Authors: Brameier, Markus
Title: On linear genetic programming
Language (ISO): en
Abstract: The thesis is about linear genetic programming (LGP), a machine learning approach that evolves computer programs as sequences of imperative instructions. Two fundamental differences to the more commontree-based variant (TGP) may be identified. These are the graph-based functional structure of linear genetic programs, on the one hand, and the existence of structurally noneffective code, on the other hand.The two major objectives of this work comprise(1) the development of more advanced methods and variation operators to produce better and more compact program solutions and (2) the analysis of general EA/GP phenomena in linear GP, including intron code, neutral variations, and code growth, among others.First, we introduce efficient algorithms for extracting features of the imperative and functional structure of linear genetic programs.In doing so, especially the detection and elimination of noneffective code during runtime will turn out as a powerful tool to accelerate the time-consuming step of fitness evaluation in GP.Variation operators are discussed systematically for the linear program representation. We will demonstrate that so called effective instruction mutations achieve the best performance in terms of solution quality.These mutations operate only on the (structurally) effective codeand restrict the mutation step size to one instruction.One possibility to further improve their performance is to explicitly increase the probability of neutral variations. As a second, more time-efficient alternative we explicitly controlthe mutation step size on the effective code (effective step size).Minimum steps do not allow more than one effective instruction to change its effectiveness status. That is, only a single node may beconnected to or disconnected from the effective graph component. It is an interesting phenomenon that, to some extent, the effective code becomes more robust against destructions over the generations already implicitly. A special concern of this thesis is to convince the reader that thereare some serious arguments for using a linear representation.In a crossover-based comparison LGP has been found superior to TGPover a set of benchmark problems. Furthermore, linear solutions turned out to be more compact than tree solutions due to (1) multiple usage of subgraph results and (2) implicit parsimony pressure by structurally noneffective code.The phenomenon of code growth is analyzed for different lineargenetic operators. When applying instruction mutations exclusivelyalmost only neutral variations may be held responsible for the emergence and propagation of intron code. It is noteworthy that linear geneticprograms may not grow if all neutral variation effects are rejected and if the variation step size is minimum.For the same reasons effective instruction mutations realize an implicit complexity control in linear GP which reduces a possible negative effect of code growth to a minimum.Another noteworthy result in this context is that program size is strongly increased by crossover while it is hardly influenced by mutation even if step sizes are not explicitly restricted. Finally, we investigate program teams as one possibility to increasethe dimension of genetic programs. It will be demonstrated that muchmore powerful solutions may be found by teams than by individuals. Moreover, the complexity of team solutions remains surprisingly small compared to individual programs. Both is the result of specialization and cooperation of team members.
Subject Headings: Genetic programming
Evolutionary algorithms
Machine learning
Issue Date: 2005-01-18
Provenance: Universität Dortmund
Appears in Collections:LS 11

Files in This Item:
File Description SizeFormat 
Brameier.ps3.93 MBPostscriptView/Open
Brameierunt.pdfDNB2.06 MBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.