Full metadata record
DC FieldValueLanguage
dc.contributor.authorSotthibundhu, Areechun-
dc.contributor.authorEkthuwapranee, Kasima-
dc.contributor.authorGovitrapong, Piyarat-
dc.date.accessioned2017-03-15T12:26:31Z-
dc.date.available2017-03-15T12:26:31Z-
dc.date.issued2016-12-21-
dc.identifier.issn1611-2156-
dc.identifier.urihttp://hdl.handle.net/2003/35858-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17882-
dc.description.abstractMelatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition,the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating. the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy.en
dc.language.isoen-
dc.relation.ispartofseriesEXCLI Journal;Vol. 15, 2016en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectepidermal growth factoren
dc.subjectextracellular signal-regulated protein kinaseen
dc.subjectmelatoninen
dc.subjectmitogen-activated protein kinaseen
dc.subjectneural stem cellsen
dc.subjectsubventricular zoneen
dc.subject.ddc610-
dc.titleComparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zoneen
dc.typeText-
dc.identifier.doi10.17179/excli2016-606-
dc.type.publicationtypearticle-
dcterms.accessRightsopen access-
eldorado.dnb.zdberstkatid2132560-1-
Appears in Collections:Original Articles

Files in This Item:
File Description SizeFormat 
Govitrapong_21122016_proof.pdfDNB486.09 kBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons