Authors: Fokianos, Konstantinos
Fried, Roland
Title: Interventions in ingarch processes
Language (ISO): en
Abstract: We study the problem of intervention effects generating various types of outliers in a linear count time series model. This model belongs to the class of observation driven models and extends the class of Gaussian linear time series models within the exponential family framework. Studies about effects of covariates and interventions for count time series models have largely fallen behind due to the fact that the underlying process, whose behavior determines the dynamics of the observed process, is not observed. We suggest a computationally feasible approach to these problems, focusing especially on the detection and estimation of sudden shifts and outliers. To identify successfully such unusual events we employ the maximum of score tests, whose critical values in finite samples are determined by parametric bootstrap. The usefulness of the proposed methods is illustrated using simulated and real data examples.
Subject Headings: generalized linear models
level shifts
observation driven models
parametric bootstrap
transient shifts
Issue Date: 2009-08-05T10:02:48Z
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
tr11-09.pdfDNB415.91 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.