Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Christmann, Andreas | - |
dc.contributor.author | Luebke, Karsten | - |
dc.contributor.author | Marin-Galiano, Marcos | - |
dc.contributor.author | Rüping, Stefan | - |
dc.date.accessioned | 2005-11-07T11:39:49Z | - |
dc.date.available | 2005-11-07T11:39:49Z | - |
dc.date.issued | 2005-11-07T11:39:49Z | - |
dc.identifier.uri | http://hdl.handle.net/2003/21667 | - |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-14494 | - |
dc.description.abstract | We investigate methods to determine appropriate choices of the hyper-parameters for kernel based methods. Support vector classification, kernel logistic regression and support vector regression are considered. Grid search, Nelder-Mead algorithm and pattern search algorithm are used. | en |
dc.format.extent | 502994 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.subject | convex risk minimization | en |
dc.subject | kernel logistic regression | en |
dc.subject | statistical machine learning | en |
dc.subject | support vector machine | en |
dc.subject | support vector regression | en |
dc.subject.ddc | 004 | - |
dc.title | Determination of hyper-parameters for kernel based classification and regression | en |
dc.type | Text | - |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access | - |
Appears in Collections: | Sonderforschungsbereich (SFB) 475 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tr38-05.pdf | DNB | 491.21 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.