-cyanoethylgeschützten
Phosphat 131a synthetisiert (Schema 25).
Schema 24 Die 9-Fluorenymethylschorzgruppe als geeignete Schutzgruppe an einer verkürzten Modellsbstanz

a) 10 eq. MOMCl, 13 eq. (iPr)2NEt, CH2Cl2, 0°C, 1 h, RT, 13 h; b) 1.2 eq. TBAF, THF, 15 h, 90 % über 2 Stufen; c) 1.5 eq. DMP, 11.5 eq. NaHCO3, CH2Cl2, 90 min; d) 2 eq. (CF3CH2O)2P(O)CH2C(O)Me, 4 eq. 18-Krone-6, 1.5 eq. KHMDS, THF, -78 °C, 35 min, 111, -78 °C, 3 h, 80 % über 2 Stufen; e) 1N HCl, H2O, THF, 15 h, 60 °C, 88 %; f) 4 eq. (iPr2)NP(OFm)2 (141), 3 eq. Tetrazol, CH2Cl2, 270 min, 10 eq. m-CPBA, -78°C, 0°C, 90 min; 88 %; g) NEt3/CH3CN 1/4.8 (v/v), 18 h, 75 %.
Schema 25 Abschluss der Synthese mit der Fluorenylmethylphosphatschutzgruppe

a) 3 eq. (iPr)₂NP(OFm)₂, 2.7 eq. Tetrazol, CH₃CN/CH₂Cl₂ 5/4 (v/v), 330 min, 3 eq. I₂, THF/Pyridin/Wasser 7/2/1 (v/v), 5 min, 95 %; b) HF.Pyridin/THF 1/4.75 (v/v), 24 h, dann 1/2.4, 8 h, 82 %; c) 1.5 eq. NIS, 0.15 eq. AgNO₃, DMF, 90 min, 100 %; d) 1.73 eq. K⁺(“OOC=COO⁻)K, 3.47 eq. HOAc, 2-Propanol/Dioxan 11/1 (v/v), 870 min, 63 %, neben 21 % Edukt; e) 4.3 eq. 62, 0.24 eq. PdCl₂(CH₂CN)₂, DMF/THF 17/1 (v/v), 20.5 h, 62 %; f) NEt₃/CH₂CN 2/9 (v/v), 20 h, 100 %; g) Na⁺-Dowex, MeOH/H₂O 1/1 (v/v), 85%.

Die Phosphorylierung wurde mit dem Fluorenylmethylphosphoramidit 141 ausführlich in Acetonitril durchgeführt. Allerdings war aufgrund der schlechten Löslichkeit des Phosphoramidits in diesem Lösungsmittel kein Umsatz zu beobachten. Auch in Dichlormethan wurde trotz Verwendung eines großen Überschusses an Reagens kein Umsatz

Als letztes musste der Phosphotriester \textbf{131b} entschützt werden. Das Monotriethylammoniumsalz des (4S,5S,6S,9S,10S,11S)-Cytostatins \textbf{144} wurde durch Behandlung mit einem Überschuss Triethylamin in Acetonitril in quantitativer Ausbeute isoliert (Schritt f). Wie beim verkürzten Analogon \textbf{143} war keine weitere Reinigung nötig; das Produkt war nach wässriger Extraktion analysenrein. Das Mononatriumsalz \textbf{20a}, das für den Vergleich mit der isolierten Probe benötigt wurde, konnte in guter Ausbeute durch
Ionenaustauschchromatographie an zuvor mit Na⁺-Ionen beladenen Kationentauscherharz (Dowex) hergestellt werden (Schritt g).

4.2. Konfigurationsbestimmung von Cytostatin

4.2.1. Vergleich der NMR-Spektren zwischen (4S,5S,6S,9S,10S,11S)-Cytostatin (20a) und den Literaturdaten von Cytostatin (20)83

diesen Strukturen wurde stets ein Kopplungskonstantenpaar von 10 Hz und 3 Hz beschrieben.165

4.2.2. Synthese einer C1-C-9-Cytostatin-Teilstruktur (145) zur Klärung der relativen Konfiguration von C-4, C-5 und C-6166

Aufgrund dieser Widersprüche wurde entschieden, 4 Diastereomere einer signifikanten Teilstruktur 145 des Cytostatins mit allen möglichen relativen Konfigurationen der besagten Stereotriade (C-4 bis C-6) zu synthetisieren. Durch einen sorgfältigen NMR-spektroskopischen Vergleich sollte eine Aussage über die richtige relative Konfiguration getroffen werden. Da der Alkylarm (C-6-9) zu einer nur geringen Interaktion zwischen beiden Stereotriadens des Naturstoffs führen sollte, wurde erwartet, daß 145 eine relativ gute Übereinstimmung mit der Teilstruktur des Naturstoffs realen Struktur aufweist (Schema 26).

<table>
<thead>
<tr>
<th>C-</th>
<th>13C-20a</th>
<th>13C-20</th>
<th>1H (ppm)-20a</th>
<th>J (Hz)-20a</th>
<th>1H (ppm)-20</th>
<th>J (Hz)-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>167.1</td>
<td>167.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>119.9</td>
<td>120.1</td>
<td>5.96</td>
<td>d (9.5)</td>
<td>5.93</td>
<td>d (9.6)</td>
</tr>
<tr>
<td>3</td>
<td>154.9</td>
<td>155.0</td>
<td>7.19</td>
<td>dd (6.5; 9.5)</td>
<td>7.14</td>
<td>dd (6.4; 9.6)</td>
</tr>
<tr>
<td>4</td>
<td>31.4</td>
<td>31.7</td>
<td>2.62</td>
<td>dq (2.6; 6.7)</td>
<td>2.58</td>
<td>m</td>
</tr>
<tr>
<td>5</td>
<td>85.4</td>
<td>85.6</td>
<td>4.14</td>
<td>dd (2.8; 10.3)</td>
<td>4.11</td>
<td>dd (10.4; 10.4)</td>
</tr>
<tr>
<td>6</td>
<td>35.2</td>
<td>35.6</td>
<td>1.79-1.90</td>
<td>m</td>
<td>1.81</td>
<td>m</td>
</tr>
<tr>
<td>7</td>
<td>29.2</td>
<td>29.3</td>
<td>1.25-1.35;1.79-1.90</td>
<td>m; m</td>
<td>1.22;1.80</td>
<td>m; m</td>
</tr>
<tr>
<td>8</td>
<td>31.5</td>
<td>31.6</td>
<td>1.97-2.07;1.50-1.60</td>
<td>m; m</td>
<td>2.06; 1.50</td>
<td>m; m</td>
</tr>
<tr>
<td>9</td>
<td>75.2</td>
<td>74.0</td>
<td>4.55 (4.50-4.58)</td>
<td>m</td>
<td>4.47</td>
<td>m</td>
</tr>
<tr>
<td>10</td>
<td>43.9</td>
<td>43.8</td>
<td>1.50-1.60</td>
<td>m</td>
<td>1.52</td>
<td>m</td>
</tr>
<tr>
<td>11</td>
<td>68.7</td>
<td>68.9</td>
<td>4.61</td>
<td>t (9.8)</td>
<td>4.61</td>
<td>dd (9.4; 9.4)</td>
</tr>
<tr>
<td>12</td>
<td>133.7</td>
<td>134.5</td>
<td>5.44</td>
<td>t (10.4)</td>
<td>5.41</td>
<td>dd (9.4; 10.0)</td>
</tr>
<tr>
<td>13</td>
<td>126.3</td>
<td>126.1</td>
<td>6.63</td>
<td>t (11.3)</td>
<td>6.63</td>
<td>dd (10.0; 11.4)</td>
</tr>
<tr>
<td>14</td>
<td>123.3</td>
<td>123.9</td>
<td>6.28</td>
<td>t (11.5)</td>
<td>6.28</td>
<td>dd (10.8; 11.4)</td>
</tr>
<tr>
<td>15</td>
<td>131.5</td>
<td>131.4</td>
<td>6.02</td>
<td>t (11.2)</td>
<td>5.97</td>
<td>dd (10.8; 10.8)</td>
</tr>
<tr>
<td>16</td>
<td>127.9</td>
<td>128.2</td>
<td>6.61 (6.57-6.65)</td>
<td>m</td>
<td>6.56</td>
<td>dd (10.8; 14.8)</td>
</tr>
</tbody>
</table>
Tabelle 17 1H-NMR und 13C-NMR-Vergleich zwischen (4S,5S,6S,9S,10S,11S)-Cytostatin 20a und isoliertem Cytostatin 20

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.0</td>
<td>18.4</td>
<td>10.9</td>
<td>14.7</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>131.9</td>
<td>18.5</td>
<td>10.9</td>
<td>14.9</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>1.84</td>
<td>1.04</td>
<td>1.00</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>dq (14.4; 7.1)</td>
<td>d (6.8)</td>
<td>d (7.0)</td>
<td>d (6.5)</td>
<td>d (6.8)</td>
<td></td>
</tr>
<tr>
<td>5.75</td>
<td>1.8</td>
<td>1</td>
<td>0.98</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

Schema 26 Konzipierung und Retrosynthese einer Teilstruktur 145 als stereochemische Sonde für die C4-C6 Stereotriade des Cytostatins 20

![Schema 27](image)

Schema 27 Synthese der vier Diastereomeren durch die Aldol Addition

a) (COCl)$_2$, DMSO, -78°C, 2.5 h; NEt$_3$, CH$_2$Cl$_2$, -78°C to rt; b) 1.2 eq. Bu$_2$BOTf, 1.15 (iPr)$_2$NEt, CH$_2$Cl$_2$, 0°C, 45 min; 1.5 eq. 47, 3 eq. Et$_2$AlCl, -78°C, 2.6 h; H$_2$O$_2$, MeOH, 0°C, 30 min, 34% 147a and 21% 147b; c) 1.2 eq. Bu$_2$BOTf, 1.35 eq. (iPr)$_2$NEt, CH$_2$Cl$_2$, 0°C, 45 min, -78°C, 47, RT, 90 min, H$_2$O$_2$, pH 7, 68 %; (bezogen auf 5); d) 1.2 eq. Bu$_2$BOTf, 1.15 eq. (iPr)$_2$NEt, CH$_2$Cl$_2$, 0°C, 45 min; 47, Et$_2$AlCl, -78°C, 2.6 h; H$_2$O$_2$, MeOH, 0°C, 30 min.
Allerdings ist das Haupt-Nebenprodukt 147b nicht das Evans-\textit{syn}\textendash Aldol-Additionsprodukt, das ohne Lewis-Säure-Zusatz entstehen würde. Es ist das „nicht-Evans“-\textit{syn}\textendash Aldoladdukt, das stets als Nebenprodukt bei der Heatchcock-Variante auftritt.167 Somit erscheint fraglich, ob die oben aufgeführte Erklärung für die geringe Selektivität verantwortlich gemacht werden kann. Vielmehr scheint die intrinsisch geringe Selektivität der Heatchcock-Methode, wie schon in anderen Fällen beschrieben,167 zu greifen. Die erhaltenen Diastereomere 147a und 147b konnten durch Flash-Chromatographie getrennt werden. Die Synthese des \textit{syn}, \textit{anti}\textendash Diastereomers 73 ist in Kapitel 4.1.3 beschrieben (Schritt c). Das \textit{anti}, \textit{syn}\textendash Diastereomer 147d schließlich wurde ausgehend vom L-Valin-abgeleiteten Oxazolidinon 148 in Analogie zu 147a hergestellt.

Schema 28 Synthese des \textit{anti},\textit{anti}\textendash Lactons 153a

a) 10 eq. MOMCl, 13 eq. (iPr\textsubscript{2})\textsubscript{2}NEt, CH\textsubscript{2}Cl\textsubscript{2}, 0°C, 1 h, RT, 18 h, 91%; b) 1.1 eq. LiBH\textsubscript{4}, 1.1 eq. H\textsubscript{2}O, Et\textsubscript{2}O, 0°C bis RT, 110 min, 63%; c) 1.5 eq. DMP, 11.5 eq. NaHCO\textsubscript{3}, CH\textsubscript{2}Cl\textsubscript{2}, 1 h; d) 2.3 eq. (CF\textsubscript{3}CH\textsubscript{2}O)\textsubscript{2}P(O)CH\textsubscript{2}C(O)OMe, 4.7 eq. 18-Krone-6, 1.7 eq. KHMDS, THF, -78°C, 2.75 h, 77% (2 Stufen); e) 0.5 eq. CBr\textsubscript{4}, 2-Propanol, 82°C, 15 h, 97%.

Die zu dem erwünschten Lacton führende, nicht weiter optimierte Reaktionssequenz soll anhand des \textit{anti},\textit{anti}\textendash Diastereomeren 147a exemplarisch erläutert werden (Schema 28). Durch MOM-Schätzung zu 149a und Reduktion mit "LiBH\textsubscript{4}OH" wurde der Alkohol 150a in Analogie zu 75 synthetisiert. Nach Oxidation mit dem Dess-Martin-Periodinan wurde der entstandene Aldehyd 151a nach Still und Gennari olefiniert und der Z-konfigurierte Ester
152a mit Tetrabrommethan in 2-Propanol zu 153a lactonisiert. Die anderen Lactone 153b-d wurden in völlig analoger Weise synthetisiert (Schemata 29-31).

Schema 29 Synthese des syn,syn-Lactons 153b

a) 10 eq. MOMCl, 13 eq. (iPr)_2NEt, CH₂Cl₂, 0°C, 1 h, RT, 13 h, 88 %; b) 1.1 eq. LiBH₄, 1.1 eq. H₂O, Et₂O, 0°C bis RT, 90 min, 72 %; c) 1.5 eq. DMP, 11.5 eq. NaHCO₃, CH₂Cl₂, 70 min; d) 2.3 eq. (CF₃CH₂O)₂P(O)CH₂C(O)OMe, 4.7 eq. 18-Krone-6, 1.7 eq. KHMDS, THF, -78°C, 3 h, 65 % (2 Stufen); e) 0.5 eq. CBr₄, 2-Propanol, 82°C, 15 h, 87%.

Schema 30 Synthese des syn,anti-Lactons 153c
a) 1.5 eq. DMP, 11.5 eq. NaHCO₃, CH₂Cl₂, 60 min; b) 2.3 eq. CF₃CH₂O₂P(O)CH₂C(O)OMe, 4.7 eq. 18-Krone-6, 1.7 eq. KHMDS, THF, -78°C, 3 h, 44 % (2 Stufen); c) 0.5 eq. CBr₄, 2-Propanol, 82°C, 15 h, 71 %.

Die NMR-spekroskopische Daten zeigen, dass keines der synthetisierten Lactone 153a-153d ein Kopplungskonstantenmuster wie für Cytostatin beschrieben aufzeigt. Während die syn-konfigurierten Lactone 153b und 153c eine kleine Kopplungskonstante (ca. 3 Hz) zwischen CH-4 und CH-5 und eine große (ca. 10 Hz) zwischen CH-5 und CH-6 aufweisen, ist dies für die anti-konfigurierten Lactone 153a und 153d genau umgekehrt. Dies kann anhand der bevorzugten Konformationen der Lactone 153a-d rationalisiert werden (Abbildung 14). Die gezeigten Modelle wurden durch MM2-Rechnung mit dem Programm Chem3D energieminimiert. In allen Fällen befindet sich der kleinste Substituent an der exozyklischen Bindung, nämlich H-6, in nahezu ekliptischer Orientierung zu der 4-CH₃-Gruppe. Dadurch wird die sterische Wechselwirkung zu den beiden anderen Substituenten minimiert. Als Konsequenz betragen die Diederwinkel \(\theta(\text{CH-4, CH-5}) \) und \(\theta(\text{CH-5, CH-6}) \) der syn-konfigurierten Lactone 153b und 153c ca. 50° und 180°, für die anti-konfigurierten Lactone 153a und 153d dagegen ca. 180° und 60°.
Abbildung 14 Berechnete Konformationen der Lactone 153a-d

4.2.3. Direkter Vergleich von synthetisiertem (4S,5S,6S,9S,10S,11S)-Cytostatin (20a) und natürlichem Cytostatin (20)

Angesichts der vorstehend geschilderten Daten kamen Zweifel an der Richtigkeit der von Ishizuka et al. publizierten Daten auf. Eine von den Autoren freundlicherweise zur Verfügung gestellte Probe des isolierten Naturstoffs wurde deshalb nochmals NMR-spektroskopisch vermessen. Die Ergebnisse sind im experimentellen Teil angegeben. In der Tat wurden für CH-5 Kopplungskonstanten von 10.2 Hz und 2.7 Hz gemessen. Ein sorgfältiger Vergleich der 1H und 13C-Verschiebungen zeigt für das syn,anti-konfigurierte Lacton 153c die beste Übereinstimmung bei den charakteristischen Signalen (C-1-6) (Tabellen 18 und 19). Die 1H-NMR-Verschiebungen von CH-3, CH-4 und CH$_3$-4 und die 13C-NMR-Verschiebungen von CH-5 und CH$_3$-4 für die Lactone 153a (anti,anti) und 153d (anti,syn) stimmen nicht mit den Daten des isolierten Naturstoffs überein, was eine anti-Konfiguration im Lacton-Ring des Naturstoffs ausschließt. Eine genauere Betrachtung erlaubt
darüber hinaus eine Bestimmung der (CH-5, CH-6) Konfiguration. Während die 13C-NMR Verschiebung für CH-6 und die 1H-NMR-Verschiebung für CH-4 und CH-6 bei 153b deutlich von den entsprechenden Signalen im Naturstoff abweichen, ist dies für das syn, anti-Lacton 153c, bei dem die maximalen Abweichungen 0.8 ppm im 13C (C-5) und 0.11 ppm im 1H-Spektrum (CH-6) betragen, nicht der Fall.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Cytostatin$[^a]$</th>
<th>anti,anti- 153a</th>
<th>syn,syn- 153b</th>
<th>syn,anti- 153c</th>
<th>anti,syn- 153d</th>
</tr>
</thead>
<tbody>
<tr>
<td>=CH-2</td>
<td>5.92 dd (9.6, 0.6)</td>
<td>5.92 dd (9.8, 2.3)</td>
<td>5.94 dd (9.6, 0.8)</td>
<td>5.94 dd (9.6, 0.8)</td>
<td>5.92 dd (9.8, 2.7)</td>
</tr>
<tr>
<td>=CH-3</td>
<td>7.15 dd (9.6, 6.5)</td>
<td>6.86 dd (9.8, 2.9)</td>
<td>7.15 dd (9.6, 6.5)</td>
<td>7.17 dd (9.6, 6.5)</td>
<td>6.84 dd (9.8, 2.2)</td>
</tr>
<tr>
<td>CH-4</td>
<td>2.58 m</td>
<td>2.76 m</td>
<td>2.66 ddquint (0.8, 3.1, 7.0)</td>
<td>2.58 m</td>
<td>2.70 m</td>
</tr>
<tr>
<td>CH$_3$-4</td>
<td>1.00 d (7.0)</td>
<td>1.15 d (7.2)</td>
<td>1.03 d (7.0)</td>
<td>1.02 d (7.2)</td>
<td>1.11 d (7.2)</td>
</tr>
<tr>
<td>CH-5</td>
<td>4.11 dd (10.2, 2.7)</td>
<td>4.07 dd (9.0, 3.3)</td>
<td>4.09 dd (9.8, 3.1)</td>
<td>4.09 dd (10.6, 3.1)</td>
<td>4.11 dd (10.8, 2.4)</td>
</tr>
<tr>
<td>CH-6</td>
<td>1.81 m</td>
<td>1.92-2.00 m</td>
<td>1.89-1.98 m</td>
<td>1.92 m</td>
<td>1.92 dsext (2.4, 7.0)</td>
</tr>
<tr>
<td>CH$_3$-6</td>
<td>0.98 d (6.8)</td>
<td>1.05 d (6.7)</td>
<td>1.10 d (6.3)</td>
<td>0.93 d (6.6)</td>
<td>0.98 d (7.0)</td>
</tr>
</tbody>
</table>

$[^a]$ Alle Spektren wurden in d4-Methanol mit dem selben Spektrometer (siehe Experimenteller Teil) aufgenommen

Tabelle 18 1H-NMR Vergleich zwischen isoliertem Cytostatin 20 und den verkürzten Lacton-Diastereomeren 153a-d

Aufgrund dieser Übereinstimmung hinsichtlich der ersten Stereotriade und der gleichen Kopplungskonstanten in der zweiten Stereotriade wurde davon ausgegangen, dass die stereochemische Anordnung der synthetisierten Verbindung 20a richtig gewählt wurde. Es wurde vermutet, dass die verbliebenen Abweichungen um die Phosphatgruppe allein aufgrund der unterschiedlichen Ionisation am Phosphat zustande kämen.

Aus diesem Grund wurde ein direkter NMR-Vergleich der isolierten und der synthetisierten Probe durchgeführt. Dazu wurden beide Substanzen im Verhältnis 1:1 vermischt und in d4-Methanol vermessen. Leider war die von Ishizuka zur Verfügung gestellte Probe nicht analysenrein und konnte auch durch préparative HPLC nicht weiter aufgereinigt werden. Dennoch ist klar ersichtlich, dass die Peaks, die der Substanz zuzuordnen sind, mit denen der synthetischen Substanz im 1H-NMR zusammenfallen (Anhang). Auch im 31P-NMR fallen

<table>
<thead>
<tr>
<th>Atom</th>
<th>Cytostatina</th>
<th>anti,anti-</th>
<th>syn,syn-</th>
<th>syn,anti-</th>
<th>anti,syn-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>153a</td>
<td>153b</td>
<td>153c</td>
<td>153d</td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>167.5</td>
<td>166.5</td>
<td>167.3</td>
<td>167.2</td>
<td>166.9</td>
</tr>
<tr>
<td>=CH-2</td>
<td>120.1</td>
<td>120.1</td>
<td>120.0</td>
<td>120.0</td>
<td>120.1</td>
</tr>
<tr>
<td>=CH-3</td>
<td>155.0</td>
<td>154.6</td>
<td>154.8</td>
<td>155.0</td>
<td>155.2</td>
</tr>
<tr>
<td>CH-4</td>
<td>31.6</td>
<td>31.9</td>
<td>31.5</td>
<td>31.5</td>
<td>32.1</td>
</tr>
<tr>
<td>CH$_3$-4</td>
<td>11.0</td>
<td>16.8</td>
<td>11.2</td>
<td>10.9</td>
<td>16.0</td>
</tr>
<tr>
<td>CH-5</td>
<td>85.6</td>
<td>89.2</td>
<td>85.6</td>
<td>84.8</td>
<td>87.0</td>
</tr>
<tr>
<td>CH-6</td>
<td>35.6</td>
<td>35.3</td>
<td>34.9</td>
<td>34.8</td>
<td>34.9</td>
</tr>
<tr>
<td>CH$_3$-6</td>
<td>14.9</td>
<td>17.0</td>
<td>16.0</td>
<td>14.4</td>
<td>13.3</td>
</tr>
</tbody>
</table>

a Alle Spektren wurden in d$_4$-Methanol mit dem selben Spektrometer (siehe Experimenteller Teil) aufgenommen

Tabelle 19 13C-NMR Vergleich zwischen isoliertem Cytostatin 20 und den verkürzten Lacton-Diastereomeren 153a-d

4.3. Synthese und biologische Evaluierung von Cytostatin-Derivaten

Die entwickelte Synthese sollte weiterhin dazu genutzt werden, einige signifikante Analoga für eine erste Struktur-Aktivitätsbeziehung bereitzustellen. Diese Ergebnisse könnten eine orientierende Funktion für die Generierung einer Bibliothek von biologisch aktiven

4.3.1. Synthese der Derivate

Schema 32 Synthese der Cytostatin-Analoga (143 wurde schon in Kapitel 4.1.4.5 beschrieben)

a) NEt₃/CH₃CN 1/4.6 (v/v), 15 h; b) Ac₂O, Pyridin, kat. DMAP, 1 h, 60 %.

Schema 33 Unerwarteter Reaktionsverlauf bei versuchter Synthese des Ketons 162

a) 1.5 eq. DMP, 11.5 eq. NaHCO₃, CH₂Cl₂, 1 h, ca. 60 % 160 und ca. 40 % 161; b) NEt₃/CH₃CN 1/4.6 (v/v), 23 h.

4.3.2. Biologische Evaluierung der Derivate

Das synthetische Cytostatin 20a und die synthetisierten Analoga 143, 154, 155, 156, 159, 157 und 163 wurden auf ihre PP2A-inhibitorische Aktivität untersucht.

Die Protein-Phosphatase 2A ist zwar eine Serin-Threonin-Phosphatase, jedoch hydrolysiert sie in vitro das synthetische para-Nitrophenylphosphat 164, das vor allem als in vitro Substrat für Tyrosinphosphatasen weit verbreitet ist. Durch enzymatische Hydrolyse des Phosphorsäureesters entsteht unter basischen Bedingungen das gelbe para-Nitrophenolat 165,

Zunächst wurde überprüft, ob die enzymatische Hydrolyse im gemessenen Zeitfenster (ca. 15 min) nach einer konstanten Geschwindigkeit verläuft, also die Absorptionskurven einen linearen Zeitverlauf aufzeigen. Die Absorptionen wurden bei \(t=0 \) willkürlich auf 0 gesetzt. In Abbildung 16 ist ersichtlich, dass diese Voraussetzung sowohl für das nicht-inhibierte Enzym als auch bei unterschiedlichen Konzentrationen der Substanz 163 (als exemplarischen Vertreter) erfüllt ist. Damit ist sichergestellt, dass in diesem Zeitfenster die Anfangsgeschwindigkeit der enzymatischen Hydrolyse gemessen wird. Die weiteren Details der Durchführung sind dem experimentellen Teil zu entnehmen. Die Inhibitionskurven der Verbindungen 20a, 154, 155, 156 und 163 sind in Abbildung 17 gezeigt und wurden mit dem Programm MicroCal™ Origin® gefittet. Die IC\textsubscript{50}-Werte aller untersuchten Verbindungen sind in Tabelle 20 aufgelistet.

![Reaction Scheme](image)

\textbf{Abbildung 15} \hspace{1cm} \textit{In vitro PP2A-assay}
Abbildung 16 Nachweis der Linearität über einen Zeitraum von 14 min für das nicht-inhibierte Enzym und bei unterschiedlichen Konzentrationen des Inhibitors 163 (Konzentrationsangabe in μM, Absorptionen bei t=0 auf 0 gesetzt)
Abbildung 17 Inhibitionskurven der Substanzen 20a, 154, 155, 156 und 163 gegen PP2A₁

Andere Gruppen im Molekül sind dagegen essentiell für die biologische Aktivität. Eine weitere Verkürzung des Naturstoffs bis auf die Phosphatgruppe (in 143, Eintrag 2) führt zu einer Auf hebung der Inhibition. Die freie Hydroxygruppe des Naturstoffs scheint also eine wichtige Rolle zu spielen. Dies konnte auch dadurch unterstrichen werden, dass die acetylierte Verbindung 159 (Eintrag 7) gegenüber der entsprechenden ungeschützten Verbindung 156 (Eintrag 5) völlig inaktiv ist. Der Phosphodiester 163 zeigt mit 42 μM
(Eintrag 8) einen 130-fachen höheren IC$_{50}$ Wert im Vergleich zur vollständig entschützten Verbindung 156 (Eintrag 5). Dieser Wert zeigt, dass eine sehr enge Wechselwirkung zwischen Protein und der Phosphatgruppe des Cytostatins existieren muss. Das gesättigte Lacton 157 zeigt praktisch keine Aktivität (Eintrag 6) mit einem ungefähren IC$_{50}$-Wert von 100 µM, einem 2500-fach höheren Wert im Vergleich zur entsprechenden ungesättigten Verbindung 154 (Eintrag 5). Die Doppelbindung des ungesättigten Lactons ist also essentiell für die biologische Aktivität des Cytostatins und suggeriert, dass das Lacton als Michael-Akzeptor das Protein kovalent modifiziert. Alternativ (wenn auch weniger wahrscheinlich) könnte die gesättigte Verbindung aus stericen Gründen in eine enge Bindungstasche nicht mehr hineinpassen.

Als nächstes wurde untersucht, ob auch andere Phosphatasen durch die hergestellten Verbindungen inhibiert werden (Tabelle 20).

Die Serin-Threonin-Phosphatase PP1 (Kapitel 2.2.2) wurde in einem identischen Assay von keinem der Analoga inhibiert (bis 100 µM). Zum einen ist dieses Resultat kompatibel mit den literaturbekannten Ergebnissen für das Fostriecin169 und das Cytostatin.91 Zum anderen zeigt es aber deutlich, dass die Selektivität bei Variation der Trien-Seitenkette erhalten bleibt. Die Trienkette ist demnach nicht für die ungewöhnliche Selektivität für die PP2A verantwortlich. Viel eher scheint diese durch einen alternativen Inhibitionsmechanismus der Naturstoffe der Fostriecin-Klasse zustande zu kommen.

Auch die inhibitorische Wirkung gegenüber einigen PTPs wurde untersucht. VHR (eine DSP, die ERK dephosphoryliert)170 und die PTP1B (eine PTP, Kapitel 2.2.1) wurden gegenüber para-Nitophenylphosphat als Substrat durch keines der Analoga inhibiert (Tabelle 20).171 Die PTP CD45 (Kapitel 2.2.1) wurde gegenüber einem kommerziell erhältlichen Peptid als Substrat und einem Phosphat-sensitiven Farbstoff getestet (Firma Biomol). Auch hier zeigte sich für 20a, 143 und 156 keine inhibitorische Wirkung bis 100 µM.

Diese Versuche unterstreichen also die hohe Selektivität aller hergestellten PP2A-Inhibitoren gegenüber der PP2A. Diese beruht vermutlich auf dem einzigartigen Inhibitionsmechanismus der Naturstoffe der Fostriecin-Klasse (Kapitel 2.4.3.1).
<table>
<thead>
<tr>
<th>Produkt</th>
<th>PP2A<sub>1</sub></th>
<th>PP1</th>
<th>VHR</th>
<th>PTP1B</th>
<th>CD45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.033 ± 0.003</td>
<td>> 20<sup>a</sup></td>
<td>> 20<sup>a</sup></td>
<td>> 20<sup>a</sup></td>
<td>> 20<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
</tr>
<tr>
<td>3</td>
<td>0.039 ± 0.004</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>n. u.</td>
</tr>
<tr>
<td>4</td>
<td>0.079 ± 0.009</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>n. u.</td>
</tr>
<tr>
<td>5</td>
<td>0.37 ± 0.05</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
</tr>
<tr>
<td>6</td>
<td>ca. 100</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>n. u.</td>
</tr>
<tr>
<td>7</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>n. u.</td>
</tr>
<tr>
<td>8</td>
<td>42 ± 7</td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>> 100<sup>a</sup></td>
<td>n. u.</td>
</tr>
</tbody>
</table>

[a] höchste untersuchte Konzentration

Tabelle 20
IC₅₀-Werte (in µM) der Analoga gegenüber unterschiedlichen Phosphatasen
5. Zusammenfassung und Ausblick

5.1. Zusammenfassung

Die Synthese wurde im Hinblick auf eine maximale stereochemische Flexibilität geplant. Für alle stereoselektiven Schritte wurden daher ausschließlich reagenskontrollierte Methoden benutzt, die bei Bedarf jedes erwünschte Diastereomer liefern. Dies waren die Evans-Aldol-Addition (Stereozentren C-4, C-5, C-9 und C-10), die Evans-Alkylierung (C-6) und die enantioselektive Reduktion eines Alkinons (C-11). Die Stereochemie wurde durch Vergleich mit bereits bekannten Daten für verwandte Naturstoffe und 1H-NMR-Daten des Cytostatins festgelegt.

Das C-Gerüst mit der gesamten stereochemischen Information wurde zunächst als TBDPS-Ether ausgehend vom bekannten Alkohol 69 hergestellt. Schlüsselschritte der Synthese waren zwei syn-Aldol-Additionen und eine stereoselektive Reduktion.
Schema 35 *Totalsynthese von Cytostatin*

Die Synthese des Lactons 113 in 18 Schritten ausgehend von 69 in einer Gesamtausbeute von 15.7 % gelang allerdings erst nach einer Umstellung der C-3-OTBDPS auf die labilere OTBS-Schutzgruppe (Schema 35). Die Schlüsselschritte zum Aufbau des Lactons waren die Still-Gennari-Olefinierung und eine saure Lactonisierung.

Wegen der Säure- und Oxidationsempfindlichkeit des Triens wurde für das Phosphat eine basenlabile Schutzgruppe ausgesucht. Die Synthese des β-Cyanoethylgeschützten (all-S)-

Die Verwendung der basenlabileren 9-Fluorenylmethylphosphatschutzgruppe ermöglichte schließlich die erfolgreiche Synthese des all-(S)-Cytostatins 20a in 6 Schritten ausgehend vom Lacton 113 in einer Ausbeute von 25,9%.

\[
\begin{align*}
\text{NC} & \quad \text{CN} \\
\text{O} & \quad \text{O} \\
\text{P} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

Abbildung 19

Ein erster NMR-Vergleich (\(^1\)H, \(^13\)C, \(^31\)P) zwischen all-(S)-Cytostatin 20a und den Literaturangaben von Ishizuka et al. für den isolierten Naturstoff zeigte eine weitgehende Übereinstimmung, aber auch einzelne Abweichungen, vor allem für die Kopplungskonstanten an CH-5. Es wurde deshalb davon ausgegangen, dass die Konfiguration des Naturstoffs eine andere sei.

Zur Klärung der relativen Konfiguration der CH-4 bis CH-6 Stereotriade wurden 4 Diastereomere einer Teilstruktur 145 des Cytostatins (C-1 bis C-9) synthetisiert (Abbildung 19). Durch einen detaillierten \(^1\)H- und \(^13\)C-NMR-spektroskopischen Vergleich mit dem Naturstoff wurde zum einen die wahrscheinlichste Konfiguration als (4S, 5S, 6S) oder (4R, 5R, 6R) bestimmt, zum anderen gezeigt, dass die veröffentlichten Daten von Ishizuka fehlerhaft waren.

Ein erneuter, direkter NMR-spektroskopischer Vergleich mit einer von Ishizuka zur Verfügung gestellten Probe zeigte eine völlige Übereinstimmung des synthetisierten all-(S)-Cytostatins 20a mit dem isolierten Naturstoff 20a. Wegen der starken Verunreinigungen der isolierten Probe konnte deren Drehwert leider nicht zum Vergleich mit synthetischem 20a
herangezogen werden. Beide Drehwerte sind jedoch positiv, so dass die Konfiguration des Naturstoffs mit größter Wahrscheinlichkeit all-(S) ist.

Im dritten Teil der Arbeit wurden 7 weitere, phosphorylierte Strukturderivate hergestellt und erbrachten die ersten SAR-Daten des Naturstoffs. Die Untersuchung ihrer inhibitorischen Wirkung auf die PP2A beweist, dass die Trien-Einheit nicht für die Aktivität notwendig ist, sondern auch durch andere, lipophile Reste ersetzt werden kann. Dagegen ist die Anwesenheit sowohl der C-11-Hydroxy-Gruppe als auch der Doppelbindung im ungesättigten Lacton absolut erforderlich für die Aktivität. Die Phosphatgruppe muss außerdem völlig entschützt sein. Ein Phosphodiester zeigte eine nur äußerst geringe Aktivität (Abbildung 20).

![Abbildung 20](image)

Abbildung 20 *Struktur-Aktivitätsbeziehung (PP2A-Inhibition) von Cytostatin*

Andere Phosphatasen, wie die PPP PP1, die DSP VHR oder die PTPs CD45 und PTP1B wurden durch keines der synthetisierten Analoga inhibiert (CD45 nur gegen 20a, 143 und 156 getestet), was die außergewöhnliche Selektivität der hergestellten PP2A-Inhibitoren unterstreicht.

5.2. Ausblick

Die hier vorgestellten Ergebnisse bieten eine gute Basis, um weitergehende Modifikationen des Naturstoffs durchzuführen. Insbesondere das phosphorylierte Intermediat 122b kann sehr schnell in Derivate wie 166 und 167 mit anderen terminalen Ketten überführt werden. Neben weiteren Palladium-katalysierten Kupplungen mit anderen Nukleophilen könnte man sich auch eine (2+3)-Cycloaddition des Alkins mit einem Azid vorstellen,172 wobei ein Triazol 168 mit den unterschiedlichsten Resten zugänglich wäre.

Die exakte Rolle der Methylgruppen in der biologischen Aktivität von Cytostatin (diese fehlen beim Fostriecon) bleibt unklar. Denkbar wäre z.B. die Synthese und biologische Evaluierung eines völlig unsubstituierten Derivats 169 (Schema 37).

Die Aktivität des Cytostatins gegenüber weiteren Serin-Threonin-Phosphatasen neueren Typs (PP3-9)8 ist ebenfalls nicht bekannt. Auch hier wäre ein Vergleich mit den klassischen PP2A-Inhibitoren, wie die Okadasäure, von Interesse.

Schema 37 *Weitere vielversprechend erscheinende Analoga des Cytostatins*

Abbildung 21 *Mit einem Fluoreszenzmarker (NBD) versehenes Cytostatin-Analogon*

Die Anwesenheit und Notwendigkeit des α,β-ungesättigten Lactons für die inhibitorische Wirkung des Cytostatins suggeriert, dass dieses als Michael-Akzeptor die PP2A kovalent modifiziert. Ein partieller Verdau eines solchen Addukts gekoppelt mit einer massenspektrometrischen Analyse könnte die unbekannte Bindungsstelle des Cytostatins und
6. Experimenteller Teil

6.1 Messgeräte und Hilfsmittel

Die 1H-, 13C- und 31P-NMR Spektren wurden auf folgenden Geräten aufgenommen:
Varian Mercury 400 400 MHz 1H-NMR, 100.6 MHz 13C-NMR, 162.0 MHz 31P-NMR
Bruker AM 400 400 MHz 1H-NMR, 100.6 MHz 13C-NMR

Die chemischen Verschiebungen sind in ppm angegeben und beziehen sich auf Tetramethylsilan (TMS, $\delta = 0$) als internen Standard. Die Signalmultiplizitäten sind wie folgt abgekürzt: s = Singulett, d = Dublet, t = Triplet, q = Quartett, quint = Quintett, sext = Sextett, sept = Septett, m = Multiplett, brs = verbreitertes Signal.

Die EI- und FAB-Massenspektren wurden mit einem Finnigan MAT MS 70 oder einem Jeol SX 102A Spektrometer gemessen. Angegeben sind die m/z Werte und die relativen Intensitäten. Die FAB-Spektren wurden in einer 3-NBA-Matrix gemessen.

Die MALDI-TOF-Massenspektren wurden auf einer Voyager-DE Pro BioSpectrometry™ Workstation der Firma PerSeptive Biosystems aufgenommen mit 2,5-Dihydrobenzoesäure als Matrix.

Die spezifischen Drehwerte $[\alpha]_D^{10}$ wurden mit einem Perkin-Elmer Polarimeter 341 bestimmt und beziehen sich auf die Na-D-Linie. Die Lösungsmittel und Konzentrationen (in g/100 ml) sind bei den jeweiligen Substanzen angegeben.

Die Schmelzpunkte wurden mit einer Schmelzpunktmessapparatur B-540 der Firma Büchi ermittelt und sind nicht korrigiert.

Für die analytische Dünnschichtchromatographie wurden aluminiumbeschichtete Kieselgel 60 F$_{254}$ Platten der Firma Merck verwendet. Zur Detektion wurde UV-Licht der Wellenlänge 254 nm und zur Anfärbung nachfolgende Reagenzien eingesetzt:

Reagenz A: 12 g Phosphormolybdän säure in 250 ml Ethanol
Reagenz B: 0.5 g Kaliumpermanganat in 100 ml Wasser
Reagenz C: I$_2$-Dämpfe
Reagenz D: 1.5 g Phosphormolybdän säure, 1 g Cer-(IV)-sulfat, 6 ml konzentrierte Schwefelsäure und 94 ml Wasser

Die préparative Säulenchromatographie erfolgte mit Flash-Kieselgel (Korngröße 40-64 µM) der Firma Merck, Aluminiumoxid Typ 506C (neutral) mit einem Überdruck von 0.3-0.5 bar.
Für die gaschromatographische Analyse wurde ein HP 5890-Series II Gaschromatograph mit HP 5972-Series Mass Selective Detector der Firma Hewlett-Packard und einer Kapillarsäule Optima-1 (0.2 mm x 25 m) der Firma Macherey-Nagel mit Helium als Trägergas verwendet. HPLC-Trennungen wurden mit einer Varian Pro Star mit einem Varian Detektor Model 340 durchgeführt. Das verwendete Acetonitril wurde in HPLC-Qualität von der Firma Biosolve erworben, das Wasser wurde in MILLIPORE-Qualität verwendet. Die verwendeten Säulen und Elutionsprogramme sind den einzelnen Vorschriften zu entnehmen.

Die UV-Messungen wurden an einem Dynatech MR 5000 Photometer gemessen. Es wurden Rotilabo®-Mikrotest-Platten aus Polystyrol (F-Profil) der Firma Roth verwendet. Die Enzyme wurden von folgenden Firmen erworben: Calbiochem (PP2A₁ (Rinderniere), PP1 (α-Isoform, Kaninchenmuskel, rekombinant)), Biomol (CD45 (human, recombinant) Tyrosine Phosphatase Assay Kit, PTP1B (human, recombinant), VHR (human, recombinant)). Das para-Nitrophenylphosphat und die BSA-Lösung wurden von Calbiochem erworben.

Alle Reaktionen wurden unter einer Argonatmosphäre durchgeführt.

6.2. Versuche zu Kapitel 4.1.2.

1-(1-Ethylprop-2-inyloxymethyl)-4-methoxybenzol (50b)

Zu einer Lösung von 100 mg (1.19 mmol) des Alkohols 50a in 2 ml trockenem DMF werden bei 0 °C 1.31 ml (1.31 mmol) einer 1 M Natriumhexamethyldisilazid-Lösung in THF zugetropft. Nach 30 min Rühren bei 0 °C werden nacheinander 0.194 ml (1.43 mmol) p-Methoxybenzylchlorid zugetropft und 22 mg (60 μmol) Tetrabutylammoniumiodid zugegeben. Nach 16 h Rühren bei Raumtemperatur werden 10 ml einer 1 M wässrigen
Kaliumdihydrogenphosphat-Lösung zugegeben. Die Mischung wird mit dreimal je 20 ml Diethylether extrahiert, die versammelten organischen Phasen mit 10 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum bei mindestens 100 mbar vorsichtig abdestilliert.

Ausbeute: 163 mg (0.800 mmol, 67 %), farbloses Öl.

Rf: 0.86 (Pentan/Et₂O) = 5:1 (v/v)).

¹H (400 MHz, CDCl₃): δ = 7.30 (d, ³J=8.6 Hz, 2H; ar-CH-2), 6.89 (d, ³J=8.6 Hz, 2H; ar-CH-3), 4.74 (d, ³J=11.4 Hz, 1H; CH₂O(1)), 4.46 (d, ³J=11.4 Hz, 1H; CH₂O(1)), 4.00 (dt, ⁴J=2.0 Hz, 3J=6.5 Hz, 1H; CHO), 3.81 (s, 3H, OCH₃), 2.47 (d, ⁴J=2.0 Hz, 1H; ≡CH), 1.72-1.81 (m, 2H; CH₂CH₃), 1.02 (t, ³J=7.4 Hz, 3H; CH₂C₃H₃).

¹³C (100 MHz, CDCl₃): δ = 159.4 (ar-C-4), 130.1 (ar-C-1), 129.8 (ar-CH-2), 113.9 (ar-CH-3), 83.0 (≡CH), 73.9 (≡C-2'), 70.2 (CH₂O), 69.5 (CHO), 55.4 (CH₃O), 28.9 (CH₂CH₃), 9.7 (CH₂CH₃).

C₁₃H₁₆O₂ (204.26)

MS (EI, 70 meV): 204 ([M⁺], 30), 175 ([M-CH₂CH₃]⁺, 8), 174 ([M-H-CH₂CH₃]⁺, 8), 136 ([C₈H₅O₂]⁺, 32), 121 ([C₈H₉O]⁺, 100).

HR-MS (EI, 70 meV) für C₁₃H₁₆O₂ [M⁺]: ber.: 204.1150
gef.: 204.1134.

(E)-Trimethylpent-3-en-1-inylsilan (52)

Zu 100 ml trockenem, entgastem THF werden nacheinander 0.86 ml (10 mmol) (E)-2-Brompropen, 2.78 ml (20 mmol) Triethylamin, 2.08 ml (15 mmol) Trimethylsilylacetylen, 578 mg (0.5 mmol) Tetrakis(triphenylphosphin)palladium und 190 mg (1 mmol) Kupferiodid bei 0 °C zugegeben, wobei eine sofortige Braunfärbung zu beobachten ist. Nach 15 h Rühren bei Raumtemperatur wird nach Zugabe von 50 ml einer gesättigten Ammoniumchlorid-Lösung die Mischung mit zweimal je 50 ml Diethylether extrahiert, die versammelten organischen Phasen mit 40 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat
getrocknet und das Lösungsmittel im Vakuum bei mindestens 500 mbar abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan gereinigt. Das erhaltene gelbe Öl wird im Vakuum destilliert (30 mbar, 80°C).
Ausbeute: 960 mg (6.94 mmol, 69 %), farbloses Öl.

R_f: 0.72 (Pentan).

1H (400 MHz, CDCl₃): δ = 6.22 (dq, 3J=16.1 Hz, 3J=7.0 Hz, 1H; =CH₂CH₃), 5.51 (dq, 3J=16.1 Hz, 4J=2.0 Hz, 1H; =CH-3), 1.78 (dd, 3J= 7.0 Hz, 4J=2.0 Hz, 3H; =CHCH₃), 0.17 (s, 9H, Si(CH₃)₃).

$C_8H_{14}Si$ (138.28).

MS (EI, 70 meV): 138 ([M]+, 18), 123 ([M-CH₃]+, 100).

Die analytischen Daten stimmen mit der Literatur überein.¹⁷⁵

(E)-1-Brompent-3-en-1-in (51a)

Das verwendete N-Bromsuccinimid wird aus heißem Wasser umkristallisiert und ist völlig farblos.

Zu einer Lösung von 50 mg (0.36 mmol) des Trimethylsilylalkins 52 in 2.5 ml trockenem DMF werden bei 0 °C 70 mg (0.39 mmol) N-Bromsuccinimid und 6 mg (35 µmol) Silbernitrat zugegeben. Nach 2 h Rühren bei 0 °C und 1 h Rühren bei Raumtemperatur ist laut GC-MS immer noch Edukt vorhanden. Deshalb erfolgt eine weitere Zugabe von Silbernitrat (ca. 10 mg) und N-Bromsuccinimid (10 mg). Nach 2 h ist der Umsatz laut GC-MS vollständig. Nach Zugabe von 10 ml eiskaltem Wasser wird das Gemisch mit zweimal je 10 ml Pentan extrahiert, die versammelten organischen Phasen mit 5 ml einer gesättigten NaCl-Lösung gewaschen, über Natrium sulfat getrocknet und das Lösungsmittel im Vakuum bei mindestens 500 mbar vorsichtig abdestilliert. Das Produkt wird ohne weitere Reinigung eingesetzt. Laut GC-MS und 1H-NMR besteht es aus einem Gemisch aus 2 Isomeren im Verhältnis E:Z 28:1.

Ausbeute: 26 mg (0.18 mmol; 50 %); leicht gelbliches, leichtbewegliches Öl.
(E)-Isomer 51a

1H (400 MHz, CDCl$_3$): $\delta = 6.21$ (dq, $^3J=16.1$ Hz, $^3J=7.0$ Hz, 1H; =CHCH$_3$), 5.46 (dq, $^3J=16.1$ Hz, $^4J=2.0$ Hz, 1H; =CH-3), 1.77 (dd, $^3J= 7.0$ Hz, $^4J=2.0$ Hz, 3H; =CHCH$_3$).

(Z)-Isomer 54a

1H (400 MHz, CDCl$_3$): $\delta = 6.04$ (dq, $^3J=10.5$ Hz, $^3J=6.8$ Hz, 1H; =CHCH$_3$), 5.43-5.48 (m, 1H), 1.88 (dd, $^3J= 6.8$ Hz, $^4J=1.5$ Hz, 3H; =CHCH$_3$).

C$_{32}$H$_{41}$O$_4$Si (145.00).

MS (EI, 70 meV): 146, 144 ([M$^+$], 100), 65 ([M-Br]$^+$, 89).

1-(1-Ethylct-6-en-2,4-diinyloxymethyl)-4-methoxybenzol (49b)

Zu einer Mischung von 14 mg (0.07 mmol) CuI, 8 mg (0.06 mmol) Lithiumiodid und 9 mg (9 μmol) Di-palladium-tris-(dibenzylidenaceton)-Chloroform-Komplex wird eine Lösung von 56 mg (0.28 mmol) des Alkins 50b und 60 mg (0.41 mmol) des Bromalkins 51a in 3 ml trockenem, entgasten DMSO (und zweimal 0.5 ml zum Nachspülen) zugegeben. Nach Zugabe von 0.21 ml (1.18 mmol) 1,2,2,6,6-Pentamethylpiperidin wird die Reaktionsmischung 17 h unter Lichtausschluss gerührt. Die Mischung wird nacheinander mit 5 ml einer gesättigten Ammoniumchloridlösung, 20 ml Diethylether, 10 ml einer gesättigten NaCl-Lösung und 5 ml Wasser versetzt. Nach Abtrennen der organischen Phase wird die wässrige Phase mit zweimal 10 ml Diethylether, die versammelten organischen Phasen mit zweimal 5 ml Wasser, zweimal 5 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, über eine kurze Kieselgelsäule filtriert und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (80 mg, braunes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 50:1 gereinigt.

Ausbeute: 40 mg (0.157 mmol, 56 %), gelbes, viskoses Öl.

R_f: 0.26 (CH/EE)= 40:1 (v/v)).

1H (400 MHz, CDCl$_3$): $\delta = 7.28$ (d, $^3J=8.8$ Hz, 2H; ar-CH-2), 6.88 (d, $^3J=8.8$ Hz, 2H; ar-CH-3), 6.35 (dq, $^3J=15.8$ Hz, $^3J=7.0$ Hz, 1H; =CH-7$'$), 5.55 (dqd, $^3J=15.8$ Hz, $^4J=1.8$ Hz, $^7J=0.8$ Hz, 1H; =CH-6$'$), 4.72 (d, $^3J=11.3$ Hz, 1H; CH$_2$O(1)), 4.43 (d, $^3J=11.3$ Hz, 1H; CH$_2$O(1)),
4.08 (t, 3J=6.5 Hz, 1H; CHO), 3.80 (s, 3H, OCH$_3$), 1.83 (dd, 3J=6.8 Hz, 4J=2.0 Hz, 3H; CH$_3$-8’), 1.70-1.82 (m, 2H; CH$_2$CH$_3$), 1.00 (t, 3J=7.4 Hz, 3H; CH$_2$CH$_3$).

13C (100 MHz, CDCl$_3$): δ = 159.4 (ar-C-4), 144.1 (=CH-7’), 130.0 (ar-C-1), 129.8 (ar-CH-2), 113.9 (ar-CH-3), 109.8 (=CH-6’), 81.1 (C-2’), 72.0 (C-4’), 71.2 (C-5’), 70.7 (C-3’), 70.5 (CH$_2$O), 70.2 (CHO), 55.4 (CH$_3$O), 29.0 (CH$_2$CH$_3$), 19.1 (CH$_3$-8’), 9.9 (CH$_2$CH$_3$).

C$_{18}$H$_{20}$O$_2$ (268.15)

HR-MS (FAB, 3-NBA) für C$_{18}$H$_{20}$O$_2$ [M]$^+$: ber.: 268.1463
gef.: 268.1473

(E)-Dec-8-en-4,6-diin-3-ol (49a)

Das Endiin 49a wurde in voller Analogie zu 49b, ausgehend von 49 µl (0.57 mmol) Pent-1-in-3-ol 50 a hergestellt.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 50:1 \rightarrow 5:1 (v/v) gereinigt.

Ausbeute: 42 mg (0.28 mmol, 50 %), braunes, leichtbewegliches Öl.

R_f: 0.4 (P/Et$_2$O)= 5:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 6.33 (dq, 3J=15.8 Hz, 3J=7.0 Hz, 1H; =CH-7), 5.53 (dqd, 3J=15.8 Hz, 4J=1.8 Hz, 7J=0.8 Hz, 1H; =CH-6), 4.41 (t, 3J=6.3 Hz, 1H; CHO), 1.82 (dd, 3J=6.8 Hz, 4J=1.8 Hz, 3H; CH$_3$-8), 1.70-1.79 (m, 2H; CH$_2$CH$_3$), 1.01 (t, 3J=7.4 Hz, 3H; CH$_2$CH$_3$).

13C (100 MHz, CDCl$_3$): δ = 144.3 (=CH-7), 109.7 (=CH-6), 82.2 (C-2), 77.9 (C-4), 71.7 (C-5), 69.9 (C-3), 64.4 (CHO), 30.9 (CH$_2$CH$_3$), 19.0 (CH$_3$-8), 9.5 (CH$_2$CH$_3$).

C$_{10}$H$_{12}$O (148.20).

MS (EI, 70 meV): 148 ([M]$^+$, 27), 119 ([M-CH$_2$CH$_3$]$^+$, 100).

HR-MS (EI, 70 meV) für C$_{10}$H$_{12}$O [M+H$^+$]: ber.: 148.0888
gef.: 148.0880.
Alle Operationen werden möglichst unter Lichtausschluss durchgeführt. Für die NMR-Spektroskopie wird das CDCl$_3$ vor Gebrauch über eine kurze Säule aus basischem Aluminiumoxid filtriert. Zu einer Lösung von 0.41 ml (5 mmol) E-Crotonaldehyd, 3.32 g (10 mmol) Tetrabrommethan in 30 ml trockenem Dichlormethan werden im Argon-Gegenstrom bei 0 °C in 5 Portionen 5.24 g (20 mmol) Triphenylphosphin zugegeben (ca. 3 min). Nach 8 min Rühren bei 0 °C wird die orangefarbene Mischung mit 100 ml Pentan verdünnt und über eine 7 cm kurze Säule aus neutralem Aluminiumoxid filtriert. Das Lösungsmittel wird im Vakuum bei maximal 30 °C und mindestens 100 mbar vorsichtig abdestilliert. Das Rohprodukt wird säulenchromatographisch an neutralem Aluminiumoxid mit Pentan gereinigt.

Ausbeute: 980 mg (4.33 mmol, 87 %), gelbes, leichtbewegliches Öl. Aufgrund der Labilität wird das Produkt sofort weiterverwendet.

R_f: 0.9 (Pentan).

1H (400 MHz, CDCl$_3$): $\delta =$ 6.89 (d, 3J=10.0 Hz, 1H; =CH-2), 6.07-6.14 (m, 1H; =CH-3), 5.92 (dq, 3J=15.1 Hz, 3J=6.7 Hz, 1H; =CH-4), 1.77 (dd, 3J=1.5 Hz, 3J=6.7 Hz, 3H; CH$_3$).

Die analytischen Daten stimmen mit der Literatur überein.175

1-((4Z,6E)1-Ethylota-4,6-dien-2-inyloxymethyl)-4-methoxybenzol (58)

Zu einer Lösung von 1.65 g (7.3 mmol) des Dibromalkens 60 und 337 mg (0.29 mmol) Tetrakis(triphenylphosphin)palladium in 70 ml trockenem, entgastem THF werden 2.0 ml (7.7 mmol) Tributylzinnhydrid zugetropft. Nach einer Stunde Rühren wird nochmal 0.1 ml Tributylzinnhydrid zugetropft. Nach einer weiteren Stunde Rühren ist laut Gaschromatographie kein Edukt mehr vorhanden. Zu der Lösung werden nacheinander eine Lösung von 298 mg (1.46 mmol) des Alkins 50b in 2 ml trockenem, entgasten THF, 7.5 ml entgastem (N,N)-Diisopropylethylamin, und 150 mg (0.79 mmol) Kupferiodid zugegeben. Nach 16 h Rühren wird die Reaktionsmischung mit 250 ml einer gesättigten Ammoniumchloridlösung versetzt, mit 300 ml Diethylether extrahiert, die versammelten
organischen Phasen mit zweimal 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum vorsichtig abdestilliert.

Das Rohprodukt wird säulen chromatographisch an Kieselgel mit Pentan/Diethylether 10:0 → 10:1 (v/v) gereinigt.

Ausbeute: 142 mg (0.525 mmol, 36 % über 2 Stufen), gelbes, viskoses Öl.

\[R_f: 0.30 \text{ (Pentan).} \]

\[^1H \text{ (400 MHz, CDCl}_3\text{):} \delta = 7.32 \text{ (d, } ^3J=8.8 \text{ Hz, 2H; ar-CH-2)}, \]
\[6.89 \text{ (d, } ^3J=8.8 \text{ Hz, 2H; ar-CH-3)}, \]
\[6.58-6.66 \text{ (m, 1H; =CH-6’)}, \]
\[6.37 \text{ (q, } ^3J=10.6 \text{ Hz, 1H; =CH-5’)}, \]
\[5.92 \text{ (dq, } ^3J=15.1 \text{ Hz, } ^3J=7.0 \text{ Hz, 1H; =CH-7’)}, \]
\[5.38 \text{ (d, } ^3J=10.8 \text{ Hz, 1H; =CH-4’)}, \]
\[4.77 \text{ (d, } ^3J=11.4 \text{ Hz, 1H; CH}_2\text{O(1)}), \]
\[4.49 \text{ (d, } ^3J=11.4 \text{ Hz, 1H; CH}_2\text{O(1)}), \]
\[4.20 \text{ (dt, } ^3J=1.8 \text{ Hz, } ^3J=6.5 \text{ Hz, 1H; CHO)}, \]
\[3.81 \text{ (s, 3H, OCH}_3), \]
\[1.78-1.86 \text{ (m, 5H; CH}_2\text{CH}_3, \]
\[\text{CH}_3-8’), \]
\[1.04 \text{ (t, } ^3J=7.4 \text{ Hz, 3H; CH}_2\text{CH}_3). \]

\[^13\text{C (100 MHz, CDCl}_3\text{):} \delta = 159.3 \text{ (ar-C-4), 140.5 (=CH-7’), 133.6 (=CH-5’), 130.4 (ar-C-1), 129.7 (ar-C-2), 129.2 (=CH-6’), 113.9 (ar-C-3), 106.3 (=CH-4’), 94.0 (≡C-3’), 83.2 (≡C-2’), 70.4 (CHO), 70.2 (CH}_2\text{O), 55.4 (CH}_3, \]
\[29.2 \text{ (CH}_2\text{CH}_3), 18.6 (CH}_3-8’), 10.0 (CH}_2\text{CH}_3). \]

\[\text{C}_{18}\text{H}_{22}\text{O}_2 \text{ (270.37).} \]

\[\text{MS (FAB, 3-NBA):} \text{ 241.0 ([M-C}_2\text{H}_3]^+, 4), 121.1 ([CH}_3\text{OC}_6\text{H}_4\text{CH}_2]^+, 100).} \]

\[\text{HR-MS (FAB, 3-NBA) für C}_{16}\text{H}_{17}\text{O}_2 \text{ ([M-C}_2\text{H}_3]^+),} \]
\[\text{ber.: 241.1229} \]
\[\text{gef.: 241.1268.} \]

\[(E)-\text{Tributyl-pent-3-en-1-inyl-stannan (63)} \]

Für die NMR-Spektroskopie wird das CDCl\textsubscript{3} vor Gebrauch über eine kurze Säule aus basischem Aluminiumoxid filtriert. Das Kieselgel wird vor Gebrauch mit einer Lösung Aceton/Pyridin 100:1 (v/v) deaktiviert und danach im Luftstrom getrocknet. Zu einer Lösung von 936 mg (4.14 mmol) des Dibromalkens \textit{60} in 20 ml trockenem THF werden bei –78°C 3.31 ml (8.28 mmol) einer 2.5 M Butyllithium-Lösung in Hexan während 45 min zugetropft. Nach 1 h Rühren bei –78°C und 70 min Rühren bei Raumtemperatur wird die Lösung erneut auf –78 °C abgekühlt. Bei –78 °C werden 1.18 ml (4.35 mmol) Chlortributylstannan zugetropft. Nach 15 h bei Raumtemperatur wird nach Zugabe von 50 ml einer gesättigten Ammoniumchlorid-Lösung die Mischung mit dreimal 50 ml Pentan extrahiert, die
versammelten organischen Phasen mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum bei maximal 30 °C vorsichtig abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan gereinigt.

Ausbeute: 729 mg (2.05 mmol, 50 %), farbloses, leichtbewegliches Öl.

$$R_f: 0.95 \text{ (Pentan/Diethylether= 10:1 (v/v)).}$$

1H (400 MHz, CDCl$_3$): $\delta = 6.15 \text{ (dq, } ^3J=15.8 \text{ Hz, } ^3J=6.8 \text{ Hz, } 1H; =CH-4), 5.53 \text{ (dq, } ^3J=15.8 \text{ Hz, } ^4J=2.0 \text{ Hz, } 1H; =CH-3), 1.76 \text{ (dd, } ^3J=6.8 \text{ Hz, } ^4J=2.0 \text{ Hz, } 3H; CH_3-5), 1.52-1.60 \text{ (m, } 6H, \text{ CH}_2-2'), 1.33 \text{ (sext, } ^3J=7.8 \text{ Hz, } 6H; CH_2CH_3), 0.97-1.01 \text{ (m, } 6H; SnCH_2), 0.90 \text{ (t, } ^3J=7.4 \text{ Hz, } 9H; CH_2CH_3).$

13C (100.6 MHz, CDCl$_3$): $\delta = 139.6 \text{ (=CH-CH}_3), 111.6 \text{ (=CH-3), 109.0 \text{ (=C-2), 91.3 \text{ (=C-1), 29.0 \text{ (CH}_2-2'), 27.1 \text{ (CH}_2-CH}_3}, 18.6 \text{ (CH}_3-5), 13.8 \text{ (CH}_2CH_3), 11.2 \text{ (SnCH}_2).$

35As Sn (355.15)

MS (EI, 70 meV): 355.0 ([M-H]$^+$, 28), 299 ([M-C$_4$H$_9$]$^+$, 100), 243 ([M-C$_8$H$_{17}$]$^+$, 31), 185 ([M-C$_{12}$H$_{27}$], 46).

HR-MS (FAB, 3-NBA) für C$_{14}$H$_{23}$Sn [M-C$_4$H$_9$]$^+$: ber.: 299.0822
gef.: 299.0808.

$(1Z,3E)$-Tributyl-penta-1,3-dienyl-stannan (62)

Alle Operationen werden möglichst unter Lichtausschluss durchgeführt. Für die NMR-Spektroskopie wird das CDCl$_3$ vor Gebrauch über eine kurze Säule aus basischem Aluminiumoxid filtriert.

Zu einer Suspension von 65 mg (0.254 mmol) von Zirconocenhydrochlorid in 0.75 ml trockenem THF wird eine Lösung von 40 mg (0.113 mol) des Alkinylstannans 63 in 0.5 ml trockenem THF (und 0.5 ml zum Nachspülen) gegeben. Nach 30 min Rühren bei Raumtemperatur werden 5 ml Pentan zugegeben. Nach weiteren 35 min Rühren bei Raumtemperatur wird die orangegelbe Mischung über eine 13 cm hohe (Durchmesser 1 cm) Kieselgelsäule filtriert und mit 100 ml Pentan/Diethylether 30:1 (v/v) eluiert. Das Lösungsmittel wird im Vakuum bei maximal 30 °C abdestilliert.
Ausbeute: 40 mg (0.111 mmol, 99 %), leicht gelbliches Öl. Das Produkt wird aufgrund seiner Labilität sofort weiter eingesetzt.

RF: 0.95 (Pentan/Diethylether= 10:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.02 (dd, 3J=12.8 Hz, 3J=10.4 Hz, 1H; =CH-2), 5.93-6.01 (m, 1H; =CH-3), 5.90 (dd, 3J=12.8 Hz, 3J=0.6 Hz, 1H; =CH-1), 5.72 (dq, 3J=14.9 Hz, 3J=6.6 Hz, 1H; =CH-CH$_3$), 1.78 (dd, 3J=6.6 Hz, 4J=1.6 Hz, 3H; CH$_3$-5), 1.47-1.55 (m, 6H, CH$_2$-2'), 1.32 (sext, 3J=7.4 Hz, 6H; =C-H_2), 0.92-0.96 (m, 6H; =SnCH$_2$), 0.89 (t, 3J=7.2 Hz, 9H; CH$_3$CH$_2$).

13C (100.6 MHz, CDCl$_3$): δ = 146.7 (=CH-2), 134.7 (=CH-3), 131.2 (=CH-CH$_3$), 130.8 (=CH-Sn), 29.3 (CH$_2$-2'), 27.4 (CH$_2$CH$_3$), 18.4 (CH$_3$-5), 13.8 (CH$_2$CH$_3$), 10.6 (SnCH$_2$).

MS (EI, 70 meV): 357.0 ([M-H]$^+$, 73), 301 ([M-C(CH$_3$)$_3$]$^+$, 100), 245 ([M-C$_8$H$_{17}$]$^+$, 27), 187 ([M- C$_{12}$H$_{27}$]$^+$, 26).

1-(1-Ethyl-3-iodo-prop-2-inyloxymethyl)-4-methoxy-benzol (66c)

Zu einer Lösung von 1.00 g (4.90 mmol) des Alkins 50b und 1.38 g (6.12 mmol) N-Iodosuccinimid in 40 ml Aceton werden unter Lichtausschluss 166 mg (0.98 mmol) Silbernitrat zugegeben. Nach 4 h Rühren wird nach Zugabe von 100 ml eiskaltem Wasser die Mischung mit dreimal je 150 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 100:1 → 30:1 (v/v) gereinigt.

Ausbeute: 1.43 g (4.33 mmol, 71 %), gelbes Öl.

RF: 0.77 (CH/EE)= 30:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.28 (d, 3J=8.6 Hz, 2H; ar-CH-2), 6.88 (d, 3J=8.6 Hz, 2H; ar-CH-3), 4.72 (d, 3J=11.3 Hz, 1H; CH$_2$O(1)), 4.43 (d, 3J=11.3 Hz, 1H; CH$_2$O(1)), 4.12 (dt, 3J=6.5 Hz, 1H; CHO), 3.81 (s, 3H, OCH$_3$), 1.71-1.78 (m, 2H; CH$_2$CH$_3$), 0.99 (t, 3J=7.4 Hz, 3H; CH$_2$CH$_3$).
13C (100 MHz, CDCl$_3$): δ = 159.2 (ar-C-4), 129.8 (ar-C-1), 129.6 (ar-CH-2), 113.8 (ar-CH-3), 94.1 (==C-2'), 71.0 (CHO), 70.3 (CH$_2$O), 55.3 (CH$_3$O), 28.9 (CH$_2$CH$_3$), 9.7 (CH$_2$CH$_3$), 1.4 (==C-I).

C$_{13}$H$_{15}$IO$_2$ (330.16)

MS (FAB, 3-NBA): 352.9 ([M+Na$^+$], 4), 329.9 ([M$^+$], 17), 328.9 ([M-H$^+$], 9), 121 ([C$_8$H$_6$O]$^+$: 100).

HR-MS (FAB, 3-NBA) für C$_{13}$H$_{15}$INaO$_2$ ([M+Na$^+$]):

- ber.: 353.0014
- gef.: 352.9987.

1-[(Z)-1-Ethyl-3-iodo-allyloxymethyl]-4-methoxy-benzol (67c)

Die Reaktion wird unter Lichtausschluss durchgeführt. Zu einer Lösung von 624 mg (1.89 mmol) des Alkinyliodids 66c, 459 mg (2.36 mmol) Kaliumazodicarboxylat und 0.45 ml (5.44 mmol) Pyridin in 7.9 ml Methanol werden 0.27 ml Essigsäure (4.73 mmol) über 1 h zugegeben. Nach 5 h Rühren werden nochmals 230 mg (1.8 mmol) Kaliumazodicarboxylat und 0.14 ml (2.36 mmol) Essigsäure zugegeben. Nach 15 h Rühren wird die Mischung mit einer 1 M Salzsäurelösung auf pH 3 angesäuert, mit dreimal je 30 ml Diethylether extrahiert, die versammelten organischen Phasen nacheinander mit 30 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 30 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (600 mg, gelbes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 30:1 (v/v) gereinigt.

Ausbeute: 576 mg (1.73 mmol, 92 %), gelbliches Öl.

R_f: 0.30 (CH/EE)= 30:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.28 (d, 3J=8.7 Hz, 2H; ar-CH-2), 6.87 (d, 3J=8.7 Hz, 2H; ar-CH-3), 6.47 (dd, 3J=7.8 Hz, 4J=1.0 Hz, 1H; =CH-I), 6.19 (t, 3J=7.8 Hz, 1H; =CH-I), 4.51 (d, 3J=11.3 Hz, 1H; CH$_2$O(1)), 4.34 (d, 3J=11.3 Hz, 1H; CH$_2$O(1)), 4.05 (ddt, 3J=7.2 Hz, 4J=1.0 Hz, 3J=7.0 Hz, 1H; CHO), 3.81 (s, 3H, OCH$_3$), 1.53-1.75 (m, 2H; CH$_2$CH$_3$), 0.95 (t, 3J=7.4 Hz, 3H; CH$_2$CH$_3$).
\[^{13}\text{C} \quad (100 \text{ MHz, CDCl}_3): \delta = 159.1 \text{ (ar-C-4), 142.1 (}=\text{CH-2}'), 130.6 \text{ (ar-C-1), 129.5 (ar-CH-2),} \\
113.8 \text{ (ar-CH-3), 84.0 (}=\text{CH-I), 82.0 \text{ (CHO), 70.5 (CH}_2\text{O), 55.5 (CH}_3\text{O), 27.8 (CH}_2\text{CH}_3), 9.9 (CH}_2\text{CH}_3) .\]

\[\text{C}_{13}\text{H}_{17}\text{IO}_2 \quad (332.18) \]

MS (FAB, 3-NBA): 332.0 ([M$^+$], 121.1 ([C$_8$H$_9$O]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{13}$H$_{17}$IO$_2$ [M$^+$]:

ber.: 332.0273

gef.: 332.0285.

1-[(2Z,4Z,6E)-1-Ethylocta-2,4,6-trienyloxymethyl]-4-methoxybenzol (55b)

Alle Operationen werden möglichst unter Lichtausschuss durchgeführt. Für die NMR-Spektroskopie wird das CDCl$_3$ vor Gebrauch über eine kurze Säule aus basischem Aluminiumoxid gefiltert.

 Zu einer Lösung von 137 mg (0.412 mmol) des Iodids 68c und 294 mg (0.824 mmol) des Stannans 62 in 7 ml entgastem DMF und 0.25 ml entgastem THF werden ca. 10 mg Bis(acetonitril)-palladium(II)-chlorid zugegeben. Nach 16 h Rühren wird die Reaktionsmischung mit 5 ml einer wässrigen 10 %-igen Ammoniaklösung und 25 ml Wasser versetzt, mit dreimal je 30 ml Diethylether extrahiert, die versammelten organischen Phasen nacheinander mit 20 ml einer 1 M Kaliumdihydrogenphosphatlösung, 20 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum vorsichtig abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 50:1 \rightarrow 10:1 (v/v) gereinigt.

Ausbeute: 83 mg (0.304 mmol, 74 %), gelbes, leichtbewegliches Öl.

R$_f$: 0.28 (CH/EE= 30:1 (v/v)).

\[^1\text{H} \quad (400 \text{ MHz, CDCl}_3): \delta = 7.25 \text{ (d, } ^3\text{J}=8.6 \text{ Hz, 2H; ar-CH-2), 6.86 \text{ (d, } ^3\text{J}=8.6 \text{ Hz, 2H; ar-CH-3), 6.67 \text{ (t, } ^3\text{J}=10.6 \text{ Hz, 1H, } =\text{CH-3}'),} \\
6.52-6.60 \text{ (m, 1H; } =\text{CH-6}), 5.97-6.08 \text{ (m, 2H; } =\text{CH-4'}, \\
=\text{CH-5}), 5.80 \text{ (dq, } ^3\text{J}=14.7 \text{ Hz, } ^3\text{J}=6.8 \text{ Hz, 1H; } =\text{CH-7')}, 5.38 \text{ (t, } ^3\text{J}=9.6 \text{ Hz, 1H; } =\text{CH-2'}), \\
4.51 \text{ (d, } ^3\text{J}=11.5 \text{ Hz, 1H; CH}_2\text{O(1))}, 4.27 \text{ (d, } ^3\text{J}=11.5 \text{ Hz, 1H; CH}_2\text{O(1))}, 4.18 \text{ (q, } ^3\text{J}=6.8 \text{ Hz,} \\
]
(4R,5S)-4-Methyl-5-phenyloxazolidin-2-on (70)

Zu einer Lösung von 10.2 g (67.45 mmol) \(D\)-Norephedrin in 180 ml Diethylether und 145 ml einer 10\%igen NaOH-Lösung werden bei 0 °C 86 ml (162 mmol) einer 20 \%igen Phosgen-Lösung in Toluol unter intensivem Rühren zugetropft. Nach 6 h Rühren bei Raumtemperatur wird die Mischung mit dreimal je 200 ml Diethylether extrahiert, die versammelten organischen Phasen mit 150 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (11.74 g) wird aus Cyclohexan/Ethylacetat umkristallisiert.

Ausbeute: 10.16 g (57.3 mmol, 85 \%), weißer Feststoff.

\(R_f\): 0.24 (Cyclohexan/Ethylacetat= 1:1 (v/v)).

Drehwert: \([\alpha]_D^{20} = +167.8\) (c=1 in CHCl₃).

\(1^H\) (400 MHz, CDCl₃): \(\delta = 7.28-7.42\) (m, 5H; Ph), 5.91 (brs, 1H; NH), 5.72 (d, \(3^J = 8.0\) Hz, 1H; CHO), 4.21 (dq, \(3^J = 8.0\) Hz, \(3^J = 6.5\) Hz, 1H; CHN), 0.81 (d, \(3^J = 6.5\) Hz, 3H; CH₃).

Die analytischen Daten stimmen mit der Literatur überein.\(^{176}\)
(4R,5S)-4-Methyl-5-phenyl-3-propionyloxazolidin-2-on (46)

Zu einer Lösung von 8.77 g (49.5 mmol) des Oxazolidinons 70 in 85 ml trockenem THF werden bei –78 °C 19.8 ml (49.5 mmol) einer 2.5 M Lösung von n-Butyllithium in Hexan zugetropft. Nach 30 min Rühren bei –78 °C werden 4.32 ml (49.5 mmol) Propionylchlorid bei –78 °C zugetropft. Nach 35 min bei –78 °C und 135 min Rühren bei Raumtemperatur wird die Reaktionsmischung auf 100 g eines Eis-Wasser-Gemischs gegossen und mit dreimal je 200 ml Diethylether extrahiert, die versammelten organischen Phasen nacheinander mit 75 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 75 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (12.4 g, gelbes Öl) wird säulenchromatographisch an Kieselsäure mit Cyclohexan/Ethylacetat 7:1 (v/v) gereinigt. Ausbeute: 11.32 g (48.5 mmol, 98 %), farbloses Öl.

R_f: 0.26 (Cyclohexan/Ethylacetat= 7:1 (v/v)).

Drehwert: $[\alpha]_{D}^{20} = +47.7$ (c=0.56 in CHCl$_3$).

1H (400 MHz, CDCl$_3$): δ = 7.35-7.44 (m, 3H; Ph-CH), 7.29-7.32 (m, 2H; Ph-CH), 5.67 (d, 3J= 7.0 Hz, 1H; CHO), 4.77 (quint, 3J= 7.0 Hz, 1H; CHN), 2.87-3.05 (m, 2H, CH$_2$), 1.19 (t, 3J= 7.5 Hz, 3H; CH$_3$-2'), 0.90 (d, 3J= 6.5 Hz, 3H; CH$_3$-5).

Die analytischen Daten stimmen mit der Literatur überein.177

(4R,5S)-4-Methyl-3-[(2S)-2-methyl-pent-4-enoyl]-5-phenyloxazolidin-2-on (72)

Zu einer Lösung von 26 ml (52 mmol) einer 2 M Lösung Natriumhexamethyldisilazid und 50 ml trockenem THF werden bei –78 °C eine –78 °C kalte Lösung von 11.0 g (47.3 mmol) des Oxazolidinons in 25 ml trockenem THF über 30 min zugetropft (nachspülen mit zweimal 5 ml trockenem THF). Nach 45 min Rühren bei –78 °C werden 13 ml (142 mmol) Allyliodid bei –78 °C über 30 min zugetropft. Nach 18 h Rühren bei –78 °C werden 60 ml einer gesättigten Ammoniumchlorid-Lösung bei –78 °C zugegeben, die Reaktionsmischung nach Auftauen auf Raumtemperatur mit dreimal je 300 ml Diethylether extrahiert, die versammelten organischen Phasen nacheinander mit 50 ml einer gesättigten
Natriumhydrogencarbonat-Lösung und 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (15.1 g, rotbraunes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan / Ethylacetat 20:1 (v/v) gereinigt. Die auftretenden Mischfraktionen werden in einem Minimum an heißem Ethylacetat aufgelöst und mit einem Überschuss Cyclohexan auskristallisiert.

Ausbeute: 10.4 g (38.0 mmol, 80 %), farblose Kristalle.

\(R_f \): 0.18 (Cyclohexan/Ethylacetat= 20:1 (v/v)).

Drehwert: \(\alpha_D^{30} = +48.8 \) (c=0.41 in CH\(_2\)Cl\(_2\)).

\(^1\)H (400 MHz, CDCl\(_3\)): δ = 7.35-7.45 (m, 3H; Ph-CH), 7.29-7.32 (m, 2H; Ph-CH), 5.75-5.86 (m, 1H; =CH-4’), 5.66 (d, \(^3\)J= 7.4 Hz, 1H; CHO), 5.01-5.09 (m, 2H; =CH\(_2\)), 4.79 (quint, \(^3\)J= 6.6 Hz, 1H; CHN), 3.89 (sext, \(^3\)J= 6.8 Hz, 1H; CH-2’), 2.46-2.51 (m, 1H; CH\(_2\)-3’(1)), 2.18-2.26 (m, 1H; CH\(_2\)-3’(1)), 1.20 (d, \(^3\)J= 6.8 Hz, 3H; CH\(_3\)-2’), 0.87 (d, \(^3\)J= 6.6 Hz, 3H; CH\(_3\)-5).

Die analytischen Daten stimmen mit der Literatur überein.\(^{117}\)

Rf: 0.41 (Cyclohexan/Ethylacetat= 2:1 (v/v)).

(2S)-2-Methylpent-4-en-1-ol (69)

Zu einer Lösung von 9.82 g (35.9 mmol) des Oxazolidinons 72 in 350 ml trockenem Diethylether und 0.7 ml (39.5 mmol) deionisiertem Wasser werden bei 0 °C 19.8 ml (39.5 mmol) einer 2M Lösung von Lithiumborhydrid in THF getropft. Nach 75 min Rühren bei Raumtemperatur werden nacheinander 50 ml einer 1 M wässrigen NaOH-Lösung und 50 ml deionisiertem Wasser vorsichtig zugegeben. Nach 15 min bei Raumtemperatur wird die Lösung mit zweimal je 50 ml Diethylether extrahiert. Die versammelten organischen Phasen werden mit 75 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum bei mindestens 200 mbar langsam abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 2:1 → Cyclohexan/Ethylacetat 1:2 (v/v) gereinigt.

Ausbeute: 3.38 g (33.8 mmol, 94 %), farbloses, leichtbewegliches Öl.

Es werden 5.60 g (31.6 mmol, 80 %) des Oxazolidinons 70 zurückgewonnen.
Laurent Bialy
Dissertation

1H (400 MHz, CDCl$_3$): $\delta = 5.81$ (ddt, $^3J= 17.2$ Hz, $^2J= 10.2$ Hz, $^3J= 7.2$ Hz, 1H; =CH-4'), 5.00-5.08 (m, 2H ; =CH$_2$), 3.52 (dd, $^2J= 10.7$ Hz, $^3J= 6.1$ Hz, 1H; CH$_2$OH(1)), 3.46 (dd, $^2J= 10.7$ Hz, $^3J= 6.1$ Hz, 1H; CH$_2$OH(1)), 2.14-2.22 (m, 1H; CH$_2$-3(1)), 1.91-1.99 (m, 1H; CH$_2$-3(1)), 1.74 (sext, $^3J= 6.6$ Hz, 1H; CH-2), 0.93 (d, $^3J= 6.6$ Hz, 3H; CH$_3$-2).

Die analytischen Daten stimmen mit der Literatur überein.178

(4R,5S)-3-[(2R,3S,4S)-3-Hydroxy-2,4-dimethylhept-6-enoyl]-4-methyl-5-phenyl-1,3-oxazolidin-2-on (73)

Zu einer Lösung von 7.0 ml (80.3 mmol) Oxalylchlorid in 100 ml trockenem Dichlormethan wird eine Lösung von 7.5 ml (107 mmol) trockenem DMSO bei –78 °C getropft. Nach 1 h Rühren bei –78 °C wird eine Lösung von 5.35 g (53.5 mmol) des Alkohols 69 in 20 ml trockenem Dichlormethan bei –78 °C getropft. Nach 2.5 h Rühren bei –78 °C werden 37 ml (268 mmol) trockenes Triethylamin bei –78 °C zugetropft. Nach Auftauen auf Raumtemperatur wird die Reaktionsmischung mit 270 ml einer 1.0 M wässrigen KH$_2$PO$_4$-Lösung versetzt und nach Abtrennen der organischen Phase einmal mit 50 ml Dichlormethan extrahiert. Die versammelten organischen Phasen werden mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über möglichst wenig Natriumsulfat getrocknet, und dann mit frisch aktiviertem Molsieb (4Å, grobkörnig) versetzt.

Zu einer Lösung von 12.5 g (53.5 mmol) des N-Propionyloxazolidinons 46 und 12.3 ml (72.2 mmol) (iPr)$_2$NEt in 180 ml CH$_2$Cl$_2$ werden bei 0 °C 64.2 ml (64.2 mmol) einer 1 M Lösung von Bu$_2$BOTf in CH$_2$Cl$_2$ zugetropft. Die Lösung wird 45 min bei 0°C gerührt und dann auf -78°C abgekühlt. Die oben hergestellte Aldehyd-Lösung wird bei –78 °C zugetropft. Nach 90 min Rühren bei –78 °C und 90 min Rühren bei Raumtemperatur werden 450 ml einer 1 M KH$_2$PO$_4$-Lösung zugegeben. Die Mischung wird mit zweimal je 500 ml CH$_2$Cl$_2$ extrahiert, das Lösungsmittel im Vakuum abdestilliert und das Rohprodukt in 100 ml Methanol wieder aufgenommen. Bei 0°C werden 150 ml einer 30 %igen wässrigen H$_2$O$_2$-Lösung zugetropft. Nach 1 h Rühren bei Raumtemperatur wird die Mischung mit 300 ml einer gesättigten NaCl-Lösung versetzt, mit dreimal je 300 ml CH$_2$Cl$_2$ extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 2:1 →
Cyclohexan/Ethylacetat 1:2 (v/v) gereinigt. Das Produkt (15.41 g) wird in einem Minimum an heißem Essigester (4-5 ml) aufgelöst, mit einem Überschuss Cyclohexan (60 ml) zur Kristallisation gebracht und die gebildeten Kristalle nach 24 h abfiltriert. Die Mutterlauge enthielt für eine weitere Umkristallisation geeignetes Material.

Ausbeute: 12.0 g (36.5 mmol, 68 %), farblose, nadelförmige Kristalle.

\[R_f: 0.37 \text{ (Cyclohexan/Ethylacetat= 3:1 (v/v)).} \]

Drehwert: \([\alpha]_D^{20} = +40 \text{ (c=0.25, CHCl}_3\text{)}. \)

Smp.: 115 °C (EtOAc/Cyclohexan)

\[^1H \text{ (400 MHz, CDCl}_3\text{): } \delta = 7.36-7.45 \text{ (m, 3H, Ph-CH), 7.29-7.32 \text{ (m, 2H, Ph-CH), 5.83 \text{ (ddd, }{^3}J=16.8 \text{ Hz, }{^3}J=10.0 \text{ Hz, }{^3}J=8.0 \text{ Hz, }{^3}J=6.3 \text{ Hz, 1H; =CH), 5.68 \text{ (d, }{^3}J=7.2 \text{ Hz, 1H; PhCHO), 5.02-5.10 \text{ (m, 2H, =CH},_2\text{), 4.79 \text{ (quint, }{^3}J=6.6 \text{ Hz, 1H; NCH), 3.97 \text{ (dq, }{^3}J=2.2 \text{ Hz, }{^3}J=7.0 \text{ Hz, 1H; CH-2'), 3.66 \text{ (ddd, }{^3}J=9.0 \text{ Hz, }{^3}J=3.0 \text{ Hz, }{^3}J=2.2 \text{ Hz, 1H; CHOH), 3.03 \text{ (d, }{^3}J=3.0 \text{ Hz, 1H; OH), 2.50-2.57 \text{ (m, 1H ,CH}_2-5'(1)), 1.94-2.02 \text{ (m, 1H, CH}_2-5'(1)), 1.64-1.74 \text{ (m, 1H, CH-4'), 1.23 \text{ (d, }{^3}J=7.0 \text{ Hz, 3H; CH}_3-2'), 0.90 \text{ (d, 3H, }{^3}J=6.5 \text{ Hz, 3H; CH}_3-4'), 0.90 \text{ (d, }{^3}J=6.6 \text{ Hz, 3H; CH}_3-4').}\]

\[^13C \text{ (100.6 MHz, CDCl}_3\text{): } \delta = 177.9 \text{ (O=C-1), 152.6 (O=C-1’), 137.2 (=CH), 133.2 (Ph-C), 129.0 (Ph-CH), 128.9 (Ph-CH), 125.7 (Ph-CH), 116.6 (=CH}_2\text{), 79.1 (CHOPh), 75.0 (CHOPh), 54.9 (CHN), 39.6 (CH-2’), 37.5 (CH}_2-5’(1)), 35.6 (CH-4’), 15.3 (CH}_3-4’), 14.5 (CH}_3-4’), 9.6 (CH}_3-2’).}\]

\[C_{19}H_{25}NO_4 \text{ (331.41).} \]

MS (FAB, 3-NBA): 332.2 ([M+H]+).

HR-MS (FAB, 3-NBA) für C\textsubscript{19}H\textsubscript{26}NO\textsubscript{4} [M+H]+: ber.: 332.1862
gef.: 332.1872.

\((4R,5S)-3-[(2R,3S,4S)-3-(Methoxymethoxy)-2,4-dimethylhept-6-enoyl]-4-methyl-5-phenyl-1,3-oxazolidin-2-on (74)\)

Zu einer Lösung von 9.35 g (28.2 mmol) des Aldols 73 in 68 ml trockenem Dichlormethan und 62.8 ml (366 mmol) (N,N)-Diisopropylethylamin werden bei 0 °C 21.4 ml (282 mmol) (Chlormethyl)methylether getropft. Nach 1 h Rühren bei 0 °C wird die Lösung bei

Ausbeute: 10.1 g (26.9 mmol, 95 %), viskoses, farbloses Öl.

\(\text{Rf: } 0.71 \text{ (CH/EE= 2:1 (v/v))} \)

Drehwert: \([\alpha]_D^{39} = + 16.4 \text{ (c=0.44, CHCl}_3\text{)} \)

\(^1\text{H} (400 \text{ MHz, CDCl}_3): \delta = 7.34-7.44 \text{ (m, 3H, Ph-CH), } 7.29-7.33 \text{ (m, 2H, Ph-CH), } 5.79 \text{ (dd, }^3\text{J}=16.8 \text{ Hz, }^3\text{J}=10.2 \text{ Hz, }^3\text{J}=7.8 \text{ Hz, }^3\text{J}=6.1 \text{ Hz, 1H; }\text{=CH}), 5.65 \text{ (d, }^3\text{J}=6.8 \text{ Hz, 1H; PhCH(O)), 5.00-5.07 \text{ (m, 2H; =CH}_2\text{), 4.66 (quint, }^3\text{J}=6.8, 1H; NCH), 4.64 \text{ (d, }^2\text{J}=7.1 \text{ Hz, 1H; MOM-CH}_2(1)), 4.63 \text{ (d, }^2\text{J}=7.1 \text{ Hz, 1H; MOM-CH}_2(1), 4.00 \text{ (dq, }^3\text{J}=4.1 \text{ Hz, }^3\text{J}=6.8 \text{ Hz, 1H; CH-2'), 3.68 (dd, }^3\text{J}=7.2 \text{ Hz, }^3\text{J}=4.1 \text{ Hz, 1H; CHOMOM), 3.36 (s, 3H, MOM-CH}_3\text{), 2.35-2.42 \text{ (m, 1H, CH}_2\text{-5'(1))}, 1.82-1.90 \text{ (m, 1H, CH}_2\text{-5'(1)}, 1.70-1.80 \text{ (m, 1H, CH-4'), 1.21 (d, }^3\text{J}=6.8 \text{ Hz, 3H; CH}_3\text{-2'), 0.99 (d, }^3\text{J}=6.8 \text{ Hz, 3H; CH}_3\text{-4'), 0.92 (d, }^3\text{J}=6.6 \text{ Hz, 3H; CH}_3\text{-4}).

\(^{13}\text{C} (100.6 \text{ MHz, CDCl}_3): \delta = 175.1 (\text{O=C-1}), 153.1 (\text{O=C-1'}), 137.4 (\text{=CH}), 133.4 (\text{Ph-C}), 128.8 (\text{Ph-CH}), 128.8 (\text{Ph-CH}), 125.8 (\text{Ph-CH}), 116.4 (\text{=CH}_2), 99.0 (\text{CH}_2\text{OMOM}), 85.2 (\text{CHOMOM}), 79.3 (\text{CHOPh}), 56.8 (\text{CH}_3\text{OMOM}), 55.8 (\text{CHN}), 41.2 (\text{CH-2'}), 37.1 (\text{CH}_2\text{-5'}), 36.9 (\text{CH-4'}), 15.6 (\text{CH}_3\text{-4'}), 14.4 (\text{CH}_3\text{-4}), 10.6 (\text{CH}_3\text{-2'}).

C\text{\textsubscript{21}}H\text{\textsubscript{29}}NO\text{\textsubscript{5}} (375.46).

MS (FAB, 3-NBA): 376.3 ([M+H+], 100), 344.3 ([M-CH\textsubscript{3}O+], 98).

HR-MS (FAB, 3-NBA) für C\textsubscript{21}H\textsubscript{30}NO\textsubscript{5} ([M+H+]):
ber.: 376.2124
gef.: 376.2113.

\((\text{2S,3S,4S})\text{-3-(Methoxymethoxy)-2,4-dimethylhept-6-en-1-ol} (75)\)

Zu einer Lösung von 10.0 g (26.6 mmol) des Oxazolidinons 74 in 540 ml trockenem Diethylether und 0.53 ml (29.3 mmol) Wasser werden bei 0 °C 14.6 ml (29.3 mmol) einer 2M Lösung von Lithiumborhydrid in THF während 10 min getropft. Nach 80 min Rühren bei

Ausbeute: 4.19 g (20.7 mmol, 78 %), farbloses, leichtbewegliches Öl

R_f: 0.22 (CH/EE=3:1 (v/v)).

Drehwert: $[\alpha]_{D}^{20} = +113$ (c=0.356, CHCl$_3$)

1H (400 MHz, CDCl$_3$): $\delta = 5.77$ (ddddd, 3J=17.2 Hz, 3J=10.5 Hz, 3J=7.9 Hz, 3J=5.9 Hz, 1H; =CH), 5.05-5.08 (m, 2H; =CH$_2$), 4.68 (s, 2H; MOM-CH$_2$), 3.51-3.47 (m, 2H; CH$_2$OH), 3.43 (s, 3H; MOM-CH$_3$), 3.41 (dd, 3J=8.6 Hz, 3J=2.5 Hz, 1H; CHOMOM), 2.79 (brs, 1H, OH), 2.37-2.41 (m, 1H ; CH$_2$-5(1)), 1.92-1.99 (m, 1H; CH-2), 1.74-1.86 (m, 2H ; CH$_2$-5(1)), CH-4), 0.84 (d, 3J=6.5 Hz, 3H; CH$_3$-4), 0.79 (d, 3J=6.9 Hz, 3H; CH$_3$-2).

13C (100.6 MHz, CDCl$_3$): $\delta = 137.3$ (=CH), 116.3 (=CH$_2$), 99.2 (CH$_2$OMOM), 83.9 (CHOMOM), 65.1 (CH$_2$OH), 56.3 (CH$_3$OMOM), 37.7 (CH$_2$-5), 36.8 (CH-4), 36.0 (CH-2), 15.7 (CH$_3$-4), 9.8 (CH$_3$-2).

C$_{11}$H$_{22}$O$_3$ (202.29).

MS (FAB, 3-NBA): 203.1 ([M+H$^+$], 16), 171.1 ([M-OCH$_3$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{11}$H$_{23}$O$_3$ [M+H$^+$]:

ber.: 203.1647

gef.: 203.1660.

(2S,3S,4S)-tert-Butyl-(3-methoxymethoxy-2,4-dimethyl-hept-6-enyloxy)-dimethylsilan

(76b)

Zu einer Lösung von 4.09 g (20.2 mmol) des Alkohols 75 und 4.13 g (60.6 mmol) Imidazol in 25 ml trocknen DMF werden 4.26 g (28.3 mmol) tert-Butyldimethylsilychlorid zugegeben. Nach 15 h Rühren wird nach Zugabe von 150 ml einer gesättigten NaCl-Lösung die Mischung mit dreimal je 300 ml Diethylether extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet
und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulen chromatographisch an Kieselgel mit Pentan/Diethylether 50:1 → 10:1 (v/v) gereinigt. Ausbeute: 6.46 g (20.2 mmol, 100 %), farbloses, leicht bewegliches Öl.

\[R_f: 0.50 \text{ (Pentan/Diethylether=50:1 (v/v)).} \]

\[\text{Drehwert: } [\alpha]_D^{20} = + 7.65 \text{ (c=1.15 in CHCl}_3\text{).} \]

\[^1H \text{ (400 MHz, CDCl}_3\text{): } \delta = 5.79 \text{ (ddd, } ^3J=17.2 \text{ Hz, } ^3J=10.2 \text{ Hz, } ^3J=8.0 \text{ Hz, } ^3J=6.1 \text{ Hz, 1H; =CH), } 4.98-5.05 \text{ (m, 2H; =CH}_2\text{), } 4.68 \text{ (d, } ^3J=6.5 \text{ Hz, 1H; MOM-CH}_2\text{(1)), } 4.62 \text{ (d, } ^3J=6.5 \text{ Hz, 1H; MOM-CH}_2\text{(1)), } 3.50 \text{ (dd, } ^2J=9.9 \text{ Hz, } ^3J=6.3 \text{ Hz, 1H; CH}_2\text{OSi(1)), } 3.45 \text{ (dd, } ^2J=9.9 \text{ Hz, } ^3J=7.8 \text{ Hz, 1H; CH}_2\text{OSi(1)), } 3.40 \text{ (dd, } ^3J=7.4 \text{ Hz, } ^3J=2.7 \text{ Hz, 1H; CHOMOM), } 3.39 \text{ (s, 3H; MOM-CH}_3\text{), } 2.36-2.43 \text{ (m, 1H; CH}_2\text{-5(1)), } 1.80-1.90 \text{ (m, 2H; CH}_2\text{-5(1),CH}-2\text{), } 1.70-1.80 \text{ (m, } 1H \text{; CH}-4\text{), } 0.89 \text{ (s, 9H; C(CH}_3\text{)_3), } 0.86 \text{ (d, } ^3J=6.8 \text{ Hz, 3H; CH}_3\text{-2), } 0.86 \text{ (d, } ^3J=6.6 \text{ Hz, 3H; CH}_3\text{-4), } 0.04 \text{ (s, 6H; SiCH}_3\text{).} \]

\[^{13}C \text{ (100.6 MHz, CDCl}_3\text{): } \delta = 137.9 \text{ (=CH), } 115.9 \text{ (=CH}_2\text{), } 98.6 \text{ (CH}_2\text{OMOM), } 83.2 \text{ (CHOMOM), } 66.0 \text{ (CH}_2\text{OSi), } 56.1 \text{ (CH}_3\text{OMOM), } 37.8 \text{ (CH}-2\text{), } 37.6 \text{ (CH}_2\text{-5), } 36.0 \text{ (CH}-4\text{), } 26.1 \text{ (C(CH}_3\text{)_3), } 18.4 \text{ (C(CH}_3\text{)_3), } 16.1 \text{ (CH}_3\text{-4), } 10.9 \text{ (CH}_3\text{-2), } -5.2 \text{ (SiCH}_3\text{), } -5.3 \text{ (SiCH}_3\text{).} \]

\[\text{C}_{17}\text{H}_{36}\text{O}_3\text{Si (316.55)} \]

\[\text{MS (FAB, 3-NBA): } 339.1 \text{ ([M+Na}^+\text{], 100), } 317.1 \text{ ([M+H}^+\text{], 33).} \]

\[\text{HR-MS (FAB, 3-NBA) für C}_{17}\text{H}_{37}\text{O}_3\text{Si ([M+H}^+\text{]): } \text{ber.: } 317.2512 \text{, gef.: } 317.2521. \]

\[(2S,3S,4S)-\text{tert-Butyl-(3-methoxymethoxy-2,4-diphenyl-hept-6-enyloxy)-diphenyl-silane (76a)} \]

Der TBDPS-Ether 76a wird in völliger Analogie zu 76b ausgehend von 1.06 g (5.54 mmol) des Alkohols 75 hergestellt. Ausbeute: 2.02 g (4.96 mmol, 90 %), farbloses Öl.

\[R_f: 0.28 \text{ (CH/EE=40:1 (v/v)).} \]

\[\text{Drehwert: } [\alpha]_D^{20} = + 10.0 \text{ (c=0.5 in CHCl}_3\text{).} \]

\[\text{C}_{17}\text{H}_{36}\text{O}_3\text{Si (316.55)} \]

\[\text{MS (FAB, 3-NBA): } 339.1 \text{ ([M+Na}^+\text{], 100), } 317.1 \text{ ([M+H}^+\text{], 33).} \]

\[\text{HR-MS (FAB, 3-NBA) für C}_{17}\text{H}_{37}\text{O}_3\text{Si ([M+H}^+\text{]): } \text{ber.: } 317.2512 \text{, gef.: } 317.2521. \]
1H (400 MHz, CDCl$_3$): δ = 7.66-7.71 (m, 4H; Ph-CH), 7.36-7.46 (m, 6H; Ph-CH), 5.79 (dddd, 3J=16.6 Hz, 3J=10.0 Hz, 3J=8.0 Hz, 3J=6.0 Hz, 1H; =CH), 5.00-5.06 (m, 2H; =CH$_2$), 4.71 (d, 3J=6.5 Hz, 1H; MOM-CH$_2$(1)), 4.63 (d, 3J=6.5 Hz, 1H; MOM-CH$_2$(1)), 3.61 (dd, 3J=10.0 Hz, 3J=8.0 Hz, 1H; CH$_2$OSi(1)), 3.49-3.54 (m, 2H; CH$_2$OSi(1), CHOMOM), 3.34 (s, 3H; MOM-CH$_3$), 2.37-2.44 (m, 1H ; CH$_2$(5(1))), 1.82-1.96 (m, 2H; CH$_2$(5(1)),CH-2), 1.71-1.82 (m, 1H ; CH-4), 1.08 (s, 9H; C(CH$_3$)$_3$), 0.88 (d, 3J=6.5 Hz, 3H; CH$_3$-2), 0.86 (d, 3J=7.0 Hz, 3H; CH$_3$-4).

13C (100 MHz, CDCl$_3$): δ = 137.7 (=CH), 135.6 (Ph-CH), 133.9 (Ph-C), 129.6 (Ph-CH), 127.6 (Ph-CH), 115.9 (=CH$_2$), 98.5 (CH$_2$OMOM), 83.2 (CHOMOM), 66.8 (CH$_2$OSi), 56.1 (CH$_2$OMOM), 37.7 (CH-2), 37.7 (CH$_2$-5), 36.0 (CH-4), 27.1 (C(CH$_3$)$_3$), 19.6 (C(CH$_3$)$_3$), 16.3 (CH$_3$-4), 11.0 (CH$_3$-2).

C$_{27}$H$_{40}$O$_3$Si (440.69)
MS (FAB, 3-NBA): 463.3 (M+Na$^+$, 31), 441.3 (M+H$^+$, 12), 409.2 (M-OCH$_3$)$^+$, 383.2 ((M-C(CH$_3$)$_3$)$^+$, 38), 379.2 ((M-C$_2$H$_5$O$_2$)$^+$, 50).

HR-MS (FAB, 3-NBA) für C$_{27}$H$_{40}$NaO$_3$Si [M+Na$^+$]: ber.: 463.2644
gef.: 463.2623.

(2S,3S,4S)-7-(tert-Butyl-dimethyl-silanyloxy)-5-methoxymethoxy-4,6-dimethylheptan-1-ol (78b)

Zu einer Lösung von 6.46 g (20.4 mmol) des Alkens 76b in 67 ml trockenem THF werden bei 0 °C 44.9 ml (22.5 mmol) einer 0.5 M Lösung von 9-BBN in THF getropft. Nach 15 h Rühren bei Raumtemperatur wird die Lösung erneut auf 0 °C gekühlt, tropfenweise mit 24 ml (72 mmol) einer 3 M NaOH-Lösung versetzt und erneut bei Raumtemperatur gerührt. Nach 24 h wird nach Zugabe von 100 ml Wasser die Mischung mit dreimal 160 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum langsam abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:2 (v/v) gereinigt.

Ausbeute: 5.67 g (16.9 mmol, 83 %), farbloses Öl.
Drehwert: $\left[\alpha\right]_{D}^{20} = -4.9$ (c=0.59 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): $\delta = 4.67$ (d, $^3J=6.5$ Hz, 1H; MOM-CH$_2$(1)), 4.62 (d, $^3J=6.5$ Hz, 1H; MOM-CH$_2$(1)), 3.60-3.66 (m, 2H, CH$_2$OH), 3.39-3.50 (m, 3H; CH$_2$OSi, CHOMOM), 3.38 (s, 3H; MOM-CH$_3$), 1.79-1.88 (m, 1H; CH-6), 1.57-1.73 (m, 4H ; CH$_2$-2(1), CH$_2$-3(1), CH-4), 0.88 (s, 9H; C(CH$_3$)$_3$), 0.88 (d, $^3J=6.8$ Hz, 3H; CH$_3$-4), 0.84 (d, $^3J=6.8$ Hz, 3H; CH$_3$-6), 0.03 (s, 6H; SiCH$_3$).

13C (100.6 MHz, CDCl$_3$): $\delta =$ 98.6 (CH$_2$OMOM), 83.3 (CH$_2$OSi), 66.1 (CH$_2$OH), 56.1 (CH$_2$OMOM), 37.6 (CH-6), 35.8 (CH-4), 30.5 (CH$_2$-2), 28.9 (CH$_2$-3), 26.0 (C(CH$_3$)$_3$), 18.4 (C(CH$_3$)$_3$), 16.4 (CH$_2$-4), 11.0 (CH$_3$-6), -5.2 (SiCH$_3$), -5.3 (SiCH$_3$).

C$_{17}$H$_{38}$O$_4$Si (334.57)

MS (FAB, 3-NBA): 357 ([M+Na$^+$], 34), 335 ([M+H$^+$], 3), 303 ([M-OCH$_3$]$^+$, 100), 273 ([M-C$_2$H$_5$O$_2$]$^+$, 45).

HR-MS (FAB, 3-NBA) für C$_{17}$H$_{38}$NaO$_4$Si [M+Na$^+$]: ber.: 357.2437
gef.: 357.2435.

(2S,3S,4S)-7-(tert-Butyl-diphenyl-silanyloxy)-5-methoxymethoxy-4,6-dimethylheptan-1-ol (78a)

Der Alkohol 78a wird in völliger Analogie zu 78b ausgehend von 1.87 g (4.25 mmol) des Alkens 76a hergestellt.

Ausbeute: 1.67 g (3.64 mmol, 86 %), farbloses Öl.

R_f: 0.33 (CH/EE=2:1 (v/v)).

Drehwert: $\left[\alpha\right]_{D}^{20} = -1.6$ (c=0.32 in CHCl$_3$).

1H (400 MHz, CDCl$_3$): $\delta =$ 7.64-7.69 (m, 4H; Ph-CH), 7.36-7.45 (m, 6H; Ph-CH), 4.69 (d, $^3J=6.5$ Hz, 1H; MOM-CH$_2$(1)), 4.62 (d, $^3J=6.5$ Hz, 1H; MOM-CH$_2$(1)), 3.47-3.65 (m, 5H; CH$_2$OH, CH$_2$OSi, CHOMOM), 3.33 (s, 3H; MOM-CH$_3$), 1.90 (dsext, $^3J=6.5$ Hz, $^3J=2.5$ Hz, 1H; CH-6), 1.55-1.73 (m, 4H ; CH$_2$-2(1), CH$_2$-3(1), CH-4), 0.88 (s, 9H; C(CH$_3$)$_3$), 0.88 (d, $^3J=6.8$ Hz, 3H; CH$_3$-4), 0.84 (d, $^3J=6.8$ Hz, 3H; CH$_3$-6), 0.03 (s, 6H; SiCH$_3$).
2(1), 1.14-1.22 (m, 1H, CH$_2$-3(1)), 1.06 (s, 9H; C(CH$_3$)$_3$), 0.89 (d, 3J=7.0 Hz, 3H; CH$_3$-4), 0.84 (d, 3J=7.0 Hz, 3H; CH$_3$-6).

13C (100.6 MHz, CDCl$_3$): δ = 135.7 (Ph-CH), 133.9 (Ph-C), 129.7 (Ph-CH), 127.7 (Ph-CH), 98.5 (CH$_2$OMOM), 83.3 (CHOMOM), 66.7 (CH$_2$OSi), 63.4 (CH$_2$OH), 56.0 (CH$_3$OMOM), 37.5 (CH-6), 35.7 (CH-4), 30.4 (CH$_2$-2), 28.8 (CH$_2$-3), 27.0 (C(CH$_3$)$_3$), 19.4 (C(CH$_3$)$_3$), 16.4 (CH$_3$-4), 11.0 (CH$_3$-6).

C$_{27}$H$_{42}$O$_4$Si (458.71)

MS (FAB, 3-NBA): 481.2 ([M+Na$^+$], 92), 427.2 ([M-OCH$_3$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{27}$H$_{42}$NaO$_4$Si [M+Na$^+$]:

ber.: 481.2750

gef.: 481.2722.

(4R,5S)-3-[(2R,3S,6S,7S,8S)-3,9-Dihydroxy-7-methoxymethoxy-2,6,8-trimethyl-nonanoyl]-4-methyl-5-phenyloxazolidin-2-on (108)

Zu einer Lösung von 3.64 ml (42.4 mmol) Oxalylchlorid in 250 ml trockenem Dichlormethan wird eine Lösung von 7.1 ml (99.4 mmol) trockenem DMSO in 38 ml trockenem Dichlormethan bei –78 °C getropft. Nach 1 h Rühren bei –78 °C wird eine Lösung von 5.57 g (16.6 mmol) des Alkohols **78b** in 49 ml trockenem Dichlormethan bei –78 °C zugetropft. Nach 2.5 h Rühren bei –78 °C werden 17.3 ml (124 mmol) trockenes Triethylamin bei –78 °C zugetropft. Nach Auftauen auf 0 °C wird die Reaktionsmischung mit 200 ml einer 1.0 M wässrigen KH$_2$PO$_4$-Lösung versetzt und nach Abtrennen der organischen Phase dreimal mit je 200 ml Dichlormethan extrahiert. Die versammelten organischen Phasen werden nacheinander mit 100 ml einer gesättigten NaCl-Lösung und zweimal je 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Der Aldehyd wird ohne weitere Aufreinigung sofort weiter eingesetzt.

Ausbeute: 6.35 g Rohprodukt, leichtbewegliches, gelbes Öl.

Rf: 0.77 (CH/EE=2:1 (v/v)).

Zu einer Lösung von 4.26 g (18.3 mmol) des N-Propionyloxazolidinons **46** in 75 ml trockenem Dichlormethan werden bei 0 °C nacheinander 4.3 ml (24.9 mmol) trockenes (N,N)-Diisopropylethylamin und 5.5 ml (21.6 mmol) frisch destilliertes Dibutylboryl triflat**133**
Ausbeute: 6.64 g (14.7 mmol, 89 % über 2 Stufen), farbloses Öl.

Rf: 0.32 (CH/EE=3:1 (v/v)).

\[
{\text{^1H}} (400 \text{ MHz, CDCl}_3): \delta = 7.35-7.44 (m, 3H; \text{Ph-CH}), 7.28-7.31 (m, 2H; \text{Ph-CH}), 5.68 (d, J=7.2 Hz, 1H; \text{CHOPh}), 4.79 (d, J=6.6 Hz, 1H; \text{CHN}), 4.72 (d, J=6.8 Hz, 1H; \text{MOM-CH}_2(1)), 4.70 (d, J=6.8 Hz, 1H; \text{MOM-CH}_3), 3.91-3.96 (m, 1H; \text{CHOH}), 3.80 (dq, J=2.7 Hz, 1H; \text{CH-2'}, 3.43-3.53 (m, 3H; \text{CHOMOM, CH}_2\text{OSi}), 3.43 (s, 3H; \text{MOM-CH}_3), 2.96 (t, J=6.6 Hz, 1H; \text{CH}_2\text{OH}), 2.88 (d, J=3.1 Hz, 1H; \text{CHOH}), 1.92-2.01 (m, 1H; \text{CH-8'}), 1.60-1.78 (m, 3H; \text{CH-6'}, \text{CH}_2\text{-4'}(1), \text{CH}_2\text{-5'}(1)), 1.25-1.40 (m, 2H; \text{CH}_2\text{-4'}(1), \text{CH}_2\text{-5'}(1)), 1.24 (d, J=7.2 Hz, 3H; \text{CH}_3\text{-2'}), 0.89 (d, J=6.6 Hz, 3H; \text{CH}_3\text{-5}), 0.87 (d, J=6.8 Hz, 3H; \text{CH}_3\text{-6'}), 0.80 (d, J=7.0 Hz, 3H; \text{CH}_3\text{-8'}).
\]

Der Alkohol wird ohne weitere Charakterisierung eingesetzt.

\[
(4R,5S)-3-[(2R,3S,6S,7S,8S)-9-(\text{tert-Butyldimethylsilyloxy})-3-hydroxy-7-methoxymethoxy-2,6,8-trimethyl-nonanoyl]-4-methyl-5-phenyl-oxazolidin-2-on (81b)
\]
Zu einer Lösung von 6.17 g (13.7 mmol) des Alkohols 108, 167 mg (1.37 mmol) N,N-Dimethylaminopyridin und 7.6 ml (54.6 mmol) Triethylamin in 70 ml trockenem Dichlormethan wird bei 0 °C eine Lösung von 4.12 g (27.3 mmol) tert-
Butyldimethylsilylchlorid in 30 ml Dichlormethan zugetropft. Nach 30 min Rühren bei 0 °C
wird die Mischung weiter bei Raumtemperatur gerührt. Nach 15 h wird nach Zugabe von 200
ml einer 1 M wässrigen Kaliumdihydrogenphosphat-Lösung die Mischung mit dreimal je 200
ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten
NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum
abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit
Cyclohexan/Ethylacetat 5:2 → 3:2 (v/v) gereinigt.
Ausbeute: 7.46 g (13.2 mmol, 97 %), leicht gelbliches, viskoses Öl.

Rf: 0.20 (CH/EE=4:1 (v/v)).
Drehwert: \[\alpha_d^{20} = +8.7\] (c=0.515 in CHCl₃).

\(^1\)H (400 MHz, CDCl₃): \(\delta = 7.35\text{-}7.44\) (m, 3H; Ph-CH), 7.29\text{-}7.31 (m, 2H; Ph-CH), 5.68 (d, \(3J=7.1\) Hz, 1H; CHOPh), 4.79 (quint, \(3J=7.1\) Hz, 1H; CHN), 4.69 (d, \(3J=6.5\) Hz, 1H; MOM-CH₂(1)), 4.64 (d, \(3J=6.5\) Hz, 1H; MOM-CH₂(1)), 3.91\text{-}3.96 (m, 1H; CHO), 3.78 (dq, \(3J=2.9\)
Hz, \(3J=7.0\) Hz, 1H; CH-2’), 3.36\text{-}3.51 (m, 3H; CHOMOM, CH₂OSi), 3.40 (s, 3H; MOM-
CH₃), 2.92 (d, \(3J=3.3\) Hz, 1H; OH), 1.80\text{-}1.90 (m, 1H ; CH-8’), 1.61\text{-}1.74 (m, 3H ; CH-6’,
CH₂-4’(1), CH₂-5’(1)), 1.34\text{-}1.41 (m, 2H; CH₂-4’(1), CH₂-5’(1))), 1.24 (d, \(2J=7.0\) Hz, 3H;
CH₃-2’), 0.89 (d, \(3J=6.8\) Hz, 3H; CH₃-5), 0.89 (d, \(3J=6.8\) Hz, 3H; CH₃-6’), 0.89 (s, 9H;
C(CH₃)₃), 0.85 (d, \(3J=6.8\) Hz, 3H; CH₃-8’), 0.04 (s, 6H; SiCH₃).

\(^{13}\)C (100.6 MHz, CDCl₃): \(\delta = 177.3\) (O=C-1’), 152.7 (O=C-1), 133.3 (Ph-C), 128.9 (Ph-CH),
128.8(Ph-CH), 125.8 (Ph-CH), 98.7 (CH₂OMOM), 83.3 (CHOMOM), 79.0 (CHOPh), 72.0
(CHOH), 66.1 (CH₂OSi), 56.1 (MOM-CH₃), 54.9 (CHN), 42.7 (CH-2’), 37.7 (CH-8’), 35.8
(CH-6’), 31.6 (CH₂-4’), 29.2 (CH₂-5’), 26.1 (C(CH₃)₃), 18.4 (C(CH₃)₃), 16.3 (CH₃-6’), 14.5
(CH₃-5), 10.8 (CH₃-8’), 10.5 (CH₃-2’), -5.2 (SiCH₃), -5.3 (SiCH₃).

C₃₀H₅₁NO₇Si (565.81).

MS (FAB, 3-NBA): 588.1 ([M+Na⁺], 90), 534.1 ([M-OCH₃]⁺, 100), 504.1 ([M-C₂H₅O₂]⁺,
53).
HR-MS (FAB, 3-NBA) C₃₀H₅₁NNaO₂Si [M+Na⁺]:
ber.: 588.3332
gef.: 588.3325
(4R,5S)-3-[(2R,3S,6S,7S,8S)-(tert-Butyldiphenylsilyl oxy)-3-hydroxy-7-methoxymethoxy-2,6,8-trimethyl-nonanoyl]-4-methyl-5-phenyl-oxazolidin-2-on (81a)

Der TBDPS-Ether 81a wird in völliger Analogie zu 81b ausgehend von 753 mg (1.64 mmol) des Alkohols 78a hergestellt, nur dass hier keine Abspaltung der Silylschutzgruppe beobachtet wird.

Ausbeute: 486 mg (0.704 mmol, 43 %), farbloses, viskoses Öl.

R_f: 0.33 (CH/EE=2:1 (v/v)).

¹H (400 MHz, CDCl₃): δ = 7.64-7.68 (m, 4H; SiPh-CH₃), 7.35-7.45 (m, 9H; Ph-CH₃), 5.67 (d, 3J=7.2 Hz, 1H; CH=OPh), 4.79 (quint, 3J=7.0 Hz, 1H; CHN), 4.69 (d, 3J=6.5 Hz, 1H; MOM-CH₂(1)), 4.62 (d, 3J=6.5 Hz, 1H; MOM-CH₂(1)), 3.90-3.95 (m, 1H; CHOH), 3.78 (dq, 3J=2.9 Hz, 3J=7.0 Hz, 1H; CH-2'), 3.59 (dd, 3J=10.0 Hz, 3J=8.0 Hz, 1H; CH₂OSi(1)), 3.48-3.53 (m, 2H; CHOMOM, CH₂OSi(1)), 3.33 (s, 3H; MOM-C₃H(3)), 1.88-1.94 (m, 1H ; CH-8'), 1.61-1.73 (m, 3H ; CH-6', CH₂-4'(1), CH₂-5'(1)), 1.34-1.39 (m, 2H; CH₂-4'(1), CH₂-5'(1)), 1.24 (d, 3J=7.0 Hz, 3H; CH₃-2'), 1.06 (s, 9H; C(CH₃))₃, 0.89 (d, 3J=6.6 Hz, 3H; CH₃-5), 0.89 (d, 3J=6.6 Hz, 3H; CH₃-6'), 0.83 (d, 3J=6.8 Hz, 3H; CH₃-8').

¹³C (100.6 MHz, CDCl₃): δ = 177.3 (O=C-1'), 152.8 (O=C-1), 135.8 (Si-Ph-C), 133.3 (Ph-C), 129.7 (Si-Ph-C), 128.9 (Ph-C), 128.8 (Ph-C), 127.8 (Si-Ph-C), 125.8 (Ph-C), 98.7 (CH₂OMOM), 83.4 (CHOMOM), 79.0 (CH=OPh), 72.0 (CHOH), 66.8 (CH₂OSi), 56.1 (MOM-CH₃), 54.9 (CHN), 42.8 (CH-2'), 37.6 (CH-8'), 35.7 (CH-6'), 31.5 (CH₂-4'), 29.2 (CH₂-5'), 27.0 (C(CH₃)), 19.4 (C(CH₃)), 16.4 (CH₃-6'), 14.3 (CH₃-5), 10.9 (CH₃-8'), 10.6 (CH₃-2').

C₄₀H₅₅NO₇Si (689.95).

(2R,3S,7S,8S,9S)-9-(tert-Butyldimethylsilyl oxy)-3-hydroxy-N-methoxy-7-methoxymethoxy-N,2,6,8-tetramethyl-nonanamid (82b)

Zu einer Suspension von 6.34 g (65.0 mmol) (N,O)-Dimethylammoniumhydrochlorid in 50 ml THF werden bei 0 °C 30 ml (60 mmol) einer 2 M Lösung von Trimethylaluminium in Toluol zugetropft. Nach 30 min Rühren bei Raumtemperatur wird die inzwischen klare
Lösung auf –20 °C abgekühlt. Es wird eine Lösung von 7.36 g (13.0 mmol) des Oxazolidinons 81b in 25 ml THF zugetropft. Anschließend wird die Lösung innerhalb von 30 min auf 0 °C erwärmt und weitere 15 h bei 0 °C gerührt. Die Mischung wird unter intensivem Rühren in eine Mischung von 430 ml einer 0.1 M wässrigen Salzsäure-Lösung und 500 ml Chloroform bei 0 °C gegeben, wobei der pH der wässrigen Phase 4-5 betragen sollte. Nach Abtrennen der organischen Phase wird die Mischung mit dreimal je 400 ml Chloroform extrahiert, die versammelten organischen Phasen nacheinander mit 200 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 200 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (7.94 g, gelbes Öl) wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 1:3 → 1:8 (v/v) gereinigt.

Ausbeute: 4.89 g (10.9 mmol, 84 %), leicht gelbliches, mittelviskoses Öl.

\[R_f: 0.50 \text{ (Pentan/Diethylether=1:4 (v/v))} \]

Drehwert: \[\alpha_D^{20} = -6.4 \text{ (c=0.5 in CHCl}_3\text{)} \]

\[^1H \text{ (400 MHz, CDCl}_3\text{): } \delta = 4.67 \text{ (d, }^3J=6.5 \text{ Hz, 1H; MOM-CH}_2\text{(1))}, 4.63 \text{ (d, }^3J=6.5 \text{ Hz, 1H; MOM-CH}_2\text{(1))}, 3.80-3.85 \text{ (m, 1H; CHOH), 3.71 \text{ (brs, 1H, OH), 3.69 \text{ (s, 3H; CH}_3\text{ON), 3.38-3.51 \text{ (m, 3H; CHOMOM, CH}_2\text{OSi), 3.38 \text{ (s, 3H; MOM-CH}_3\text{), 3.19 \text{ (s, 3H; CH}_3\text{N), 2.80-2.85 \text{ (m, 1H; CH-2), 1.80-1.89 \text{ (m, 1H; CH-8), 1.60-1.70 \text{ (m, 3H; CH-6, CH}_2\text{-4(1), CH}_2\text{-5(1)), 1.27-1.32 \text{ (m, 2H; CH}_2\text{-4}(1), CH}_2\text{-5}(1)), 1.17 \text{ (d, }^3J=7.0 \text{ Hz, 3H; CH}_3\text{-2), 0.89 \text{ (d, }^3J=6.5 \text{ Hz, 3H; CH}_3\text{-6), 0.88 \text{ (s, 9H; C(CH}_3\text{)_3), 0.84 \text{ (d, }^3J=7.0 \text{ Hz, 3H; CH}_3\text{-8), 0.03 \text{ (s, 6H; SiCH}_3\text{).}} \]

\[^13C \text{ (100.6 MHz, CDCl}_3\text{): } \delta = 178.5 \text{ (C=O), 98.6 \text{ (CH}_2\text{OMOM), 83.3 \text{ (CHOMOM), 72.0 \text{ (CHOH), 66.1 \text{ (CH}_2\text{OSi), 61.7 \text{ (CH}_3\text{ON), 56.1 \text{ (MOM-CH}_3\text{), 39.0 \text{ (CH-2), 37.6 \text{ (CH-8), 36.1 \text{ (CH-6), 32.1 \text{ (CH}_3\text{N), 31.8 \text{ (CH}_2\text{-4), 29.3 \text{ (CH}_2\text{-5), 26.1 \text{ (C(CH}_3\text{)_3), 18.4 \text{ (C(CH}_3\text{)_3), 16.3 \text{ (CH}_3\text{-6), 10.9 \text{ (CH}_3\text{-8), 10.4 \text{ (CH}_3\text{-2), -5.2 \text{ (SiCH}_3\text{), -5.3 \text{ (SiCH}_3\text{).}} \right]

C\text{\textsubscript{22}H\textsubscript{47}NO\textsubscript{6}Si (449.70).

MS (FAB, 3-NBA): 472.1 ([M+Na+], 100), 418.2 ([M-OCH\textsubscript{3}+], 86), 388.2 ([M-C\textsubscript{2}H\textsubscript{5}O\textsubscript{2}+], 18).

HR-MS (FAB, 3-NBA) C\textsubscript{22}H\textsubscript{48}NO\textsubscript{6}Si [M+H+]: ber.: 450.3251

gef.: 450.3241.
Das Weinreb-Amid 82a wurde in völliger Analogie zu 82b ausgehend von 221 mg (0.320 mmol) des Aldols 81a hergestellt; das Produkt wird roh weiter eingesetzt.

Ausbeute: 241 mg (Rohprodukt), farbloses, viskoses Öl.

Eine analytische Probe kann durch Säulen chromatographie an Kieselgel mit Cyclohexan/Ethylacetat 3:1 → 1:1 (v/v) gewonnen werden.

R_f: 0.40 (CH/EE=2:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.63-7.68 (m, 4H; Ph-CH), 7.34-7.43 (m, 6H; Ph-CH), 4.68 (d, 3J=6.4 Hz, 1H; MOM-CH$_3$(1)), 4.62 (d, 3J=6.4 Hz, 1H; MOM-CH$_3$(2)), 3.79-3.84 (m, 1H; CH$_2$OH), 3.66 (s, 3H; CH$_3$ON), 3.59 (dd, 2J=10.0 Hz, 3J=8.0 Hz, 1H; CH$_2$OSi(1)), 3.47-3.52 (m, 2H; CHOMOM, CH$_2$OSi(1)), 3.31 (s, 3H; MOM-CH$_3$), 3.19 (s, 3H; CH$_3$N), 2.81-2.93 (bns, 1H; CH-2), 1.87-1.96 (m, 1H; CH-8), 1.55-1.72 (m, 3H; CH-6, CH$_2$-4(1), CH$_2$-5(1)), 1.25-1.33 (m, 2H; CH$_2$-4′(1), CH$_2$-5′(1)), 1.17 (d, 3J=7.2 Hz, 3H; CH$_3$-2), 1.05 (s, 9H; C(CH$_3$)$_3$), 0.89 (d, 3J=6.8 Hz, 3H; CH$_3$-6), 0.83 (d, 3J=6.8 Hz, 3H; CH$_3$-8).

13C (100.6 MHz, CDCl$_3$): δ = 178.4 (C=O), 135.7 (Ph-CH), 134.0 (Si-Ph-C), 129.7 (Si-Ph-CH), 127.7 (Si-Ph-CH), 98.5 (CH$_2$OMOM), 83.2 (CHOMOM), 72.0 (CHOH), 66.8 (CH$_2$OSi), 61.6 (CH$_3$ON), 56.0 (MOM-CH$_3$), 39.0 (CH-2), 37.5 (CH-8), 36.1 (CH-6), 32.1 (CH$_3$-N), 31.8 (CH$_2$-4), 29.3 (CH$_2$-5), 27.0 (C(CH$_3$)$_3$), 19.4 (C(CH$_3$)$_3$), 16.3 (CH$_3$-6), 10.9 (CH$_3$-8), 10.4 (CH$_3$-2).

C$_{32}$H$_{51}$NO$_6$Si (573.84).

(2R,3S,7S,8S,9S)-9-(tert-Butyldimethylsilanyloxy)-3-hydroxy-N-methoxy-3,7-bis-methoxymethoxy-N,2,6,8-tetramethyl-nonanamid (83b)

Zu einer Lösung von 4.79 g (10.7 mmol) des Alkohols 82b in 120 ml trockenem Dichlormethan und 23.7 ml (138.5 mmol) (N,N)-Diisopropylethylamin werden bei 0 °C 8.1 ml (107 mmol) (Chlormethyl)methylether getropft. Nach 1 h Rühren bei 0 °C wird die Lösung bei Raumtemperatur 18 h gerührt. Die orangegelbe Lösung wird mit 170 ml einer
1 M wässrigen Kaliumdihydrogenphosphatlösung versetzt und mit dreimal je 500 ml Dichlormethan extrahiert. Die versammelten organischen Phasen werden nacheinander mit 100 ml Wasser und zweimal je 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 1:2 (v/v) gereinigt. Ausbeute: 4.97 g (10.1 mmol, 94 %), leicht gelbliches, viskoses Öl.

R_f: 0.40 (Pentan/Diethylether=1:2 (v/v)).

Drehwert: [α]_D²⁰ = - 7.0 (c=0.63 in CHCl₃).

1H (400 MHz, CDCl₃): δ = 4.59-4.68 (m, 4H; MOM-CH₂), 3.78 (q, 3^J=5.6 Hz, 1H; CHOMOM-3), 3.69 (s, 3H; CH₃ON), 3.50 (dd, 3^J=9.6 Hz, 3^J=7.6 Hz, 1H; CH₂OSi(1)), 3.43 (dd, 3^J=9.6 Hz, 3^J=6.3 Hz, 1H; CH₂OSi(1)), 3.38 (s, 6H; MOM-CH₃), 3.35 (dd, 3^J=6.8 Hz, 3^J=2.0 Hz, 1H; CHOMOM-7), 3.18 (s, 3H; CH₃N), 3.02-3.10 (m, 1H; CH-2), 1.79-1.88 (m, 1H ; CH-8), 1.59-1.69 (m, 3H ; CH-6, CH₂-4(1), CH₂-5(1)), 1.44-1.50 (m, 1H; CH₂-4 (1)), 1.14-1.21 (m, 1H; CH₂-4 (1)), 1.19 (d, 3^J=7.0 Hz, 3H; CH₃-2), 0.88 (s, 9H; C(CH₃)₃), 0.86 (d, 3^J=6.8 Hz, 3H; CH₃-6), 0.84 (d, 3^J=6.8 Hz, 3H; CH₃-8), 0.03 (s, 6H; SiCH₃).

13C (100.6 MHz, CDCl₃): δ = 176.0 (C=O), 98.4 (CH₂OMOM-7), 96.7 (CH₂OMOM-3), 83.5 (CHOMOM-7), 79.7 (CHOMOM-3), 66.2 (CH₂OSi), 61.5 (CH₃ON), 56.1 (2 x MOM-CH₃), 39.6 (CH-2), 37.7 (CH-8), 36.3 (CH-6), 32.4 (CH₃N), 30.9 (CH₂-4), 28.4 (CH₂-5), 26.1 (C(CH₃)₃), 18.4 (C(CH₃)₃), 16.2 (CH₃-6), 13.7 (CH₃-2), 11.1 (CH₃-8), -5.2 (SiCH₃), -5.3 (SiCH₃).

C₂₄H₅₁NO₇Si (493.75).

MS (FAB, 3-NBA): 516.2 ([M+Na⁺], 30), 494.4 ([M+H⁺], 5), 462.2 ([M-OCH₃]⁺, 100), 436.1 ([M-C(CH₃)₃]⁺, 8), 400.1 ([M- O₃C₉H₉]⁺, 27).

HR-MS (FAB, 3-NBA) für C₂₄H₅₂NO₇Si [M+H⁺]: ber.: 494.3513

gef.: 494.3521.

(2R,3S,7S,8S,9S)-9-(<i>tert</i>-Butylidiphenylsilylxyloxy)-3-hydroxy-N-methoxy-3,7-bis-methoxymethoxy-N,2,6,8-tetramethyl-nonanamid (83a)

Der Methoxymethyllether 83a wurde in volliger Analogie zu 83b ausgehend von 82a hergestellt.
Ausbeute: 171 mg (0.277 mmol, 86 % über 2 Stufen), farbloses, viskoses Öl.

\(R_f \): 0.40 (CH/EE=2:1 (v/v)).

\(^1H \) (400 MHz, CDCl\(_3\)): \(\delta = 7.63-7.68 \) (m, 4H; Ph-CH), 7.35-7.44 (m, 6H; Ph-CH), 4.52-4.67 (m, 3H; MOM-CH\(_2\)(3)), 4.60 (d, \(^2J=6.4 \) Hz, 1H; MOM-CH\(_2\)(1)), 3.76-3.80 (m, 1H; CHOMOM-3), 3.67 (s, 3H; CH\(_3\)ON), 3.67 (s, 3H; 7-MOM-CH\(_3\)), 3.59 (dd, \(^3J=10.1 \) Hz, \(^3J=7.9 \) Hz, 1H; CH\(_2\)OSi(1)), 3.45-3.50 (m, 2H; CH\(_2\)OSi(1), CHOMOM-7), 3.37 (s, 3H; 7-MOM-CH\(_3\)), 3.30 (s, 3H; 3-MOM-CH\(_3\)), 3.20 (s, 3H; CH\(_3\)N), 3.02-3.12 (m, 1H; CH-2), 1.90 (dsext, \(^3J=7.5 \) Hz, \(^3J=2.6 \) Hz, 1H; CH-8), 1.60-1.70 (m, 3H; CH-6, CH\(_2\)-4(1), CH\(_2\)-5(1)), 1.41-1.49 (m, 1H; CH\(_2\)-4 (1)), 1.19 (d, \(^3J=7.1 \) Hz, 3H; CH\(_3\)-2), 1.12-1.22 (m, 1H; CH\(_2\)-4 (1)), 1.05 (s, 9H; C(CH\(_3\))\(_3\)), 0.85 (d, \(^3J=6.7 \) Hz, 3H; CH\(_3\)-6), 0.84 (d, \(^3J=6.7 \) Hz, 3H; CH\(_3\)-8).

\(^{13}C \) (100.6 MHz, CDCl\(_3\)): \(\delta = 176.2 \) (C=O), 135.7 (Ph-CH), 134.0 (Si-Ph-C), 129.7 (Si-Ph-CH), 127.7 (Si-Ph-CH), 98.5 (CH\(_2\)OMOM-7), 96.7 (CH\(_2\)OMOM-3), 83.5 (CHOMOM-7), 79.6 (CHOMOM-3), 66.9 (CH\(_2\)OSi), 61.5 (CH\(_3\)ON), 56.0 (2 x MOM-CH\(_3\)), 39.6 (CH-2), 37.7 (CH-8), 36.2 (CH-6), 32.4 (CH\(_3\)N), 30.8 (CH\(_2\)-4), 28.3 (CH\(_2\)-5), 27.0 (C(CH\(_3\))\(_3\)), 19.4 (C(CH\(_3\))\(_3\)), 16.3 (CH\(_3\)-6), 13.7 (CH\(_3\)-2), 11.0 (CH\(_3\)-8).

C\(_{34}\)H\(_{55}\)NO\(_7\)Si (617.89).

MS (ESI-MS): 640.6 ([M+Na\(^+\)]).

(3R,4S,5S,8S,9S,10S)-11-(tert-Butyldimethylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethyl-undec-1-in-3-on (85b)

Zu einer Lösung von 5.16 ml (36.5 mmol) Trimethylsilylacetylen in 30 ml trockenem THF werden bei –78 °C 7.3 ml (18.3 mmol) einer 2.5 M Butyllithium-Lösung in Hexan zugetropft. Nach 1 h Rühren bei –78 °C wird die Lösung 15 min bei Raumtemperatur gerührt. Die so hergestellte Lithium-trimethylsilylacetylid-Lösung wird zu einer auf –78 °C abgekühlten Lösung von 3.00 g (6.08 mmol) des Weinreb-Amids 83b in 120 ml trockenem THF getropft. Die Reaktionsmischung wird innerhalb von 20 min langsam auf –10 °C erwärmt. Nach 75 min Rühren bei –10 °C wird die Lösung erneut auf –78 °C abgekühlt, mit je 200 ml einer gesättigten Ammoniumchlorid-Lösung und 200 ml Diethylether versetzt und auf Raumtemperatur aufgetaut. Nach Zugabe von 200 ml Wasser wird die Mischung mit dreimal
je 300 ml Diethylether extrahiert, die versammelten organischen Phasen mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 7:1 → 5:1 (v/v) gereinigt.

Ausbeute: 3.28 g, Gemisch aus TMS-Alkinon 84b und freiem Alkinon 85b. Das Gemisch wird ohne Auftrennung weiter umgesetzt.

Rf: 0.78 (CH/EE=2:1 (v/v)) (TMS-Alkinon 85b).

Ausbeute: 2.64 g (5.78 mmol, 95 % über 2 Stufen), farbloses, viskoses Öl.

Rf: 0.68 (CH/EE=2:1 (v/v)).

Drehwert: [α]D20 = - 11.2 (c=1.09 in CHCl3)

1H (400 MHz, CDCl3): δ = 4.68 (d, 3J=6.5 Hz, 1H; MOM-CH2(1)-9), 4.66 (d, 3J=6.8 Hz, 1H; MOM-CH2(1)-5), 4.62 (d, 3J=6.5 Hz, 1H; MOM-CH2(1)-9), 4.61 (d, 3J=6.8 Hz, 1H; MOM-CH2(1)-5), 4.15 (dt, 3J=3.7 Hz, 3J=6.6 Hz, 1H; CHOMOM-5), 3.49 (dd, 3J=9.8 Hz, 3J=7.8 Hz, 1H; CH2OSi(1)), 3.44 (dd, 3J=9.8 Hz, 3J=6.1 Hz, 1H; CH2OSi(1)), 3.41 (dd, 3J=7.2 Hz, 3J=2.5 Hz, 1H; CHOMOM-9), 3.39 (s, 3H; MOM-CH3-9), 3.33 (s, 3H; MOM-CH3-5), 3.25 (s, 1H; CH2), 2.74 (dq, 3J=3.7 Hz, 3J=6.8 Hz, 1H; CH-4), 1.75-1.89 (m, 2H; CH-10, CH2-6(1)), 1.64-1.71 (m, 1H; CH-8), 1.55-1.63 (m, 1H; CH2-7(1)), 1.39-1.50 (m, 1H; CH2-6(1)), 1.15-1.26 (m, 1H; CH2-7 (1)), 1.19 (d, 3J=7.0 Hz, 3H; CH3-4), 0.90 (d, 3J=7.0 Hz, 3H; CH3-8), 0.89 (s, 9H; C(CH3)3), 0.85 (d, 3J=6.8 Hz, 3H; CH3-10), 0.04 (s, 6H; SiCH3).
^{13}C (100.6 MHz, CDCl$_3$): δ = 189.2 (C=O), 98.5 (CH$_2$OMOM-9), 96.4 (CH$_2$OMOM-5), 83.1 (CHOMOM-9), 81.2 (C=H), 79.3 (C=2), 78.3 (CHOMOM-5), 66.0 (CH$_2$O), 56.1 (MOM-CH$_3$-9), 56.0 (MOM-CH$_3$-5), 52.1 (CH-4), 37.7 (CH-10), 36.2 (CH-8), 30.5 (CH-6), 28.9 (CH$_2$-7), 26.0 (CH(CH$_3$)$_3$), 18.4 (CH(CH$_3$)$_3$), 16.4 (CH$_3$-8), 11.0 (CH$_3$-10), 9.3 (CH$_3$-4), -5.2 (SiCH$_3$), -5.3 (SiCH$_3$).

C$_{24}$H$_{46}$O$_6$Si (458.70).

MS (FAB, 3-NBA): 481.1 ([M+Na]$^+$, 100), 427.1 ([M-OCH$_3$]$^+$, 56).

HR-MS (FAB, 3-NBA) für C$_{24}$H$_{46}$NaO$_6$Si [M+Na]$^+$: berm.: 481.2961
gef.: 481.2979.

(3R,4S,5S,8S,9S,10S)-11-(tert-Butyldiphenylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethyl-1-trimethylsilanyl-undec-1-in-3-on (84a)

Das TMS-Alkinon 84a wurde in völliger Analogie zum TMS-Alkinon 84b ausgehend von 18 mg (0.029 mmol) 83a hergestellt. Aufgrund der hohen Labilität wird das Produkt sofort weiter umgesetzt.

Ausbeute: 16 mg (0.0244 mmol, 84 %), farbloses, viskoses Öl.

R_f: 0.46 (CH/EE=10:1 (v/v)).

^1H (400 MHz, CDCl$_3$): δ = 7.63-7.68 (m, 4H; Ph-CH$_2$), 7.35-7.44 (m, 6H; Ph-CH$_2$), 4.68 (d, 3J=6.5 Hz, 1H; MOM-CH$_2$(1)-9), 4.60-4.64 (m, 3H; MOM-CH$_2$-5, MOM-CH$_2$(1)-9), 4.08-4.15 (m, 1H; CHOMOM-5), 3.58 (dd, 2J=10.1 Hz, 3J=8.9 Hz, 1H; CH$_2$O, 3.47-3.52 (m, 2H; CH$_2$O, 3.33 (s, 3H; MOM-CH$_3$-9), 3.32 (s, 3H; MOM-CH$_3$-5), 3.25 (dq, 3J=3.7 Hz, 2J=6.7 Hz, 1H; CH-4), 1.90 (dsext, 3J=2.7 Hz, 3J=6.7 Hz, 1H ; CH-10), 1.74-1.82 (m, 1H; CH$_2$-6(1)), 1.62-1.70 (m, 1H; CH-8), 1.53-1.61 (m, 1H; CH$_2$-7(1)), 1.37-1.44 (m, 1H ; CH$_2$-6(1)), 1.15-1.23 (m, 1H; CH$_2$-7 (1)), 1.17 (d, 3J=6.7 Hz, 3H; CH$_3$-4), 1.05 (s, 9H; C(CH$_3$)$_3$), 0.89 (d, 3J=6.7 Hz, 3H; CH$_3$-8), 0.83 (d, 3J=7.1 Hz, 3H; CH$_3$-10), 0.25 (s, 9H; Si(CH$_3$)$_3$).

13C (100.6 MHz, CDCl$_3$): δ = 189.7 (C=O), 135.8 (Ph-CH), 134.0 (Si-Ph-C), 129.8 (Si-Ph-CH), 127.8 (Si-Ph-CH), 101.9 (C=H), 99.0 (C=2), 98.5 (CH$_2$OMOM-9), 96.4 (CH$_2$OMOM-5), 83.3 (CHOMOM-9), 78.4 (CHOMOM-5), 66.8 (CH$_2$O), 56.1 (MOM-CH$_3$-9), 55.9
(MOM-CH$_3$-5), 51.8 (CH-4), 37.6 (CH-10), 36.2 (CH$_2$-6), 30.4 (CH$_2$-7), 28.7 (CH$_2$-7), 27.0 (C(CH$_3$)$_3$), 19.4 (C(CH$_3$)$_3$), 16.4 (CH$_3$-8), 11.0 (CH$_3$-10), 9.7 (CH$_3$-4), -0.6 (Si(CH$_3$)$_3$).

C$_{37}$H$_{58}$O$_6$Si$_2$ (655.02).

(3R,4S,5S,8S,9S,10S)-11-(tert-Butyldimethylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethyl-undec-1-in-3-ol (87b)

Ausbeute: 2.30 g (4.99 mmol, 89 %), farbloses, viskoses Öl.

R$_f$: 0.35 (CH/EE=3:1 (v/v)).

Drehwert: $[a]_D^{20}$ = + 29.1 (c=0.23 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): \(\delta = 4.70 \) (d, \(^3J=6.5 \) Hz, 1H; MOM-CH$_2$(1)-9), 4.67 (d, \(^3J=6.5 \) Hz, 1H; MOM-CH$_2$(1)-5), 4.67 (d, \(^3J=6.5 \) Hz, 1H; MOM-CH$_2$(1)-9), 4.62 (d, \(^3J=6.5 \) Hz, 1H; MOM-CH$_2$(1)-5), 4.31 (ddd, \(^3J=8.0 \) Hz, \(^3J=5.8 \) Hz, \(^4J=2.2 \) Hz, 1H; CHOH), 3.90 (dt, \(^3J=2.7 \) Hz, \(^3J=7.0 \) Hz, 1H; CHOMOM-5), 3.70 (d, \(^3J=5.8 \) Hz, 1H; OH), 3.40-3.50 (m, 3H; CH$_2$OSi, CHOMOM-9), 3.41 (s, 3H; MOM-CH$_3$-5), 3.38 (s, 3H; MOM-CH$_3$-9), 2.45 (d, \(^4J=2.2 \) Hz, 1H; \(\equiv \)CH), 1.86-1.94 (m, 1H, CH-4), 1.63-1.86 (m, 3H ; CH-8, CH-10, CH$_2$-6(1)), 1.50-1.59 (m, 1H; CH$_2$-7(1)), 1.34-1.43 (m, 1H ; CH$_2$-6(1)), 1.09-1.20 (m, 1H; CH$_2$-7 (1)), 1.02 (d,
3J = 7.0 Hz, 3H; CH$_3$-4), 0.89 (d, 3J = 6.8 Hz, 3H; CH$_3$-8), 0.89 (s, 9H; C(CH$_3$)$_3$), 0.84 (d, 3J = 7.0 Hz, 3H; CH$_3$-10), 0.04 (s, 6H; SiCH$_3$).

13C (100.6 MHz, CDCl$_3$): δ = 98.5 (CH$_2$OMOM-9), 97.0 (CH$_2$OMOM-5), 84.8 (=C-H), 83.0 (CHOMOM-9), 79.4 (CHOMOM-5), 73.1 (C=C-2), 66.0 (CH$_2$OSi), 65.2 (CHOH), 56.1 (MOM-CH$_3$-9), 56.1 (MOM-CH$_3$-5), 42.5 (CH-4), 37.6 (CH-10), 36.2 (CH-8), 29.5 (CH$_2$-6), 29.1 (CH$_2$-7), 26.1 (C(CH$_3$)$_3$), 18.4 (C(CH$_3$)$_3$), 16.4 (CH$_3$-8), 10.9 (CH$_3$-10), 10.7 (CH$_3$-4), -5.2 (SiCH$_3$), -5.3 (SiCH$_3$).

C$_{24}$H$_{48}$O$_6$Si (460.72).

MS (FAB, 3-NBA): 483.3 ([M+Na]$^+$), 100), 429.1 ([M-OCH$_3$]$^+$, 65).

HR-MS (FAB, 3-NBA) für C$_{24}$H$_{48}$NaO$_6$Si [M+Na]$^+$: ber.: 483.3118
gef.: 483.3128.

(Z3R,4S,5S,8S,9S,10S)-11-(tert-Butyldiphenylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethyl-1-trimethylsilyl-undec-1-in-3-ol (86a)

Zu einer Lösung von 0.28 ml (0.133 mmol) der 0.4 M Lösung des Liganden 89 in Toluol118e und 67 µl (0.134 mmol) einer 2 M Boran-Dimethylsulfid-Lösung in THF in 0.2 ml trockenem THF wird bei 0 °C eine Lösung von 73 mg (0.111 mmol) des TMS-Alkinons 84a in 0.2 ml trockenem THF zugetropft. Nach 40 min Rühren bei 0 °C wird bei 0 °C 0.25 ml Methanol vorsichtig zugetropft, wobei eine heftige Gasentwicklung zu beobachten ist. Nach 20 min Rühren bei R.T. wird das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulen chromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:1 (v/v) → 5:1 (v/v) gereinigt.

Ausbeute: 52 mg (0.079 mmol, 71 %), farbloses, viskoses Öl.

R_f: 0.24 (CH/EE=6:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.63-7.67 (m, 4H; Ph-CH), 7.36-7.44 (m, 6H; Ph-CH), 4.65-4.69 (m, 3H; MOM-CH$_2$-9, MOM-CH$_2$(1)-5), 4.60 (d, 3J=6.5 Hz, 1H; MOM-CH$_2$(1)-5), 4.30 (d, 3J=8.5 Hz, 1H; CHOH), 3.88 (dt, 3J=2.5 Hz, 3J=7.0 Hz, 1H; CHOMOM-5), 3.57 (dd, 3J=10.0 Hz, 3J=8.0 Hz, 1H; CH$_2$OSi(1)), 3.46-3.52 (m, 2H; CH$_2$OSi(1), CHOMOM-9), 3.40 (s, 3H; MOM-CH$_3$-5), 3.32 (s, 3H; MOM-CH$_3$-9), 1.84-1.92 (m, 2H, CH-4, CH-10), 1.62-1.78 (m,
2H; CH-8, CH₂-6(1)), 1.49-1.57 (m, 1H; CH₂-7(1)), 1.31-1.42 (m, 1H; CH₂-6(1)), 1.09-1.18 (m, 1H; CH₂-7 (1)), 1.05 (s, 9H; C(CH₃)₃), 0.99 (d, ³J=7.0 Hz, 3H; CH₃-4), 0.88 (d, ³J=7.0 Hz, 3H; CH₃-8), 0.83 (d, ³J=7.0 Hz, 3H; CH₃-10), 0.17 (s, 9H; Si(CH₃)₃).

C₃₇H₆₀O₆Si₂ (657.04).

MS (MALDI-TOF): 679.6 ([M+Na]⁺).

(3R,4S,5S,8S,9S,10S)-11-(tert-Butyldiphenylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethylundec-1-in-3-ol (87a)

Zu einer Lösung von 92 mg (0.140 mmol) des TMS-Alkins 86a in 5 ml MeOH werden 22 mg Kaliumcarbonat (0.159 mmol) zugegeben. Nach 15 h Rühren bei R.T. wird die Mischung mit 20 ml einer gesättigten Ammoniumchlorid-Lösung und 100 ml einer gesättigten NaCl-Lösung versetzt, mit dreimal je 200 ml Diethylether extrahiert und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (84 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:1 (v/v) → 3:1 (v/v) gereinigt.

Ausbeute: 67 mg (0.115 mmol, 82 %), farbloses, viskoses Öl.

Rᵣ: 0.15 (CH/EE=5:1 (v/v)).

¹H (400 MHz, CDCl₃): δ = 7.63-7.68 (m, 4H; Ph-CH), 7.35-7.45 (m, 6H; Ph-CH), 4.65-4.70 (m, 3H; MOM-CH₂-9, MOM-CH₂(1)-5), 4.60 (d, ³J=6.5 Hz, 1H; MOM-CH₂(1)-5), 4.31 (dd, ³J=8.2 Hz, ⁴J=2.0 Hz, 1H; CHO), 3.90 (dt, ³J=2.7 Hz, ³J=7.0 Hz, 1H; CHOMOM-5), 3.58 (dd, ³J=10.0 Hz, ³J=8.0 Hz, 1H; CH₂OSi(1)), 3.46-3.52 (m, 2H; CH₂OSi(1), CHOMOM-9), 3.41 (s, 3H; MOM-CH₃-5), 3.32 (s, 3H; MOM-CH₃-9), 2.45 (d, ⁴J=2.0 Hz, 1H; ≡CH), 1.85-1.93 (m, 2H, CH-4, CH-10), 1.63-1.80 (m, 2H; CH-8, CH₂-6(1)), 1.48-1.58 (m, 1H; CH₂-7(1)), 1.30-1.40 (m, 1H; CH₂-6(1)), 1.09-1.22 (m, 1H; CH₂-7 (1)), 1.06 (s, 9H; C(CH₃)₃), 1.00 (d, ³J=7.0 Hz, 3H; CH₃-4), 0.89 (d, ³J=6.8 Hz, 3H; CH₃-8), 0.83 (d, ³J=6.8 Hz, 3H; CH₃-10).

C₃₄H₅₂O₆Si (584.86).

MS (MALDI-TOF): 607.7 ([M+Na]⁺).
(3R,4R,5S,8S,9S,10S)-11-(tert-Butyldimethyl-silyloxy)-3-(tert-Butyldiphenylsilyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethylundec-1-in (99b)

Zu einer Lösung von 2.23 g (4.84 mmol) des Alkohols 85b und 824 mg (12.1 mmol) Imidazol in 10 ml trockenem DMF werden 1.70 ml (6.53 mmol) tert-Butyldiphenylsilylchlorid zugetropft. Nach 15 h Rühren wird nach Zugabe von 100 ml einer gesättigten NaCl-Lösung die Mischung mit dreimal je 100 ml Diethylether extrahiert, die versammelten organischen Phasen mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (4.25 g) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 20:1 gereinigt.

Ausbeute: 3.61 g, farbloser, leichtbewegliches Öl. Das Produkt ist laut 1H-NMR nicht ganz sauber und lässt sich auch durch wiederholte Chromatographie nicht weiter aufreinigen. Eine analytische Probe (90 mg) kann jedoch gewonnen werden. Die Ausbeutebestimmung erfolgt auf der nächsten Stufe.

R_f: 0.34 (CH/EE=15:1 (v/v)).

Drehwert: $[a]^{20}_{D} = +17.2$ (c=0.5 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): $\delta = 7.70$-7.76 (m, 4H, Ph-CH), 7.34-7.45 (m, 6H, Ph-CH), 4.64 (d, $^2J=6.5$ Hz, 1H; MOM-CH$_2$(1)-9), 4.58 (d, $^2J=6.5$ Hz, 1H; MOM-CH$_2$(1)-9), 4.51 (d, $^2J=6.5$ Hz, 1H; MOM-CH$_2$(1)-5), 4.49 (d, $^2J=6.5$ Hz, 1H; MOM-CH$_2$(1)-5), 4.40 (dd, $^3J=5.9$ Hz, $^4J=2.2$ Hz, 1H; CHOSi), 3.59 (q, $^3J=5.5$ Hz, 1H; CHOMOM-5), 3.51 (dd, $^3J=9.9$ Hz, $^3J=7.8$ Hz, 1H; CH$_2$OSi(1)), 3.43 (dd, $^3J=9.9$ Hz, $^3J=6.4$ Hz, 1H; CH$_2$OSi(1)), 3.36 (s, 3H; MOM-CH$_3$(9)), 3.31 (dd, $^3J=7.2$ Hz, $^3J=2.3$ Hz, 1H; CHOMOM-9), 3.30 (s, 3H; MOM-CH$_3$(5)), 2.26 (d, $^4J=2.2$ Hz, 1H; \equivCH), 1.86-1.95 (m, 1H, CH-4), 1.77-1.85 (m, 1H ; CH-8), 1.48-1.59 (m, 3H; CH-10, CH$_2$-6(1), CH$_2$-7(1)), 1.26-1.37 (m, 1H ; CH$_2$-6(1)), 1.12 (d, $^3J=6.8$ Hz, 3H; CH$_3$-4), 1.07-1.11 (m, 1H; CH$_2$-7 (1)), 1.08 (s, 9H; TDBPS-C(CH$_3$)$_3$), 0.91 (s, 9H; TBS-C(CH$_3$)$_3$), 0.84 (d, $^3J=6.8$ Hz, 3H; CH$_3$-8), 0.75 (d, $^3J=6.8$ Hz, 3H; CH$_3$-10), 0.06 (s, 6H; SiCH$_3$).

13C (100.6 MHz, CDCl$_3$): $\delta = 136.2$ (Ph-CH), 136.0 (Ph-CH), 133.8 (Ph-C), 133.6 (Ph-C), 129.9 (Ph-CH), 129.7 (Ph-CH), 127.8 (Ph-CH), 127.4 (Ph-CH), 98.4 (CH$_2$OMOM-9), 96.6 (CH$_2$OMOM-5), 83.5 (\equivC-H), 83.3 (CHOMOM-9), 79.2 (CHOMOM-5), 74.8 (\equivC-2), 66.2 (CH$_2$OSi), 65.2 (CHOTBDPS), 56.0 (MOM-CH$_3$-9), 55.8 (MOM-CH$_3$-5), 43.6 (CH-4), 37.6
(CH-10), 36.5 (CH-8), 30.2 (CH₂-6), 28.3 (CH₂-7), 27.1 (TBDPS-C(CH₃)₃), 26.1 (TBS-C(CH₃)₃), 19.5 (TBDPS-C(CH₃)₃), 18.4 (C(CH₃)₃), 16.1 (CH₃-8), 10.9 (CH₃-10), 10.5 (CH₃-4), -5.2 (SiCH₃), -5.2 (SiCH₃).

C₄₀H₆₆O₆Si₂ (699.12).

MS (FAB, 3-NBA): 721.4 ([M+Na⁺]).

HR-MS (FAB, 3-NBA) für C₄₀H₆₆NaO₆Si₂ [M+Na⁺]:

| ber.: 721.4296 |
| gef.: 721.4294 |

(3R,4R,5S,8S,9S,10S)-Bis-3,11-(tert-Butyldiphenylsilanyloxy)-5,9-bis-methoxymethoxy-4,8,10-trimethyl-undec-1-in (99a)

Der Silylether 99a wird in völliger Analogie zum Silylether 99b ausgehend von 39 mg (0.067 mmol) 85a hergestellt.

Ausbeute: 47 mg (0.057 mmol, 85 %), farbloses, viskoses Öl.

Rf: 0.22 (CH/EE=20:1 (v/v)).

¹H (400 MHz, CDCl₃): δ = 7.64-7.75 (m, 8H, Ph-CH), 7.33-7.44 (m, 12H, Ph-CH), 4.62 (d, ²J=6.5 Hz, 1H; MOM-CH₂(1)-9), 4.55 (d, ²J=6.5 Hz, 1H; MOM-CH₂(1)-9), 4.49 (d, ²J=6.5 Hz, 1H; MOM-CH₂(1)-9), 4.46 (d, ²J=6.5 Hz, 1H; MOM-CH₂(1)-9), 4.40 (dd, ³J=5.7 Hz, ²J=2.2 Hz, 1H; CHOSi), 3.55-3.61 (m, 2H; C₂HOMOM-5, CH₂OSi(1)), 3.47 (dd, ³J=10.0 Hz, ²J=6.3 Hz, 1H; CH₂OSi(1)), 3.38 (dd, ³J=7.4 Hz, ³J=2.5 Hz, 1H; CHOMOM-9), 3.28 (s, 3H; MOM-CH₃-9), 3.27 (s, 3H; MOM-CH₃-9), 2.25 (d, ⁴J=2.2 Hz, 1H; ≡CH), 1.84-1.92 (m, 2H, CH-4, CH-8), 1.50-1.56 (m, 3H; CH-10, CH₂-6(1), CH₂-7(1)), 1.21-1.35 (m, 1H ; CH₂-6(1)), 1.11 (d, ³J=6.8 Hz, 3H; CH₃-4), 1.05-1.08 (m, 1H; CH₂-7 (1)), 1.07 (s, 9H; TBDPS-C(CH₃)₃), 1.06 (s, 9H; TBDPS-C(CH₃)₃), 0.82 (d, ³J=6.8 Hz, 3H; CH₃-10), 0.74 (d, ³J=6.7 Hz, 3H; CH₃-8).

C₅₀H₇₀O₆Si₂ (823.26).

MS (MALDI-TOF): 845.7 ([M+Na⁺]).
Zu einer Lösung von 36 mg (62 μmol) des Alkohols 87a in 0.85 ml trockenem DMF werden bei 0 °C 68 μl (68 μmol) einer 1 M Natriumhexamethyldisilazid-Lösung in THF zugetropft. Nach 30 min Rühren bei 0 °C werden nacheinander 15 μl (111 μmol) p-Methoxybenzylchlorid zugetropft und 1 mg (3 μmol) Tetrabutylammoniumiodid zugegeben. Nach 24 h Rühren bei R.T. werden 5 ml einer gesättigten Ammoniumchlorid-Lösung zugegeben. Die Mischung wird mit dreimal je 10 ml Diethylether extrahiert, die versammelten organischen Phasen mit 5 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (57 mg, gelbbraunes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 50:1 → 1:1 (v/v) gereinigt, wobei 4 mg (7 μmol, 11 %) Edukt wiedergewonnen werden können.

Ausbeute: 13 mg (18 μmol, 30 %), farbloses, viskoses Öl.

Rf: 0.42 (CH/EE=5:1 (v/v)).

1H (400 MHz, CDCl3): δ = 7.63-7.68 (m, 4H, SiPh-CH), 7.34-7.44 (m, 6H, SiPh-CH), 7.29 (d, 3J=8.8 Hz, 2H; PMB-ar-CH), 6.87 (d, 3J=8.8 Hz, 2H; PMB-ar-CH), 4.74 (d, 3J=10.9 Hz, 1H; PMB-CH2O(1)), 4.65 (d, 2J=6.5 Hz, 1H; MOM-CH2(1)-3), 4.59 (d, 2J=6.5 Hz, 1H; MOM-CH2(1)-3), 4.56 (d, 2J=6.6 Hz, 1H; MOM-CH2(1)-7), 4.54 (d, 2J=6.6 Hz, 1H; MOM-CH2(1)-7), 4.41 (d, 2J=10.9 Hz, 1H; PMB-CH2O(1)), 4.07 (dd, 3J=8.4 Hz, 4J=2.2 Hz, 1H; CHOSi), 3.79 (s, 3H; PMB-CH3O), 3.75-3.81 (m, 1H; CHOMOM-7), 3.58 (dd, 3J=10.0 Hz, 3J=8.0 Hz, 1H; CH2OSi(1)), 3.44-3.50 (m, 2H; CHOMOM-3, CH2OSi(1)), 3.32 (s, 3H; MOM-CH3-3), 3.29 (s, 3H; MOM-CH3-7), 2.48 (d, 4J=2.0 Hz, 1H; =CH), 1.84-1.98 (m, 2H, CH-4, CH-8), 1.45-1.75 (m, 3H; CH-2, CH-2-6(1), CH2-5(1)), 1.30-1.40 (m, 1H; CH2-6(1)), 1.03-1.15 (m, 4H; CH2-7(1), CH3-8), 1.05 (s, 9H; C(CH3)3), 0.85 (d, 3J=6.8 Hz, 3H; CH3-2), 0.83 (d, 3J=6.8 Hz, 3H; CH3-4).

C42H60O7Si (705.01).
(2S,3S,4S,7S,8R,9R)-9-(tert-Butyldiphenylsilanyloxy)-3,7-bis-methoxymethoxy-2,4,8-trimethyl-undec-10-in-1-ol (101)

Ausbeute: 2.43 g (4.15 mmol, 88 % über 2 Stufen), farbloses, viskoses Öl.

Rf: 0.32 (CH/EE=2:1 (v/v)).

Drehwert: [α]D = + 77.1 (c=0.55 in CHCl3)

1H (400 MHz, CDCl3): δ = 7.68-7.75 (m, 4H, Ph-CH), 7.35-7.46 (m, 6H, Ph-CH), 4.61 (d, 2J=6.6 Hz, 1H; MOM-CH2(1)-3), 4.59 (d, 2J=6.6 Hz, 1H; MOM-CH2(1)-3), 4.51 (d, 2J=6.8 Hz, 1H; MOM-CH2(1)-7), 4.49 (d, 2J=6.8 Hz, 1H; MOM-CH2(1)-7), 4.38 (dd, 3J=5.7 Hz, 4J=2.2 Hz, 1H; CHOSi), 3.54 (q, 3J=5.9 Hz, 1H; CHOMOM-7), 3.45-3.51 (m, 2H; CH2OH), 3.41 (s, 3H; MOM-CH3-3), 3.30 (s, 3H; MOM-CH3-7), 3.28-3.32 (m, 1H; CHOMOM-3), 3.06 (t, 3J=6.5 Hz, 1H; OH), 2.30 (d, 4J=2.2 Hz, 1H; =CH), 1.82-1.95 (m, 2H, CH-2, CH-8), 1.44-1.58 (m, 3H; CH-4, CH2-6(1), CH2-5(1)), 1.25-1.37 (m, 1H ; CH2-6(1)), 1.14 (d, 3J=6.8 Hz, 3H; CH3-8), 1.07-1.09 (m, 1H; CH2-5 (1)), 1.08 (s, 9H; C(CH3)3), 0.75 (d, 3J=7.0 Hz, 3H; CH3-2), 0.68 (d, 3J=6.8 Hz, 3H; CH3-4).

13C (100.6 MHz, CDCl3): δ = 136.2 (Ph-CH), 136.0 (Ph-CH), 133.7 (Ph-C), 133.6 (Ph-C), 130.0 (Ph-CH), 129.8 (Ph-CH), 127.8 (Ph-CH), 127.5 (Ph-CH), 99.2 (CH2OMOM-3), 96.5 (CH2OMOM-7), 83.9 (CHOMOM-3), 83.3 (=C-H), 79.3 (CHOMOM-7), 74.8 (=C-2), 65.2 (CH2OH), 65.0 (CHOTBDPS), 56.3 (MOM-CH3-3), 55.8 (MOM-CH3-7), 43.5 (CH-8), 36.7 (CH-2), 36.5 (CH-4), 29.8 (CH2-6), 27.9 (CH2-5), 27.1 (C(CH3)3), 19.5 (C(CH3)3), 15.5 (CH3-4), 10.6 (CH3-8), 9.8 (CH3-2).
Laurent Bialy Dissertation

\[\text{C}_{34}\text{H}_{52}\text{O}_{6}\text{Si} \ (584.86).} \]

MS (FAB, 3-NBA): 607.1 ([M+Na]⁺, 100), 553 ([M-OCH₃]⁺, 18), 522 ([M-C₂H₆O₂]⁺, 26).

HR-MS (FAB, 3-NBA) für \(\text{C}_{34}\text{H}_{52}\text{NaO}_{6}\text{Si} \ [\text{M+Na}^+] \):

<table>
<thead>
<tr>
<th>berechnet</th>
<th>gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>607.3431</td>
<td>607.3405</td>
</tr>
</tbody>
</table>

(2S,3S,4S,7S,8S,9R)-9-(4-Methoxy-benzyloxy)-3,7-bis-methoxymethoxy-2,4,8-trimethylundec-10-in-1-ol (100)

Zu einer Lösung von 13 mg (18 \(\mu \text{mol} \)) des TBDPS-Ethers 96 in 0.15 ml werden bei 0 °C 22 µl (22 \(\mu \text{mol} \)) einer 1 M Lösung Tetrabutylammoniumfluorid in THF zugetropft. Nach 20 h wird die Lösung mit je 2 ml einer gesättigten Ammoniumchlorid-Lösung und Wasser versetzt, mit zweimal je 5 ml Ethylacetat extrahiert, mit 5 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (13 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:1 (v/v) gereinigt.

Ausbeute: 8 mg (17 \(\mu \text{mol}, 93 \% \)), farbloses, viskoses Öl.

\(R_f \): 0.5 (CH/EE=1:1 (v/v)).

\(^1\text{H}\) (400 MHz, CDCl₃): \(\delta = 7.29 \ (d, ^3J=8.5 \text{ Hz}, 2\text{H}, \text{Ph-CH}), 6.87 \ (d, ^3J=8.5 \text{ Hz}, 2\text{H}, \text{Ph-CH}), 4.74 \ (d, ^2J=11.0 \text{ Hz}, 1\text{H}; \text{PMB-CH}_2\text{O}(1)), 4.65 \ (s, 2\text{H}, \text{MOM-CH}_2\text{-3}), 4.56 \ (d, ^2J=6.5 \text{ Hz}, 1\text{H}; \text{MOM-CH}_2\text{(1)}-7), 4.53 \ (d, ^2J=6.5 \text{ Hz}, 1\text{H}; \text{MOM-CH}_2\text{(1)}-7), 4.41 \ (d, ^2J=11.0 \text{ Hz}, 1\text{H}; \text{PMB-CH}_2\text{O}(1)), 4.05 \ (dd, ^3J=8.0 \text{ Hz}, ^4J=2.0 \text{ Hz}, 1\text{H}; \text{CHOSi}), 3.80 \ (3\text{H}, \text{s}, \text{CH}_3\text{O}), 3.73-3.78 \ (m, 1\text{H}; \text{CHOMOM-7}), 3.47-3.51 \ (m, 2\text{H}; \text{CH}_2\text{OH}), 3.42 \ (s, 3\text{H}; \text{MOM-CH}_3\text{-3}), 3.37-3.44 \ (m, 1\text{H}; \text{CHOMOM-3}), 3.33 \ (s, 3\text{H}; \text{MOM-CH}_3\text{-7}), 2.55 \ (d, ^4J=2.0 \text{ Hz}, 1\text{H}; =\text{CH}), 1.88-1.98 \ (m, 2\text{H}, \text{CH-4, CH-8}), 1.49-1.78 \ (m, 3\text{H}; \text{CH-2, CH}_2\text{-6(1), CH}_2\text{-5(1)}), 1.32-1.43 \ (m, 1\text{H}; \text{CH}_2\text{-6(1)}), 1.05 \ (d, ^3J=7.0 \text{ Hz}, 3\text{H}; \text{CH}_3\text{-8}), 1.02-1.10 \ (m, 1\text{H}; \text{CH}_2\text{-5 (1)}), 0.82 \ (d, ^3J=7.0 \text{ Hz}, 3\text{H}; \text{CH}_3\text{-4}), 0.78 \ (d, ^3J=7.0 \text{ Hz}, 3\text{H}; \text{CH}_3\text{-2}).

\[\text{C}_{26}\text{H}_{42}\text{O}_7 \ (466.61).} \]

1,7-Bis(tert-Butyl-diphenyl-silanyloxy)-hept-2-in (104)
Zu einer Lösung von 100 mg (0.272 mmol) des Alkohols 103 und 56 mg (0.816 mmol) Imidazol in 0.4 ml trockenes N,N-Dimethylformamid werden 86 µl (0.326 mmol) tert-Butyldiphenylsilylechlorid zugetropft. Nach 15h Rühren wird nach Zugabe von 10 ml einer gesättigten Natriumchlorid-Lösung die Mischung mit dreimal je 20 ml Diethylether extrahiert, die versammelten organischen Phasen mit 10 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (213 mg, farbloses, zähes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 150:1 (v/v) gereinigt.

Ausbeute: 149 mg (246 µmol, 91 %), farbloses Öl.

Rf: 0.83 (CH/EE= 2:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.64-7.72 (m, 8H; Ph-CH), 7.34-7.43 (m, 12H; Ph-CH), 4.30 (t, 4J=2.0 Hz, 2H; OCH$_2$-1), 3.65 (t, 2J=6.1 Hz, 2H; OCH$_2$-7), 2.15 (dt, 2J=6.6 Hz, 4J=2.0 Hz, 2H; CH$_2$-4), 1.52-1.65 (m, 4H; CH$_2$-5, CH$_2$-6), 1.60-1.67 (m, 4H; CH$_2$-5, CH$_2$-6), 1.05 (s, 9H; C(CH$_3$)$_3$-7), 1.04 (s, 9H; C(CH$_3$)$_3$-1).

13C (100 MHz, CDCl$_3$): δ = 135.8 (Ph-CH), 135.7 (Ph-CH), 134.1 (Ph-C), 133.5 (Ph-C), 129.8 (Ph-CH), 129.7 (Ph-CH), 127.8 (2 x Ph-CH), 85.8 (≡C-3), 78.7 (≡C-2), 63.5 (CH$_2$O-7), 53.1 (CH$_2$O-1), 31.8 (CH$_2$-6), 27.0 (C(CH$_3$)$_3$-7), 26.9 (C(CH$_3$)$_3$-1), 25.1 (CH$_2$-5), 19.4 (C(CH$_3$)$_3$-7), 19.3 (C(CH$_3$)$_3$-1), 18.7 (≡C-CH$_2$).

C$_{39}$H$_{48}$O$_2$Si$_2$ (604.96)

MS (FAB, 3-NBA): 627.3 (M+Na$^+$, 100), 605.4 (M+H$^+$, 37), 547.3 (M-C(CH$_3$)$_3$+), 94).

HR-MS (FAB, 3-NBA) für C$_{32}$H$_{43}$NaO$_4$Si [M+Na$^+$]: ber.: 627.3091
gef.: 627.3110

7-(tert-Butyl-diphenyl-silanyloxy)-hept-2-in-1-ol (103)

Zu einer Lösung von 50 mg (83 µmol) des Bis-(TBDPS).ethers 104 in 5 ml MeOH wurden 30 mg (0.83 mmol) Ammoniumfluorid gegeben. Nach 8 h Rühren wird die Mischung nach Zugabe von 10 ml eines 1M Phosphat-Puffers (pH 7) und 10 ml einer gesättigten Natriumchlorid-Lösung mit dreimal je 50 ml Ethylacetat extrahiert, die versammelten
organischen Phasen mit 10 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel m Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 10:1 (v/v) gereinigt.

Ausbeute: 25 mg (68 μmol, 82 %), farbloses Öl.

\[
R_f: 0.28 \text{ (CH/EE= 4:1 (v/v))}. \]

\[\text{H} (400 MHz, CDCl}_3]: \delta = \quad 7.65-7.68 \text{ (m, 4H; Ph-CH)}, 7.36-7.45 \text{ (m, 6H; Ph-CH)}, 4.23 \text{ (t, } 3^2J=2.2 \text{ Hz, 2H; CH}_2\text{OH)}, 3.68 \text{ (t, } 2^2J=5.9 \text{ Hz, 2H; CH}_2\text{OSi)}, 2.22 \text{ (tt, } 2^2J=6.6 \text{ Hz, } 3^2J=2.2 \text{ Hz, 2H; } \equiv\text{C-CH}_2\text{-4)}, 1.57-1.70 \text{ (m, 4H; CH}_2\text{-5, CH}_2\text{-6)}, 1.05 \text{ (s, 9H; C(CH}_3\text{)_3})].

\[\text{C} (100 MHz, CDCl}_3]: \delta = \quad 135.7 \text{ (Ph-CH)}, 134.1 \text{ (Ph-C)}, 129.7 \text{ (Ph-CH)}, 127.8 \text{ (Ph-CH)}, 86.6 \text{ (≡C-3)}, 78.6 \text{ (≡C-2)}, 63.5 \text{ (CH}_2\text{OSi)}, 51.6 \text{ (CH}_2\text{OH)}, 31.8 \text{ (CH}_2\text{-6)}, 27.0 \text{ (C(CH}_3\text{)_3)}, 25.2 \text{ (CH}_2\text{-5)}, 19.4 \text{ (C(CH}_3\text{)_3)}, 18.7 \text{ (≡C-CH}_2\text{)}. \]

Die spektroskopischen Daten stimmen mit den Literaturdaten überein.\[174\]

\[(2R,3S,4S,7S,8S,9R)-9-(\text{tert-Butyldiphenylsilanyloxy})-3,7-bis-methoxymethoxy-2,4,8-\]

trimethyl-undec-10-inal (109b) \]

Zu einer Suspension von 43 mg (74 μmol) des Alkohols 101 und 71 mg (0.85 mmol) NaHCO3 in 1.7 ml trockenem Dichlormethan wird 0.24 ml (0.11 mmol) einer 15%-igen Lösung des Dess-Martin Periodinan in Dichlormethan zugetropft. Nach 1 h 25min Rühren bei Raumtemperatur wird die Mischung zu einer Mischung aus 5 ml einer gesättigten Natriumthiosulfatlösung, 5 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 10 ml Diethylether gegeben. Nach 1 h intensivem Rühren wird das Gemisch nach Zugabe von 10 ml einer gesättigten Natriumhydrogencarbonat-Lösung mit dreimal 30 ml Diethylether extrahiert, die versammelten organischen Phasen mit zweimal je 20 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel bei maximal 30 °C im Vakuum abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 1:1 → 0:1 (v/v) gereinigt.

Ausbeute: 40 mg (69 μmol, 93%), farbloses, leichtbewegliches Öl. Das Produkt wird aufgrund seiner Labilität sofort ohne weitere Analytik eingesetzt.
Methyl (4S,5S,6S,9S,10S,11R) - 11 - (tert-Butyldiphenylsilanyloxy) - 5,9 - bis - methoxymethoxy-4,6,10-trimethyl-tridec-2-en-12-inoat (110b)

Zu einer Lösung von 3.65 g (13.8 mmol) 18-Krone-6 und 1.46 ml (6.90 mmol) [Bis-(2,2,2-trifluorethoxy)-phosphoryl]-essigsäuremethylster in 65 ml trockenem THF werden bei –78 °C 10.4 ml (5.2 mmol) einer 0.5 M Lösung Kaliumhexamethyldisilazid in Toluol während 15 min zugetropft. Nach 35 min Rühren bei –78 °C wird eine Lösung von 2.01 g (3.45 mmol) des Aldehyds 109b in 12 ml trockenem THF während 45 min zugetropft. Nach 260 min Rühren bei –78 °C werden bei –78 °C 100 ml einer gesättigten Ammoniumchloridlösung und 50 ml Diethylether zugegeben. Nach Auftauen auf Raumtemperatur wird die Mischung mit 100 ml Wasser verdünnt und mit dreimal je 500 ml Diethylether extrahiert. Die versammelten organischen Phasen werden mit 100 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:1 → 2:1 (v/v) gereinigt.

Ausbeute: 2.05 g (3.20 mmol, 92 %), farbloses, leichtbewegliches Öl.

Rf: 0.50 (CH/EE=3:1 (v/v)).

Drehwert: \([\alpha]_D^{20} = + 53.2 \) (c=0.52 in CHCl₃)

1H (400 MHz, CDCl₃): \(\delta = 7.69-7.75 \) (m, 4H, Ph-CH), 7.34-7.44 (m, 6H, Ph-CH), 6.18 (dd, \(^3J=11.5 \) Hz, \(^3J=10.2 \) Hz, 1H; =CH-3), 5.73 (dd, \(^3J=11.5 \) Hz, \(^4J=0.8 \) Hz, 1H; =CH-2), 4.60 (d, \(^3J=6.8 \) Hz, 1H; MOM-CH₃(1)-5), 4.57 (d, \(^3J=6.8 \) Hz, 1H; MOM-CH₃(1)-9), 4.46 (d, \(^3J=6.8 \) Hz, 1H; MOM-CH₃(1)-9), 4.38 (dd, \(^3J=5.9 \) Hz, \(^4J=2.2 \) Hz, 1H; CHOSi), 3.75-3.85 (m, 1H; CH-4), 3.69 (s, 3H; C(O)OCH₃), 3.56 (q, \(^3J=5.3 \) Hz, 1H; CHOMOM-9), 3.37 (s, 3H; MOM-CH₃-5), 3.28 (s, 3H; MOM-CH₃-9), 3.12 (dd, \(^3J=6.1 \) Hz, \(^3J=5.1 \) Hz, 1H; CHOMOM-5), 2.26 (d, \(^4J=2.2 \) Hz, 1H; =CH), 1.84-1.92 (m, 1H, CH-10), 1.42-1.60 (m, 3H; CH-6, CH₂-7(1), CH₂-8(1)), 1.22-1.31 (m, 1H ; CH₂-8(1)), 1.10 (d, \(^3J=6.8 \) Hz, 3H; CH₃-10), 1.06-1.09 (m, 1H; CH₂-7 (1)), 1.07 (s, 9H; C(CH₃)₃), 1.02 (d, \(^3J=6.6 \) Hz, 3H; CH₃-4), 0.83 (d, \(^3J=6.6 \) Hz, 3H; CH₃-6).
\[^{13}\text{C} \text{(100.6 MHz, CDCl}_3)\]: \[\delta = 166.6 \text{ (C=O)}, 154.1 \text{ (=C-3)}, 136.2 \text{ (Ph-CH)}, 136.0 \text{ (Ph-CH)}, 133.8 \text{ (Ph-C)}, 133.6 \text{ (Ph-C)}, 129.9 \text{ (Ph-CH)}, 129.7 \text{ (Ph-CH)}, 127.8 \text{ (Ph-CH)}, 127.4 \text{ (Ph-CH)}, 118.0 \text{ (=C-2)}, 98.5 \text{ (CH_2OMOM-5)}, 96.5 \text{ (CH_2OMOM-7)}, 87.4 \text{ (CHOMOM-3)}, 83.5 \text{ (==C-H)}, 79.1 \text{ (CHOMOM-9)}, 74.8 \text{ (=C-2)}, 65.2 \text{ (CHOSi)}, 56.2 \text{ (MOM-CH_3-5)}, 55.8 \text{ (MOM-CH_3-9)}, 51.2 \text{ (OCH_3)}, 43.6 \text{ (CH-10)}, 36.8 \text{ (CH-6)}, 34.9 \text{ (CH-4)}, 30.3 \text{ (CH_2-8)}, 27.7 \text{ (CH-2)}, 27.1 \text{ (CH_3)}, 19.5 \text{ (CH_3)}, 16.3 \text{ (CH-6)}, 14.9 \text{ (CH-4)}, 10.4 \text{ (CH-10)}.

C\text{_}37\text{H}\text{_}54\text{O}\text{_}7\text{Si (638.91)}.

MS (FAB, 3-NBA): 661.0 ([M+Na]^+ 100), 607.1 ([M-OCH_3]^+ 61), 577 ([M-CH_2\text{H}_5\text{O}_2]^+, 33).

HR-MS (FAB, 3-NBA) für C\text{_}37\text{H}\text{_}54\text{NaO}\text{_}7\text{Si [M+Na]^+}: ber.: 661.3536
gef.: 661.3549.

Methyl (4\text{S},5\text{S},6\text{S},9\text{S},10\text{S},11\text{R}) - 11 - (4-Methoxy-benzyl) - 5,9 - bis -methoxymethoxy-4,6,10-trimethyl-tridec-2-en-12-inoat (110a)

Der Ester 110a wird in völliger Analogie zum Ester 110b ausgehend von 8.0 mg (17 \text{/mol}) 100 hergestellt.

Ausbeute: 4.2 mg (8.1 \text{/mol}, 48 % über 2 Stufen), farbloses, viskoses Öl.

R_f: 0.12 (CH/EE=7:1 (v/v)).

\[^1\text{H} \text{(400 MHz, CDCl}_3)\]: \[\delta = 7.29 \text{ (d, }^3\text{J}=8.7 \text{ Hz, 2H, Ph-CH)}, 6.87 \text{ (d, }^3\text{J}=8.7 \text{ Hz, 2H, Ph-CH)}, 6.14 \text{ (dd, }^3\text{J}=11.5 \text{ Hz, }^3\text{J}=10.0 \text{ Hz, 1H; =CH-3)}, 5.72 \text{ (dd, }^3\text{J}=11.5 \text{ Hz, }^4\text{J}=1.0 \text{ Hz, 1H; =CH-2)}, 4.73 \text{ (d, }^2\text{J}=11.0 \text{ Hz, 1H; PMB-CH_2O(1)}), 4.62 \text{ (d, }^2\text{J}=6.7 \text{ Hz, 1H; MOM-CH_2(1)-5)}, 4.60 \text{ (d, }^2\text{J}=6.7 \text{ Hz, 1H; MOM-CH_2(1)-9)}, 4.53 \text{ (d, }^2\text{J}=6.7 \text{ Hz, 1H; MOM-CH_2(1)-9)}, 4.40 \text{ (d, }^2\text{J}=11.0 \text{ Hz, 1H; PMB-CH_2O(1)}), 4.05 \text{ (dd, }^3\text{J}=8.5 \text{ Hz, }^3\text{J}=2.0 \text{ Hz, 1H; CHOSi)}, 3.78-3.86 \text{ (m, 1H; CH-4)}, 3.80 \text{ (s, 3H; C(O)OCH_3)}, 3.76 \text{ (dt, }^3\text{J}=3.0 \text{ Hz, }^3\text{J}=6.5 \text{ Hz, 1H; CHOMOM-9)}, 3.68 \text{ (s, 3H; PMB-CH_2O_3)}, 3.38 \text{ (s, 3H; MOM-CH_3-5)}, 3.32 \text{ (s, 3H; MOM-CH_3-9)}, 3.18 \text{ (t, }^3\text{J}=5.5 \text{ Hz, 1H; CHOMOM-5)}, 2.48 \text{ (d, }^4\text{J}=2.0 \text{ Hz, 1H; =CH)}, 1.93 \text{ (ddq, }^3\text{J}=8.6 \text{ Hz, }^3\text{J}=3.0 \text{ Hz, }^3\text{J}=7.0 \text{ Hz, 1H; CH-10)}, 1.46-1.73 \text{ (m, 3H; CH-6, CH_2-7(1), CH_2-8(1))}, 1.26-1.37 \text{ (m, 1H; CH-8(1))}, 1.04-1.14 \text{ (m, 1H; CH_2-7 (1))}, 1.03 \text{ (d, }^3\text{J}=7.0 \text{ Hz, 3H; CH_3-10)}, 1.03 \text{ (d, }^3\text{J}=7.0 \text{ Hz, 3H; CH_3-4)}, 0.93 \text{ (d, }^3\text{J}=7.0 \text{ Hz, 3H; CH_3-6)).
C₂₀H₄₄O₈ (520.65).

(5S,6S)-6-[(1S,4S,5R,6R)-6-(tert-Butylphenylsilanyloxy)-4-hydroxy-1,5-dimethyl-oct-7-inyl]-5-methyl-5,6-dihydro-pyran-2-on (113)

1.97 g (3.08 mmol) des Esters 113 werden mit einer Lösung von 510 mg (1.54 mmol) Tetrabrommethan in 136 ml 2-Propanol versetzt und auf 82°C erhitzt. Nach 15 h wird das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird sofort säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:1 / 3:2 (v/v) gereinigt.

Ausbeute: 1.33 g (2.56 mmol, 83%), viskoses, farbloses Öl.

Rf: 0.6 (CH/EE= 1:1 (v/v)).

Drehwert: \([\alpha]^{20}_D = +115 \) (c=0.56 in CHCl₃).

\(^1\)H (400 MHz, CDCl₃): \(\delta = 7.69-7.76 \) (m, 4H; arom.CH), 7.36-7.47 (m, 6H; arom.CH), 6.98 (dd, \(^3J=9.6 \) Hz, \(^3J=6.5 \) Hz, 1H; =CH-4), 5.97 (d, \(^3J=9.6 \) Hz, 1H; =CH-3), 4.35 (dd, \(^3J=4.1 \) Hz, \(^4J=2.2 \) Hz, 1H; CHOSi), 4.13-4.18 (m, 1H; CHOCH), 3.98 (dd, \(^3J=10.4 \) Hz, \(^3J=2.9 \) Hz, 1H; H-6), 2.62 (brs, 1H, OH), 2.46 (dquint, \(^3J=3.1 \) Hz, \(^3J=7.0 \) Hz, 1H; CH-5), 2.33 (d, \(^3J=2.2 \) Hz, 1H; =CH), 1.90-1.98 (m, 1H; CH₂-2'(1)), 1.56-1.80 (m, 3H; CH-1’, CH₂-3'(1), CH-5’), 1.20-1.26 (m, 2H; CH₂-2'(1), CH₂-3'(1)), 1.09 (s, 9H; C(CH₃)₃), 1.03 (d, \(^3J=6.5 \) Hz, 3H; CH₃-5’), 1.01 (d, \(^3J=6.6 \) Hz, 3H; CH₃-3’), 0.89 (d, \(^3J=6.6 \) Hz, 3H; CH₃-1’).

\(^13\)C (100.6 MHz, CDCl₃): \(\delta = 165.0 \) (C=O), 152.0 (=CH-4), 136.4 (Ph-CH), 136.2 (Ph-CH), 132.9 (Ph-C), 132.5 (Ph-C), 130.2 (Ph-CH), 130.0 (Ph-CH), 127.9 (Ph-CH), 127.5 (Ph-CH), 120.2 (=CH-3), 84.2 (CH-6), 83.6 (C-7’), 75.2 (=CH), 71.8 (CHOH), 68.6 (CHOSi), 44.1 (CH-5’), 34.3 (CH-1’), 32.2 (CH₂-3’), 30.6 (CH-5), 29.2 (CH₂-2’), 27.1 (C(CH₃)₃), 19.5 (C(CH₃)₃), 14.7 (CH₃-1’), 10.9 (CH₃-5), 10.0 (CH₃-5’).

C₃₂H₄₂O₄Si (518.76).

MS (FAB, 3-NBA): 541.0 ([M+Na⁺], 100), 519.1 ([M+H⁺], 84), 461.0 ([M-tBu]+, 13).

HR-MS (FAB, 3-NBA) für C₃₂H₄₃O₄Si [M+H⁺]: ber.: 519.2930 gef.: 519.2888
6.4. Versuche zu Kapitel 4.1.4.

\[(SS, 6S)-6\text{-}[(1S, 4S, 5R, 6R)\text{-}6\text{-}(\text{tert-Butyldiphenylsilanyloxy})\text{-}4\text{-}hydroxy\text{-}8\text{-}iod\text{-}1, 5\text{-}dimethyl\text{-}oct\text{-}7\text{-}inyl}]\text{-}5\text{-}methyl\text{-}5, 6\text{-}dihydro\text{-}pyran\text{-}2\text{-}on (115) \]

Ausbeute: 19 mg (29 µmol, 76 %), viskoses, farbloses Öl.

\(R_f: 0.37 (CH/EE) = 2:1 \text{ (v/v)}. \)

Drehwert: \(\left[a\right]_D^{20} = +131 \) (c=0.3 in CHCl₃).

\(^1H\) (400 MHz, CDCl₃): \(\delta = 7.68\text{-}7.73 \) (m, 4H; Ph-CH), 7.38\text{-}7.46 (m, 6H; Ph-CH), 6.98 (dd, \(^3J=9.6 \text{ Hz}, ^3J=6.5 \text{ Hz}, 1H; =CH-4)), 5.97 (dd, \(^3J=9.6 \text{ Hz}, ^4J=9.6 \text{ Hz} \) 1H; =CH-3), 4.45 (d, \(^3J=4.5 \text{ Hz}, 1H; \text{CHOSi}), 4.12\text{-}4.17 (m, 1H; CHOH), 3.99 (dd, \(^3J=10.4 \text{ Hz}, ^3J=2.9 \text{ Hz}, 1H; \text{CH-6}), 2.46 \) (dquint, \(^3J=3.1 \text{ Hz}, ^3J=7.2 \text{ Hz}, 1H; \text{CH-5}), 1.92\text{-}2.00 \) (m, 1H; CH₂-2′(1)), 1.57\text{-}1.83 \) (m, 3H; H-1′, CH₂-3′(1), CH-5′), 1.22\text{-}1.29 \) (m, 2H; CH₂-2′(1), CH₂-3′(1)), 1.08 (s, 9H; C(CH₃)₃), 1.02 (d, \(^3J=7.0 \text{ Hz}, 3H; \text{CH}_3\text{-}5′), 1.01 (d, \(^3J=7.0 \text{ Hz}, 3H; \text{CH}_3\text{-}5), 0.90 (d, \(^3J=6.6 \text{ Hz}, 3H; \text{CH}_3\text{-}1′). \)

\(^13C\) (100.6 MHz, CDCl₃): \(\delta = 165.0 \) (C=O), 152.0 (=CH-4), 136.3 (Ph-CH), 136.2 (Ph-CH), 132.8 (Ph-C), 132.4 (Ph-C), 130.3 (Ph-CH), 129.9 (Ph-CH), 127.9 (Ph-CH), 127.6 (Ph-CH), 120.2 (=CH-3), 94.5 (=C-7′), 84.2 (CH-6), 71.7 (CHOH), 70.2 (CHOSi), 44.2 (CH-5′), 34.3 (CH-1′), 32.1 (CH₂-3′), 30.6 (CH-5), 29.1 (CH₂-2′), 27.1 (C(CH₃)₃), 19.5 (C(CH₃)₃), 14.7 (CH₃-1′), 10.9 (CH₃-5), 10.0 (CH₃-5′), 4.7 (=C-I).
C\textsubscript{32}H\textsubscript{41}IO\textsubscript{4}Si (644.66).

MS (FAB, 3-NBA): 667.0 ([M+Na+], 100), 645.1 ([M+H+], 47), 519.2 ([M-I+2H+], 48), 587.0 ([M-tBu+], 16).

HR-MS (FAB, 3-NBA) für C\textsubscript{32}H\textsubscript{42}O\textsubscript{4}SiI [M+H+]: ber.: 645.1897
gef.: 645.1880.

\{(1S,2R,3R)-3-(\textit{tert}-Butyldiphenylsilanyloxy)-2-methyl-1-[(3S,4S)-3-(3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)-butyl]-pent-4-inyl\}-bis(9H-fluoren-9-ylmethyl)-phosphat (118b)

Zu einer Lösung von 300 mg (0.58 mmol) des Alkohols **113** und 109 mg (1.56 mmol) Tetrazol in 9 ml trockenem Acetonitril wird eine Lösung von 905 mg (1.73 mmol) des Phosphoramidits **141** in 7.2 ml Dichlormethan bei 0 °C zugeführt, wobei ein weißer Niederschlag entsteht. Nach 5.5 h Rühren bei Raumtemperatur wird eine 0.1 M Iod-Lösung in Pyridin/THF/Wasser 2:7:1 (v/v) (17.4 ml, 1.74 mmol) zugeführt. Nach 5 min Rühren bei Raumtemperatur wird die tiefrote Lösung unter intensivem Rühren in eine Mischung von 30 ml einer gesättigten Natriumhydrogencarbonat-Lösung, 30 ml einer 0.1 M Natriumthiosulfatlösung und 150 ml Ethylacetat gegeben. Nach Abdampfen der organischen Phase wird die farblose Lösung mit zweimal je 150 ml Ethylacetat extrahiert, die versammelten organischen Phasen nacheinander mit 60 ml einer 1 M Kaliumdihydrogenphosphatlösung und 60 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel nach Zusatz von einigen ml Toluol bei maximal 30 °C im Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:1 → 3:2 (v/v) gereinigt.

Ausbeute: 52 mg (0.55 mmol, 95 %), weißer, klebriger Feststoff.

R\textsubscript{f}: 0.49 (CH/EE = 1:1 (v/v)).

Drehwert: [\alpha]_{50}^{D} = +55.9 (c=0.415 in CHCl\textsubscript{3}).

1H (400 MHz, CDCl\textsubscript{3}): \delta = 7.61-7.79 (m, 8H; Fm-CH(4), Ph-CH(4)), 7.16-7.56 (m, 18 H; Fm-CH(12), Ph-CH(6)), 6.95 (dd, 3J=9.6 Hz, 3J=6.5 Hz, 1H; =CH-4′′), 5.97 (d, 3J=9.6 Hz, 1H; =CH-5′′′), 4.03-4.38 (m, 8H; CHOP, Fm-CH\textsubscript{2}(4), Fm-CH(2), CHOSi), 3.73 (dd, 3J=10.4
Hz, \(^3J = 3.1 \text{ Hz}, \) 1H; CHO-2'), 2.35 (dquint, \(^3J = 3.1 \text{ Hz}, \) \(^3J = 6.8 \text{ Hz}, \) 1H; CH-3'), 2.25 (d, \(^4J = 2.2 \text{ Hz}, \) 1H; \(\equiv \text{CH} \)), 1.93-2.00 (m, 1H; CH-2), 1.79-1.89 (m, 1H; CH\(_2\)-2'(1)), 1.39-1.60 (m, 3H; CH\(_2\)-1', CH-3'), 1.15 (d, \(^3J = 6.6 \text{ Hz}, \) 3H; CH\(_3\)-2), 1.05-1.10 (m, 1H; CH\(_2\)-2'(1)), 1.06 (s, 9H; C(CH\(_3\))\(_3\)), 0.90 (d, \(^3J = 7.0 \text{ Hz}, \) 3H; CH-3''), 0.60 (d, \(^3J = 6.8 \text{ Hz}, \) 3H; CH-3'').

\(^{13}\text{C} (100.6 \text{ MHz, CDCl}_3): \delta = 164.6 \text{ (C=O)}, 151.7 \text{ (=CH-4')}, 143.5 \text{ (Fm-C)}, 143.4 \text{ (Fm-C)}, 143.3 \text{ (Fm-C)}, 143.3 \text{ (Fm-C)}, 141.5 \text{ (Fm-C)}, 141.5 \text{ (Fm-C)}, 141.4 \text{ (Fm-C)}, 136.2 \text{ (Ph-CH)}, 136.0 \text{ (Ph-CH)}, 133.5 \text{ (Ph-C)}, 133.4 \text{ (Ph-C)}, 129.9 \text{ (Ph-CH)}, 129.8 \text{ (Ph-CH)}, 127.9 \text{ (Fm-CH)}, 127.8 \text{ (Fm-CH)}, 127.8 \text{ (Ph-CH)}, 127.6 \text{ (Ph-CH)}, 127.2 \text{ (Fm-CH)}, 127.2 \text{ (Fm-CH)}, 125.4 \text{ (Fm-CH)}, 125.4 \text{ (Fm-CH)}, 125.3 \text{ (Fm-CH)}, 120.3 \text{ (=FCH-5')}, 120.0 \text{ (Fm-CH)}, 120.0 \text{ (Fm-CH)}, 83.7 \text{ (CHO-2')}, 82.2 \text{ (CH)}, 81.2 \text{ (d, } \(^1J(^{13}\text{C}, {^{31}\text{P}}) = 6.2 \text{ Hz, CHOP}) \), 75.3 \text{ (C-4)}, 69.2 \text{ (d, } \(^1J(^{13}\text{C}, {^{31}\text{P}}) = 6.2 \text{ Hz, FmCH}_2 \)), 69.0 \text{ (d, } \(^1J(^{13}\text{C}, {^{31}\text{P}}) = 5.8 \text{ Hz, FmCH}_2 \)), 64.4 \text{ (CHOSi)}, 48.1 \text{ (d, } \(^2J(^{13}\text{C}, {^{31}\text{P}}) = 8.5 \text{ Hz, Fm-CH}) \), 48.1 \text{ (d, } \(^2J(^{13}\text{C}, {^{31}\text{P}}) = 8.1 \text{ Hz, Fm-CH} \)), 43.2 \text{ (d, } \(^2J(^{13}\text{C}, {^{31}\text{P}}) = 6.5 \text{ Hz, CH-2} \)), 34.2 \text{ (CH-3')}, 30.4 \text{ (CH-3')}, 29.8 \text{ (d, } \(^2J(^{13}\text{C}, {^{31}\text{P}}) = 2.3 \text{ Hz, CH-2'} \)), 27.0 \text{ (C(CH\(_3\))\(_3\))}, 26.3 \text{ (CH-2'-)}, 19.5 \text{ (C(CH\(_3\))\(_3\))}, 14.3 \text{ (CH-3')}, 10.9 \text{ (CH-3''), 10.6 (CH-2').}

\(^{31}\text{P} (162 \text{ MHz, CDCl}_3): \delta = -1.15.

C\(_{60}\)H\(_{63}\)O\(_7\)PSi (955.20).

MS (FAB, 3-NBA): 977.0 ([M+Na\(^+\)], 100), 955.0 ([M+H\(^+\)], 100).

HR-MS (FAB, 3-NBA) für C\(_{60}\)H\(_{64}\)O\(_7\)PSi [M+H\(^+\)]:

ber.: 955.4159
gef.: 955.4144.

\{(1S,2S,3R)-3-(tert-Butyldiphenyilsilanyloxy)-2-methyl-1-[(3S,4S)-3-[(3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-butyl]-pent-4-inyl]-bis(2-cyano-ethyl)-phosphat (118a)

Zu einer Lösung von 36 mg (69 \(\mu \text{mol} \)) des Alkohols 113 und 22 mg (0.31 mmol) Tetrazol in 2.2 ml trockenem Acetonitril wird eine Lösung von 115 mg (0.42 mmol) des Phosphoramidits 117\(^{157} \) in 0.75 ml Acetonitril bei 0 °C zugetropft. Nach 105 min Rühren bei Raumtemperatur wird eine 0.1 M Iod-Lösung in Pyridin/THF/Wasser 2:7:1 (v/v) (4.2 ml, 0.42 mmol) innerhalb einer Minute zugetropft. Nach 5 min Rühren bei Raumtemperatur wird die tieffrote Lösung unter intensivem Rühren in eine Mischung von 5.3 ml einer gesättigten Natriumhydrogencarbonat-Lösung, 5.3 ml einer 0.1 M Natriumthiosulfatlösung und 30 ml Ethylacetat gegeben. Nach Abtrennen der organischen Phase wird die farblose Lösung mit
zweimal je 30 ml Ethylacetat extrahiert, die versammelten organischen Phasen nacheinander mit 25 ml einer 1 M Kaliumdihydrogenphosphatlösung und 20 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (74 mg, gelbbraunes Öl) wird säulenchromatographisch an Kieselgel mit Dichlormethan/Ethanol 30:1 gereinigt.

Ausbeute: 49 mg (0.69 μmol, 100 %), farbloses, hochviskoses Öl.

Rf: 0.31 (CH₂Cl₂/Ethanol)= 30:1 (v/v)).

Drehwert: $\left[\alpha\right]_{D}^{20} = +76.6$ (c=0.27 in CHCl₃).

1H (400 MHz, CDCl₃): $\delta = 7.68\text{--}7.75$ (m, 4H; Ph-CH), 7.35-7.45 (m, 6H; Fm-CH), 6.99 (dd, $^3J=9.6$ Hz, $^3J=6.5$ Hz, 1H; =CH-4’’), 5.95 (d, $^3J=9.6$ Hz, 1H; =CH-5’’), 4.43-4.50 (m, 1H; CHOP), 4.15-4.34 (m, 5H; -CE-OC₂H₄(4), CHOSi), 3.85 (dd, $^3J=10.4$ Hz, $^3J=2.9$ Hz, 1H; CHO-2’’), 2.78 (t, $^3J=6.1$ Hz, 2H, CH₂CN), 2.70 (t, $^3J=6.1$ Hz, 2H, CH₂CN), 2.41 (dquint, $^3J=6.1$ Hz, 1H; CH-3’’), 2.36 (d, $^4J=2.2$ Hz, 1H; ≡CH), 1.54-2.04 (m, 6H; CH-3’, CH-2, CH₂-1’, CH₂-2’’), 1.23 (d, $^3J=6.8$ Hz, 3H; CH₃-2), 1.08 (s, 9H; tBu-CH₃), 0.98 (d, $^3J=7.0$ Hz, 3H; CH₃-3’’), 0.66 (d, $^3J=6.6$ Hz, 3H; CH₃-3’’).

13C (100.6 MHz, CDCl₃): $\delta = 164.8$ (C=O), 152.2 (=CH-4’’), 136.2 (Ph-CH), 136.0 (Ph-CH), 133.3 (Ph-C), 133.2 (Ph-C), 130.0 (Ph-CH), 129.9 (Ph-CH), 127.9 (Ph-CH), 127.6 (Ph-CH), 120.0 (=CH-5’’), 117.1 (CN), 116.7 (CN), 83.5 (CHO-2’’), 82.3 (d, $^1J(^{13}C,^{31}P)=6.9$ Hz, CHOP), 81.9 (≡CH), 75.5 (≡C-4), 64.1 (CHOSi), 62.5 (d, $^1J(^{13}C,^{31}P)=5.4$ Hz; β-CE-OC₂H₄), 62.3 (d, $^1J(^{13}C,^{31}P)=5.4$ Hz; β-CE-OC₂H₄), 43.4 (d, $^2J(^{13}C,^{31}P)=6.2$ Hz; CH-2), 33.9 (CH-3’’), 30.4 (CH-3’’), 29.6 (d, $^2J(^{13}C,^{31}P)=2.3$ Hz, CH₂-1’’), 26.9 (tBu-CH₃), 26.2 (CH₂-2’’), 19.8 (d, $^2J(^{13}C,^{31}P)=8.5$ Hz; CH₂CN), 19.7 (d, $^2J(^{13}C,^{31}P)=7.7$ Hz; CH₂CN), 19.5 (C(CH₃)₃), 14.3 (CH₃-3’’), 10.9 (CH₃-3’’), 10.9 (CH₃-2).

31P (162 MHz, CDCl₃): $\delta = -2.07$.

C₃₈H₄₉N₂O₇PSi (704.86)

MS (FAB, 3-NBA): 727.1 ([M+Na⁺], 100), 705.2 ([M+H⁺], 12).

HR-MS (FAB, 3-NBA) für C₃₈H₄₉N₂O₇PSi [M+Na⁺]: ber.: 727.2944
gef.: 727.2914
tert-Butyl-(1-ethyl-prop-2-ynyloxy)-diphenylsilan (120)

Zu einer Lösung von 500 mg (5.94 mmol) Pent-1-in-3-ol und 809 mg (11.9 mmol) Imidazol in 5 ml trockenem DMF werden 1.86 ml (7.12 mmol) tert-Butyldiphenylsilylchlorid zugetropft. Nach 19.5 h Rühren wird nach Zugabe von 50 ml einer gesättigten NaCl-Lösung die Mischung mit dreimal je 50 ml Diethylether extrahiert, die versammelten organischen Phasen mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (2.32 g) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 100:1 (v/v) gereinigt. Ausbeute: 1.48 g (4.59 mmol, 77 %), farbloses Öl.

\[\text{R}_f \text{: 0.7 (CH/EE)= 50:1 (v/v)).} \]

\[^1H\text{ (400 MHz, CDCl}_3\text{: } \delta = 7.68-7.77 \text{ (m, 4H; Ph-CH), 7.35-7.46 \text{ (m, 6H; Ph-CH), 4.31 \text{ (ddd, } J=6.8 \text{ Hz, } J=5.5 \text{ Hz, } J=2.2 \text{ Hz, 1H; CHO), 2.31 \text{ (d, } J=2.2 \text{ Hz, 1H; } \equiv \text{CH), 1.62-1.74 \text{ (m, 2H; CH}_2\text{CH}_3\text{), 1.09 \text{ (s, 9H, C(CH}_3\text{)_3\text{), 0.96 \text{ (t, } J=7.2 \text{ Hz, 3H; CH}_2\text{CH}_3\text{).) }} \]

\[^{13}C\text{ (100.6 MHz, CDCl}_3\text{: } \delta = 136.0 \text{ (Ph-CH), 135.8 \text{ (Ph-CH), 133.7 \text{ (Ph-C), 133.6 \text{ (Ph-C), 129.7 \text{ (Ph-CH), 129.6 \text{ (Ph-CH), 127.6 \text{ (Ph-CH), 127.4 \text{ (Ph-CH), 85.0 \text{ (} \equiv \text{CH), 72.7 \text{ (} =\text{C-2}', 65.0 \text{ (CHO), 31.6 \text{ (CH}_2\text{CH}_3\text{), 27.2 \text{ (C(CH}_3\text{)_3\text{), 19.6 \text{ (C(CH}_3\text{)_3\text{), 9.4 \text{ (CH}_2\text{CH}_3\text{).)}} }} \]

C\text{\textsubscript{21}H\textsubscript{26}OSi (322.52)

MS (FAB, 3-NBA): 345.1 ([M+Na]^+, 9), 323.1 ([M+H]^+, 18), 265.0 ([M-C(CH}_3\text{)_3]^+, 100).

HR-MS (FAB, 3-NBA) für C\text{\textsubscript{21}H\textsubscript{27}OSi [M+H]^+]:
ber.: 323.1831
gef.: 323.1863.

tert-Butyl-(1-ethyl-3-iodo-prop-2-ynyloxy)-diphenylsilan (119)

Das Alkinyliodid 119 wurde in völliger Analogie zu 66c ausgehend von 750 mg (2.3 mmol) hergestellt.
Ausbeute: 990 mg (2.21 mmol, 96 %), farbloses Öl.

\[\text{R}_f \text{: 0.36 (CH/EE)= 100:1 (v/v)).} \]
1H (400 MHz, CDCl$_3$): δ = 7.66-7.75 (m, 4H; Ph-CH), 7.36-7.46 (m, 6H; Ph-CH), 4.41 (dd, 3J = 6.5 Hz, 3J = 5.7 Hz, 1H; CHO), 1.63-1.74 (m, 2H; CH$_2$CH$_3$), 1.08 (s, 9H; C(CH$_3$)$_3$); 0.95 (t, 3J = 7.4 Hz, 3H; CH$_2$CH$_3$).

13C (100.6 MHz, CDCl$_3$): δ = 136.0 (Ph-CH), 135.8 (Ph-CH), 133.5 (Ph-C), 133.5 (Ph-C), 129.7 (Ph-CH), 129.6 (Ph-CH), 127.6 (Ph-CH), 127.4 (Ph-CH), 95.9 (=C-2'), 66.7 (CHO), 31.8 (CH$_2$CH$_3$), 27.2 (C(CH$_3$)$_3$), 19.6 (C(CH$_3$)$_3$), 9.5 (CH$_2$CH$_3$), 1.4 (=C-I).

C$_{21}$H$_{25}$IOSi (448.41)

HR-MS (FAB, 3-NBA) für C$_{21}$H$_{25}$IOSi [M$^+$]:

ber.: 448.0719

gef.: 448.0742.

Bis(9H-fluoren-9-ylmethyl){(1S,2S,3R)-3-Hydroxy-2-methyl-1-[(3S,4S)-3-[(3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-butyl]-pent-4-inyl}phosphat (122b)

Die Reaktion wird in einem Teflon-Kolben durchgeführt. Zu einer Lösung von 145 mg (0.152 mmol) des TBDPS-Ethers 118b in 5.7 ml trockenem THF werden 1.2 ml HF.Pyridin zugegeben. Nach 24 h Rühren erfolgt eine weitere Zugabe von 1.2 ml HF.Pyridin. Nach 8h wird die Lösung vorsichtig unter Rühren in eine Mischung aus 100 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 100 ml Ethylacetat gegeben, wobei eine heftige Gasentwicklung stattfindet. Nach Abtrennen der organischen Phase wird die wässrige Phase dreimal mit je 100 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 75 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:1 → 1:2 (v/v) gereinigt.

Ausbeute: 89 mg (0.124 mmol, 82 %), weißer Feststoff.

R_f: 0.16 (CH/EE) = 1:1 (v/v).

Drehwert: $[\alpha]_{D}^{20} = +54.6$ (c=0.46 in CHCl$_3$).

Smp.: 79°C
1H (400 MHz, CDCl$_3$): δ = 7.68-7.74 (m, 4H; Fm-CH), 7.44-7.57 (m, 4H; Fm-CH), 7.22-7.41 (m, 8H; Fm-CH), 6.95 (dd, 2J=9.6 Hz, 3J=6.5 Hz, 1H; =CH-4”), 5.93 (dd, 3J=9.6 Hz, 4J=0.4 Hz, 1H; =CH-5”), 4.67-4.74 (m, 1H; CHOP), 4.35 (dt, 2J=9.8 Hz, 3J(H,H)=4J(H,P)=6.3 Hz, 1H; Fm-CH$_2$(1)), 4.08-4.27 (m, 6H; Fm-CH$_2$(3), Fm-CH(2), CHOH), 3.86 (dd, 3J=10.4 Hz, 3J=2.9 Hz, 1H; CHO-2”), 2.43 (d, 4J=2.2 Hz, 1H; ⋄CH), 2.40 (dquint, 3J=2.8 Hz, 3J=6.9 Hz, 1H; CH-3”), 1.65-1.85 (m, 4H; CH$_2$-1'(1), CH$_2$-2'(1), CH-2, CH-3’), 1.08-1.16 (m, 1H; CH$_2$-2'(1)), 0.98 (d, 3J=7.0 Hz, 3H; CH$_3$-3”), 0.93 (d, 3J=7.0 Hz, 3H; CH$_3$-2), 0.79 (d, 3J=6.6 Hz, 3H; CH$_3$-3’).

13C (100.6 MHz, CDCl$_3$): δ = 164.5 (C=O), 151.7 (=CH-4”), 143.3 (Fm-C), 143.0 (Fm-C), 141.5 (Fm-C), 141.5 (Fm-C), 141.4 (Fm-C), 141.4 (Fm-C), 128.0 (Fm-CH), 128.0 (Fm-CH), 127.3 (Fm-CH), 127.2 (Fm-CH), 127.2 (Fm-CH), 125.2 (Fm-CH), 125.1 (Fm-CH), 120.2 (=CH-5”), 120.1 (Fm-CH), 120.1 (Fm-CH), 84.3 (≡C-H), 83.7 (CHO-2”), 78.6 (d, 1J(13C,31P)=6.2 Hz, CHOP), 73.1 (=C-4), 69.5 (d, 1J(13C,31P)=6.9 Hz; FmCH$_2$), 69.4 (d, 1J(13C,31P)=6.2 Hz, FmCH$_2$), 63.6 (CHOH), 48.0 (d, 2J(13C,31P)=9.2 Hz; Fm-CH), 47.9 (d, 2J(13C,31P)=8.5 Hz; Fm-CH), 43.8 (d, 2J(13C,31P)=3.8 Hz; CH-2), 33.9 (CH-3’), 30.7 (d, 2J(13C,31P)=4.6 Hz, CH$_2$-1’), 28.6 (CH$_2$-2’), 14.8 (CH$_3$-3”), 10.8 (CH$_3$-3’’), 9.2 (CH$_3$-2).

31P (162 MHz, CDCl$_3$): δ = 0.96.

C$_{44}$H$_{45}$O$_7$P (716.80)

MS (FAB, 3-NBA): 739.0 ([M+Na$^+$]), 717.0 ([M+H$^+$]), 100).

HR-MS (FAB, 3-NBA) für C$_{44}$H$_{46}$O$_7$P [M+H$^+$]: ber.: 717.2981
gef.: 717.2996

Bis(cyanoethyl){(1S,2S,3R)-3-hydroxy-2-methyl-1-[(3S,4S)-3-((3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)-butyl]-pent-4-inyl}phosphat (122a)

Die Reaktion wird in einem Teflon-Kolben durchgeführt. Zu einer Lösung von 49 mg (69 µmol) des TBDPS-Ethers **118a** in 2.6 ml trockenem THF werden 540 µl HF.Pyridin zugegeben. Nach 24 h Rühren wird die Lösung vorsichtig in eine Mischung aus 10 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 30 ml Ethylacetat gegeben, wobei eine heftige Gasentwicklung stattfindet. Nach Abdrengen der organischen Phase wird die wässrige
Phase zweimal mit je 30 ml Ethylacetat extrahiert, die versammelten organischen Phasen nacheinander mit 6 ml einer 1 M Kaliumdihydrogenphosphatlösung und 6 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und nach Zusatz von 5 ml Toluol das Lösungsmittel bei maximal 30 °C im Vakuum abdestilliert.

Das Rohprodukt (50 mg) wird säulen chromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:8 → 0:1 (v/v), dann CH₂Cl₂/Ethanol 10:1 gereinigt.

Ausbeute: 27 mg (58 μmol, 84 %), farbloses, hochviskoses Öl.

Rᵣ: 0.16 (CH/EE)= 1:8 (v/v)).

Drehwert: \([\alpha]_{D}^{20} = +88.0 \text{ (c=0.565 in CHCl₃)}\).

\[1^H\ (400 \text{ MHz, CDCl}_3): \delta = 6.99 \text{ (dd, } J=9.6 \text{ Hz, } J=6.5 \text{ Hz, } 1H; =\text{CH-4'}'), 5.95 \text{ (d, } J=9.8 \text{ Hz, } 1H; =\text{CH-5'}'), 4.85-4.91 \text{ (m, } 1H; =\text{CHOP}), 4.26-4.40 \text{ (m, } 4H; \beta\text{-CE-OCH}_2(4)), 4.25 \text{ (dd, } J=9.2 \text{ Hz, } J=2.2 \text{ Hz, } 1H; =\text{CH}), 1.85-1.95 \text{ (m, } 4H; \text{CH-3'}, \text{CH-2,CH}_2-1'(1), \text{CH}_2-2'(1)), 1.07 \text{ (d, } J=6.8 \text{ Hz, } 3H; \text{CH}_3-2), 1.03 \text{ (d, } J=7.0 \text{ Hz, } 3H; \text{CH}_3-3'''), 0.91 \text{ (d, } J=6.8 \text{ Hz, } 3H; \text{CH}_3-3'').\]

\[1^3C\ (100.6 \text{ MHz, CDCl}_3): \delta = 164.9 \text{ (C=O)}, 152.1 \text{ (=CH-4'''), 120.0 (=CH-5'''), 117.0 (CN), 116.7 (CN), 84.0 (CHO-2'''), 83.4 (=CH), 79.9 \text{ (d, } J^{13C,31P}=6.2 \text{ Hz, CHOP}), 73.6 (=C-4), 63.6 (CHOH), 62.9 \text{ (d, } J^{13C,31P}=4.6 \text{ Hz; } \beta\text{-CE-OCH}_2), 62.8 \text{ (d, } J^{13C,31P}=6.2 \text{ Hz; } \beta\text{-CE-OCH}_2), 44.5 \text{ (d, } J^{13C,31P}=3.8 \text{ Hz; CH-2), 33.4 (CH-3''), 30.4 (CH-3'''), 30.1 \text{ (d, } J^{13C,31P}=3.8 \text{ Hz, } \text{CH}_2-1'), 28.4 (CH_2-2'), 19.9 \text{ (d, } J^{13C,31P}=8.5 \text{ Hz; CH}_2CN), 19.8 \text{ (d, } J^{13C,31P}=7.7 \text{ Hz; CH}_2CN), 14.5 (CH_3-3''), 10.9 (CH_3-3'''), 9.6 (CH_3-2).\]

\[31P\ (162 \text{ MHz, CDCl}_3): \delta = -0.29.\]

C_{22}H_{31}N_{2}O_{7}P (466.46)

MS (FAB, 3-NBA): 489.1 ([M+Na⁺], 100), 467.1 ([M+H⁺], 89).

HR-MS (FAB, 3-NBA) für C_{22}H_{32}N_{2}O_{7}P [M+H⁺]:

ber.: 466.1869

gef.: 467.1943.

Bis(9H-fluoren-9-ylmethyl){(1S,2S,3R)-3-Hydroxy-5-iod-2-methyl-1-[(3S,4S)-3-((3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)-butyl]-pent-4-inyl} phosphat (123b)
Zu einer Lösung von 210 mg (0.293 mmol) des Alkins 122b und 99 mg (0.440 mmol) N-Iodsuccinimid in 3.3 ml trockenem DMF wird eine Lösung von 7.5 mg (44 μmol) Silbernitrat in 0.23 ml DMF gegeben. Nach 90 min Rühren wird nach Zugabe von 50 ml eiskaltem Wasser die Mischung mit dreimal je 100 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:1 → 2:3 (v/v) gereinigt.

Ausbeute: 247 mg (0.293 mmol, 100 %), beigefarbener Feststoff.

Rf: 0.30 (CH/EE)= 2:3 (v/v)).

Drehwert: \([\alpha]_{D}^{20} = +41.4 (c=0.5 \text{ in CHCl}_3)\).

Schmelzpunkt: m.p. = 117 °C

\(^1\)H (400 MHz, CDCl₃): δ = 7.68-7.74 (m, 4H; Fm-CH), 7.43-7.56 (m, 4H; Fm-CH), 7.21-7.41 (m, 8H; Fm-CH₃), 6.95 (dd, \(3J=9.6 \text{ Hz}, 4J=6.5 \text{ Hz}, 1H; =\text{CH-4''})\), 5.93 (dd, \(3J=9.6 \text{ Hz}, 4J=0.6 \text{ Hz}, 1H; =\text{CH-5''})\), 4.62-4.68 (m, 1H; CHOP), 4.07-4.36 (m, 7H; Fm-CH₂(4), Fm-CH(2), CHOH), 3.86 (dd, \(3J=10.4 \text{ Hz}, 4J=3.1 \text{ Hz}, 1H; \text{CHO-2''})\), 2.40 (d, \(3J=3.1 \text{ Hz}, 3J=7.0 \text{ Hz}, 1H; \text{CH-3''})\), 1.67-1.85 (m, 4H; CH₂-1'(1), CH₂-2'(1), CH-2, CH-3'), 1.43-1.52 (m, 1H; CH₂-1'(1)), 1.06-1.15 (m, 1H; CH₂-2'(1)), 0.98 (d, \(3J=7.0 \text{ Hz}, 3H; \text{CH}_3-3''\)), 0.90 (d, \(3J=6.8 \text{ Hz}, 3H; \text{CH}_3-2\)), 0.78 (d, \(3J=6.8 \text{ Hz}, 3H; \text{CH}_3-3\')).

\(^{13}\)C (100.6 MHz, CDCl₃): δ = 164.5 (C=O), 151.7 (=CH-4'''), 143.3 (Fm-C), 143.1 (Fm-C), 143.0 (Fm-C), 141.5 (Fm-C), 141.4 (Fm-C), 128.1 (Fm-CH), 128.0 (Fm-CH), 127.3 (Fm-CH), 127.3 (Fm-CH), 127.3 (Fm-CH), 125.2 (Fm-CH), 125.2 (Fm-CH), 125.1 (Fm-CH), 120.2 (=CH-5'''), 120.2 (Fm-CH), 120.1 (Fm-CH), 120.1 (Fm-CH), 95.0 (=C-4), 83.7 (CHO-2'''), 78.6 (d, \(1J(^{13}\text{C}, ^{31}\text{P})=6.2 \text{ Hz}, \text{CHOP}\)), 69.5 (FmCH₂), 69.4 (FmCH₂), 65.3 (CHOH), 48.0 (d, \(2J(^{13}\text{C}, ^{31}\text{P})=8.3 \text{ Hz}; \text{Fm-CH}\)), 48.0 (d, \(2J(^{13}\text{C}, ^{31}\text{P})=8.2 \text{ Hz}; \text{Fm-CH}\)), 44.1 (d, \(2J(^{13}\text{C}, ^{31}\text{P})=3.8 \text{ Hz}; \text{CH-2}\)), 34.0 (CH-3'), 30.8 (d, \(2J(^{13}\text{C}, ^{31}\text{P})=4.6 \text{ Hz}, \text{CH}_2-1\')), 30.5 (CH-3'''), 28.6 (CH₂-2''), 14.9 (CH₃-3''), 10.9 (CH₃-3'''), 9.3 (CH₃-2'), 1.3 (=C-I).

\(^{31}\)P (162 MHz, CDCl₃): δ = 0.80.
C_{44}H_{44}IO\textsubscript{7}P (842.69).

MS (FAB, 3-NBA): 864.8 ([M+Na+], 94), 842.9 ([M+H+], 100).

HR-MS (FAB, 3-NBA) für C_{44}H_{45}IO\textsubscript{7}P [M+H+]: ber.: 843.1948
gefü.: 843.1944.

Bis(cyanoethyl)\{1S,2S,3R\}-3-hydroxy-5-iod-2-methyl-1-\{(3S,4S)-3-(3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl\}-butyl\}-pent-4-inylphosphat (123a)

Das Iodid 123a wird in völliger Analogie zu 123b ausgehend von 11.0 mg (23.6 \textmu mol) des Alkins 122a hergestellt.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:15 → 0:1 (v/v) gereinigt.

Ausbeute: 15.6 mg (26.3 \textmu mol, 88 %), farbloses, hochviskoses Öl.

R\textsubscript{f}: 0.38 (CH/EE)= 1:16 (v/v)).

Drehwert: [\alpha\textsubscript{D}^\textsubscript{3}]= +65 (c=0.135 in CHCl\textsubscript{3}).

1H (400 MHz, CDCl\textsubscript{3}): \delta = 6.98 (dd, 3J=9.6 Hz, 3J=6.5 Hz, 1H; =CH-4'), 5.94 (dd, 3J=9.6 Hz, 4J=0.6 Hz, 1H; =CH-5'), 4.80-4.86 (m, 1H; CHOP), 4.27-4.40 (m, 5H; β-CE-OCH\textsubscript{2}(4), CHO-3), 4.07 (dd, 3J=10.6 Hz, 3J=3.1 Hz, 1H; CHO-2'''), 2.75-2.91 (m, 4H, CH\textsubscript{2}CN), 2.45 (dquint, 3J=3.1 Hz, 3J=7.0 Hz, 1H; CH-3'''), 1.84-1.95 (m, 4H; CH-3'', CH-2, CH\textsubscript{2}-1'(1), CH\textsubscript{2}-2'(1)), 1.40-1.56 (m, 2H; CH\textsubscript{2}-1'(1), CH\textsubscript{2}-2'(1)), 1.05 (d, 2J=6.8 Hz, 3H; CH\textsubscript{3}-2), 1.02 (d, 3J=7.0 Hz, 3H; CH\textsubscript{3}-3'''), 0.91 (d, 3J=6.8 Hz, 3H; CH\textsubscript{3}-3').

13C (100.6 MHz, CDCl\textsubscript{3}): \delta = 164.9 (C=O), 152.1 (=CH-4'''), 120.0 (=CH-5'''), 117.0 (CN), 116.7 (CN), 94.7 (=C-4'), 83.4 (CHO-2''), 79.9 (d, 1J(C,31P)=6.2 Hz, CHOP), 65.3 (CHOH), 62.9 (d, 1J(C,31P)=5.4 Hz; β-CE-OCH\textsubscript{2}H\textsubscript{2}), 62.8 (d, 1J(C,31P)=5.4 Hz; β-CE-OCH\textsubscript{2}H\textsubscript{2}), 44.7 (d, 2J(C,31P)=3.8 Hz; CH-2), 33.4 (CH-3''), 30.4 (CH-3'''), 30.0 (d, 2J(C,31P)=4.6 Hz, CH\textsubscript{2}-1'), 28.4 (CH\textsubscript{2}-2'), 19.9 (d, 2J(C,31P)=7.7 Hz; CH\textsubscript{2}CN), 19.8 (d, 2J(C,31P)=7.7 Hz; CH\textsubscript{2}CN), 14.5 (CH\textsubscript{3}-3''), 10.9 (CH\textsubscript{3}-3''), 9.7 (CH\textsubscript{3}-2), 2.0 (=C-I).

31P (162 MHz, CDCl\textsubscript{3}): \delta = -0.35.
C\textsubscript{22}H\textsubscript{30}IN\textsubscript{2}O\textsubscript{7}P (592.36).

MS (FAB, 3-NBA): 614.9 ([M+Na+], 100), 593.0 ([M+H+], 36).

HR-MS (FAB, 3-NBA) für C\textsubscript{22}H\textsubscript{31}IN\textsubscript{2}O\textsubscript{7}P [M+H+]:
- ber.: 593.0914
- gef.: 593.0931.

Bis(9\textit{H}-fluoren-9-ylmethyl)\{1S,2S,3R,4Z)-3-hydroxy-5-iod-2-methyl-1-[(3S,4S)-3-(3S)-3-methyl-6-oxo-3,6-dihydro-2\textit{H}-pyran-2-yl]-butyl]-pent-4-enyl\} phosphat (124b)

Die Reaktion wird unter Lichtausschluss durchgeführt. Zu einer Lösung von 210 mg (0.249 mmol) des Alkinyliodids **123b** und 84 mg (0.432 mmol) Kaliumazodicarboxylat in 1.56 ml 2-Propanol und 0.21 ml Dioxan wird 0.76 ml (0.97 mmol) einer Lösung von 0.36 ml Essigsäure und 4.6 ml 2-Propanol tropfenweise über 1 h zugegeben. Nach 14.5 h Rühren bei Raumtemperatur wird nach Zugabe von 50 ml eines 0.1 M Phosphatpuffers (pH 7) die Mischung mit dreimal 100 ml Ethylacetat extrahiert. Die versammelten organischen Phasen werden mit 30 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (196 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:3 \(\rightarrow \) 1:3 (v/v) gereinigt.

Ausbeute: 139 mg kontaminiert mit 7 mg des Nebenprodukts **125b** laut \(^{1}\text{H}-\text{NMR} \) (0.156 mmol, 63 %), weißer Feststoff. Es werden 45 mg Edukt (53 \(\mu \text{mol}, 21 \% \)) isoliert.

R\textsubscript{f}: 0.15 (CH/EE)= 2:3 (v/v)).

Drehwert: \([\alpha]_{D}^{20}=+49 \) (c=0.235 in CHCl\textsubscript{3}).

Schmelzpunkt: m.p. = 77°C

\(^{1}\text{H} \) (400 MHz, CDCl\textsubscript{3}): \(\delta = 7.67-7.75 \) (m, 4H; Fm-CH), 7.50-7.61 (m, 4H; Fm-CH), 7.20-7.41 (m, 8H; Fm-CH), 6.95 (dd, \(^{3}J=9.6 \text{ Hz}, ^{3}J=6.5 \text{ Hz}, 1\text{H};=\text{CH-4}'\)), 6.39 (d, \(^{3}J=7.6 \text{ Hz}, 1\text{H};=\text{CH})\), 6.16 (dd, \(^{3}J=8.4 \text{ Hz}, ^{3}J=7.6 \text{ Hz}, 1\text{H};=\text{CH-4}'), 5.94 (dd, \(^{3}J=9.6 \text{ Hz}, ^{4}J=0.6 \text{ Hz}, 1\text{H};=\text{CH-5}'\)), 4.76-4.82 (m, 1H; CHOP), 4.23-4.45 (m, 4H; Fm-CH\textsubscript{2}(4)), 4.13-4.21 (m, 3H; Fm-CH(2), CHOH), 3.87 (dd, \(^{3}J=10.4 \text{ Hz}, ^{3}J=2.9 \text{ Hz}, 1\text{H};=\text{CHO-2}'\)), 2.41 (dquint, \(^{3}J=2.9 \text{ Hz}, ^{3}J=6.8 \text{ Hz}, 1\text{H};=\text{CH-3}'\)), 1.64-1.85 (m, 4H; CH\textsubscript{2}-1'(1), CH\textsubscript{2}-2'(1), CH-2, CH-3')
1H (400 MHz, CDCl$_3$): $\delta = 7.67-7.77$ (m, 4H; Fm), 7.50-7.62 (m, 4H; Fm), 7.15-7.42 (m, 8H; Fm), 6.39 (d, $^3J=7.6$ Hz, 1H; CHI), 6.16 (t, $^3J=8.2$ Hz, 1H; H-4), 4.76-4.83 (m, 1H; H-1), 4.40-4.47 (m, 1H; Fm-CH$_2$(1)), 4.29-4.37 (m, 2H; Fm-CH$_2$(2)), 4.14-4.27 (m, 4H; Fm-
\[
\text{CH}_2(1), \text{Fm-CH}(2), \text{H}-3), \text{4.73-4.77 (dd, } J = 10.0 \text{ Hz, } J = 2.2 \text{ Hz, 1H; H-2')}, \text{2.41-2.48 (m, 2H; CH}_2-5''), \text{2.08-2.14 (m, 1H; H-3')}, \text{1.95-2.04 (m, 1H; CH}_2-4''(1)), \text{1.72-1.88 (m, 2H; CH}_2-1'(1), \text{CH}_2-2'(1)), \text{1.58-1.71 (m, 3H; H-2, H-3', CH}_2-4''(1)), \text{1.45-1.54 (m, 1H; CH}_2-2'(1)), \text{1.10-1.18 (m, 1H; CH}_2-1'(1)), \text{0.90 (d, } J = 7.0 \text{ Hz, 3H; CH}_3-3''), \text{0.80 (d, } J = 6.8 \text{ Hz, 3H; CH}_3-3'), \text{0.78 (d, } J = 7.0 \text{ Hz, 3H; CH}_3-2').
\]

\[
\text{13C (100.6 MHz, CDCl}_3): \delta = 172.0 (\text{C}=\text{O}), 143.4 (\text{Fm-C}), 143.2 (\text{Fm-C}), 143.1 (\text{Fm-C}), 142.0 (\text{C-4}), 141.5 (\text{Fm-C}), 141.5 (\text{Fm-C}), 128.1 (\text{Fm-CH}), 128.1 (\text{Fm-CH}), 127.3 (\text{Fm-CH}), 125.4 (\text{Fm-CH}), 125.4 (\text{Fm-CH}), 125.4 (\text{Fm-CH}), 125.4 (\text{Fm-CH}), 120.2 (\text{Fm-CH}), 120.1 (\text{Fm-CH}), 120.0 (\text{Fm-CH}), 120.0 (\text{Fm-CH}), 86.5 (\text{CHO-2'}), 84.6 (\text{CH-I}), 79.1 (d, } J(\text{13C}, \text{31P}) = 6.3 \text{ Hz, CHOP}), 74.3 (\text{CHO-3}), 70.0 (d, } J(\text{13C}, \text{31P}) = 5.7 \text{ Hz; FmCH}_2), 69.9 (d, } J(\text{13C}, \text{31P}) = 6.3 \text{ Hz, FmCH}_2, 48.1 (J(\text{13C}, \text{31P}) = 8.6 \text{ Hz; Fm-CH}), 48.0 (J(\text{13C}, \text{31P}) = 5.7 \text{ Hz; Fm-CH}), 42.6 (\text{C-2}), 34.9 (\text{C-3'}), 30.8 (\text{CH}_2-2'), 29.1 (\text{CH}_2-1'), 27.0 (\text{C-3'}), 26.7 (\text{CH}_2-4''), 26.3 (\text{CH}_2-5''), 14.9 (\text{CH}_3-3'), 11.5 (\text{CH}_3-3''), 8.4 (\text{CH}_3-2').
\]

\[
\text{31P (162 MHz, CDCl}_3): \delta = 0.97.
\]

\[
\text{C}_{44}\text{H}_{48}\text{O}_{7}\text{P} (846.73)
\]

MS (FAB, 3-NBA): 869.0 ([M+Na]^+), 100, 847.0 ([M+H]^+), 37.

HR-MS (FAB, 3-NBA) für C_{44}H_{49}O_{7}P: [M+H]^+: ber.: 847.2261 gef.: 847.2256.

Bis(cyanoethyl){(1S,2S,3R,4Z)-3-hydroxy-5-iod-2-methyl-1-[((3S,4S)-3-((3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)-butyl]-pent-4-enyl}phosphat (124a)

Die Reaktion wird unter Lichtausschluss durchgeführt. Zu einer Lösung von 7.1 mg (12.0 \text{µmol}) des Alkinyliodids \text{123a} und 4.7 mg (24 \text{µmol}) Kaliumazodicarboxylat in 1.56 ml 2-Propanol und 0.21 ml Dioxan wird 0.76 ml (0.97 mmol) einer Lösung von 2.8 \text{µl} Essigsäure und 38 \text{µl} 2-Propanol tropfenweise über 45 min zugegeben. Nach 24 h Rühren bei Raumtemperatur wird nach Zugabe von 1.5 ml eines 0.1 M Phosphatpuffers (pH 7) die Mischung mit dreimal 5 ml Ethylacetat extrahiert. Die versammelten organischen Phasen mit 1 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (5 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:3 \(\rightarrow\) 1:3 (v/v) gereinigt.
Ausbeute: 3.9 mg kontaminiert mit 0.8 mg des Nebenprodukts 125a laut 1H-NMR (3.1 mg, 5.2 μmol, 44 %), farbloses Öl. Das Produkt wird ohne weitere Reinigung eingesetzt.

R_f: 0.31 (CH$_2$Cl$_2$/EtOH) = 20:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 6.99 (dd, 3J=9.6 Hz, 3J=6.5 Hz, 1H; =CH-4’’), 6.47 (dd, 3J=7.4 Hz, 4J=0.6 Hz, 1H; =CH-I), 6.23 (dd, 3J=8.2 Hz, 3J=7.6 Hz, 1H; =CH-4), 5.96 (dd, 3J=9.6 Hz, 4J=0.6 Hz, 1H; =CH-5’’), 4.90-4.98 (m, 1H; CHOP), 4.24-4.44 (m, 4H; OCH$_2$), 4.06-4.11 (m, 2H; C$_2$H$_5$OH, CHO-2’’), 2.76-2.88 (m, 4H; CH$_2$CN), 2.44-2.52 (m, 1H; CH-3’’), 1.74-1.98 (m, 4H; CH$_2$-1’(1), CH$_2$-2’(1), CH-2, CH-3’’), 1.37-1.57 (m, 2H; CH$_2$-1’(1), CH$_2$-2’(1)), 1.03 (d, 3J=7.2 Hz, 3H; CH$_3$-3’’), 0.92 (d, 3J=7.0 Hz, 6H; CH$_3$-3’, CH$_3$-2).

31P (162 MHz, CDCl$_3$): δ = 0.30.

C$_{22}$H$_{32}$IN$_2$O$_7$P (594.38).

tert-Butyl-(1-ethyl-3-iod-allyloxy)-diphenylsilan (130)

Das Z-Alkenyliodid 130 wird in völliger Analogie zu 67c ausgehend von 848 mg (1.88 mmol) 119 hergestellt.
Ausbeute: 785 mg (1.74 mmol, 93 %), farbloses Öl.

R_f: 0.35 (CH/EE) = 150:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.64-7.70 (m, 4H; Ph-CH), 7.33-7.45 (m, 6H; Ph-CH), 6.26 (t, 3J=7.6 Hz, 1H; =CH-I), 6.09 (dd, 3J=7.6 Hz, 4J=1.0 Hz, 1H; =CH-I), 4.37-4.42 (m, 1H; CHO), 1.50-1.64 (m, 2H; CH$_2$CH$_3$), 1.07 (s, 9H; C(CH$_3$)$_3$), 0.88 (t, 3J=7.6 Hz, 3H; CH$_2$CH$_3$).

13C (100.6 MHz, CDCl$_3$): δ = 143.6 (=CH-2’’), 135.9 (Ph-CH), 135.9 (Ph-CH), 134.1 (Ph-C), 134.1 (Ph-C), 129.6 (Ph-CH), 129.5 (Ph-CH), 127.6 (Ph-CH), 127.5 (Ph-CH), 80.4 (=CH-I), 77.2 (CHO), 30.2 (CH$_2$CH$_3$), 27.3 (C(CH$_3$)$_3$), 19.6 (C(CH$_3$)$_3$), 9.3 (CH$_2$CH$_3$).

C$_{21}$H$_{27}$IOSi (450.43)

MS (FAB, 3-NBA): 449.0 ([M-H]$^-$, 5), 392.9 ([M-C(CH$_3$)$_3$]$^+$, 100), 372.9 ([M-C$_6$H$_5$]$^+$, 50).

HR-MS (FAB, 3-NBA) für C$_{17}$H$_{18}$IOSi [M-C(CH$_3$)$_3$]$^+$: ber.: 393.0172
Bis(9H-fluoren-9-ylmethyl)\{(1S,2S,3R,4Z,6Z,8Z)-3-hydroxy-2-methyl-1-\{(3S,4S)-3-(3S)-3-methyl-3,6-dihydro-2H-hydropyran-2-yl\}-butyl\}-deca-4,6,8-trienyl\}phosphat (131b)

Alle Operationen werden möglichst unter Lichtausschluss durchgeführt. Zu 7.0 mg (8.3 μmol) des Z-Alkenyliodids 124b wird eine Lösung von 12.7 mg (35.6 μmol) des frisch hergestellten Alkenylstannans 62 in 100 μl trockenem, ent gastem DMF und 7 μl trockenem, ent gastem THF und dann bei 0 °C 20 μl einer 0.1 M Lösung von PdCl₂(CH₃CN)₂ in trockenem, ent gastem DMF gegeben. Für die Kontrolle des Reaktionsverlaufs mittels Dünn schichtchromatographie werden insgesamt 10 μl der Reaktionslösung (8%) entnommen. Nach 20h 30min Rühren bei Raumtempe ratur werden gleichzeitig 5 ml einer 1 M Natriumhydrogencarbonat-Lösung und 5 ml Ethylacetat zugegeben. Die Mischung wird mit dreimal je 10 ml Ethylacetat extrahiert, die versammelten organischen Phasen nacheinander mit 3 ml eines 0.1 M Phosphat-Puffers (pH 7), mit 3 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum bei maximal 30 °C abdestilliert. Das Rohprodukt (15 mg, dunkelbraunes Öl) wird an einer SEPAK-Kartusche (C-4-RP-Material) (Wasser, dann Methanol) vorgereinigt. Die end gültige Aufreinigung erfolgt an einer semi-preparativen Reversed-Phase-HPLC-Säule (VP 250/10 NUCLEOSIL 100-5 C18 HD, Fluss 2.5 ml/min, Methode A, UV-Detektion 300 nm).

Ausbeute: 3.7 mg (4.7 μmol, 57 %, korrigiert mit Analytikentnahme 62 %), farbloses, viskoses Öl.

Rᵣ: 0.30 (Acetonitril/Wasser)= 3:1 (v/v)) an RP-C8 Material.

tᵣ: 34.7 min (VP 250/10 NUCLEOSIL 100-5 C18 HD, Fluss 2.5 ml/min, Methode A, UV-Detektion 300 nm).

Methode A: t=0 min, 50% CH₃CN, 50% H₂O → t=20 min, 90% CH₃CN, 10% H₂O → t=45 min, 90% CH₃CN, 10% H₂O → t=50 min, 99% CH₃CN, 1% H₂O.

Drehwert: [α]D = +49 (c=0.235 in CHCl₃).

¹H (400 MHz, CDCl₃): δ = 7.68-7.75 (m, 4H; Fm-CH), 7.51-7.59 (m, 3H; Fm-CH), 7.45-7.48 (m, 1H; Fm-CH), 7.19-7.41 (m, 8H; Fm-CH), 6.95 (dd, ³J=9.6 Hz, ²J=6.6 Hz, 1H; =CH-4’),
6.54 (t, $^3J=11.4$ Hz, 1H; =CH-5), 6.46-6.54 (m, 1H; =CH-8), 5.94 (dd, $^3J=9.6$ Hz, $^4J=0.6$ Hz, 1H; =CH-5”), 5.91 (t, $^3J=11.3$ Hz, 1H; =CH-7), 5.83 (t, $^3J=11.0$ Hz, 1H; =CH-6), 5.75 (dq, $^3J=14.9$ Hz, $^3J=6.8$ Hz, 1H; =CH-9), 5.37 (t, $^3J=10.6$ Hz, 1H; =CH-4), 4.78-4.85 (m, 1H; =CHOP), 4.21-4.35 (m, 5H; Fm-CH$_2$(4), CHOH), 4.11-4.17 (m, 2H; Fm-CH$_2$(2)), 3.88 (dd, $^3J=10.4$ Hz, $^3J=2.9$ Hz, 1H; CHO-2”), 2.67-2.80 (brs, 1H, OH), 2.41 (dquint, $^3J=2.9$ Hz, $^3J=7.0$ Hz, 1H; CH-3”), 1.81 (dd, $^3J=6.8$ Hz, $^4J=1.0$ Hz, 3H; CH$_3$-10), 1.67-1.80 (m, 3H; CH$_2$-1’(1), CH$_2$-2’(1), CH-3’), 1.47-1.62 (m, 2H; CH$_2$-1’(1), CH-2), 1.09-1.19 (m, 1H; CH$_2$-2’(1)), 0.99 (d, $^3J=7.0$ Hz, 3H; CH$_3$-3”), 0.80 (d, $^3J=6.8$ Hz, 3H; CH$_3$-3”), 0.72 (d, $^3J=6.8$ Hz, 3H; CH$_3$-2).

13C (100.6 MHz, CDCl$_3$): $\delta = 164.6$ (C=O), 151.8 (=CH-4”), 143.2 (Fm-C), 143.1 (Fm-C), 141.5 (Fm-C), 141.5 (Fm-C), 141.5 (Fm-C), 132.3 (=CH-4), 132.0 (=CH-9), 131.3 (=CH-7), 128.0 (Fm-CH), 128.0 (Fm-CH), 127.3 (Fm-CH), 127.3 (Fm-CH), 126.9 (=CH-8), 125.7 (=CH-5), 125.3 (Fm-CH), 125.2 (Fm-CH), 125.2 (Fm-CH), 121.9 (=CH-6), 120.2 (=CH-5”), 120.1 (Fm-CH), 120.1 (Fm-CH), 120.1 (Fm-CH), 120.1 (Fm-CH), 120.1 (Fm-CH), 83.8 (CHO-2”), 79.5 (d, $^2J(^{13}$C, 31P)$=6.2$ Hz, CHOP), 69.6 (d, $^2J(^{13}$C, 31P)$=6.2$ Hz; FmCH$_2$), 69.5 (d, $^3J(^{13}$C, 31P)$=6.2$ Hz; FmCH$_2$), 67.4 (CHOH), 48.1 (d, $^3J(^{13}$C, 31P)$=5.4$ Hz; Fm-CH), 48.0 (d, $^3J(^{13}$C, 31P)$=5.4$ Hz; Fm-CH), 43.1 (d, $^3J(^{13}$C, 31P)$=3.8$ Hz; CH-2), 34.0 (CH-3’), 30.8 (d, $^3J(^{13}$C, 31P)$=3.8$ Hz, CH$_2$-1’), 30.5 (CH-3”), 28.7 (CH$_2$-2”), 18.6 (CH$_3$-10), 14.8 (CH$_3$-3”), 10.9 (CH$_3$-3”), 8.8 (CH$_3$-2).

31P (162 MHz, CDCl$_3$): $\delta = 0.74$.

C$_{40}$H$_{53}$O$_7$P (784.91).

MS (FAB, 3-NBA): 807.0 ([M+Na$^+$], 35), 785.0 ([M+H$^+$], 5), 313.0 ([C$_{21}$H$_{29}$O$_2$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{40}$H$_{54}$O$_7$P [M+H$^+$]: ber.: 785.3607
gef.: 785.3621.

Bis(2-cyanoethyl)\{(1S,2S,3R,4Z,6Z,8Z)-3-hydroxy-2-methyl-1-\{(3S,4S)-3-(3S)-3-methyl-3,6-dihydro-2H-hydropyran-2-yl\}-butyl\}-deca-4,6,8-trienyl\}phosphat (131a)

Alle Operationen werden möglichst unter Lichtausschluss durchgeführt. Zu 3.3 mg (5.55 mmol) des Vinyliodids 124a wird eine Lösung von 2.6 mg (7.2 mmol) des frisch hergestellten Alkenylstannans 62 in 100 µl trockenem, entgastem DMF und 6 µl trockenem, entgastem THF und dann bei 0°C 20 µl einer Lösung von 0.3 mg Pd$_2$dba$_3$.CHCl$_3$ in 20 µl in trockenem,
entgastem DMF gegeben. Nach 14 h Rühren bei Raumtemperatur werden gleichzeitig 1 ml einer 1 M Natriumhydrogencarbonat-Lösung und 1 ml Ethylacetat zugegeben. Die Mischung wird mit dreimal je 5 ml Ethylacetat extrahiert, die versammelten organischen Phasen nacheinander mit 1 ml eines 0.1 M Phosphat-Puffers (pH 7), mit 1 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum bei maximal 30 °C abdestilliert.

Das Rohprodukt (5 mg, dunkelbraunes Öl) wird säulenchromatographisch an Kieselgel mit Dichlormethan/Ethanol/Pyridin 100:5:1 → 90:9:1 (v/v) gereinigt, wobei 1.8 mg erhalten werden. Die endgültige Aufreinigung erfolgt an einer semi-preparativen Reversed-Phase-HPLC-Säule (VP 250/10 NUCLEOSIL 100-5 C18 HD, Fluss 2.5 ml/min, Methode B, UV-Detektion 210 nm).

Ausbeute: 1.2 mg (2.2 μmol, 40 %), farbloses, viskoses Öl.

R_f: 0.31 (CH₂Cl₂/EtOH= 20:1 (v/v).

t_R: 21.5 min (VP 250/10 NUCLEOSIL 100-5 C18 HD, Fluss 2.5 ml/min, Methode B, UV-Detektion 300 nm)

Methode B: t=0 min, 30% CH₃CN, 70% H₂O → t=19 min, 80% CH₃CN, 20% H₂O → t=34 min, 80% CH₃CN, 20% H₂O → t=35 min, 99% CH₃CN, 1% H₂O.

¹H (400 MHz, CDCl₃): δ = 6.99 (dd, ³J=9.6 Hz, ³J=6.1 Hz, 1H; =CH-4’’), 6.60 (t, ³J=11.3 Hz, 1H; =CH-5), 6.49-6.57 (m, 1H; =CH-8), 6.12 (t, ³J=11.3 Hz, 1H; =CH-7), 6.05 (t, ³J=10.8 Hz, 1H; =CH-6), 5.96 (d, ³J=9.6 Hz, 1H; =CH-5’’), 5.80 (dq, ³J=14.9 Hz, ³J=6.8 Hz, 1H; =CH-9), 5.42 (t, ³J=9.8 Hz, 1H; =CH-4), 4.92-5.00 (m, 1H; CHOP), 4.47 (t, ³J=9.8 Hz, 1H; CHOH), 4.31-4.41 (m, 4H; OCH₂), 4.08 (dd, ³J=10.4 Hz, ³J=2.9 Hz, 1H; CHO-2’’), 2.77-2.92 (m, 4H; CH₂CN), 2.44-2.50 (m, 1H; CH-3’’), 1.82 (dd, ³J=6.8 Hz, ⁴J=1.4 Hz, 3H; CH₃-10), 1.75-1.98 (m, 3H; CH₂-1’(1), CH₂-2’(1), CH-3’), 1.45-1.68 (m, 2H; CH₂-1’(1), CH-2), 1.22-1.30 (m, 1H; CH₂-2’(1)), 1.03 (d, ³J=7.2 Hz, 3H; CH₃-3’’), 0.92 (d, ³J=6.8 Hz, 3H; CH₃-3’’), 0.85 (d, ³J=7.0 Hz, 3H; CH₃-2).

³¹P (162 MHz, CDCl₃): δ = -0.33.

C₂₇H₃₉N₂O₇P (534.58).

MS (ESI): 557.1 ([M+Na⁺], 19), 313.2 ([C₂₁H₂₉O₂]⁺, 100).
Zu einer Lösung von 64 mg (175 μmol) des Alkohols 107 und 25 mg (350 μmol) Tetrazol in 0.75 ml trockenem Acetonitril wird eine Lösung von 95 mg (350 μmol) des Phosphoramidits 117 in 1 ml Acetonitril bei 0 °C zugetropft. Nach 3 h Rühren bei Raumtemperatur werden 3.5 ml (0.35 mmol) einer 0.1 M Iod-Lösung in Pyridin/THF/Wasser 2:7:1 (v/v) innerhalb von einer Minute zugetropft. Nach 5 min Rühren bei Raumtemperatur wird die tiefrote Lösung unter intensivem Rühren in eine Mischung von 4.4 ml einer gesättigten Natriumhydrogencarbonat-Lösung, 4.4 ml einer 0.1 M Natriumthiosulfatlösung und 30 ml Ethylacetat gegeben. Nach Abtrennen der organischen Phase wird die farblose Lösung mit zweimal je 30 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit 30 ml einer 1 M Kaliumdihydrogenphosphatlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel nach Zusatz von einigen ml Toluol bei maximal 30 °C im Vakuum abdestilliert.

Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:3 → 1:8 (v/v) gereinigt.

Ausbeute: 72 mg (130 μmol, 74 %), farbloses Öl.

R_f: 0.30 (CH/EE = 1:3 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 7.64-7.67 (m, 4H; Ph-CH), 7.36-7.45 (m, 6H; Ph-CH), 4.73 (dt, 3J$_{13C, 31P}$ = 10.6 Hz, 4J= 2.2 Hz, 2H; CH$_2$OP-1), 4.24-4.35 (m, 4H; NCCH$_2$CH$_2$O), 3.66-3.70 (m, 2H; CH$_2$OSi), 2.76 (t, 3J= 6.3 Hz, 4H; CH$_2$CN), 2.23-2.28 (m, 2H; =C-CH$_2$-4), 1.60-1.67 (m, 4H; CH$_2$-5, CH$_2$-6), 1.05 (s, 9H; C(CH$_3$)$_3$).

13C (100.6 MHz, CDCl$_3$): δ = 135.7 (Ph-CH), 134.0 (Ph-C), 129.7 (Ph-CH), 127.8 (Ph-CH), 116.3 (CN), 89.9 (C=3), 73.7 (d, 3J$_{13C, 31P}$= 6.9 Hz; =C-2), 64.0 (CH$_2$OSi), 62.4 (d, 2J$_{13C, 31P}$= 4.6 Hz; NCCH$_2$CH$_2$O), 57.1 (d, 2J$_{13C, 31P}$= 5.4 Hz; CH$_2$OP-1), 31.8 (CH$_2$-6), 27.0 (C(CH$_3$)$_3$), 24.9 (CH$_2$-5), 19.8 (3J$_{13C, 31P}$= 6.9 Hz; CH$_2$CN), 19.4 (C(CH$_3$)$_3$), 18.7 (=C-CH$_2$).

31P (162 MHz, CDCl$_3$): δ = -1.07.

C$_{29}$H$_{37}$N$_2$O$_5$PSi (552.67).

MS (FAB, 3-NBA): 575.1 ([M+Na$^+$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{29}$H$_{37}$N$_2$NaO$_5$PSi [M+Na$^+$]: ber.: 575.2107
Der Methoxymethylether 137 wird in völliger Analogie zu 74 ausgehend von 208 mg (0.453 mmol) des Alkohols 78a hergestellt. Das Produkt 136 wird nach wässriger Aufrbeitung ohne weitere Reinigung roh eingesetzt.

Zu einer Lösung des TBDDS-Ethers 136 werden bei 0 °C 540 µl einer 1 M Tetrabutylammoniumfluorid-Lösung in THF (0.54 mmol) zugetropft. Nach 15 h Rühren über Nacht wird nach Zugabe von 10 ml einer gesättigten Ammoniumchlorid-Lösung und 10 ml Wasser die Mischung mit dreimal 25 ml Ethylacetat extrahiert, die versammelten organischen Phasen mit zweimal je 10 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt (245 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:1 (v/v) gereinigt. Ausbeute: 108 mg (0.409 mmol, 90 %), farbloses Öl.

R_f: 0.28 (CH/EE=2:1 (v/v)).

Drehwert: $[\alpha]_{D}^{20}$ = +73.8 (c=0.5 in CHCl$_3$).

1H (400 MHz, CDCl$_3$): δ = 4.66 (s, 2H; 3-MOM-CH$_2$), 4.60 (s, 2H; 7-MOM-CH$_2$), 3.47-3.54 (m, 4H; CH$_2$OH, CH$_2$OMOM), 3.41 (s, 3H; 7-MOM-CH$_3$), 3.37-3.41 (m, 1H; CHOMOM), 3.34 (s, 3H; 3-MOM-CH$_3$), 2.72-2.83 (brs, 1H; OH), 1.90-1.99 (m, 1H; CH-2), 1.60-1.78 (m, 3H; CH$_2$-5(1), CH$_2$-6(1), CH-4), 1.45-1.55 (m, 1H, CH$_2$-6(1)), 1.08-1.17 (m, 1H, CH$_2$-5(1)), 0.85 (d, 3J=6.8 Hz, 3H; CH$_3$-4), 0.78 (d, 3J=6.8 Hz, 3H; CH$_3$-2).

13C (100.6 MHz, CDCl$_3$): δ = 99.1 (CH$_2$OMOM-7), 96.5 (CH$_2$OMOM-3), 84.0 (CHOMOM), 68.2 (CH$_2$OMOM), 65.2 (CH$_2$OH), 56.3 (CH$_3$OMOM-3), 55.2 (CH$_3$OMOM-7), 36.8 (CH-2), 36.0 (CH-4), 29.5 (CH$_2$-6), 27.5 (CH$_2$-5), 15.8 (CH$_3$-4), 10.0 (CH$_3$-2).

C$_{13}$H$_{28}$O$_5$ (264.36).

MS (FAB, 3-NBA): 287.1 ([M+Na$^+$], 86), 265.1 ([M+H$^+$], 43), 233.1 ([M-OCH$_3$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{13}$H$_{29}$O$_5$ [M+H$^+$]: ber.: 265.2015
gef.: 265.2026.
Methyl (2Z,4S,5S,6S)-5,9-Bis-methoxymethoxy-4,6-dimethyl-non-2-enoat (139)

Zu einer Suspension von 157 mg (0.594 mmol) des Alkohols 137 und 574 mg (6.83 mmol) NaHCO₃ in 13.5 ml trockenem Dichlormethan werden 1.9 ml (0.891 mmol) einer 15%igen Lösung des Dess-Martin Periodinans in Dichlormethan zugetropft. Nach 90 min Rühren bei Raumtemperatur wird die Mischung zu einer Mischung aus 15 ml einer gesättigten Natriumthiosulfatlösung, 15 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 30 ml Diethylether gegeben. Nach 1 h intensivem Rühren wird das Gemisch mit zweimal 50 ml Diethylether extrahiert, die versammelten organischen Phasen mit einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum langsam abdestilliert. Das Rohprodukt 138 wird ohne Aufreinigung sofort weiter eingesetzt.

Zu einer Lösung von 630 mg (2.38 mmol) 18-Krone-6 und 0.25 ml (1.19 mmol) [Bis-(2,2,2-trifluorethoxy)-phosphoryl]-essigsäuremethylester in 13 ml trockenem THF werden bei –78 °C 1.78 ml (0.89 mmol) einer 0.5 M Lösung Kaliumhexamethyländisilazid in Toluol während 15 min zugetropft. Nach 35 min Rühren bei –78 °C wird eine Lösung von 56 mg des Aldehyds 138 in 1 ml trockenem THF (und zweimal 0.5 ml zum Nachspülen) während 45 min zugetropft. Nach 3h Rühren bei –78 °C werden bei –78 °C 15 ml einer gesättigten Ammoniumchloridlösung langsam zugegeben. Nach Auftauen auf Raumtemperatur wird die Mischung mit 15 ml Wasser verdünnt und mit dreimal je 100 ml Diethylether extrahiert. Die versammelten organischen Phasen werden mit 40 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum abdestilliert.

Das Rohprodukt (381 mg, bräunliches Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 3:1 gereinigt.

Ausbeute: 151 mg (0.475 mmol, 80 % über 2 Stufen), farbloses, leichtbewegliches Öl.

R_f: 0.37 (CH/EE=3:1 (v/v)).

Drehwert: [α]_D²⁰ = + 64 (c=0.16 in CHCl₃)

¹H (400 MHz, CDCl₃): δ = 6.16 (dd, ³J=11.7 Hz, ³J=10.4 Hz, 1H; =CH-3), 5.73 (dd, ³J=11.5 Hz, ⁴J=1.0 Hz, 1H; =CH-2), 4.61-4.65 (m, 2H; 5-MOM-CH₃), 4.60 (s, 2H, 9-MOM-CH₂), 3.78-3.86 (m, 1H; CH-4), 3.70 (s, 3H; OCH₃-1), 3.47-3.51 (m, 2H; CH₂OMOM), 3.39 (s, 3H; 5-MOM-CH₃), 3.35 (s, 3H; 9-MOM-CH₃), 3.21 (t, ³J=5.5 Hz, 1H; CHOMOM), 1.57-1.75
(m, 4H ; CH-4, CH-6, CH$_2$-7(1), CH$_2$-8(1)), 1.42-1.52 (m, 1H ; CH$_2$-8(1)), 1.10-1.21 (m, 1H ; CH$_2$-7(1)), 1.04 (d, 3J=6.8 Hz, 3H; CH$_3$-4), 0.97 (d, 3J=7.0 Hz, 3H; CH$_3$-6).

13C (100.6 MHz, CDCl$_3$): δ = 166.7 (C=O), 153.8 (=CH-3), 118.2 (=CH-2), 98.5 (5-MOM-CH$_2$), 96.5 (9-MOM-CH$_2$), 87.4 (CHOMOM), 68.3 (CH$_2$OMOM), 56.2 (5-MOM-CH$_3$), 55.2 (9-MOM-CH$_3$), 51.2 (OCH$_3$-1), 36.5 (CH-6), 35.1 (CH-4), 28.6 (CH$_2$-7), 27.8 (CH$_2$-8), 16.5 (CH$_3$-4), 15.3 (CH$_3$-6).

C$_{16}$H$_{30}$O$_6$ (318.20).

MS (FAB, 3-NBA): 341.1 ([M+Na$^+$], 100).

HR-MS (FAB, 3-NBA) für C$_{16}$H$_{31}$O$_6$ [M+Na$^+$]: ber.: 341.1940
gef.: 341.1957.

5S,6S-6-((1S)-4-Hydroxy-1-methylbutyl)-5-methyl-5,6-dihydro-pyran-2-on (140)

151 mg (0.475 mmol) des Esters **139** werden mit in einer Lösung von 7.5 ml einer 1 M wässrigen Salzsäure und 15 ml THF 15 h auf 60 °C erhitzt. Nach Abkühlen auf Raumtemperatur werden 30 ml einer gesättigten Natriumhydrogencarbonatlösung zugegeben, das Gemisch mit dreimal je 30 ml Diethylether extrahiert. Die versammelten organischen Phasen werden mit 20 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum abdestilliert.

Das Rohprodukt (94 mg, bräunliches Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:5 gereinigt.

Ausbeute: 83 mg (0.418 mmol, 88 %), farbloses, hochviskoses Öl.

R$_f$: 0.25 (CH/EE= 2:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 6.98 (dd, 3J=9.6 Hz, 2J=6.5 Hz, 1H; =CH-4), 5.94 (dd, 3J=9.6 Hz, 4J=0.5 Hz, 1H; =CH-3), 3.99 (dd, 3J=10.4 Hz, 2J=3.1 Hz, 1H; CH-O), 3.60-3.69 (m, 2H, CH$_2$OH), 2.46 (dquint, 2J=3.1 Hz, 3J=6.6 Hz, 1H; CH-5), 1.79-1.96 (m, 2H; CH-1', CH$_2$-3'(1)), 1.64-1.75 (m, 1H, CH$_2$-2'(1)), 1.47-1.58 (m, 1H, CH$_2$-3'(1)), 1.16-1.27 (m, 1H, CH$_2$-2'(1)), 1.01 (d, 3J=7.0 Hz, 3H; CH$_3$-5), 0.90 (d, 3J=6.8 Hz, 3H; CH$_3$-1').
\(^{13}\)C (100.6 MHz, CDCl\(_3\)): \(\delta = 165.0 (\text{C}=\text{O}), 152.1 (=\text{CH}-4), 120.0 (=\text{CH}-3), 84.0 (\text{CHO}-6), 63.1 (\text{CH}_2\text{-OH}), 33.8 (\text{CH}-1'), 30.5 (=\text{C}-5), 29.7 (\text{CH}_2-3'), 28.6 (\text{CH}_2-2'), 14.7 (\text{CH}_3-5), 10.9 (\text{CH}_3-1')\).

\(\text{C}_{11}\text{H}_{18}\text{O}_3\) (198.26)

MS (FAB, 3-NBA): 221.0 ([M+Na\(^+\]), 60), 199.1 ([M+H\(^+\]), 100).

HR-MS (FAB, 3-NBA) für \(\text{C}_{11}\text{H}_{19}\text{O}_3\) [M+H\(^+\)]:

ber.: 199.1334

gef.: 199.1322.

Bis-(9H-fluoren-9-ylmethyl)diisopropylamidophosphit (141)

Für die NMR-Spektroskopie wird das CDCl\(_3\) vor Gebrauch über eine kurze Säule aus basischem Aluminiumoxid filtriert. Das Kieselgel wird vor Gebrauch solange mit dem Laufmittel konditioniert, bis ein deutlicher Dimethylethylamingeruch im Eluat wahrnehmbar ist.

Zu einer Lösung von 4.44 g (22.6 mmol) 9-Fluorenylmethanol und 5.88 ml (41.6 mmol) \(N\),\(N\)-Diisopropylethylamin in 25 ml trockenem THF werden bei 0 °C 2.28 g (11.3 mmol) Diisopropylaminophosphodichloridit zugetropft. Nach 1 h Rühren bei Raumtemperatur wird die Mischung filtriert, mit 200 ml Ethylacetat und mit soviel 1 M Phosphatpuffer (pH 7) versetzt, dass der pH-Wert der wässrigen Phase ca. 7 beträgt, mit dreimal je 150 ml Ethylacetat extrahiert, die versammelten organischen Phasen über Natriumsulfat getrocknet und das Lösemittel im Vakuum bei maximal 30 °C abdestilliert.

Das Rohprodukt (5.9 g) wird bei Bedarf wie folgt aufgereinigt: 1 g des Rohproduktes wird säulenchromatographisch an Kieselgel mit Cyclohexan / Ethylacetat / Dimethylethylamin 20:1:0.2 (v/v) gereinigt.

Ausbeute: 551 mg (1.06 mmol; 53 %); leicht gelbliches, viskoses Öl.

R\(_f\): 0.6 (CH/EE/EtMe\(_2\)N) = 20:1:0.2 (v/v)).

\(^1\)H (400 MHz, CDCl\(_3\)): \(\delta = 7.74 (t, ^3J=6.8 \text{ Hz}, 4\text{H}; \text{Fm-CH}), 7.62-7.66 (m, 4\text{H}; \text{Fm-CH}), 7.34-7.40 (m, 4\text{H}; \text{Fm-CH}), 7.28 (dq, ^3J=7.6 \text{ Hz}, ^4J=1.2 \text{ Hz}, 4\text{H}; \text{Fm-CH}), 4.17 (t, ^3J=7.0 \text{ Hz}, 2\text{H}; \text{Fm-CH}), 4.00 (dt, ^2J=10.0 \text{ Hz}, 3\text{J}(^1\text{H},^1\text{H})=3\text{J}(^1\text{H},^31\text{P})=6.6 \text{ Hz}, 2\text{H}; \text{Fm-CH})\).
3.80 (dt, \(J=10.0\) Hz, \(3J(1\text{H},1\text{H})=3J(1\text{H},31\text{P})=7.2\) Hz, 2H; Fm-\text{CH}_2), 3.60-3.70 (m, 2H, CHN), 1.15 (d, \(3J=6.8\) Hz, 12H; CH$_3$).

\(^{13}\text{C}\) (100.6 MHz, CDCl$_3$): \(\delta = 144.8\) (Fm-C), 144.5 (Fm-C), 141.3 (Fm-C), 141.1 (Fm-C), 127.3 (Fm-CH), 127.3 (Fm-CH), 126.8 (Fm-CH), 126.7 (Fm-CH), 125.4 (Fm-CH), 125.1 (Fm-CH), 119.8 (Fm-CH), 119.7 (Fm-CH), 66.0 (d, \(2J(13\text{C},31\text{P})=16.9\) Hz; FmCH$_2$), 49.3 (d, \(3J(13\text{C},31\text{P})=7.7\) Hz; Fm-CH), 43.2 (d, \(2J(13\text{C},31\text{P})=12.3\) Hz; CH(CH$_3$)$_2$), 24.8 (d, \(2J(13\text{C},31\text{P})=6.9\) Hz; CH(CH$_3$)$_2$).

\(^{31}\text{P}\) (162 MHz, CDCl$_3$): \(\delta = 147.3\).

C$_{34}$H$_{36}$NO$_2$P (521.63).

Bis-(9\textit{H}-fluoren-9-ylmethyl)\{(4\textit{S})-4-\{(2\textit{S},3\textit{S})-3-methyl-6-oxo-3,6-dihydro-2\textit{H}-pyran-2-yl\}-pentyl\}phosphat (142)

Zu einer Lösung von 20 mg (0.1 mmol) des Alkohols 140 und 21 mg (0.3 mmol) Tetrazol in 2 ml trocknen Dichlormethan wird bei 0 °C eine Lösung von 209 mg (0.4 mmol) des Phosphoramidits 141 in 2 ml trocknen Dichlormethan zugetropft. Nach 4.5 h Rühren bei Raumtemperatur wird die Mischung auf –78 °C abgekühlt und mit 247 mg meta-Chlorperbenzoesäure (Reinheit 70%, 1 mmol) versetzt. Nach 90 min Rühren bei 0 °C wird die Lösung mit zweimal je 15 ml einer 10%igen Natriumhydrogensulfit-Lösung gewaschen. Die wässrige Phase wird mit dreimal je 50 ml Dichlormethan reextrahiert, die versammelten organischen Phasen nacheinander mit 8 ml einer 1 M Kaliumdihydrogenphosphat-Lösung, 20 ml einer gesättigten Natriumhydrogencarbonat-Lösung und zweimal je 10 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert.

Das Rohprodukt (243 mg, gelbes Öl) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 2:1 \(\rightarrow\) 2:3 (v/v) gereinigt.

Ausbeute: 56 mg (88 µmol, 88 %), leicht gelbliches, hochviskoses Öl.

Rf: 0.19 (CH/EE)= 2:3 (v/v)).

Drehwert: \([\alpha]_D^{20\circ} = + 44.8\) (c=0.25 in CHCl$_3$)
1H (400 MHz, CDCl$_3$): δ = 7.72 (t, 3J=7.6 Hz, 4H; Fm-CH), 7.56 (d, 3J=7.6 Hz, 2H; Fm-CH), 7.50 (d, 3J=7.6 Hz, 2H; Fm-CH), 7.23-7.41 (m, 8H; Fm-CH), 6.97 (dd, 3J=9.4 Hz, 3J=6.5 Hz, 1H; =CH-4'), 5.96 (d, 3J=9.4 Hz, 1H; =CH-5'), 4.22-4.31 (m, 4H; Fm-CH$_2$(4)), 4.13-4.17 (m, 2H; Fm-CH$_2$(2)), 3.94 (dd, 3J=10.6 Hz, 3J=3.2 Hz, 1H; CHO-2'), 3.84-3.93 (m, 2H; CH$_2$OP), 2.43 (dquint, 3J=2.9 Hz, 3J=6.7 Hz, 1H; CH-3'), 1.65-1.90 (m, 3H; CH$_2$-2(1), CH$_2$-3(1), CH-4), 1.49-1.60 (m, 1H; CH$_2$-2(1)), 1.09-1.21 (m, 1H, CH$_2$-3(1)), 1.00 (d, 3J=7.0 Hz, 3H; CH$_3$-3'), 0.83 (d, 3J=6.7 Hz, 3H; CH$_3$-3').

13C (100.6 MHz, CDCl$_3$): δ = 164.7 (C=O), 151.9 (=CH-4'), 143.3 (Fm-C), 143.2 (Fm-C), 141.5 (Fm-C), 128.0 (Fm-CH), 128.0 (Fm-CH), 127.2 (Fm-CH), 127.2 (Fm-CH), 125.2 (Fm-CH), 120.1 (CH-5''), 120.1 (Fm-CH), 120.1 (Fm-CH), 83.7 (CHO-2'), 69.2 (d, 2J(13C,31P)=6.2 Hz; FmCH$_2$), 68.2 (d, 2J(13C,31P)=6.2 Hz; CH$_2$OP), 48.1 (d, 3J(13C,31P)=8.0 Hz; Fm-CH), 33.7 (CH-4), 30.5 (CH-3'), 28.6 (CH$_2$-3), 27.4 (d, 3J(13C,31P)=6.9 Hz; CH$_2$-2), 14.6 (CH$_3$-3), 10.9 (CH$_3$-3').

31P (162 MHz, CDCl$_3$): δ = -0.50.

C$_{39}$H$_{39}$O$_6$P (634.25).

MS (FAB, 3-NBA): 657.1 ([M+Na$^+$], 100), 635.1 ([M+H$^+$], 77).

HR-MS (FAB, 3-NBA) für C$_{39}$H$_{39}$NaO$_6$P [M+Na$^+$]:

ber.: 657.2382
gef.: 657.2393.

(Triethylammonium)monohydrogen{[(4S)-4-[(2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-pentyl]phosphat (143)

Zu einer Lösung von 96 mg (0.151 mmol) des Phosphotriesters 142 in 4 ml trockenem Acetonitril wird bei 0 °C 0.84 ml (6.04 mmol) trockenes Triethylamin getropft. Nach 5 min wird bei Raumtemperatur weitergerührt. Nach 18 h wird nach Zugabe von 2 ml Toluol das Lösungsmittel unter vermindertem Druck bei Raumtemperatur entfernt. Das Rohprodukt wird in 10 ml Millipore-Wasser und 5 ml Diethylether aufgenommen. Die wässrige Phase wird abgetrennt und noch mal mit 5 ml Diethylether gewaschen. Eventuell muß dieser Vorgang wiederholt werden, bis laut Dünnschichtchromatogramm (Laufmittel Ethylacetat) kein fluorenymethylhaltiges Material in der wässrigen Phase mehr nachgewiesen werden kann. Die wässrige Phase wird lyophilisiert.

Ausbeute: 43 mg (0.113 mmol, 75 %), farbloses, zähes Öl.
Rf: 0 (EE).

Drehwert: \([\alpha]_{D}^{20} = +104 \text{ (c=0.45 in MeOH)}\)

1H (400 MHz, \(d^4\)-Methanol): \(\delta = 7.16\) (dd, \(3J=9.6\) Hz, \(3J=6.5\) Hz, 1H; =CH-4'), 5.93 (dd, \(3J=9.6\) Hz, \(4J=0.8\) Hz, 1H; =CH-5'), 4.08 (dd, \(3J=10.4\) Hz, \(3J=2.9\) Hz, 1H; CH-O), 3.90 (q, \(3J(H,H)=^J(H,P)=4.9\) Hz, 2H; CH2-O), 3.18 (q, \(3J=7.2\) Hz, 6H; CH2-N), 2.59 (dquint, \(3J=3.1\) Hz, \(3J=6.8\) Hz, 1H; CH-3'), 1.75-2.00 (m, 3H, CH-4; CH2-2(1), CH2-3(1)), 1.57-1.69 (m, 1H; CH2-2(1)), 1.23-1.32 (m, 1H; CH2-3(1)), 1.31 (t, \(3J=7.4\) Hz, 9H; CH3(CH2-N)), 1.01 (d, \(3J=7.0\) Hz, 3H; CH3-3'), 0.95 (d, \(3J=6.8\) Hz, 3H; CH3-4).

13C (100.6 MHz, \(d^4\)-Methanol): \(\delta = 167.2\) (C=O), 155.0 (=CH-4'), 120.0 (=CH-5'), 85.5 (CH-2'), 66.6 (d, \(2J(^{13}C,P)=5.4\) Hz; CH2-O), 47.5 (CH2-N), 34.9 (CH-4), 31.6 (CH-2'), 29.8 (CH2-3), 28.9 (d, \(3J(^{13}C,P)=7.7\) Hz; CH2-2), 14.8 (CH3-4), 10.9 (CH3-3'), 9.1 (CH3CH2-N).

31P (162 MHz, \(d^4\)-Methanol): \(\delta = 1.86\).

\(C_{11}H_{19}O_6P\) (278.24).

MS (FAB, 3-NBA): 380.1 ([M+HNEt3+], 100), 301.0 ([M+Na+], 82), 279.0 ([M+H+], 64).

HR-MS (FAB, 3-NBA) für \(C_{11}H_{20}O_6P\) [M+H+]:

ber.: 279.0998

gef.: 279.1009.

4S,5S,6S,9S,10S,11S)-Cytostatin (20a)

Zu einer Lösung von 11.7 mg (15 μmol) des Phosphotriesters 131b in 2.5 ml trockenem Acetonitril wird bei 0 °C 0.55 ml trockenes Triethylamin getropft. Nach 5 min wird bei Raumtemperatur weitergerührt. Nach 20 h wird nach Zugabe von 1 ml Toluol das Lösungsmittel unter vermindertem Druck bei Raumtemperatur entfernt. Das Rohprodukt wird in 10 ml Millipore-Wasser und 5 ml Diethylether aufgenommen. Die wässrige Phase wird abgetrennt und nochmal mit 5 ml Diethylether gewaschen. Eventuell muß dieser Vorgang wiederholt werden, bis laut Dünnsichtchromatogramm (Laufmittel Ethylacetat) kein fluorenymethylhaltiges Material in der wässrigen Phase mehr nachgewiesen werden kann. Die wässrige Phase wird lyophilisiert.

Ausbeute: 8 mg (15 μmol, quant.), hellgelbes, amorphes Pulver, laut \(^1\)H-NMR das Monotriethylammoniumsalz.
Das Natriumsalz 20a wird durch Ionenaustausch aus dem Triethylammoniumsalz 144 wie folgt hergestellt. Eine Säule aus Ionentauscherharz (Dowex 50W2, 50-100 mesh, stark sauer, Durchmesser 0.8 cm, Höhe 10 cm) wird mit folgenden Lösungen nacheinander gespült: Methanol/Wasser 1:1 (v/v), 1 M NaHCO₃-Lösung (CO₂-Entwicklung !), Wasser (Millipore-Qualität), Methanol/Wasser 1:1 (v/v). Das Triethylammoniumsalz wird in wenig Methanol gelöst, auf die Säule aufgetragen und mit Methanol/Wasser 1:1 (v/v) eluiert (Schwerkraft). Ausbeute: 5.7 mg (12.7 µmol, 85 %), hellgelbes, amorphes Pulver.

\(R_f \): 0 (Ethylacetat).

Drehwert: \(\left[a\right]_{D}^{20} = +46 \) (c=0.285 in Methanol).

\(^1\)H (400 MHz, d⁴-Methanol): \(\delta = 7.15 \) (dd, \(^3J=9.6\) Hz, \(^3J=6.6\) Hz, 1H; =CH-3), 6.59 (t, \(^3J=11.5\) Hz, 1H; =CH-2), 6.54-6.62 (m, 1H; =CH-16), 6.26 (t, \(^3J=11.1\) Hz, 1H; =CH-14), 5.99 (t, \(^3J=11.5\) Hz, 1H; =CH-15), 5.93 (dd, \(^3J=9.6\) Hz, \(^4J=0.6\) Hz, 1H; =CH-2), 5.76 (dq, \(^3J=14.9\) Hz, \(^3J=6.8\) Hz, 1H; =CH-17), 5.41 (t, \(^3J=10.2\) Hz, 1H; =CH-12), 4.59 (t, \(^3J=10.0\) Hz, 1H; CHOHOH), 4.48-4.55 (m, 1H; CHOP), 4.11 (dd, \(^3J=10.2\) Hz, \(^3J=2.9\) Hz, 1H; CHO-5), 2.58 (dquint, \(^3J=3.1\) Hz, \(^3J=7.0\) Hz, 1H; CH-4), 1.96-2.05 (m, 1H; CH₂-8(1)), 1.75-1.86 (m, 2H; CH-6; CH₂-7(1)), 1.80 (dd, \(^3J=6.8\) Hz, \(^4J=1.0\) Hz, 3H; CH₃-18), 1.46-1.58 (m, 2H; CH-10, CH₂-8(1)), 1.24-1.30 (m, 1H; CH₂-7(1)), 1.01 (d, \(^3J=7.0\) Hz, 3H; CH₃-19), 0.97 (d, \(^3J=6.8\) Hz, 3H; CH₃-20), 0.80 (d, \(^3J=6.8\) Hz, 3H; CH₃-21).

\(^13\)C (100.6 MHz, d⁴-Methanol): \(\delta = 167.1 \) (C=O), 154.9 (=CH-3), 133.7 (=CH-12), 132.0 (=CH-17), 131.5 (=CH-15), 127.9 (=CH-16), 126.3 (=CH-13), 123.3 (=CH-14), 119.9 (=CH-2), 85.4 (CHO-5), 75.2 (d, CHOP), 68.7 (CHOHOH), 43.9 (CH-2), 35.2 (CH-6), 31.5 (CH₂-8), 31.4 (CH-4), 29.2 (CH₂-7), 18.4 (CH₂-18), 14.7 (CH₃-20), 10.9 (CH₃-19), 9.1 (CH₃-21).

\(^31\)P (162 MHz, d⁴-Methanol): \(\delta = 3.96 \).

C\(_{21}\)H\(_{33}\)O\(_7\)P (428.46).

MS (FAB, 3-NBA): 473.0 ([M-H+2Na⁺], 100), 451.0 ([M+Na⁺], 96).

HR-MS (FAB, 3-NBA) für C\(_{21}\)H\(_{33}\)NaO\(_7\)P [M+Na⁺]: ber.: 451.1862
gef.: 451.1873.
Isoliertes Cytostatin 20

Die Probe wurde freundlicherweise von Prof. M. Ishizuka zur Verfügung gestellt und war leider stark verunreinigt. Deshalb werden in den NMR-Spektren die Verunreinigungsspeaks nicht berücksichtigt. Die Zuordnung geschieht in Anlehnung an die publizierten Daten. Der gemessene Drehwert bezieht sich auf die verunreinigte Probe.

\[\text{RF: } 0 \text{ (Ethylacetat).} \]

Drehwert: \(\left[\alpha \right]_{D}^{20} = +20 \text{ (c=0.285 in Methanol).} \)

\(^1\text{H} \) (400 MHz, \(d^4\)-Methanol): \(^{180} \delta = 7.15 \text{ (dd, } ^3J = 9.6 \text{ Hz, } ^3J = 6.5 \text{ Hz, 1H; =CH-3), 6.53-6.61} \text{ (m, 2H; =CH-2, =CH-16), 6.30} \text{ (t, } ^3J = 11.1 \text{ Hz, 1H; =CH-14), 5.96} \text{ (t, } ^3J = 11.3 \text{ Hz, 1H; =CH-15), 5.92} \text{ (dd, } ^3J = 9.6 \text{ Hz, } ^4J = 0.6 \text{ Hz, 1H; =CH-2), 5.75} \text{ (dq, } ^3J = 14.7 \text{ Hz, } ^3J = 6.8 \text{ Hz, 1H; =CH-17, 5.42} \text{ (t, } ^3J = 10.8 \text{ Hz, 1H; =CH-12), 4.64} \text{ (t, } ^3J = 9.6 \text{ Hz, 1H; CHO), 4.43-4.51} \text{ (m, 1H; CHOP), 4.11} \text{ (dd, } ^3J = 10.2 \text{ Hz, } ^3J = 2.7 \text{ Hz, 1H; CHO-5), 2.55-2.60} \text{ (m, 1H; CH-4), 2.06-2.16} \text{ (m, 1H; CH-18), 1.74-1.82} \text{ (m, 2H; CH-6; CH-7(1)), 1.80} \text{ (dd, } ^3J = 6.5 \text{ Hz, } ^4J = 1.0 \text{ Hz, 3H; CH-18), 1.28-1.55} \text{ (m, 3H; CH-10, CH-7(1), CH-8(1)), 1.00} \text{ (d, } ^3J = 7.0 \text{ Hz, 3H; CH-19), 0.98} \text{ (d, } ^3J = 6.8 \text{ Hz, 3H; CH-20), 0.77} \text{ (d, } ^3J = 6.8 \text{ Hz, 3H; CH-21).} \)

\(^{13}\text{C} \) (100.6 MHz, \(d^4\)-Methanol): \(^{6.5} \delta = 167.5 \text{ (C=O), 155.0} \text{ (=CH-3), 134.8} \text{ (=CH-12), 131.8} \text{ (=CH-17), 131.2} \text{ (=CH-15), 128.2} \text{ (=CH-16), 126.0} \text{ (=CH-13), 124.0} \text{ (=CH-14), 120.1} \text{ (=CH-2), 85.6} \text{ (CHO-5), 73.4} \text{ (d, CHOP), 68.9} \text{ (CHOH), 43.7} \text{ (CH-2), 35.6} \text{ (CH-6), 31.6} \text{ (CH-4), 29.1} \text{ (CH-7), 18.5} \text{ (CH-18), 14.9} \text{ (CH-20), 11.0} \text{ (CH-19), 9.1} \text{ (CH-21).} \)

\(^{31}\text{P} \) (162 MHz, \(d^4\)-Methanol): \(^{6.5} \delta = 6.9. \)

6.5. Versuche zu Kapitel 4.2.2

\((4R,5S)-3-[(2S,3S,4S)-3-Hydroxy-2,4-dimethylhept-6-enoyl]-4-methyl-5-phenyl-1,3-oxazolidin-2-on \((147a)\)

Zu einer Lösung von 2.0 ml (23.3 mmol) Oxalylchlorid in 25 ml trockenem Dichlormethan wird eine Lösung von 2.1 ml (29.3 mmol) trockenem DMSO in 5 ml trockenem Dichlormethan bei –78 °C getropft. Nach 1 h Rühren bei –78 °C wird eine Lösung von 1.83 g (18.3 mmol) des Alkohols \textbf{69} in 5 ml trockenem Dichlormethan bei –78 °C getropft. Nach 2.5
h Rühren bei –78 °C werden 12.7 ml (91.5 mmol) trockenes Triethylamin bei –78 °C zugetropft. Nach Auftauen auf Raumtemperatur wird die Reaktionsmischung mit 100 ml einer 1.0 M wässrigen KH$_2$PO$_4$-Lösung versetzt und nach Abtrennen der organischen Phase einmal mit 10 ml Dichlormethan extrahiert. Die versammelten organischen Phasen werden mit 5 ml einer gesättigten NaCl-Lösung gewaschen, über möglichst wenig Natriumsulfat getrocknet, und dann mit frisch aktiviertem Molsieb (4Å, grobkörnig) versetzt. Nach 5 min Rühren wird die Suspension unter Argon auf –78 °C gekühlt.

Zu einer Lösung von 2.84 g (12.2 mmol) des N-Propionyloxazolidinons 46 in 24 ml trockenem Dichlormethan werden bei 0 °C nacheinander 3.71 ml (14.6 mmol) frisch destilliertes Dibutylboryltriflat und 2.4 ml (14.0 mmol) trockenes (N,N)-Diisopropylethylamin zugetropft. Nach 45 min Rühren bei 0 °C wird die Lösung auf –78 °C abgekühlt. In 36.6 ml (36.6 mmol) einer ebenfalls auf –78 °C gekühlten 1.0 M Lösung von Diethylaluminiumchlorid in Hexan wird mittels einer Überführungskanüle die obige Aldehyd-Lösung gegeben. Die gelbe Lösung wird nach 5 min Rühren bei –78 °C mittels einer Überführungskanüle in die kalte Enolat-Lösung gegeben. Nach 2h 40min Rühren bei –78 °C wird eine Lösung von 9 ml 30%ige H$_2$O$_2$ und 45 ml Methanol langsam zugegeben. Nach weiteren 10 min wird die Mischung auf 0 °C aufgetaut und bei dieser Temperatur weitere 30 min gerührt.

Ausbeute: 1.37 g (4.13 mmol, 34 %), weißer Feststoff.

Rf: 0.45 (CH/EE= 2:1 (v/v)).

Drehwert: $[\alpha]_D^{20} = + 47.6$ (c=0.25 in CHCl$_3$)

Smp: 75.2°C

1H (400 MHz, CDCl$_3$): δ = 7.36-7.45 (m, 3H; Ph-CH), 7.29-7.32 (m, 2H; Ph-CH), 5.80 (dddd, 3J=16.8 Hz, 3J=10.2 Hz, 3J=8.0 Hz, 3J=6.3 Hz, 1H; =CH), 5.68 (d, 3J=7.2 Hz, 1H;
PhCHO), 5.00-5.10 (m, 2H; =CH₂), 4.78 (quint, \(3J=6.6 \text{ Hz} \), 1H; NCH), 4.16 (quint, \(3J=6.5 \text{ Hz} \), 1H; CH-2'), 3.47 (t, \(3J=5.9 \text{ Hz} \), 1H; CHO), 2.41-2.48 (m, 1H; CH₂-5'(1)), 1.91-2.00 (m, 1H; CH₂-5'(1)), 1.65-1.75 (m, 1H; CH-4'), 1.29 (d, \(3J=7.0 \text{ Hz} \), 3H; CH₃-2'), 0.95 (d, \(3J=6.8 \text{ Hz} \), 3H; CH₃-4'), 0.92 (d, \(3J=6.5 \text{ Hz} \), 3H; CH₃-4).

\(^{13}\text{C} \text{(100.6 MHz, CDCl}_3\)): \(\delta = 177.5 \text{ (O=C-1), 153.1 (O=C-1'), 137.2 (=CH), 133.1 (Ph-C), 129.0 (Ph-CH), 128.9 (Ph-CH), 125.8 (Ph-CH), 116.4 (=CH₂), 79.2 (CHOH), 79.0 (CHOPh), 55.1 (CHN), 39.8 (CH-2'), 36.6 (CH-4'), 35.6 (CH₂-5'), 16.5 (CH₃-4'), 15.6 (CH₃-2'), 14.6 (CH₃-4).

C\textsubscript{19}H\textsubscript{25}NO\textsubscript{4} (331.41).

MS (FAB, 3-NBA): 354.1 ([M+Na+], 53), 332.1 ([M+H+], 100).

HR-MS (FAB, 3-NBA) für C\textsubscript{19}H\textsubscript{26}NO\textsubscript{4} [M+H+]: ber.: 332.1862
gef.: 332.1848.

(4\textit{R},5\textit{S})-3-[(2\textit{S},3\textit{R},4\textit{S})-3-Hydroxy-2,4-dimethylhept-6-enoyl]-4-methyl-5-phenyl-1,3-oxazolidin-2-on (147b)

Als Nebenprodukt bei der Herstellung von 147a wird das non-Evans syn-Aldol-Addukt 147b isoliert.

Ausbeute: 0.86 g (2.60 mmol, 21 %), weißer, wachsartiger Feststoff.

\(\text{Rf: 0.37 (CH/EE= 2:1 (v/v))} \).

\(\text{Drehwert: } [\alpha]_{D}^{20} = +39 \text{ (c=0.52 in CHCl}_3) \)

\(^1\text{H} \text{(400 MHz, CDCl}_3\)): \(\delta = 7.37-7.44 \text{ (m, 3H; Ph-CH)}, 7.28-7.32 \text{ (m, 2H; Ph-CH)}, 5.78 \text{ (dd, } \text{ d}=16.8 \text{ Hz}, \text{ d}=10.0 \text{ Hz, } \text{ d}=7.4 \text{ Hz, } \text{ d}=6.5 \text{ Hz, 1H; =CH)}, 5.68 \text{ (d, } \text{ d}=7.2 \text{ Hz, 1H; PhCHO)}, 5.00-5.10 \text{ (m, 2H; =CH₂)}, 4.78 \text{ (quint, } \text{ d}=6.6 \text{ Hz, 1H; NCH)}, 4.10 \text{ (dq, } \text{ d}=4.3 \text{ Hz, }, \text{ d}=6.8 \text{ Hz 1H; CH-2'}), 3.74 \text{ (dd, } \text{ d}=6.8 \text{ Hz, } \text{ d}=4.3 \text{ Hz 1H; CHOH)}, 2.19-2.26 \text{ (m, 1H ; CH₂-5'(1)), 1.91-2.00 \text{ (m, 1H ; CH₂-5'(1)), 1.63-1.78 (m, 1H; CH-4'), 1.25 (d, } \text{ d}=7.0 \text{ Hz, 3H; CH₃-2'), 1.00 (d, } \text{ d}=6.6 \text{ Hz, 3H; CH₃-4'), 0.90 (d, } \text{ d}=6.6 \text{ Hz, 3H; CH₃-4').}

\(^{13}\text{C} \text{(100.6 MHz, CDCl}_3\)): \(\delta = 177.2 \text{ (O=C-1), 152.7 (O=C-1'), 136.7 (=CH), 133.3 (Ph-C), 129.0 (Ph-CH), 128.9 (Ph-CH), 125.8 (Ph-CH), 116.5 (=CH₂), 79.0 (CHOPh), 75.0 (CHOH),
55.0 (CHN), 40.1 (CH-2’), 37.9 (CH$_2$-5’), 35.6 (CH-4’), 15.1 (CH$_3$-4’), 14.7 (CH$_3$-4), 11.7 (CH$_3$-2’).

C$_{19}$H$_{25}$NO$_4$ (331.41).

MS (FAB, 3-NBA): 354.1 ([M+Na$^+$], 100), 332.1 ([M+H$^+$], 86).

HR-MS (FAB, 3-NBA) für C$_{19}$H$_{26}$NO$_4$ [M+H$^+$]: ber.: 332.1862
gef.: 332.1857.

(4S)-3-[(2R,3R,4S)-3-Hydroxy-2,4-dimethylhept-6-enoxy]-4-Isopropyl-1,3-oxazolidin-2-on (147d)

Das Aldoladdukt 147d wird in völliger Analogie zu 147a ausgehend von 436 mg (4.35 mmol) des Alkohols 69 und 537 mg (2.9 mmol) des N-Propionyloxazolidinon 148 hergestellt. Ausbeute: 317 mg. Das Produkt ist mit dem durch Säulenchromatographie nicht abtrennbaren N-Propionyloxazolidinon 148 verunreinigt und wird deshalb erst auf der nächsten Stufe vollständig charakterisiert.

R$_f$: 0.59 (CH/EE= 2:1 (v/v)).

1H (400 MHz, CDCl$_3$): δ = 5.73-5.88 (m, 1H; =CH), 4.99-5.07 (m, 2H; =CH$_2$), 4.40-4.45 (m, 1H; NCH), 4.20-4.29 (m, 2H, CH$_2$O), 4.04 (dq, 3J=8.6 Hz, 3J=6.8 Hz 1H; CH-2’), 3.63 (dd, 3J=8.6 Hz, 3J=3.3 Hz, 1H; CH$_2$OH), 2.41 (dsept, 3J=3.9 Hz, 3J=6.8 Hz, 1H, iPr-CH), 2.16-2.23 (m, 1H ; CH$_2$-5’(1)), 1.99-2.07 (m, 1H ; CH$_2$-5’(1)), 1.73 (dsext, 3J=3.3 Hz, 3J=6.8 Hz, 1H; CH-4’), 1.11 (d, 3J=6.8 Hz, 3H; CH$_3$-2’), 0.93 (d, 3J=6.8 Hz, 3H; CH$_3$-4’), 0.91 (d, 3J=7.0 Hz, 3H; iPr-CH$_3$(3)), 0.89 (d, 3J=7.0 Hz, 3H; iPr-CH$_3$(3)).

C$_{15}$H$_{25}$NO$_4$ (283.36).

MS (FAB, 3-NBA): 307.0 ([M+Na$^+$], 100), 284.1 ([M+H$^+$], 33).

HR-MS (FAB, 3-NBA) für C$_{15}$H$_{26}$NO$_4$ [M+H$^+$]: ber.: 284.1862
gef.: 284.1841.
Zu einer Lösung von 1.30 g (3.92 mmol) des Aldols 147a in 9.4 ml trockenem Dichlormethan und 8.7 ml (51 mmol) (N,N)-Diisopropylethylamin werden bei 0 °C 3.0 ml (39 mmol) (Chlormethyl)methylether getropft. Nach 1 h Rühren bei 0 °C wird die Lösung bei Raumtemperatur 18 h gerührt. Die orangegelbe Lösung wird mit 50 ml einer 1 M Kaliumdihydrogenphosphatlösung versetzt und mit dreimal je 100 ml Diethylther extrahiert. Die versammelten organischen Phasen werden mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum abdestilliert. Das Rohprodukt wird säulen chromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:1 (v/v) gereinigt.

Ausbeute: 1.34 g (3.57 mmol, 91 %), viskoses, farbloses Öl.

Rf: 0.47 (CH/EE= 3:1 (v/v)).

Drehwert: [α]D20 = + 52 (c=0.505, CHCl3)

1H (400 MHz, CDCl3): δ = 7.34-7.43 (m, 3H; Ph-CH), 7.28-7.31 (m, 2H; Ph-CH), 5.80 (dddd, 3J=17.0 Hz, 3J=10.2 Hz, 3J=7.6 Hz, 3J=6.5 Hz, 1H; =CH), 5.65 (d, 3J=7.4 Hz, 1H; PhCHO), 4.98-5.08 (m, 2H; =CH2), 4.78 (quint, 3J=7.0 Hz, 1H; NCH), 4.65 (d, 3J=6.5 Hz, 1H; MOM-CH(1)), 4.52 (d, 2J=6.5 Hz, 1H; MOM-CH2(1)), 4.33 (dq, 3J=8.9 Hz, 3J=7.0 Hz, 1H; CH-2'), 3.76 (dd, 3J=8.8 Hz, 3J=2.5 Hz, 1H; CHOMOM), 3.33 (s, 3H; MOM-CH3), 2.34-2.42 (m, 1H ; CH2-5'(1)), 1.90-1.99 (m, 1H ; CH2-5'(1)), 1.82 (dsext, 3J=3.7 Hz, 3J=6.6 Hz 1H; CH-4'), 1.16 (d, 3J=7.0 Hz, 3H; CH3-2'), 1.02 (d, 3J=7.0 Hz, 3H; CH3-4'), 0.88 (d, 3J=6.5 Hz, 3H; CH3-4).

13C (100.6 MHz, CDCl3): δ = 176.0 (O=C-1), 152.8 (O=C-1’), 137.8 (=CH), 133.6 (Ph-C), 128.9 (Ph-CH), 128.8 (Ph-CH), 125.8 (Ph-CH), 116.0 (=CH2), 98.5 (CH3OMOM), 85.7 (CHOMOM), 78.7 (CHOPh), 56.2 (CH3OMOM), 54.9 (CHN), 40.9 (CH-2’), 35.5 (CH2-5’), 34.8 (CH-4’), 17.1 (CH3-4’), 15.0 (CH3-2’), 14.7 (CH3-4).

C21H29NO5 (375.46).

MS (FAB, 3-NBA): 398.1 ([M+Na]+, 20), 376.1 ([M+H]+, 27), 344.1 ([M-CH3O]+, 100).

HR-MS (FAB, 3-NBA) für C21H30NO5 [M+H]+: ber.: 376.2124
gefü.: 376.2115.
Laurent Bialy Dissertation

184

(4R,5S)-3-[(2S,3R,4S)-3-(Methoxymethoxy)-2,4-dimethylhept-6-enoyl]-4-methyl-5-phenyl 1,3-oxazolidin-2-on (149b)

Die Verbindung wird in völliger Analogie zu 149a ausgehend von 331 mg (1.00 mmol) des Aldoladdukts 147b hergestellt. Das Rohprodukt (gelbes Öl, 361 mg) wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:1 → 2:1 (v/v) gereinigt. Ausbeute: 332 mg (0.88 mmol, 88 %), viskoses, farbloses Öl.

R_f: 0.4 (CH/EE = 4:1 (v/v)).

Drehwert: $[\alpha]_{D}^{20} = +57.6$ (c=0.205 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): $\delta = 7.36$-7.44 (m, 3H; Ph-CH), 7.28-7.32 (m, 2H; Ph-CH), 5.70-5.80 (m), 5.66 (d, 2J=7.4 Hz, 1H; PhCHO), 4.98-5.06 (m, 2H; =CH$_2$), 4.79 (dq, 2J=7.4 Hz, 2J=6.6 Hz, 1H; NCH), 4.66 (s, 2H; MOM-CH$_2$), 4.11 (quint, 2J=7.0 Hz, 1H; CH-2′), 3.83 (dd, 2J=7.0 Hz, 2J=3.7 Hz, 1H; CHOMOM), 3.39 (s, 3H; MOM-CH$_3$), 2.24-2.32 (m, 1H; CH$_2$-5′(1)), 1.94-2.03 (m, 1H; CH$_2$-5′(1)), 1.60-1.70 (m, 1H; CH-4′), 1.27 (d, 2J=6.8 Hz, 3H; CH$_3$-2′), 0.95 (d, 2J=6.8 Hz, 3H; CH$_3$-4′), 0.88 (d, 2J=6.6 Hz, 3H; CH$_3$-4).

13C (100.6 MHz, CDCl$_3$): $\delta = 175.7$ (O=C-1), 152.8 (O=C-1′), 137.6 (=CH), 133.5 (Ph-C), 128.9 (Ph-CH), 128.8 (Ph-CH), 125.8 (Ph-CH), 116.2 (=CH$_2$), 98.6 (CH$_2$OMOM), 83.4 (CHOMOM), 79.0 (CHOPh), 56.2 (CH$_3$OMOM), 54.9 (CHN), 41.0 (CH-2′), 38.4 (CH$_2$-5′), 37.1 (CH-4′), 14.7 (CH$_3$-4), 14.6 (CH$_3$-4′), 14.1 (CH$_3$-2′).

$C_{21}H_{29}NO_5$ (375.46).

MS (FAB, 3-NBA): 398.1 ([M+Na$^+$], 92), 376.1 ([MH$^+$], 13), 344.1 ([M-CH$_2$O]$^+$, 86), 314.1 ([M-C$_2$H$_5$O$_2$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{21}$H$_{30}$NO$_5$ [M+H$^+$]: ber.: 376.2124
gef.: 376.2140.

(4S)-4-Isopropyl-3-[(2R,3R,4S)-3-(methoxymethoxy)-2,4-dimethylhept-6-enoyl]-1,3-oxazolidin-2-one (149d)

Die Verbindung wird in voller Analogie zu 149a ausgehend von 294 mg des Aldoladdukts 147d hergestellt. Das Rohprodukt (gelbes Öl, 330 mg) wird säulen chromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 5:1 → 4:1 (v/v) gereinigt.

Ausbeute: 313 mg (0.96 mmol, 36 % über 2 Stufen), weißer, wachsartiger Feststoff.

\[R_f: 0.48 \text{ (CH/EE= 3:1 (v/v)).} \]

Drehwert: \[[\alpha]_{D}^{20} = + 65 \text{ (c=0.3 in CHCl}_3 \text{).} \]

\[^1H \text{ (400 MHz, CDCl}_3): \delta = 5.73-5.84 \text{ (m, 1H; } =CH), 5.00-5.08 \text{ (m, 2H; } =CH_2\), 4.63 \text{ (d, } 2J=6.5 \text{ Hz, 1H; MOM-CH}_2(1)), 4.49 \text{ (d, } 2J=6.5 \text{ Hz, 1H; MOM-CH}_2(1)) \]

\[^13C \text{ (100.6 MHz, CDCl}_3): \delta = 176.3 \text{ (O=C-1), 153.8 \text{ (O=C-1'), 137.7 \text{ (=CH), 116.3 \text{ (=CH}_2\), 98.6 \text{ (CH}_2\text{OMOM), 84.0 \text{ (CHOMOM), 62.8 \text{ (CH}_2\text{-5), 58.7 \text{ (CHN), 56.0 \text{ (CH}_3\text{OMOM), 41.1 \text{ (CH-2'), 38.8 \text{ (CH}_2\text{-5'), 34.6 \text{ (CH-4'), 28.2 \text{ (iPr-CH), 18.2 \text{ (iPr-CH}_3\), 15.0 \text{ (CH}_3\text{-2'), 14.4 \text{ (iPr-CH}_3\), 13.6 \text{ (CH}_3\text{-4').}}}})\]

C\text{17H}_{29}\text{NO}_5 \text{ (327.42). MS (FAB, 3-NBA): 350.1 ([M+Na}^+\text{], 30), 328.1 ([MH}^+\text{], 42), 296.1 ([M-OCH}_3\text{]}^+\text{, 100), 266.1 ([M-C}_2\text{H}_5\text{O}_2\text{]}^+\text{, 66). HR-MS (FAB, 3-NBA) für C\text{17H}_{30}\text{NO}_5 \text{ [M+H}^+\text{]: } \text{ber.: 328.2124, gef.: 328.2146.} \]

(2R,3S,4S)-3-(Methoxymethoxy)-2,4-dimethylhept-6-en-1-ol (150a)

Zu einer Lösung von 1.30 g (3.45 mmol) des Oxazolidinons 149a in 70 ml trockenem Diethylether und 68 μl (3.8 mmol) Wasser werden bei 0 °C 1.9 ml (3.8 mmol) einer 2 M Lösung von Lithiumborhydrid in THF während 10 min getropft. Nach 1 h 50 min Rühren bei Raumtemperatur werden nacheinander 7 ml einer 1 M wässrigen NaOH-Lösung und 12 ml deionisiertem Wasser vorsichtig zugegeben. Nach 15 min bei Raumtemperatur wird die Lösung mit dreimal je 50 ml Diethylether extrahiert. Die versammelten organischen Phasen
werden mit 50 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum langsam abdestilliert. Das Rohprodukt wird säulen-chromatographisch an Kieselgel mit Pentan/Diethylether 1:1 → 1:2 (v/v) gereinigt.
Ausbeute: 439 mg (2.17 mmol, 63 %), farbloses, leichtbewegliches Öl.

\[\text{Rf: } 0.36 \text{ (CH/EE}=2:1 \text{ (v/v)).} \]

\[\text{Drehwert: } [\alpha]_{D}^{20} = +51.6 \text{ (c}=0.5 \text{ in CHCl}_3) \]

\[\text{1H (400 MHz, CDCl}_3\text{: } \delta = 5.77 \text{ (dddd, } ^3J=16.8 \text{ Hz, } ^3J=10.2 \text{ Hz, } ^3J=7.4 \text{ Hz, } ^3J=6.1 \text{ Hz, 1H; } =\text{CH}), 4.98-5.05 \text{ (m, 2H; } =\text{CH}_2), 4.68 \text{ (s, 2H; MOM-CH}_2\text{), 3.83 \text{ (dd, } ^2J=11.3 \text{ Hz, } ^3J=3.5 \text{ Hz, 1H; CH}_2\text{OH(1))}, 3.53 \text{ (dd, } ^2J=11.3 \text{ Hz, } ^3J=4.3 \text{ Hz, 1H; CH}_2\text{OH(1))}, 3.43 \text{ (s, 3H; MOM-CH}_3\text{), 3.33 \text{ (dd, } ^3J=7.4 \text{ Hz, } ^3J=3.7 \text{ Hz, 1H; CHOMOM)}, 2.5-3.0 \text{ (brs, 1H, OH), 2.24-2.32 \text{ (m, 1H; CH}_2\text{-5(1))}, 1.76-1.91 \text{ (m, 3H; CH}_2\text{-5(1), CH-2, CH-4), 1.01 \text{ (d, } ^3J=7.0 \text{ Hz, 3H; CH}_3\text{-2), 0.95 \text{ (d, } ^3J=6.8 \text{ Hz, 3H; CH}_3\text{-4).}} \]

\[\text{13C (100.6 MHz, CDCl}_3\text{: } \delta = 137.7 \text{ (}=\text{CH}), 116.1 \text{ (}=\text{CH}_2), 99.1 \text{ (CH}_2\text{OMOM), 87.7 \text{ (CHOMOM)}, 65.4 \text{ (CH}_2\text{OH), 56.4 \text{ (CH}_3\text{OMOM), 37.1 \text{ (CH-2), 35.8 \text{ (CH}_2\text{-5), 35.7 \text{ (CH-4), 17.0 \text{ (CH}_3\text{-4), 15.6 \text{ (CH}_3\text{-2).}}} \]

C\text{\textsubscript{11}}H\text{\textsubscript{22}}O\text{\textsubscript{3}} (202.29).

\[\text{MS (FAB, 3-NBA): 225.1 ([M+Na\textsuperscript+], 31), 203.2 ([MH\textsuperscript+], 69), 171.1 ([M-OCH}_3\textsuperscript+]+, 100).} \]

\[\text{HR-MS (FAB, 3-NBA) für C\text{\textsubscript{11}}H\text{\textsubscript{22}}NaO\text{\textsubscript{3}} [M+Na\textsuperscript+]+: ber.: 225.1467} \]

\[\text{gef.: 225.1469.} \]

(2R,3R,4S)-3-(Methoxymethoxy)-2,4-dimethylhept-6-en-1-ol (150b)

Der Alkohol 150b wird in völliger Analogie zu 150a ausgehend von 305 mg (0.812 mmol) des Oxazolidinons 149b hergestellt.
Ausbeute: 118 mg (0.583 mmol, 72 %), farbloses, leichtbewegliches Öl.

\[\text{Rf: } 0.19 \text{ (CH/EE}=2:1 \text{ (v/v)).} \]

\[\text{Drehwert: } [\alpha]_{D}^{20} = -74 \text{ (c}=0.535 \text{ in CHCl}_3) \]
1H (400 MHz, CDCl$_3$): δ = 5.71-5.81 (m, 1H; =CH), 4.99-5.05 (m, 2H; =CH$_2$), 4.67 (s, 2H; MOM-CH$_2$), 3.42-3.56 (m, 3H; CH$_2$OH, CHOMOM), 3.42 (s, 3H; MOM-CH$_3$), 2.6-2.8 (brs, 1H, OH), 2.15-2.22 (m, 1H; CH$_2$-5(1)), 1.94-2.03 (m, 1H; CH-2), 1.75-1.91 (m, 2H; CH$_2$-5(1), CH-4), 0.96 (d, 3J=6.6 Hz, 3H; CH$_3$-4), 0.82 (d, 3J=7.0 Hz, 3H; CH$_3$-2).

13C (100.6 MHz, CDCl$_3$): δ = 136.7 (=CH), 116.5 (=CH$_2$), 98.8 (CH$_2$OMOM), 87.5 (CHOMOM), 65.3 (CH$_2$OH), 56.3 (CH$_3$OMOM), 37.9 (CH$_2$-5), 37.1 (CH-2), 33.7 (CH-4), 16.1 (CH$_3$-4), 10.6 (CH$_3$-2).

C$_{11}$H$_{22}$O$_3$ (202.29).

MS (FAB, 3-NBA): 225.1 ([M+Na$^+$], 21), 171.1 ([M-OCH$_3$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{11}$H$_{23}$O$_3$ [M+H$^+$]:

ber.: 203.1647

gef.: 203.1627.

(2S,3R,4S)-3-(Methoxymethoxy)-2,4-dimethylhept-6-en-1-ol (150d)

Der Alkohol 150d wird in völlig er Analogie zu 150a ausgehend von 293 mg (0.895 mmol) des Oxazolidinons 149d hergestellt.

Ausbeute: 84 mg (0.415 mmol, 46 %), farbloses, leichtbewegliches Öl.

Rf: 0.2 (CH/EE=2:1 (v/v)).

Drehwert: [α]$^D_{D}$ = -66 (c=0.485 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): δ = 5.71-5.81 (m, 1H; =CH), 5.00-5.06 (m, 2H; =CH$_2$), 4.66-4.70 (m, 2H; MOM-CH$_2$), 3.81 (ddd, 2J=11.1 Hz, 3J=6.1 Hz, 3J=3.5 Hz, 1H; CH$_2$OH(1)), 3.51 (ddd, 2J=11.1 Hz, 3J=6.1 Hz, 3J=3.5 Hz, 1H; CH$_2$OH(1)), 3.42 (s, 3H; MOM-CH$_3$), 3.38 (dd, 3J=8.8 Hz, 3J=2.5 Hz, 1H; CHOMOM), 2.90 (t, 3J=6.5 Hz, 1H, OH), 2.12-2.20 (m, 1H; CH$_2$-5(1)), 1.96-2.05 (m, 1H; CH$_2$-5(1)), 1.71-1.86 (m, 2H; CH-2, CH-4), 0.95 (d, 3J=7.0 Hz, 3H; CH$_3$-4), 0.88 (d, 3J=6.8 Hz, 3H; CH$_3$-2).

13C (100.6 MHz, CDCl$_3$): δ = 137.5 (=CH), 116.4 (=CH$_2$), 99.1 (CH$_2$OMOM), 87.6 (CHOMOM), 65.5 (CH$_2$OH), 56.4 (CH$_3$OMOM), 39.0 (CH$_2$-5), 37.7 (CH-2), 35.6 (CH-4), 15.2 (CH$_3$-4), 13.4 (CH$_3$-2).
C_{11}H_{22}O_{3} (202.16)

MS (FAB, 3-NBA): 225.1 ([M+Na\(^{+}\)], 32), 171.1 ([M-OCH\(_{3}\)]^{+}, 100).

HR-MS (FAB, 3-NBA) für C_{11}H_{23}O_{3} [M+H\(^{+}\): ber.: 203.1647
gerf.: 203.1654.

Methyl (2Z,4R,5R,6S)-5-(methoxymethyl)-4,6-dimethylnona-2,8-dienoat (152a)

Zu einer Suspension von 58 mg (0.287 mmol) des Alkohols 150a und 277 mg (3.30 mmol) NaHCO\(_{3}\) in 5.6 ml trockenem Dichlormethan wird 0.92 ml (0.43 mmol) einer 15\%igen Lösung des Dess-Martin Periodinan in Dichlormethan zugetropft. Nach 70 min Rühren bei Raumtemperatur wird die Mischung zu einer Mischung aus 20 ml einer gesättigten Natriumthiosulfatlösung, 20 ml einer gesättigten Natriumhydrogencarbonat-Lösung und 50 ml Diethylether gegeben. Nach 1 h intensivem Rühren wird das Gemisch mit zweimal 50 ml Diethylether extrahiert, die versammelten organischen Phasen mit einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum langsam abdestilliert. Das Rohprodukt ist laut Dünnenschichtchromatographie sauber und wird ohne Aufreinigung sofort weiter eingesetzt.
Ausbeute: 56 mg, farbloses, leichtbewegliches Öl.

R\(_{f}\): 0.63 (CH/EE=2:1 (v/v)).

Zu einer Lösung von 357 mg (1.35 mmol) 18-Krone-6 und 0.14 ml (0.66 mmol) [Bis-(2,2,2-trifluorethoxy)-phosphoryl]-essigsäuremethylster in 8 ml trockenem THF wird bei –78 °C 1.0 ml (0.5 mmol) einer 0.5 M Lösung Kaliumhexamethyldisilazid in Toluol während 15 min zugetropft. Nach 35 min Rühren bei –78 °C wird eine Lösung von 56 mg des Aldehyds 151a in 0.5 ml trockenem THF (und zweimal 0.25 ml zum Nachspülen) während 45 min zugetropft. Nach 2h 45min Rühren bei –78 °C werden bei –78 °C 12 ml einer gesättigten Ammoniumchloridlösung langsam zugegeben. Nach Auftauen auf Raumtemperatur wird die Mischung mit 10 ml Wasser verdünnt und mit dreimal je 40 ml Diethylether extrahiert. Die versammelten organischen Phasen werden mit 20 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wird im Vakuum langsam abdestilliert.
Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Pentan/Diethylether 20:1 → 10:1 (v/v) gereinigt.

Ausbeute: 57 mg (0.222 mmol, 77 % über 2 Stufen), farbloses, leichtbewegliches Öl.

R_f: 0.54 (CH/EE=5:1 (v/v)).

Drehwert: $\left[\alpha\right]_{\text{D}}^{20} = -25.3$ (c=0.265 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): δ = 6.41 (dd, 3J=11.5 Hz, 2J=10.2 Hz, 1H; =CH-3), 5.77 (d, 3J=11.5 Hz, 1H; =CH-2), 5.69-5.80 (m, 1H; =CH-8), 4.97-5.05 (m, 2H; =CH$_2$), 4.68 (s, 2H; MOM-CH$_3$), 3.89 (qdd, 3J=6.8 Hz, 2J=3.1 Hz, 2J=10.2 Hz, 1H; CH-4), 3.70 (s, 3H; OCH$_3$-1), 3.40 (s, 3H; MOM-CH$_3$), 3.26 (dd, 3J=6.6 Hz, 2J=3.3 Hz, 1H; CHOMOM), 2.28-2.36 (m, 1H; CH$_2$-7(1)), 1.82-1.91 (m, 1H; CH$_2$-7(1)), 1.63-1.74 (m, 1H; CH-6), 1.09 (d, 3J=6.8 Hz, 3H; CH$_3$-4), 0.85 (d, 3J=6.8 Hz, 3H; CH$_3$-6).

13C (100.6 MHz, CDCl$_3$): δ = 166.8 (C=O), 152.8 (=CH-3), 137.5 (=CH-8), 118.4 (=CH-2), 116.1 (=CH$_2$), 98.2 (MOM-CH$_2$), 86.9 (CHOMOM), 56.2 (MOM-CH$_3$), 51.2 (OCH$_3$-1), 37.3 (CH$_2$-7), 36.9 (CH-6), 34.8 (CH-4), 18.6 (CH$_3$-4), 15.8 (CH$_3$-6).

C$_{14}$H$_{24}$O$_4$ (256.34).

MS (FAB, Glycerin): 279.1 ([M+Na$^+$], 43), 257.1 ([M+H$^+$], 37), 225.1 ([M-CH$_3$O]$^+$, 100), 195.1 ([M-C$_2$H$_3$O$_2$]$^+$, 62).

HR-MS (FAB, Glycerin) für C$_{14}$H$_{24}$NaO$_4$ [M+Na$^+$]:

ber.: 279.1572

gef.: 279.1588.

Methyl (2Z,4R,5S,6S)-5-(methoxymethyl)-4,6-dimethylnona-2,8-dienoate (152b)

Der Ester 152b wird in völliger Analogie zu 152a ausgehend von 58 mg (0.287 mmol) des Alkohols 150b hergestellt.

Ausbeute: 48 mg (0.188 mmol, 65 % über 2 Stufen), farbloses, leichtbewegliches Öl.

R_f: 0.56 (CH/EE=5:1 (v/v)).

Drehwert: $\left[\alpha\right]_{\text{D}}^{20} = -48$ (c=0.12, CHCl$_3$)
1H (400 MHz, CDCl$_3$): δ = 6.05 (dd, 3J = 11.5 Hz, 3J = 10.4 Hz, 1H; =CH-3), 5.70-5.80 (m, 2H; =CH-2, =CH-8), 4.98-5.06 (m, 2H; =CH$_2$), 4.65 (s, 2H; MOM-CH$_2$), 3.77-3.87 (m, 1H; CH-4), 3.70 (s, 3H; OCH$_3$-1), 3.40 (s, 3H; MOM-CH$_3$), 3.24 (dd, 2J = 7.0 Hz, 3J = 3.5 Hz, 1H; CHOMOM), 2.17-2.25 (m, 1H; CH$_2$-7(1)), 1.92-2.00 (m, 1H; CH$_2$-7(1)), 1.61-1.68 (m, 1H; CH-6), 1.06 (d, 3J = 6.6 Hz, 3H; CH$_3$-4), 0.91 (d, 3J = 6.8 Hz, 3H; CH$_3$-6).

13C (100.6 MHz, CDCl$_3$): δ = 166.8 (C=O), 152.9 (=CH-3), 137.6 (=CH-8), 118.5 (=CH-2), 116.3 (=CH$_2$), 98.6 (MOM-CH$_2$), 86.9 (CHOMOM), 56.2 (MOM-CH$_3$), 51.3 (OCH$_3$-1), 38.7 (CH$_2$-7), 36.6 (CH-6), 36.0 (CH-4), 16.4 (CH$_3$-4), 14.4 (CH$_3$-6).

C$_{14}$H$_{24}$O$_4$ (256.34).

MS (FAB, 3-NBA): 279.1 ([M+Na$^+$], 17), 257.1 ([M+H$^+$], 24), 225.1 ([M-CH$_3$O$^+$], 70), 195.1 ([M-C$_2$H$_5$O$_2$]$^+$, 100).

HR-MS (FAB, 3-NBA) für C$_{14}$H$_{24}$NaO$_4$ [M+Na$^+$]:

ber.: 279.1572
gef.: 279.1567.

Methyl (2Z,4S,5R,6S)-5-(methoxymethyl)-4,6-dimethylnona-2,8-dienoat (152c)

Der Ester 152c wird in völlig er Analogie zu 152a ausgehend von 108 mg (0.535 mmol) des Alkohols 150c hergestellt.

Ausbeute: 60 mg (0.234 mmol, 44 % über 2 Stufen), farbloses, leichtbewegliches Öl.

R_f: 0.38 (CH/EE=10:1 (v/v)).

Drehwert: $[a]_{D}^{20} = +72.6$ (c = 1.15 in CHCl$_3$)

1H (400 MHz, CDCl$_3$): δ = 6.17 (dd, 3J = 11.5 Hz, 3J = 10.4 Hz, 1H; =CH-3), 5.75 (dd, 3J = 11.5 Hz, 3J = 1.0 Hz, 1H; =CH-2), 5.70-5.80 (m, 1H; =CH-8), 4.96-5.03 (m, 2H; =CH$_2$), 4.65 (d, 2J = 6.6 Hz, 1H; MOM-CH$_2$(1)), 4.62 (d, 2J = 6.6 Hz, 1H; MOM-CH$_2$(1)), 3.78-3.88 (m, 1H; CH-4), 3.70 (s, 3H; OCH$_3$-1), 3.40 (s, 3H; MOM-CH$_3$), 3.22 (t, 3J = 5.7 Hz, 1H; CHOMOM), 2.31-2.40 (m, 1H; CH$_2$-7(1)), 1.80-1.88 (m, 1H; CH$_2$-7(1)), 1.66-1.76 (m, 1H; CH-6), 1.05 (d, 3J = 6.8 Hz, 3H; CH$_3$-4), 0.94 (d, 3J = 6.8 Hz, 3H; CH$_3$-6).

13C (100.6 MHz, CDCl$_3$): δ = 166.7 (C=O), 153.8 (=CH-3), 137.8 (=CH-8), 118.2 (=CH-2), 116.0 (=CH$_2$), 98.6 (MOM-CH$_2$), 87.2 (CHOMOM), 56.2 (MOM-CH$_3$), 51.3 (OCH$_3$-1), 36.8 (CH$_2$-7), 36.4 (CH-6), 35.1 (CH-4), 16.3 (CH$_3$-4), 15.1 (CH$_3$-6).
C\textsubscript{14}H\textsubscript{24}O\textsubscript{4} (256.34).

\textbf{MS} (FAB, 3-NBA): 279.1 ([M+Na+], 16), 257.1 ([M+H+], 47), 225.1 ([M-CH\textsubscript{2}O+], 100).

\textbf{HR-MS} (FAB, 3-NBA) für C\textsubscript{14}H\textsubscript{25}O\textsubscript{4} [M+H+]:

ber.: 257.1753

gef.: 257.1769.

\textbf{Methyl (2Z,4\textalpha S,5\textalpha S,6\textalpha S)-5-(methoxymethyl)-4,6-dimethylnona-2,8-dienoat (152d)}

Der Ester \textbf{152d} wird in völliger Analogie zu \textbf{152a} ausgehend von 58 mg (0.287 mmol) des Alkohols \textbf{150d} hergestellt.

Ausbeute: 45 mg (0.176 mmol, 61 % über 2 Stufen), farbloses, leichtbewegliches Öl.

\textbf{Rf}: 0.56 (CH/EE=5:1 (v/v)).

\textbf{Drehwert}: [\alpha]\textsubscript{D}20 = + 43.9 (c=0.28 in CHCl\textsubscript{3})

\textbf{1H} (400 MHz, CDCl\textsubscript{3}): \delta = 5.36 (dd, \textbf{3J}=11.6 Hz, \textbf{3J}=10.2 Hz, 1H; =CH-3), 5.77 (dd, \textbf{3J}=11.6 Hz, \textbf{4J}=1.0 Hz, 1H; =CH-2), 5.68-5.78 (m, 1H; =CH-8), 4.97-5.04 (m, 2H; =CH\textsubscript{2}), 4.63-4.67 (m, 2H; MOM-CH\textsubscript{2}), 3.84-3.92 (m, 1H; CH-4), 3.70 (s, 3H; OCH\textsubscript{3}-1), 3.38 (s, 3H; MOM-CH\textsubscript{3}), 3.31 (t, \textbf{3J}=4.9 Hz, 1H; CHOMOM), 2.16-2.24 (m, 1H; CH\textsubscript{2}-7(1)), 1.84-1.93 (m, 1H; CH\textsubscript{2}-7(1)), 1.67-1.75 (m, 1H; CH-6), 1.06 (d, \textbf{3J}=6.8 Hz, 3H; CH\textsubscript{3}-4), 0.93 (d, \textbf{3J}=6.8 Hz, 3H; CH\textsubscript{3}-6).

\textbf{13C} (100.6 MHz, CDCl\textsubscript{3}): \delta = 166.8 (C=O), 153.2 (=CH-3), 137.4 (=CH-8), 118.5 (=CH-2), 116.2 (=CH\textsubscript{2}), 98.2 (MOM-CH\textsubscript{2}), 86.4 (CHOMOM), 56.2 (MOM-CH\textsubscript{3}), 51.2 (OCH\textsubscript{3}-1), 38.0 (CH\textsubscript{2}-7), 36.6 (CH-6), 35.4 (CH-4), 18.4 (CH\textsubscript{3}-4), 15.0 (CH\textsubscript{3}-6).

C\textsubscript{14}H\textsubscript{24}O\textsubscript{4} (256.34).

\textbf{MS} (FAB, 3-NBA): 279.1 ([M+Na+], 15), 257.1 ([M+H+], 41), 225.1 ([M-CH\textsubscript{2}O+], 100), 195.1 ([M-C\textsubscript{2}H\textsubscript{5}O\textsubscript{2}+], 70).

\textbf{HR-MS} (FAB, 3-NBA) für C\textsubscript{14}H\textsubscript{24}Na\textsubscript{4} ([M+Na+]):

ber.: 279.1572

gef.: 279.1591.
Das Lacton \textbf{153a} wird in völliger Analogie zu \textbf{113} ausgehend von 37 mg (144 µmol) des Esters \textbf{152a} hergestellt. Ausbeute: 25 mg (139 µmol, 97 %), farblose, nadelförmige Kristalle.

\textbf{Rf}: 0.33 (CH/EE= 5:1 (v/v)).

\textbf{Drehwert}: \([\alpha]_{D}^{20} = -66.7 \ (c=0.54 \text{ in CHCl}_3)\)

\textbf{Smp.}: 44.1 °C

\textbf{1H} (400 MHz, d$_4$-Methanol): \(\delta = 6.86 \ (dd, \ ^{3}J=9.8 \text{ Hz, } \ ^{3}J=2.9 \text{ Hz, } 1H; =CH-4), 5.92 \ (dd, \ ^{3}J=9.8 \text{ Hz, } \ ^{4}J=2.3 \text{ Hz, } 1H; =CH-3), 5.78-5.88 \ (m, 1H; =CH-3'), 5.01-5.10 \ (m, 2H; =CH$_2$), 4.07 \ (dd, \ ^{3}J=9.0 \text{ Hz, } \ ^{3}J=3.3 \text{ Hz, } 1H; CH-O), \ 2.72-2.80 \ (m, 1H; CH-5), 2.32-2.39 \ (m, 1H; CH$_2$-2'(1)), \ 1.92-2.00 \ (m, 2H; CH-1', CH$_2$-2'(1)), \ 1.15 \ (d, \ ^{3}J=7.2 \text{ Hz, } 3H; CH$_3$-5), \ 1.05 \ (d, \ ^{3}J=6.7 \text{ Hz, } 3H; CH$_3$-1').

\textbf{13C} (100.6 MHz, d$_4$-Methanol): \(\delta = 166.5 \ (C=O), 154.6 \ (=CH-4), 138.0 \ (=CH-3'), 120.1 \ (=CH-3), 119.9 \ (=CH$_2$), 89.2 \ (CHO), 35.9 \ (CH$_2$-2'), 35.3 \ (CH-1'), 31.9 \ (CH-5), 17.0 \ (CH$_3$-1'), 16.8 \ (CH$_3$-5).

C$_{11}$H$_{16}$O$_2$ (180.24).

\textbf{MS} (FAB, 3-NBA): 203.0 ([M+Na$^+$], 25), 181.1 ([M+H$^+$], 100).

\textbf{HR-MS} (FAB, 3-NBA) für C$_{11}$H$_{17}$O$_2$ ([M+H$^+$]): ber.: 181.1229
gef.: 181.1230.

Das Lacton \textbf{153b} wird in völliger Analogie zu \textbf{153a} ausgehend von 31 mg (121 µmol) des Esters \textbf{152b} hergestellt.

Ausbeute: 19 mg (105 µmol, 87 %), farbloses, leicht bewegliches Öl.

\textbf{Rf}: 0.5 (CH/EE= 2:1 (v/v)).

\textbf{Drehwert}: \([\alpha]_{D}^{20} = -168 \ (c=0.415 \text{ in CHCl}_3)\)
\begin{align*}
\textbf{H} (400 \text{ MHz, } d^4\text{-Methanol}): & \quad \delta = \begin{array}{c}
7.15 (dd, ^2J=9.6 \text{ Hz, } ^3J=6.5 \text{ Hz, } 1H; =\text{CH-4}), \quad 5.94 (dd,
^2J=9.6 \text{ Hz, } ^3J=0.8 \text{ Hz, } 1H; =\text{CH-3}), \\
5.78-5.89 (m, 1H; =\text{CH-3'}), \quad 5.04-5.12 (m, 2H; =\text{CH}_2), \\
4.09 (dd, ^2J=9.8 \text{ Hz, } ^3J=3.1 \text{ Hz, } 1H; =\text{CH-4}), \quad 2.66 (ddquint, ^3J=0.8 \text{ Hz, } ^2J=3.1 \text{ Hz, } ^2J=7.0 \text{ Hz, } \\
1H; =\text{CH-5}), \quad 2.22-2.29 (m, 1H; =\text{CH}_2-2'(1)), \quad 1.89-1.98 (m, 2H; =\text{CH-1'}, =\text{CH}_2-2'(1)), \quad 1.03 (d, \\
^2J=6.3 \text{ Hz, } 3H; =\text{CH}_3-1'), \quad 1.03 (d, ^2J=7.0 \text{ Hz, } 3H; =\text{CH}_3-5). \\
\end{array} \\

\textbf{C} (100.6 \text{ MHz, } d^4\text{-Methanol}): & \quad \delta = \begin{array}{c}
167.3 (C=O), \quad 154.8 (=\text{CH-4}), \quad 136.6 (=\text{CH-3'}), \quad 120.0 (=\text{CH-3}), \quad 117.6 (=\text{CH}_2), \quad 85.6 (CHO), \quad 37.2 (CH_2-2'), \quad 34.9 (CH-1'), \quad 31.5 (CH-5), \quad 16.0 (CH_3-1'), \quad 11.2 (CH_3-5). \\
\end{array} \\
\end{align*}

C_{11}H_{16}O_2 (180.24).

MS (FAB, 3-NBA): 203.1 ([M+Na]^+, 12), 181.1 ([M+H]^+, 100).

HR-MS (FAB, 3-NBA) für C_{11}H_{17}O_2 ([M+H]^+): ber.: 181.1229, gef.: 181.1237.

\textbf{(5S,6S)-5-Methyl-6-[(1S)-1-methylbut-3-enyl]-5,6-dihydro-2\texttexttext{H}-pyran-2-on (153c)}

Das Lacton 153c wird in völliger Analogie zu 153a ausgehend von 32 mg (125 \texttexttext{\mu}mol) des Esters 152c hergestellt.

Ausbeute: 16 mg (89 \texttexttext{\mu}mol, 71 \%), farbloses, leicht bewegliches Öl.

\textbf{R_f}: 0.25 (CH/EE= 10:1 (v/v)).

\textbf{Drehwert}: \left[\alpha\right]_{D}^{20} = +139.3 (c=0.4 \text{ in CHCl}_3)

\begin{align*}
\textbf{H} (400 \text{ MHz, } d^4\text{-Methanol}): & \quad \delta = \begin{array}{c}
7.17 (dd, ^3J=9.6 \text{ Hz, } ^4J=6.5 \text{ Hz, } 1H; =\text{CH-4}), \quad 5.94 (dd, ^3J=9.6 \text{ Hz, } \\
^4J=0.8 \text{ Hz, } 1H; =\text{CH-3}), \\
5.83 (dddd, ^3J=16.8 \text{ Hz, } ^4J=10.4 \text{ Hz, } ^3J=8.2 \text{ Hz, } ^4J=6.1 \text{ Hz, } 1H; \\
=\text{CH-3'}), \quad 5.04-5.11 (m, 2H; =\text{CH}_2), \quad 4.09 (dd, ^3J=10.6 \text{ Hz, } ^4J=3.1 \text{ Hz, } 1H; =\text{CH}_2), \quad 2.54-2.62 \\
(m, 2H; =\text{CH}_2-2'(1)), \quad 1.86-2.06 (m, 2H; =\text{CH}_2-2'(1)), \quad 1.02 (d, ^3J=7.2 \text{ Hz, } 3H; =\text{CH}_3), \\
0.93 (d, ^3J=6.6 \text{ Hz, } 3H; =\text{CH}_3-1'). \\
\end{array} \\
\end{align*}

\begin{align*}
\textbf{C} (100.6 \text{ MHz, } d^4\text{-Methanol}): & \quad \delta = \begin{array}{c}
167.2 (C=O), \quad 155.0 (=\text{CH-4}), \quad 137.0 (=\text{CH-3'}), \quad 120.0 (=\text{CH-3}), \quad 117.5 (=\text{CH}_2), \quad 84.8 (CHO), \quad 37.6 (CH_2-2'), \quad 34.8 (CH-1'), \quad 31.5 (CH-5), \quad 14.4 (CH_3-1'), \quad 10.9 (CH_3-5). \\
\end{array} \\
\end{align*}
C_{11}H_{16}O_{2} (180.24).

MS (FAB, 3-NBA): 181.1 ([M+H^+]).

HR-MS (FAB, 3-NBA) für C_{11}H_{17}O_{2} ([M+H^+]):

ber.: 181.1229
gef.: 181.1226.

(5S,6R)-5-Methyl-6-[(1S)-1-methylbut-3-enyl]-5,6-dihydro-2H-pyran-2-on (153d)

Das Lacton 153d wird in völliger Analogie zu 153a ausgehend von 30 mg (117 µmol) des Esters 152d hergestellt.

Ausbeute: 15 mg (83 µmol, 71 %), farbloses, leicht bewegliches, aromatisch riechendes Öl.

R_{f}: 0.5 (CH/EE= 2:1 (v/v)).

Drehwert: \([\alpha]_{D}^{20} = +75.3\) (c=0.275 in CHCl_3)

\(^1H\) (400 MHz, d^4-Methanol): \(\delta = 6.84\) (dd, \(^3J=9.8\) Hz, \(^3J=2.2\) Hz, 1H; =CH-4), 5.92 (dd, \(^3J=9.8\) Hz, \(^4J=2.7\) Hz, 1H; =CH-3), 5.81 (ddt, \(^3J=14.2\) Hz, \(^3J=10.2\) Hz, 1H; =CH-3’), 5.03-5.10 (m, 2H; =CH_2), 4.11 (dd, \(^3J=10.8\) Hz, \(^3J=2.5\) Hz, 1H; CH-O), 2.65-2.75 (m, 1H; CH-5), 2.23-2.32 (m, 1H; CH_2-2’(1)), 2.12-2.20 (m, 1H; CH_2-2’(1)), 1.92 (dsext, \(^3J=2.3\) Hz, \(^3J=7.0\) Hz, 1H; CH-1’), 1.11 (d, \(^3J=7.2\) Hz, 3H; CH_3-5), 0.98 (d, \(^3J=7.0\) Hz, 3H; CH_3-1’).

\(^13C\) (100.6 MHz, d^4-Methanol): \(\delta = 166.9\) (C=O), 155.2 (=CH-4), 137.9 (=CH-3’), 120.1 (=CH-3), 117.2 (=CH_2), 87.0 (CHO), 39.1 (CH_2-2’), 34.9 (CH-1’), 32.1 (CH-5), 16.0 (CH_3-5), 13.3 (CH_3-1’).

C_{11}H_{16}O_{2} (180.24).

MS (FAB, 3-NBA): 181.1 ([M+H^+]).

HR-MS (FAB, 3-NBA) für C_{11}H_{17}O_{2} ([M+H^+]):

ber.: 181.1229
gef.: 181.1261.
6.6. Versuche zu Kapitel 4.3.1

(Triethylammonium)hydrogen\{\{(1S,2S,3R,4Z)-3-hydroxy-5-iod-2-methyl-1-\{(3S)-3-\{(2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl\}-butyl\}-pent-4-enyl\}phosphat (154)

Das Phosphat 154 wird in völliger Analogie zu 20a ausgehend von 5 mg (5.9 \mu mol) des Phosphotriesters 124b hergestellt.

Ausbeute: 3.5 mg (5.9 \mu mol, 100 %), weißes, amorphes Pulver.

R\text{f}: 0 (EE).

Drehwert: \([\alpha]_D^{20} = +76.0\) (c=0.175 in MeOH).

\begin{align*}
1^H (400 MHz, d^4-Methanol): \delta &= 7.16 (dd, ^3J=9.6 Hz, ^3J=6.5 Hz, 1H; =CH-4'''), 6.51 (dd, ^3J=7.7 Hz, ^4J=0.8 Hz, 1H; =CHI), 6.25 (dd, ^3J=8.4 Hz, ^3J=7.7 Hz, 1H; =CH-4), 5.93 (dd, ^3J=9.6 Hz, ^4J=0.8 Hz, 1H; =CH-5'''), 4.49 (dddd, ^3J (1H, ^31P)=10.4 Hz, ^3J=8.2 Hz, ^3J=5.9 Hz, ^3J=2.2 Hz, 1H; CHOP), 4.37 (t, ^3J=9.2 Hz, 1H; CHOH), 4.10 (dd, ^3J=10.2 Hz, ^3J=2.9 Hz, 1H; CHO-2''), 3.20 (q, ^3J=7.2 Hz, 6H; CH\textsubscript{2}N), 2.54-2.62 (m, 1H; CH-3''), 1.94-2.05 (m, 1H; CH\textsubscript{2}-1'(1)), 1.67-1.87 (m, 3H; CH\textsubscript{2}-2'(1), CH-2, CH-3'), 1.53 (ddt, ^2J=17.2 Hz, ^3J=4.5 Hz, ^3J=8.2 Hz, 1H; CH\textsubscript{2}-1'(1)), 1.32 (t, ^3J=7.2 Hz, 9H; CH\textsubscript{3}CH\textsubscript{2}N), 1.24-1.34 (m, 1H; CH\textsubscript{2}-2'(1)), 1.01 (d, ^3J=7.0 Hz, 3H; CH\textsubscript{3}-3''), 0.97 (d, ^3J=6.8 Hz, 3H; CH\textsubscript{3}-3'), 0.91 (d, ^3J=6.8 Hz, 3H; CH\textsubscript{2}-2), 0.91 (CH\textsubscript{3}-2).

13C (100.6 MHz, d^4-Methanol): \delta = 167.4 (C=O), 155.0 (=CH-4'''), 143.9 (=CH-4), 120.0 (=CH-5'''), 85.5 (CHO-2''), 83.7 (=CH-I), 75.8 (CHOH), 75.2 (d, ^2J(13C, ^331P)=5.4 Hz, CHOP), 47.8 (CH\textsubscript{2}N), 43.3 (d, ^3J(13C, ^331P)=4.6 Hz; CH-2), 35.4 (CH-3'), 31.6 (CH-3'''), 31.6 (^3J(13C, ^331P)=3.1 Hz; CH\textsubscript{2}-1'), 29.4 (CH\textsubscript{2}-2'), 14.9 (CH\textsubscript{3}-3'), 10.9 (CH\textsubscript{3}-3''), 9.2 (CH\textsubscript{3}CH\textsubscript{2}N), 9.1 (CH\textsubscript{3}-2).

^31P (162 MHz, d^4-Methanol): \delta = 3.05.

C\textsubscript{16}H\textsubscript{26}IO\textsubscript{7}P (488.25)

\textbf{MS} (FAB, 3-NBA): 510.9 ([M+Na+], 100), 490.0 ([M+H+], 67).

\textbf{HR-MS} (FAB, 3-NBA) für C\textsubscript{16}H\textsubscript{26}INaO\textsubscript{7}P [M+Na+]:

ber.: 511.0359
gef.: 511.0351.
Das Phosphat 155 wird in völlig analoge Anahänge zu 20a ausgehend von 5 mg (5.9 µmol) des Phosphat-esters 123b hergestellt.

Ausbeute: 3.5 mg (5.9 µmol, 100 %), weißes, amorphes Pulver.

Rf: 0 (EE).

Drehwert: [α]D20 = +52.6 (c=0.175 in MeOH).

1H (400 MHz, d4-Methanol): δ = 7.16 (dd, 3J=9.6 Hz, 3J=6.6 Hz, 1H; =CH-4’’), 5.93 (dd, 3J=9.6 Hz, 4J=0.6 Hz, 1H; =CH-5’’), 4.44 (d, 3J=9.6 Hz, 1H; CHOH), 4.37-4.46 (m, 1H; CHOP), 4.11 (dd, 3J=10.2 Hz, 3J=2.9 Hz, 1H; CHO-2’’), 3.20 (q, 3J=7.4 Hz, 6H; CH2N), 2.54-2.63 (m, 1H; CH-3’’), 1.90-2.00 (m, 1H; CH2-1’(1)), 1.73-1.88 (m, 3H; CH2-2’(1), CH2-2’), 1.47-1.57 (m, 1H; CH2-1’(1)), 1.32 (t, 3J=7.2 Hz, 9H; CH3CH2N), 1.24-1.34 (m, 1H; CH2-2’(1)), 1.01 (d, 3J=6.8 Hz, 3H; CH3-3’’), 1.00 (d, 3J=6.8 Hz, 3H; CH3-2), 0.96 (d, 3J=6.8 Hz, 3H; CH3-3’’).

13C (100.6 MHz, d4-Methanol): δ = 167.4 (C=O), 155.1 (=CH-4’’), 120.0 (=CH-5’’), 95.9 (≡C-4), 85.6 (CHO-2’’), 74.9 (d, 2J13C,31P=6.2 Hz, CHOP), 65.0 (CHOH), 47.8 (CH2N), 45.2 (d, 3J13C,31P=4.6 Hz; CH-2), 35.4 (CH-3’’), 31.6 (CH-3’’), 31.5 (CH2-1’), 29.4 (CH2-2’), 14.9 (CH3-3’’), 11.0 (CH3-3’’), 9.7 (CH3-2), 9.2 (CH3CH2N), 4.5 (=C-I).

31P (162 MHz, d4-Methanol): δ = 2.87.

C16H24IO7P (486.24).

MS (FAB, 3-NBA): 508.9 ([M+Na]+), 100).

HR-MS (FAB, 3-NBA) für C16H24NaIO7P [M+Na]+: ber.: 509.0202
gef.: 509.0211.

Das Phosphat 155 wird in völlig analoge Anahänge zu 20a ausgehend von 5 mg (5.9 µmol) des Phosphat-esters 123b hergestellt.

(Triethylammonium)hydrogen{(1S,2S,3R,4Z)-3-hydroxy-5-iod-2-methyl-1-{(3S)-3-[2S,3S]-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-butyl}-pent-4-inyl}phosphat (156)

Das Phosphat 156 wird in völlig analoge Anahänge zu 20a ausgehend von 5 mg (7.0 µmol) des Phosphat-esters 122b hergestellt.
Ausbeute: 3.2 mg (6.9 µmol, 98 %), weißes, amorphes Pulver.

Rf: 0 (EE).

Drehwert: $[\alpha]^20_D = +75.6$ (c=0.16 in MeOH).

^1H (400 MHz, d^4-Methanol): $\delta = 7.16$ (dd, $^3J=9.6$ Hz, $^3J=6.5$ Hz, 1H; =CH-4’’), 5.93 (dd, $^3J=9.6$ Hz, $^4J=0.6$ Hz, 1H; =CH-5’’), 4.44 (ddd, $^3J(^1\text{H},^3\text{P})=10.2$ Hz, $^3J=8.0$ Hz, $^3J=6.3$ Hz, $^3J=2.3$ Hz, 1H; CHOP), 4.32 (dd, $^3J=9.8$ Hz, $^4J=2.2$ Hz, 1H; CHOH), 4.11 (dd, $^3J=10.2$ Hz, $^3J=2.9$ Hz, 1H; CHO-2’’), 3.20 (q, $^3J=7.4$ Hz, 6H; CH$_2$N), 2.73 (d, $^4J=2.2$ Hz, 1H; =C-H), 2.59 (dquint, $^3J=3.1$ Hz, $^3J=7.0$ Hz, 1H; CH-3’’), 1.91-2.01 (m, 1H; CH$_2$-1’(1)), 1.74-1.88 (m, 3H; CH$_2$-2’(1), CH-2, CH-3’’), 1.53 (ddt, $^2J=16.8$ Hz, $^3J=4.5$ Hz, $^3J=8.0$ Hz, 1H; CH$_2$-1’(1)), 1.31 (t, $^3J=7.2$ Hz, 9H; CH$_3$CH$_2$N), 1.24-1.34 (m, 1H; CH$_2$-2’(1)), 1.02 (d, $^3J=6.8$ Hz, 3H; CH$_3$-3’’), 1.01 (d, $^3J=7.0$ Hz, 3H; CH$_3$-2), 0.97 (d, $^3J=6.8$ Hz, 3H; CH$_3$-3’’).

^{13}C (100.6 MHz, d^4-Methanol): $\delta = 167.4$ (C=O), 155.1 (=CH-4’’), 120.0 (=CH-5’’), 85.9 (=C-H), 85.6 (CHO-2’’), 74.9 (d, $^2J(^{13}\text{C},^3\text{P})=5.4$ Hz, CHOP), 73.8 (=C-4), 64.8 (CHOH), 47.8 (CH$_2$N), 44.9 (d, $^3J(^{13}\text{C},^3\text{P})=3.8$ Hz; CH-2), 35.4 (CH-3’’), 31.6 (CH-3’’), 31.6 (d, $^3J(^{13}\text{C},^3\text{P})=3.1$ Hz; CH$_2$-1’), 29.4 (CH$_2$-2’), 14.9 (CH$_3$-3’’), 10.9 (CH$_3$-3’’), 9.6 (CH$_3$-2), 9.2 (CH$_3$CH$_2$N).

^{31}P (162 MHz, d^4-Methanol): $\delta = 2.96$.

C$_{16}$H$_{25}$O$_7$P (360.34)

MS (FAB, 3-NBA): 383.0 ([M+Na$^+$], 100).

HR-MS (FAB, 3-NBA) für C$_{16}$H$_{25}$NaO$_7$P [M+Na$^+$]:

- ber.: 383.1236
- gef.: 383.1223.

(Triethylammonium)hydrogen{(1S,2S,3R,4Z)-3-hydroxy-5-iod-2-methyl-1-{(3S)-3-[(2S,3S)-3-methyl-6-oxo-tetrahydro-pyran-2-yl]-butyl]-pent-4-enyl}phosphat (157)

Das Phosphat 157 wird in völliger Analogie zu 20a ausgehend von 2.2 mg (2.6 µmol) des Phosphotriesters 125b hergestellt.

Ausbeute: 1.4 mg (2.4 µmol, 92 %), weißes amorphes Pulver.
Rf: 0.3(CH/EE)= 1:2 (v/v).

Drehwert: \([\alpha]_D^{20} = +32.9\) (c=0.07 in MeOH).

1H (400 MHz, CDCl₃): \(\delta = 6.51\) (dd, \(^3J=7.6\) Hz, \(^4J=0.6\) Hz, 1H; CHI), 6.24 (dd, \(^3J=8.4\) Hz, \(^3J=7.8\) Hz, 1H; =CH-4), 4.48 (dddd, \(^3J(31P,1H)=10.6\) Hz, \(^3J=8.2\) Hz, \(^3J=5.9\) Hz, \(^3J=2.3\) Hz, 1H; CHOP), 4.36 (t, \(^3J=8.8\) Hz, 1H; CHOH), 4.06 (dd, \(^3J=10.0\) Hz, \(^3J=2.2\) Hz, 1H; CH-2''), 3.20 (q, \(^3J=7.2\) Hz, 6H, CH₂N), 2.58 (ddd, \(^2J=17.9\) Hz, \(^3J=8.4\) Hz, \(^3J=5.1\) Hz, 1H; CH₂-5''(1)), 2.47 (dt, \(^2J=17.9\) Hz, \(^3J=8.0\) Hz, 1H; CH₂-5''(1)), 1.94-2.03 (m, 1H; CH₂-4''(1)), 1.60-1.80 (m, 4H; CH₂-1''(1), CH₂-2''(1)), CH-2, CH-3', 1.45-1.57 (m, 1H; CH₂-4''(1)), 1.32 (t, \(^1J=17.9\) Hz, 9H; CH₃CH₂N), 1.20-1.32 (m, 1H; CH₂-1''(1)), 0.95 (d, \(^3J=6.6\) Hz, 3H; CH₃-3''), 0.93 (d, \(^3J=7.0\) Hz, 3H; CH₃-3''), 0.89 (d, \(^3J=7.0\) Hz, 3H; CH₃-2).

13C (100.6 MHz, CDCl₃): \(\delta = 175.1\) (C=O), 143.8 (=CH-4), 87.9 (CHO-2''), 83.6 (CH-I), 75.8 (d, \(^2J(13C,31P)=10.0\) Hz, CHOP), 75.1 (CHO-3), 47.8 (CH₂N), 43.2 (CH-2), 36.2 (CH-3'), 31.6 (CH₂-2''), 29.8 (CH₂-1''), 28.2 (CH-3''), 27.5 (CH₂-4''), 27.0 (CH₂-5''), 15.1 (CH₃-3''), 11.9 (CH₃-3''), 9.3 (CH₃CH₂N), 9.2 (CH₃-2).

31P (162 MHz, d⁴-Methanol): \(\delta = 3.07\).

C₁₆H₂₈IO₭P (490.28)

MS (FAB, 3-NBA): 512.9 ([M+Na⁺]).

HR-MS (FAB, 3-NBA) für C₁₆H₂₈INaO₭P [M+Na⁺]:ber.: 513.0515
gef.: 513.0502.

\{1-{(1S,2S,5S)-2-{bis-(9H-fluoren-9-ylmethoxy)-phosphoryloxy}-1-methyl-5-{(2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl-[hexyl]-prop-2-inyl}ethanoat (158)\}

Zu einer Lösung von 10 mg (14 μmol) des Alkohols **122b** in 100 μl trockenem Pyridin werden nacheinander ca. 0.2 mg N,N-Dimethylaminopyridin und ca. 5 μl Acetanhydrid zugegeben. Nach 1 h Rühren wird die Lösung mit 10 ml einer 1 M Kaliumdihydrogenphosphat-Lösung versetzt und mit dreimal je 15 ml Ethylacetat extrahiert. Die versammelten organischen Phasen werden mit 15 ml einer gesättigten NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und nach Zugabe von 5 ml Toluol wird das Lösungsmittel im Vakuum abdestilliert.
Das Rohprodukt wird säulenchromatographisch an Kieselgel mit Cyclohexan/Ethylacetat 1:1 → 1:2 (v/v) gereinigt.

Ausbeute: 6.4 mg (8.4 µmol, 60 %), farbloses, hochviskoses Öl.

\[\text{Rf}: 0.65 \ (\text{CH/EE})= 1:3 \ (v/v)). \]

\[\text{Drehwert:} \ \left[\alpha\right]_{D}^{20} = +70.3 \ (c=0.32 \text{ in CHCl}_{3}). \]

\[^{1}H \ (400 \text{ MHz, CDCl}_{3}): \delta = 7.66-7.73 \ (m, 4H; \text{Fm-CH}), \ 7.59 \ (d, ^{3}J=7.5 \text{ Hz, 1H; Fm-CH}), \ 7.49-7.53 \ (m, 2H; \text{Fm-CH}), \ 7.44 \ (d, ^{3}J=7.5 \text{ Hz, 1H; Fm-CH}), \ 7.19-7.40 \ (m, 8H; \text{Fm-CH}), \ 6.96 \ (dd, ^{3}J=9.6 \text{ Hz,} \ ^{3}J=6.6 \text{ Hz, 1H; =CH-4‴}), \ 5.94 \ (d, ^{3}J=9.6 \text{ Hz, 1H; =CH-5‴}), \ 5.26 \ (dd, ^{3}J=8.4 \text{ Hz,} \ ^{4}J=2.2 \text{ Hz, 1H; CHOAc}), \ 4.49-4.56 \ (m, 1H; \text{CHOP}), \ 4.04-4.30 \ (m, 6H; \text{Fm-C}\text{H}_{2}(4), \text{Fm-C}\text{H}(2)), \ 3.89 \ (dd, ^{3}J=10.4 \text{ Hz,} \ ^{3}J=2.9 \text{ Hz, 1H; CHO-2‴}), \ 1.07-1.17 \ (m, 1H; \text{CH2-4‴(1), CH2-3‴, CH-5‴}), \ 0.98 \ (d, ^{3}J=7.0 \text{ Hz, 3H; CH3-1‴}), \ 0.79 \ (d, ^{3}J=6.6 \text{ Hz, 3H; CH3-5‴}). \]

\[^{13}C \ (\text{HSQC, CDCl}_{3}): \delta = 169.9 \ (\text{CH3-C=O}), \ 164.6 \ (\text{O=C-6‴}), \ 151.8 \ (=\text{CH-4‴}), \ 143.4 \ (\text{Fm-C}), \ 143.3 \ (\text{Fm-C}), \ 143.2 \ (\text{Fm-C}), \ 141.4 \ (\text{Fm-C}), \ 128.1 \ (\text{Fm-CH}), \ 128.0 \ (\text{Fm-CH}), \ 127.1 \ (\text{Fm-CH}), \ 127.0 \ (\text{Fm-CH}), \ 125.3 \ (\text{Fm-CH}), \ 125.1 \ (\text{Fm-CH}), \ 120.2 \ (=\text{CH-5‴}), \ 120.0 \ (\text{Fm-CH}), \ 83.7 \ (\text{CHO-2‴}), \ 80.1 \ (=\text{C-H}), \ 79.0 \ (\text{CHOP}), \ 74.8 \ (=\text{C-2}), \ 69.3 \ (\text{FmCH}_{2}), \ 69.2 \ (\text{FmCH}_{2}), \ 64.6 \ (\text{CHOAc}), \ 48.0 \ (\text{Fm-CH}), \ 47.9 \ (\text{Fm-CH}), \ 40.3 \ (\text{CH-1‴}), \ 34.1 \ (\text{CH-5‴}), \ 30.3 \ (\text{CH-3‴}), \ 29.9 \ (\text{CH2-3‴}), \ 27.8 \ (\text{CH2-4‴}), \ 20.9 \ (\text{CH3C=O}), \ 14.5 \ (\text{CH3-5‴}), \ 10.4 \ (\text{CH3-3‴}), \ 9.6 \ (\text{CH3-1‴}). \]

\[^{31}P \ (162 \text{ MHz, CDCl}_{3}): \delta = -0.77. \]

\[\text{C}_{46}\text{H}_{47}\text{O}_{8}\text{P} \ (758.30). \]

\[\text{MS} \ (\text{MALDI-TOF, DHB}): 781.5 \ ([\text{M+Na}^{+}], 100), \ 797.4 \ ([\text{M+K}^{+}], 12). \]

\[\text{HR-MS} \ (\text{FAB, 3-NBA}) \text{ für } \text{C}_{46}\text{H}_{48}\text{O}_{8}\text{P} \ [\text{M+H}^{+}]: \text{ ber.:} \ 759.3087 \]

\[\text{ gef.:} \ 759.3119. \]

\[\text{Monotriethylammoniumsalz des } 1-\{(1S,2S,5S)-1\text{-methyl-5-}[2S,3S]-3\text{-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-2-phosphonooxy-hexyl}\text{-prop-2-inyl} \text{ethanoats (159)} \]
Das Phosphat 159 wird in völliger Analogie zu 20a ausgehend von 6.4 mg (8.4 μmol) des Phosphotriesters 158 hergestellt.

Ausbeute: 2.1 mg (4.2 μmol, 49 %), weißes, amorphes Pulver.

Rf: 0 (EE).

Drehwert: \([\alpha]_D^{20} = +118 \text{ (c=0.10 in MeOH).}\)

\(^1\text{H}\) (400 MHz, d\(^4\)-Methanol): δ = 7.16 (dd, \(^3\text{J}=9.6\) Hz, \(^3\text{J}=6.5\) Hz, 1H; =CH-4'), 5.93 (d, \(^3\text{J}=9.6\) Hz, \(^4\text{J}=0.6\) Hz, 1H; =CH-5'), 5.28 (dd, \(^3\text{J}=8.2\) Hz, \(^4\text{J}=2.2\) Hz, 1H; CHOAc), 4.31 (dddd, \(^3\text{J}\text{^1H}=10.6\) Hz, \(^3\text{J}=7.0\) Hz, \(^3\text{J}=5.5\) Hz, \(^3\text{J}=3.7\) Hz, 1H; CHOP), 4.11 (dd, \(^3\text{J}=7.2\) Hz, 6H; CH\(_2\)N), 4.31 (ddd, \(^3\text{J}(1\text{H},\text{^31P})=10.6\) Hz, \(^3\text{J}=7.0\) Hz, \(^3\text{J}=5.5\) Hz, \(^3\text{J}=3.7\) Hz, 1H; CHOAc), 4.11 (dd, \(^3\text{J}=7.2\) Hz, 6H; CH\(_2\)N).

\(^13\text{C}\) (100.6 MHz, d\(^4\)-Methanol): δ = 171.7 (C=O-6'), 167.3 (Ac-C=O), 155.0 (=CH-4'), 120.0 (=CH-5'), 85.6 (CHO-2'), 81.8 (=C-H), 76.0 (d, \(^2\text{J}\text{^13C}=6.2\) Hz, CHOP), 75.9 (=C-2), 66.6 (CHOH), 47.7 (CH\(_3\)N), 41.4 (d, \(^3\text{J}\text{^13C}=6.2\) Hz; CH-1'), 35.5 (CH-5'), 31.6 (CH-3'), 30.9 (CH\(_2\)-3'), 28.9 (CH\(_2\)-4'), 21.0 (Ac-CH\(_3\)), 14.8 (CH\(_3\)-5'), 11.0 (CH\(_3\)-3'), 10.3 (CH\(_3\)-1'), 9.2 (CH\(_3\)CH\(_2\)N).

\(^{31}\text{P}\) (162 MHz, d\(^4\)-Methanol): δ = 1.33.

C\(_{18}\)H\(_{27}\)O\(_8\)P (402.36)

MS (FAB, 3-NBA): 447.0 ([M-H\(^+\)+2Na\(^+\)], 89), 425.0 ([M+Na\(^+\)], 100).

HR-MS (FAB, 3-NBA) für C\(_{46}\)H\(_{48}\)NaO\(_8\)P [M+Na\(^+\)]: ber.: 425.1341
gef.: 425.1328.

(Triethylammonium)(2-cyanoethyl){(1S,2S,3R,4Z)-3-hydroxy-2-methyl-1-\{(3S)-3-[(2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]-butyl\}-pent-4-inyl}phosphat (163)

Das Phosphat 163 wird in völliger Analogie zu 20a ausgehend von 11.3 mg (24.2 μmol) des Phosphotriesters 122a hergestellt.
Ausbeute: 10.6 mg (20.6 μmol, 85 %), farbloses Öl

Rf: 0 (EE).

Drehwert: \([\alpha^D]_{D}^{20} = +76.8\) (c=0.525 in MeOH).

\(^1\)H (400 MHz, CDCl\(_3\)): \(\delta = 7.15\) (dd, \(3^J=9.6\) Hz, \(3^J=6.5\) Hz, 1H; =CH-4”), 5.93 (d, \(3^J=9.6\) Hz, 1H; =CH-5”), 4.44-4.52 (m, 1H; CHOP), 4.30 (dd, \(3^J=9.2\) Hz, \(4^J=2.0\) Hz, 1H; CHO-3), 4.14 (dd, \(3^J=10.2\) Hz, \(3^J=2.9\) Hz, 1H; CHO-2”), 4.07 (q, \(3^J(\text{H,H})=6.6\) Hz, 2H; OCH\(_2\)CH\(_2\)CN), 3.20 (q, \(3^J=7.2\) Hz, 6H; CH\(_2\)N), 2.76-2.81 (m, 3H, CH\(_2\)CN, \(\equiv\)CH), 2.58 (dquint, \(3^J=2.9\) Hz, \(3^J=6.6\) Hz, 1H; CH-3”), 1.51-1.61 (m, 1H; CH\(_2\)-1’(1)), 1.30-1.39 (m, 1H; CH\(_2\)-2’(1)), 0.97 (d, \(3^J=6.6\) Hz, 3H; CH-3”).

\(^{13}\)C (100.6 MHz, CDCl\(_3\)): \(\delta = 167.2\) (C=O), 154.9 (=CH-4”), 120.1 (=CH-5”), 119.4 (CN), 85.6 (=CH), 85.4 (CHO-2”), 76.3 (d, \(2^J(\text{C,3P})=6.2\) Hz, CHOP), 74.1 (=C-4), 64.6 (CHOH), 61.7 (d, \(2^J(\text{C,3P})=5.4\) Hz; \(\beta\)-CE-OCH\(_2\)), 47.8 (CH\(_2\)N), 45.1 (d, \(3^J(\text{C,3P})=4.6\) Hz; CH-2), 35.2 (CH-3”), 31.6 (CH-3”), 31.4 (d, \(3^J(\text{C,3P})=3.1\) Hz, CH\(_2\)-1’), 29.4 (CH\(_2\)-2’), 20.4 (d, \(3^J(\text{C,3P})=8.5\) Hz; CH\(_2\)CN), 14.9 (CH\(_3\)-3”), 11.0 (CH\(_3\)-3”), 9.8 (CH\(_3\)-2), 9.2 (CH\(_3\)CH\(_2\)N).

\(^{31}\)P (162 MHz, d\(_4\)-Methanol): \(\delta = 1.55\).

C\(_{19}\)H\(_{28}\)NO\(_7\)P (413.40)

MS (FAB, 3-NBA): 436.0 ([M+Na\(^+\)], 414.2 ([M+H\(^+\)], 12).

HR-MS (FAB, 3-NBA) für C\(_{19}\)H\(_{29}\)NO\(_7\)P [M+H\(^+\)]: ber.: 414.1682
gef.: 414.1720

6.7. Versuche zu Kapitel 4.3.2.

Inhibition des Enzyms PP2A\(_1\)

Für eine Testreihe wurden folgende Lösungen bereitgestellt:

Puffer A: Tris (40 mM), KCl (20 mM), Mg\(_2\).6H\(_2\)O (30 mM), DTT (2 mM), pH 8.1 (mit HCl eingestellt).
Enzymlösung: 0.025 U/80 μl Puffer A. Zusatz von 30 %iger BSA-Lösung im Enzym/Puffer: BSA 300:1 (v/v).

Inhibitorlösung: 10-fache Konzentration der erwünschten Endkonzentration in Wasser.
Substratlösung: 50 mM Lösung von para-Nitrophenylphosphat-Dinatriumsalz (PNPP) in Wasser (entspricht einer Endkonzentration von 5 mM).

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.109</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.774</td>
<td>100 %</td>
</tr>
<tr>
<td>1 µM 20a</td>
<td>10 (10 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.111</td>
<td>0 %</td>
</tr>
<tr>
<td>0.1 µM 20a</td>
<td>10 (1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.222</td>
<td>17 %</td>
</tr>
<tr>
<td>0.01 µM 20a</td>
<td>10 (0.1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.691</td>
<td>88 %</td>
</tr>
<tr>
<td>Zugabe in µl / Inhibitor-Endkonzentration</td>
<td>Inhibitorlösung</td>
<td>Wasser</td>
<td>Enzymlösung</td>
<td>Puffer A</td>
<td>Substratlösung</td>
<td>Absorption</td>
<td>Rel. enz. Aktivität</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.097</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.742</td>
<td>100 %</td>
</tr>
<tr>
<td>20 nM 20a</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.543</td>
<td>69 %</td>
</tr>
<tr>
<td></td>
<td>(0.2 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 nM 20a</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.376</td>
<td>44 %</td>
</tr>
<tr>
<td></td>
<td>(0.4 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 nM 20a</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.272</td>
<td>28 %</td>
</tr>
<tr>
<td></td>
<td>(0.6 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.122</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.775</td>
<td>100 %</td>
</tr>
<tr>
<td>50 nM 20a</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.345</td>
<td>34 %</td>
</tr>
<tr>
<td></td>
<td>(0.5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.144</td>
<td>3 %</td>
</tr>
<tr>
<td></td>
<td>(1 mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 µM 143</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.532</td>
<td>63 %</td>
</tr>
<tr>
<td></td>
<td>(1 mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugabe in µl / Inhibitor-Endkonzentration</td>
<td>Inhibitorlösung</td>
<td>Wasser</td>
<td>Enzymlösung</td>
<td>Puffer A</td>
<td>Substratlösung</td>
<td>Absorption</td>
<td>Rel. enz. Aktivität</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.121</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.685</td>
<td>100 %</td>
</tr>
<tr>
<td>10 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.122</td>
<td>2 %</td>
</tr>
<tr>
<td>(0.1 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.232</td>
<td>20 %</td>
</tr>
<tr>
<td>(10 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.568</td>
<td>80 %</td>
</tr>
<tr>
<td>(1 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 nM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.659</td>
<td>96 %</td>
</tr>
<tr>
<td>(0.1 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.097</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.646</td>
<td>100 %</td>
</tr>
<tr>
<td>0.25 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.486</td>
<td>71 %</td>
</tr>
<tr>
<td>(2.5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.307</td>
<td>38 %</td>
</tr>
<tr>
<td>(5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75 µM 156</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.261</td>
<td>30 %</td>
</tr>
<tr>
<td>(7.5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 µM 155</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.130</td>
<td>6 %</td>
</tr>
<tr>
<td>(5 µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugabe in µl / Inhibitor-Endkonzentration</td>
<td>Inhibitorlösung</td>
<td>Wasser</td>
<td>Enzymlösung</td>
<td>Puffer A</td>
<td>Substratlösung</td>
<td>Anstieg Absorption /30 s</td>
<td>Rel. enz. Aktivität</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.024</td>
<td>100 %</td>
</tr>
<tr>
<td>0.5 µM 155</td>
<td>10 (5 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.001</td>
<td>4 %</td>
</tr>
<tr>
<td>0.1 µM 155</td>
<td>10 (1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.01</td>
<td>42 %</td>
</tr>
<tr>
<td>50 nM 155</td>
<td>10 (0.5 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.014</td>
<td>58 %</td>
</tr>
<tr>
<td>0.5 µM 154</td>
<td>10 (5 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.000</td>
<td>0 %</td>
</tr>
<tr>
<td>0.1 µM 154</td>
<td>10 (1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.003</td>
<td>13 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Anstieg Absorption /30 s</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.020</td>
<td>100 %</td>
</tr>
<tr>
<td>75 nM 155</td>
<td>10 (0.75 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.013</td>
<td>65 %</td>
</tr>
<tr>
<td>50 nM 154</td>
<td>10 (0.5 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.008</td>
<td>40 %</td>
</tr>
<tr>
<td>33 nM 154</td>
<td>10 (0.33 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.012</td>
<td>60 %</td>
</tr>
<tr>
<td>10 nM 154</td>
<td>10 (0.1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.016</td>
<td>80 %</td>
</tr>
<tr>
<td>10 nM 155</td>
<td>10 (0.1 µM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.016</td>
<td>80 %</td>
</tr>
<tr>
<td>Zugabe in µl / Inhibitor-Endkonzentration</td>
<td>Inhibitorlösung</td>
<td>Wasser</td>
<td>Enzymlösung</td>
<td>Puffer A</td>
<td>Substratlösung</td>
<td>Absorption</td>
<td>Rel. enz. Aktivität</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.103</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.350</td>
<td>100 %</td>
</tr>
<tr>
<td>100 µM 159</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.308</td>
<td>83 %</td>
</tr>
<tr>
<td>100 µM 157</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.233</td>
<td>53 %</td>
</tr>
<tr>
<td>100 µM 163</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.167</td>
<td>26 %</td>
</tr>
<tr>
<td>Zugabe in µl / Inhibitor-Endkonzentration</td>
<td>Inhibitorlösung</td>
<td>Wasser</td>
<td>Enzymlösung</td>
<td>Puffer A</td>
<td>Substratlösung</td>
<td>Absorption</td>
<td>Rel. enz. Aktivität</td>
</tr>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.110</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.323</td>
<td>100 %</td>
</tr>
<tr>
<td>33 µM 163</td>
<td>10 (0.33 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.242</td>
<td>62 %</td>
</tr>
<tr>
<td>11 µM 163</td>
<td>10 (0.11 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.279</td>
<td>79 %</td>
</tr>
<tr>
<td>3.7 µM 163</td>
<td>10 (0.037 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.296</td>
<td>87 %</td>
</tr>
</tbody>
</table>

Inhibition des Enzyms PP1

Für eine Testreihe wurden folgende Lösungen bereitgestellt:
Puffer A: Tris (40 mM), KCl (20 mM), MgCl₂.6H₂O (30 mM), DTT (2 mM), pH 8.1 (mit HCl eingestellt).
Enzymlösung: 0.025 U/80 µl Puffer A. Zusatz von 30 %iger BSA-Lösung im Enzym/Puffer: BSA 300:1 (v/v).

Inhibitorlösung: 10-fache Konzentration der erwünschten Endkonzentration in Wasser.

Substratlösung: 50 mM Lösung von para-Nitrophenylphosphat-Dinatriumsalz (PNPP) in Wasser.

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.113</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.311</td>
<td>100 %</td>
</tr>
<tr>
<td>20 µM 20a</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.303</td>
<td>96 %</td>
</tr>
<tr>
<td>100 µM 154</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.258</td>
<td>73 %</td>
</tr>
<tr>
<td>100 µM 155</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.307</td>
<td>98 %</td>
</tr>
<tr>
<td>100 µM 156</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.273</td>
<td>81 %</td>
</tr>
<tr>
<td>100 µM 159</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.299</td>
<td>94 %</td>
</tr>
<tr>
<td>100 µM 163</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.303</td>
<td>96 %</td>
</tr>
<tr>
<td>100 µM 157</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.291</td>
<td>90 %</td>
</tr>
<tr>
<td>100 µM 143</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.289</td>
<td>89 %</td>
</tr>
</tbody>
</table>

Inhibition des Enzymes VHR

Puffer B: MOPS (25 mM), EDTA (5 mM), NaCl (125 mM), DTT (2 mM), pH 6.5 (mit 2 M NaOH eingestellt).

Enzymlösung: 0.01 U/80 µl Puffer B. Zusatz von 30 %iger BSA-Lösung im Enzym/Puffer: BSA300:1 (v/v).

Inhibitorlösung: 10-fache Konzentration der erwünschten Endkonzentration in Wasser.

Substratlösung: 10 mM Lösung von para-Nitrophenylphosphat-Dinatriumsalz (PNPP) in Wasser.

Vorinkubationszeit mit Inhibitorlösung 10 min bei Raumtemperatur, Messung der Absorption nach ca. 1 h enzymatischer Hydrolyse bei 37 °C.
<table>
<thead>
<tr>
<th>Zugabe in µl</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.225</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.658</td>
<td>100 %</td>
</tr>
<tr>
<td>20 µM 20a</td>
<td>10 (0.2 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.628</td>
<td>93 %</td>
</tr>
<tr>
<td>100 µM 156</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.649</td>
<td>98 %</td>
</tr>
<tr>
<td>100 µM 143</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.673</td>
<td>103 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugabe in µl</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Relative enzymatische Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.109</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.342</td>
<td>100 %</td>
</tr>
<tr>
<td>100 µM 155</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.337</td>
<td>98 %</td>
</tr>
<tr>
<td>100 µM 154</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.336</td>
<td>97 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugabe in µl</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Relative enzymatische Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>10</td>
<td>0.108</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.316</td>
<td>100 %</td>
</tr>
<tr>
<td>100 µM 159</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.324</td>
<td>104 %</td>
</tr>
<tr>
<td>100 µM 163</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.318</td>
<td>101 %</td>
</tr>
<tr>
<td>100 µM 157</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.326</td>
<td>105 %</td>
</tr>
</tbody>
</table>
Inhibition des Enzyms PTP1B

Puffer siehe VHR. Vorinkubation mit Inhibitoren 10 min bei RT. Enzymatische Hydrolyse bei RT.

<table>
<thead>
<tr>
<th>Zugabe in µl / Inhibitor-Endkonzentration</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer A</th>
<th>Substratlösung</th>
<th>Anstieg Absorption /1 min</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.030</td>
<td>100 %</td>
</tr>
<tr>
<td>100 µM 159</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.029</td>
<td>97 %</td>
</tr>
<tr>
<td>100 µM 163</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.029</td>
<td>97 %</td>
</tr>
<tr>
<td>100 µM 157</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.029</td>
<td>97 %</td>
</tr>
<tr>
<td>20 µM 20a</td>
<td>10 (0.2 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.028</td>
<td>93 %</td>
</tr>
<tr>
<td>100 µM 155</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.029</td>
<td>97 %</td>
</tr>
<tr>
<td>100 µM 154</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.029</td>
<td>97 %</td>
</tr>
<tr>
<td>100 µM 156</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.028</td>
<td>97 %</td>
</tr>
<tr>
<td>100 µM 143</td>
<td>10 (1 mM)</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>10</td>
<td>0.028</td>
<td>97 %</td>
</tr>
</tbody>
</table>

Inhibition des Enzyms CDC45

Der Assay wird mit dem kommerziell erhältlichen Biomol Green™ CD45 Tyrosine Phosphatase Assay Kit durchgeführt.

Puffer C (KI-131-assay Puffer): HEPES (50 mM), EDTA (1 mM), DTT (1 mM), 0.05 % NP-40, pH 7.2.

Enzymlösung: 1500 U /100 µl Puffer C.

Inhibitorlösung: 10-fache Konzentration der erwünschten Endkonzentration in Wasser.

Substratlösung: 1 mM Lösung pp60c-src Peptid (M=1543.7) in Puffer C.

Folgende Reagenzien werden vorgelegt: Inhibitorlösung oder Wasser, Puffer, Enzymlösung.

Die Reaktion wird schließlich durch Zugabe der Substratlösung gestartet und 1 h bei 30 °C inkubiert. Nach der Inkubationszeit wird die Reaktion durch Zugabe von 100 ml BIOMOL GREEN™ Reagens gestoppt und die Mikrotiterplatte bei 690 nm vermessen.
<table>
<thead>
<tr>
<th>Zugabe in µl</th>
<th>Inhibitorlösung</th>
<th>Wasser</th>
<th>Enzymlösung</th>
<th>Puffer C</th>
<th>Substratlösung</th>
<th>Absorption</th>
<th>Rel. enz. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hintergrund</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>32</td>
<td>8</td>
<td>0.140</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Inhibitor</td>
<td>0</td>
<td>4.5</td>
<td>5</td>
<td>27</td>
<td>8</td>
<td>0.429</td>
<td>100 %</td>
</tr>
<tr>
<td>20 µM 20a</td>
<td>4.5 (0.2 mM)</td>
<td>0</td>
<td>5</td>
<td>27</td>
<td>8</td>
<td>0.396</td>
<td>89 %</td>
</tr>
<tr>
<td>100 µM 156</td>
<td>4.5 (1 mM)</td>
<td>0</td>
<td>5</td>
<td>27</td>
<td>8</td>
<td>0.368</td>
<td>79 %</td>
</tr>
<tr>
<td>100 µM 143</td>
<td>4.5 (1 mM)</td>
<td>0</td>
<td>5</td>
<td>27</td>
<td>8</td>
<td>0.383</td>
<td>85 %</td>
</tr>
</tbody>
</table>
7. Literaturverzeichnis

[58] I. G. Campbell, T. Manolitsas, Oncogene 1999, 18, 6367-6369.

[159] L. Bialy, Diplomarbeit, Universität (TH) Karlsruhe, **1998**.

[180] siehe Anhang

[181] bezogen auf 1/ 5.9 des Edukts.
Abbildung 16 1H-NMR Vergleich zwischen synthetischem und isoliertem Cytostatin in d^4-Methanol

Abbildung 17 31P-NMR Spektrum von isolierter Probe 20 und synthetischer Verbindung 20a (1:1) in d^4-Methanol
Abbildung 18
HSQC-Spektren von isolierter Probe 20 und synthetischer Verbindung 20a (1:1) in d^4-Methanol

Nicht-markierte Punkte stammen aus Verunreinigungen der natürlichen Probe.
Danksagung

Ich danke Herrn Prof. Waldmann für die interessante Themenstellung und für die Betreuung und Unterstützung bei der Anfertigung dieser Arbeit.

Bei der gesamten Arbeitsgruppe möchte ich mich für die sehr gute Arbeitsatmosphäre, die anregenden Kaffeerunden und die sehr unterhaltsamen Exkurse ins Dortmunder Nachtleben bedanken.

Bei meiner Praktikantin Meike Niggemann möchte ich mich für ihre engagierte Mitarbeit bedanken.

Bei allen Mitarbeitern der analytischen Abteilungen in Karlsruhe und in Dortmund möchte ich mich für die hilfreiche Unterstützung bedanken.

Dem Fonds der Chemischen Industrie möchte ich für die großzügige finanzielle Unterstützung während meiner Promotion danken.
Lebenslauf

Name: Laurent Bialy
Staatsangehörigkeiten: deutsch, französisch
Familienstand: ledig

Schulbildung

1980 – 1992 Europäische Schule Karlsruhe

Zivildienst

Studium

10/1992 – 07/1993; Studium der Chemie an der Universität (TH) Karlsruhe
16.08.1998 Diplom

Dissertation

Beginn 10/1998 Doktorarbeit unter der Betreuung von Prof. Dr. H. Waldmann an der Universität Karlsruhe
Seit 11/1999 Fortsetzung der Doktorarbeit an der Universität und am Max-Planck-Institut für Molekulare Physiologie in Dortmund:
„Enantioselektive Totalsynthese und biologische Evaluierung des Protein-Phosphatase 2A Inhibitors Cytostatin und Analoga“