Autor(en): Andraus, Sergio
Voit, Michael
Titel: Limit theorems for multivariate Bessel processes in the freezing regime
Sprache (ISO): en
Zusammenfassung: Multivariate Bessel processes describe the stochastic dynamics of interacting particle systems of Calogero-Moser-Sutherland type and are related with β-Hermite and Laguerre ensembles. It was shown by Andraus, Katori, and Miyashita that for fixed starting points, these processes admit interesting limit laws when the multiplicities k tend to ∞, where in some cases the limits are described by the zeros of classical Hermite and Laguerre polynomials. In this paper we use SDEs to derive corresponding limit laws for starting points of the form √k∙x for k→∞ with x in the interior of the corresponding Weyl chambers. Our limit results are a.s. locally uniform in time. Moreover, in some cases we present associated central limit theorems.
Schlagwörter: interacting particle systems
Calogero-Moser-Sutherland models
strong limiting laws
central limit theorems
zeros of Hermite polynomials
zeros of Laguerre polynomials
Hermite ensembles
Laguerre ensembles
URI: http://hdl.handle.net/2003/37861
http://dx.doi.org/10.17877/DE290R-19848
Erscheinungsdatum: 2018-11
Enthalten in den Sammlungen:Preprints der Fakultät für Mathematik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Preprint 2018-07.pdfDNB430.33 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.