Authors: Sokolov, Andriy
Davydov, Oleg
Turek, Stefan
Title: Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces
Language (ISO): en
Abstract: In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models.
Subject Headings: radial basis functions
finite differences
evolving surfaces
level set
surface PDEs
Subject Headings (RSWK): Radiale Basisfunktion
Finite-Differenzen-Methode
Partielle Differentialgleichung
URI: http://hdl.handle.net/2003/36231
http://dx.doi.org/10.17877/DE290R-18245
Issue Date: 2017-11
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 579.pdfDNB2.73 MBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.