Authors: Rösler, Margit
Voit, Michael
Title: A multivariate version of the disk convolution
Language (ISO): en
Abstract: We present an explicit product formula for the spherical functions of the compact Gelfand pairs (G,K_1) = (SU(p + q), SU(p) × SU(q)) with p ≥ 2q, which can be considered as the elementary spherical functions of one-dimensional K-type for the Hermitian symmetric spaces G/K with K = S(U(p) × U(q)). Due to results of Heckman, they can be expressed in terms of Heckman-Opdam Jacobi polynomials of type BC_q with specific half-integer multiplicities. By analytic continuation with respect to the multiplicity parameters we obtain positive product formulas for the extensions of these spherical functions as well as associated compact and commutative hypergroup structures parametrized by real p ∈]2q−1,∞[. We also obtain explicit product formulas for the involved continuous two-parameter family of Heckman-Opdam Jacobi polynomials with regular, but not necessarily positive multiplicities. The results of this paper extend well known results for the disk convolutions for q = 1 to higher rank.
Subject Headings: hypergeometric functions associated with root systems
Heckman-Opdam theory
Jacobi polynomials
disk hypergroups
positive product formulas
compact Grassmann manifolds
spherical functions
Issue Date: 2015-04
Appears in Collections:Preprints der Fakultät für Mathematik

Files in This Item:
File Description SizeFormat 
Preprint 2015-03.pdf323.12 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.