Autor(en): Voit, Michael
Titel: Central limit theorems for multivariate Bessel processes in the freezing regime
Sprache (ISO): en
Zusammenfassung: Multivariate Bessel processes (X_(t,k) )t≥0 are classified via associated root systems and multiplicity constants k ≥ 0. They describe the dynamics of interacting particle systems of Calogero-Moser-Sutherland type. Recently, Andraus, Katori, and Miyashita derived some weak laws of large numbers for X_(t,k) for fixed times t > 0 and k→∞. In this paper we derive associated central limit theorems for the root systems of types A, B and D in an elementary way. In most cases, the limits will be normal distributions, but in the B-case there are freezing limits where distributions associated with the root system A or one-sided normal distributions on half-spaces appear. Our results are connected to central limit theorems of Dumitriu and Edelman for β-Hermite and β-Laguerre ensembles.
Schlagwörter: interacting particle systems
Calogero-Moser-Sutherland models
central limit theorems
Hermite ensembles
Laguerre ensembles
Dyson Brownian motion
URI: http://hdl.handle.net/2003/37862
http://dx.doi.org/10.17877/DE290R-19849
Erscheinungsdatum: 2018-11
Enthalten in den Sammlungen:Preprints der Fakultät für Mathematik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Preprint 2018_06.pdfDNB399.68 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.