Full metadata record
DC FieldValueLanguage
dc.contributor.authorDominicus, Alexander-
dc.contributor.authorGaspoz, Fernando-
dc.contributor.authorKreuzer, Christian-
dc.date.accessioned2019-01-24T08:51:42Z-
dc.date.available2019-01-24T08:51:42Z-
dc.date.issued2019-01-
dc.identifier.issn2190-1767-
dc.identifier.urihttp://hdl.handle.net/2003/37889-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19876-
dc.description.abstractWe develop a basic convergence analysis for an adaptive C0IPG method for the Biharmonic problem which provides convergence without rates for all practically relevant marking strategies and all penalty parameters assuring coercivity of the method. The analysis hinges on embedding properties of (broken) Sobolev and BV spaces, and the construction of a suitable limit space. In contrast to the convergence result of adaptive discontinuous Galerkin methods for elliptic PDEs, by Kreuzer and Georgoulis, here we have to deal with the fact that the Lagrange finite element spaces may possibly contain no proper C1-conforming subspace. This prevents from a straight forward generalisation and requires the development of some new key technical tools.en
dc.language.isoen-
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;593-
dc.subjectadaptive discontinuous Galerkin methodsen
dc.subjectquadratic C0-interior penalty methoden
dc.subjectconvergenceen
dc.subjectbiharmonic problemen
dc.subject.ddc610-
dc.titleConvergence of adaptive C0-interior penalty Galerkin method for the biharmonic problemen
dc.typeText-
dc.type.publicationtypepreprint-
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalse-
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 593.pdfDNB501.54 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.